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Abstract

Weshow the existence of globalweak solutions to the three dimensionalNavier–
Stokes equations with initial velocity in the weighted spaces L2

wγ
, where wγ (x) =

(1 + |x |)−γ and 0 < γ � 2, using new energy controls. As an application we
give a new proof of the existence of global weak discretely self-similar solutions
to the three dimensional Navier–Stokes equations for discretely self-similar initial
velocities which are locally square integrable.

1. Introduction

Infinite-energy weak Leray solutions to the Navier–Stokes equations were in-
troduced by Lemarié-Rieusset in 1999 [8] (they are presented more completely
in [9] and [10]). This has allowed demonstration of the existence of local weak
solutions for a uniformly locally square integrable initial data.

Other constructions of infinite-energy solutions for locally uniformly square
integrable initial data were given in 2006 by Basson [1] and in 2007 by Kikuchi
and Seregin [7]. These solutions allowed Jia and Sverak [6] to construct in 2014
the self-similar solutions for large (homogeneous of degree -1) smooth data. Their
result has been extended in 2016 by Lemarié-Rieusset [10] to solutions for rough
locally square integrable data. We remark that an homogeneous (of degree -1) and
locally square integrable data is automatically uniformly locally L2.

Recently,BradshawandTsai [2] andChaeandWolf [3] considered the case
of solutions which are self-similar according to a discrete subgroup of dilations.
Those solutions are related to an initial data which is self-similar only for a discrete
group of dilations; in contrast to the case of self-similar solutions for all dilations,
such initial data, when locally L2, is not necessarily uniformly locally L2, therefore
their results are no consequence of constructions described by Lemarié-Rieusset
in [10].

http://crossmark.crossref.org/dialog/?doi=10.1007/s00205-020-01510-w&domain=pdf


348 Pedro Gabriel Fernández-Dalgo & Pierre Gilles Lemarié-Rieusset

In this paper, we construct an alternative theory to obtain infinite-energy global
weak solutions for large initial data, which include the discretely self-similar locally
square integrable data. More specifically, we consider the weights

wγ (x) = 1

(1 + |x |)γ
with 0 < γ , and the spaces

L2
wγ

= L2(wγ dx).

Our main theorem is the following one:

Theorem 1. Let 0 < γ � 2. If u0 is a divergence-free vector field such that
u0 ∈ L2

wγ
(R3) and if F is a tensor F(t, x) = (

Fi, j (t, x)
)
1�i, j�3 such that F ∈

L2((0,+∞), L2
wγ

), then the Navier–Stokes equations with initial value u0

(N S)

⎧
⎨

⎩

∂t u = �u − (u · ∇)u − ∇ p + ∇ · F

∇ · u = 0, u(0, .) = u0

have a global weak solution u such that:

• for every 0 < T < +∞, u belongs to L∞((0, T ), L2
wγ

) and ∇u belongs to

L2((0, T ), L2
wγ

)

• the pressure p is related to u and F through the Riesz transforms Ri = ∂i√−�

by the formula

p =
3∑

i=1

3∑

j=1

Ri R j (ui u j − Fi, j )

where, for every 0 < T < +∞,
∑3

i=1
∑3

j=1 Ri R j (ui u j ) belongs to

L4((0, T ), L6/5
w 6γ

5

) and
∑3

i=1
∑3

j=1 Ri R j Fi, j belongs to L2((0, T ), L2
wγ

)

• the map t ∈ [0,+∞) �→ u(t, .) is weakly continuous from [0,+∞) to L2
wγ

,
and is strongly continuous at t = 0 :

lim
t→0

‖u(t, .) − u0‖L2
wγ

= 0.

• the solution u is suitable: there exists a non-negative locally finite measure μ

on (0,+∞) × R
3 such that

∂t

( |u|2
2

)
= �

( |u|2
2

)
− |∇u|2

−∇ ·
(( |u|2

2
+ p

)
u
)

+ u · (∇ · F) − μ.
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In particular, we have the energy controls

‖u(t, .)‖2L2
wγ

+ 2
∫ t

0
‖∇u(s, .)‖2L2

wγ

ds

� ‖u0‖2L2
wγ

−
∫ t

0

∫
∇|u|2 · ∇wγ dx ds +

∫ t

0

∫
(|u|2 + 2p)u · ∇(wγ ) dx ds

− 2
3∑

i=1

3∑

j=1

∫ t

0

∫
Fi, j (∂i u j )wγ + Fi, j ui∂ j (wγ ) dx ds

and

‖u(t, .)‖2L2
wγ

� ‖u0‖2L2
wγ

+ Cγ

∫ t

0
‖F(s, .)‖2L2

wγ

ds

+ Cγ

∫ t

0
‖u(s, .)‖2L2

wγ

+ ‖u(s, .)‖6L2
wγ

ds

Remark. We use the following notations: the vector u is given by its coordinates
u = (u1, u2, u3). The operator u ·∇ is the differential operator u1∂1+u2∂2+u3∂3.
Thus, ∇ · ( f u) = f ∇ · u + u · ∇ f .

For F = (Fi, j ), we write∇ ·F for the vector (
3∑

i=1

∂i Fi,1,

3∑

i=1

∂i Fi,2,

3∑

i=1

∂i Fi,3).

For the vector fields b and u, we define b ⊗ u as (bi u j )1�i�3,1� j�3. Thus, if
b is divergence free (that is if ∇ · b = 0) we have ∇ · (b ⊗ u) = (b · ∇)u.

A key tool for proving Theorem 1 and for applying it to the study of discretely
self-similar solutions is given by the following a priori estimates for an advection-
diffusion problem:

Theorem 2. Let 0 < γ � 2. Let 0 < T < +∞. Let u0 be a divergence-free vector
field such that u0 ∈ L2

wγ
(R3) and F be a tensor F(t, x) = (

Fi, j (t, x)
)
1�i, j�3 such

that F ∈ L2((0, T ), L2
wγ

). Let b be a time-dependent divergence free vector-field

(∇ · b = 0) such that b ∈ L3((0, T ), L3
w3γ /2

).
Let u be a solution of the following advection-diffusion problem:

(AD)

⎧
⎨

⎩

∂t u = �u − (b · ∇)u − ∇ p + ∇ · F

∇ · u = 0, u(0, .) = u0

such that

• u belongs to L∞((0, T ), L2
wγ

) and ∇u belongs to L2((0, T ), L2
wγ

);

• the pressure p is related to u, b and F through the Riesz transforms Ri = ∂i√−�

by the formula

p =
3∑

i=1

3∑

j=1

Ri R j (bi u j − Fi, j )
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where
∑3

i=1
∑3

j=1 Ri R j (bi u j ) belongs to L3((0, T ), L6/5
w 6γ

5

) and
∑3

i=1
∑3

j=1 Ri R j Fi, j belongs to L2((0, T ), L2
wγ

);

• the map t ∈ [0, T ) �→ u(t, .) is weakly continuous from [0, T ) to L2
wγ

, and is
strongly continuous at t = 0 :

lim
t→0

‖u(t, .) − u0‖L2
wγ

= 0;

• there exists a non-negative locally finite measure μ on (0, T ) × R
3 such that

∂t

( |u|2
2

)
= �

( |u|2
2

)
− |∇u|2 − ∇ ·

( |u|2
2

b
)

− ∇ · (pu) + u · (∇ · F) − μ.(1)

Then, we have the energy controls

‖u(t, .)‖2L2
wγ

+ 2
∫ t

0
‖∇u(s, .)‖2L2

wγ

ds

� ‖u0‖2L2
wγ

−
∫ t

0

∫
∇|u|2 · ∇wγ dx ds +

∫ t

0

∫
|u|2b · ∇(wγ ) dx ds

+ 2
∫ t

0

∫
pu · ∇(wγ ) dx ds − 2

3∑

i=1

3∑

j=1

∫ t

0

∫
Fi, j (∂i u j )wγ

+ Fi, j ui∂ j (wγ ) dx ds

and

‖u(t, .)‖2L2
wγ

+
∫ t

0
‖∇u‖2L2

wγ

ds

� ‖u0‖2L2
wγ

+ Cγ

∫ t

0
‖F(s, .)‖2L2

wγ

ds

+ Cγ

∫ t

0
(1 + ‖b(s, .)‖2L3

w3γ /2
)‖u(s, .)‖2L2

wγ

ds,

where Cγ depends only on γ (and not on T , and not on b, u, u0 nor F).

In particular, we shall prove the following stability result:

Theorem 3. Let 0 < γ � 2. Let 0 < T < +∞. Let u0,n be divergence-
free vector fields such that u0,n ∈ L2

wγ
(R3) and Fn be tensors such that Fn ∈

L2((0, T ), L2
wγ

). Let bn be time-dependent divergence free vector-fields such that

bn ∈ L3((0, T ), L3
w3γ /2

).
Let un be solutions of the advection-diffusion problems

(ADn)

⎧
⎨

⎩

∂t un = �un − (bn · ∇)un − ∇ pn + ∇ · Fn

∇ · un = 0, un(0, .) = u0,n

such that
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• un belongs to L∞((0, T ), L2
wγ

) and ∇un belongs to L2((0, T ), L2
wγ

);
• the pressure pn is related to un, bn and Fn by the formula

pn =
3∑

i=1

3∑

j=1

Ri R j (bn,i un, j − Fn,i, j );

• the map t ∈ [0, T ) �→ un(t, .) is weakly continuous from [0, T ) to L2
wγ

, and is
strongly continuous at t = 0:

lim
t→0

‖un(t, .) − u0,n‖L2
wγ

= 0.

• there exists a non-negative locally finite measure μn on (0, T ) ×R
3 such that

∂t

( |un|2
2

)
= �

( |un|2
2

)
− |∇un|2 − ∇ ·

( |un|2
2

bn

)

−∇ · (pnun) + un · (∇ · Fn) − μn;
If u0,n is strongly convergent to u0,∞ in L2

wγ
, if the sequence Fn is strongly con-

vergent to F∞ in L2((0, T ), L2
wγ

), and if the sequence bn is bounded in

L3((0, T ), L3
w3γ /2

), then there exists p∞, u∞, b∞ and an increasing sequence
(nk)k∈N with values in N such that

• unk converges *-weakly to u∞ in L∞((0, T ), L2
wγ

), ∇unk converges weakly to

∇u∞ in L2((0, T ), L2
wγ

);

• bnk converges weakly to b∞ in L3((0, T ), L3
w3γ /2

), pnk converges weakly to p∞
in L3((0, T ), L6/5

w 6γ
5

) + L2((0, T ), L2
wγ

);

• unk converges strongly to u∞ in L2
loc([0, T )×R

3) such that for every T0 ∈ (0, T )

and every R > 0, we have

lim
k→+∞

∫ T0

0

∫

|y|<R
|unk (s, y) − u∞(s, y)|2 ds dy = 0.

Moreover, u∞ is a solution of the advection-diffusion problem

(AD∞)

⎧
⎨

⎩

∂t u∞ = �u∞ − (b∞ · ∇)u∞ − ∇ p∞ + ∇ · F∞

∇ · u∞ = 0, u∞(0, .) = u0,∞
and is such that

• the map t ∈ [0, T ) �→ u∞(t, .) is weakly continuous from [0, T ) to L2
wγ

, and
is strongly continuous at t = 0 :

lim
t→0

‖u∞(t, .) − u0,∞‖L2
wγ

= 0;

• there exists a non-negative locally finite measure μ∞ on (0, T )×R
3 such that

∂t

( |u∞|2
2

)
= �

( |u∞|2
2

)
− |∇u∞|2 − ∇ ·

( |u∞|2
2

b∞
)

−∇ · (p∞u∞) + u∞ · (∇ · F∞) − μ∞.
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Notations

Throughout the text, Cγ is a positive constant whose value may change from
line to line but which depends only on γ .

2. The Weights wδ

We consider the weights wδ = 1
(1+|x |)δ where 0 < δ and x ∈ R

3. A very
important feature of those weights is the control of their gradients:

|∇wδ(x)| = δ
wδ(x)

1 + |x | (2)

From this control, we can infer the following Sobolev embedding:

Lemma 1. (Sobolev embeddings) Let δ > 0. If f ∈ L2
wδ

and ∇ f ∈ L2
wδ

then
f ∈ L6

w3δ
and

‖ f ‖L6
w3δ

� Cδ(‖ f ‖L2
wδ

+ ‖∇ f ‖L2
wδ

).

Proof. Since both f and wδ/2 are locally in H1, we write

∂i ( f wδ/2) = wδ/2∂i f + f ∂i (wδ/2) = wδ/2∂i f − δ

2

xi

|x |
1

1 + |x |wδ/2 f,

and thus

‖wδ/2 f ‖22 + ‖∇(wδ/2 f )‖22 �
(
1 + δ2

2

)
‖wδ/2 f ‖22 + 2‖wδ/2∇ f ‖22.

Thus, wδ/2 f belongs to L6 (since H1 ⊂ L6), or equivalently f ∈ L6
w3δ

. ��
We shall mainly be interested in the case δ � 2. An important property for

0 < δ < 3 is

Lemma 2. (Muckenhoupt weights) If 0 < δ < 3 and 1 < p < +∞, then wδ

belongs to the Muckenhoupt class Ap.

Proof. We recall that a weight w belongs toAp(R
3) for 1 < p < +∞ if and only

if it satisfies the reverse Hölder inequality

sup
x∈R3,R>0

(
1

|B(x, R)|
∫

B(x,R)

w(y) dy

) 1
p
(

1

|B(x, R)|
∫

B(x,R)

dy

w(y)
1

p−1

)1− 1
p

< +∞.

(3)

For all 0 < R � 1 the inequality |x − y| < R implies 1
2 (1 + |x |) � 1 + |y| �

2(1 + |x |), thus we can control the left side in (3) for wδ by 4
δ
p .
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For all R > 1 and |x | > 10R, we have that the inequality |x − y| < R implies
9
10 (1+ |x |) � 1+ |y| � 11

10 (1+ |x |), thus we can control the left side in (3) for wδ

by ( 119 )
δ
p .

Finally, for R > 1 and |x | � 10R, we write

(
1

|B(x, R)|
∫

B(x,R)

w(y) dy

) 1
p
(

1

|B(x, R)|
∫

B(0,R)

dy

w(y)
1

p−1

)1− 1
p

�
(

1

|B(0, R)|
∫

B(x,11 R)

w(y) dy

) 1
p
(

1

|B(0, R)|
∫

B(0,11 R)

dy

w(y)
1

p−1

)1− 1
p

=
(

1

R3

∫ 11 R

0
r2

dr

(1 + r)δ

) 1
p
(

1

R3

∫ 11 R

0
r2(1 + r)

δ
p−1 dr

)1− 1
p

� cδ,p

(
1

R3

∫ 11 R

0
r2

dr

r δ

) 1
p

⎛

⎝
(

1

R3

∫ 11 R

0
r2dr

)1− 1
p

+
(

1

R3

∫ 11 R

0
r2+

δ
p−1 dr

)1− 1
p

⎞

⎠

= cδ,p
113

(3 − δ)
1
p

⎛

⎝ (11R)
− δ

p

31−
1
p

+ 1

(3 + δ
p−1 )

1− 1
p

⎞

⎠ .

The lemma is proved. ��
Lemma 3. If 0 < δ < 3 and 1 < p < +∞, then the Riesz transforms Ri

and the Hardy–Littlewood maximal function operator are bounded on L p
wδ =

L p(wδ(x) dx):

‖R j f ‖L p
wδ

� C p,δ‖ f ‖L p
wδ

and ‖M f ‖L p
wδ

� C p,δ‖ f ‖L p
wδ

.

Proof. The boundedness of the Riesz transforms or of the Hardy–Littlewwodmax-
imal function on L p(wγ dx) are basic properties of the Muckenhoupt classAp [5].

��
We will use strategically the next corollary, which is specially useful to obtain
discretely self-similar solutions.

Corollary 1. (Non-increasing kernels) Let θ ∈ L1(R3) be a non-negative radial
function which is radially non-increasing. Then, if 0 < δ < 3 and 1 < p < +∞,
we have, for f ∈ L p

wδ , the inequality

‖θ ∗ f ‖L p
wδ

� C p,δ‖ f ‖L p
wδ

‖θ‖1.
Proof. We have the well-known inequality for radial non-increasing kernels [4]

|θ ∗ f (x)| � ‖θ‖1M f (x)

so that we may conclude with Lemma 3. ��
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We illustrate the utility of Lemma 3 with the following corollaries:

Corollary 2. Let 0 < γ < 5
2 and 0 < T < +∞. Let F be a tensor F(t, x) =(

Fi, j (t, x)
)
1�i, j�3 such that F ∈ L2((0, T ), L2

wγ
). Let b be a time-dependent

divergence free vector-field (∇ · b = 0) such that b ∈ L3((0, T ), L3
w3γ /2

).
Let u be a solution of the following advection-diffusion problem:

⎧
⎨

⎩

∂t u = �u − (b · ∇)u − ∇q + ∇ · F

∇ · u = 0,
(4)

such that u belongs to L∞((0, T ), L2
wγ

) and ∇u belongs to L2((0, T ), L2
wγ

), and

the pressure q belongs to D′((0, T ) × R
3).

Then, the gradient of the pressure ∇q is necessarily related to u, b and F

through the Riesz transforms Ri = ∂i√−�
by the formula

∇q = ∇
⎛

⎝
3∑

i=1

3∑

j=1

Ri R j (bi u j − Fi, j )

⎞

⎠

and
∑3

i=1
∑3

j=1 Ri R j (bi u j ) belongs to L3((0, T ), L6/5
w 6γ

5

) and
∑3

i=1
∑3

j=1

Ri R j Fi, j belongs to L2((0, T ), L2
wγ

).

Proof. We define

p =
⎛

⎝
3∑

i=1

3∑

j=1

Ri R j (bi u j − Fi, j )

⎞

⎠ .

As 0 < γ < 5
2 we can use Lemma 3 to obtain

∑3
i=1

∑3
j=1 Ri R j (bi u j ) belongs to

L3((0, T ), L6/5
w 6γ

5

) and
∑3

i=1
∑3

j=1 Ri R j Fi, j belongs to L2((0, T ), L2
wγ

).

Taking the divergence in (4), we obtain �(q − p) = 0. We take a test function
α ∈ D(R) such that α(t) = 0 for all |t | � ε, and a test function β ∈ D(R3); then
the distribution ∇q ∗ (α ⊗ β) is well defined on (ε, T − ε) × R

3.
We fix t ∈ (ε, T − ε) and define

Aα,β,t = (∇q ∗ (α ⊗ β) − ∇ p ∗ (α ⊗ β))(t, .).

We have

Aα,β,t =(u ∗ (−∂tα ⊗ β + α ⊗ �β) + (−u ⊗ b + F) · (α ⊗ ∇β))(t, .)

− (p ∗ (α ⊗ ∇β))(t, .).
(5)

Convolution with a function inD(R3) is a bounded operator on L2
wγ

and on L6/5
w6γ /5

(as, for ϕ ∈ D(R3) we have | f ∗ ϕ| � CϕM f ). Thus, we may conclude from (5)

that Aα,β,t ∈ L2
wγ

+ L6/5
w6γ /5 . If max{γ,

γ+2
2 } < δ < 5/2 , we have Aα,β,t ∈ L6/5

w6δ/5 .
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In particular, Aα,β,t is a tempered distribution. As we have

�Aα,β,t = (α ⊗ β) ∗ (∇�(q − p))(t, .) = 0,

we find that Aα,β,t is a polynomial. We remark that for all 1 < r < +∞ and
0 < δ < 3, Lr

wδ
does not contain non-trivial polynomials. Thus, Aα,β,t = 0. We

then use an approximation of identity 1
ε4

α( t
ε
)β( x

ε
) and conclude that∇(q− p) = 0.

��
Actually, we can answer a question posed by Bradshaw and Tsai in [2] about

the nature of the pressure for self-similar solutions of the Navier–Stokes equations.
In effect, we have the next corollary.

Corollary 3. Let 1 < γ < 5
2 and 0 < T < +∞. Let F be a tensor F(t, x) =(

Fi, j (t, x)
)
1�i, j�3 such that F ∈ L2((0, T ), L2

wγ
).

Let u be a solution of the following problem:
⎧
⎨

⎩

∂t u = �u − (u · ∇)u − ∇q + ∇ · F

∇ · u = 0,

such that u belongs to L∞([0,+∞), L2)loc and∇u belongs to L2([0,+∞), L2)loc,
and the pressure q is in D′((0, T ) × R

3).
We suppose that there exists λ > 1 such that λ2F(λ2t, λx) = F(t, x) and

λu(λ2t, λx) = u(t, x). Then, the gradient of the pressure ∇q is necessarily related
to u and F through the Riesz transforms Ri = ∂i√−�

by the formula

∇q = ∇
⎛

⎝
3∑

i=1

3∑

j=1

Ri R j (ui u j − Fi, j )

⎞

⎠

and
∑3

i=1
∑3

j=1 Ri R j (ui u j ) belongs to L4((0, T ), L6/5
w 6γ

5

) and
∑3

i=1
∑3

j=1

Ri R j Fi, j belongs to L2((0, T ), L2
wγ

).

Proof. We shall use Corollary 2, and thus we need to show that u belongs to
L∞((0, T ), L2

wγ
∩ L3((0, T ), L3

3γ /2)) and∇u belongs to L2((0, T ), L2
wγ

). In fact,

‖u‖L∞((0,T ),L2
wγ

) � sup
0�t�T

∫

|x |<1
|u(t, x)|2 dx

+c sup
0�t�T

∑

k∈N

∫

λk−1<|x |<λk

|u(t, x)|2
λγ k

dx

and

sup
0�t�T

∑

k�1

∫

λk−1<|x |<λk

|u(t, x)|2
λγ k

dx



356 Pedro Gabriel Fernández-Dalgo & Pierre Gilles Lemarié-Rieusset

� sup
0�t�T

∑

k∈N
λ(1−γ )k

∫

λ−1<|x |<1
|u(

t

λ2k
, x)|2 dx

� c sup
0�t�T

∫

λ−1<|x |<1
|u(t, x)|2 dx < +∞.

For ∇u, we compute for k ∈ N,

∫ T

0

∫

λk−1<|x |<λk
|∇u(t, x)|2 dt dx = λk

∫ T
λ2k

0

∫

1
λ
<|x |<1

|∇u(t, x)|2 dx dt.

We may conclude that ∇u belongs to L2((0, T ), L2
wγ

), since for γ > 1 we have
∑

k∈N λ(1−γ )k < +∞.
Now, we use the Sobolev embedding described in Lemma 1 to get that u be-

longs to L2((0, T ), L6
w3γ

), and thus (by interpolation with L∞((0, T ), L2
wγ

)) to

L4((0, T ), L3
w3γ /2

).

In particular,
∑3

i=1
∑3

j=1 Ri R j (ui u j ) belongs to L4((0, T ), L6/5
w 6γ

5

), since we

have

‖(u ⊗ u)wγ ‖L6/5 � ‖√wγ u‖L2‖√wγ u‖L3 � ‖√wγ u‖
3
2
L2‖√wγ u‖

1
2
L6.

��

3. A Priori Estimates for the Advection-Diffusion Problem

3.1. Proof of Theorem 2

Let 0 < t0 < t1 < T . We take a function α ∈ C∞(R) which is non-decreasing,
with α(t) equal to 0 for t < 1/2 and equal to 1 for t > 1. For 0 < η < min( t0

2 , T −
t1), we define

αη,t0,t1(t) = α
( t − t0

η

)
− α

( t − t1
η

)
.

We take as well a non-negative function φ ∈ D(R3) which is equal to 1 for |x | � 1
and to 0 for |x | � 2. For R > 0, we define φR(x) = φ( x

R ). Finally, we de-

fine, for ε > 0, wγ,ε =
(
1 + √

ε2 + |x |2
)−γ

. We have αη,t0,t1(t)φR(x)wγ,ε(x) ∈
D((0, T ) × R

3) and αη,t0,t1(t)φR(x)wγ,ε(x) � 0. Thus, using the local energy
balance (1) and the fact that μ � 0, we find

−
∫∫ |u|2

2
∂tαη,t0,t1φRwγ,ε dx ds

� −
3∑

i=1

∫∫
∂i u · u αη,t0,t1(wγ,ε∂iφR + φR∂iwγ,ε) dx ds
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−
∫∫

|∇u|2 αη,t0,t1φRwγ,εdx ds

+
3∑

i=1

∫∫ |u|2
2

biαη,t0,t1(wγ,ε∂iφR + φR∂iwγ,ε) dx ds

+
3∑

i=1

∫∫
αη,t0,t1 pui (wγ,ε∂iφR + φR∂iwγ,ε) dx ds

−
3∑

i=1

3∑

j=1

∫∫
Fi, j u jαη,t0,t1(wγ,ε∂iφR + φR∂iwγ,ε) dx ds

−
3∑

i=1

3∑

j=1

∫∫
Fi, j∂i u j αη,t0,t1φRwγ,ε dx ds.

We remark that, independently of R > 1 and ε > 0, we have (for 0 < γ � 2)

|wγ,ε∂iφR | + |φR∂iwγ,ε| � Cγ

wγ (x)

1 + |x | � Cγ w3γ /2(x).

Moreover, we know thatu belongs to L∞((0, T ), L2
wγ

)∩L2((0, T ), L6
w3γ

) hence to

L4((0, T ), L3
w3γ /2

). Since T < +∞, we have as well u ∈ L3((0, T ), L3
w3γ /2

). (This

is the same type of integrability as required for b). Moreover, we have pui ∈ L1
w3γ /2

since wγ p ∈ L2((0, T ), L6/5 + L2) and wγ/2u ∈ L2((0, T ), L2 ∩ L6). All those
remarks will allow us to use dominated convergence.

We first let η go to 0. We find that

− lim
η→0

∫∫ |u|2
2

∂tαη,t0,t1φRwγ,ε dx ds

� −
3∑

i=1

∫ t1

t0

∫
∂i u · u (wγ,ε∂iφR + φR∂iwγ,ε) dx ds

−
∫ t1

t0

∫
|∇u|2 φRwγ,εdx ds

+
3∑

i=1

∫ t1

t0

∫ |u|2
2

bi (wγ,ε∂iφR + φR∂iwγ,ε) dx ds

+
3∑

i=1

∫ t1

t0

∫
pui (wγ,ε∂iφR + φR∂iwγ,ε) dx ds

−
3∑

i=1

3∑

j=1

∫ t1

t0

∫
Fi, j u j (wγ,ε∂iφR + φR∂iwγ,ε) dx ds

−
3∑

i=1

3∑

j=1

∫ t1

t0

∫
Fi, j∂i u j φRwγ,ε dx ds.
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Let us define

AR,ε(t) =
∫

|u(t, x)|2φR(x)wγ,ε(x) dx .

As we have

−
∫∫ |u|2

2
∂tαη,t0,t1φRwγ,ε dx ds = −1

2

∫
∂tαη,t0,t1 AR,ε(s) ds

we find that, when t0 and t1 are Lebesgue points of the measurable function AR,ε

lim
η→0

−
∫∫ |u|2

2
∂tαη,t0,t1φRwγ,ε dx ds = 1

2
(AR,ε(t1) − AR,ε(t0)).

Then, by continuity, we can let t0 go to 0 and thus replace t0 by 0 in the inequality.
Moreover, if we let t1 go to t , then by weak continuity, we find that AR,ε(t) �
limt1→t AR,ε(t1), so that we may as well replace t1 by t ∈ (0, T ). Thus we find
that for every t ∈ (0, T ), we have

∫ |u(t, x)|2
2

φRwγ,ε dx

�
∫ |u0(x)|2

2
φRwγ,ε dx

−
3∑

i=1

∫ t

0

∫
∂i u · u (wγ,ε∂iφR + φR∂iwγ,ε) dx ds

−
∫ t

0

∫
|∇u|2 φRwγ,εdx ds

+
3∑

i=1

∫ t

0

∫ |u|2
2

bi (wγ,ε∂iφR + φR∂iwγ,ε) dx ds

+
3∑

i=1

∫ t

0

∫
pui (wγ,ε∂iφR + φR∂iwγ,ε) dx ds

−
3∑

i=1

3∑

j=1

∫ t

0

∫
Fi, j u j (wγ,ε∂iφR + φR∂iwγ,ε) dx ds

−
3∑

i=1

3∑

j=1

∫ t

0

∫
Fi, j∂i u j φRwγ,ε dx ds. (6)

Thus, letting R go to+∞ and then ε go to 0, we find by dominated convergence
that, for every t ∈ (0, T ), we have
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‖u(t, .)‖2L2
wγ

+ 2
∫ t

0
‖∇u(s, .)‖2L2

wγ

ds

� ‖u0‖2L2
wγ

−
∫ t

0

∫
∇|u|2 · ∇wγ dx ds

+
∫ t

0

∫
(|u|2b + 2pu) · ∇(wγ ) dx ds

− 2
3∑

i=1

3∑

j=1

∫ t

0

∫
Fi, j (∂i u j )wγ + Fi, j ui∂ j (wγ ) dx ds.

Now we write
∣
∣∣∣

∫ t

0

∫
∇|u|2 · ∇wγ ds ds

∣
∣∣∣ � 2γ

∫ t

0

∫
|u||∇u| wγ dx ds

� 1

4

∫ t

0
‖∇u‖2L2

wγ

ds + 4γ 2
∫ t

0
‖u‖2L2

wγ

ds.

Writing

p1 =
3∑

i=1

3∑

j=1

Ri R j (bi u j ) and p2 = −
3∑

i=1

3∑

j=1

Ri R j (Fi, j ),

and using the fact that w6γ /5 ∈ A6/5 and wγ ∈ A2, we get
∣∣
∣∣

∫ t

0

∫
(|u|2b + 2p1u) · ∇(wγ ) dx ds

∣∣
∣∣ � γ

∫ t

0

∫
(|u|2|b| + 2|p1| |u|) w3/2

γ dx ds

� γ

∫ t

0
‖w1/2

γ u‖6(‖wγ |b||u|‖6/5 + ‖wγ p1‖6/5)ds

� Cγ

∫ t

0
‖w1/2

γ u‖6‖wγ |b||u|‖6/5 ds

� Cγ

∫ t

0
‖w1/2

γ u‖6‖w1/2
γ b‖3‖w1/2

γ u‖2 ds

� C ′
γ

∫ t

0
(‖∇u‖L2

wγ
+ ‖u‖L2

wγ
) ‖b‖L3

w3γ /2
‖u‖L2

wγ
ds

� 1

4

∫ t

0
‖∇u‖2L2

wγ

ds + C ′′
γ

∫ t

0
‖u‖2L2

wγ

(‖b‖L3
w3γ /2

+ ‖b‖2L3
w3γ /2

) ds

and
∣∣∣∣

∫ t

0

∫
2p2u · ∇(wγ ) dx ds

∣∣∣∣

� 2γ
∫ t

0

∫
|p2| |u| wγ dx ds

� γ

∫ t

0
‖u‖2L2

wγ

+ ‖p2‖2L2
wγ

ds

� Cγ

∫ t

0
‖u‖2L2

wγ

+ ‖F‖2L2
wγ

ds.
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Finally, we have
∣∣
∣∣∣∣
2

3∑

i=1

3∑

j=1

∫ t

0

∫
Fi, j (∂i u j )wγ + Fi, j ui∂ j (wγ ) dx ds

∣∣
∣∣∣∣

� 2
∫ t

0

∫
|F | (|∇u| + γ |u|) wγ dx ds

� 1

4

∫ t

0
‖∇u‖2L2

wγ

ds + Cγ

∫ t

0
‖u‖2L2

wγ

+ ‖F‖2L2
wγ

ds.

We have obtained

‖u(t, .)‖2L2
wγ

+
∫ t

0
‖∇u‖2L2

wγ

ds

� ‖u0‖2L2
wγ

+ Cγ

∫ t

0
‖F(s, .)‖2L2

wγ

ds

+ Cγ

∫ t

0

(
1 + ‖b(s, .)‖2L3

w3γ /2

)
‖u(s, .)‖2L2

wγ

ds

(7)

and Theorem 2 is proven. ��

3.2. Passive Transportation

From inequality (7), we have the following direct consequence:

Corollary 4. Under the assumptions of Theorem 2, we have

sup
0<t<T

‖u‖L2
wγ

� (‖u0‖L2
wγ

+ Cγ ‖F‖L2((0,T ),L2
wγ

)) e
Cγ (T +T 1/3‖b‖2

L3((0,T ),L3w3γ /2 )
)

and

‖∇u‖L2((0,T ),L2
wγ )

� (‖u0‖L2
wγ

+Cγ ‖F‖L2((0,T ),L2
wγ

)) e
Cγ (T +T 1/3‖b‖2

L3((0,T ),L3w3γ /2 )
)

,

where the constant Cγ depends only on γ .

Another direct consequence is the following uniqueness result for the advection-
diffusion problem with a (locally in time), bounded b:

Corollary 5. Let 0 < γ < 2. Let 0 < T < +∞. Let u0 be a divergence-free vector
field such that u0 ∈ L2

wγ
(R3) and F be a tensor F(t, x) = (

Fi, j (t, x)
)
1�i, j�3 such

that F ∈ L2((0, T ), L2
wγ

). Let b be a time-dependent divergence free vector-field

(∇ · b = 0) such that b ∈ L3((0, T ), L3
w3γ /2

). Assume moreover that b belongs to

L2
t L∞

x (K ) for every compact subset K of (0, T ) × R
3.
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Let (u1, p1) and (u2, p2) be two solutions of the following advection-diffusion
problem:

(AD)

⎧
⎨

⎩

∂t u = �u − (b · ∇)u − ∇ p + ∇ · F

∇ · u = 0, u(0, .) = u0

such that, for k = 1 and k = 2,

• uk belongs to L∞((0, T ), L2
wγ

) and ∇uk belongs to L2((0, T ), L2
wγ

);

• the pressure pk is related to uk , b andF through the Riesz transforms Ri = ∂i√−�

by the formula

pk =
3∑

i=1

3∑

j=1

Ri R j (bi uk, j − Fi, j );

• the map t ∈ [0, T ) �→ uk(t, .) is weakly continuous from [0, T ) to L2
wγ

, and is
strongly continuous at t = 0 :

lim
t→0

‖uk(t, .) − u0‖L2
wγ

= 0.

Then u1 = u2.

Proof. Let v = u1 − u2 and q = p1 − p2. Then we have
⎧
⎨

⎩

∂t v = �v − (b · ∇)v − ∇q

∇ · v = 0, v(0, .) = 0.

Moreover on every compact subset K of (0, T ) × R
3, b ⊗ v is in L2

t L2
x , while it

belongs globally to L3
t L6/5

w6γ /5 . Writing, for ϕ,ψ ∈ D((0, T )×R
3) such thatψ = 1

on the neigborhood of the support of ϕ,

ϕq = q1 + q2 = ϕ

3∑

i=1

3∑

j=1

Ri R j (ψbiv j ) + ϕ

3∑

i=1

3∑

j=1

Ri R j ((1 − ψ)biv j ),

we find that ‖q1‖L2L2 � Cϕ,ψ‖ψb ⊗ v‖L2L2 and

‖q2‖L3L∞ � Cϕ,ψ‖b ⊗ v‖
L3L6/5

w6γ /5

with

Cϕ,ψ � C‖ϕ‖∞‖1 − ψ‖∞ sup
x∈Suppϕ

(∫

y∈Supp (1−ψ)

(
(1 + |y|)γ
|x − y|3

)6
)1/6

< +∞.

Thus, we may take the scalar product of ∂t v with v and find that

∂t (
|v|2
2

) = �
( |v|2

2

)
− |∇v|2 − ∇ ·

( |v|2
2

b
)

− ∇ · (qv).

Thus we are under the assumptions of Theorem 2 and we may use Corollary 4 to
find that v = 0. ��
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3.3. Active Transportation

We begin with the following lemma:

Lemma 4. Let α be a non-negative bounded measurable function on [0, T ) such
that, for two constants A, B � 0, we have

α(t) � A + B
∫ t

0
α(s) + α(s)3 ds.

If T0 > 0 and T1 = min(T, T0,
1

8B(A+2BT0)2
), we have, for every t ∈ [0, T1],

α(t) �
√
2(A + 2BT0).

Proof. We write α � 1 + α3. We define

�(t) = A + 2BT0 + 2B
∫ t

0
α3 ds and �(t) = A + 2BT0 + 2B

∫ t

0
�3(s) ds.

We have, for t ∈ [0, T1], α � � � �. Since � is C1, we may write

� ′(t) = 2B�(t)3 � 2B�(t)3

and thus

1

�(0)2
− 1

�(t)2
� 4Bt.

We thus find

�(t)2 � �(0)2

1 − 4B�(0)2t
� 2�(0)2.

The lemma is proven. ��
Corollary 6. Assume that u0, u, p, F and b satisfy assumptions of Theorem 2.
Assume moreover that b is the inequality in the next line expresses in which way b
is controlled by u: for every t ∈ (0, T ),

‖b(t, .)‖L3
w3γ /2

� C0‖u(t, .)‖L3
w3γ /2

.

Then there exists a constant Cγ � 1 such that if T0 < T is such that

Cγ (1 + C4
0)

(
1 + C4

0 + ‖u0‖2L2
wγ

+
∫ T0

0
‖F‖2L2

wγ

ds

)2

T0 � 1

then

sup
0�t�T0

‖ u(t, .)‖2L2
wγ

� Cγ

(
1 + C4

0 + ‖u0‖2L2
wγ

+
∫ T0

0
‖F‖2L2

wγ

ds

)

and
∫ T0

0
‖∇u‖2L2

wγ

ds � Cγ

(
1 + C4

0 + ‖u0‖2L2
wγ

+
∫ T0

0
‖F‖2L2

wγ

ds

)
.
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Proof. We start from inequality (7):

‖u(t, .)‖2L2
wγ

+
∫ t

0
‖∇u‖2L2

wγ

ds

� ‖u0‖2L2
wγ

+ Cγ

∫ t

0
‖F(s, .)‖2L2

wγ

ds

+ Cγ

∫ t

0

(
1 + ‖b(s, .)‖2L3

w3γ /2

)
‖u(s, .)‖2L2

wγ

ds

We write

‖b(s, .)‖2L3
w3γ /2

� C2
0‖u(s, .)‖2L3

w3γ /2
� C2

0Cγ ‖u‖L2
wγ

(‖u‖L2
wγ

+ ‖∇u‖L2
wγ

).

This gives

‖u(t, .)‖2L2
wγ

+ 1

2

∫ t

0
‖∇u‖2L2

wγ

ds

� ‖u0‖2L2
wγ

+ Cγ

∫ t

0
‖F(s, .)‖2L2

wγ

ds

+ Cγ

∫ t

0
‖u(s, .)‖2L2

wγ

+ C2
0‖u(s, .)‖4L2

wγ

+ C4
0‖u(s, .)‖6L2

wγ

ds

� ‖u0‖2L2
wγ

+ Cγ

∫ t

0
‖F(s, .)‖2L2

wγ

ds

+ 2Cγ

∫ t

0
‖u(s, .)‖2L2

wγ

+ C4
0‖u(s, .)‖6L2

wγ

ds.

For t � T0, we get

‖u(t, .)‖2L2
wγ

+ 1

2

∫ t

0
‖∇u‖2L2

wγ

ds

� ‖u0‖2L2
wγ

+ Cγ

∫ T0

0
‖F‖2L2

wγ

ds

+ Cγ (1 + C4
0)

∫ t

0
‖u(s, .)‖2L2

wγ

+ ‖u(s, .)‖6L2
wγ

ds

and we may conclude with Lemma 4. ��

4. Stability of Solutions for the Advection-Diffusion Problem

4.1. The Rellich Lemma

We recall the Rellich lemma:

Lemma 5. (Rellich) If s > 0 and ( fn) is a sequence of functions on R
d such that

• the family ( fn) is bounded in Hs(Rd),



364 Pedro Gabriel Fernández-Dalgo & Pierre Gilles Lemarié-Rieusset

• there is a compact subset of Rd such that the support of each fn is included in
K ,

then there exists a subsequence ( fnk ) such that fnk is strongly convergent in L2(Rd).

We shall use a variant of this lemma (see [9]):

Lemma 6. (space-timeRellich) If s > 0, σ ∈ R and ( fn) is a sequence of functions
on (0, T ) × R

d such that, for all T0 ∈ (0, T ) and all ϕ ∈ D(R3),

• ϕ fn is bounded in L2((0, T0), Hs),
• ϕ∂t fn is bounded in L2((0, T0), Hσ ),

then there exists a subsequence ( fnk ) such that fnk is strongly convergent in
L2
loc([0, T ) × R

3) : if f∞ is the limit, we have for all T0 ∈ (0, T ) and all R0 > 0

lim
nk→+∞

∫ T0

0

∫

|x |�R
| fnk − f∞|2 dx dt = 0.

Proof. With no loss of generality, we may assume that σ < min(1, s). Define
g by gn(t, x) = α(t)ϕ(x) fn(t, x) if t > 0 and gn(t, x) = α(t)ϕ(x) fn(−t, x)

if t < 0, where α ∈ C∞ on (0, T ), is equal to 1 on [0, T0] and equal to 0 for
t > T +T0

2 , and ϕ(x) = 1 on B(0, R0). Then the support of gn is contained in

[− T +T0
2 , T +T0

2 ] × Suppϕ. Moreover, gn is bounded in L2
t Hs and ∂t gn is bounded

in L2Hσ so that gn is bounded in Hρ(R×R
3)with ρ = s

s+1−σ
(just write (1+τ 2+

ξ2)
s

s+1−σ �
(
(1 + τ 2)(1 + ξ2)σ

) s
s+1−σ

(
(1 + ξ2)s

) 1−σ
s+1−σ ). By the Rellich lemma,

we know that there is a subsequence gnk which is strongly convergent in L2(R×R
3),

thus a subsequence fnk which is strongly convergent in L2((0, T0) × B(0, R0)).
We then iterate this argument for an increasing sequence of times T0 < T1 <

· · · < TN → T and an increasing sequence of radii R0 < R1 < · · · < RN → +∞
and finish the proof by the classical diagonal process of Cantor. ��

4.2. Proof of Theorem 3

Assume that u0,n is strongly convergent to u0,∞ in L2
wγ

and that the sequence

Fn is strongly convergent to F∞ in L2((0, T ), L2
wγ

), and assume that the sequence

bn is bounded in L3((0, T ), L3
w3γ /2

). Then, by Theorem 2 andCorollary 4, we know

that un is bounded in L∞((0, T ), L2
wγ

) and ∇un is bounded in L2((0, T ), L2
wγ

).
In particular, writing pn = pn,1 + pn,2 with

pn,1 =
3∑

i=1

3∑

j=1

Ri R j (bn,i un, j ) and pn,2 = −
3∑

i=1

3∑

j=1

Ri R j (Fn,i, j ),

we get that pn,1 is bounded in L3((0, T ), L6/5
w 6γ

5

) and pn,2 is bounded in

L2((0, T ), L2
wγ

).
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If ϕ ∈ D(R3), we find that ϕun is bounded in L2((0, T ), H1) and, writing

∂t un = �un −
(

3∑

i=1

∂i (bn,i un) + ∇ pn,1

)

+ (∇ · Fn − ∇ pn,2
)
,

ϕ∂t un is bounded in L2L2 + L2W −1,6/5 + L2H−1 ⊂ L2((0, T ), H−2). Thus, by
Lemma 6, there exist u∞ and an increasing sequence (nk)k∈N with values inN such
that unk converges strongly to u∞ in L2

loc([0, T ) × R
3), and for every T0 ∈ (0, T )

and every R > 0, we have

lim
k→+∞

∫ T0

0

∫

|y|<R
|unk (s, y) − u∞(s, y)|2 dy ds = 0.

As un is bounded in L∞((0, T ), L2
wγ

) and ∇un is bounded in L2((0, T ), L2
wγ

), the

convergence ofunk tou∞ inD′((0, T )×R
3) implies thatunk converges *-weakly to

u∞ in L∞((0, T ), L2
wγ

) and ∇unk converges weakly to ∇u∞ in L2((0, T ), L2
wγ

).
By Banach–Alaoglu’s theorem, we may assume that there exists b∞ such

that bnk converges weakly to b∞ in L3((0, T ), L3
w3γ /2

). In particular bnk ,i unk , j

is weakly convergent in (L6/5L6/5)loc and thus inD′((0, T )×R
3); as it is bounded

in L3((0, T ), L6/5
w 6γ

5

), it is weakly convergent in L3((0, T ), L6/5
w 6γ

5

) to b∞,i u∞, j .

Let

p∞,1 =
3∑

i=1

3∑

j=1

Ri R j (b∞,i u∞, j ) and p∞,2 = −
3∑

i=1

3∑

j=1

Ri R j (F∞,i, j ).

As the Riesz transforms are bounded on L6/5
w 6γ

5

and on L2
wγ

, we find that pnk ,1 is

weakly convergent in L3((0, T ), L6/5
w 6γ

5

) to p∞,1 and that pnk ,2 is strongly conver-

gent in L2((0, T ), L2
wγ

) to p∞,2.

In particular, we find that in D′((0, T ) × R
3),

∂t u∞ = �u∞ −
3∑

i=1

∂i (b∞,i u∞) − ∇(p∞,1 + p∞,2) + ∇ · F∞.

In particular, ∂t u∞ is locally in L2H−2, and thus u∞ has representative such that
t �→ u∞(t, .) is continuous from [0, T ) to D′(R3) and coincides with u∞(0, .) +∫ t
0 ∂t u∞ ds. In D′((0, T ) × R

3), we have that

u∞(0, .) +
∫ t

0
∂t u∞ ds = u∞ = lim

nk→+∞ unk

= lim
nk→+∞ u0,nk +

∫ t

0
∂t unk ds = u0,∞ +

∫ t

0
∂t u∞ ds

Thus, u∞(0, .) = u0,∞, and u∞ is a solution of (AD∞).
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Next, we define

An = = |∇un|2 + μn

= −∂t

( |un|2
2

)
+ �

( |un|2
2

)
− ∇ ·

( |un|2
2

bn

)
− ∇ · (pnun) + un · (∇ · Fn).

As un is bounded in L∞((0, T ), L2
wγ

) and ∇un is bounded in L2((0, T ), L2
wγ

), it

is bounded in L2((0, T ), L6
w3γ /2

) and by interpolation with L∞((0, T ), L2
wγ

) it is

bounded in L10/3((0, T ), L10/3
w5γ /3). Thus, unk is locally bounded in L10/3L10/3 and

locally strongly convergent in L2L2; it is then strongly convergent in L3L3. Thus,
Ank is convergent in D′((0, T ) × R

3) to

A∞ = −∂t

( |u∞|2
2

)
+ �

( |u∞|2
2

)
− ∇ ·

( |u∞|2
2

b∞
)

− ∇ · (p∞u∞) + u∞ · (∇ · F∞).

In particular, A∞ = limnk→+∞ |∇unk |2 + μnk . If � ∈ D((0, T ) × R
3) is non-

negative, we have
∫∫

A∞� dx ds = lim
nk→+∞

∫∫
Ank � dx ds

� lim sup
nk→+∞

∫∫
|∇unk |2� dx ds �

∫∫
|∇u∞|2� dx ds

(since
√

�∇unk is weakly convergent to
√

�∇u∞ in L2L2). Thus, there exists a
non-negative locally finite measure μ∞ on (0, T )×R

3 such that A∞ = |∇u∞|2 +
μ∞, that is such that

∂t

( |u∞|2
2

)
= �

( |u∞|2
2

)
− |∇u∞|2 − ∇ ·

( |u∞|2
2

b∞
)

−∇ · (p∞u∞) + u · (∇ · F∞) − μ∞.

Finally, we start from inequality (6):

∫ |un(t, x)|2
2

φRwγ,ε dx �
∫ |u0,n(x)|2

2
φRwγ,ε dx

−
3∑

i=1

∫ t

0

∫
∂i un · un (wγ,ε∂i φR + φR∂i wγ,ε) dx ds

−
∫ t

0

∫
|∇un |2 φRwγ,εdx ds

+
3∑

i=1

∫ t

0

∫ |un |2
2

bn,i (wγ,ε∂i φR + φR∂i wγ,ε) dx ds

+
3∑

i=1

∫ t

0

∫
pnun,i (wγ,ε∂i φR + φR∂i wγ,ε) dx ds
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−
3∑

i=1

3∑

j=1

∫ t

0

∫
Fn,i, j un, j (wγ,ε∂i φR + φR∂i wγ,ε) dx ds

−
3∑

i=1

3∑

j=1

∫ t

0

∫
Fn,i, j ∂i un, j φRwγ,ε dx ds.

This gives

lim sup
nk→+∞

∫ |unk (t, x)|2
2

φRwγ,ε dx +
∫ t

0

∫
|∇unk |2 φRwγ,εdx ds

�
∫ |u0,∞(x)|2

2
φRwγ,ε dx

−
3∑

i=1

∫ t

0

∫
∂i u∞ · u∞ (wγ,ε∂iφR + φR∂iwγ,ε) dx ds

+
3∑

i=1

∫ t

0

∫ |u∞|2
2

b∞,i (wγ,ε∂iφR + φR∂iwγ,ε) dx ds

+
3∑

i=1

∫ t

0

∫
p∞u∞,i (wγ,ε∂iφR + φR∂iwγ,ε) dx ds

−
3∑

i=1

3∑

j=1

∫ t

0

∫
F∞,i, j u∞, j (wγ,ε∂iφR + φR∂iwγ,ε) dx ds

−
3∑

i=1

3∑

j=1

∫ t

0

∫
F∞,i, j∂i u∞, j φRwγ,ε dx ds.

As we have

unk = u0,nk +
∫ t

0
∂t unk ds,

we see that unk (t, .) is convergent to u∞(t, .) inD′(R3), hence is weakly convergent
in L2

loc (as it is bounded in L2
wγ

), so that:

∫ |u∞(t, x)|2
2

φRwγ,ε dx � lim sup
nk→+∞

∫ |unk (t, x)|2
2

φRwγ,ε dx .

Similarly, as ∇unk is weakly convergent in L2L2
wγ

, we have

∫ t

0

∫ |∇u∞(s, x)|2
2

φRwγ,ε dx ds � lim sup
nk→+∞

∫ t

0

∫ |∇unk (s, x)|2
2

φRwγ,ε dx ds.
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Thus, letting R go to+∞ and then ε go to 0, we find by dominated convergence
that, for every t ∈ (0, T ), we have

‖u∞(t, .)‖2L2
wγ

+ 2
∫ t

0
‖∇u∞(s, .)‖2L2

wγ

ds

� ‖u0,∞‖2L2
wγ

−
∫ t

0

∫
∇|u∞|2 · ∇wγ dx ds

+
∫ t

0

∫
(|u∞|2b∞ + 2p∞u∞) · ∇(wγ ) dx ds

− 2
3∑

i=1

3∑

j=1

∫ t

0

∫
F∞,i, j (∂i u∞, j )wγ + F∞,i, j u∞,i∂ j (wγ ) dx ds.

Letting t go to 0, we find

lim sup
t→0

‖u∞(t, .)‖2L2
wγ

� ‖u0,∞‖2L2
wγ

.

On the other hand, we know that u∞ is weakly continuous in L2
wγ

and thus we
have

‖u0,∞‖2L2
wγ

� lim inf
t→0

‖u∞(t, .)‖2L2
wγ

.

This gives ‖u0,∞‖2
L2

wγ

= limt→0 ‖u∞(t, .)‖2
L2

wγ

, which allows to turn the weak

convergence into a strong convergence. Theorem 3 is proven. ��

5. Solutions of the Navier–Stokes Problem with Initial Data in L2
wγ

We now prove Theorem 1. The idea is to approximate the problem by a Navier–
Stokes problem in L2, then use the a priori estimates (Theorem 2) and the stability
theorem (Theorem 3) to find a solution to the Navier–Stokes problem with data in
L2

wγ
).

5.1. Approximation by Square Integrable Data

Lemma 7. (Leray’s projection operator) Let 0 < δ < 3 and 1 < r < +∞. If v is
a vector field on R

3 such that v ∈ Lr
wδ

, then there exists a unique decompostion

v = vσ + v∇

such that

• vσ ∈ Lr
wδ

and ∇ · vσ = 0,
• v∇ ∈ Lr

wδ
and ∇ ∧ v∇ = 0.
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We shall write vσ = Pv, where P is Leray’s projection operator.
Similarly, if v is a distribution vector field of the type v = ∇ ·G with G ∈ Lr

wδ

then there exists a unique decompostion

v = vσ + v∇

such that

• there exists H ∈ Lr
wδ

such that vσ = ∇ · H and ∇ · vσ = 0,
• there exists q ∈ Lr

wδ
such that v∇ = ∇q (and thus ∇ ∧ v∇ = 0).

We shall still write vσ = Pv. Moreover, the function q is given by

q = −
3∑

i=1

3∑

j=1

Ri R j (Gi, j ).

Proof. As wδ ∈ Ar the Riesz transforms are bounded on Lr
wδ
. Using the identity

�v = ∇(∇ · v) − ∇ ∧ (∇ ∧ v)

we find (if the decomposition exists) that

�vσ = −∇ ∧ (∇ ∧ vσ ) = −∇ ∧ (∇ ∧ v) and �v∇ = ∇(∇ · v∇) = ∇(∇ · v).

This proves the uniqueness. By linearity, we just have to prove that v = 0 �⇒
v∇ = 0. We have �v∇ = 0, and thus v∇ is harmonic; as it belongs to S ′, we find
that it is a polynomial. But a polynomial which belongs to Lr

wδ
must be equal to 0.

Similarly, if v∇ = ∇q, then �q = ∇ · v∇ = ∇ · v = 0; thus q is harmonic and
belongs to Lr

wδ
, hence q = 0.

For the existence, it is enough to check that v∇,i = −∑3
j=1 Ri R jv j in the first

case and v∇ = ∇q with q = ∑3
i=1

∑3
j=1 Ri R j (Gi, j ) in the second case fulfill the

conclusions of the lemma. ��

Lemma 8. Let 0 < γ < 2. Let u0 be a divergence-free vector field such that
u0 ∈ L2

wγ
(R3) and F be a tensor F(t, x) = (

Fi, j (t, x)
)
1�i, j�3 such that F ∈

L2((0,+∞), L2
wγ

). Let φ ∈ D(R3) be a non-negative function which is equal
to 1 for |x | � 1 and to 0 for |x | � 2. For R > 0, we define φR(x) = φ( x

R ),
u0,R = P(φRu0) and FR = φRF. Then u0,R is a divergence-free square integrable
vector field and limR→+∞ ‖u0,R − u0‖L2

wγ
= 0. Similarly, FR belongs to L2L2

and limR→+∞ ‖FR − F‖L2((0,+∞),L2
wγ

) = 0.

Proof. By dominated convergence, we have limR→+∞ ‖φRu0 − u0‖L2
wγ

= 0. We

conclude by writing u0,R − u0 = P(φRu0 − u0). ��
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5.2. Leray’s Mollification

We want to solve the Navier–Stokes equations with initial value u0:

(N S)

⎧
⎨

⎩

∂t u = �u − (u · ∇)u − ∇ p + ∇ · F

∇ · u = 0, u(0, .) = u0

We begin with Leray’s method [11] for solving the problem in L2:

(N SR)

⎧
⎨

⎩

∂t uR = �uR − (uR · ∇)uR − ∇ pR + ∇ · FR

∇ · uR = 0, uR(0, .) = u0,R

The idea of Leray is to mollify the non-linearity by replacing uR ·∇ by (uR ∗θε) ·∇,
where θ(x) = 1

ε3
θ( x

ε
), θ ∈ D(R3), θ is non-negative and radially decreasing and∫

θ dx = 1. We thus solve the problem

(N SR,ε)

⎧
⎨

⎩

∂t uR,ε = �uR,ε − ((uR,ε ∗ θε) · ∇)uR,ε − ∇ pR,ε + ∇ · FR

∇ · uR,ε = 0, uR,ε(0, .) = u0,R

The classical result of Leray states that the problem (N SR,ε) is well-posed:

Lemma 9. Let v0 ∈ L2 be a divergence-free vector field. LetG ∈ L2((0,+∞), L2).
Then the problem

(N Sε)

⎧
⎨

⎩

∂t vε = �vε − ((vε ∗ θε) · ∇)vε − ∇qε + ∇ · G

∇ · vε = 0, vε(0, .) = v0

has a unique solution vε in L∞((0,+∞), L2)∩ L2((0,+∞), Ḣ1). Moreover, this
solution belongs to C([0,+∞), L2).

5.3. Proof of Theorem 1 (Local Existence)

We use Lemma 9 and find a solution uR,ε to the problem (N SR,ε). Then we
check that uR,ε fulfills the assumptions of Theorem 2 and of Corollary 6:

• uR,ε belongs to L∞((0, T ), L2
wγ

) and ∇uR,ε belongs to L2((0, T ), L2
wγ

);

• the map t ∈ [0,+∞) �→ uR,ε(t, .) is weakly continuous from [0,+∞) to L2
wγ

,
and is strongly continuous at t = 0 :

lim
t→0

‖uR,ε(t, .) − u0,R‖L2
wγ

= 0,
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• on (0, T ) × R
3, uR,ε fulfills the energy equality

∂t

( |uR,ε|2
2

)
= �

( |uR,ε|2
2

)
− |∇uR,ε|2

−∇ ·
( |u|2

2
bR,ε

)

−∇ · (pR,εuR,ε) + uR,ε · (∇ · FR).

with bR,ε = uR,ε ∗ θε;
• bR,ε is controlled by uR,ε : for every t ∈ (0, T ),

‖bR,ε(t, .)‖L3
w3γ /2

� ‖MuR,ε(t,.)‖L3
w3γ /2

� C0‖uR,ε(t, .)‖L3
w3γ /2

.

Thus, we know that, for every time T0 such that

Cγ (1 + C4
0)

(
1 + C4

0 + ‖u0,R‖2L2
wγ

+
∫ T0

0
‖FR‖2L2

wγ

ds

)2

T0 � 1,

we have

sup
0�t�T0

‖ uR,ε(t, .)‖2L2
wγ

� Cγ (1 + C4
0 + ‖u0,R‖2L2

wγ

+
∫ T0

0
‖FR‖2L2

wγ

ds)

and
∫ T0

0
‖∇uR,ε‖2L2

wγ

ds � Cγ (1 + C4
0 + ‖u0,R‖2L2

wγ

+
∫ T0

0
‖FR‖2L2

wγ

ds).

Moreover, we have that

‖u0,R‖L2
wγ

� Cγ ‖u0‖L2
wγ

and ‖FR‖L2
wγ

� ‖F‖L2
wγ

,

so that

‖bR,ε‖L3((0,T0),L3
w3γ /2

� Cγ ‖uR,ε‖L3((0,T0),L3
w3γ /2

� C ′
γ T

1
12
0

(
(1 + √

T0)‖uR,ε‖L∞((0,T0),L2
wγ

)

+‖∇uR,ε‖L2((0,T0),L2
wγ

)

)

� C ′′
γ

√

1 + C4
0 + ‖u0‖2L2

wγ

+
∫ T0

0
‖F‖2

L2
wγ

ds.

Let Rn → +∞ and εn → 0. Let u0,n = u0,Rn , Fn = FRn , bn = bRn ,εn and
un = uRn ,εn . We may then apply Theorem 3, since u0,n is strongly convergent to
u0 in L2

wγ
, Fn is strongly convergent to F in L2((0, T0), L2

wγ
), and the sequence

bn is bounded in L3((0, T0), L3
w3γ /2

). Thus there exists p, u, b and an increasing
sequence (nk)k∈N with values in N such that
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• unk converges *-weakly to u in L∞((0, T0), L2
wγ

), ∇unk converges weakly to

∇u in L2((0, T0), L2
wγ

);

• bnk converges weakly to b in L3((0, T0), L3
w3γ /2

), pnk converges weakly to p

in L3((0, T0), L6/5
w 6γ

5

) + L2((0, T0), L2
wγ

);

• unk converges strongly to u in L2
loc([0, T0) × R

3).

Moreover, u is a solution of the advection-diffusion problem
⎧
⎨

⎩

∂t u = �u − (b · ∇)u − ∇ p + ∇ · F

∇ · u = 0, u(0, .) = u0,

and is such that

• the map t ∈ [0, T0) �→ u(t, .) is weakly continuous from [0, T0) to L2
wγ

, and
is strongly continuous at t = 0 :

lim
t→0

‖u(t, .) − u0‖L2
wγ

= 0;

• there exists a non-negative locally finite measure μ on (0, T0) × R
3 such that

∂t

( |u|2
2

)
= �

( |u|2
2

)
− |∇u|2 − ∇ ·

( |u|2
2

b
)

− ∇ · (pu) + u · (∇ · F) − μ,

Finally, as bn = θεn ∗ (un − u)+ θεn ∗ u, we see that bnk is strongly convergent
to u in L3

loc([0, T0)×R
3), so that b = u : thus, u is a solution of the Navier–Stokes

problem on (0, T0). (It is easy to check that

p =
3∑

i=1

3∑

j=1

Ri R j (ui u j − Fi, j )

as ui,nk u j,nk is weakly convergent to ui u j in L4((0, T0), L6/5
w 6γ

5

) and w 6γ
5

∈ A6/5.)

5.4. Proof of Theorem 1 (Global Existence)

In order to finish the proof, we shall use the scaling properties of the Navier–
Stokes equations : if λ > 0, then u is a solution of the Cauchy initial value problem
for the Navier–Stokes equations on (0, T )with initial value u0 and forcing tensor F
if and only if uλ(t, x) = λu(λ2t, λx) is a solution of the Navier–Stokes equations
on (0, T/λ2) with initial value u0,λ(x) = λu0(λx) and forcing tensor Fλ(t, x) =
λ2F(λ2t, λx).

We take λ > 1 and for n ∈ N we consider the Navier–Stokes problem with
initial value v0,n = λnu0(λ

n ·) and forcing tensor Fn = λ2n
F(λ2n ·, λn ·). Then we

have seen that we can find a solution vn on (0, Tn), with

Cγ

(
1 + ‖v0,n‖2L2

wγ

+
∫ +∞

0
‖Fn‖2L2

wγ

ds

)2

Tn = 1.

Of course, we have vn(t, x) = λnun(λ2nt, λn x) where un is a solution of the
Navier–Stokes equations on (0, λ2nTn) with initial value u0 and forcing tensor F.
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Lemma 10.

lim
n→+∞

λn

1 + ‖v0,n‖2
L2

wγ

+ ∫ +∞
0 ‖Fn‖2

L2
wγ

ds
= +∞.

Proof. We have

‖v0,n‖2L2
wγ

=
∫

|u0(x)|2λn(γ−1) (1 + |x |)γ
(λn + |x |)γ wγ (x) dx .

We have

λn(γ−1) � λn

as γ � 2 and we have, by dominated convergence,

lim
n→+∞

∫
|u0(x)|2 (1 + |x |)γ

(λn + |x |)γ wγ (x) dx = 0.

Similarly, we have

∫ +∞

0
‖Fn‖2L2

wγ

ds =
∫ +∞

0

∫
|F(s, x)|2λn(γ−1) (1 + |x |)γ

(λn + |x |)γ wγ (x) dx ds = o(λn).

Thus, limn→+∞ λ2nTn = +∞.
Now, for a given T > 0, if λ2nTn > T for n � nT , then un is a solution

of the Navier-Stokes problem on (0, T ). Let wn(t, x) = λnT un(λ2nT t, λnT x). For
n � nT , wn is a solution of the Navier-Stokes problem on (0, λ−2nT T ) with initial
value v0,nT and forcing tensor FnT . As λ−2nT T � TnT , we have

Cγ

(
1 + ‖v0,nT ‖2L2

wγ

+
∫ +∞

0
‖FnT ‖2L2

wγ

ds

)2

λ−2nT T � 1.

By Corollary 6, we have

sup
0�t�λ−2nT T

‖ wn(t, .)‖2L2
wγ

� Cγ

(

1 + ‖v0,nT ‖2L2
wγ

+
∫ λ−2nT T

0
‖FnT ‖2L2

wγ

ds

)

and

∫ λ−2nT T

0
‖∇wn‖2L2

wγ

ds � Cγ

(

1 + ‖v0,nT ‖2L2
wγ

+
∫ λ−2nT T

0
‖FnT ‖2L2

wγ

ds

)

.

We have

‖wn‖2L2
wγ

=
∫

|un(λ2nT t, x)|2λnT (γ−1) (1 + |x |)γ
(λnT + |x |)γ wγ (x) dx

� λ−nT γ ‖un(λ2nT t, .)‖2L2
wγ
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and

∫ λ−2nT T

0
‖∇wn‖2L2

wγ

ds =
∫ T

0

∫
|∇un(s, x)|2λnT (γ−1) (1 + |x |)γ

(λnT + |x |)γ wγ (x) dx ds

�λ−nT

∫ T

0
‖∇un‖2L2

wγ

ds.

Thus, we have a uniform control of un and of ∇un on (0, T ) for n � nT . We
may then apply the Rellich lemma (Lemma 6) and Theorem 3 to find a subsequence
unk that converges to a global solution of the Navier–Stokes equations. Theorem 1
is proven. ��

6. Solutions of the Advection-Diffusion Problem with Initial Data in L2
wγ

The proof of Theorem 1 on the Navier–Stokes problem can be easily adapted
to the case of the advection-diffusion problem:

Theorem 4. Let 0 < γ � 2. Let 0 < T < +∞. Let u0 be a divergence-free vector
field such that u0 ∈ L2

wγ
(R3) and F be a tensor F(t, x) = (

Fi, j (t, x)
)
1�i, j�3 such

that F ∈ L2((0, T ), L2
wγ

). Let b be a time-dependent divergence free vector-field

(∇ · b = 0) such that b ∈ L3((0, T ), L3
w3γ /2

).
Then the advection-diffusion problem

(AD)

⎧
⎨

⎩

∂t u = �u − (b · ∇)u − ∇ p + ∇ · F

∇ · u = 0, u(0, .) = u0

has a solution u such that:

• u belongs to L∞((0, T ), L2
wγ

) and ∇u belongs to L2((0, T ), L2
wγ

);

• the pressure p is related to u, b and F through the Riesz transforms Ri = ∂i√−�

by the formula

p =
3∑

i=1

3∑

j=1

Ri R j (bi u j − Fi, j );

• the map t ∈ [0, T ) �→ u(t, .) is weakly continuous from [0, T ) to L2
wγ

, and is
strongly continuous at t = 0:

lim
t→0

‖u(t, .) − u0‖L2
wγ

= 0;

• there exists a non-negative locally finite measure μ on (0, T ) × R
3 such that

∂t

( |u|2
2

)
= �

( |u|2
2

)
− |∇u|2 − ∇ ·

( |u|2
2

b
)

− ∇ · (pu) + u · (∇ · F) − μ.
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Proof. Again, we define φR(x) = φ( x
R ), u0,R = P(φRu0) and FR = φRF. More-

over, we define bR = P(φRb). We then solve the mollified problem

(ADR,ε)

⎧
⎨

⎩

∂t uR,ε = �uR,ε − ((bR ∗ θε) · ∇)uR,ε − ∇ pR,ε + ∇ · FR,ε

∇ · uR,ε = 0, uR,ε(0, .) = u0,R,

forwhichwe easily find a unique solutionuR,ε in L∞((0, T ), L2)∩L2((0, T ), Ḣ1).
Moreover, this solution belongs to C([0, T ), L2).

Again, uR,ε fulfills the assumptions of Theorem 2:

• uR,ε belongs to L∞((0, T ), L2
wγ

) and ∇uR,ε belongs to L2((0, T ), L2
wγ

)

• the map t ∈ [0, T ) �→ uR,ε(t, .) is weakly continuous from [0, T ) to L2
wγ

, and
is strongly continuous at t = 0:

lim
t→0

‖uR,ε(t, .) − u0,R‖L2
wγ

= 0.

• on (0, T ) × R
3, uR,ε fulfills the energy equality:

∂t

( |uR,ε|2
2

)
= �

( |uR,ε|2
2

)
− |∇uR,ε|2 − ∇ ·

( |u|2
2

bR,ε

)

−∇ · (pR,εuR,ε) + uR,ε · (∇ · FR).

with bR,ε = bR ∗ θε.

Thus, by Corollary 4 we know that,

sup
0<t<T

‖uR,ε‖L2
wγ

� (‖u0,R‖L2
wγ

+ Cγ ‖FR‖L2((0,T ),L2
wγ

)) e
Cγ (T +T 1/3‖bR,ε‖2

L3((0,T ),L3w3γ /2 )
)

and

‖∇uR,ε‖L2((0,T ),L2
wγ

) � (‖u0,R‖L2
wγ

+ Cγ ‖FR‖L2((0,T ),L2
wγ

)) e
Cγ (T +T 1/3‖bR,ε‖2

L3((0,T ),L3w3γ /2 )
)

,

where the constant Cγ depends only on γ .
Moreover, we have that

‖u0,R‖L2
wγ

� Cγ ‖u0‖L2
wγ

, ‖FR‖L2
wγ

� ‖F‖L2
wγ

and

‖bR,ε‖L3((0,T ),L3
w3γ /2

) � ‖MbR ‖L3((0,T ),L3
w3γ /2

) � C ′
γ ‖b‖L3((0,T ),L3

w3γ /2
).

Let Rn → +∞ and εn → 0. Let u0,n = u0,Rn , Fn = FRn , bn = bRn ,εn and
un = uRn ,εn . We may then apply Theorem 3, since u0,n is strongly convergent to
u0 in L2

wγ
, Fn is strongly convergent to F in L2((0, T ), L2

wγ
), and the sequence

bn is strongly convergent to b in L3((0, T ), L3
w3γ /2

). Thus there exists p, u and an
increasing sequence (nk)k∈N with values in N such that
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• unk converges *-weakly to u in L∞((0, T ), L2
wγ

), ∇unk converges weakly to

∇u in L2((0, T ), L2
wγ

);

• pnk converges weakly to p in L3((0, T ), L6/5
w 6γ

5

) + L2((0, T ), L2
wγ

);

• unk converges strongly to u in L2
loc([0, T ) × R

3).

We then easily finish the proof. ��

7. Application to the Study of λ-Discretely Self-similar Solutions

Wemay now apply our results to the study of λ-discretely self-similar solutions
for the Navier–Stokes equations.

Definition 1. Let u0 ∈ L2
loc(R

3). We say that u0 is a λ-discretely self-similar func-
tion (λ-DSS) if there exists λ > 1 such that λu0(λx) = u0.

A vector field u ∈ L2
loc([0,+∞)×R

3) is λ-DSS if there exists λ > 1 such that
λu(λ2t, λx) = u(t, x).

A forcing tensor F ∈ L2
loc([0,+∞) × R

3) is λ-DSS if there exists λ > 1 such
that λ2F(λ2t, λx) = F(t, x).

We shall speak of self-similarity if u0, u or F are λ-DSS for every λ > 1.

Examples. • Let γ > 1 and λ > 1. Then, for two positive constants Aγ,λ and
Bγ,λ, we have : if u0 ∈ L2

loc(R
3) is λ-DSS, then u0 ∈ L2

wγ
and

Aγ,λ

∫

1<|x |�λ

|u0(x)|2 dx �
∫

|u0(x)|2wγ (x) dx � Bγ,λ

∫

1<|x |�λ

|u0(x)|2 dx .

• u0 ∈ L2
loc is self-similar if and only if it is of the form u0 = w0(

x
|x | )

|x | with

w0 ∈ L2(S2).
• F belongs to L2((0,+∞), L2

wγ
) with γ > 1 and is self-similar if and only if it

is of the form F(t, x) = 1
t F0(

x√
t
) with

∫ |F0(x)|2 1
|x | dx < +∞.

Proof. • If u0 is λ-DSS and if k ∈ Z we have

∫

λk<|x |<λk+1
|u0(x)|2wγ (x) dx � λk

(1 + λk)γ

∫

1<|x |<λ

|u0(x)|2 dx

with
∑

k∈Z λk

(1+λk )γ
< +∞ for γ > 1.

• If u0 is self-similar, we have u0(x) = 1
|x |u0(

x
|x | ). From this equality, we find

that, for λ > 1
∫

1<|x |<λ

|u0(x)|2 dx = (λ − 1)
∫

S2
|u0(σ )|2 dσ.
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• If F is self-similar, then it is of the form F(t, x) = 1
t F0(

x√
t
). Moreover, we

have
∫ +∞

0

∫
|F(t, x)|2 wγ (x) dx ds =

∫ +∞

0

∫
|F0(x)|2wγ (

√
t x) dx

dt√
t

= Cγ

∫
|F0(x)|2 dx

|x | .

with Cγ = ∫ +∞
0

1
(1+√

θ)γ
dθ√

θ
< +∞. ��

In this section, we are going to give a new proof of the results of Chae and
Wolf [3] and Bradshaw and Tsai [2] on the existence of λ-DSS solutions of the
Navier–Stokes problem (and of Jia and Šverák [6] for self-similar solutions) :

Theorem 5. Let 4/3 < γ < 2 and λ > 1. If u0 is a λ-DSS divergence-free
vector field (such that u0 ∈ L2

wγ
(R3)) and if F is a λ-DSS tensor F(t, x) =

(
Fi, j (t, x)

)
1�i, j�3 such that F ∈ L2

loc([0,+∞) × R
3), then the Navier–Stokes

equations with initial value u0

(N S)

⎧
⎨

⎩

∂t u = �u − (u · ∇)u − ∇ p + ∇ · F

∇ · u = 0, u(0, .) = u0

have a global weak solution u such that

• u is a λ-DSS vector field;
• for every 0 < T < +∞, u belongs to L∞((0, T ), L2

wγ
) and ∇u belongs to

L2((0, T ), L2
wγ

);

• the map t ∈ [0,+∞) �→ u(t, .) is weakly continuous from [0,+∞) to L2
wγ

,
and is strongly continuous at t = 0:

lim
t→0

‖u(t, .) − u0‖L2
wγ

= 0;
• the solution u is suitable, and there exists a non-negative locally finite measure

μ on (0,+∞) × R
3 such that

∂t

( |u|2
2

)
= �

( |u|2
2

)
− |∇u|2 − ∇ ·

(
(
|u|2
2

+ p)u
)

+ u · (∇ · F) − μ.

7.1. The Linear Problem

Following Chae and Wolf, we consider an approximation of the problem that
is consistent with the scaling properties of the equations: let θ be a non-negative
and radially decreasing function in D(R3) with

∫
θ dx = 1. We define θε,t (x) =

1
(ε

√
t)3

θ( x
ε
√

t
). We then will study the “mollified” problem

(N Sε)

⎧
⎨

⎩

∂t uε = �uε − ((uε ∗ θε,t ) · ∇)uε − ∇ pε + ∇ · F

∇ · u = 0, u(0, .) = u0
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and begin with the linearized problem

(L N Sε)

⎧
⎨

⎩

∂t v = �v − ((b ∗ θε,t ) · ∇)v − ∇q + ∇ · F

∇ · v = 0, v(0, .) = u0.

Lemma 11. Let 1 < γ < 2. Let λ > 1 Let u0 be a λ-DSS divergence-free vector
field such that u0 ∈ L2

wγ
(R3)andFbe aλ-DSS tensorF(t, x) = (

Fi, j (t, x)
)
1�i, j�3

such that, for every T > 0, F ∈ L2((0, T ), L2
wγ

). Let b be a λ-DSS time-
dependent divergence free vector-field (∇ · b = 0) such that, for every T > 0,
b ∈ L3((0, T ), L3

w3γ /2
).

Then the advection-diffusion problem

(L N Sε)

⎧
⎨

⎩

∂t v = �v − ((b ∗ θε,t ) · ∇)v − ∇q + ∇ · F

∇ · v = 0, v(0, .) = u0

has a unique solution v such that:

• for every positive T , v belongs to L∞((0, T ), L2
wγ

) and ∇v belongs to

L2((0, T ), L2
wγ

);

• the pressure p is related to v, b and F through the Riesz transforms Ri = ∂i√−�

by the formula

p =
3∑

i=1

3∑

j=1

Ri R j ((bi ∗ θε,t )v j − Fi, j );

• the map t ∈ [0,+∞) �→ v(t, .) is weakly continuous from [0,+∞) to L2
wγ

,
and is strongly continuous at t = 0:

lim
t→0

‖v(t, .) − u0‖L2
wγ

= 0.

This solution v is a λ-DSS vector field.

Proof. As we have |b(t, .) ∗ θε,t | � Mb(t,.) and thus

‖b(t, .) ∗ θε,t‖L3((0,T ),L3
w3γ /2

) � Cγ ‖b‖L3((0,T ),L3
w3γ /2

),

we see that we can use Theorem 4 to get a solution v on (0, T ).
As clearly b∗θε,t belongs to L2

t L∞
x (K ) for every compact subset K of (0, T )×

R
3, we can use Corollary 5 to see that v is unique.
Let w(t, x) = 1

λ
v( t

λ2
, x

λ
). As b ∗ θε,t is still λ-DSS, we see that w is solution of

(L N Sε) on (0, T ), so that w = v. This means that v is λ-DSS. ��
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7.2. The Mollified Navier–Stokes Equations

The solution v provided by Lemma 11 belongs to L3((0, T ), L3
w3γ /2

) (as v

belongs to L∞((0, T ), L2
wγ

) and ∇v belongs to L2((0, T ), L2
wγ

)). Thus we have a
mapping Lε : b �→ v which is defined from

XT,γ = {b ∈ L3((0, T ), L3
w3γ /2

) / b is λ − DSS}
to XT,γ by Lε(b) = v.

Lemma 12. For 4/3 < γ , XT,γ is a Banach space for the equivalent norms
‖b‖L3((0,T ),L3

w3γ /2
) and ‖b‖L3((0,T/λ2),×B(0, 1

λ
)).

Proof. We have

∫ T

0

∫

B(0,1)
|b(t, x)|3 dx dt = λ2

∫ T
λ2

0

∫

B(0, 1
λ
)

|b(t, x)|3 dx dt

and , for k ∈ N,

∫ T

0

∫

λk−1<|x |<λk
|b(t, x)|3 dx dt = λ2k

∫ T
λ2k

0

∫

1
λ
<|x |<1

|b(t, x)|3 dx dt.

We may conclude, since for γ > 4/3 we have
∑

k∈N λk(2− 3γ
2 ) < +∞. ��

Lemma 13. For 4/3 < γ < 2, the mapping Lε is continuous and compact on
XT,γ .

Proof. Let bn be a bounded sequence in XT,γ and let vn = Lε(bn). We remark
that the sequence bn(t, .) ∗ θε,t is bounded in XT,γ . Thus, by Theorem 2 and
Corollary 4, the sequence vn is bounded in L∞((0, T ), L2

wγ
) and ∇vn is bounded

in L2((0, T ), L2
wγ

).
We now use Theorem 3 and get that then there exists q∞, v∞, B∞ and an

increasing sequence (nk)k∈N with values in N such that

• vnk converges *-weakly to v∞ in L∞((0, T ), L2
wγ

), ∇vnk converges weakly to

∇v∞ in L2((0, T ), L2
wγ

);

• bnk ∗ θε,t converges weakly to B∞ in L3((0, T ), L3
w3γ /2

);

• the associated pressures qnk converge weakly to q∞ in L3((0, T ), L6/5
w 6γ

5

) +
L2((0, T ), L2

wγ
);

• vnk converges strongly to v∞ in L2
loc([0, T ) × R

3) : for every T0 ∈ (0, T ) and
every R > 0, we have

lim
k→+∞

∫ T0

0

∫

|y|<R
|vnk (s, y) − v∞(s, y)|2 ds dy = 0.
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As
√

wγ vn is bounded in L∞((0, T ), L2) and in L2((0, T ), L6), it is bounded
in L10/3((0, T ) × R

3). The strong convergence of vnk in L2
loc([0, T ) × R

3) then
implies the strong convergence of vnk in L3

loc((0, T ) × R
3).

Moreover, v∞ is still λ-DSS (a property that is stable under weak limits).We
find that v∞ ∈ XT,γ and that

lim
nk→+∞

∫ T
λ2

0

∫

B(0, 1
λ
)

|vnk (s, y) − v∞(s, y)|3 ds dy = 0.

This proves that Lε is compact.
If we assumemoreover that bn is convergent to b∞ in XT,γ , then necessarily we

have B∞ = b∞ ∗ θε,t , and v∞ = Lε(b∞). Thus, the relatively compact sequence
vn can have only one limit point; thus it must be convergent. This proves that Lε is
continuous. ��
Lemma 14. Let 4/3 < γ < 2. If, for some μ ∈ [0, 1], v is a solution of v = μLε(v)

then

‖v‖XT,γ
� Cu0,F,γ,T ,

where the constant Cu0,F,γ,T depends only on u0, F, γ and T (but not on μ nor on
ε).

Proof. We have v = μw; with
⎧
⎨

⎩

∂t w = �w − ((v ∗ θε,t ) · ∇)w − ∇q + ∇ · F

∇ · w = 0, w(0, .) = u0.

Multiplying by μ, we find that
⎧
⎨

⎩

∂t v = �v − ((v ∗ θε,t ) · ∇)v − ∇(μq) + ∇ · μF

∇ · v = 0, v(0, .) = μu0.

We then use Corollary 6. We choose T0 ∈ (0, T ) such that

Cγ

(
1 + ‖u0‖2L2

wγ

+
∫ T0

0
‖F‖2L2

wγ

ds

)2

T0 � 1.

Then, as

Cγ

(
1 + ‖μu0‖2L2

wγ

+
∫ T0

0
‖μF‖2L2

wγ

ds

)2

T0 � 1.

we know that

sup
0�t�T0

‖ v(t, .)‖2L2
wγ

� Cγ

(
1 + μ2‖u0‖2L2

wγ

+ μ2
∫ T0

0
‖F‖2L2

wγ

ds

)
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and
∫ T0

0
‖∇v‖2L2

wγ

ds � Cγ

(
1 + μ2‖u0‖2L2

wγ

+ μ2
∫ T0

0
‖F‖2L2

wγ

ds

)
.

In particular, we have

∫ T0

0
‖v‖3L3

w3γ /2
ds � Cγ T 1/4

0

(
1 + ‖u0‖2L2

wγ

+
∫ T0

0
‖F‖2L2

wγ

ds

) 3
2

.

As v is λ-DSS, we can go back from T0 to T . ��
Lemma 15. Let 4/3 < γ � 2. There is at least one solution uε of the equation
uε = Lε(uε).

Proof. Obvious due to the Leray–Schauder principle (and the Schaefer theorem),
since Lε is continuous and compact and since we have uniform a priori estimates
for the fixed points of μLε for 0 � μ � 1. ��

7.3. Proof of Theorem 5

We may now finish the proof of Theorem 5. We consider the solutions uε of
uε = Lε(uε).

By Lemma 14, uε is bounded in L3((0, T ), L3
w3γ /2

), and so is uε ∗ θε,t . We
then know, by Theorem 2 and Corollary 4, that the familly uε is bounded in
L∞((0, T ), L2

wγ
) and ∇uε is bounded in L2((0, T ), L2

wγ
).

We now use Theorem 3 and get that then there exists p, u, B and a decreasing
sequence (εk)k∈N (converging to 0) with values in (0,+∞) such that

• uεk converges *-weakly to u in L∞((0, T ), L2
wγ

), ∇uεk converges weakly to

∇u in L2((0, T ), L2
wγ

);

• uεk ∗ θεk ,t converges weakly to B in L3((0, T ), L3
w3γ /2

);

• the associated pressures pεk converge weakly to p in L3((0, T ), L6/5
w 6γ

5

) +
L2((0, T ), L2

wγ
);

• uεk converges strongly to u in L2
loc([0, T ) × R

3).

Moreover we easily see that B = u. Indeed, we have that u∗θε,t converges strongly
in L2

loc((0, T ) × R
3) as ε goes to 0 (since it is bounded byMu and converges, for

each fixed t , strongly in L2
loc(R

3)); moreover, we have |(u − uε) ∗ θε,t | � Mu−uε ,
so that the strong convergence of uεk to u is kept by convolution with θε,t as far as
we work on compact subsets of (0, T ) × R

3 (and thus don’t allow t to go to 0).
Thus, Theorem 5 is proven. ��
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