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Abstract

‘We show the existence of global weak solutions to the three dimensional Navier—
Stokes equations with initial velocity in the weighted spaces szy, where w, (x) =
(I 4+ |x])7" and 0 < y < 2, using new energy controls. As an application we
give a new proof of the existence of global weak discretely self-similar solutions
to the three dimensional Navier—Stokes equations for discretely self-similar initial
velocities which are locally square integrable.

1. Introduction

Infinite-energy weak Leray solutions to the Navier—Stokes equations were in-
troduced by LEMARIE-RIEUSSET in 1999 [8] (they are presented more completely
in [9] and [10]). This has allowed demonstration of the existence of local weak
solutions for a uniformly locally square integrable initial data.

Other constructions of infinite-energy solutions for locally uniformly square
integrable initial data were given in 2006 by BAssoN [1] and in 2007 by KikUcCHI
AND SEREGIN [7]. These solutions allowed JIA AND SVERAK [6] to construct in 2014
the self-similar solutions for large (homogeneous of degree -1) smooth data. Their
result has been extended in 2016 by LEMARIE-RIEUSSET [10] to solutions for rough
locally square integrable data. We remark that an homogeneous (of degree -1) and
locally square integrable data is automatically uniformly locally L.

Recently, BRADSHAW AND TsA1[2] and CHAE AND WOLF [3] considered the case
of solutions which are self-similar according to a discrete subgroup of dilations.
Those solutions are related to an initial data which is self-similar only for a discrete
group of dilations; in contrast to the case of self-similar solutions for all dilations,
such initial data, when locally L?, is not necessarily uniformly locally L?, therefore
their results are no consequence of constructions described by LEMARIE-RIEUSSET
in [10].
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In this paper, we construct an alternative theory to obtain infinite-energy global
weak solutions for large initial data, which include the discretely self-similar locally
square integrable data. More specifically, we consider the weights

U= Gy

with 0 < y, and the spaces

L2y = L*(w, dx).

w

Our main theorem is the following one:

Theorem 1. Let 0 < y < 2. If ug is a divergence-free vector field such that

uy € L%)V (R®) and if F is a tensor F(t, x) = (Fl-,j(t, x))léi i<3 such that F €

L2((0, +00), L%)y ), then the Navier—Stokes equations with initial value uy
oju=Au—u-Viu—Vp+V.F

(NS)
V-u=0, u(0,.) =uy

have a global weak solution u such that:

o forevery 0 < T < +o0, u belongs to L*°((0,T), L%)y) and Vu belongs to
L*((0. 7). L3, )
o the pressure p is related to w and F through the Riesz transforms R; = \/B—_ifA

by the formula
3
p= RiRj(ujuj — Fjj)
i=1 j=I
where, for every 0 < T < 4400, ?:1 3:1 RiRj(ujuj) belongs to
6/5
LY. 7). LYy, ) and Y3_ Y3, RiR; Fy j belongs to L*((0, T), L2 )
5

e themapt € [O, 400) > ul(t,.) is weakly continuous from [0, +00) to szy,
and is strongly continuous att = 0 :

lim ||u(z,.) —ug|l;2 =0.
lim [lu(r, ) = woll 3,

e the solution u is suitable: there exists a non-negative locally finite measure |
on (0, +00) x R3 such that

2\ (uf? 2
¥l— )=A—)—|Vu|
2 2

—V~<<g+p)u>+u-(v-lﬁ‘)—u.
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In particular, we have the energy controls
2 ! 2
lute, )2, +2 / IVuts, )12, ds
U,‘}/ 0 l)y

t t
< [luol7, —/0 /V|u|2-wa dxds—i—/o /(|u|2+2p)u-V(wy) dx ds
lUy

303
_222/0 /Fisj(ai”j)wy+Fi,jui3j(wy)dxds

i=1 j=1

and
2 2 ! 2
i, )12, < lwol?, +C, / IFGs, )12, ds
'IIJV U,'y 0 U)y

t
+C, fo s, .>||iguy + Jlugs, ')”iay ds

Remark. We use the following notations: the vector u is given by its coordinates
u = (uy, up, w3). The operator u- V is the differential operator uj d; +u39, +u39s.
Thus, V- (fu)= fV-u+u-Vf.

3 3 3
ForF = (F; ), we write V - IF for the vector (Z 0 Fi1, Z 0; Fio, Z 0; F; 3).
i=1 i=1 i=1
For the vector fields b and u, we define b ® u as (bjuj);<;<3 1< <3 Thus, if

iy Bvo BN By B

b is divergence free (thatisif V-b =0) wehave V- (b®u) = (b - V)u.

A key tool for proving Theorem 1 and for applying it to the study of discretely
self-similar solutions is given by the following a priori estimates for an advection-
diffusion problem:

Theorem 2. Let 0 < y < 2. Let 0 < T < +00. Let ug be a divergence-free vector
field such that ugy € L%UV (R3) and F be a tensor F(t, x) = (F,/ (t, x)) 1<0,j<3 such
that F e L*((0,T), szy). Let b be a time-dependent divergence free vector-field
(V-b=0)such thatb € L3((0, T), L3w3y/2).
Let u be a solution of the following advection-diffusion problem:
ou=Au—(b-Vyu—Vp+V.F
(AD)
V.-u=0, u(0,.) =ug

such that

e u belongs to L*°((0, T), L%)y) and Vu belongs to L2((0, T), Liy);

e the pressure p is related to u, b and F through the Riesz transforms R; = i

i

by the formula

3

p=>_> RiRj(bjuj— Fi)
i=1 j=1
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where 21'3:1 3:1 RiRj(bjuj) belongs to L3((0,T), Lﬁ)/sy) and 21‘3:1
5
Zj»:l RiR; F; j belongs to L2((0, T), L%Uy);

e themapt € [0, T) — ul(t,.) is weakly continuous from [0, T) to szy, and is
strongly continuous att = 0 :

lim [lu(z,.) —uoll;2 = 0;
1—0 wy

o there exists a non-negative locally finite measure i on (0, T) x R such that

2 2 2
8,(%)=A(%>—|Vn|2—v-(%b)—V-(pu)—i—u-(VlF)—;(l)

Then, we have the energy controls
2 ! 2
ey +2 [ 19uG, i, ds
wy 0 wy

t t
< [luoll3, —/0 /V|u|2~wa dxds+/0 /|u|2b-V(wV)dxds
wy

t 33 t
+2/ fpu-V(wy)dxds—ZZZ/ fFi,,(aiuj)wy
0 0

i=1 j=1
+ Fi ju;idj(wy)dxds

and
2 ! 2
lute, )2, + [ IVul?, ds
wy 0 UJy
2 ! 2
< Juoll?, +cy/ IFGs, )2, ds
U,’V 0 Il7y

t
e / (4G )2, i, )2, ds,
0 w3y /2 wy

where C,, depends only on y (and not on T, and not on'b, u, ug nor I).
In particular, we shall prove the following stability result:

Theorem 3. Ler 0 < y < 2. Let 0 < T < +oo. Let ug, be divergence-
free vector fields such that wy, € szy (R3) and T, be tensors such that F, €
L2((0, T), szy ). Let by, be time-dependent divergence free vector-fields such that
b, € L*((0,T), L;, ).
Let u,, be solutions of the advection-diffusion problems
ou, = Auw, — (b, -V)u, — Vp, +V-TF,
(ADy)
V.u, =0, u,(0,.) = uo,»n

such that
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e u, belongs to L*°((0, T), L%)y) and Vu,, belongs to L2((0, T), levy);
e the pressure p,, is related to u,, b, and ,, by the formula
3

3
Pa=)_ Y RiRj(bpittnj— Fnij);

i=1 j=I

e themapt € [0, T) — u,(t,.) is weakly continuous from [0, T) to szy, and is
strongly continuous at t = 0:

lim [lu,(7,.) —wonllz2 = 0.
t—0 wy

o there exists a non-negative locally finite measure i, on (0, T) x R3 such that

lu, |2 lu, |2 lu, |2
at<; =A ; —|Vu, > -V ;bn

=V (puty) + 0, - (V- Fp) — s

If g, is strongly convergent to Uy  in Li)y, ifthe sequence Ty, is strongly con-
vergent to Foo in L2((O, T), LIZUV ), and if the sequence b, is bounded in

L3((0, T), L3w3y/2), then there exists poo, Uso, Do and an increasing sequence

(nx)ken with values in N such that
e u,, converges *-weakly to U, in L°°((0, T), Lﬁ)y ), Vu,, converges weakly to
Vue in L*((0, T), L3, );

e b, converges weakly to be in L3(0,7), L
. 6/5
in L3(0, T), Ly/y, ) + L*(0. T), L2, );
5
o u,, converges stronglytoue in L2 ([0, T)xR3) such that forevery To € (0, T)

loc
and every R > 0, we have

3

w3, /2), Dn,, converges weakly to pso

To
lim / [t (5, ) — Ueo (s, y)[*ds dy = 0.
0 Jlyl<R

k—+00
Moreover, Uy is a solution of the advection-diffusion problem

0tloo = Ao — (boo - VIUso — Vpoo + V- Fg
(ADoo)
V- ux =0, U (0,.) = U0, 00

and is such that

e themapt € [0, T) — uso(t,.) is weakly continuous from [0, T) to szy, and
is strongly continuous att = 0 :

lim |jux(?,.) —u 2 =0;
10 || ooty ) 0,oo||Lwy
o there exists a non-negative locally finite measure [ioo on (0, T) x R> such that

s |? |2 g |2
a,( "2" =A (’2" — [Vug|> = V- °2° boo

=V - (Poollso) + oo - (V- Fop) = -
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Notations

Throughout the text, C,, is a positive constant whose value may change from
line to line but which depends only on y.

2. The Weights w;

We consider the weights ws = m where 0 < 8 and x € R3. A very
important feature of those weights is the control of their gradients:
ws (X)
Vws(x)| = § ——— 2
[Vws (X)] =85 Iy @)

From this control, we can infer the following Sobolev embedding:

Lemma 1. (Sobolev embeddings) Let 8 > 0. If f € L3, and Vf € L3 then
felS. and

w3s

1flzg,, = Collfllzz, + 1V fliL2)-

Proof. Since both f and ws,> are locally in H 1 we write

Sx,- 1

9 — 9 9 — 9 f— -+t
z(fwé/Z) ws/2 if + f l(w5/2) Ws/2 i f 21x| 1+ |x]|

ws;2 f

and thus

lws2 flI5 + IV(wsp2 OII5 = 1+ 5 lwsp2 f115 + 2lws2V fI5-

Thus, ws/2 f belongs to L® (since H' c L), or equivalently f € Lgm. O

We shall mainly be interested in the case § < 2. An important property for
0<d8<3is

Lemma 2. (Muckenhoupt weights) If 0 < 6§ < 3 and 1 < p < +o0, then w;
belongs to the Muckenhoupt class A,,.

Proof. We recall that a weight w belongs to A, (R3) for 1 < p < +o0 if and only
if it satisfies the reverse Holder inequality

_1L
< : (y)d )'1’ ! dy <4
sup | ——— w(y)dy | | ——— _— < 400.
veR3. g>0\ B, R)JB(x.R) |B(x, R)| B(x,R)w(y)p%l
(3)

For all 0 < R < 1 the inequality |[x — y| < R implies %(1 +xD S 1+yl £
)
2(1 + |x|), thus we can control the left side in (3) for ws by 47.
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For all R > 1 and |x| > 10R, we have that the inequality |x — y| < R implies
(1 +]x]) £ 1+ |yl < 151 + |x]), thus we can control the left side in (3) for w;
s
by (4h)7.
Finally, for R > 1 and |x| £ 10R, we write

1 1—4

1 r 1 d b
<— w(y)dy) ey — i
[B(x, R)| Jpx,R) |B(x, R)| BO.R) ()71

1 P 1 dy K
< (— w(y) dy) R B T
[BO, R)| Jpx,11R) |B(0, R)| BOILR) (y)P-T

1
1 [UR L, dr » /1 [UR 5 e 1-
== —_— — 1 -1d
<R3/0 " <1+r>5) <R3/0 i r)
1

1 1
1 11 R d 7 1 11 R )
Scsp —/ rz—r —/ r2dr
’ R3 0 7 R3 0
1R -3
1 2458 !
[ )

==

The lemma is proved. O

Lemma3./f0 < § < 3and 1 < p < +oo, then the Riesz transforms R;

and the Hardy-Littlewood maximal function operator are bounded on Lluj,(s =
LP(ws(x)dx):

IR £z, < Cpsllfllzg, and IMyllp, < Cpsll fllyy,.

Proof. The boundedness of the Riesz transforms or of the Hardy—Littlewwod max-
imal function on L? (w,, dx) are basic properties of the Muckenhoupt class A, [5].
O

We will use strategically the next corollary, which is specially useful to obtain
discretely self-similar solutions.

Corollary 1. (Non-increasing kernels) Let € LY(R3) be a non-negative radial
function which is radially non-increasing. Then, if 0 <8 <3 and 1 < p < +09,
we have, for f € Lf:,a, the inequality

10+ fllzp, = Cpsll fllpp 1011
Proof. We have the well-known inequality for radial non-increasing kernels [4]
0 fCOl = 101 M g (x)

so that we may conclude with Lemma 3. O
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We illustrate the utility of Lemma 3 with the following corollaries:

Corollary 2. Let 0 < y < % and 0 < T < 4o00. Let I be a tensor F(t,x) =
(Fivj(t’x))lgi i<3 such that F € L2((0, T), Li)y). Let b be a time-dependent

divergence free vector-field (V - b = 0) such thatb € L3((0,T), L3 ).

w3y /2
Let u be a solution of the following advection-diffusion problem: !

ou=Au—(b-V)u—-Vg+V.F
“4)
V.-u=0,
such that u belongs to L*°((0, T), szy) and Vu belongs to L2((0, T), szy ), and

the pressure q belongs to D' ((0, T) x R3).
Then, the gradient of the pressure Vq is necessarily related to u, b and F
through the Riesz transforms R; = % by the formula

3 3
Vg=V ZZRiRj(biuj - F.j)
i=1 j=1
6/5
and Y3 Y-y RiRj(bjuj) belongs to L3(0,T). Lyy,) and Y3y Y3,
3
RiR; F; j belongs to L*>((0, T), quy).

Proof. We define

303
p= ZZRiRj(biuj— i.j)

i=1 j=1

AsO <y < % we can use Lemma 3 to obtain Z?:l Z?’:l R;R(b;u ) belongs to
L3(0.T), Lyf;, ) and 3, Y5_, RiR; F; j belongs to L2((0, T), L2, ).

Taking the fiivergence in (4), we obtain A(g — p) = 0. We take a test function
o € D(R) such that a(r) = 0 for all |f| > ¢, and a test function 8 € D(R3); then
the distribution Vg % (@ ® B) is well defined on (g, T — &) x R3.

We fix t € (¢, T — ¢) and define

Agpr=Vgx(@®p) = Vpx*(a® ), .).

We have
Agpr=x (= ®@P+a@AB)+(—u®b+F) (®VH))(,.) )
—(px(@®VB)(t,.).
Convolution with a function in D(R3) is a bounded operator on Lﬁ)y and on L?ny /5

(as, for ¢ € D(R?) we have | f * ¢| < CyM ). Thus, we may conclude from (5)

that Ag g € levy +L2J/65V/5. If max{y, VTH} <38 <5/2,wehave Ay p; € Lg,/;s/s.
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In particular, Ay g is a tempered distribution. As we have
AAgpr = (@® B)* (VAW —p)(t,.) =0,

we find that Ay g, is a polynomial. We remark that for all 1 < r < +o0 and
0 <& < 3, L}, does not contain non-trivial polynomials. Thus, Ay g, = 0. We
then use an approximation of identity 5izloz(é) ,3(%) and conclude that V(g — p) = 0.

]

Actually, we can answer a question posed by BRADSHAW AND TsAl in [2] about
the nature of the pressure for self-similar solutions of the Navier—Stokes equations.
In effect, we have the next corollary.

Corollary 3. Let 1 < y < % and 0 < T < +o0. Let F be a tensor F(t,x) =

(Fi.j(t.0),<; j<3 such that F L2((0, T), szy).
Let u be a solution of the following problem:

ou=Au—(-V)u—Vg+V.F
V-u=0,

suchthatu belongs to L ([0, +00), L2)pc and Vu belongs to L2([0, 4+00), L) 1pc,
and the pressure q is in D'((0, T) x R3).

We suppose that there exists . > 1 such that MFO2t, ax) = F(r, x) and
Au(A%t, ax) = u(t, x). Then, the gradient of the pressure Vq is necessarily related

tou and F through the Riesz transforms R; = \/% by the formula

3 3

Vg=V ZZRiRj(Miuj — Fij)

i=1 j=1
6/5
and Z?:l 23:1 RiR(ujuj) belongs to L*((0, T), Lw/Gy) and Z?:l Zi‘:l
5
RiR; F; j belongs to L*((0, T), szy).
Proof. We shall use Corollary 2, and thus we need to show that u belongs to

L®(0,T), szy NL3((0, T), Lgm)) and Vu belongs to L>((0, T), L%Uy). In fact,

2
lull oo 0,7.22, ) S sup / [u(z, x)|~ dx
7 T ozi<r Jxl<t

2
lu(, )|

+c sup Z/ ——dx

0SIST po Il <ixl<ak AV

and

2
sup Zf lu(z, x)| dx
0=1=T ;> Ml <lx] <2k AvE
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_ t
< sup Y alVK / (. ) dx
—1 A2k
OgthkeN Ah<lxl<1

<c¢ sup / lu(z, x))? dx < +o0.
0<t<T rl<x|<1

For Vu, we compute for k € N,

T N
/ / |Vu(z, x)|? dr dx = )\"/A / |Vu(r, x)|? dx dt.
0 Jak=l<jx|<ak 0 L jxl<1

We may conclude that Vu belongs to L2((0, T), szy), since for y > 1 we have

> ken MK < oo

Now, we use the Sobolev embedding described in Lemma 1 to get that u be-
longs to L>((0, T), L?USV), and thus (by interpolation with L>((0, T), Lﬁ,y)) to
L¥(0, 7). Ly, ,)-

W3y /2
In particular, 21'3:1 23;21 R;R(uju;) belongs to L*(0, T), Lg/:y ), since we
: 5

have

3 1
@ wwy s < Ilywyulzllywyuls < (l/wyall L /wyully

3. A Priori Estimates for the Advection-Diffusion Problem

3.1. Proof of Theorem 2

Let0 < #p < t; < T. We take a function « € C*°(R) which is non-decreasing,
with a(¢) equal to O for# < 1/2 andequalto 1 fort > 1.For0 < n < min(%o, T —

t1), we define
t—1o t—1
.10, (t):oe( )—a( )
URONS n n

We take as well a non-negative function ¢ € D(R?) which is equal to 1 for [x| < 1
and to O for [x| = 2. For R > 0, we define ¢pr(x) = ¢(%). Finally, we de-

-y
fine, for & > 0, wy , = (1 + /2 + |x|2) . We have o . (DPr(X)wy ¢ (x) €

D0, T) x R?) and oy 1. (DPR(X)Wy ¢ (x) = 0. Thus, using the local energy
balance (1) and the fact that u = 0, we find

lu|?
— Tatan,,o,,,qﬁRw%g dxds

3
= - Z // Oiu - woy g1y (Wy i PR + PRI Wy ) dx ds
i=1
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— / |Vu|2 oy 10,11 PRWy e dx ds

3 2
[u]
+ Z f Tbian,zo,n (Wy,£0i PR + PRrO; Wy o) dx ds
i=1
3
+ Z // Ay 10,11 PUi (Wy £ 0; PR + PRI Wy ) dx ds
i=1

303
- Z Z // Fijujoy .0 (Wy e 0 R + PR wy ) dx ds

i=1 j=1
3 3
- Z Z // Fi joiuj ay . PRWy ¢ dx ds.
i=1 j=1
We remark that, independently of R > 1 and ¢ > 0, we have (for0 < y < 2)

wy(x)
Y1+ |x|

lwy edipr| + [pRI Wy ] = C < Cywsyp(x).
Moreover, we know that u belongs to L°°((0, T'), LIZUV)HLZ((O, T), L7-603]/) hence to
L*((0, T), Lawz). Since T < +o00, we have as wellu € L3((0, T), L3)3y/2). (This

is the same type of integrability as required for b). Moreover, we have pu; € quay P

since wy, p € L?((0, T), L% + L?) and wy ou € L?((0, T), L? N L®). All those
remarks will allow us to use dominated convergence.
We first let n go to 0. We find that

. luf?
—314% Ta;an’m’tl(ﬁ[gwy’g dx ds

3 f
= _Z/ /aiu'u(wy,83i¢R+¢R3iwy,g)dxds
i=1710

1
—/ /|Vu|2 Qrwy dx ds
1o

3 31 2
u
+) / / %b,-(wy,eam + prdjwy ) dx ds
i=1"7%0
3 f
+> f f pui(wy iR + prd;wy ) dx ds
i=1710

T
—ZZ/ /Fi,juj(wy,g(r?i(PR + ¢rO;wy ) dx ds
to

i=1 j=I
3 3 f
/F,',jal'uj ¢Rwy’g dx ds.
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Let us define
Ape(t) = / u(t, ) P r(x)wy.e (x) dx.

As we have

lu|? 1
—// 78zan,zo,zl¢1ewy,gdx ds = 5 0rly. 19,11 AR, (s) ds

we find that, when 7 and #; are Lebesgue points of the measurable function Ag .

‘ Juf? 1
tim — [ [ 0000 0,0 dx ds = 5 (A(t) = A ().

Then, by continuity, we can let 7y go to 0 and thus replace #y by 0 in the inequality.
Moreover, if we let #; go to ¢, then by weak continuity, we find that Ag .(r) <
lims,—; AR ¢(t1), so that we may as well replace #; by ¢t € (0, 7). Thus we find
that for every t € (0, T'), we have

lu(t, x)|?
/ TqﬁRw%g dx

2
g/Illo(x)l drw, o dx

2

3 '
—Zfo /aiu-u(wy,gam+¢Ra,-wy,g)dxds
i=1

13
—/ /qu|2 drwy dx ds
0

3 t |ll|2
+> / / = bi(wy e 8igr + drdwy ¢) dx ds
: 0
i=1
3t
+y / / pui (wy B PR + PrOiWy ) dx ds
i=170

33 .
—ZZ/ /Fi’ju.,'(w,,,ga,'qﬁR + prO;w, o) dx ds
0

i=1 j=1

3 3 ¢
—ZZ/O /F,-,ja,'uj ¢Rw%g dx ds. (6)

i=1 j=1

Thus, letting R go to 4+00 and then ¢ go to 0, we find by dominated convergence
that, for every ¢t € (0, T'), we have
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t
luce, )7, +2 f IVu(s, )17, ds
U)y O w]/
2 ! 2
< Jluol2, —/0 /Vlul Y, dx ds
U,’y

t
+/ /(|u|2b +2pu) - V(w,) dx ds
0

33
—2ZZfO fF,-,j(a,-u,-)wy + F; ju;d;(wy) dx ds.

i=1 j=1

Now we write

t
/ /V|u|2~wa ds ds
0

Writing

t
§2y/ /|u||Vu|wydxds
0

1 t t
— Vu|?, ds+4 2/ ul?, ds.
3 | v, as e [,

A

3 3 3 3
p1 = ZZR"R/(I)"M/) and p, = — ZZRiR/(Fiu/)’

i=1 j=1 i=1 j=1

and using the fact that we, /5 € Ag/5s and w, € Az, we get

t t
‘/ /(|u|2b+2p1u>-V(wy)dxds gy/ /(|u|2|b|+2|p1||u|>wi/2dxds
0 0

t
<y f lwy/2ullg(lwy bllullle/s + lwy pille/s)ds
0
! 1/2
< cy/O lw)/ullglwy [bllul[lg/s ds
t
< /0 llwy/*ullgllw,/*bll3[[w,/*ul2 ds

'
<c Vu|;2 + |all;2 b|;3 ull;2 ds
<c| /0 (Iulliz, + g bl lalzs,

A

1 ! 2 " ! 2 2
Z[o IVulZ, ds+cy/0 luly (bl +IbIg, ds

3y /2
t
/ /szu -V(wy)dxds
0

t
§2y/ /|p2||u| wy dx ds
0

t
2 2
§yf ll2, +lpal%, ds
0 W}/ IUJ/

and

t
2 2
=Cy [ Il +IFl;, ds.
LU) Lw
0 14 v
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Finally, we have

33
222/0 /F,-,j(aiu,-)wy+E,juiaj(wy)dxds

i=1 j=1

t
§2f /|F|(|Vu|+y|u|)wydxds
0
<1 ! 2 ! 2 2
<o [ IVul, ds+Cy [l +IFIG, ds.
0 wy O wy U)y
We have obtained
2 ! 2
lud, )72 +/ [Vull;, ds
wy 0 wy
t
< luwol?, +Cy /0 IFGs, )12, ds (7)
MJV ll)}/

13
+Cy / (1 + [Ib(s. Il )nu(s, I3, ds
0 w3y /2 wy
and Theorem 2 is proven. O
3.2. Passive Transportation

From inequality (7), we have the following direct consequence:

Corollary 4. Under the assumptions of Theorem 2, we have

CV(T+T1/3||1[)|\2L3((0_T)L3 ))
sup ”u”LZw g (”u()”L%} +CV”]F”L2((0,T),L%U ))6‘ ' W3y /2
0<t<T 4 v Y
and
C, (T Tl/3 b 2
J/( + ” ”L3((0,T)4L3,3y/2))

”Vu”LZ((o T),L2 < (”uO”LZ, +CV ”IE‘”LZ((O,T),L2 )) e
) By wy wy
where the constant C,, depends only on y.

Another direct consequence is the following uniqueness result for the advection-
diffusion problem with a (locally in time), bounded b:

Corollary 5. LetO0 < y < 2. Let0 < T < +00. Let ug be a divergence-free vector
field such that g € Liy (R?) and F be a tensor F(t, x) = (F,-,j (t, x)) 1<i,j<3 such
that F € L*((0, T), szy). Let b be a time-dependent divergence free vector-field
(V-b =0) such thatb € L3((O, T), L3 ). Assume moreover that b belongs to

W3y /2

L?L;"(K) for every compact subset K of (0, T) x R3.
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Let (uy, p1) and (g, p2) be two solutions of the following advection-diffusion
problem:

ou=Au—(b-VyYu—Vp+V.-F
(AD)
V.-u=0,u(0,.) =uy
such that, fork = 1 and k = 2,
o uy belongs to L°°((0, T), Liy) and Vuy belongs to Lz((O, T), Li)y);

o the pressure py is related touy, b and F through the Riesz transforms R; =

i

by the formula

303
pe=Y_> RiRj(bjug;— Fi):

i=1 j=1

e themapt € [0, T) — ux(t,.) is weakly continuous from [0, T) to L%}y, and is
strongly continuous att =0 :

lim [lug(z,.) —wpll;2 =0.
t—0 wy
Thenu; = us.
Proof. Letv=u; —up and ¢ = p; — p>. Then we have

v=Av—(b-V)v—Vg

V.v=0, v(0,.)=0.

Moreover on every compact subset K of (0, T) x R3, b ® v is in L?L2, while it
belongs globally to L?ng/ﬁsy/s. Writing, for ¢, ¥ € D((0, T) x R3) such that ¢ = 1
on the neigborhood of the support of ¢,

303 303
Pq=q1+q = ¢ZZRiRj(¢bivj) +¢ZZRiRj((1 — V)bivj),

i—1 j—=1 i1 j=1
we find that [|g1[|;272 < Cy y [[¥b @ V][ 272 and

lg2ll3z = Coyllb @ VI, 5,65

L3Lyg, s

with

1/6
A+ 1yD"\°
Cou < Cliplelll = low sup (| (—3 < +oc,
x€Suppe \/ yeSupp (1—y) lx — ¥

Thus, we may take the scalar product of d,v with v and find that

2 2 2
a,(%) - A(%) — WV} —V. ('%'b) V. (gV).

Thus we are under the assumptions of Theorem 2 and we may use Corollary 4 to
findthatv=0. O
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3.3. Active Transportation

We begin with the following lemma:

Lemma 4. Let o be a non-negative bounded measurable function on [0, T) such
that, for two constants A, B 2 0, we have

t
at) S A+ B/ a(s) + als)’ ds.
0

If Ty, > 0 and Ty = min(T, Ty, m), we have, for every t € [0, T1],
a(t) < V2(A +2BTy).

Proof. We write @ < 1 + o>. We define

®(1) =A+ZBT0+2B/

t t
o dsand (1) = A +2BTy + 23/ @3 (s) ds.
0 0

We have, for € [0, T1], ¢ £ ® < W. Since W is C!, we may write

V(1) = 2Bd(1)® < 2BV (1)}

and thus
1 1
—— — —— < 4B¢
w02  Ww()?
We thus find
W (0)? 5
U< — 7 <2w(0).
0= 1 —4BW(0)2r = ©

The lemma is proven. O

Corollary 6. Assume that ug, u, p, F and b satisfy assumptions of Theorem 2.
Assume moreover that b is the inequality in the next line expresses in which way b
is controlled by u: for everyt € (0, T),

b(t, )3 < Collua(t, )3 .
b, sy, , < Colut g,

Then there exists a constant C,, 2 1 such that if Ty < T is such that

To 2
Cy (14 Cy) (1+ca‘+||uo||§2 +/ IFI12, ds) Th=1
wy 0 wy

then

To
sup [l u(t, )7, <cy(1+ca‘+||uo||iz + / IFII3 ds)
01Ty v vrJo wr

and

To To
/ IVul?, ds§cy<1+63+||uoniz + / I3, ds>.
0 wy wy 0 wy
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Proof. We start from inequality (7):
2 ! 2
. )12, +/HVMg ds
wy 0 wy
2 ! 2
§mmz+@/mmnhzm
wV 0 wy
! 2 2
+Cﬂ/<bﬂmeh3 MM&MW ds
0 w3y /2 wy
‘We write
Ib(s. I7; = Ciluts, IIzs = CiCylullz (lullz + (Vall2 ).
w3y /2 w3y /2 wy wy wy
This gives
2 1 ! 2
lu, )3, += [ [IVul?, ds
wy 2 0 wy
2 ! 2
< ol +<x,/“nﬁr&.nu; ds
H)y 0 wV
t
+CK/HM&N& + Clluts, )1+ Clues, IS, ds
0 wy wy wy
2 ! 2
<ol +Cy / IF(s, )7, ds
wy 0 wy
! 2 4 6
+2Cﬂ£|mu“wp +Cgllugs, )G, ds.
wy wy
For t < Tp, we get
2 e 2
uuapr%—FE/”nvmua(h
"y 0 "y

To
2 2
gnmhz+cﬂ/|whzm
u?y O W'y

t
+QU+C®/HM&N@ + Jues, )8, ds
0 w Y w Yy

and we may conclude with Lemma 4. O

4. Stability of Solutions for the Advection-Diffusion Problem
4.1. The Rellich Lemma

We recall the Rellich lemma:

Lemma 5. (Rellich) If s > 0 and (f,,) is a sequence of functions on R such that
o the family (f,) is bounded in H® (R?),
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o there is a compact subset of R¢ such that the support of each f, is included in
K,

then there exists a subsequence ( f,, ) such that f,, is strongly convergentin L2(RY).
We shall use a variant of this lemma (see [9]):

Lemma 6. (space-time Rellich) Ifs > 0, 0 € Rand (f,) is a sequence of functions
on (0, T) x RY such that, for all Ty € (0, T) and all ¢ € D(R?),

o ©fy is bounded in L*((0, Tp), H®),
® 93, f, is bounded in L*((0, Tp), H?),

then there exists a subsequence (f,,) such that f,, is strongly convergent in
L%OC([O, T) x R3) 2 if foo 1S the limit, we have for all Ty € (0, T) and all Ry > 0

ng——+0o0o

To
lim / | fux — fool?dxdr = 0.
0 Jix|I<R

Proof. With no loss of generality, we may assume that 0 < min(l, s5). Define

g by gu(t,x) = a(De(x) fu(t,x) if t > 0 and g,(¢, x) = a@)e(x) fu(—t,x)
if t < 0, where « € C* on (0, T), is equal to 1 on [0, Tp] and equal to O for

t > %, and ¢(x) = 1 on B(0, Rp). Then the support of g, is contained in
[—%, %] x Supp ¢. Moreover, g, is bounded in LtzH S and 0, g, is bounded

in L>H so that g, is bounded in H” (R x R?) with p = -—

)= < (1+)(1+ gZ)U)Hﬁ (1 + gz)f)sil%n). By the Rellich lemma,
we know that there is a subsequence g,, whichis strongly convergentin L2 (RxR3),
thus a subsequence f,,, which is strongly convergent in L2((0, Tp) x B(0, Ry)).
We then iterate this argument for an increasing sequence of times 7y < 11 <
- < Ty — T and an increasing sequence of radii Ry < Ry < -+ < Ry — +00
and finish the proof by the classical diagonal process of Cantor. 0O

(just write (1+72+

4.2. Proof of Theorem 3

Assume that ug , is strongly convergent to up, o in szy and that the sequence
IF,, is strongly convergent to F, in L2((0, T), L%)y), and assume that the sequence
b,, is bounded in L3 (0, T), L3w3y /2). Then, by Theorem 2 and Corollary 4, we know
that u, is bounded in L*°((0, T), szy) and Vu, is bounded in L2((0, T), L%Uy).
In particular, writing p, = pp.1 + pn.2 With

303 303
Pnl = ZZRiRj(bn,iun,j) and pp o = — ZZRiRj(Fn,i,j),

i=1 j=I i=1 j=1I

we get that p, ;1 is bounded in L3((0, T),LS,/;) and p, is bounded in
5

L*((0,7), Ly, ).
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If ¢ € D(R3), we find that gu,, is bounded in L2((0, T), H') and, writing

3
81“11 = Aun - (Z 8i(bn,iun) + Vpn,l) + (V : IFn - Vpn,Z) s
i=1

@dyu, is bounded in L2L? 4+ L2W~16/5 4 L2H~1 < L?((0, T), H~?). Thus, by
Lemma 6, there exist uy, and an increasing sequence (ny)reN With values in N such
that u,, converges strongly to Uy in L? ([0, T) x R3), and for every Tp € (0, T)
and every R > 0, we have

loc

To
lim / W (5, ¥) = Uoo (s, y)[*dyds = 0.
k—+00 Jo y|<R

As u, is bounded in L>((0, 7), L7, ) and Vu, is bounded in L*((0, T), L3, ), the

convergence of u,, to s in D'((0, T) x R3) implies thatu,, converges *-weakly to

Uy in L*°((0, T), L%UV) and Vu,, converges weakly to Vuy, in L2((0, T), szy).
By Banach—Alaoglu’s theorem, we may assume that there exists bo, such

that b,, converges weakly to by in L3((0, T), sz /2) In particular by, ;jup, |

is weakly convergent in (LS5 L5/5),,c and thus in D' ((0, T) x R?); as it is bounded

in L3((0, T), L6w/65y) it is weakly convergent in L3((0, T), Lf,,/(fy) 10 boo,iUoo, j-

5
Let

3 3

303
Poo,1 = ZZRiRj(boo,iuoo,j) and peo2 = — ZZRiRj(Foo,i,j)-

i=1 j=1 i=1 j=I

As the Riesz transforms are bounded on L6/ > s, and on L%Uy, we find that p,, 1 is

x
weakly convergent in L3((O T), L6w/ 65y ) t0 poc,1 and that py, > is strongly conver-

gent in Lz((O T), szy) t0 Poo,2.
In particular, we find that in D’((0, T) x RY),

3
Ol = Al — Z 0i (boo,iBo0) — V(Poo,1 + Poo,2) +V - Feo
i=1

In particular, 9,u. is locally in L? H~2, and thus u,, has representative such that
t > Uxo(t, .) is continuous from [0, T) to D’(R3) and coincides with uy (0, .) +
fé duso ds. In D'((0, T) x R3), we have that

t
U (0, .) —i—/ Ofllgo ds = Uy = hm u,,
0 —+00

13 t
= lim wug, / 0y, ds = g, 0 + / 0rlpo ds
0 0

njg—>+00

Thus, U (0, .) = 10,00, and U is a solution of (ADy).
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Next, we define

Ay == |Vlln|2 + Un

- —a,(lu;p) n A<|ll;|2) _v. (|u§|2bn) _ Y (pyty) + 1, - (V- TFy).

As u, is bounded in L>®((0, T), Li,y) and Vu,, is bounded in L2((0, T), quy), it
is bounded in L2((0, T), LS. ) and by interpolation with L>°((0, T), szy) it is

w3y /2
bounded in L'%3((0, T), Llluos/fﬁ). Thus, uy, is locally bounded in L1O3110/3 and
locally strongly convergent in L>L?; it is then strongly convergent in L3L3. Thus,

Ap, is convergent in D'((0, T) x R3) to

u 2 u 2 u 2
Aoo=—8,<| °2°|)+A<|°2°|>—v.<|°2°| boo>—v.(poouoo)+uoo-(v.woo).

In particular, Aoe = limy, 00 |V, |* + fn,. If @ € D((0, T) x R?) is non-
negative, we have

//AOOQDdxds= lim //AnkCDdxds
ng—>+00

> limsup//WunkIzCDdxds 3f/|Vuw|2®dxds
njg—>+00

(since «/EVunk is weakly convergent to /®Vuy, in L2L?). Thus, there exists a
non-negative locally finite measure ptoo on (0, 7) x R3 such that Ase = |Vueo|? +
oo, that is such that

a[<|uo20|2) _ A<|u020|2> V-V <|u020|2boo)

=V - (Poolioe) +u- (V- Foo) — fleo-

V

Finally, we start from inequality (6):
2 2
/Iun(tZ,X)l Srwy.e dx g/‘Iuo,nz(x)l RWy.e dx

3 4t
- Z/O /a,-un Sy (wy e PR + PRO; Wy ¢) dx ds
i=1

t
—f f|Vun|2 PRrwy, edx ds
0

3 4t 2
[uy |
+§ fo/ Sby i (Wy,cdi PR + PRI Wy ) dx ds
i=1

2

3 4t
+> /O / Pttn,i Wy e0;pR + GRO;wy.¢) dx ds
i=1
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3 3

t
—ZZ/O /Fn,i,jun,j(wy,sai¢R + ¢Rrojwy,¢) dx ds

i=1j=1
3 3

t
_ZZfO /F,,,,»,,-aiun,j prw, e dr ds.

i=1j=1

This gives

2 !
ts
limsup/MqSRwy,gdx—}-/ /|Vunk|2 Prwy ¢dx ds
0

ng—-+00 2

2
éflllo,oz(X)l drw, o dx

3 !
- Z/O / 0iUo * Uoo (wy,sai¢R + ¢R8iwy,s) dxds
i=1

3 t 2

oo

Y /0 / D b 0y, 6k + Grdiy ) dr ds
i=1

3 !
+ 3| | Pocttoo.i(wy edidr + drdwy.c) dx ds
i=170

33
- Z Z/ / Fw,i,juw,j(wy,£3i¢R + ¢R8iwy,s) dxds
0

i=1 j=I

303
— Z Z/ / Foo,i,jOilloo, j PRWy. ¢ dx ds.
0

i=1 j=1

As we have
t
u,, =g, + / oruy, ds,
0

we see thatuy, (¢, .) is convergent to un (7, .) in D’ (R?), hence is weakly convergent
in leoc (as it is bounded in Lﬁ)y ), so that:

2 2
t, . z,
/ M(ISRU))/J‘ dx g llmsup/ M(ﬁRwy’s dx_

nig—+oo

Similarly, as Vu,, is weakly convergent in L2L2wy, we have

t \V/ , 2 t \v/ ; 2
/ /Mqﬁ;ew%g dxds < limsup/ /Mqﬁ;ew%g dx ds.
0 0

ng—+00
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Thus, letting R go to 400 and then ¢ go to 0, we find by dominated convergence
that, for every ¢t € (0, T'), we have

t
luoo (. )22 +2 / IVuso(s. JI2 ds
wy 0 wy

t
2 2
Stuslly = [ [ Vi, ards
v Jo

t
+/ /(|u00|2b00+2poouoo)V(U)y)dxds
_222// OOll(auooj)wV+Fooz]uooza (wy)dxds
i=1j=1

Letting ¢ go to 0, we find

2
lim sup [[ueo (7, )Ile = Jluo,colly2 -
t—0 wy

On the other hand, we know that uy, is weakly continuous in szy and thus we
have

2 EN 2
lwo.coll7> = liminf [luee (7, )ll7> -
wy t—0 wy

This gives [|ug, oo||2 = lim;_ 0 ||uso (2, )||L2 , which allows to turn the weak

convergence into a strong convergence. Theorem 3is proven. 0O

5. Solutions of the Navier—-Stokes Problem with Initial Data in Lfvy

We now prove Theorem 1. The idea is to approximate the problem by a Navier—
Stokes problem in L2, then use the a priori estimates (Theorem 2) and the stability
theorem (Theorem 3) to find a solution to the Navier—Stokes problem with data in

2
L2).

5.1. Approximation by Square Integrable Data

Lemma 7. (Leray’s projection operator) Let 0 < § < 3 and 1 <r < 400. If vis

a vector field on R? such that v € L, then there exists a unique decompostion

V=Vs+Vy
such that

evy €Ly andV v, =0,
evy €Ly andV Avy =0.
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We shall write v, = IPv, where P is Leray’s projection operator.
Similarly, if v is a distribution vector field of the type v ="V - G with G € L},
then there exists a unique decompostion

V=V, +Vy

such that

o there exists H € LZ}S suchthatvy, =V -HandV - v, =0,
o there exists q € L,’Ua such that vy = Vq (and thus V A vy = 0).

We shall still write v, = Pv. Moreover; the function q is given by

303
q= —ZZRiRj(Gi,j)-

i=1 j=1
Proof. As w; € A, the Riesz transforms are bounded on L}, . Using the identity
Av=V(V-v) =V A(VAY)
we find (if the decomposition exists) that
Ave ==V ANV AV)==VA(VAV)and Avy = V(V - vy) = V(V - v).

This proves the uniqueness. By linearity, we just have to prove thatv = 0 —
vy = 0. We have Avy = 0, and thus vy is harmonic; as it belongs to S’, we find
that it is a polynomial. But a polynomial which belongs to L}, must be equal to 0.
Similarly, if vy = Vg, then Aqg = V - vy = V - v = 0; thus ¢ is harmonic and
belongs to L{Ua, hence ¢ = 0.

For the existence, it is enough to check that vy ; = — 2;21 R;Rjv; in the first
case and vy = Vg withg = Z?:l Z?:] R;R;(G; ;) in the second case fulfill the

conclusions of the lemma. O

Lemma8. Let 0 < y < 2. Let ug be a divergence-free vector field such that
uy € L%Uy (R3) and F be a tensor F(t, x) = (F,-,j(t, x>)1§i,j§3 such that F €
L2((0, +00), L%Uy). Let ¢ € D(R3) be a non-negative function which is equal
to 1 for |x| < 1 and to O for |x| 2 2. For R > 0, we define ¢pr(x) = ¢ (%),
ug g = P(prug) and Fr = ¢rF. Then ug g is a divergence-free square integrable
vector field and impg_, 4 |[Wo,. R — u‘)”LiV = 0. Similarly, Fg belongs to L>L>

and limR_>+oo ||FR — ]F”LZ((O,—FOO),L%)V) =0.

Proof. By dominated convergence, we have limg_, 4 [|[¢ruo —up|l;2 = 0. We
wy
conclude by writing ug.g —ug = P(¢rup —up). O
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5.2. Leray’s Mollification
We want to solve the Navier—Stokes equations with initial value ug:

oju=Au—u-Vyu—Vp+V.-F
(NS)
V-u=0, u(0,.) =ug

We begin with Leray’s method [11] for solving the problem in L2:

diug = Aug — (ug - V)ug — Vpr + V- Fgr
(NSR)
V.ougp =0, ugr(0,.) =upr

The idea of Leray is to mollify the non-linearity by replacingug - V by (ug %6;) -V,
where 0(x) = 8%9(’;‘), 6 € D(R?), 0 is non-negative and radially decreasing and
[ 6dx = 1. We thus solve the problem

atuR,s = AuR,s - ((uR,a *6g) - V)uR,a —Vpre+ V- Fgr
(NSR.e)
V-ouge =0, ugr.0,.)=ugr

The classical result of Leray states that the problem (N Sg ) is well-posed:

Lemma 9. Letvy € L2 be adivergence-free vector field. Let G € L2((0, +00), L?).
Then the problem

0V = AVg — (Ve %6;) - V)V, — Vg, + V-G
(NSe)
Vv, =0, ve(0,.) = v

has a unique solution v in L*°((0, +00), L2) N L2((O, +00), Hl). Moreover, this
solution belongs to C([0, +00), L?).

5.3. Proof of Theorem I (Local Existence)

We use Lemma 9 and find a solution ug . to the problem (N Sg ). Then we
check that ug . fulfills the assumptions of Theorem 2 and of Corollary 6:

e up . belongs to L>((0, T), L%}y) and Vug . belongs to L2((0, T), Lﬁjy);

e themap? € [0, +00) — ug (¢, .) is weakly continuous from [0, +00) to szy,
and is strongly continuous att = 0 :

lim [lug (7, .) —uorllz2 =0,
t—0 wy
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e on (0, T) x R3, ug . fulfills the energy equality

2 2
u u
a,(' Rl )=A<| R2,s| )_quRHZ

2
u?
-V (TbR,e
-V. (pR,auR,s) +ug; - (V-Fp).

withbgr o = ugp ¢ * 6,
e br . iscontrolled by ug . : forevery ¢t € (0, T),

br, )3 < IM 3 < Collug.e(t, )3 -
el < WMl | < Colurett )l

Thus, we know that, for every time 7y such that

To 2
Cy (14 Cp) <1+Cg‘)+||uo,R||iz +/ IF&I3, ds) To <1,
u)y 0 wy

we have

To
2 4 2 2
sup [ uge(t, )2, < Cp(1+CG+ ol +/ PR32, ds)
Oél‘éTo wy wy 0 wy

and

To To
/0 IVugel7, ds < C,(14+Cj+ lluorli. + fo IFrl7, ds).
u!y wy u)]/

Moreover, we have that

A

<
lworly = Cylluollzy and [Frllzz < IEl .
so that

<
< Cy||llR,s||L3((0,T0),L§,,3W2

1
< O (1 + VI lure = o.1.23,)

b 3
bz .ellrsco.m).23, ,

+[|Vug e ||L2((0,To),L%Jy>>

To
< c;/ L+ G+ ol + /0 I3, ds.

'II)V
Let R, — +ocand &, — 0. Letug, = ugg,, F, = Fg,, b, = bg, ¢, and
u, = ug, ;,. We may then apply Theorem 3, since uyg , is strongly convergent to
up in L%Uy, I, is strongly convergent to [F in L2((0, Tp), L%Uy), and the sequence
b,, is bounded in L3((O, To), L?m ,)- Thus there exists p, u, b and an increasing
sequence (ny)ken With values in N such that
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e u,, converges *-weakly to u in L>°((0, Tp), L%)y), Vu,, converges weakly to
Vuin L*((0. To). Ly, ):

e b, converges weakly to b in L3((0, Tp), L

in L3((0. Ty), LY/2, ) + L2((0. To). L3, )

5

e u,, converges strongly to u in L120C([0, Ty) x R3).

3

w3,2)» Py converges weakly to p

Moreover, u is a solution of the advection-diffusion problem

ou=Au—(b-V)u—-Vp+V.F

V.-u=0, u(0,.) =uy,
and is such that

e the map ¢ € [0, Tp) — u(z,.) is weakly continuous from [0, Tp) to szy’ and
is strongly continuous at t = 0 :

lim [[u(r, ) —woll2 =0
t—0 wy

e there exists a non-negative locally finite measure p on (0, Tp) x R3 such that

2 2 2
u u u
at(u) - A(L) vl —v- (M) v pw e (v B —
2 2 2
Finally, as b, = 0;, * (u, —u) +0,, *xu, we see that b, is strongly convergent
touin L?OC([O, Ty) x R3), so that b = u : thus, u is a solution of the Navier—Stokes

problem on (0, Tp). (It is easy to check that

303
P= ZZRiRj(Miuj — Fij)

i=1 j=1

as u; p Ujp, is weakly convergent to u;u j in L4((0, To), Lﬁw/sl) and w%y € A6/5.)
5

5.4. Proof of Theorem I (Global Existence)

In order to finish the proof, we shall use the scaling properties of the Navier—
Stokes equations : if A > 0, then u is a solution of the Cauchy initial value problem
for the Navier—Stokes equations on (0, 7") with initial value ug and forcing tensor [
if and only if u, (¢, x) = au(r2t, Ax) is a solution of the Navier—Stokes equations
on (0, T/A?) with initial value up . (x) = Aup(Ax) and forcing tensor [y (7, x) =
22F (W21, Ax).

We take A > 1 and for n € N we consider the Navier-Stokes problem with
initial value vp , = A"up(A"-) and forcing tensor [F,, = AZTE(A2., A, Then we
have seen that we can find a solution v, on (0, T,,), with

2

2 - 2
Gy (1+ Ivo.nllz2 +f IFnlly2 dS) T, =1
IL'}/ 0 wy

Of course, we have v, (¢, x) = A"u, (A7, A"x) where u, is a solution of the
Navier—Stokes equations on (0, A2"T,) with initial value ug and forcing tensor F.
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Lemma 10.

)\'n
2 +0o0 2
n=400 14 Vo2, + Jo IFI2, ds
wy wy

Proof. We have

2 n(y i) (I +|x])”
Vo, /|uo<x>| Gy () d.
We have
)\n(y—l) g e

as ¥ < 2 and we have, by dominated convergence,

2 L+ )7 .
lim /Iuo( P Gy P () dv =0,

Similarly, we have

+o00 +00 R (1+|x|)7 "
|, a= [ [ oRae D SR, 0 drds = o6

Thus, lim,—, 4o 22T, = 400,

Now, for a given T > 0, if 22T, > T forn = nr, then u, is a solution
of the Navier-Stokes problem on (0, T'). Let w, (¢, x) = A"'Tu, (X217 ¢, AT x). For
n = nr, w, is a solution of the Navier-Stokes problem on (0, A ~2"7 T') with initial
value vy ,, and forcing tensor ;.. As 2oy < T,,, we have

2 oe 2 ? 2
Cy (1 + [1Vo.nr II72 +/ IFnz 72 dS) AT S 1L
wy 0 wy

By Corollary 6, we have

)\Z’ITT
2 2 2
sup I walt, )12 Gy (14 Ivou, P, + / 1P 12, ds
Ogtg)\.*znT T wy wy 0 wy

and

AT ATTT
2 2 2
/ IVwalZ, ds < Cy (14 o 22 + f IFp 12, ds ).
0 wy wy 0 wy

We have

1+ |xDY
2 2nr nr(y—1) ( LT
il = [ G R =D S, (o

— 2, 2
> 37 |, 02T, )12,
HJV
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and
AT T T
_py (T4 xD”
/0 ”VW”H%?W ds :/0 /IVun(s,x)|2,\"T(” l)mwy(x)dxds

T
27 [ ivud, s
0 vy

Thus, we have a uniform control of u,, and of Vu,, on (0, T) forn = nr. We
may then apply the Rellich lemma (Lemma 6) and Theorem 3 to find a subsequence
u,,, that converges to a global solution of the Navier-Stokes equations. Theorem 1
is proven. O

6. Solutions of the Advection-Diffusion Problem with Initial Data in L%Uy

The proof of Theorem 1 on the Navier—Stokes problem can be easily adapted
to the case of the advection-diffusion problem:

Theorem 4. Let 0 <y < 2. Let0 < T < +o00. Let ug be a divergence-free vector
field such that ug € szy (R?) and ¥ be a tensor F(t, x) = (F,-,j (t, x)) 10, <3 such
that F € L*((0, T), szy). Let b be a time-dependent divergence free vector-field
(V-b=0)suchthatb € L3((0,T), L3 ).

w3y /2
Then the advection-diffusion problem

ou=Au—(b-VyYu—Vp+V.F
(AD)
V.-u=0, u(0,.) =ug

has a solution u such that:

e u belongs to L*°((0, T), szy) and Vu belongs to L*((0, T), L12Uy )s

e the pressure p is related to u, b and [F through the Riesz transforms R; = \/3—7"?
by the formula

303
p=Y_Y RiRj(biuj—F);
i=1 j=1

e themapt € [0, T) — ul(t, .) is weakly continuous from [0, T) to szy, and is
strongly continuous at t = 0:

lim [[u(z,.) —woll;2 =0;
t—0 wy

o there exists a non-negative locally finite measure p on (0, T) x R3 such that

u/? u|? 2 uf?
8’(T> - A(T) —|Vu?-V- <Tb) —V.-(pu)+u-(V-F) - p.
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Proof. Again, we define ¢r(x) = ¢ (%), uo,r = P(¢rup) and Fr = ¢gF. More-
over, we define b = P(¢rb). We then solve the mollified problem

8zuR,a = AuR,s — ((bg *06) - V)“R,e - va,s +V. FR,E
(ADR.e)
V. uR,é‘ = 05 uR,E(O9 ') = uO,Ra

for which we easily find aunique solutionug . in L>((0, T), LHNL2(0, T), HY).
Moreover, this solution belongs to C([0, T'), L2).
Again, ug  fulfills the assumptions of Theorem 2:

e up . belongs to L>((0, T), L%Jy) and Vug . belongs to L?((0, T), szy)

e themapr € [0, T) — ug (¢, .) is weakly continuous from [0, T') to LZwy, and
is strongly continuous at ¢ = O:

lim |lug o (7,.) —wo gl ;2 =0.
tﬁo HXV

e on (0, T) x R3, ug . fulfills the energy equality:

lug c|? lug c|? luf?
G e e R

—V - (PReUR:) T UR - (V-Fpg).
with bR,a = bg *06,.
Thus, by Corollary 4 we know that,

1/3 2
Cy(T+T Ibr.e HL3((O.T).,L3wz 2))
sup [lugellp2 3/

< (|| > +Cy|IFrll;2 2 ) e
s urelzy, < (uorlig, +C IFRlaom.iz, )

and

Cy(T+T RIbRelFs o3 )
1)L,
IVug.ell2o.r).23,) S (o.rllzz + CylIFrlL20.1).3,) € /2
where the constant C,, depends only on y.
Moreover, we have that
lao,rllz2, = Cyllwollzz o IFRIz2 < IF L2
14 14 14 wy

w: w

and

/
||bR,a||L3((o,T),L3w3y/2) § ||MbR||L3((o,T),L3w}y/2) § Cy||b||L3(((),T),L3w3y/2)-
Let R, — 4+ocand ¢, — 0. Letug, = ug g,, F, = Fg,, b, = bg, ¢, and
u, = ug, ;,. We may then apply Theorem 3, since uyg , is strongly convergent to
up in szy, I, is strongly convergent to [F in L2((0, T), szy), and the sequence

b, is strongly convergent to b in L3((0, T), Li}wz). Thus there exists p, u and an

increasing sequence (nj)ren With values in N such that
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e u,, converges *-weakly to u in L*°((0, T), L%Uy), Vu,, converges weakly to
Vuin L2((0, T), L%Uy);
e p,, converges weakly to p in L3((O, T), Lﬁ/fy )+ Lz((O, T), Lfvy);
E
e u,, converges strongly to u in L%OC([O, T) x R3).

We then easily finish the proof. O

7. Application to the Study of A-Discretely Self-similar Solutions

We may now apply our results to the study of A-discretely self-similar solutions
for the Navier—Stokes equations.
Definition 1. Letug € leoc (R3). We say that uy is a A-discretely self-similar func-
tion (A-DSS) if there exists A > 1 such that Aug(Ax) = ug.

A vector fieldu € LIZOC([O, +00) x R?) is A-DSS if there exists A > 1 such that
ru(A2z, ax) = u(r, x).

A forcing tensor F € leoc([O, +00) x R3) is A-DSS if there exists A > 1 such
that A2F(\%¢, Ax) = F(z, x).

We shall speak of self-similarity if ug, u or F are A-DSS for every A > 1.

Examples. o Lety > 1and A > 1. Then, for two positive constants A, ; and
By ., we have :ifug € L%OC(R3) is A-DSS, then ug € L%)V and

Aya / lug(x)[* dx < / g (¥)[*wy (x) dx £ By 5 / Jug (x)]* dx.
I<|x|Sx I<|x|Zx
e Uy € leoc is self-similar if and only if it is of the form uy = wol(x‘lT") with
wo € L2(S?).

e [ belongs to L2((0, +00), L%Uy) with y > 1 and is self-similar if and only if it
is of the form F(¢, x) = }Fo(%) with [ |]Fo(x)|2|)1€—‘ dx < +o0.

Proof. e Ifugis A-DSS and if k € Z we have

/ 0006) Py () dx < — / ()2 dx
A< x| <Ak+] v T (LAY S cxg<n

. k
with ) ;.7 (HAT)V < 4oofory > 1.

o If ug is self-similar, we have ug(x) = L

= uO(I;_I)' From this equality, we find
that, for A > 1

f lup(x)>dx = (A — 1>f lug(o)|? do.
1<|x|<A 52
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e If IF is self-similar, then it is of the form F(¢, x) = %Fo(\iﬁ). Moreover, we

have
+o0 +o00 dr
f IF(z, )|? wy (x) dx ds =/ /|F0(x)|2wy(ﬁx)dx —
0 NG
—qumﬁ|
+o0 1 de
Wlth C 0 mﬁ < 400. O

In this section, we are going to give a new proof of the results of CHAE AND
WoLF [3] and BRADSHAW AND TsAI [2] on the existence of A-DSS solutions of the
Navier—Stokes problem (and of Jia AND SVERAK [6] for self-similar solutions) :

Theorem 5. Let 4/3 < y < 2 and A > 1. If ug is a A-DSS divergence-free

vector field (such that uy € L%Uy (R®)) and if F is a A-DSS tensor F(t,x) =
(Fi,j(t’x))lgi i<3 such that F € L2 ([0, 4+00) x R3), then the Navier-Stokes

loc
equations with initial value ug

ou=Au—u-Vyu—Vp+V.-F
(NS)
V-u=0, u(0,.) =ug
have a global weak solution u such that
e u is a A-DSS vector field;
o for every 0 < T < +00, u belongs to L*°((0,T), L%)V) and Vu belongs to
L*((0. 7). Ly, );

e the map t € [0, +00) +— ul(t,.) is weakly continuous from [0, +00) to L%)y,
and is strongly continuous att = 0:

lim ||u(z,.) —upll;2 =0;
lim fJu(z..) — uoll 2

o the solution u is suitable, and there exists a non-negative locally finite measure
won (0, +00) x R3 such that
2
|ul

aCﬂ3=u%$;)—WMP Q——+pm)+uwv»m—

7.1. The Linear Problem

Following Chae and Wolf, we consider an approximation of the problem that
is consistent with the scaling properties of the equations: let 6 be a non-negative
and radially decreasing function in D(R?) with f 0 dx = 1. We define 6, ;(x) =

= \[)3 0( \[) We then will study the “mollified” problem

ru, = Aug — ((ug * 98,1) -V)u, — Vp, + V.- F
(NSe)
V-u=0, u(0,.) =uy
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and begin with the linearized problem

v=Av—((bx6:;)-V)V=Vg+V_.F
(LNSg)
V.v=0, v(0,.) = up.

Lemma 11. Let 1 < y < 2. Let A > 1 Let ugy be a A-DSS divergence-free vector
field suchthatug € szy (R?) andF be a A-DSS tensorF(t, x) = (F,-,j(t, x))1§i,j§3
such that, for every T > 0, F € L2((0, T), Liy). Let b be a A-DSS time-
dependent divergence free vector-field (V - b = 0) such that, for every T > 0,
b e L3((0,T), L?UW).

Then the advection-diffusion problem

hv=Av—((bx6:;) - V)IV-Vg+ V. .F
(LNS¢)
V.-v=0, v(0,.) =ug

has a unique solution v such that:

e for every positive T, v belongs to L*°((0,T), L%)y) and Vv belongs to
L*((0. 7). L3, )
e the pressure p is related to v, b and I through the Riesz transforms R; = %

by the formula

3 3
p ZZR,’RJ'((bi *es,t)vj _Fi’j);
i=1j=1

o the map t € [0, +00) +— v(¢,.) is weakly continuous from [0, +00) to LIZUV,
and is strongly continuous att = 0:

lim ||v(¢,.) —ugll;2 =0.
=0 wy

This solution v is a A-DSS vector field.

Proof. As we have |b(t,.) * 6, | < Mp, ) and thus

b, .) * 98,t||L3((O,T),L~3)3y/2) = CV||b||L3((O,T),L§)3V/2

)7
we see that we can use Theorem 4 to get a solution v on (0, 7).

As clearly b6, ; belongs to LZZL)‘?O(K) for every compact subset K of (0, 7') x
R3, we can use Corollary 5 to see that v is unique.

Letw(t,x) = %V(%, ’X“). As b x 6, ; is still A-DSS, we see that w is solution of
(LNSg)on (0, T), so that w = v. This means that v is A-DSS. 0O
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7.2. The Mollified Navier—Stokes Equations

The solution v provided by Lemma 11 belongs to L3(0,T),L3. ) (asv

W3y /2
belongs to L*°((0, T), L%,V) and Vv belongs to L2((0, T), szy)). Thus we have a
mapping L, : b — v which is defined from

X7, ={beL*,T),L} )/bisr—DSS}

W3y /2

to X7, by L¢(b) =v.

Lemma 12. For 4/3 < y, Xt is a Banach space for the equivalent norms
||b||L3((0,T),L?U3V/2) Cl”ld ”b”LS((O,T/)LZ),XB(O,%))'

Proof. We have

T =
f f Ib(z, x)|° dx dt =x2/A / [b(z, x)|° dx dt
o JB,1) o JBo.DH

and, fork e N,

T i
/ / Ib(z, x)|? dx dr =)\2’</A / Ib(z, x)|? dx dt.
0 Jak—l<px|<ak 0 Lojxl<1

3
We may conclude, since for y > 4/3 we have ), AMe=T) < 4oo. O

Lemma 13. For 4/3 < y < 2, the mapping L. is continuous and compact on
X7,y

Proof. Let b, be a bounded sequence in X7, and let v, = L. (b,). We remark
that the sequence by (¢, .) * 6, is bounded in X7 ,. Thus, by Theorem 2 and
Corollary 4, the sequence v, is bounded in L*°((0, T, szy) and Vv, is bounded
in L2((0, T), Lﬁ)y).

We now use Theorem 3 and get that then there exists ¢oo, Voo, Boo and an
increasing sequence (ny)xeN With values in N such that

e v,, converges *-weakly to v, in L*°((0, T), L%)V), Vv, converges weakly to
Vveo in L2((0, T), Ly, );
e by, * 0, converges weakly to Boo in L3((0, T), L3 );

w3y /2
o the associated pressures g,, converge weakly to g in L3((O, T), Lg)/ 65y) +
E
L*((0,7), Ly, );
e v,, converges strongly to Ve in leoc([O, T) x R3) : for every Tp € (0, T) and
every R > 0, we have

To
lim / Vi (5, ¥) — Voo (s, ¥)[*ds dy = 0.
0 [yI<R

k——+o00



380  PEDRO GABRIEL FERNANDEZ-DALGO & PIERRE GILLES LEMARIE-RIEUSSET

As /W, Vv, is bounded in L>((0, T), L?) and in L?((0, T), L), it is bounded
in L'93((0, T) x R3). The strong convergence of v,, in L? ([0, T) x R?) then

loc

implies the strong convergence of vy, in L} ((0, T) x R?).

Moreover, Vo is still A-DSS (a property that is stable under weak limits). We
find that v, € X7 ,, and that

ng——+0o

T
. 22
hmff Vi (55 9) — Voos, W) ds dy = 0.
o JBoODL

This proves that L, is compact.

If we assume moreover that b,, is convergent to b, in X7 ,,, then necessarily we
have Boo = boo * ¢ 1, and Voo = L (bo). Thus, the relatively compact sequence
v, can have only one limit point; thus it must be convergent. This proves that L is
continuous. 0O

Lemma 14. Let4/3 < y < 2.1f, for some p € [0, 1], visa solution of v.= L (V)
then

”V”XTW é Cu(),]F,y,T,

where the constant Cyy F,,, T depends only on g, F, y and T (but not on . nor on

).
Proof. We have v = puw; with

W =AwW—((vx6g;)-V)IW—Vg+V.F

V-w=0, w(0,.) = up.
Multiplying by p, we find that

hv=AvVv—((vxb.) - V)V=V(ug) + V- uF

V.v=0, v(0,.) = puyg.

We then use Corollary 6. We choose Ty € (0, T) such that

To 2
c, <1+||uo||iz +/ IFI2, ds) To<l.

Then, as

To 2
(o (1+||uuo||§2 +/ IFl7 ds) To < 1.
ll)y 0 MJV

we know that

To
sup [ vt )7, =G, <1+u2||uo||iz +u? / I3, ds)
0§Z§TO wy wy 0 wy



Weak Solutions for Navier—Stokes Equations 381

and

To To
AuWﬁzﬁqu+MwM;+MA|W@dQ.
wy wy wy

In particular, we have

fo 3 1/4 2 o ?
/uwm ds < C, T} Q+mmz+fnwmd0.
0 2 wy 0 wy

W3y/

As v is A-DSS, we can go back from Tpto 7. 0O

Lemma 15. Let 4/3 < y < 2. There is at least one solution ug of the equation
u, = Lg(ug).

Proof. Obvious due to the Leray—Schauder principle (and the Schaefer theorem),
since L, is continuous and compact and since we have uniform a priori estimates
for the fixed points of uL. for0 S u < 1. O

7.3. Proof of Theorem 5

We may now finish the proof of Theorem 5. We consider the solutions u, of
u, = Lg(ug).

By Lemma 14, u, is bounded in L3((0, T), L3)3y/2), and so is ug * 0, ;. We
then know, by Theorem 2 and Corollary 4, that the familly u, is bounded in
L“N(O,T),Liy)muiVugisboundedhleﬂO,T),Liy)

We now use Theorem 3 and get that then there exists p, u, B and a decreasing
sequence (&x)keN (converging to 0) with values in (0, +00) such that

e u,, converges *-weakly to u in L>((0, T), Lﬁ)y), Vu,, converges weakly to
VumL%meL@x
e ug * 06 , converges weakly to B in L3((0, T), LZ’UMQ);
o the associated pressures pg, converge weakly to p in L3((O, T), L?U/ fy) +
5
L*((0,T), Ly, )

e u,, converges strongly to u in LIZOC([O, T) x R3).

Moreover we easily see that B = u. Indeed, we have that ux 6, ; converges strongly
in leoc((O, T) x R?) as & goes to 0 (since it is bounded by M, and converges, for
each fixed ¢, strongly in leoc (R3)); moreover, we have [(u — u.) * 6, ;| £ My_y,,
so that the strong convergence of ug, to u is kept by convolution with 0, ; as far as
we work on compact subsets of (0, T") x R3 (and thus don’t allow ¢ to go to 0).

Thus, Theorem 5 is proven. O
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