

*Weak Solutions for Navier–Stokes Equations with Initial Data in Weighted L*² *Spaces*

PEDRO GABRIEL FERNÁNDEZ-DALGO & Pierre Gilles Lemarié-Rieusset

Communicated by V. Šverák

Abstract

We show the existence of global weak solutions to the three dimensional Navier– Stokes equations with initial velocity in the weighted spaces $L^2_{w_\gamma}$, where $w_\gamma(x) =$ $(1 + |x|)^{-\gamma}$ and $0 < \gamma \leq 2$, using new energy controls. As an application we give a new proof of the existence of global weak discretely self-similar solutions to the three dimensional Navier–Stokes equations for discretely self-similar initial velocities which are locally square integrable.

1. Introduction

Infinite-energy weak Leray solutions to the Navier–Stokes equations were introduced by Lemarié-Rieusset in 1999 [\[8](#page-35-0)] (they are presented more completely in [\[9](#page-35-1)] and [\[10\]](#page-35-2)). This has allowed demonstration of the existence of local weak solutions for a uniformly locally square integrable initial data.

Other constructions of infinite-energy solutions for locally uniformly square integrable initial data were given in 2006 by Basson [\[1](#page-35-3)] and in 2007 by Kikuchi and Seregin [\[7\]](#page-35-4). These solutions allowed Jia and Sverak [\[6\]](#page-35-5) to construct in 2014 the self-similar solutions for large (homogeneous of degree -1) smooth data. Their result has been extended in 2016 by LEMARIÉ-RIEUSSET [\[10\]](#page-35-2) to solutions for rough locally square integrable data. We remark that an homogeneous (of degree -1) and locally square integrable data is automatically uniformly locally *L*2.

Recently, BRADSHAW AND TSAI^{[\[2](#page-35-6)]} and CHAE AND WOLF^{[\[3](#page-35-7)]} considered the case of solutions which are self-similar according to a discrete subgroup of dilations. Those solutions are related to an initial data which is self-similar only for a discrete group of dilations; in contrast to the case of self-similar solutions for all dilations, such initial data, when locally L^2 , is not necessarily uniformly locally L^2 , therefore their results are no consequence of constructions described by Lemarié-Rieusset in [\[10](#page-35-2)].

In this paper, we construct an alternative theory to obtain infinite-energy global weak solutions for large initial data, which include the discretely self-similar locally square integrable data. More specifically, we consider the weights

$$
w_{\gamma}(x) = \frac{1}{(1+|x|)^{\gamma}}
$$

with $0 < \gamma$, and the spaces

$$
L^2_{w_{\gamma}} = L^2(w_{\gamma} dx).
$$

Our main theorem is the following one:

Theorem 1. Let $0 < \gamma \leq 2$. If \mathbf{u}_0 is a divergence-free vector field such that $\mathbf{u}_0 \in L^2_{w_\gamma}(\mathbb{R}^3)$ *and if* \mathbb{F} *is a tensor* $\mathbb{F}(t, x) = (F_{i,j}(t, x))_{1 \leq i, j \leq 3}$ *such that* $\mathbb{F} \in$ $L^2((0, +\infty), L^2_{w_{\gamma}})$, then the Navier–Stokes equations with initial value \mathbf{u}_0

$$
(NS)\begin{cases} \partial_t \mathbf{u} = \Delta \mathbf{u} - (\mathbf{u} \cdot \nabla) \mathbf{u} - \nabla p + \nabla \cdot \mathbb{F} \\ \nabla \cdot \mathbf{u} = 0, \quad \mathbf{u}(0,.) = \mathbf{u}_0 \end{cases}
$$

have a global weak solution **u** *such that:*

- *for every* $0 < T < +\infty$, **u** *belongs to* $L^{\infty}((0, T), L^2_{w_y})$ *and* ∇ **u** *belongs to* $L^2((0,T), L^2_{w_\gamma})$
- *the pressure p is related to* **u** *and* $\mathbb F$ *through the Riesz transforms* $R_i = \frac{\partial_i}{\partial \tau_i}$ $-\Delta$ *by the formula*

$$
p = \sum_{i=1}^{3} \sum_{j=1}^{3} R_i R_j (u_i u_j - F_{i,j})
$$

where, for every $0 < T < +\infty$, $\sum_{i=1}^{3} \sum_{j=1}^{3} R_i R_j(u_i u_j)$ *belongs to* $L^4((0, T), L^{6/5}_{w_{\xi_Y}})$ and $\sum_{i=1}^3 \sum_{j=1}^3 R_i R_j F_{i,j}$ *belongs to* $L^2((0, T), L^2_{w_{\gamma}})$

• *the map t* \in [0, $+\infty$) \mapsto **u**(*t*, .) *is weakly continuous from* [0, $+\infty$) *to* $L^2_{w_\gamma}$ *, and is strongly continuous at* $t = 0$ *:*

$$
\lim_{t\to 0} \|\mathbf{u}(t,.) - \mathbf{u}_0\|_{L^2_{w_\gamma}} = 0.
$$

• *the solution* **u** *is suitable: there exists a non-negative locally finite measure* μ *on* $(0, +\infty) \times \mathbb{R}^3$ *such that*

$$
\partial_t \left(\frac{|\mathbf{u}|^2}{2} \right) = \Delta \left(\frac{|\mathbf{u}|^2}{2} \right) - |\nabla \mathbf{u}|^2
$$

$$
-\nabla \cdot \left(\left(\frac{|\mathbf{u}|^2}{2} + p \right) \mathbf{u} \right) + \mathbf{u} \cdot (\nabla \cdot \mathbf{F}) - \mu.
$$

In particular, we have the energy controls

$$
\|\mathbf{u}(t,.)\|_{L_{w_{\gamma}}^2}^2 + 2 \int_0^t \|\nabla \mathbf{u}(s,.)\|_{L_{w_{\gamma}}^2}^2 \, ds
$$

\n
$$
\leq \|\mathbf{u}_0\|_{L_{w_{\gamma}}^2}^2 - \int_0^t \int \nabla |\mathbf{u}|^2 \cdot \nabla w_{\gamma} \, dx \, ds + \int_0^t \int (|\mathbf{u}|^2 + 2p) \mathbf{u} \cdot \nabla(w_{\gamma}) \, dx \, ds
$$

\n
$$
- 2 \sum_{i=1}^3 \sum_{j=1}^3 \int_0^t \int F_{i,j}(\partial_i u_j) w_{\gamma} + F_{i,j} u_i \partial_j(w_{\gamma}) \, dx \, ds
$$

and

$$
\|\mathbf{u}(t,.)\|_{L^{2}_{w_{\gamma}}}^{2} \leq \|\mathbf{u}_{0}\|_{L^{2}_{w_{\gamma}}}^{2} + C_{\gamma} \int_{0}^{t} \|\mathbb{F}(s,.)\|_{L^{2}_{w_{\gamma}}}^{2} ds
$$

+ $C_{\gamma} \int_{0}^{t} \|\mathbf{u}(s,.)\|_{L^{2}_{w_{\gamma}}}^{2} + \|\mathbf{u}(s,.)\|_{L^{2}_{w_{\gamma}}}^{6} ds$

Remark. We use the following notations: the vector **u** is given by its coordinates $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$. The operator $\mathbf{u} \cdot \nabla$ is the differential operator $\mathbf{u}_1 \partial_1 + \mathbf{u}_2 \partial_2 + \mathbf{u}_3 \partial_3$. Thus, $\nabla \cdot (f\mathbf{u}) = f \nabla \cdot \mathbf{u} + \mathbf{u} \cdot \nabla f$. 3

For
$$
\mathbb{F} = (F_{i,j})
$$
, we write $\nabla \cdot \mathbb{F}$ for the vector $(\sum_{i=1}^{5} \partial_i F_{i,1}, \sum_{i=1}^{5} \partial_i F_{i,2}, \sum_{i=1}^{5} \partial_i F_{i,3}).$

3

For the vector fields **b** and **u**, we define **b** \otimes **u** as $(b_iu_j)_{1 \le i \le 3, 1 \le j \le 3}$. Thus, if **b** is divergence free (that is if $\nabla \cdot \mathbf{b} = 0$) we have $\nabla \cdot (\mathbf{b} \otimes \mathbf{u}) = (\mathbf{b} \cdot \nabla) \mathbf{u}$.

A key tool for proving Theorem [1](#page-1-0) and for applying it to the study of discretely self-similar solutions is given by the following a priori estimates for an advectiondiffusion problem:

Theorem 2. Let $0 < \gamma \leq 2$. Let $0 < T < +\infty$. Let \mathbf{u}_0 be a divergence-free vector f ield such that $\mathbf{u}_0 \in L^2_{w_\gamma}(\mathbb{R}^3)$ and $\mathbb F$ be a tensor $\mathbb F(t,x)=\big(F_{i,j}(t,x)\big)_{1\leqq i,j\leqq 3}$ such *that* $\mathbb{F} \in L^2((0,T), L^2_{w_\gamma})$ *. Let* **b** *be a time-dependent divergence free vector-field* $(\nabla \cdot \mathbf{b} = 0)$ such that $\mathbf{b} \in L^3((0, T), L^3_{w_{3\gamma/2}})$.

Let **u** *be a solution of the following advection-diffusion problem:*

$$
(AD)\begin{cases} \partial_t \mathbf{u} = \Delta \mathbf{u} - (\mathbf{b} \cdot \nabla) \mathbf{u} - \nabla p + \nabla \cdot \mathbb{F} \\ \nabla \cdot \mathbf{u} = 0, \quad \mathbf{u}(0,.) = \mathbf{u}_0 \end{cases}
$$

such that

- **u** *belongs to* $L^{\infty}((0, T), L^2_{w_{\gamma}})$ *and* ∇ **u** *belongs to* $L^2((0, T), L^2_{w_{\gamma}})$ *;*
- *the pressure p is related to* **u**, **b** *and* $\mathbb F$ *through the Riesz transforms* $R_i = \frac{\partial_i}{\partial \tau}$ $-_{\Delta}$ *by the formula*

$$
p = \sum_{i=1}^{3} \sum_{j=1}^{3} R_i R_j (b_i u_j - F_{i,j})
$$

3

where $\sum_{i=1}^{3} \sum_{j=1}^{3} R_i R_j(b_i u_j)$ *belongs to* $L^3((0, T), L^{6/5}_{w_{\frac{6\nu}{5}}})$ *and* $\sum_{i=1}^{3}$ $\sum_{j=1}^{3} R_i R_j F_{i,j}$ *belongs to* $L^2((0, T), L^2_{w_\gamma});$

• *the map t* \in $[0, T) \mapsto$ **u**(*t*, .) *is weakly continuous from* $[0, T)$ *to* $L^2_{w_\gamma}$ *, and is strongly continuous at* $t = 0$:

$$
\lim_{t\to 0} \|\mathbf{u}(t,.) - \mathbf{u}_0\|_{L^2_{w_\gamma}} = 0;
$$

• *there exists a non-negative locally finite measure* μ *on* $(0, T) \times \mathbb{R}^3$ *such that*

$$
\partial_t \left(\frac{|\mathbf{u}|^2}{2} \right) = \Delta \left(\frac{|\mathbf{u}|^2}{2} \right) - |\nabla \mathbf{u}|^2 - \nabla \cdot \left(\frac{|\mathbf{u}|^2}{2} \mathbf{b} \right) - \nabla \cdot (p \mathbf{u}) + \mathbf{u} \cdot (\nabla \cdot \mathbb{F}) - \mu(1)
$$

Then, we have the energy controls

$$
\|\mathbf{u}(t,.)\|_{L_{w_{\gamma}}^2}^2 + 2 \int_0^t \|\nabla \mathbf{u}(s,.)\|_{L_{w_{\gamma}}^2}^2 \, ds
$$

\n
$$
\leq \|\mathbf{u}_0\|_{L_{w_{\gamma}}^2}^2 - \int_0^t \int \nabla |\mathbf{u}|^2 \cdot \nabla w_{\gamma} \, dx \, ds + \int_0^t \int |\mathbf{u}|^2 \mathbf{b} \cdot \nabla(w_{\gamma}) \, dx \, ds
$$

\n
$$
+ 2 \int_0^t \int p \mathbf{u} \cdot \nabla(w_{\gamma}) \, dx \, ds - 2 \sum_{i=1}^3 \sum_{j=1}^3 \int_0^t \int F_{i,j}(\partial_i u_j) w_{\gamma}
$$

\n
$$
+ F_{i,j} u_i \partial_j(w_{\gamma}) \, dx \, ds
$$

and

$$
\|\mathbf{u}(t,.)\|_{L_{w_{\gamma}}^{2}}^{2} + \int_{0}^{t} \|\nabla \mathbf{u}\|_{L_{w_{\gamma}}^{2}}^{2} ds
$$

\n
$$
\leq \|\mathbf{u}_{0}\|_{L_{w_{\gamma}}^{2}}^{2} + C_{\gamma} \int_{0}^{t} \|\mathbb{F}(s,.)\|_{L_{w_{\gamma}}^{2}}^{2} ds
$$

\n
$$
+ C_{\gamma} \int_{0}^{t} (1 + \|\mathbf{b}(s,.)\|_{L_{w_{3\gamma}/2}}^{2}) \|\mathbf{u}(s,.)\|_{L_{w_{\gamma}}^{2}}^{2} ds,
$$

where C_γ *depends only on* γ *(and not on* T *, and not on* **b***,* **u***,* **u***₀ <i>nor* \mathbb{F} *).*

In particular, we shall prove the following stability result:

Theorem 3. Let $0 < \gamma \leq 2$. Let $0 < T < +\infty$. Let $\mathbf{u}_{0,n}$ be divergence*free vector fields such that* $\mathbf{u}_{0,n} \in L^2_{w_\gamma}(\mathbb{R}^3)$ *and* \mathbb{F}_n *be tensors such that* $\mathbb{F}_n \in$ $L^2((0,T), L^2_{w_\gamma})$ *. Let* \mathbf{b}_n *be time-dependent divergence free vector-fields such that* $$

Let \mathbf{u}_n be solutions of the advection-diffusion problems

$$
(AD_n)\begin{cases} \partial_t \mathbf{u}_n = \Delta \mathbf{u}_n - (\mathbf{b}_n \cdot \nabla) \mathbf{u}_n - \nabla p_n + \nabla \cdot \mathbb{F}_n \\ \nabla \cdot \mathbf{u}_n = 0, \quad \mathbf{u}_n(0,.) = \mathbf{u}_{0,n} \end{cases}
$$

such that

- **u**_n belongs to $L^{\infty}((0, T), L^2_{w_\gamma})$ and ∇ **u**_n belongs to $L^2((0, T), L^2_{w_\gamma})$;
- *the pressure* p_n *is related to* \mathbf{u}_n *,* \mathbf{b}_n *and* \mathbb{F}_n *by the formula*

$$
p_n = \sum_{i=1}^3 \sum_{j=1}^3 R_i R_j (b_{n,i} u_{n,j} - F_{n,i,j});
$$

• *the map t* \in [0, *T*) \mapsto **u**_{*n*}(*t*, .) *is weakly continuous from* [0, *T*) *to* $L^2_{w_\gamma}$ *, and is strongly continuous at* $t = 0$ *:*

$$
\lim_{t\to 0} \|\mathbf{u}_n(t,.) - \mathbf{u}_{0,n}\|_{L^2_{w_\gamma}} = 0.
$$

• *there exists a non-negative locally finite measure* μ_n *on* $(0, T) \times \mathbb{R}^3$ *such that*

$$
\partial_t \left(\frac{|\mathbf{u}_n|^2}{2} \right) = \Delta \left(\frac{|\mathbf{u}_n|^2}{2} \right) - |\nabla \mathbf{u}_n|^2 - \nabla \cdot \left(\frac{|\mathbf{u}_n|^2}{2} \mathbf{b}_n \right) - \nabla \cdot (p_n \mathbf{u}_n) + \mathbf{u}_n \cdot (\nabla \cdot \mathbb{F}_n) - \mu_n;
$$

If $\mathbf{u}_{0,n}$ *is strongly convergent to* $\mathbf{u}_{0,\infty}$ *in* $L^2_{w_\gamma}$ *, if the sequence* \mathbb{F}_n *is strongly convergent to* \mathbb{F}_{∞} *in* $L^2((0, T), L^2_{w_Y})$ *, and if the sequence* **b**_{*n*} *is bounded in* $L^3((0, T), L^3_{w_{3\gamma/2}})$, then there exists p_{∞} , \mathbf{u}_{∞} , \mathbf{b}_{∞} and an increasing sequence $(n_k)_{k∈\mathbb{N}}$ *with values in* \mathbb{N} *such that*

- \mathbf{u}_{n_k} *converges *-weakly to* \mathbf{u}_{∞} *in* $L^{\infty}((0,T), L^2_{w_{\gamma}})$, $\nabla \mathbf{u}_{n_k}$ *converges weakly to* ∇ **u**_∞ *in* L^2 ((0, *T*), $L^2_{w_\gamma}$);
- \bullet \mathbf{b}_{n_k} *converges weakly to* \mathbf{b}_{∞} *in* $L^3((0,T),$ $L^3_{w_{3\gamma/2}})$ *,* p_{n_k} *converges weakly to* p_{∞} $\int \ln L^3((0,T), L_{w_{\zeta_{\mathcal{V}}}}^{6/5}) + L^2((0,T), L_{w_{\gamma}}^2)$;
- \mathbf{u}_{n_k} *converges strongly to* \mathbf{u}_{∞} *in* $L^2_{\text{loc}}([0, T) \times \mathbb{R}^3)$ *such that for every* $T_0 \in (0, T)$ *and every* $R > 0$ *, we have*

$$
\lim_{k \to +\infty} \int_0^{T_0} \int_{|y| < R} |\mathbf{u}_{n_k}(s, y) - \mathbf{u}_{\infty}(s, y)|^2 \, \mathrm{d} s \, \mathrm{d} y = 0.
$$

Moreover, \mathbf{u}_{∞} *is a solution of the advection-diffusion problem*

$$
(AD_{\infty})\begin{cases} \partial_t \mathbf{u}_{\infty} = \Delta \mathbf{u}_{\infty} - (\mathbf{b}_{\infty} \cdot \nabla) \mathbf{u}_{\infty} - \nabla p_{\infty} + \nabla \cdot \mathbb{F}_{\infty} \\ \nabla \cdot \mathbf{u}_{\infty} = 0, \quad \mathbf{u}_{\infty}(0,.) = \mathbf{u}_{0,\infty} \end{cases}
$$

and is such that

• *the map t* \in [0, *T*) \mapsto **u**_∞ $(t, .)$ *is weakly continuous from* [0, *T*) *to* $L^2_{w_\gamma}$ *, and is strongly continuous at* $t = 0$ *:*

$$
\lim_{t\to 0} \|\mathbf{u}_{\infty}(t,.) - \mathbf{u}_{0,\infty}\|_{L^2_{w_{\gamma}}} = 0;
$$

• *there exists a non-negative locally finite measure* μ_{∞} *on* $(0, T) \times \mathbb{R}^3$ *such that*

$$
\partial_t \left(\frac{|\mathbf{u}_{\infty}|^2}{2} \right) = \Delta \left(\frac{|\mathbf{u}_{\infty}|^2}{2} \right) - |\nabla \mathbf{u}_{\infty}|^2 - \nabla \cdot \left(\frac{|\mathbf{u}_{\infty}|^2}{2} \mathbf{b}_{\infty} \right) - \nabla \cdot (p_{\infty} \mathbf{u}_{\infty}) + \mathbf{u}_{\infty} \cdot (\nabla \cdot \mathbb{F}_{\infty}) - \mu_{\infty}.
$$

Notations

Throughout the text, C_{γ} is a positive constant whose value may change from line to line but which depends only on γ .

2. The Weights w_{δ}

We consider the weights $w_{\delta} = \frac{1}{(1+|x|)^{\delta}}$ where $0 < \delta$ and $x \in \mathbb{R}^{3}$. A very important feature of those weights is the control of their gradients:

$$
|\nabla w_{\delta}(x)| = \delta \frac{w_{\delta}(x)}{1+|x|}
$$
 (2)

From this control, we can infer the following Sobolev embedding:

Lemma 1. (Sobolev embeddings) *Let* $\delta > 0$ *. If* $f \in L^2_{w_\delta}$ *and* $\nabla f \in L^2_{w_\delta}$ *then* $f \in L_{w_{3\delta}}^6$ and

$$
||f||_{L^6_{w_{3\delta}}} \leqq C_{\delta} (||f||_{L^2_{w_{\delta}}} + ||\nabla f||_{L^2_{w_{\delta}}}).
$$

Proof. Since both *f* and $w_{\delta/2}$ are locally in H^1 , we write

$$
\partial_i(fw_{\delta/2})=w_{\delta/2}\partial_i f+f\partial_i(w_{\delta/2})=w_{\delta/2}\partial_i f-\frac{\delta}{2}\frac{x_i}{|x|}\frac{1}{1+|x|}w_{\delta/2}f,
$$

and thus

$$
||w_{\delta/2}f||_2^2 + ||\nabla(w_{\delta/2}f)||_2^2 \leq \left(1 + \frac{\delta^2}{2}\right) ||w_{\delta/2}f||_2^2 + 2||w_{\delta/2}\nabla f||_2^2.
$$

Thus, $w_{\delta/2} f$ belongs to L^6 (since $H^1 \subset L^6$), or equivalently $f \in L^6_{w_{3\delta}}$. \Box

We shall mainly be interested in the case $\delta \leq 2$. An important property for $0 < \delta < 3$ is

Lemma 2. (Muckenhoupt weights) *If* $0 < \delta < 3$ *and* $1 < p < +\infty$ *, then* w_{δ} *belongs to the Muckenhoupt class Ap.*

Proof. We recall that a weight w belongs to $\mathcal{A}_p(\mathbb{R}^3)$ for $1 < p < +\infty$ if and only if it satisfies the reverse Hölder inequality

$$
\sup_{x \in \mathbb{R}^3, R > 0} \left(\frac{1}{|B(x, R)|} \int_{B(x, R)} w(y) \, dy \right)^{\frac{1}{p}} \left(\frac{1}{|B(x, R)|} \int_{B(x, R)} \frac{dy}{w(y)^{\frac{1}{p-1}}} \right)^{1 - \frac{1}{p}} < + \infty. \tag{3}
$$

For all $0 < R \le 1$ the inequality $|x - y| < R$ implies $\frac{1}{2}(1 + |x|) \le 1 + |y| \le$ $2(1 + |x|)$, thus we can control the left side in [\(3\)](#page-5-0) for w_{δ} by $4^{\frac{\delta}{p}}$.

For all $R > 1$ and $|x| > 10R$, we have that the inequality $|x - y| < R$ implies $\frac{9}{10}(1+|x|) \le 1+|y| \le \frac{11}{10}(1+|x|)$, thus we can control the left side in [\(3\)](#page-5-0) for w_δ by $\left(\frac{11}{9}\right)^{\frac{\delta}{p}}$.

Finally, for $R > 1$ and $|x| \leq 10R$, we write

$$
\left(\frac{1}{|B(x, R)|}\int_{B(x, R)} w(y) dy\right)^{\frac{1}{p}} \left(\frac{1}{|B(x, R)|}\int_{B(0, R)} \frac{dy}{w(y)^{\frac{1}{p-1}}}\right)^{1-\frac{1}{p}}
$$
\n
$$
\leq \left(\frac{1}{|B(0, R)|}\int_{B(x, 11R)} w(y) dy\right)^{\frac{1}{p}} \left(\frac{1}{|B(0, R)|}\int_{B(0, 11R)} \frac{dy}{w(y)^{\frac{1}{p-1}}}\right)^{1-\frac{1}{p}}
$$
\n
$$
= \left(\frac{1}{R^3}\int_{0}^{11R} r^2 \frac{dr}{(1+r)^{\delta}}\right)^{\frac{1}{p}} \left(\frac{1}{R^3}\int_{0}^{11R} r^2(1+r)^{\frac{\delta}{p-1}} dr\right)^{1-\frac{1}{p}}
$$
\n
$$
\leq c_{\delta, p} \left(\frac{1}{R^3}\int_{0}^{11R} r^2 \frac{dr}{r^{\delta}}\right)^{\frac{1}{p}} \left(\left(\frac{1}{R^3}\int_{0}^{11R} r^2 dr\right)^{1-\frac{1}{p}}
$$
\n
$$
+ \left(\frac{1}{R^3}\int_{0}^{11R} r^{2+\frac{\delta}{p-1}} dr\right)^{1-\frac{1}{p}}\right)
$$
\n
$$
= c_{\delta, p} \frac{11^3}{(3-\delta)^{\frac{1}{p}}} \left(\frac{(11R)^{-\frac{\delta}{p}}}{3^{1-\frac{1}{p}}} + \frac{1}{(3+\frac{\delta}{p-1})^{1-\frac{1}{p}}}\right).
$$

The lemma is proved. \square

Lemma 3. *If* $0 < \delta < 3$ *and* $1 < p < +\infty$ *, then the Riesz transforms* R_i *and the Hardy–Littlewood maximal function operator are bounded on* $L_{w_\delta}^p =$ $L^p(w_\delta(x) dx)$:

$$
\|R_j f\|_{L^{p}_{w_\delta}} \leqq C_{p,\delta} \|f\|_{L^{p}_{w_\delta}} \text{ and } \|\mathcal{M}_f\|_{L^{p}_{w_\delta}} \leqq C_{p,\delta} \|f\|_{L^{p}_{w_\delta}}.
$$

Proof. The boundedness of the Riesz transforms or of the Hardy–Littlewwod maximal function on $L^p(w_\gamma \, dx)$ are basic properties of the Muckenhoupt class \mathcal{A}_p [\[5\]](#page-35-8). Ц

We will use strategically the next corollary, which is specially useful to obtain discretely self-similar solutions.

Corollary 1. *(Non-increasing kernels)* Let $\theta \in L^1(\mathbb{R}^3)$ be a non-negative radial *function which is radially non-increasing. Then, if* $0 < \delta < 3$ *and* $1 < p < +\infty$ *, we have, for* $f \in L^p_{w_\delta}$, the inequality

$$
\|\theta * f\|_{L^p_{w_\delta}} \leqq C_{p,\delta} \|f\|_{L^p_{w_\delta}} \|\theta\|_1.
$$

Proof. We have the well-known inequality for radial non-increasing kernels [\[4](#page-35-9)]

$$
|\theta * f(x)| \leq \|\theta\|_1 \mathcal{M}_f(x)
$$

so that we may conclude with Lemma [3.](#page-6-0) \Box

We illustrate the utility of Lemma [3](#page-6-0) with the following corollaries:

Corollary 2. Let $0 < \gamma < \frac{5}{2}$ and $0 < T < +\infty$. Let \mathbb{F} be a tensor $\mathbb{F}(t, x) =$ **Corollary 2.** Let $0 < \gamma < \frac{5}{2}$ and $0 < T < +\infty$. Let \mathbb{F} be a tensor $\mathbb{F}(t, x) = (F_{i,j}(t, x))_{1 \leq i, j \leq 3}$ such that $\mathbb{F} \in L^2((0, T), L^2_{w})$. Let **b** be a time-dependent $(F_{i,j}(t, x))_{1 \leq i, j \leq 3}$ *such that* $\mathbb{F} \in L^2((0, T), L^2_{w_\gamma})$ *. Let* **b** *be a time-dependent divergence free vector-field* ($\nabla \cdot \mathbf{b} = 0$) such that $\mathbf{b} \in L^3((0, T), L^3_{w_{3\gamma/2}})$. *Let* **u** *be a solution of the following advection-diffusion problem:*

$$
\begin{cases} \partial_t \mathbf{u} = \Delta \mathbf{u} - (\mathbf{b} \cdot \nabla) \mathbf{u} - \nabla q + \nabla \cdot \mathbb{F} \\ \nabla \cdot \mathbf{u} = 0, \end{cases}
$$
(4)

such that **u** *belongs to* $L^{\infty}((0, T), L^2_{w_{\gamma}})$ *and* ∇ **u** *belongs to* $L^2((0, T), L^2_{w_{\gamma}})$ *, and the pressure q belongs to* $\mathcal{D}'((0, T) \times \mathbb{R}^3)$.

Then, the gradient of the pressure ∇q *is necessarily related to* **u***,* **b** *and* \mathbb{F} *through the Riesz transforms* $R_i = \frac{\partial_i}{\sqrt{-\Delta}}$ *by the formula*

$$
\nabla q = \nabla \left(\sum_{i=1}^{3} \sum_{j=1}^{3} R_i R_j (b_i u_j - F_{i,j}) \right)
$$

and $\sum_{i=1}^{3} \sum_{j=1}^{3} R_i R_j(b_i u_j)$ *belongs to* $L^3((0, T), L^{6/5}_{w_{\frac{6\gamma}{5}}})$ *and* $\sum_{i=1}^{3} \sum_{j=1}^{3}$ *R*_{*i*} *R*_{*j*} *F*_{*i*,*j*} *belongs to* $L^2((0, T), L^2_{w_{\gamma}})$ *.*

Proof. We define

$$
p = \left(\sum_{i=1}^{3} \sum_{j=1}^{3} R_i R_j (b_i u_j - F_{i,j})\right).
$$

As $0 < \gamma < \frac{5}{2}$ we can use Lemma [3](#page-6-0) to obtain $\sum_{i=1}^{3} \sum_{j=1}^{3} R_i R_j (b_i u_j)$ belongs to $L^3((0, T), L^{6/5}_{w_{\frac{6\gamma}{2}}})$ and $\sum_{i=1}^3 \sum_{j=1}^3 R_i R_j F_{i,j}$ belongs to $L^2((0, T), L^2_{w_{\gamma}})$.

Taking the divergence in [\(4\)](#page-7-0), we obtain $\Delta(q - p) = 0$. We take a test function $\alpha \in \mathcal{D}(\mathbb{R})$ such that $\alpha(t) = 0$ for all $|t| \geq \varepsilon$, and a test function $\beta \in \mathcal{D}(\mathbb{R}^3)$; then the distribution $\nabla q * (\alpha \otimes \beta)$ is well defined on $(\varepsilon, T - \varepsilon) \times \mathbb{R}^3$.

We fix $t \in (\varepsilon, T - \varepsilon)$ and define

$$
A_{\alpha,\beta,t}=(\nabla q*(\alpha\otimes\beta)-\nabla p*(\alpha\otimes\beta))(t, .).
$$

We have

$$
A_{\alpha,\beta,t} = (\mathbf{u} * (-\partial_t \alpha \otimes \beta + \alpha \otimes \Delta \beta) + (-\mathbf{u} \otimes \mathbf{b} + \mathbb{F}) \cdot (\alpha \otimes \nabla \beta))(t,.)
$$

- $(p * (\alpha \otimes \nabla \beta))(t,.).$ (5)

Convolution with a function in $\mathcal{D}(\mathbb{R}^3)$ is a bounded operator on $L^2_{w_\gamma}$ and on $L^{6/5}_{w_{6\gamma/5}}$ (as, for $\varphi \in \mathcal{D}(\mathbb{R}^3)$ we have $|f * \varphi| \leq C_{\varphi} \mathcal{M}_f$). Thus, we may conclude from [\(5\)](#page-7-1) that $A_{\alpha,\beta,t} \in L^2_{w_\gamma} + L^{6/5}_{w_{6\gamma/5}}$. If $\max\{\gamma,\frac{\gamma+2}{2}\} < \delta < 5/2$, we have $A_{\alpha,\beta,t} \in L^{6/5}_{w_{6\delta/5}}$. In particular, $A_{\alpha,\beta,t}$ is a tempered distribution. As we have

$$
\Delta A_{\alpha,\beta,t} = (\alpha \otimes \beta) * (\nabla \Delta (q - p))(t, .) = 0,
$$

we find that $A_{\alpha,\beta,t}$ is a polynomial. We remark that for all $1 < r < +\infty$ and $0 < \delta < 3$, $L_{w_{\delta}}^r$ does not contain non-trivial polynomials. Thus, $A_{\alpha,\beta,t} = 0$. We then use an approximation of identity $\frac{1}{\varepsilon^4} \alpha(\frac{t}{\varepsilon}) \beta(\frac{x}{\varepsilon})$ and conclude that $\nabla(q-p) = 0$. Ц

Actually, we can answer a question posed by BRADSHAW AND TSAI in [\[2\]](#page-35-6) about the nature of the pressure for self-similar solutions of the Navier–Stokes equations. In effect, we have the next corollary.

Corollary 3. *Let* $1 < \gamma < \frac{5}{2}$ *and* $0 < T < +\infty$ *. Let* \mathbb{F} *be a tensor* $\mathbb{F}(t, x) = (F_{i,j}(t, x))_{1 \leq i, j \leq 3}$ *such that* $\mathbb{F} \in L^2((0, T), L^2_{w,j})$ *.* $(F_{i,j}(t, x))_{1 \le i, j \le 3}$ *such that* $\mathbb{F} \in L^2((0, T), L^2_{w_\gamma}).$

Let **u** *be a solution of the following problem:*

$$
\begin{cases} \partial_t \mathbf{u} = \Delta \mathbf{u} - (\mathbf{u} \cdot \nabla) \mathbf{u} - \nabla q + \nabla \cdot \mathbb{F} \\ \\ \nabla \cdot \mathbf{u} = 0, \end{cases}
$$

such that **u** *belongs to* $L^{\infty}([0, +\infty), L^2)_{loc}$ *and* ∇ **u** *belongs to* $L^2([0, +\infty), L^2)_{loc}$ *and the pressure q is in* $\mathcal{D}'((0, T) \times \mathbb{R}^3)$ *.*

We suppose that there exists $\lambda > 1$ *such that* $\lambda^2 \mathbb{F}(\lambda^2 t, \lambda x) = \mathbb{F}(t, x)$ *and* λ **u**($\lambda^2 t$, λx) = **u**(*t*, *x*)*. Then, the gradient of the pressure* ∇q *is necessarily related to* **u** *and* $\mathbb F$ *through the Riesz transforms* $R_i = \frac{\partial_i}{\sqrt{-\Delta}}$ *by the formula*

$$
\nabla q = \nabla \left(\sum_{i=1}^{3} \sum_{j=1}^{3} R_i R_j (u_i u_j - F_{i,j}) \right)
$$

and $\sum_{i=1}^{3} \sum_{j=1}^{3} R_i R_j(u_i u_j)$ *belongs to* $L^4((0, T), L^{6/5}_{w_{\frac{6\gamma}{5}}})$ *and* $\sum_{i=1}^{3} \sum_{j=1}^{3}$ *R*_{*i*} *R*_{*j*} *F*_{*i*},*j belongs to* $L^2((0, T), L^2_{w_{\gamma}})$ *.*

Proof. We shall use Corollary [2,](#page-7-2) and thus we need to show that **u** belongs to $L^{\infty}((0, T), L^2_{w_\gamma} \cap L^3((0, T), L^3_{3\gamma/2}))$ and ∇ **u** belongs to $L^2((0, T), L^2_{w_\gamma})$. In fact,

$$
||u||_{L^{\infty}((0,T),L^2_{w_{\gamma}})} \le \sup_{0 \le t \le T} \int_{|x| < 1} |u(t,x)|^2 \, dx
$$

+
$$
c \sup_{0 \le t \le T} \sum_{k \in \mathbb{N}} \int_{\lambda^{k-1} < |x| < \lambda^k} \frac{|u(t,x)|^2}{\lambda^{\gamma k}} \, dx
$$

and

$$
\sup_{0\leq t\leq T}\sum_{k\geq 1}\int_{\lambda^{k-1}<|x|<\lambda^k}\frac{|\mathbf{u}(t,x)|^2}{\lambda^{\gamma k}}\,\mathrm{d}x
$$

$$
\leq \sup_{0 \leq t \leq T} \sum_{k \in \mathbb{N}} \lambda^{(1-\gamma)k} \int_{\lambda^{-1} < |x| < 1} |\mathbf{u}(\frac{t}{\lambda^{2k}}, x)|^2 \, \mathrm{d}x
$$
\n
$$
\leq c \sup_{0 \leq t \leq T} \int_{\lambda^{-1} < |x| < 1} |\mathbf{u}(t, x)|^2 \, \mathrm{d}x < +\infty.
$$

For ∇ **u**, we compute for $k \in \mathbb{N}$,

$$
\int_0^T \int_{\lambda^{k-1} < |x| < \lambda^k} |\nabla \mathbf{u}(t, x)|^2 dt dx = \lambda^k \int_0^{\frac{T}{\lambda^{2k}}} \int_{\frac{1}{\lambda} < |x| < 1} |\nabla \mathbf{u}(t, x)|^2 dx dt.
$$

We may conclude that ∇ **u** belongs to $L^2((0, T), L^2_{w_\gamma})$, since for $\gamma > 1$ we have $\sum_{k\in\mathbb{N}}\lambda^{(1-\gamma)k}<+\infty.$

Now, we use the Sobolev embedding described in Lemma [1](#page-5-1) to get that **u** belongs to $L^2((0, T), L^6_{w_{3\gamma}})$, and thus (by interpolation with $L^{\infty}((0, T), L^2_{w_{\gamma}})$) to $L^4((0, T), L^3_{w_{3\gamma/2}}).$

In particular, $\sum_{i=1}^{3} \sum_{j=1}^{3} R_i R_j(u_i u_j)$ belongs to $L^4((0, T), L^{6/5}_{w \frac{6y}{5}})$, since we have

$$
\|(\mathbf{u}\otimes\mathbf{u})w_{\gamma}\|_{L^{6/5}} \leq \|\sqrt{w_{\gamma}}\mathbf{u}\|_{L^{2}}\|\sqrt{w_{\gamma}}\mathbf{u}\|_{L^{3}} \leq \|\sqrt{w_{\gamma}}\mathbf{u}\|_{L^{2}}^{\frac{3}{2}}\|\sqrt{w_{\gamma}}\mathbf{u}\|_{L^{6}}^{\frac{1}{2}}.
$$

 \Box

3. A Priori Estimates for the Advection-Diffusion Problem

3.1. Proof of Theorem [2](#page-2-0)

Let $0 < t_0 < t_1 < T$. We take a function $\alpha \in C^{\infty}(\mathbb{R})$ which is non-decreasing, with $\alpha(t)$ equal to 0 for $t < 1/2$ and equal to 1 for $t > 1$. For $0 < \eta < \min(\frac{t_0}{2}, T - \frac{t_0}{2})$ *t*1), we define

$$
\alpha_{\eta,t_0,t_1}(t)=\alpha\Big(\frac{t-t_0}{\eta}\Big)-\alpha\Big(\frac{t-t_1}{\eta}\Big).
$$

We take as well a non-negative function $\phi \in \mathcal{D}(\mathbb{R}^3)$ which is equal to 1 for $|x| \leq 1$ and to 0 for $|x| \ge 2$. For $R > 0$, we define $\phi_R(x) = \phi(\frac{x}{R})$. Finally, we define, for $\varepsilon > 0$, $w_{\gamma, \varepsilon} = \left(1 + \sqrt{\varepsilon^2 + |x|^2}\right)^{-\gamma}$. We have $\alpha_{\eta, t_0, t_1}(t) \phi_R(x) w_{\gamma, \varepsilon}(x) \in$ $\mathcal{D}((0, T) \times \mathbb{R}^3)$ and $\alpha_{\eta, t_0, t_1}(t) \phi_R(x) w_{\gamma, \varepsilon}(x) \geq 0$. Thus, using the local energy balance [\(1\)](#page-3-0) and the fact that $\mu \geq 0$, we find

$$
-\iint \frac{|\mathbf{u}|^2}{2} \partial_t \alpha_{\eta, t_0, t_1} \phi_R w_{\gamma, \varepsilon} \,dx \,ds
$$

$$
\leq -\sum_{i=1}^3 \iint \partial_i \mathbf{u} \cdot \mathbf{u} \alpha_{\eta, t_0, t_1} (w_{\gamma, \varepsilon} \partial_i \phi_R + \phi_R \partial_i w_{\gamma, \varepsilon}) \,dx \,ds
$$

$$
-\iiint |\nabla \mathbf{u}|^2 \alpha_{\eta, t_0, t_1} \phi_R w_{\gamma, \varepsilon} \mathrm{d}x \mathrm{d}s
$$

+
$$
\sum_{i=1}^3 \iint \frac{|\mathbf{u}|^2}{2} b_i \alpha_{\eta, t_0, t_1} (w_{\gamma, \varepsilon} \partial_i \phi_R + \phi_R \partial_i w_{\gamma, \varepsilon}) \mathrm{d}x \mathrm{d}s
$$

+
$$
\sum_{i=1}^3 \iint \alpha_{\eta, t_0, t_1} p u_i (w_{\gamma, \varepsilon} \partial_i \phi_R + \phi_R \partial_i w_{\gamma, \varepsilon}) \mathrm{d}x \mathrm{d}s
$$

-
$$
\sum_{i=1}^3 \sum_{j=1}^3 \iint F_{i, j} u_j \alpha_{\eta, t_0, t_1} (w_{\gamma, \varepsilon} \partial_i \phi_R + \phi_R \partial_i w_{\gamma, \varepsilon}) \mathrm{d}x \mathrm{d}s
$$

-
$$
\sum_{i=1}^3 \sum_{j=1}^3 \iint F_{i, j} \partial_i u_j \alpha_{\eta, t_0, t_1} \phi_R w_{\gamma, \varepsilon} \mathrm{d}x \mathrm{d}s.
$$

We remark that, independently of $R > 1$ and $\varepsilon > 0$, we have (for $0 < \gamma \leq 2$)

$$
|w_{\gamma,\varepsilon}\partial_i\phi_R|+|\phi_R\partial_i w_{\gamma,\varepsilon}|\leq C_{\gamma}\frac{w_{\gamma}(x)}{1+|x|}\leq C_{\gamma}w_{3\gamma/2}(x).
$$

Moreover, we know that **u** belongs to $L^\infty((0,T), L^2_{w_\gamma}) \cap L^2((0,T), L^6_{w_{3\gamma}})$ hence to $L^4((0, T), L^3_{w_{3\gamma/2}})$. Since $T < +\infty$, we have as well $\mathbf{u} \in L^3((0, T), L^3_{w_{3\gamma/2}})$. (This is the same type of integrability as required for **b**). Moreover, we have $pu_i \in L^1_{w_{3\gamma/2}}$ since $w_{\gamma} p \in L^2((0, T), L^{6/5} + L^2)$ and $w_{\gamma/2} \mathbf{u} \in L^2((0, T), L^2 \cap L^6)$. All those remarks will allow us to use dominated convergence.

We first let η go to 0. We find that

$$
-\lim_{\eta\to 0} \iint \frac{|\mathbf{u}|^2}{2} \partial_t \alpha_{\eta, t_0, t_1} \phi_R w_{\gamma, \varepsilon} \, dx \, ds
$$

\n
$$
\leq -\sum_{i=1}^3 \int_{t_0}^{t_1} \int \partial_i \mathbf{u} \cdot \mathbf{u} \left(w_{\gamma, \varepsilon} \partial_i \phi_R + \phi_R \partial_i w_{\gamma, \varepsilon} \right) dx \, ds
$$

\n
$$
-\int_{t_0}^{t_1} \int |\nabla \mathbf{u}|^2 \phi_R w_{\gamma, \varepsilon} dx \, ds
$$

\n
$$
+\sum_{i=1}^3 \int_{t_0}^{t_1} \int \frac{|\mathbf{u}|^2}{2} b_i (w_{\gamma, \varepsilon} \partial_i \phi_R + \phi_R \partial_i w_{\gamma, \varepsilon}) \, dx \, ds
$$

\n
$$
+\sum_{i=1}^3 \int_{t_0}^{t_1} \int p u_i (w_{\gamma, \varepsilon} \partial_i \phi_R + \phi_R \partial_i w_{\gamma, \varepsilon}) \, dx \, ds
$$

\n
$$
-\sum_{i=1}^3 \sum_{j=1}^3 \int_{t_0}^{t_1} \int F_{i, j} u_j (w_{\gamma, \varepsilon} \partial_i \phi_R + \phi_R \partial_i w_{\gamma, \varepsilon}) \, dx \, ds
$$

\n
$$
-\sum_{i=1}^3 \sum_{j=1}^3 \int_{t_0}^{t_1} \int F_{i, j} \partial_i u_j \, \phi_R w_{\gamma, \varepsilon} \, dx \, ds.
$$

Let us define

$$
A_{R,\varepsilon}(t) = \int |\mathbf{u}(t,x)|^2 \phi_R(x) w_{\gamma,\varepsilon}(x) \, \mathrm{d}x.
$$

As we have

$$
-\iint \frac{|\mathbf{u}|^2}{2} \partial_t \alpha_{\eta,t_0,t_1} \phi_R w_{\gamma,\varepsilon} \,dx \,ds = -\frac{1}{2} \int \partial_t \alpha_{\eta,t_0,t_1} A_{R,\varepsilon}(s) \,ds
$$

we find that, when t_0 and t_1 are Lebesgue points of the measurable function $A_{R,\varepsilon}$

$$
\lim_{\eta\to 0} -\iint \frac{|\mathbf{u}|^2}{2} \partial_t \alpha_{\eta,t_0,t_1} \phi_R w_{\gamma,\varepsilon} \,dx \,ds = \frac{1}{2} (A_{R,\varepsilon}(t_1) - A_{R,\varepsilon}(t_0)).
$$

Then, by continuity, we can let t_0 go to 0 and thus replace t_0 by 0 in the inequality. Moreover, if we let t_1 go to t , then by weak continuity, we find that $A_{R,\varepsilon}(t) \leq$ $\lim_{t \to t} A_{R,\varepsilon}(t_1)$, so that we may as well replace t_1 by $t \in (0, T)$. Thus we find that for every $t \in (0, T)$, we have

$$
\int \frac{|\mathbf{u}(t,x)|^2}{2} \phi_R w_{\gamma,\varepsilon} dx
$$
\n
$$
\leq \int \frac{|\mathbf{u}_0(x)|^2}{2} \phi_R w_{\gamma,\varepsilon} dx
$$
\n
$$
- \sum_{i=1}^3 \int_0^t \int \partial_i \mathbf{u} \cdot \mathbf{u} (w_{\gamma,\varepsilon} \partial_i \phi_R + \phi_R \partial_i w_{\gamma,\varepsilon}) dx ds
$$
\n
$$
- \int_0^t \int |\nabla \mathbf{u}|^2 \phi_R w_{\gamma,\varepsilon} dx ds
$$
\n
$$
+ \sum_{i=1}^3 \int_0^t \int \frac{|\mathbf{u}|^2}{2} b_i (w_{\gamma,\varepsilon} \partial_i \phi_R + \phi_R \partial_i w_{\gamma,\varepsilon}) dx ds
$$
\n
$$
+ \sum_{i=1}^3 \int_0^t \int p u_i (w_{\gamma,\varepsilon} \partial_i \phi_R + \phi_R \partial_i w_{\gamma,\varepsilon}) dx ds
$$
\n
$$
- \sum_{i=1}^3 \sum_{j=1}^3 \int_0^t \int F_{i,j} u_j (w_{\gamma,\varepsilon} \partial_i \phi_R + \phi_R \partial_i w_{\gamma,\varepsilon}) dx ds
$$
\n
$$
- \sum_{i=1}^3 \sum_{j=1}^3 \int_0^t \int F_{i,j} \partial_i u_j \phi_R w_{\gamma,\varepsilon} dx ds.
$$
\n(6)

Thus, letting *R* go to $+\infty$ and then ε go to 0, we find by dominated convergence that, for every $t \in (0, T)$, we have

$$
\|\mathbf{u}(t,.)\|_{L_{w_{\gamma}}^2}^2 + 2 \int_0^t \|\nabla \mathbf{u}(s,.)\|_{L_{w_{\gamma}}^2}^2 \, ds
$$

\n
$$
\leq \|\mathbf{u}_0\|_{L_{w_{\gamma}}^2}^2 - \int_0^t \int \nabla |\mathbf{u}|^2 \cdot \nabla w_{\gamma} \, dx \, ds
$$

\n
$$
+ \int_0^t \int (|\mathbf{u}|^2 \mathbf{b} + 2p \mathbf{u}) \cdot \nabla (w_{\gamma}) \, dx \, ds
$$

\n
$$
- 2 \sum_{i=1}^3 \sum_{j=1}^3 \int_0^t \int F_{i,j}(\partial_i u_j) w_{\gamma} + F_{i,j} u_i \partial_j (w_{\gamma}) \, dx \, ds.
$$

Now we write

$$
\left| \int_0^t \int \nabla |\mathbf{u}|^2 \cdot \nabla w_{\gamma} \, \mathrm{d} s \, \mathrm{d} s \right| \leq 2\gamma \int_0^t \int |\mathbf{u}| |\nabla \mathbf{u}| \, w_{\gamma} \, \mathrm{d} x \, \mathrm{d} s
$$

$$
\leq \frac{1}{4} \int_0^t \|\nabla \mathbf{u}\|_{L^2_{w_{\gamma}}}^2 \, \mathrm{d} s + 4\gamma^2 \int_0^t \|\mathbf{u}\|_{L^2_{w_{\gamma}}}^2 \, \mathrm{d} s.
$$

Writing

$$
p_1 = \sum_{i=1}^3 \sum_{j=1}^3 R_i R_j (b_i u_j) \text{ and } p_2 = -\sum_{i=1}^3 \sum_{j=1}^3 R_i R_j (F_{i,j}),
$$

and using the fact that $w_{6\gamma/5} \in A_{6/5}$ and $w_{\gamma} \in A_2$, we get

$$
\left| \int_{0}^{t} \int (|\mathbf{u}|^{2} \mathbf{b} + 2p_{1} \mathbf{u}) \cdot \nabla(w_{\gamma}) dx ds \right| \leq \gamma \int_{0}^{t} \int (|\mathbf{u}|^{2} |\mathbf{b}| + 2|p_{1}| |\mathbf{u}|) w_{\gamma}^{3/2} dx ds
$$

\n
$$
\leq \gamma \int_{0}^{t} \|w_{\gamma}^{1/2} \mathbf{u}\|_{6} (\|w_{\gamma} |\mathbf{b}| \|\mathbf{u}\|_{6/5} + \|w_{\gamma} p_{1}\|_{6/5}) ds
$$

\n
$$
\leq C_{\gamma} \int_{0}^{t} \|w_{\gamma}^{1/2} \mathbf{u}\|_{6} \|w_{\gamma} |\mathbf{b}| |\mathbf{u}||_{6/5} ds
$$

\n
$$
\leq C_{\gamma} \int_{0}^{t} \|w_{\gamma}^{1/2} \mathbf{u}\|_{6} \|w_{\gamma}^{1/2} \mathbf{b}\|_{3} \|w_{\gamma}^{1/2} \mathbf{u}\|_{2} ds
$$

\n
$$
\leq C_{\gamma}' \int_{0}^{t} (\|\nabla \mathbf{u}\|_{L^{2}_{w_{\gamma}}} + \|\mathbf{u}\|_{L^{2}_{w_{\gamma}}}) \|\mathbf{b}\|_{L^{3}_{w_{3\gamma/2}}} \|\mathbf{u}\|_{L^{2}_{w_{\gamma}}} ds
$$

\n
$$
\leq \frac{1}{4} \int_{0}^{t} \|\nabla \mathbf{u}\|_{L^{2}_{w_{\gamma}}}^{2} ds + C_{\gamma}'' \int_{0}^{t} \|\mathbf{u}\|_{L^{2}_{w_{\gamma}}}^{2} (\|\mathbf{b}\|_{L^{3}_{w_{3\gamma/2}}} + \|\mathbf{b}\|_{L^{3}_{w_{3\gamma/2}}}^{2}) ds
$$

and

$$
\left| \int_0^t \int 2p_2 \mathbf{u} \cdot \nabla(w_\gamma) \, dx \, ds \right|
$$

\n
$$
\leq 2\gamma \int_0^t \int |p_2| \, |\mathbf{u}| \, w_\gamma \, dx \, ds
$$

\n
$$
\leq \gamma \int_0^t \|\mathbf{u}\|_{L^2_{w_\gamma}}^2 + \|p_2\|_{L^2_{w_\gamma}}^2 \, ds
$$

\n
$$
\leq C_\gamma \int_0^t \|\mathbf{u}\|_{L^2_{w_\gamma}}^2 + \|\mathbb{F}\|_{L^2_{w_\gamma}}^2 \, ds.
$$

Finally, we have

$$
\left| 2 \sum_{i=1}^{3} \sum_{j=1}^{3} \int_{0}^{t} \int F_{i,j}(\partial_{i} u_{j}) w_{\gamma} + F_{i,j} u_{i} \partial_{j} (w_{\gamma}) dx ds \right|
$$

\n
$$
\leq 2 \int_{0}^{t} \int |F| (|\nabla \mathbf{u}| + \gamma |\mathbf{u}|) w_{\gamma} dx ds
$$

\n
$$
\leq \frac{1}{4} \int_{0}^{t} ||\nabla \mathbf{u}||_{L^{2}_{w_{\gamma}}}^{2} ds + C_{\gamma} \int_{0}^{t} ||\mathbf{u}||_{L^{2}_{w_{\gamma}}}^{2} + ||\mathbf{F}||_{L^{2}_{w_{\gamma}}}^{2} ds.
$$

We have obtained

$$
\|\mathbf{u}(t,.)\|_{L_{w_{\gamma}}^2}^2 + \int_0^t \|\nabla \mathbf{u}\|_{L_{w_{\gamma}}^2}^2 ds
$$
\n
$$
\leq \|\mathbf{u}_0\|_{L_{w_{\gamma}}^2}^2 + C_{\gamma} \int_0^t \|\mathbb{F}(s,.)\|_{L_{w_{\gamma}}^2}^2 ds
$$
\n
$$
+ C_{\gamma} \int_0^t \left(1 + \|\mathbf{b}(s,.)\|_{L_{w_{\gamma}}^3}^2\right) \|\mathbf{u}(s,.)\|_{L_{w_{\gamma}}^2}^2 ds
$$
\n(7)

and Theorem [2](#page-2-0) is proven. \square

3.2. Passive Transportation

From inequality [\(7\)](#page-13-0), we have the following direct consequence:

Corollary 4. *Under the assumptions of Theorem* [2](#page-2-0)*, we have*

$$
\sup_{0
$$

and

$$
\|\nabla \mathbf{u}\|_{L^{2}((0,T),L^2_{w_{\gamma}})} \leq (\|\mathbf{u}_0\|_{L^2_{w_{\gamma}}} + C_{\gamma}\|\mathbb{F}\|_{L^2((0,T),L^2_{w_{\gamma}})}) e^{C_{\gamma}(T+T^{1/3}\|\mathbf{b}\|_{L^3((0,T),L^3_{w_{3\gamma}/2})}^2)},
$$

where the constant C_{γ} *depends only on* γ *.*

Another direct consequence is the following uniqueness result for the advectiondiffusion problem with a (locally in time), bounded **b**:

Corollary 5. Let $0 < \gamma < 2$. Let $0 < T < +\infty$. Let \mathbf{u}_0 be a divergence-free vector f ield such that $\mathbf{u}_0 \in L^2_{w_\gamma}(\mathbb{R}^3)$ and $\mathbb F$ be a tensor $\mathbb F(t,x)=\big(F_{i,j}(t,x)\big)_{1\leqq i,j\leqq 3}$ such *that* $\mathbb{F} \in L^2((0,T), L^2_{w_\gamma})$ *. Let* **b** *be a time-dependent divergence free vector-field* $(\nabla \cdot \mathbf{b} = 0)$ such that $\mathbf{b} \in L^3((0, T), L^3_{w_{3\gamma/2}})$. Assume moreover that \mathbf{b} belongs to $L_t^2 L_x^{\infty}(K)$ for every compact subset K of $(0, T) \times \mathbb{R}^3$.

Let (**u**1, *p*1) *and* (**u**2, *p*2) *be two solutions of the following advection-diffusion problem:*

$$
(AD)\begin{cases} \partial_t \mathbf{u} = \Delta \mathbf{u} - (\mathbf{b} \cdot \nabla) \mathbf{u} - \nabla p + \nabla \cdot \mathbb{F} \\ \nabla \cdot \mathbf{u} = 0, \mathbf{u}(0,.) = \mathbf{u}_0 \end{cases}
$$

such that, for $k = 1$ *and* $k = 2$ *,*

- \mathbf{u}_k *belongs to* $L^{\infty}((0, T), L^2_{w_\gamma})$ *and* $\nabla \mathbf{u}_k$ *belongs to* $L^2((0, T), L^2_{w_\gamma})$ *;*
- \bullet *the pressure p_k is related to* \mathbf{u}_k , \mathbf{b} *and* $\mathbb F$ *through the Riesz transforms* $R_i = \frac{\partial_i}{\partial x_i}$ $-\Delta$ *by the formula*

$$
p_k = \sum_{i=1}^3 \sum_{j=1}^3 R_i R_j (b_i u_{k,j} - F_{i,j});
$$

• *the map t* \in [0, *T*) \mapsto **u**_{*k*}(*t*, .) *is weakly continuous from* [0, *T*) *to* $L^2_{w_\gamma}$ *, and is strongly continuous at* $t = 0$ *:*

$$
\lim_{t\to 0} \|\mathbf{u}_k(t,.) - \mathbf{u}_0\|_{L^2_{w_\gamma}} = 0.
$$

Then $\mathbf{u}_1 = \mathbf{u}_2$.

Proof. Let $\mathbf{v} = \mathbf{u}_1 - \mathbf{u}_2$ and $q = p_1 - p_2$. Then we have

$$
\begin{cases} \n\partial_t \mathbf{v} = \Delta \mathbf{v} - (\mathbf{b} \cdot \nabla) \mathbf{v} - \nabla q \\ \nabla \cdot \mathbf{v} = 0, \quad \mathbf{v}(0,.) = 0. \n\end{cases}
$$

Moreover on every compact subset *K* of $(0, T) \times \mathbb{R}^3$, **b** \otimes **v** is in $L_t^2 L_x^2$, while it belongs globally to $L_t^3 L_{w_{6\gamma/5}}^{6/5}$. Writing, for $\varphi, \psi \in \mathcal{D}((0, T) \times \mathbb{R}^3)$ such that $\psi = 1$ on the neigborhood of the support of φ ,

$$
\varphi q = q_1 + q_2 = \varphi \sum_{i=1}^{3} \sum_{j=1}^{3} R_i R_j (\psi b_i v_j) + \varphi \sum_{i=1}^{3} \sum_{j=1}^{3} R_i R_j ((1 - \psi) b_i v_j),
$$

we find that $||q_1||_{L^2L^2} \leq C_{\varphi, \psi} ||\psi \mathbf{b} \otimes \mathbf{v}||_{L^2L^2}$ and

$$
\|q_2\|_{L^3L^\infty}\leqq C_{\varphi,\psi}\|\mathbf{b}\otimes\mathbf{v}\|_{L^3L^{6/5}_{w_{6\gamma/5}}}
$$

with

$$
C_{\varphi,\psi} \leqq C \|\varphi\|_{\infty} \|1-\psi\|_{\infty} \sup_{x \in \text{Supp}\,\varphi} \left(\int_{y \in \text{Supp}\,(1-\psi)} \left(\frac{(1+|y|)^{\gamma}}{|x-y|^3} \right)^6 \right)^{1/6} < +\infty.
$$

Thus, we may take the scalar product of ∂_t **v** with **v** and find that

$$
\partial_t \left(\frac{|\mathbf{v}|^2}{2}\right) = \Delta \left(\frac{|\mathbf{v}|^2}{2}\right) - |\nabla \mathbf{v}|^2 - \nabla \cdot \left(\frac{|\mathbf{v}|^2}{2}\mathbf{b}\right) - \nabla \cdot (q\mathbf{v}).
$$

Thus we are under the assumptions of Theorem [2](#page-2-0) and we may use Corollary [4](#page-13-1) to find that $\mathbf{v} = 0$. \Box

3.3. Active Transportation

We begin with the following lemma:

Lemma 4. *Let* α *be a non-negative bounded measurable function on* [0, *T*) *such that, for two constants A,* $B \geq 0$ *, we have*

$$
\alpha(t) \leqq A + B \int_0^t \alpha(s) + \alpha(s)^3 \, \mathrm{d}s.
$$

If $T_0 > 0$ *and* $T_1 = \min(T, T_0, \frac{1}{8B(A+2BT_0)^2})$ *, we have, for every t* ∈ [0, T_1]*,* $\alpha(t) \leqq \sqrt{2}(A + 2BT_0).$

Proof. We write $\alpha \leq 1 + \alpha^3$. We define

$$
\Phi(t) = A + 2BT_0 + 2B \int_0^t \alpha^3 \, \text{d}s \text{ and } \Psi(t) = A + 2BT_0 + 2B \int_0^t \Phi^3(s) \, \text{d}s.
$$

We have, for $t \in [0, T_1]$, $\alpha \leq \Phi \leq \Psi$. Since Ψ is C^1 , we may write

$$
\Psi'(t) = 2B\Phi(t)^3 \leq 2B\Psi(t)^3
$$

and thus

$$
\frac{1}{\Psi(0)^2} - \frac{1}{\Psi(t)^2} \leq 4Bt.
$$

We thus find

$$
\Psi(t)^2 \leqq \frac{\Psi(0)^2}{1 - 4B\Psi(0)^2 t} \leqq 2\Psi(0)^2.
$$

The lemma is proven. \square

Corollary 6. Assume that \mathbf{u}_0 , \mathbf{u} , p , \mathbb{F} and \mathbf{b} *satisfy assumptions of Theorem [2.](#page-2-0) Assume moreover that* **b** *is the inequality in the next line expresses in which way* **b** *is controlled by* **u***: for every* $t \in (0, T)$ *,*

$$
\|\mathbf{b}(t,.)\|_{L^3_{w_{3\gamma/2}}}\leqq C_0\|\mathbf{u}(t,.)\|_{L^3_{w_{3\gamma/2}}}.
$$

Then there exists a constant $C_{\gamma} \geq 1$ *such that if* $T_0 < T$ *is such that*

$$
C_{\gamma}(1+C_0^4)\left(1+C_0^4+\|\mathbf{u}_0\|_{L^2_{w_{\gamma}}}^2+\int_0^{T_0}\|\mathbb{F}\|_{L^2_{w_{\gamma}}}^2\,\mathrm{d}s\right)^2\,T_0\leq 1
$$

then

$$
\sup_{0 \le t \le T_0} \| \mathbf{u}(t,.) \|_{L^2_{w_\gamma}}^2 \le C_\gamma \bigg(1 + C_0^4 + \| \mathbf{u}_0 \|_{L^2_{w_\gamma}}^2 + \int_0^{T_0} \| \mathbb{F} \|_{L^2_{w_\gamma}}^2 \, ds \bigg)
$$

and

$$
\int_0^{T_0} \|\nabla \mathbf{u}\|_{L^2_{w_\gamma}}^2 \, \mathrm{d} s \leqq C_{\gamma} \bigg(1 + C_0^4 + \|\mathbf{u}_0\|_{L^2_{w_\gamma}}^2 + \int_0^{T_0} \|\mathbb{F}\|_{L^2_{w_\gamma}}^2 \, \mathrm{d} s \bigg).
$$

Proof. We start from inequality [\(7\)](#page-13-0):

$$
\|\mathbf{u}(t,.)\|_{L_{w_{\gamma}}^2}^2 + \int_0^t \|\nabla \mathbf{u}\|_{L_{w_{\gamma}}^2}^2 ds
$$

\n
$$
\leq \|\mathbf{u}_0\|_{L_{w_{\gamma}}^2}^2 + C_{\gamma} \int_0^t \|\mathbb{F}(s,.)\|_{L_{w_{\gamma}}^2}^2 ds
$$

\n
$$
+ C_{\gamma} \int_0^t \left(1 + \|\mathbf{b}(s,.)\|_{L_{w_{\gamma}}^3}^2\right) \|\mathbf{u}(s,.)\|_{L_{w_{\gamma}}^2}^2 ds
$$

We write

 $\|\mathbf{b}(s,.)\|^2_{L^3_{w_{3\gamma/2}}} \leq C_0^2 \|\mathbf{u}(s,.)\|^2_{L^3_{w_{3\gamma/2}}} \leq C_0^2 C_\gamma \|\mathbf{u}\|_{L^2_{w_\gamma}} (\|u\|_{L^2_{w_\gamma}} + \|\nabla \mathbf{u}\|_{L^2_{w_\gamma}}).$

This gives

$$
\|\mathbf{u}(t,.)\|_{L^{2}_{w_{\gamma}}}^{2} + \frac{1}{2} \int_{0}^{t} \|\nabla \mathbf{u}\|_{L^{2}_{w_{\gamma}}}^{2} ds
$$
\n
$$
\leq \|\mathbf{u}_{0}\|_{L^{2}_{w_{\gamma}}}^{2} + C_{\gamma} \int_{0}^{t} \|\mathbf{F}(s,.)\|_{L^{2}_{w_{\gamma}}}^{2} ds
$$
\n
$$
+ C_{\gamma} \int_{0}^{t} \|\mathbf{u}(s,.)\|_{L^{2}_{w_{\gamma}}}^{2} + C_{0}^{2} \|\mathbf{u}(s,.)\|_{L^{2}_{w_{\gamma}}}^{4} + C_{0}^{4} \|\mathbf{u}(s,.)\|_{L^{2}_{w_{\gamma}}}^{6} ds
$$
\n
$$
\leq \|\mathbf{u}_{0}\|_{L^{2}_{w_{\gamma}}}^{2} + C_{\gamma} \int_{0}^{t} \|\mathbf{F}(s,.)\|_{L^{2}_{w_{\gamma}}}^{2} ds
$$
\n
$$
+ 2C_{\gamma} \int_{0}^{t} \|\mathbf{u}(s,.)\|_{L^{2}_{w_{\gamma}}}^{2} + C_{0}^{4} \|\mathbf{u}(s,.)\|_{L^{2}_{w_{\gamma}}}^{6} ds.
$$

For $t \leq T_0$, we get

$$
\|\mathbf{u}(t,.)\|_{L^2_{w_\gamma}}^2 + \frac{1}{2} \int_0^t \|\nabla \mathbf{u}\|_{L^2_{w_\gamma}}^2 ds
$$

\n
$$
\leq \|\mathbf{u}_0\|_{L^2_{w_\gamma}}^2 + C_\gamma \int_0^{T_0} \|\mathbb{F}\|_{L^2_{w_\gamma}}^2 ds
$$

\n
$$
+ C_\gamma (1 + C_0^4) \int_0^t \|\mathbf{u}(s,.)\|_{L^2_{w_\gamma}}^2 + \|\mathbf{u}(s,.)\|_{L^2_{w_\gamma}}^6 ds
$$

and we may conclude with Lemma [4.](#page-15-0) \Box

4. Stability of Solutions for the Advection-Diffusion Problem

4.1. The Rellich Lemma

We recall the Rellich lemma:

Lemma 5. (Rellich) *If* $s > 0$ *and* (f_n) *is a sequence of functions on* \mathbb{R}^d *such that*

• *the family* (f_n) *is bounded in* $H^s(\mathbb{R}^d)$ *,*

• *there is a compact subset of* \mathbb{R}^d *such that the support of each* f_n *is included in K ,*

then there exists a subsequence (f_{n_k}) *such that* f_{n_k} *is strongly convergent in* $L^2(\mathbb{R}^d)$ *.*

We shall use a variant of this lemma (see [\[9\]](#page-35-1)):

Lemma 6. (space-time Rellich) *If* $s > 0$, $\sigma \in \mathbb{R}$ *and* (f_n) *is a sequence of functions on* $(0, T) \times \mathbb{R}^d$ *such that, for all* $T_0 \in (0, T)$ *and all* $\varphi \in \mathcal{D}(\mathbb{R}^3)$ *,*

- φf_n *is bounded in* $L^2((0, T_0), H^s)$,
- $\bullet \varphi \partial_t f_n$ *is bounded in* $L^2((0, T_0), H^{\sigma})$ *,*

then there exists a subsequence (f_{n_k}) *such that* f_{n_k} *is strongly convergent in* $L^2_{\text{loc}}([0, T) \times \mathbb{R}^3)$ *: if* f_{∞} *is the limit, we have for all* $T_0 \in (0, T)$ *and all* $R_0 > 0$

$$
\lim_{n_k \to +\infty} \int_0^{T_0} \int_{|x| \le R} |f_{n_k} - f_\infty|^2 \, \mathrm{d}x \, \mathrm{d}t = 0.
$$

Proof. With no loss of generality, we may assume that $\sigma < \min(1, s)$. Define *g* by $g_n(t, x) = \alpha(t)\varphi(x) f_n(t, x)$ if $t > 0$ and $g_n(t, x) = \alpha(t)\varphi(x) f_n(-t, x)$ if $t < 0$, where $\alpha \in C^{\infty}$ on $(0, T)$, is equal to 1 on [0, T_0] and equal to 0 for $t > \frac{T+T_0}{2}$, and $\varphi(x) = 1$ on $B(0, R_0)$. Then the support of g_n is contained in $[-\frac{T+T_0}{2}, \frac{T+T_0}{2}] \times \text{Supp } \varphi$. Moreover, *g_n* is bounded in $L_t^2 H^s$ and $\partial_t g_n$ is bounded in $L^2 H^{\sigma}$ so that g_n is bounded in $H^{\rho}(\mathbb{R} \times \mathbb{R}^3)$ with $\rho = \frac{s}{s+1-\sigma}$ (just write $(1+\tau^2+\tau^3)$) $(\xi^2)^{\frac{s}{s+1-\sigma}} \leq ((1+\tau^2)(1+\xi^2)^{\sigma})^{\frac{s}{s+1-\sigma}} ((1+\xi^2)^s)^{\frac{1-\sigma}{s+1-\sigma}}$. By the Rellich lemma, we know that there is a subsequence g_{n_k} which is strongly convergent in $L^2(\mathbb{R}\times\mathbb{R}^3)$, thus a subsequence f_{n_k} which is strongly convergent in $L^2((0, T_0) \times B(0, R_0))$.

We then iterate this argument for an increasing sequence of times $T_0 < T_1 <$ $\cdots < T_N \rightarrow T$ and an increasing sequence of radii $R_0 < R_1 < \cdots < R_N \rightarrow +\infty$ and finish the proof by the classical diagonal process of Cantor. \Box

4.2. Proof of Theorem [3](#page-3-1)

Assume that $\mathbf{u}_{0,n}$ is strongly convergent to $\mathbf{u}_{0,\infty}$ in $L^2_{w_\gamma}$ and that the sequence \mathbb{F}_n is strongly convergent to \mathbb{F}_{∞} in $L^2((0, T), L^2_{w_\gamma})$, and assume that the sequence **is bounded in** $L^3((0, T), L^3_{w_{3\gamma/2}})$ $L^3((0, T), L^3_{w_{3\gamma/2}})$ $L^3((0, T), L^3_{w_{3\gamma/2}})$ **. Then, by Theorem 2 and Corollary [4,](#page-13-1) we know** that \mathbf{u}_n is bounded in $L^{\infty}((0, T), L^2_{w_\gamma})$ and $\nabla \mathbf{u}_n$ is bounded in $L^2((0, T), L^2_{w_\gamma})$. In particular, writing $p_n = p_{n,1} + p_{n,2}$ with

$$
p_{n,1} = \sum_{i=1}^{3} \sum_{j=1}^{3} R_i R_j (b_{n,i} u_{n,j}) \text{ and } p_{n,2} = - \sum_{i=1}^{3} \sum_{j=1}^{3} R_i R_j (F_{n,i,j}),
$$

we get that $p_{n,1}$ is bounded in $L^3((0,T), L^{6/5}_{w_{\frac{6\gamma}{5}}})$ and $p_{n,2}$ is bounded in $L^2((0, T), L^2_{w_\gamma}).$

If $\varphi \in \mathcal{D}(\mathbb{R}^3)$, we find that $\varphi \mathbf{u}_n$ is bounded in $L^2((0, T), H^1)$ and, writing

$$
\partial_t \mathbf{u}_n = \Delta \mathbf{u}_n - \left(\sum_{i=1}^3 \partial_i (b_{n,i} \mathbf{u}_n) + \nabla p_{n,1} \right) + \left(\nabla \cdot \mathbb{F}_n - \nabla p_{n,2} \right),
$$

 $\varphi \partial_t \mathbf{u}_n$ is bounded in $L^2 L^2 + L^2 W^{-1,6/5} + L^2 H^{-1} \subset L^2((0, T), H^{-2})$. Thus, by Lemma [6,](#page-17-0) there exist \mathbf{u}_{∞} and an increasing sequence $(n_k)_{k \in \mathbb{N}}$ with values in N such that **u**_{*nk*} converges strongly to **u**_∞ in $L^2_{loc}([0, T) \times \mathbb{R}^3)$, and for every $T_0 \in (0, T)$ and every $R > 0$, we have

$$
\lim_{k \to +\infty} \int_0^{T_0} \int_{|y| < R} |\mathbf{u}_{n_k}(s, y) - \mathbf{u}_{\infty}(s, y)|^2 \, \mathrm{d}y \, \mathrm{d}s = 0.
$$

As \mathbf{u}_n is bounded in $L^{\infty}((0, T), L^2_{w_\gamma})$ and $\nabla \mathbf{u}_n$ is bounded in $L^2((0, T), L^2_{w_\gamma})$, the convergence of \mathbf{u}_{n_k} to \mathbf{u}_{∞} in $\mathcal{D}'((0, T) \times \mathbb{R}^3)$ implies that \mathbf{u}_{n_k} converges *-weakly to \mathbf{u}_{∞} in $L^{\infty}((0, T), L^2_{w_{\gamma}})$ and $\nabla \mathbf{u}_{n_k}$ converges weakly to $\nabla \mathbf{u}_{\infty}$ in $L^2((0, T), L^2_{w_{\gamma}})$.

By Banach–Alaoglu's theorem, we may assume that there exists \mathbf{b}_{∞} such that \mathbf{b}_{n_k} converges weakly to \mathbf{b}_{∞} in $L^3((0, T), L^3_{w_{3\gamma/2}})$. In particular $b_{n_k,i}u_{n_k,j}$ is weakly convergent in $(L^{6/5}L^{6/5})_{\text{loc}}$ and thus in $\mathcal{D}'((0, T) \times \mathbb{R}^3)$; as it is bounded in $L^3((0, T), L^{6/5}_{w \text{ s}})$, it is weakly convergent in $L^3((0, T), L^{6/5}_{w \text{ s}})$ to $b_{\infty,i}u_{\infty,j}$. Let

$$
p_{\infty,1} = \sum_{i=1}^{3} \sum_{j=1}^{3} R_i R_j (b_{\infty,i} u_{\infty,j}) \text{ and } p_{\infty,2} = -\sum_{i=1}^{3} \sum_{j=1}^{3} R_i R_j (F_{\infty,i,j}).
$$

As the Riesz transforms are bounded on $L_{w_{6y}}^{6/5}$ and on $L_{w_y}^2$, we find that $p_{n_k,1}$ is 5 weakly convergent in $L^3((0, T), L^{6/5}_{w_{\underline{6y}}})$ to $p_{\infty,1}$ and that $p_{n_k,2}$ is strongly conver-5 gent in $L^2((0, T), L^2_{w_\gamma})$ to $p_{\infty,2}$.

In particular, we find that in $\mathcal{D}'((0, T) \times \mathbb{R}^3)$,

$$
\partial_t \mathbf{u}_{\infty} = \Delta \mathbf{u}_{\infty} - \sum_{i=1}^3 \partial_i (b_{\infty,i} \mathbf{u}_{\infty}) - \nabla (p_{\infty,1} + p_{\infty,2}) + \nabla \cdot \mathbb{F}_{\infty}.
$$

In particular, $\partial_t \mathbf{u}_{\infty}$ is locally in $L^2 H^{-2}$, and thus \mathbf{u}_{∞} has representative such that $t \mapsto \mathbf{u}_{\infty}(t,.)$ is continuous from [0, *T*) to $\mathcal{D}'(\mathbb{R}^3)$ and coincides with $\mathbf{u}_{\infty}(0,.)$ + $\int_0^t \partial_t \mathbf{u}_{\infty} \, ds$. In $\mathcal{D}'((0, T) \times \mathbb{R}^3)$, we have that

$$
\mathbf{u}_{\infty}(0,.) + \int_0^t \partial_t \mathbf{u}_{\infty} ds = \mathbf{u}_{\infty} = \lim_{n_k \to +\infty} \mathbf{u}_{n_k}
$$

=
$$
\lim_{n_k \to +\infty} \mathbf{u}_{0,n_k} + \int_0^t \partial_t \mathbf{u}_{n_k} ds = \mathbf{u}_{0,\infty} + \int_0^t \partial_t \mathbf{u}_{\infty} ds
$$

Thus, $\mathbf{u}_{\infty}(0,.) = \mathbf{u}_{0,\infty}$, and \mathbf{u}_{∞} is a solution of (AD_{∞}) .

Next, we define

$$
A_n = = |\nabla \mathbf{u}_n|^2 + \mu_n
$$

= $-\partial_t \left(\frac{|\mathbf{u}_n|^2}{2}\right) + \Delta \left(\frac{|\mathbf{u}_n|^2}{2}\right) - \nabla \cdot \left(\frac{|\mathbf{u}_n|^2}{2}\mathbf{b}_n\right) - \nabla \cdot (p_n \mathbf{u}_n) + \mathbf{u}_n \cdot (\nabla \cdot \mathbb{F}_n).$

As \mathbf{u}_n is bounded in $L^{\infty}((0, T), L^2_{w_\gamma})$ and $\nabla \mathbf{u}_n$ is bounded in $L^2((0, T), L^2_{w_\gamma})$, it is bounded in $L^2((0, T), L^6_{w_{3\gamma/2}})$ and by interpolation with $L^\infty((0, T), L^2_{w_\gamma})$ it is bounded in $L^{10/3}((0, T), L^{10/3}_{w_{5y/3}})$. Thus, u_{n_k} is locally bounded in $L^{10/3}L^{10/3}$ and locally strongly convergent in L^2L^2 ; it is then strongly convergent in L^3L^3 . Thus, A_{n_k} is convergent in $\mathcal{D}'((0, T) \times \mathbb{R}^3)$ to

$$
A_{\infty} = -\partial_t \left(\frac{|\mathbf{u}_{\infty}|^2}{2} \right) + \Delta \left(\frac{|\mathbf{u}_{\infty}|^2}{2} \right) - \nabla \cdot \left(\frac{|\mathbf{u}_{\infty}|^2}{2} \mathbf{b}_{\infty} \right) - \nabla \cdot (p_{\infty} \mathbf{u}_{\infty}) + \mathbf{u}_{\infty} \cdot (\nabla \cdot \mathbb{F}_{\infty}).
$$

In particular, $A_{\infty} = \lim_{n_k \to +\infty} |\nabla \mathbf{u}_{n_k}|^2 + \mu_{n_k}$. If $\Phi \in \mathcal{D}((0, T) \times \mathbb{R}^3)$ is nonnegative, we have

$$
\iint A_{\infty} \Phi \, dx \, ds = \lim_{n_k \to +\infty} \iint A_{n_k} \Phi \, dx \, ds
$$

$$
\geq \limsup_{n_k \to +\infty} \iint |\nabla \mathbf{u}_{n_k}|^2 \Phi \, dx \, ds \geq \iint |\nabla \mathbf{u}_{\infty}|^2 \Phi \, dx \, ds
$$

(since $\sqrt{\Phi} \nabla \mathbf{u}_{n_k}$ is weakly convergent to $\sqrt{\Phi} \nabla \mathbf{u}_{\infty}$ in $L^2 L^2$). Thus, there exists a non-negative locally finite measure μ_{∞} on $(0, T) \times \mathbb{R}^3$ such that $A_{\infty} = |\nabla \mathbf{u}_{\infty}|^2 +$ μ_{∞} , that is such that

$$
\partial_t \left(\frac{|\mathbf{u}_{\infty}|^2}{2} \right) = \Delta \left(\frac{|\mathbf{u}_{\infty}|^2}{2} \right) - |\nabla \mathbf{u}_{\infty}|^2 - \nabla \cdot \left(\frac{|\mathbf{u}_{\infty}|^2}{2} \mathbf{b}_{\infty} \right) - \nabla \cdot (p_{\infty} \mathbf{u}_{\infty}) + \mathbf{u} \cdot (\nabla \cdot \mathbb{F}_{\infty}) - \mu_{\infty}.
$$

Finally, we start from inequality (6) :

$$
\int \frac{|\mathbf{u}_n(t,x)|^2}{2} \phi_R w_{\gamma,\varepsilon} dx \le \int \frac{|\mathbf{u}_{0,n}(x)|^2}{2} \phi_R w_{\gamma,\varepsilon} dx
$$

$$
- \sum_{i=1}^3 \int_0^t \int \partial_i \mathbf{u}_n \cdot \mathbf{u}_n (w_{\gamma,\varepsilon} \partial_i \phi_R + \phi_R \partial_i w_{\gamma,\varepsilon}) dx ds
$$

$$
- \int_0^t \int |\nabla \mathbf{u}_n|^2 \phi_R w_{\gamma,\varepsilon} dx ds
$$

$$
+ \sum_{i=1}^3 \int_0^t \int \frac{|\mathbf{u}_n|^2}{2} b_{n,i} (w_{\gamma,\varepsilon} \partial_i \phi_R + \phi_R \partial_i w_{\gamma,\varepsilon}) dx ds
$$

$$
+ \sum_{i=1}^3 \int_0^t \int p_n u_{n,i} (w_{\gamma,\varepsilon} \partial_i \phi_R + \phi_R \partial_i w_{\gamma,\varepsilon}) dx ds
$$

$$
-\sum_{i=1}^{3} \sum_{j=1}^{3} \int_{0}^{t} \int F_{n,i,j} u_{n,j}(w_{\gamma,\varepsilon} \partial_{i} \phi_{R} + \phi_{R} \partial_{i} w_{\gamma,\varepsilon}) dx ds
$$

$$
-\sum_{i=1}^{3} \sum_{j=1}^{3} \int_{0}^{t} \int F_{n,i,j} \partial_{i} u_{n,j} \phi_{R} w_{\gamma,\varepsilon} dx ds.
$$

This gives

$$
\limsup_{n_k \to +\infty} \int \frac{|\mathbf{u}_{n_k}(t, x)|^2}{2} \phi_R w_{\gamma, \varepsilon} dx + \int_0^t \int |\nabla \mathbf{u}_{n_k}|^2 \phi_R w_{\gamma, \varepsilon} dx ds
$$
\n
$$
\leq \int \frac{|\mathbf{u}_{0, \infty}(x)|^2}{2} \phi_R w_{\gamma, \varepsilon} dx
$$
\n
$$
- \sum_{i=1}^3 \int_0^t \int \partial_i \mathbf{u}_{\infty} \cdot \mathbf{u}_{\infty} (w_{\gamma, \varepsilon} \partial_i \phi_R + \phi_R \partial_i w_{\gamma, \varepsilon}) dx ds
$$
\n
$$
+ \sum_{i=1}^3 \int_0^t \int \frac{|\mathbf{u}_{\infty}|^2}{2} b_{\infty, i} (w_{\gamma, \varepsilon} \partial_i \phi_R + \phi_R \partial_i w_{\gamma, \varepsilon}) dx ds
$$
\n
$$
+ \sum_{i=1}^3 \int_0^t \int p_{\infty} u_{\infty, i} (w_{\gamma, \varepsilon} \partial_i \phi_R + \phi_R \partial_i w_{\gamma, \varepsilon}) dx ds
$$
\n
$$
- \sum_{i=1}^3 \sum_{j=1}^3 \int_0^t \int F_{\infty, i, j} u_{\infty, j} (w_{\gamma, \varepsilon} \partial_i \phi_R + \phi_R \partial_i w_{\gamma, \varepsilon}) dx ds
$$
\n
$$
- \sum_{i=1}^3 \sum_{j=1}^3 \int_0^t \int F_{\infty, i, j} \partial_i u_{\infty, j} \phi_R w_{\gamma, \varepsilon} dx ds.
$$

As we have

$$
\mathbf{u}_{n_k} = \mathbf{u}_{0,n_k} + \int_0^t \partial_t \mathbf{u}_{n_k} \, \mathrm{d} s,
$$

we see that $\mathbf{u}_{n_k}(t,.)$ is convergent to $\mathbf{u}_{\infty}(t,.)$ in $\mathcal{D}'(\mathbb{R}^3)$, hence is weakly convergent in L^2_{loc} (as it is bounded in $L^2_{w_\gamma}$), so that:

$$
\int \frac{|\mathbf{u}_{\infty}(t,x)|^2}{2} \phi_R w_{\gamma,\varepsilon} \, dx \leqq \limsup_{n_k \to +\infty} \int \frac{|\mathbf{u}_{n_k}(t,x)|^2}{2} \phi_R w_{\gamma,\varepsilon} \, dx.
$$

Similarly, as ∇ **u**_{*n*k} is weakly convergent in $L^2 L^2_{w_\gamma}$, we have

$$
\int_0^t \int \frac{|\nabla \mathbf{u}_{\infty}(s,x)|^2}{2} \phi_R w_{\gamma,\varepsilon} \, dx \, ds \leqq \limsup_{n_k \to +\infty} \int_0^t \int \frac{|\nabla \mathbf{u}_{n_k}(s,x)|^2}{2} \phi_R w_{\gamma,\varepsilon} \, dx \, ds.
$$

Thus, letting *R* go to $+\infty$ and then ε go to 0, we find by dominated convergence that, for every $t \in (0, T)$, we have

$$
\|\mathbf{u}_{\infty}(t,.)\|_{L_{w_{\gamma}}^2}^2 + 2 \int_0^t \|\nabla \mathbf{u}_{\infty}(s,.)\|_{L_{w_{\gamma}}^2}^2 ds
$$

\n
$$
\leq \|\mathbf{u}_{0,\infty}\|_{L_{w_{\gamma}}^2}^2 - \int_0^t \int \nabla |\mathbf{u}_{\infty}|^2 \cdot \nabla w_{\gamma} dx ds
$$

\n
$$
+ \int_0^t \int (|\mathbf{u}_{\infty}|^2 \mathbf{b}_{\infty} + 2p_{\infty} \mathbf{u}_{\infty}) \cdot \nabla (w_{\gamma}) dx ds
$$

\n
$$
- 2 \sum_{i=1}^3 \sum_{j=1}^3 \int_0^t \int F_{\infty,i,j} (\partial_i u_{\infty,j}) w_{\gamma} + F_{\infty,i,j} u_{\infty,i} \partial_j (w_{\gamma}) dx ds.
$$

Letting *t* go to 0, we find

$$
\limsup_{t\to 0} \|\mathbf{u}_{\infty}(t,.)\|_{L^2_{w_\gamma}}^2 \leqq \|\mathbf{u}_{0,\infty}\|_{L^2_{w_\gamma}}^2.
$$

On the other hand, we know that \mathbf{u}_{∞} is weakly continuous in $L^2_{w_\gamma}$ and thus we have

$$
\|\mathbf{u}_{0,\infty}\|_{L^2_{w_\gamma}}^2 \leqq \liminf_{t \to 0} \|\mathbf{u}_{\infty}(t,.)\|_{L^2_{w_\gamma}}^2.
$$

This gives $\|\mathbf{u}_{0,\infty}\|_{L^2_{w_\gamma}}^2 = \lim_{t\to 0} \|\mathbf{u}_{\infty}(t,\cdot)\|_{L^2_{w_\gamma}}^2$, which allows to turn the weak convergence into a strong convergence. Theorem 3 is proven. \square

5. Solutions of the Navier–Stokes Problem with Initial Data in $L^2_{w_\gamma}$

We now prove Theorem [1.](#page-1-0) The idea is to approximate the problem by a Navier– Stokes problem in L^2 , then use the a priori estimates (Theorem [2\)](#page-2-0) and the stability theorem (Theorem [3\)](#page-3-1) to find a solution to the Navier–Stokes problem with data in $L^2_{w_{\gamma}}$).

5.1. Approximation by Square Integrable Data

Lemma 7. (Leray's projection operator) *Let* $0 < \delta < 3$ *and* $1 < r < +\infty$ *. If* **v** *is a* vector field on \mathbb{R}^3 such that $\mathbf{v} \in L^r_{w_\delta}$, then there exists a unique decompostion

$$
\mathbf{v} = \mathbf{v}_{\sigma} + \mathbf{v}_{\nabla}
$$

such that

- $\mathbf{v}_{\sigma} \in L_{w_{\delta}}^r$ and $\nabla \cdot \mathbf{v}_{\sigma} = 0$,
- $\mathbf{v}_{\nabla} \in L^{\mathbf{r}^{\prime}}_{w_{\delta}}$ and $\nabla \wedge \mathbf{v}_{\nabla} = 0$.

We shall write $\mathbf{v}_{\sigma} = \mathbb{P}\mathbf{v}$ *, where* \mathbb{P} *is Leray's projection operator.*

Similarly, if **v** *is a distribution vector field of the type* $\mathbf{v} = \nabla \cdot \mathbb{G}$ *with* $\mathbb{G} \in L_{w_\delta}^r$ *then there exists a unique decompostion*

$$
\mathbf{v} = \mathbf{v}_{\sigma} + \mathbf{v}_{\nabla}
$$

such that

- *there exists* $\mathbb{H} \in L^r_{w_\delta}$ *such that* $\mathbf{v}_{\sigma} = \nabla \cdot \mathbb{H}$ *and* $\nabla \cdot \mathbf{v}_{\sigma} = 0$ *,*
- *there exists* $q \in L_{w_\delta}^r$ *such that* $\mathbf{v}_\nabla = \nabla q$ *(and thus* $\nabla \wedge \mathbf{v}_\nabla = 0$ *).*

We shall still write $\mathbf{v}_{\sigma} = \mathbb{P}\mathbf{v}$ *. Moreover, the function q is given by*

$$
q = -\sum_{i=1}^{3} \sum_{j=1}^{3} R_i R_j(G_{i,j}).
$$

Proof. As $w_{\delta} \in A_r$ the Riesz transforms are bounded on $L_{w_{\delta}}^r$. Using the identity

$$
\Delta \mathbf{v} = \nabla(\nabla \cdot \mathbf{v}) - \nabla \wedge (\nabla \wedge \mathbf{v})
$$

we find (if the decomposition exists) that

$$
\Delta \mathbf{v}_{\sigma} = -\nabla \wedge (\nabla \wedge \mathbf{v}_{\sigma}) = -\nabla \wedge (\nabla \wedge \mathbf{v}) \text{ and } \Delta \mathbf{v}_{\nabla} = \nabla (\nabla \cdot \mathbf{v}_{\nabla}) = \nabla (\nabla \cdot \mathbf{v}).
$$

This proves the uniqueness. By linearity, we just have to prove that $\mathbf{v} = 0 \implies$ **v**_{∇} = 0. We have Δ **v**_{∇} = 0, and thus **v**_{∇} is harmonic; as it belongs to *S*['], we find that it is a polynomial. But a polynomial which belongs to $L_{w_{\delta}}^r$ must be equal to 0. Similarly, if $\mathbf{v}_\nabla = \nabla q$, then $\Delta q = \nabla \cdot \mathbf{v}_\nabla = \nabla \cdot \mathbf{v} = 0$; thus q is harmonic and belongs to $L^r_{w_\delta}$, hence $q = 0$.

For the existence, it is enough to check that $v_{\nabla,i} = -\sum_{j=1}^{3} R_i R_j v_j$ in the first case and $\mathbf{v}_{\nabla} = \nabla q$ with $q = \sum_{i=1}^{3} \sum_{j=1}^{3} R_i R_j(G_{i,j})$ in the second case fulfill the conclusions of the lemma. 

Lemma 8. Let $0 < \gamma < 2$. Let \mathbf{u}_0 be a divergence-free vector field such that **u**₀ ∈ $L^2_{w_\gamma}(\mathbb{R}^3)$ *and* \mathbb{F} *be a tensor* $\mathbb{F}(t, x) = (F_{i,j}(t, x))_{1 \leq i, j \leq 3}$ *such that* \mathbb{F} ∈ $L^2((0, +\infty), L^2_{w_\gamma})$ *. Let* $\phi \in \mathcal{D}(\mathbb{R}^3)$ *be a non-negative function which is equal to* 1 *for* $|x| \leq 1$ *and to* 0 *for* $|x| \geq 2$ *. For* $R > 0$ *, we define* $\phi_R(x) = \phi(\frac{x}{R})$ *,* $\mathbf{u}_{0,R} = \mathbb{P}(\phi_R \mathbf{u}_0)$ *and* $\mathbb{F}_R = \phi_R \mathbb{F}$ *. Then* $\mathbf{u}_{0,R}$ *is a divergence-free square integrable vector field and* $\lim_{R\to+\infty}$ $\|\mathbf{u}_{0,R} - \mathbf{u}_0\|_{L^2_{w_\gamma}} = 0$ *. Similarly,* \mathbb{F}_R *belongs to* L^2L^2 *and* $\lim_{R \to +\infty} \|\mathbb{F}_R - \mathbb{F}\|_{L^2((0, +\infty), L^2_{w_\gamma})} = 0.$

Proof. By dominated convergence, we have $\lim_{R\to+\infty} \|\phi_R \mathbf{u}_0 - \mathbf{u}_0\|_{L^2_{w_\gamma}} = 0$. We conclude by writing $\mathbf{u}_{0,R} - \mathbf{u}_0 = \mathbb{P}(\phi_R \mathbf{u}_0 - \mathbf{u}_0)$. \Box

5.2. Leray's Mollification

We want to solve the Navier–Stokes equations with initial value \mathbf{u}_0 :

$$
(NS)\begin{cases} \partial_t \mathbf{u} = \Delta \mathbf{u} - (\mathbf{u} \cdot \nabla) \mathbf{u} - \nabla p + \nabla \cdot \mathbb{F} \\ \nabla \cdot \mathbf{u} = 0, \qquad \mathbf{u}(0,.) = \mathbf{u}_0 \end{cases}
$$

We begin with Leray's method $[11]$ for solving the problem in L^2 :

$$
(NS_R)\begin{cases} \partial_t \mathbf{u}_R = \Delta \mathbf{u}_R - (\mathbf{u}_R \cdot \nabla) \mathbf{u}_R - \nabla p_R + \nabla \cdot \mathbb{F}_{\mathbb{R}} \\ \nabla \cdot \mathbf{u}_R = 0, \qquad \mathbf{u}_R(0,.) = \mathbf{u}_{0,R} \end{cases}
$$

The idea of Leray is to mollify the non-linearity by replacing $\mathbf{u}_R \cdot \nabla$ by $(\mathbf{u}_R * \theta_{\varepsilon}) \cdot \nabla$, where $\theta(x) = \frac{1}{\varepsilon^3} \theta(\frac{x}{\varepsilon}), \theta \in \mathcal{D}(\mathbb{R}^3), \theta$ is non-negative and radially decreasing and $\int \theta \, dx = 1$. We thus solve the problem

$$
(NS_{R,\varepsilon})\begin{cases} \partial_t \mathbf{u}_{R,\varepsilon} = \Delta \mathbf{u}_{R,\varepsilon} - ((\mathbf{u}_{R,\varepsilon} * \theta_{\varepsilon}) \cdot \nabla) \mathbf{u}_{R,\varepsilon} - \nabla p_{R,\varepsilon} + \nabla \cdot \mathbb{F}_R \\ \nabla \cdot \mathbf{u}_{R,\varepsilon} = 0, \qquad \mathbf{u}_{R,\varepsilon}(0,.) = \mathbf{u}_{0,R} \end{cases}
$$

The classical result of Leray states that the problem $(N S_{R,s})$ is well-posed:

Lemma 9. *Let* $\mathbf{v}_0 \in L^2$ *be a divergence-free vector field. Let* $\mathbb{G} \in L^2((0, +\infty), L^2)$ *. Then the problem*

$$
(NS_{\varepsilon})\begin{cases} \partial_t \mathbf{v}_{\varepsilon} = \Delta \mathbf{v}_{\varepsilon} - ((\mathbf{v}_{\varepsilon} * \theta_{\varepsilon}) \cdot \nabla) \mathbf{v}_{\varepsilon} - \nabla q_{\varepsilon} + \nabla \cdot \mathbb{G} \\ 0, \quad \mathbf{v}_{\varepsilon} = 0, \quad \mathbf{v}_{\varepsilon}(0,.) = \mathbf{v}_0 \end{cases}
$$

has a unique solution \mathbf{v}_{ε} *in* $L^{\infty}((0, +\infty), L^2) \cap L^2((0, +\infty), \dot{H}^1)$ *. Moreover, this solution belongs to* $C([0, +\infty), L^2)$.

5.3. Proof of Theorem [1](#page-1-0) (Local Existence)

We use Lemma [9](#page-23-0) and find a solution $\mathbf{u}_{R,\varepsilon}$ to the problem $(N S_{R,\varepsilon})$. Then we check that $\mathbf{u}_{R,\varepsilon}$ fulfills the assumptions of Theorem [2](#page-2-0) and of Corollary [6:](#page-15-1)

- **u**_{*R*,ε} belongs to $L^{\infty}((0, T), L^2_{w_\gamma})$ and ∇ **u**_{*R*,ε} belongs to $L^2((0, T), L^2_{w_\gamma})$;
- the map $t \in [0, +\infty) \mapsto \mathbf{u}_{R,\varepsilon}(t,.)$ is weakly continuous from $[0, +\infty)$ to $L^2_{w_\gamma}$, and is strongly continuous at $t = 0$:

$$
\lim_{t \to 0} \|\mathbf{u}_{R,\varepsilon}(t,.) - \mathbf{u}_{0,R}\|_{L^2_{w_\gamma}} = 0,
$$

• on $(0, T) \times \mathbb{R}^3$, $\mathbf{u}_{R,\varepsilon}$ fulfills the energy equality

$$
\partial_t \left(\frac{|\mathbf{u}_{R,\varepsilon}|^2}{2} \right) = \Delta \left(\frac{|\mathbf{u}_{R,\varepsilon}|^2}{2} \right) - |\nabla \mathbf{u}_{R,\varepsilon}|^2
$$

$$
-\nabla \cdot \left(\frac{|\mathbf{u}|^2}{2} \mathbf{b}_{R,\varepsilon} \right)
$$

$$
-\nabla \cdot (p_{R,\varepsilon} \mathbf{u}_{R,\varepsilon}) + \mathbf{u}_{R,\varepsilon} \cdot (\nabla \cdot \mathbb{F}_R).
$$

with $\mathbf{b}_{R,\varepsilon} = \mathbf{u}_{R,\varepsilon} * \theta_{\varepsilon};$

• **b**_{*R*, ε} is controlled by **u**_{*R*, ε} : for every $t \in (0, T)$,

$$
\|\mathbf{b}_{R,\varepsilon}(t,.)\|_{L^3_{w_{3\gamma/2}}}\leq \|\mathcal{M}_{\mathbf{u}_{R,\varepsilon}(t,.)}\|_{L^3_{w_{3\gamma/2}}}\leq C_0\|\mathbf{u}_{R,\varepsilon}(t,.)\|_{L^3_{w_{3\gamma/2}}}.
$$

Thus, we know that, for every time T_0 such that

$$
C_{\gamma}(1+C_0^4)\left(1+C_0^4+\|\mathbf{u}_{0,R}\|_{L^2_{w_{\gamma}}}^2+\int_0^{T_0}\|\mathbb{F}_R\|_{L^2_{w_{\gamma}}}^2\,\mathrm{d} s\right)^2\,T_0\leqq 1,
$$

we have

$$
\sup_{0 \le t \le T_0} \| \mathbf{u}_{R,\varepsilon}(t,.) \|_{L^2_{w_\gamma}}^2 \le C_\gamma (1 + C_0^4 + \| \mathbf{u}_{0,R} \|_{L^2_{w_\gamma}}^2 + \int_0^{T_0} \| \mathbb{F}_R \|_{L^2_{w_\gamma}}^2 \, ds)
$$

and

$$
\int_0^{T_0} \|\nabla \mathbf{u}_{R,\varepsilon}\|_{L^2_{w_\gamma}}^2 \, \mathrm{d} s \leq C_\gamma (1+C_0^4 + \|\mathbf{u}_{0,R}\|_{L^2_{w_\gamma}}^2 + \int_0^{T_0} \|\mathbb{F}_R\|_{L^2_{w_\gamma}}^2 \, \mathrm{d} s).
$$

Moreover, we have that

$$
\|\mathbf{u}_{0,R}\|_{L^2_{w_\gamma}} \leqq C_\gamma \|\mathbf{u}_0\|_{L^2_{w_\gamma}} \text{ and } \|\mathbb{F}_R\|_{L^2_{w_\gamma}} \leqq \|\mathbb{F}\|_{L^2_{w_\gamma}},
$$

so that

$$
\|\mathbf{b}_{R,\varepsilon}\|_{L^{3}((0,T_{0}),L_{w_{3\gamma/2}}^{3}} \leq C_{\gamma} \|\mathbf{u}_{R,\varepsilon}\|_{L^{3}((0,T_{0}),L_{w_{3\gamma/2}}^{3}}\leq C_{\gamma}^{\prime} T_{0}^{\frac{1}{12}} \left((1+\sqrt{T_{0}}) \|\mathbf{u}_{R,\varepsilon}\|_{L^{\infty}((0,T_{0}),L_{w_{\gamma}}^{2}}) \right)+\|\nabla \mathbf{u}_{R,\varepsilon}\|_{L^{2}((0,T_{0}),L_{w_{\gamma}}^{2})}\right)\leq C_{\gamma}^{\prime\prime} \sqrt{1+C_{0}^{4} + \|\mathbf{u}_{0}\|_{L_{w_{\gamma}}^{2}}^{2} + \int_{0}^{T_{0}} \|\mathbb{F}\|_{L_{w_{\gamma}}^{2}}^{2} ds}.
$$

Let $R_n \to +\infty$ and $\varepsilon_n \to 0$. Let $\mathbf{u}_{0,n} = \mathbf{u}_{0,R_n}$, $\mathbb{F}_n = \mathbb{F}_{R_n}$, $\mathbf{b}_n = \mathbf{b}_{R_n,\varepsilon_n}$ and $\mathbf{u}_n = \mathbf{u}_{R_n, \varepsilon_n}$. We may then apply Theorem [3,](#page-3-1) since $\mathbf{u}_{0,n}$ is strongly convergent to **u**₀ in $L^2_{w_\gamma}$, \mathbb{F}_n is strongly convergent to \mathbb{F} in $L^2((0, T_0), L^2_{w_\gamma})$, and the sequence **b**_{*n*} is bounded in $L^3((0, T_0), L^3_{w_{3y/2}})$. Thus there exists *p*, **u**, **b** and an increasing sequence $(n_k)_{k \in \mathbb{N}}$ with values in \mathbb{N} such that

- **u**_{*n_k*} converges *-weakly to **u** in $L^{\infty}((0, T_0), L^2_{w_\gamma}), \nabla$ **u**_{*n_k*} converges weakly to ∇ **u** in $L^2((0, T_0), L^2_{w_\gamma});$
- **b**_{*n_k*} converges weakly to **b** in $L^3((0, T_0), L^3_{w_{3\gamma/2}})$, p_{n_k} converges weakly to p in $L^3((0, T_0), L_{w_{\underline{\theta\mu}}}^{6/5}) + L^2((0, T_0), L_{w_{\gamma}}^2);$
- **u**_{nk} converges strongly to **u** in $L_{\text{loc}}^2([0, T_0) \times \mathbb{R}^3)$. Moreover, **u** is a solution of the advection-diffusion problem

$$
\begin{cases} \partial_t \mathbf{u} = \Delta \mathbf{u} - (\mathbf{b} \cdot \nabla) \mathbf{u} - \nabla p + \nabla \cdot \mathbb{F} \\ \\ \nabla \cdot \mathbf{u} = 0, \qquad \mathbf{u}(0,.) = \mathbf{u}_0, \end{cases}
$$

and is such that

• the map $t \in [0, T_0) \mapsto \mathbf{u}(t,.)$ is weakly continuous from $[0, T_0)$ to $L^2_{w_\gamma}$, and is strongly continuous at $t = 0$:

$$
\lim_{t\to 0} \|\mathbf{u}(t,.) - \mathbf{u}_0\|_{L^2_{w_\gamma}} = 0;
$$

• there exists a non-negative locally finite measure μ on $(0, T_0) \times \mathbb{R}^3$ such that

$$
\partial_t \left(\frac{|\mathbf{u}|^2}{2} \right) = \Delta \left(\frac{|\mathbf{u}|^2}{2} \right) - |\nabla \mathbf{u}|^2 - \nabla \cdot \left(\frac{|\mathbf{u}|^2}{2} \mathbf{b} \right) - \nabla \cdot (p \mathbf{u}) + \mathbf{u} \cdot (\nabla \cdot \mathbb{F}) - \mu,
$$

Finally, as $\mathbf{b}_n = \theta_{\varepsilon_n} * (\mathbf{u}_n - \mathbf{u}) + \theta_{\varepsilon_n} * \mathbf{u}$, we see that \mathbf{b}_{n_k} is strongly convergent to **u** in $L_{loc}^3([0, T_0) \times \mathbb{R}^3)$, so that $\mathbf{b} = \mathbf{u}$: thus, **u** is a solution of the Navier–Stokes problem on $(0, T_0)$. (It is easy to check that

$$
p = \sum_{i=1}^{3} \sum_{j=1}^{3} R_i R_j (u_i u_j - F_{i,j})
$$

as $u_{i,n_k}u_{j,n_k}$ is weakly convergent to u_iu_j in $L^4((0, T_0), L^{6/5}_{w_{\frac{6\nu}{5}}})$ and $w_{\frac{6\nu}{5}} \in \mathcal{A}_{6/5}$. 5

5.4. Proof of Theorem [1](#page-1-0) (Global Existence)

In order to finish the proof, we shall use the scaling properties of the Navier– Stokes equations : if $\lambda > 0$, then **u** is a solution of the Cauchy initial value problem for the Navier–Stokes equations on $(0, T)$ with initial value \mathbf{u}_0 and forcing tensor \mathbb{F} if and only if $\mathbf{u}_{\lambda}(t, x) = \lambda \mathbf{u}(\lambda^2 t, \lambda x)$ is a solution of the Navier–Stokes equations on $(0, T/\lambda^2)$ with initial value $\mathbf{u}_{0,\lambda}(x) = \lambda \mathbf{u}_0(\lambda x)$ and forcing tensor $\mathbb{F}_{\lambda}(t, x) =$ $\lambda^2 \mathbb{F}(\lambda^2 t, \lambda x)$.

We take $\lambda > 1$ and for $n \in \mathbb{N}$ we consider the Navier–Stokes problem with initial value $\mathbf{v}_{0,n} = \lambda^n \mathbf{u}_0(\lambda^n)$ and forcing tensor $\mathbb{F}_n = \lambda^{2n} \mathbb{F}(\lambda^{2n} \cdot, \lambda^n)$. Then we have seen that we can find a solution \mathbf{v}_n on $(0, T_n)$, with

$$
C_{\gamma}\left(1+\|\mathbf{v}_{0,n}\|_{L^2_{w_{\gamma}}}^2+\int_0^{+\infty}\|\mathbb{F}_n\|_{L^2_{w_{\gamma}}}^2\,\mathrm{d} s\right)^2\,T_n=1.
$$

Of course, we have $\mathbf{v}_n(t, x) = \lambda^n \mathbf{u}_n(\lambda^{2n}t, \lambda^n x)$ where \mathbf{u}_n is a solution of the Navier–Stokes equations on $(0, \lambda^{2n} T_n)$ with initial value \mathbf{u}_0 and forcing tensor F.

Lemma 10.

$$
\lim_{n \to +\infty} \frac{\lambda^n}{1 + \|\mathbf{v}_{0,n}\|_{L^2_{w_\gamma}}^2 + \int_0^{+\infty} \|\mathbb{F}_n\|_{L^2_{w_\gamma}}^2 ds} = +\infty.
$$

Proof. We have

$$
\|\mathbf{v}_{0,n}\|_{L^2_{w_\gamma}}^2 = \int |\mathbf{u}_0(x)|^2 \lambda^{n(\gamma-1)} \frac{(1+|x|)^{\gamma}}{(\lambda^n+|x|)^{\gamma}} w_\gamma(x) dx.
$$

We have

$$
\lambda^{n(\gamma-1)}\leqq \lambda^n
$$

as $\gamma \leq 2$ and we have, by dominated convergence,

$$
\lim_{n \to +\infty} \int |u_0(x)|^2 \frac{(1+|x|)^{\gamma}}{(\lambda^n+|x|)^{\gamma}} w_{\gamma}(x) dx = 0.
$$

Similarly, we have

$$
\int_0^{+\infty} \|\mathbb{F}_n\|_{L^2_{w_\gamma}}^2 ds = \int_0^{+\infty} \int |\mathbb{F}(s,x)|^2 \lambda^{n(\gamma-1)} \frac{(1+|x|)^\gamma}{(\lambda^n+|x|)^\gamma} w_\gamma(x) dx ds = o(\lambda^n).
$$

Thus, $\lim_{n\to+\infty} \lambda^{2n} T_n = +\infty$.

Now, for a given $T > 0$, if $\lambda^{2n}T_n > T$ for $n \geq n_T$, then \mathbf{u}_n is a solution of the Navier-Stokes problem on $(0, T)$. Let $\mathbf{w}_n(t, x) = \lambda^{n_T} \mathbf{u}_n(\lambda^{2n_T} t, \lambda^{n_T} x)$. For $n \geq n_T$, **w**_n is a solution of the Navier-Stokes problem on (0, $\lambda^{-2n_T}T$) with initial value \mathbf{v}_{0,n_T} and forcing tensor \mathbb{F}_{n_T} . As $\lambda^{-2n_T}T \leq T_{n_T}$, we have

$$
C_{\gamma}\left(1+\|\mathbf{v}_{0,n_T}\|_{L^2_{w_{\gamma}}}^2+\int_0^{+\infty}\|\mathbb{F}_{n_T}\|_{L^2_{w_{\gamma}}}^2 ds\right)^2\lambda^{-2n_T}T\leq 1.
$$

By Corollary [6,](#page-15-1) we have

$$
\sup_{0\leq t\leq \lambda^{-2n}T} \|\mathbf{w}_n(t,.)\|_{L^2_{w_\gamma}}^2 \leq C_\gamma \left(1 + \|\mathbf{v}_{0,n_T}\|_{L^2_{w_\gamma}}^2 + \int_0^{\lambda^{-2n}T} \|\mathbb{F}_{n_T}\|_{L^2_{w_\gamma}}^2 ds\right)
$$

and

$$
\int_0^{\lambda^{-2n}T} \|\nabla \mathbf{w}_n\|_{L^2_{w_\gamma}}^2 ds \leq C_\gamma \left(1 + \|\mathbf{v}_{0,n_T}\|_{L^2_{w_\gamma}}^2 + \int_0^{\lambda^{-2n}T} \|\mathbb{F}_{n_T}\|_{L^2_{w_\gamma}}^2 ds\right).
$$

We have

$$
\|\mathbf{w}_n\|_{L^2_{w_\gamma}}^2 = \int |\mathbf{u}_n(\lambda^{2n}t, x)|^2 \lambda^{n}(\gamma-1)} \frac{(1+|x|)^\gamma}{(\lambda^{n}+|x|)^\gamma} w_\gamma(x) dx
$$

\n
$$
\geq \lambda^{-n} \|\mathbf{u}_n(\lambda^{2n}t, .)\|_{L^2_{w_\gamma}}^2
$$

and

$$
\int_0^{\lambda^{-2n}T} \|\nabla \mathbf{w}_n\|_{L^2_{w_\gamma}}^2 ds = \int_0^T \int |\nabla \mathbf{u}_n(s, x)|^2 \lambda^{n}(\gamma - 1) \frac{(1 + |x|)^\gamma}{(\lambda^{n} + |x|)^\gamma} w_\gamma(x) dx ds
$$

$$
\geq \lambda^{-n} \int_0^T \|\nabla \mathbf{u}_n\|_{L^2_{w_\gamma}}^2 ds.
$$

Thus, we have a uniform control of \mathbf{u}_n and of $\nabla \mathbf{u}_n$ on $(0, T)$ for $n \geq n_T$. We may then apply the Rellich lemma (Lemma [6\)](#page-17-0) and Theorem [3](#page-3-1) to find a subsequence \mathbf{u}_{n_k} that converges to a global solution of the Navier–Stokes equations. Theorem [1](#page-1-0) is proven. \square

6. Solutions of the Advection-Diffusion Problem with Initial Data in $L^2_{w_\gamma}$

The proof of Theorem [1](#page-1-0) on the Navier–Stokes problem can be easily adapted to the case of the advection-diffusion problem:

Theorem 4. Let $0 < \gamma \leq 2$. Let $0 < T < +\infty$. Let \mathbf{u}_0 be a divergence-free vector f ield such that $\mathbf{u}_0 \in L^2_{w_\gamma}(\mathbb{R}^3)$ and $\mathbb F$ be a tensor $\mathbb F(t,x)=\big(F_{i,j}(t,x)\big)_{1\leqq i,j\leqq 3}$ such *that* $\mathbb{F} \in L^2((0,T), L^2_{w_\gamma})$ *. Let* **b** *be a time-dependent divergence free vector-field* $(\nabla \cdot \mathbf{b} = 0)$ *such that* $\mathbf{b} \in L^3((0, T), L^3_{w_{3\gamma/2}})$ *. Then the advection-diffusion problem*

$$
(AD)\begin{cases} \partial_t \mathbf{u} = \Delta \mathbf{u} - (\mathbf{b} \cdot \nabla) \mathbf{u} - \nabla p + \nabla \cdot \mathbb{F} \\ \nabla \cdot \mathbf{u} = 0, \quad \mathbf{u}(0,.) = \mathbf{u}_0 \end{cases}
$$

has a solution **u** *such that:*

- **u** *belongs to* $L^{\infty}((0, T), L^2_{w_{\gamma}})$ *and* ∇ **u** *belongs to* $L^2((0, T), L^2_{w_{\gamma}})$ *;*
- *the pressure p is related to* **u**, **b** *and* $\mathbb F$ *through the Riesz transforms* $R_i = \frac{\partial_i}{\partial \tau}$ $-\Delta$ *by the formula*

$$
p = \sum_{i=1}^{3} \sum_{j=1}^{3} R_i R_j (b_i u_j - F_{i,j});
$$

• *the map t* \in [0, *T*) \mapsto **u**(*t*, .) *is weakly continuous from* [0, *T*) *to* $L^2_{w_\gamma}$ *, and is strongly continuous at* $t = 0$ *:*

$$
\lim_{t\to 0} \|\mathbf{u}(t,.) - \mathbf{u}_0\|_{L^2_{w_\gamma}} = 0;
$$

• *there exists a non-negative locally finite measure* μ *on* $(0, T) \times \mathbb{R}^3$ *such that*

$$
\partial_t \left(\frac{|\mathbf{u}|^2}{2} \right) = \Delta \left(\frac{|\mathbf{u}|^2}{2} \right) - |\nabla \mathbf{u}|^2 - \nabla \cdot \left(\frac{|\mathbf{u}|^2}{2} \mathbf{b} \right) - \nabla \cdot (p \mathbf{u}) + \mathbf{u} \cdot (\nabla \cdot \mathbb{F}) - \mu.
$$

Proof. Again, we define $\phi_R(x) = \phi(\frac{x}{R})$, $\mathbf{u}_{0,R} = \mathbb{P}(\phi_R \mathbf{u}_0)$ and $\mathbb{F}_R = \phi_R \mathbb{F}$. Moreover, we define $\mathbf{b}_R = \mathbb{P}(\phi_R \mathbf{b})$. We then solve the mollified problem

$$
(AD_{R,\varepsilon})\begin{cases} \partial_t \mathbf{u}_{R,\varepsilon} = \Delta \mathbf{u}_{R,\varepsilon} - ((\mathbf{b}_R * \theta_\varepsilon) \cdot \nabla) \mathbf{u}_{R,\varepsilon} - \nabla p_{R,\varepsilon} + \nabla \cdot \mathbb{F}_{R,\varepsilon} \\ \nabla \cdot \mathbf{u}_{R,\varepsilon} = 0, \qquad \mathbf{u}_{R,\varepsilon}(0,.) = \mathbf{u}_{0,R}, \end{cases}
$$

for which we easily find a unique solution $\mathbf{u}_{R,\varepsilon}$ in $L^{\infty}((0,T), L^2) \cap L^2((0,T), \dot{H}^1)$. Moreover, this solution belongs to $C([0, T), L^2)$.

Again, $\mathbf{u}_{R,\varepsilon}$ fulfills the assumptions of Theorem [2:](#page-2-0)

- **u**_{*R*,ε} belongs to $L^{\infty}((0, T), L^2_{w_\gamma})$ and ∇ **u**_{*R*},ε belongs to $L^2((0, T), L^2_{w_\gamma})$
- the map $t \in [0, T) \mapsto \mathbf{u}_{R,\varepsilon}(t,.)$ is weakly continuous from $[0, T)$ to $L^2_{w_\gamma}$, and is strongly continuous at $t = 0$:

$$
\lim_{t \to 0} \|\mathbf{u}_{R,\varepsilon}(t,.) - \mathbf{u}_{0,R}\|_{L^2_{w_\gamma}} = 0.
$$

• on $(0, T) \times \mathbb{R}^3$, $\mathbf{u}_{R,\varepsilon}$ fulfills the energy equality:

$$
\partial_t \left(\frac{|\mathbf{u}_{R,\varepsilon}|^2}{2} \right) = \Delta \left(\frac{|\mathbf{u}_{R,\varepsilon}|^2}{2} \right) - |\nabla \mathbf{u}_{R,\varepsilon}|^2 - \nabla \cdot \left(\frac{|\mathbf{u}|^2}{2} \mathbf{b}_{R,\varepsilon} \right) \n- \nabla \cdot (p_{R,\varepsilon} \mathbf{u}_{R,\varepsilon}) + \mathbf{u}_{R,\varepsilon} \cdot (\nabla \cdot \mathbb{F}_R).
$$

with $\mathbf{b}_{R,\varepsilon} = \mathbf{b}_R * \theta_{\varepsilon}$.

Thus, by Corollary [4](#page-13-1) we know that,

 $\sup_{0 < t < T} \|\mathbf{u}_{R,\varepsilon}\|_{L^2_{w_\gamma}} \leq (\|\mathbf{u}_{0,R}\|_{L^2_{w_\gamma}} + C_\gamma \|\mathbb{F}_R\|_{L^2((0,T),L^2_{w_\gamma})}) e$ C_{γ} (*T*+*T*^{1/3})**b**_{*R*}, ε ¹)²_{*L*3((0,*T*),*L*_{3y/2})²_{*D*</sup>_{3y}/2⁾}}

and

$$
\|\nabla \mathbf{u}_{R,\varepsilon}\|_{L^{2}((0,T),L^{2}_{w_{\gamma}})} \leq (\|\mathbf{u}_{0,R}\|_{L^{2}_{w_{\gamma}}} + C_{\gamma}\|\mathbb{F}_{R}\|_{L^{2}((0,T),L^{2}_{w_{\gamma}})}) e^{C_{\gamma}(T+T^{1/3}\|\mathbf{b}_{R,\varepsilon}\|_{L^{3}((0,T),L^{3}_{w_{3\gamma}/2})}^{2})},
$$

where the constant C_{γ} depends only on γ .

Moreover, we have that

$$
\|\mathbf{u}_{0,R}\|_{L^2_{w_{\gamma}}}\leqq C_{\gamma}\|\mathbf{u}_0\|_{L^2_{w_{\gamma}}},\|\mathbb{F}_R\|_{L^2_{w_{\gamma}}}\leqq \|\mathbb{F}\|_{L^2_{w_{\gamma}}}
$$

and

$$
\|\mathbf{b}_{R,\varepsilon}\|_{L^3((0,T),L^3_{w_{3\gamma/2}})} \leqq \|\mathcal{M}_{\mathbf{b}_R}\|_{L^3((0,T),L^3_{w_{3\gamma/2}})} \leqq C'_\gamma \|\mathbf{b}\|_{L^3((0,T),L^3_{w_{3\gamma/2}})}.
$$

Let $R_n \to +\infty$ and $\varepsilon_n \to 0$. Let $\mathbf{u}_{0,n} = \mathbf{u}_{0,R_n}$, $\mathbb{F}_n = \mathbb{F}_{R_n}$, $\mathbf{b}_n = \mathbf{b}_{R_n,\varepsilon_n}$ and $\mathbf{u}_n = \mathbf{u}_{R_n, \varepsilon_n}$. We may then apply Theorem [3,](#page-3-1) since $\mathbf{u}_{0,n}$ is strongly convergent to **u**₀ in $L^2_{w_\gamma}$, \mathbb{F}_n is strongly convergent to \mathbb{F} in $L^2((0, T), L^2_{w_\gamma})$, and the sequence **b**_{*n*} is strongly convergent to **b** in $L^3((0, T), L^3_{w_{3\gamma/2}})$. Thus there exists *p*, **u** and an increasing sequence $(n_k)_{k \in \mathbb{N}}$ with values in $\mathbb N$ such that

- **u**_{*n_k*} converges *-weakly to **u** in $L^{\infty}((0, T), L^2_{w_y})$, ∇ **u**_{*n_k*} converges weakly to ∇ **u** in $L^2((0, T), L^2_{w_\gamma});$
- p_{n_k} converges weakly to p in $L^3((0, T), L^{6/5}_{w_{\frac{6\gamma}{5}}}) + L^2((0, T), L^2_{w_{\gamma}});$
- **u**_{*nk*} converges strongly to **u** in $L^2_{loc}([0, T) \times \mathbb{R}^3)$.

We then easily finish the proof. \square

7. Application to the Study of λ**-Discretely Self-similar Solutions**

We may now apply our results to the study of λ -discretely self-similar solutions for the Navier–Stokes equations.

Definition 1. Let $\mathbf{u}_0 \in L^2_{loc}(\mathbb{R}^3)$. We say that \mathbf{u}_0 is a λ -discretely self-similar function (λ -DSS) if there exists $\lambda > 1$ such that λ **u**₀(λ *x*) = **u**₀.

A vector field $\mathbf{u} \in L^2_{\text{loc}}([0, +\infty) \times \mathbb{R}^3)$ is λ -DSS if there exists $\lambda > 1$ such that $λ$ **u**($λ²t$, $λx$) = **u**(t, x).

A forcing tensor $\mathbb{F} \in L^2_{loc}([0, +\infty) \times \mathbb{R}^3)$ is λ -DSS if there exists $\lambda > 1$ such that $\lambda^2 \mathbb{F}(\lambda^2 t, \lambda x) = \mathbb{F}(t, x)$.

We shall speak of self-similarity if \mathbf{u}_0 , \mathbf{u} or \mathbb{F} are λ -DSS for every $\lambda > 1$.

Examples. • Let $\gamma > 1$ and $\lambda > 1$. Then, for two positive constants $A_{\gamma, \lambda}$ and *B*_γ,λ, we have : if **u**₀ $\in L^2$ _{loc}(\mathbb{R}^3) is λ-DSS, then **u**₀ $\in L^2_{w_\gamma}$ and

$$
A_{\gamma,\lambda}\int_{1<|x|\leq\lambda}|\mathbf{u}_0(x)|^2\,\mathrm{d}x\leq\int|\mathbf{u}_0(x)|^2w_{\gamma}(x)\,\mathrm{d}x\leq B_{\gamma,\lambda}\int_{1<|x|\leq\lambda}|\mathbf{u}_0(x)|^2\,\mathrm{d}x.
$$

- **u**₀ $\in L^2_{loc}$ is self-similar if and only if it is of the form $\mathbf{u}_0 = \frac{\mathbf{w}_0(\frac{x}{|x|})}{|x|}$ with $\mathbf{w}_0 \in L^2(S^2)$.
- F belongs to $L^2((0, +\infty), L^2_{w_\gamma})$ with $\gamma > 1$ and is self-similar if and only if it is of the form $\mathbb{F}(t, x) = \frac{1}{t} \mathbb{F}_0(\frac{x}{\sqrt{t}})$ with $\int |\mathbb{F}_0(x)|^2 \frac{1}{|x|} dx < +\infty$.

Proof. • If \mathbf{u}_0 is λ -DSS and if $k \in \mathbb{Z}$ we have

$$
\int_{\lambda^k < |x| < \lambda^{k+1}} |\mathbf{u}_0(x)|^2 w_\gamma(x) \, \mathrm{d}x \le \frac{\lambda^k}{(1 + \lambda^k)^\gamma} \int_{1 < |x| < \lambda} |\mathbf{u}_0(x)|^2 \, \mathrm{d}x
$$

with $\sum_{k\in\mathbb{Z}}\frac{\lambda^k}{(1+\lambda^k)^{\gamma}} < +\infty$ for $\gamma > 1$.

• If **u**₀ is self-similar, we have **u**₀(*x*) = $\frac{1}{|x|}$ **u**₀($\frac{x}{|x|}$). From this equality, we find that, for $\lambda > 1$

$$
\int_{1<|x|<\lambda} |\mathbf{u}_0(x)|^2 dx = (\lambda - 1) \int_{S^2} |\mathbf{u}_0(\sigma)|^2 d\sigma.
$$

• If $\mathbb F$ is self-similar, then it is of the form $\mathbb F(t, x) = \frac{1}{t} \mathbb F_0(\frac{x}{\sqrt{t}})$. Moreover, we have

$$
\int_0^{+\infty} \int |\mathbb{F}(t, x)|^2 w_{\gamma}(x) dx ds = \int_0^{+\infty} \int |\mathbb{F}_0(x)|^2 w_{\gamma}(\sqrt{t} x) dx \frac{dt}{\sqrt{t}}
$$

= $C_{\gamma} \int |\mathbb{F}_0(x)|^2 \frac{dx}{|x|}.$

with $C_{\gamma} = \int_0^{+\infty} \frac{1}{(1+\sqrt{2})}$ $\frac{1}{(1+\sqrt{\theta})^{\gamma}} \frac{d\theta}{\sqrt{\theta}}$ θ $< +\infty$. □

In this section, we are going to give a new proof of the results of Chae AND WOLF $[3]$ and BRADSHAW AND TSAI $[2]$ $[2]$ on the existence of λ -DSS solutions of the Navier–Stokes problem (and of JIA AND ŠVERÁK [\[6](#page-35-5)] for self-similar solutions) :

Theorem 5. Let $4/3 < \gamma < 2$ and $\lambda > 1$. If \mathbf{u}_0 is a λ -DSS divergence-free *vector field (such that* $\mathbf{u}_0 \in L^2_{w_\gamma}(\mathbb{R}^3)$) and if $\mathbb F$ is a λ -DSS tensor $\mathbb F(t,x) =$ $(F_{i,j}(t, x))_{1 \leq i, j \leq 3}$ *such that* $\mathbb{F} \in L^2_{loc}([0, +\infty) \times \mathbb{R}^3)$ *, then the Navier–Stokes equations with initial value* \mathbf{u}_0

$$
(NS)\begin{cases} \partial_t \mathbf{u} = \Delta \mathbf{u} - (\mathbf{u} \cdot \nabla) \mathbf{u} - \nabla p + \nabla \cdot \mathbb{F} \\ \nabla \cdot \mathbf{u} = 0, \quad \mathbf{u}(0,.) = \mathbf{u}_0 \end{cases}
$$

have a global weak solution **u** *such that*

- **u** *is a* λ*-DSS vector field;*
- *for every* $0 < T < +\infty$, **u** *belongs to* $L^{\infty}((0, T), L^2_{w_y})$ *and* ∇ **u** *belongs to* $L^2((0, T), L^2_{w_\gamma});$
- *the map t* \in [0, $+\infty$) \mapsto **u**(*t*, .) *is weakly continuous from* [0, $+\infty$) *to* $L^2_{w_\gamma}$ *, and is strongly continuous at* $t = 0$ *:*

$$
\lim_{t\to 0} \|\mathbf{u}(t,.) - \mathbf{u}_0\|_{L^2_{w_\gamma}} = 0;
$$

• *the solution* **u** *is suitable, and there exists a non-negative locally finite measure* μ *on* $(0, +\infty) \times \mathbb{R}^3$ *such that*

$$
\partial_t \left(\frac{|\mathbf{u}|^2}{2} \right) = \Delta \left(\frac{|\mathbf{u}|^2}{2} \right) - |\nabla \mathbf{u}|^2 - \nabla \cdot \left((\frac{|\mathbf{u}|^2}{2} + p) \mathbf{u} \right) + \mathbf{u} \cdot (\nabla \cdot \mathbb{F}) - \mu.
$$

7.1. The Linear Problem

Following Chae and Wolf, we consider an approximation of the problem that is consistent with the scaling properties of the equations: let θ be a non-negative and radially decreasing function in $\mathcal{D}(\mathbb{R}^3)$ with $\bar{f} \theta dx = 1$. We define $\theta_{\varepsilon,t}(x) =$ $\frac{1}{(\varepsilon\sqrt{t})^3} \theta(\frac{x}{\varepsilon\sqrt{t}})$. We then will study the "mollified" problem

$$
(NS_{\varepsilon})\begin{cases} \partial_t \mathbf{u}_{\varepsilon} = \Delta \mathbf{u}_{\varepsilon} - ((\mathbf{u}_{\varepsilon} * \theta_{\varepsilon,t}) \cdot \nabla) \mathbf{u}_{\varepsilon} - \nabla p_{\varepsilon} + \nabla \cdot \mathbb{F} \\ \nabla \cdot \mathbf{u} = 0, \qquad \mathbf{u}(0,.) = \mathbf{u}_0 \end{cases}
$$

and begin with the linearized problem

$$
(LNS_{\varepsilon})\begin{cases} \partial_t \mathbf{v} = \Delta \mathbf{v} - ((\mathbf{b} * \theta_{\varepsilon,t}) \cdot \nabla) \mathbf{v} - \nabla q + \nabla \cdot \mathbb{F} \\ \nabla \cdot \mathbf{v} = 0, \quad \mathbf{v}(0,.) = \mathbf{u}_0. \end{cases}
$$

Lemma 11. Let $1 < \gamma < 2$. Let $\lambda > 1$ Let \mathbf{u}_0 be a λ -DSS divergence-free vector f ield such that $\mathbf{u}_0 \in L^2_{w_\gamma}(\mathbb{R}^3)$ and $\mathbb F$ be a λ -DSS tensor $\mathbb F(t,x) = \big(F_{i,j}(t,x)\big)_{1 \leqq i,j \leqq 3}$ *such that, for every* $T > 0$, $\mathbb{F} \in L^2((0, T), L^2_{w_\gamma})$ *. Let* **b** *be a* λ *-DSS timedependent divergence free vector-field* $(\nabla \cdot \mathbf{b} = 0)$ *such that, for every* $T > 0$ *,* **b** $\in L^3((0, T), L^3_{w_{3\gamma/2}})$.

Then the advection-diffusion problem

$$
(LNS_{\varepsilon})\begin{cases} \partial_t \mathbf{v} = \Delta \mathbf{v} - ((\mathbf{b} * \theta_{\varepsilon,t}) \cdot \nabla) \mathbf{v} - \nabla q + \nabla \cdot \mathbb{F} \\ \nabla \cdot \mathbf{v} = 0, \quad \mathbf{v}(0,.) = \mathbf{u}_0 \end{cases}
$$

has a unique solution **v** *such that:*

- *for every positive T, v belongs to* $L^{\infty}((0, T), L^2_{w_\gamma})$ *and* ∇ *v belongs to* $L^2((0, T), L^2_{w_\gamma});$
- *the pressure p is related to* **v***, b and* $\mathbb F$ *<i>through the Riesz transforms* $R_i = \frac{\partial_i}{\partial \tau_i}$ $-\Delta$ *by the formula*

$$
p = \sum_{i=1}^{3} \sum_{j=1}^{3} R_i R_j ((b_i * \theta_{\varepsilon,t}) v_j - F_{i,j});
$$

• *the map t* \in [0, $+\infty$) \mapsto **v**(*t*, .) *is weakly continuous from* [0, $+\infty$) *to* $L^2_{w_\gamma}$ *, and is strongly continuous at* $t = 0$ *:*

$$
\lim_{t\to 0} \|\mathbf{v}(t,.) - \mathbf{u}_0\|_{L^2_{w_\gamma}} = 0.
$$

This solution **v** *is a* λ*-DSS vector field.*

Proof. As we have $|\mathbf{b}(t,.) * \theta_{\varepsilon,t}| \leq \mathcal{M}_{\mathbf{b}(t,.)}$ and thus

$$
\|\mathbf{b}(t,.)\ast \theta_{\varepsilon,t}\|_{L^3((0,T),L^3_{w_{3\gamma/2}})} \leqq C_{\gamma} \|\mathbf{b}\|_{L^3((0,T),L^3_{w_{3\gamma/2}})},
$$

we see that we can use Theorem [4](#page-27-0) to get a solution \bf{v} on $(0, T)$.

As clearly $\mathbf{b} * \theta_{\varepsilon,t}$ belongs to $L_t^2 L_x^{\infty}(K)$ for every compact subset *K* of $(0, T) \times$ \mathbb{R}^3 , we can use Corollary [5](#page-13-2) to see that **v** is unique.

Let $\mathbf{w}(t, x) = \frac{1}{\lambda} \mathbf{v}(\frac{t}{\lambda^2}, \frac{x}{\lambda})$. As $b * \theta_{\varepsilon,t}$ is still λ -DSS, we see that **w** is solution of (LNS_{ε}) on $(0, T)$, so that $\mathbf{w} = \mathbf{v}$. This means that \mathbf{v} is λ -DSS. \Box

7.2. The Mollified Navier–Stokes Equations

The solution **v** provided by Lemma [11](#page-31-0) belongs to $L^3((0, T), L^3_{w_{3\gamma/2}})$ (as **v** belongs to $L^{\infty}((0, T), L^2_{w_\gamma})$ and ∇ **v** belongs to $L^2((0, T), L^2_{w_\gamma})$). Thus we have a mapping L_{ε} : **b** \mapsto **v** which is defined from

$$
X_{T,\gamma} = \{ \mathbf{b} \in L^{3}((0, T), L^{3}_{w_{3\gamma/2}}) / \mathbf{b} \text{ is } \lambda - \text{DSS} \}
$$

to $X_{T,\nu}$ by $L_{\varepsilon}(\mathbf{b}) = \mathbf{v}$.

Lemma 12. *For* $4/3 < \gamma$, $X_{T,\gamma}$ *is a Banach space for the equivalent norms* $\|\mathbf{b}\|_{L^3((0,T),L^3_{w_{3\gamma/2}})}$ *and* $\|\mathbf{b}\|_{L^3((0,T/\lambda^2),\times B(0,\frac{1}{\lambda}))}$.

Proof. We have

$$
\int_0^T \int_{B(0,1)} |\mathbf{b}(t,x)|^3 \, \mathrm{d}x \, \mathrm{d}t = \lambda^2 \int_0^{\frac{T}{\lambda^2}} \int_{B(0,\frac{1}{\lambda})} |\mathbf{b}(t,x)|^3 \, \mathrm{d}x \, \mathrm{d}t
$$

and , for $k \in \mathbb{N}$,

$$
\int_0^T \int_{\lambda^{k-1} < |x| < \lambda^k} |\mathbf{b}(t, x)|^3 \, \mathrm{d}x \, \mathrm{d}t = \lambda^{2k} \int_0^{\frac{T}{\lambda^{2k}}} \int_{\frac{1}{\lambda} < |x| < 1} |\mathbf{b}(t, x)|^3 \, \mathrm{d}x \, \mathrm{d}t.
$$

We may conclude, since for $\gamma > 4/3$ we have $\sum_{k \in \mathbb{N}} \lambda^{k(2-\frac{3\gamma}{2})} < +\infty$. \Box

Lemma 13. *For* $4/3 < \gamma < 2$, *the mapping* L_{ε} *is continuous and compact on* $X_{T,\gamma}$.

Proof. Let \mathbf{b}_n be a bounded sequence in $X_{T,\gamma}$ and let $\mathbf{v}_n = L_{\varepsilon}(\mathbf{b}_n)$. We remark that the sequence $\mathbf{b}_n(t,.) * \theta_{\varepsilon,t}$ is bounded in $X_{T,\gamma}$. Thus, by Theorem [2](#page-2-0) and Corollary [4,](#page-13-1) the sequence \mathbf{v}_n is bounded in $L^\infty((0, T), L^2_{w_\gamma})$ and $\nabla \mathbf{v}_n$ is bounded in $L^2((0, T), L^2_{w_\gamma}).$

We now use Theorem [3](#page-3-1) and get that then there exists q_{∞} , **v**_{∞}, **B**_{∞} and an increasing sequence $(n_k)_{k \in \mathbb{N}}$ with values in $\mathbb N$ such that

- \mathbf{v}_{n_k} converges *-weakly to \mathbf{v}_{∞} in $L^{\infty}((0, T), L^2_{w_\gamma})$, $\nabla \mathbf{v}_{n_k}$ converges weakly to ∇ **v**_∞ in $L^2((0, T), L^2_{w_\gamma});$
- **b**_{*n_k* * $\theta_{\varepsilon,t}$ converges weakly to **B**_∞ in $L^3((0, T), L^3_{w_{3\gamma/2}})$;}
- the associated pressures q_{n_k} converge weakly to q_{∞} in $L^3((0, T), L^{6/5}_{w_{\frac{{\alpha} y}{5}}})$ + $L^2((0, T), L^2_{w_\gamma});$
- \mathbf{v}_{n_k} converges strongly to \mathbf{v}_{∞} in $L^2_{loc}([0, T) \times \mathbb{R}^3)$: for every $T_0 \in (0, T)$ and every $R > 0$, we have

$$
\lim_{k \to +\infty} \int_0^{T_0} \int_{|y| < R} |\mathbf{v}_{n_k}(s, y) - \mathbf{v}_{\infty}(s, y)|^2 \, \mathrm{d} s \, \mathrm{d} y = 0.
$$

As $\sqrt{w_\gamma}$ **v**_n is bounded in $L^\infty((0, T), L^2)$ and in $L^2((0, T), L^6)$, it is bounded in $L^{10/3}((0, T) \times \mathbb{R}^3)$. The strong convergence of \mathbf{v}_{n_k} in $L^2_{loc}([0, T) \times \mathbb{R}^3)$ then implies the strong convergence of \mathbf{v}_{n_k} in $L^3_{loc}((0, T) \times \mathbb{R}^3)$.

Moreover, v_{∞} is still λ -DSS (a property that is stable under weak limits). We find that $\mathbf{v}_{\infty} \in X_{T,\nu}$ and that

$$
\lim_{n_k \to +\infty} \int_0^{\frac{T}{\lambda^2}} \int_{B(0,\frac{1}{\lambda})} |\mathbf{v}_{n_k}(s, y) - \mathbf{v}_{\infty}(s, y)|^3 ds dy = 0.
$$

This proves that L_{ε} is compact.

If we assume moreover that \mathbf{b}_n is convergent to \mathbf{b}_∞ in $X_{T,\gamma}$, then necessarily we have $\mathbf{B}_{\infty} = \mathbf{b}_{\infty} * \theta_{\varepsilon,t}$, and $\mathbf{v}_{\infty} = L_{\varepsilon}(\mathbf{b}_{\infty})$. Thus, the relatively compact sequence **can have only one limit point; thus it must be convergent. This proves that** L_{ε} **is** continuous. \square

Lemma 14. *Let* $4/3 < \gamma < 2$ *. If, for some* $\mu \in [0, 1]$ *, v <i>is a solution of* $\mathbf{v} = \mu L_{\varepsilon}(\mathbf{v})$ *then*

$$
\|\mathbf{v}\|_{X_{T,\gamma}} \leqq C_{\mathbf{u}_0,\mathbb{F},\gamma,T},
$$

where the constant $C_{\mathbf{u}_0,\mathbb{F},\gamma,T}$ *depends only on* \mathbf{u}_0 , \mathbb{F}, γ *and* T *(but not on* μ *nor on* ε*).*

Proof. We have $\mathbf{v} = \mu \mathbf{w}$; with

$$
\begin{cases} \n\partial_t \mathbf{w} = \Delta \mathbf{w} - ((\mathbf{v} * \theta_{\varepsilon, t}) \cdot \nabla) \mathbf{w} - \nabla q + \nabla \cdot \mathbf{F} \\
\nabla \cdot \mathbf{w} = 0, \quad \mathbf{w}(0, .) = \mathbf{u}_0. \n\end{cases}
$$

Multiplying by μ , we find that

$$
\begin{cases} \n\partial_t \mathbf{v} = \Delta \mathbf{v} - ((\mathbf{v} * \theta_{\varepsilon,t}) \cdot \nabla) \mathbf{v} - \nabla (\mu q) + \nabla \cdot \mu \mathbb{F} \\
\nabla \cdot \mathbf{v} = 0, \quad \mathbf{v}(0,.) = \mu \mathbf{u}_0. \n\end{cases}
$$

We then use Corollary [6.](#page-15-1) We choose $T_0 \in (0, T)$ such that

$$
C_{\gamma}\left(1+\|\mathbf{u}_0\|_{L^2_{w_{\gamma}}}^2+\int_0^{T_0}\|\mathbb{F}\|_{L^2_{w_{\gamma}}}^2\,\mathrm{d}s\right)^2\,T_0\leqq 1.
$$

Then, as

$$
C_{\gamma}\left(1+\|\mu\mathbf{u}_0\|_{L^2_{w_{\gamma}}}^2+\int_0^{T_0} \|\mu\mathbb{F}\|_{L^2_{w_{\gamma}}}^2 ds\right)^2 T_0 \leqq 1.
$$

we know that

$$
\sup_{0 \le t \le T_0} \| \mathbf{v}(t,.) \|_{L^2_{w_\gamma}}^2 \le C_\gamma \left(1 + \mu^2 \| \mathbf{u}_0 \|_{L^2_{w_\gamma}}^2 + \mu^2 \int_0^{T_0} \| \mathbb{F} \|_{L^2_{w_\gamma}}^2 ds \right)
$$

and

$$
\int_0^{T_0} \|\nabla \mathbf{v}\|_{L^2_{w_\gamma}}^2 \, \mathrm{d} s \leq C_\gamma \left(1 + \mu^2 \|\mathbf{u}_0\|_{L^2_{w_\gamma}}^2 + \mu^2 \int_0^{T_0} \|\mathbb{F}\|_{L^2_{w_\gamma}}^2 \, \mathrm{d} s\right).
$$

In particular, we have

$$
\int_0^{T_0} \|\mathbf{v}\|_{L^3_{w_{3\gamma/2}}}^3 \, \mathrm{d} s \leqq C_\gamma T_0^{1/4} \left(1 + \|\mathbf{u}_0\|_{L^2_{w_\gamma}}^2 + \int_0^{T_0} \|\mathbb{F}\|_{L^2_{w_\gamma}}^2 \, \mathrm{d} s\right)^{\frac{3}{2}}.
$$

As **v** is λ -DSS, we can go back from T_0 to T . \Box

Lemma 15. Let $4/3 < \gamma \leq 2$. There is at least one solution \mathbf{u}_{ε} of the equation $\mathbf{u}_{\varepsilon} = L_{\varepsilon}(\mathbf{u}_{\varepsilon}).$

Proof. Obvious due to the Leray–Schauder principle (and the Schaefer theorem), since L_{ε} is continuous and compact and since we have uniform a priori estimates for the fixed points of μL_{ε} for $0 \le \mu \le 1$. \Box

7.3. Proof of Theorem [5](#page-30-0)

We may now finish the proof of Theorem [5.](#page-30-0) We consider the solutions \mathbf{u}_{ε} of $\mathbf{u}_{\varepsilon} = L_{\varepsilon}(\mathbf{u}_{\varepsilon}).$

By Lemma [14,](#page-33-0) \mathbf{u}_{ε} is bounded in $L^3((0, T), L^3_{w_{3\gamma/2}})$, and so is $\mathbf{u}_{\varepsilon} * \theta_{\varepsilon,t}$. We then know, by Theorem [2](#page-2-0) and Corollary [4,](#page-13-1) that the familly \mathbf{u}_{ε} is bounded in $L^{\infty}((0, T), L^2_{w_\gamma})$ and ∇ **u**_{*ε*} is bounded in $L^2((0, T), L^2_{w_\gamma})$.

We now use Theorem [3](#page-3-1) and get that then there exists p , \bf{u} , \bf{B} and a decreasing sequence $(\varepsilon_k)_{k \in \mathbb{N}}$ (converging to 0) with values in $(0, +\infty)$ such that

- **u**_{ε_k} converges *-weakly to **u** in $L^\infty((0, T), L^2_{w_\gamma})$, ∇ **u**_{ε_k} converges weakly to ∇ **u** in $L^2((0, T), L^2_{w_\gamma});$
- $\mathbf{u}_{\varepsilon_k} * \theta_{\varepsilon_k,t}$ converges weakly to **B** in $L^3((0, T), L^3_{w_{3\gamma/2}})$;
- the associated pressures p_{ε_k} converge weakly to *p* in $L^3((0, T), L^{6/5}_{w}$ + $L^2((0, T), L^2_{w_{\gamma}});$
- **u**_{ε_k} converges strongly to **u** in $L^2_{\text{loc}}([0, T) \times \mathbb{R}^3)$.

Moreover we easily see that **B** = **u**. Indeed, we have that **u** $*\theta_{\varepsilon,t}$ converges strongly in $L^2_{\text{loc}}((0, T) \times \mathbb{R}^3)$ as ε goes to 0 (since it is bounded by $\mathcal{M}_{\textbf{u}}$ and converges, for each fixed *t*, strongly in $L^2_{loc}(\mathbb{R}^3)$; moreover, we have $|(\mathbf{u} - \mathbf{u}_{\varepsilon}) * \theta_{\varepsilon,t}| \leq M_{\mathbf{u} - \mathbf{u}_{\varepsilon}}$, so that the strong convergence of $\mathbf{u}_{\varepsilon_k}$ to **u** is kept by convolution with $\theta_{\varepsilon,t}$ as far as we work on compact subsets of $(0, T) \times \mathbb{R}^3$ (and thus don't allow *t* to go to 0).

Thus, Theorem [5](#page-30-0) is proven. \Box

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

- 1. Basson, A.: *Solutions spatialement homogènes adaptées des équations de Navier– Stokes*. Université d'Évry, Thèse 2006
- 2. Bradshaw, Z., Tsai, T.P.: *Discretely self-similar solutions to the Navier–Stokes equa-*
- *tions with data in* L^2_{loc} (to appear in Analysis and PDE)
3. CHAE, D., WOLF, J.: Existence of discretely self-similar solutions to the Navier–Stokes equations for initial value in $L^2_{\text{loc}}(\mathbb{R}^3)$. *Ann. Inst. H. Poincaré Anal. Non Linéaire* **35**, 1019–1039, 2018
- 4. Grafakos, L.: *Classical Harmonic Analysis*, 2nd edn. Springer, Berlin 2008
- 5. Grafakos, L.: *Modern Harmonic Analysis*, 2nd edn. Springer, Berlin 2009
- 6. Jia, H., Šverák, V.: Local-in-space estimates near initial time for weak solutions of the Navier–Stokes equations and forward self-similar solutions. *Invent. Math*. **196**, 233–265, 2014
- 7. Kikuchi, N., Seregin, G.: *Weak solutions to the Cauchy problem for the Navier–Stokes equations satisfying the local energy inequality*, in Nonlinear equations and spectral theory. Amer. Math. Soc. Transl. Ser. Vol. 2, No. 220 (Eds. Birman M.S. and Uraltseva N.N.), 141–164, 2007
- 8. Lemarié-Rieusset, P.G.: Solutions faibles d'énergie infinie pour les équations de Navier–Stokes dans R3. *C. R. Acad. Sci. Paris, Serie I*. **328**, 1133–1138, 1999
- 9. Lemarié-Rieusset, P.G.: *Recent Developments in the Navier–Stokes Problem*. CRC Press, Boca Raton 2002
- 10. Lemarié-Rieusset, P.G.: *The Navier–Stokes Problem in the 21st Century*. Chapman & Hall/CRC, New York 2016
- 11. Leray, J.: Essai sur le mouvement d'un fluide visqueux emplissant l'espace. *Acta Math*. **63**, 193–248, 1934

Pedro Gabriel Fernández-Dalgo & Pierre Gilles Lemarié-Rieusset Université Paris-Saclay, CNRS, Univ Evry, Laboratoire de Mathématiques et Modélisation d'Evry, 91037 Evry,

France.

e-mail: pedro.fernandez@univ-evry.fr e-mail: pedrodalgo16@gmail.com

and

Pierre Gilles Lemarié-Rieusset e-mail: pierregilles.lemarierieusset@univ-evry.fr

(*Received June 25, 2019 / Accepted March 16, 2020*) *Published online March 30, 2020 © Springer-Verlag GmbH Germany, part of Springer Nature* (*2020*)