1 Introduction

We consider a free boundary problem for a viscous incompressible magnetohydrodynamic motion in domain \({\mathop {\Omega }\limits ^{1}}_t\) bounded by a free surface \(S_t\). The motion interacts with an electromagnetic field located in \({\mathop {\Omega }\limits ^{2}}_t\) (Fig. 1).

In \({\mathop {\Omega }\limits ^{1}}_t\) the magnetohydrodynamic motion is described by the following system of equations

$$\begin{aligned} \begin{aligned}&v_{,t}+v\cdot \nabla v-\textrm{div}\,{\mathbb {T}}(v,p)-\mu _1{\mathop {H}\limits ^{1}}\cdot \nabla {\mathop {H}\limits ^{1}}+{1\over 2}\mu _1\nabla {\mathop {H}\limits ^{1}}^2=f,\\ {}&\textrm{div}\,v=0,\\&\mu _1{\mathop {H}\limits ^{1}}_{,t}=-\textrm{rot}\,{\mathop {E}\limits ^{1}},\\&\textrm{rot}\,{\mathop {H}\limits ^{1}}=\sigma _1({\mathop {E}\limits ^{1}}+\mu _1v\times {\mathop {H}\limits ^{1}}),\\&\textrm{div}\,{\mathop {H}\limits ^{1}}=0,\\ \end{aligned} \end{aligned}$$
(1.1)

where \(v=v(x,t)=(v_1(x,t),v_2(x,t),v_3(x,t))\in {\mathbb {R}}^3\) is the velocity of the fluid, \(p=p(x,t)\in {\mathbb {R}}\) is the pressure,\({\mathop {H}\limits ^{1}}={\mathop {H}\limits ^{1}}(x,t)=({\mathop {H}\limits ^{1}}_1(x,t),{\mathop {H}\limits ^{1}}_2(x,t), {\mathop {H}\limits ^{1}}_3(x,t)\in {\mathbb {R}}^3\) is the magnetic field, \({\mathop {E}\limits ^{1}}={\mathop {E}\limits ^{1}}(x,t)=({\mathop {E}\limits ^{1}}_1(x,t),{\mathop {E}\limits ^{1}}_2(x,t), {\mathop {E}\limits ^{1}}_3(x,t))\in {\mathbb {R}}^3\) is the electric field, \(f=f(x,t)=(f_1(x,t),f_2(x,t),f_3(x,t))\in {\mathbb {R}}^3\) is the external force field, and \(x=(x_1,x_2,x_3)\) are Cartesian coordinates. Moreover, \(\mu _1\) is the constant magnetic permeability, \(\sigma _1\) is the constant electric conductivity and \({\mathbb {T}}(v,p)\) is the stress tensor of the form

$$\begin{aligned} {\mathbb {T}}(v,p)=\nu {\mathbb {D}}(v)-p{\mathbb {I}}, \end{aligned}$$
(1.2)

where \(\nu \) is the positive viscosity coefficient, \({\mathbb {I}}\) is the unit matrix and \({\mathbb {D}}(v)\) is the dilatation tensor of the form

$$\begin{aligned} {\mathbb {D}}(v)=\{v_{i,x_j}+v_{j,x_i}\}_{i,j=1,2,3}. \end{aligned}$$
(1.3)

For system (1.1) the following initial and boundary conditions are prescribed

$$\begin{aligned} \begin{aligned}&{\bar{n}}\cdot {\mathbb {T}}(v,p)+\mu _1{\bar{n}}\cdot {\mathbb {T}}({\mathop {H}\limits ^{1}})=p_0{\bar{n}}\quad&\textrm{on}\ \ S_t,\\ {}&v|_{t=0}=v(0),\ \ {\mathop {H}\limits ^{1}}|_{t=0}={\mathop {H}\limits ^{1}}(0),\ \ \textrm{div}\,{\mathop {H}\limits ^{1}}(0)=0\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_t,\\ {}&{\mathop {\Omega }\limits ^{1}}_t|_{t=0}={\mathop {\Omega }\limits ^{1}}_0,\ \ S_t|_{t=0}=S_0,\\ \end{aligned} \end{aligned}$$
(1.4)

where \({\bar{n}}\) is the unit vector outward to \({\mathop {\Omega }\limits ^{1}}_t\) and normal to \(S_t\), the constant exterior pressure \(p_0\) can be absorbed by pressure p and

$$\begin{aligned} {\mathbb {T}}({\mathop {H}\limits ^{1}})=\bigg \{{\mathop {H}\limits ^{1}}_i{\mathop {H}\limits ^{1}}_j-{1\over 2}{\mathop {H}\limits ^{1}}^2\delta _{ij}\bigg \}_{i,j=1,2,3}. \end{aligned}$$
(1.5)
Fig. 1
figure 1

The two dimensional cross section by a plane of the three-dimensional geometrical description of the considered free boundary problem

The boundary conditions \((1.4)_1\) implies the compatibility condition

$$\begin{aligned} {\bar{n}}(0)\cdot {\mathbb {D}}(v(0))\cdot {{\bar{\tau }}}(0)+\mu _1{\bar{n}}(0)\cdot {\mathop {H}\limits ^{1}}(0){{\bar{\tau }}}(0)\cdot {\mathop {H}\limits ^{1}}(0)=0\quad \textrm{on}\ \ S_0, \end{aligned}$$

where \({\bar{n}}(0)={\bar{n}}|_{t=0}\), \({{\bar{\tau }}}(0)={{\bar{\tau }}}|_{t=0}\) and \({{\bar{\tau }}}\) is a tangent vector to \(S_t\).

In \({\mathop {\Omega }\limits ^{2}}_t\) we have a motionless dielectric gas under a constant pressure \(p_0\). Therefore, we only have an electromagnetic field described by the system of equations

$$\begin{aligned} \begin{aligned}&\mu _2{\mathop {H}\limits ^{2}}_{,t}=-\textrm{rot}\,{\mathop {E}\limits ^{2}},\\&\sigma _2{\mathop {E}\limits ^{2}}=\textrm{rot}\,{\mathop {H}\limits ^{2}},\\&\textrm{div}\,{\mathop {H}\limits ^{2}}=0.\\ \end{aligned} \end{aligned}$$
(1.6)

For system (1.6) the following initial and boundary conditions are prescribed:

$$\begin{aligned} \begin{aligned}&{\mathop {H}\limits ^{2}}|_{t=0}={\mathop {H}\limits ^{2}}(0),\ \ \textrm{div}\,{\mathop {H}\limits ^{2}}(0)=0,\ \ {\mathop {\Omega }\limits ^{2}}_t|_{t=0}={\mathop {\Omega }\limits ^{2}}_0,\\&{\mathop {H}\limits ^{2}}\cdot {{\bar{\tau }}}_\alpha |_B=H_{*\alpha },\ \ \alpha =1,2,\ \ \textrm{div}\,{\mathop {H}\limits ^{2}}|_B=0, \end{aligned} \end{aligned}$$
(1.7)

where \({{\bar{\tau }}}_\alpha \), \(\alpha =1,2\), are tangent vectors to B.

The magnetohydrodynamic system (1.1) is composed of two problems. For a given magnetic field \({\mathop {H}\limits ^{1}}\) system \((1.1)_{1,2}\) determines velocity v and pressure p under appropriate initial and boundary conditons (1.4). To formulate a problem for \({\mathop {H}\limits ^{1}}\) we have to recall that a motion in \({\mathop {\Omega }\limits ^{1}}_t\) interacts with an electro-magnetic field in \({\mathop {\Omega }\limits ^{2}}_t\) through the free surface \(S_t\) by transmission conditions. Therefore, system (1.1\(_{3,4,5})\) and (1.6) is a problem for \({\mathop {H}\limits ^{1}}\) and \({\mathop {H}\limits ^{2}}\) which are coupled by transmission conditions on the interface \(S_t\). Therefore, for a given v, we have the following problem for \({\mathop {H}\limits ^{1}}\) and \({\mathop {H}\limits ^{2}}\):

$$\begin{aligned} \begin{aligned}&\mu _1{\mathop {H}\limits ^{1}}_{,t}=-\textrm{rot}\,{\mathop {E}\limits ^{1}}\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_t,\\&\textrm{rot}\,{\mathop {H}\limits ^{1}}=\sigma _1({\mathop {E}\limits ^{1}}+\mu _1v\times {\mathop {H}\limits ^{1}})\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_t,\\ {}&\textrm{div}\,{\mathop {H}\limits ^{1}}=0\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_t,\\ {}&\mu _2{\mathop {H}\limits ^{2}}_{,t}=-\textrm{rot}\,{\mathop {E}\limits ^{2}}\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{2}}_t,\\ {}&\textrm{rot}\,{\mathop {H}\limits ^{2}}=\sigma _2{\mathop {E}\limits ^{2}}\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{2}}_t,\\ {}&\textrm{div}\,{\mathop {H}\limits ^{2}}=0\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{2}}, \end{aligned} \end{aligned}$$
(1.8)

where

$$\begin{aligned}\begin{aligned}&{\mathop {H}\limits ^{1}}|_{t=0}={\mathop {H}\limits ^{1}}(0),\ \ {\mathop {H}\limits ^{2}}|_{t=0}={\mathop {H}\limits ^{2}}(0),\ \ {\mathop {H}\limits ^{2}}\cdot {{\bar{\tau }}}_\alpha |_B=H_{*\alpha },\ \ \alpha =1,2,\\&\textrm{div}\,{\mathop {H}\limits ^{2}}|_B=0, \end{aligned} \end{aligned}$$

and \({{\bar{\tau }}}_\alpha \), \(\alpha =1,2\), are tangent vectors to B. Electric vectors \({\mathop {E}\limits ^{1}}\) and \({\mathop {E}\limits ^{2}}\) are auxiliary.

To make system (1.8) complete we have to add transmission conditions. The conditions are recessary for a proof of existence of solutions to (1.1)–(1.8). Satisfying them we can derive such energy equality which can imply all necessary estimates for the proof of existence in the \(L_2\)-approach.

Lemma 1.1

Assume that near any point of \(S_t\) there exists an orthonormal system \(({{\bar{\tau }}}_1,{{\bar{\tau }}}_2,{\bar{n}})\), where \({{\bar{\tau }}}_\alpha \), \(\alpha =1,2\), is tangent to \(S_t\) and \({\bar{n}}\) is normal.

Let \(a_i\), \(i=1,2\), be given positive numbers. Let \(H_{*\alpha }=0\), \(\alpha =1,2\). Assume that

$$\begin{aligned} \sum _{\alpha =1}^2(a_1{\mathop {E}\limits ^{1}}\cdot {{\bar{\tau }}}_\alpha {\bar{n}}\times {{\bar{\tau }}}_\alpha \cdot {\mathop {H}\limits ^{1}}-a_2{\mathop {E}\limits ^{2}}\cdot {{\bar{\tau }}}_\alpha {\bar{n}}\times {{\bar{\tau }}}_\alpha \cdot {\mathop {H}\limits ^{2}})=0. \end{aligned}$$
(1.9)

Then the following energy equality

$$\begin{aligned} \sum _{i=1}^2\bigg [a_i\cdot \mu _i\intop _{{\mathop {\Omega }\limits ^{i}}_t}{\mathop {H}\limits ^{i}}_{,t}\cdot {\mathop {H}\limits ^{i}}dx+a_i\intop _{{\mathop {\Omega }\limits ^{i}}_t} {\mathop {E}\limits ^{i}}\cdot \textrm{rot}\,{\mathop {H}\limits ^{i}}dx\bigg ]=0 \end{aligned}$$
(1.10)

holds.

Proof

From \((1.8)_1\) and \((1.8)_4\) we have

$$\begin{aligned} \sum _{i=1}^2\intop _{{\mathop {\Omega }\limits ^{i}}_t}a_i\mu _i{\mathop {H}\limits ^{i}}_{,t}\cdot {\mathop {H}\limits ^{i}}dx+\sum _{i=1}^2\intop _{{\mathop {\Omega }\limits ^{i}}_t} a_i\textrm{rot}\,{\mathop {E}\limits ^{i}}\cdot {\mathop {H}\limits ^{i}}dx=0. \end{aligned}$$
(1.11)

Recall the identity

$$\begin{aligned} \intop _{\Omega _t}\textrm{rot}\,H\cdot \psi dx=\intop _{\Omega _t}H\cdot \textrm{rot}\,\psi dx-\intop _{S_t}{\bar{n}}\times H\cdot \psi dS_t, \end{aligned}$$
(1.12)

where \(S_t=\partial \Omega _t\), \(\psi \) is a sufficiently regular function and \({\bar{n}}\) is the unit exterior vector to \(\Omega _t\) and normal to \(S_t\).

From (1.12) we have

$$\begin{aligned} \intop _{{\mathop {\Omega }\limits ^{1}}_t}\textrm{rot}\,{\mathop {E}\limits ^{1}}\cdot {\mathop {H}\limits ^{1}}dx=\intop _{{\mathop {\Omega }\limits ^{1}}_t}{\mathop {E}\limits ^{1}}\cdot \textrm{rot}\,{\mathop {H}\limits ^{1}}dx-\intop _{S_t}{\mathop {{\bar{n}}}\limits ^{1}}\times {\mathop {E}\limits ^{1}}\cdot {\mathop {H}\limits ^{1}}dS_t, \end{aligned}$$
(1.13)
$$\begin{aligned} \intop _{{\mathop {\Omega }\limits ^{2}}_t}\textrm{rot}\,{\mathop {E}\limits ^{2}}\cdot {\mathop {H}\limits ^{2}}dx=\intop _{{\mathop {\Omega }\limits ^{2}}_t}{\mathop {E}\limits ^{2}}\cdot \textrm{rot}\,{\mathop {H}\limits ^{2}}dx- \intop _{S_2}{\mathop {{\bar{n}}}\limits ^{2}}\times {\mathop {E}\limits ^{2}}\cdot {\mathop {H}\limits ^{2}}dS_t, \end{aligned}$$
(1.14)

where \({\mathop {{\bar{n}}}\limits ^{i}}\) is exterior to \({\mathop {\Omega }\limits ^{i}}_t\) and \({\mathop {{\bar{n}}}\limits ^{2}}=-{\mathop {{\bar{n}}}\limits ^{1}}\).

Using (1.13) and (1.14) in (1.11) yields

$$\begin{aligned} \begin{aligned}&\sum _{i=1}^2\intop _{{\mathop {\Omega }\limits ^{i}}_t}a_i\mu _i{\mathop {H}\limits ^{i}}_{,t}\cdot {\mathop {H}\limits ^{i}}dx+\sum _{i=1}^2\intop _{{\mathop {\Omega }\limits ^{i}}_t} a_i{\mathop {E}\limits ^{i}}\cdot \textrm{rot}\,{\mathop {H}\limits ^{i}}dx\\&\quad -\intop _{S_t}(a_1{\bar{n}}\times {\mathop {E}\limits ^{1}}\cdot {\mathop {H}\limits ^{1}}-a_2{\bar{n}}\times {\mathop {E}\limits ^{2}}\cdot {\mathop {H}\limits ^{2}})dx=0,\end{aligned} \end{aligned}$$
(1.15)

where \({\bar{n}}={\mathop {{\bar{n}}}\limits ^{1}}\). Using the orthonormal system \(({{\bar{\tau }}}_1,{{\bar{\tau }}}_2,{\bar{n}})\) we have

$$\begin{aligned} {\mathop {E}\limits ^{i}}=\sum _{\alpha =1}^2{\mathop {E}\limits ^{i}}\cdot {{\bar{\tau }}}_\alpha {{\bar{\tau }}}_\alpha +{\mathop {E}\limits ^{i}}\cdot {\bar{n}}{\bar{n}},\ \ i=1,1. \end{aligned}$$
(1.16)

In view of (1.16) the boundary term in (1.15) equals

$$\begin{aligned} \sum _{\alpha =1}^2\intop _{S_t}(a_1{\mathop {E}\limits ^{1}}\cdot {{\bar{\tau }}}_\alpha {\bar{n}}\times {{\bar{\tau }}}_\alpha \cdot {\mathop {H}\limits ^{1}}-a_2{\mathop {E}\limits ^{2}}\cdot {{\bar{\tau }}}_\alpha {\bar{n}}\times {{\bar{\tau }}}_\alpha \cdot {\mathop {H}\limits ^{2}})dS_t \end{aligned}$$
(1.17)

Hence (1.9) implies (1.10) and concludes the proof. \(\square \)

Remark 1.2

The boundary term in (1.15) needs more regularity than the second term. If the transmission condition does not hold equality (1.15) does not imply any estimate.

Remark 1.3

(Some discussion of transmission conditions can be found in [1]). There is many different transmission conditions.

  1. 1.

    Let \(a_1^{\nu _1}{\mathop {E}\limits ^{1}}\cdot {{\bar{\tau }}}_\alpha =a_2^{\nu _2}{\mathop {E}\limits ^{2}}\cdot {{\bar{\tau }}}_\alpha ,\ \ a_1^{\nu _2}{\bar{n}}\times {{\bar{\tau }}}_\alpha \cdot {\mathop {H}\limits ^{1}}=a_2^{\nu _2}{\bar{n}}\times {{\bar{\tau }}}_\alpha \cdot {\mathop {H}\limits ^{2}},\ \ \alpha =1,2\), where \(\nu _1+\nu _2=1\) and \(a_1\), \(a_2\) are positive numbers. Then (1.9) holds.

  2. 2.

    Let \(a_1=a_2=1\), \({\mathop {E}\limits ^{1}}\cdot {{\bar{\tau }}}_\alpha ={\mathop {E}\limits ^{2}}\cdot {{\bar{\tau }}}_\alpha \), \({\bar{n}}\times {{\bar{\tau }}}_\alpha \cdot {\mathop {H}\limits ^{1}}={\bar{n}}\times {{\bar{\tau }}}_\alpha \cdot {\mathop {H}\limits ^{2}}\), \(\alpha =1,2\). Then (1.9) also holds.

  3. 3.

    Let \(a_1=a_2=1\), \({\mathop {E}\limits ^{1}}\cdot {{\bar{\tau }}}_\alpha =a{\mathop {E}\limits ^{2}}\cdot {{\bar{\tau }}}_\alpha \), \({\bar{n}}\times {{\bar{\tau }}}_\alpha \cdot {\mathop {H}\limits ^{1}}={1\over a}\bar{n}\times {{\bar{\tau }}}_\alpha \cdot {\mathop {H}\limits ^{2}}\), \(\alpha =1,2\), where a is an arbitrary positive number. Then (1.9) is satisfied too.

  4. 4.

    We can also define anisotropic transmission conditions.

In cases 1 and 3 we have jumps of tangent components of electric and magnetic fields.

We have to recall that in magnetohydrodynamics the displacement current \(E_{,t}\) is omitted.

To prove the existence of solutions to problem (1.1)–(1.9) we transform it into two problems: the problem for the fluid motion and the problem for the electromagnetic field. Therefore, for given \({\mathop {H}\limits ^{1}}\) we have the problem for (vp):

$$\begin{aligned} \begin{aligned}&v_{,t}+v\cdot \nabla v-\textrm{div}\,{\mathbb {T}}(v,p)=f+\mu _1\textrm{div}\,{\mathbb {T}}({\mathop {H}\limits ^{1}})\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_t,\\ {}&\textrm{div}\,v=0\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_t,\\&{\bar{n}}\cdot {\mathbb {T}}(v,p)=-\mu _1{\bar{n}}\cdot {\mathbb {T}}({\mathop {H}\limits ^{1}})\quad&\textrm{on}\ \ S_t,\\ {}&v|_{t=0}=v(0)\quad&\textrm{in}\ \ \Omega _0,\end{aligned} \end{aligned}$$
(1.18)

where we assumed that \(p_0\) is absorbed by p.

Next for a given v, the electromagnetic field is determined by the problem:

$$\begin{aligned} \begin{aligned}&\begin{aligned}&\mu _1{\mathop {H}\limits ^{1}}_{,t}=-\textrm{rot}\,{\mathop {E}\limits ^{1}},\ \ \textrm{rot}\,{\mathop {H}\limits ^{1}}=\sigma _1({\mathop {E}\limits ^{1}}+ \mu _1v\times {\mathop {H}\limits ^{1}}),\\&\textrm{div}\,{\mathop {H}\limits ^{1}}=0\end{aligned}\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_t,\\&\mu _2{\mathop {H}\limits ^{2}}_{,t}=-\textrm{rot}\,{\mathop {E}\limits ^{2}},\ \ \sigma _2{\mathop {E}\limits ^{2}}=\textrm{rot}\,{\mathop {H}\limits ^{2}},\ \ \textrm{div}\,{\mathop {H}\limits ^{2}}=0\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{2}}_t,\\ {}&{\mathop {H}\limits ^{1}}|_{t=0}={\mathop {H}\limits ^{1}}(0),\ \ \textrm{div}\,{\mathop {H}\limits ^{1}}(0)=0\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_0,\\&{\mathop {H}\limits ^{2}}|_{t=0}={\mathop {H}\limits ^{2}}(0),\ \ \textrm{div}\,{\mathop {H}\limits ^{2}}(0)=0\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{2}}_0,\\&{\mathop {H}\limits ^{2}}\cdot {{\bar{\tau }}}'_\alpha =H_{*\alpha },\ \ \textrm{div}\,{\mathop {H}\limits ^{2}}|_B=0,\ \ {{\bar{\tau }}}'_\alpha ,\ \ \alpha =1,2,\quad&\text {is a tangent vector to}\ B,\\ {}&\text {transmission condition }(1.9).\end{aligned} \end{aligned}$$
(1.19)

Let v be a solution to (1.18). Then Lagrangian coordinates are the Cauchy data to the problem

$$\begin{aligned} {dx\over dt}=v(x,t),\quad x|_{t=0}=\xi . \end{aligned}$$

Then

$$\begin{aligned} x(\xi ,t)=\xi +\intop _0^t\bar{v}(\xi ,t^{\prime })dt^{\prime }, \end{aligned}$$

where \(\bar{v}(\xi ,t)=v(x(\xi ,t),t)\) describes a relation between Cartesian and Lagrangian coordinates.

Therefore, the transmission condition (1.9) holds on the surface

$$\begin{aligned} S_t=\bigg \{x\in {\mathbb {R}}^3:x=\xi +\intop _0^t\bar{v}(\xi ,t^{\prime }),dt^{\prime },\ \xi \in S_0\bigg \}. \end{aligned}$$

The structure of problems (1.18), (1.19) suggests an applying a method of successive approximations.

Eliminating the electric field in (1.19) yields

$$\begin{aligned} \begin{aligned}&\mu _1{\mathop {H}\limits ^{1}}_{,t}+{1\over \sigma _1}\textrm{rot}\,^2{\mathop {H}\limits ^{1}}=\mu _1\textrm{rot}\,(v\times {\mathop {H}\limits ^{1}})\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_t,\\ {}&\textrm{div}\,{\mathop {H}\limits ^{1}}=0\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_t,\\&\mu _2{\mathop {H}\limits ^{2}}_t+{1\over \sigma _2}\textrm{rot}\,^2{\mathop {H}\limits ^{2}}=0\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{2}}_t,\\ {}&\textrm{div}\,{\mathop {H}\limits ^{2}}=0\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{2}}_t,\\ {}&{\mathop {H}\limits ^{1}}|_{t=0}={\mathop {H}\limits ^{1}}(0),\ \ \textrm{div}\,{\mathop {H}\limits ^{1}}(0)=0\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_0,\\&{\mathop {H}\limits ^{2}}|_{t=0}={\mathop {H}\limits ^{2}}(0),\ \ \textrm{div}\,{\mathop {H}\limits ^{2}}(0)=0\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{2}}_0,\\&{\mathop {H}\limits ^{2}}\cdot {{\bar{\tau }}}'_\alpha =H_{*\alpha },\ \ \textrm{div}\,{\mathop {H}\limits ^{2}}|_B=0,\ \ {{\bar{\tau }}}'_\alpha ,\ \ \alpha =1,2,\\&\quad \text {is a tangent vector to}\ B\quad&\textrm{on}\ \ B,\\&\text {transmission conditions }(1.9)\text { holds}. \end{aligned} \end{aligned}$$
(1.20)

Now, we formulate the main result of this paper

Theorem 1.4

Assume that \(\Omega ={\mathop {\Omega }\limits ^{1}}_t\cup S_t\cup {\mathop {\Omega }\limits ^{2}}_t\). Assume that \(f\in H^{\alpha ,\alpha /2}(\Omega ^t)\), \(H_{*\beta }\in H^{3/2+\alpha ,3/4+\alpha /2}(B^t)\), \(S_0\in H^{3/2+\alpha }\), where \({5\over 8}<\alpha <1\), \(\beta =1,2\). Assume that \(v(0)\in H^{1+\alpha }({\mathop {\Omega }\limits ^{1}}_0)\), \({\mathop {H}\limits ^{i}}(0)\in H^{1+\alpha }({\mathop {\Omega }\limits ^{i}}_0)\), \(i=1,2\).

Then for T sufficiently small there exists a local solution to problem (1.18)–(1.20) such that \({\bar{v}}\in H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)\), \({\mathop {{\bar{H}}}\limits ^{i}}\in H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{i}}_0^t)\), \(i=1,2\), \({\bar{p}}_\xi ,{\bar{p}}\in L_2({\mathop {\Omega }\limits ^{1}}_0^t)\), \({\bar{p}}|_{S_0}\in H^{1/2+\alpha ,1/4+\alpha /2}(S_0^t)\) and the estimate

$$\begin{aligned} \begin{aligned} X(t)&\equiv \Vert {\bar{v}}\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}+\Vert {\bar{p}}_\xi \Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}+\Vert {\bar{p}}\Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\quad +\Vert {\bar{p}}|_{S_0}\Vert _{H^{1/2+\alpha ,1/4+\alpha /2}(S_0^t)}\le c\bigg (\Vert {\bar{f}}\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\quad +\sum _{\beta =1}^2\Vert H_{*\beta }\Vert _{H^{3/2+\alpha ,3/4+\alpha /2}(B^t)}+ \Vert v(0)\Vert _{H^{1+\alpha }({\mathop {\Omega }\limits ^{1}}_0)}\\&\quad +\sum _{i=1}^2\Vert {\mathop {H}\limits ^{i}}(0)\Vert _{H^{1+\alpha }({\mathop {\Omega }\limits ^{i}}_0)}\bigg )\end{aligned} \end{aligned}$$
(1.21)

holds, where \(t\le T\) and \({\bar{v}}\), \({\mathop {{\bar{H}}}\limits ^{i}}\), \({\bar{p}}\), \({\bar{f}}\) are equal to v, \({\mathop {H}\limits ^{i}}\), p, f expressed in Lagrangian coordinates. Moreover, the Sobolev–Slobodetskii space \(H^{k+\alpha ,k/2+\alpha /2}\!\), \(k\in {\mathbb {N}}\), \(\alpha \in (0,1)\) is defined in (2.2.1).

In this paper we prove existence of local solutions to problem (1.18), (1.20). The formulation of problem (1.18), (1.20) suggests that the method of successive approximations should be used. The method is described in Sect. 3 in problems (3.8) and (3.9). The Stokes system (3.8) with the Neumann boundary conditions determines a relation between \(v_{n+1}\), \(p_{n+1}\) at the \(n+1\)-th step of iteration and \(v_n\), \(p_n\), \({\mathop {H}\limits ^{1}}_n\) at the n-th step. Similarly, \({\mathop {H}\limits ^{1}}_{n+1}\), \({\mathop {H}\limits ^{2}}_{n+1}\) are solutions to problem (3.9) for given \(v_n\) \({\mathop {H}\limits ^{1}}_n\), \({\mathop {H}\limits ^{2}}_n\). The existence of solutions to problem (3.8) follows from Lemma 2.3.2. Problem (3.9) describes \({\mathop {H}\limits ^{1}}_{n+1}\) and \({\mathop {H}\limits ^{2}}_{n+1}\) in domains \({\mathop {\Omega }\limits ^{1}}_0\) and \({\mathop {\Omega }\limits ^{2}}_0\), respectively. Moreover, \({\mathop {H}\limits ^{1}}_{n+1}\) and \({\mathop {H}\limits ^{2}}_{n+1}\) are coupled through the free surface \(S_0\) by transmission conditions (see Lemma 1.1) and \({\mathop {H}\limits ^{2}}_{n+1}\) satisfies some boundary conditions on B. Existence of solutions to problem (3.9) follows from Lemma 2.5.1. The proof of this lemma exploits the technique of regularizer introduced in [2]. Since Lagrangian coordinates are used domains \({\mathop {\Omega }\limits ^{1}}_0\), \({\mathop {\Omega }\limits ^{2}}_0\) are the initial domains and \(S_0\) is the initial free boundary.

Exploiting Lagrangian coordinates the r.h.s. of problems (3.8) and (3.9) are strongly nonlinear and complicated.

In Sect. 4 and 5 we derive the inequality (see Corollaries 4.5 and 5.4)

$$\begin{aligned} X_{n+1}(t)\le \phi (t^aX_n(t),\textrm{data}), \end{aligned}$$
(1.22)

where

$$\begin{aligned} X_n(t)=\Vert {\bar{v}}_n\Vert _{V_2^{2+\alpha }(\Omega _0^t)}+\sum _{i=1}^2\Vert {\mathop {{\bar{H}}}\limits ^{i}}_n\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{i}}_0^t)}, \end{aligned}$$
(1.23)

where \(V_2^{2+\alpha }(\Omega ^t)\) is defined by

$$\begin{aligned} \Vert u\Vert _{V_2^{2+\alpha }(\Omega ^t)}=\sup _t\Vert u(t)\Vert _{H^{1+\alpha }(\Omega )}+ \Vert u\Vert _{H^{2+\alpha ,1+\alpha /2}(\Omega ^t)}, \end{aligned}$$

\(\alpha >5/8\), \(\phi \) is a strongly nonlinear increasing function and \(a>0\).

Thanks to the coefficient \(t^a\) and t sufficiently small we derive the estimate (see Lemma 6.1)

$$\begin{aligned} X_n(t)\le \phi (\textrm{data})\quad \mathrm{for\ any}\ \ n\in {\mathbb {N}}. \end{aligned}$$
(1.24)

Using differences introduced in Lemma 6.2 we prove in Sect. 6 that the sequence \(({\bar{v}}_n,{\mathop {{\bar{H}}}\limits ^{1}}_n,{\mathop {{\bar{H}}}\limits ^{2}}_n)\) converges. Hence, we prove the existence of solutions to problem (1.18), (1.20).

We should explain some points of the proof of Lemma 2.5.1 which needs the technique of regularizer. This technique needs to examine the following local problems derived from (3.9):

  1. 1.

    near an interior point of \({\mathop {\Omega }\limits ^{1}}_0\),

  2. 2.

    near an interior point of \({\mathop {\Omega }\limits ^{2}}_0\),

  3. 3.

    near a point of \(S_0\),

  4. 4.

    near a point of B.

The local problems in cases 3 and 4 are considered in Sects. 7 and 8, respectively. To solve the local problems we need Besov spaces \(H^{2+\alpha ,1+\alpha /2}\) expressed in the Fourier-Laplace transforms. This is possible because \(H^{2+\alpha ,1+\alpha /2}\) are \(L_2\)-Besov spaces.

The equations of magnetohydrodynamics (mhd) can be found in [3, 4].

The first result on solvability of mhd equations appeared in [5]. Later free boundary problems to incompressible viscous mhd with resistivity were considered in [6].

Free boundary problems for mhd equations were also considered in [7, 8]. In [7, 8] the external magnetic field satisfies the elliptic system

$$\begin{aligned} \textrm{rot}\,{\mathop {H}\limits ^{2}}=0,\quad \textrm{div}\,{\mathop {H}\limits ^{2}}=0 \end{aligned}$$

However in those papers the boundary condition on the free surface contains the surface tension.

The existence of local solutions to problem (1.18), (1.20) has been already considered in [2, 9, 10]. Comparing to [2] in this paper we proved existence of solutions with the lowest possible regularity. Moreover, we used the \(L_2\)-approach because we are going to prove global existence of solutions using appropriate differential inequalities (see [11]). In [9, 10] the existence of solutions to problem (1.18), (1.20) is proved by the Faedo–Galerkin method. The applied energy method to solutions to problem (1.20) in [9, 10] implies very strong restrictions on the transmission coefficients. In this approach the proof of existence with optimal regularity is not possible.

In this paper we express the results in [9] in a more explicit and appropriate way.

In [12, 13], using the Weis theory of Fourier multipliers, two different mhd fluids inteacting through a free surface are considered.

The result similar to Lemma 2.5.1 is also proved in [14].

In [15,16,17] the global existence of solutions to problem (1.18), (1.20) is proved by the energy method so only Sobolev spaces are used.

Moreover, the methods used in [15,16,17] imposes strong restrictions on the transmission coefficients. In the forthcoming paper we will relax the restrictions.

2 Notation and Auxiliary Results

2.1 Partition of Unity

To prove the existence of solutions to problem (1.18), (1.20) we need a partition of unity. We consider two collections of open subsets \(\{\omega ^{(k)}\}\) and \(\{\Omega ^{(k)}\}\), \(k\in {\mathfrak {M}}\cup {\mathfrak {N}}\), such that \({{\bar{\omega }}}^{(k)}\subset \Omega ^{(k)}\subset \Omega _0={\mathop {\Omega }\limits ^{1}}_0\cup {\mathop {\Omega }\limits ^{2}}_0\), \(\bigcup _k\omega ^{(k)}=\bigcup _k\Omega ^{(k)}=\Omega _0\), \({{\bar{\Omega }}}^{(k)}\cap S_0=\phi _0\), where \(\phi _0\) describes the empty set for \(k\in {\mathfrak {M}}_1\cup {\mathfrak {M}}_2\), \({{\bar{\Omega }}}^{(k)}\cap S_0\not =\phi _0\), where \(\phi _0\) describes the empty set for \(k\in {\mathfrak {N}}_1\) and \({{\bar{\Omega }}}^{(k)}\cap B\not =\phi _0\), where \(\phi _0\) describes the emnpty set for \(k\in {\mathfrak {N}}_2\), \({\mathfrak {N}}={\mathfrak {N}}_1\cup {\mathfrak {N}}_2\). Moreover, subdomains with \(k\in {\mathfrak {M}}_i\) are contained in \({\mathop {\Omega }\limits ^{i}}_0\), \(i=1,2\).

We assume that at most \(N_0\) of the \(\Omega ^{(k)}\) have nonempty intersections, \(\sup _k\textrm{diam}\,\Omega ^{(k)}\le 2\lambda \), \(\sup _k \textrm{diam}\,\omega ^{(k)}\le \lambda \) for some \(\lambda >0\). Let \(\zeta ^{(k)}(x)\) be a smooth function such that \(0\le \zeta ^{(k)}(x)\le 1\), \(\zeta ^{(k)}(x)=1\) for \(x\in \omega ^{(k)}\), \(\zeta ^{(k)}(x)=0\) for \(x\in \Omega _0\setminus \Omega ^{(k)}\) and \(|D_x^\nu \zeta ^{(k)}(x)|\le c/\lambda ^{|\nu |}\). Then \(1\le \sum _k(\zeta ^{(k)}(x))^2\le N_0\). Introducing the function

$$\begin{aligned} \eta ^{(k)}(x)={\zeta ^{(k)}(x)\over \sum _l(\zeta ^{(l)}(x))^2} \end{aligned}$$

we have that \(\eta ^{(k)}(x)=0\) for \(x\in \Omega _0\setminus \Omega ^{(k)}\), \(\sum _k\eta ^{(k)}(x)\zeta ^{(k)}(x)=1\) and \(|D_x^\nu \eta ^{(k)}(x)|\le c/\lambda ^{|\nu |}\).

We denote by \(\xi ^{(k)}\) an interior point of \(\omega ^{(k)}\) and \(\Omega ^{(k)}\) for \(k\in {\mathfrak {M}}\) and an interior point of \({{\bar{\omega }}}^{(k)}\cap S_0\) and of \({{\bar{\Omega }}}^{(k)}\cap S_0\) for \(k\in {\mathfrak {N}}_1\) and an interior point of \({{\bar{\omega }}}^{(k)}\cap B\) and of \({{\bar{\Omega }}}^{(k)}\cap B\) for \(k\in {\mathfrak {N}}_2\). For \(k\in {\mathfrak {M}}_i\), \(\xi ^{(k)}\in \Omega _0^i\), \(i=1,2\). Let \(x=(x_1,x_2,x_3)\) be the Cartesian system of coordinates with the origin located in the interior of \(\Omega _0\).

Then by translations and rotations we introduce a local coordinate system \(y=(y_1,y_2,y_3)\) with the origin at \(\xi ^{(k)}\in \Omega ^{(k)}\cap S_0\), \(k\in {\mathfrak {N}}_1\), such that the part \({\tilde{S}}_0^{(k)}=S_0\cap {{\bar{\Omega }}}^{(k)}\) of the boundary \(S_0\) is described by \(y_3=F_k(y_1,y_2)\). We denote the transformation as \(y=Y_k(x)\). Then we introduce new coordinates defined by

$$\begin{aligned} z_i=y_i,\ \ i=1,2,\quad z_3=y_3-F_k(y_1,y_2),\ \ k\in {\mathfrak {N}}_1. \end{aligned}$$

We will denote this transformation by \({{\hat{\Omega }}}^{(k)}\ni z=\Phi _k(y)\), where \(y\in \Omega ^{(k)}\).

We assume that the sets \({{\hat{\omega }}}^{(k)}\), \({{\hat{\Omega }}}^{(k)}\) are described in local coordinates at \(\xi ^{(k)}\) by the inequalities

$$\begin{aligned}\begin{aligned}&|y_i|<\lambda ,\ \ i=1,2,\ \ |y_3-F_k(y_1,y_2)|<\lambda ,\\&|y_i|<2\lambda ,\ \ i=1,2,\ \ |y_3-F_k(y_1,y_2)|<2\lambda , \end{aligned} \end{aligned}$$

respectively. Moreover, \((y_1,y_2,y_3)\in {\mathop {\Omega }\limits ^{1}}_0\) if \(y_3>F_k(y_1,y_2)\) and \((y_1,y_2,y_3)\in {\mathop {\Omega }\limits ^{2}}_0\) for \(y_3<F_k(y_1,y_2)\). Let \(\Psi _k=\Phi _k\circ Y_k\). Then \(z=\Psi _k(x)\) and

$$\begin{aligned} {\hat{u}}^{(k)}(z,t)=u(\Psi _k^{-1}(z),t),\quad {\tilde{u}}^{(k)}(z,t)={\hat{u}}^{(k)}(z,t){{\hat{\zeta }}}^{(k)}(z,t). \end{aligned}$$

For \(k\in {\mathfrak {M}}\) we have

$$\begin{aligned} {\tilde{u}}^{(k)}(x,t)=u^{(k)}(x,t)\zeta ^{(k)}(x). \end{aligned}$$

For \(k\in {\mathfrak {N}}_2\) we introduce new local coordinates with origin at \(\xi ^{(k)}\in B\cap {{\bar{\Omega }}}^{(k)}\) such that \(y_3=F_k(y_1,y_2)\) describes locally \(B\cap {{\bar{\Omega }}}^{(k)}\). We also introduce the transfomation \(z_i=y_i\), \(i=1,2\), \(z_3=y_3-F_k(y_1,y_2)\) and assume that \(z=\Phi _k(y)\) belongs to \({{\hat{\Omega }}}^{(k)}\) for \(y\in \Omega ^{(k)}\).

Finally, \({{\hat{\omega }}}^{(k)}\), \({{\hat{\Omega }}}^{(k)}\) are described by the inequalities

$$\begin{aligned}\begin{aligned}&|y_i|<\lambda ,\ \ i=1,2,\ \ 0<y_3-F_k(y_1,y_2)<\lambda ,\\&|y_i|<2\lambda ,\ \ i=1,2,\ \ 0<y_3-F_k(y_1,y_2)<2\lambda , \end{aligned} \end{aligned}$$

respectively.

Moreover, we introduce the notation: r.h.s. (l.h.s.) right-hand side (left-hand side).

By \(\phi \) we denote an increasing positive function such that \(\phi (0)\not =0\) and it can change its form from formula to formula.

2.2 Spaces

We prove the existence of local solutions to problem (1.18), (1.20) in \(L_2\)-Sobolev-Slobodetskii spaces with the norm

$$\begin{aligned} \begin{aligned}&\Vert u\Vert _{H^{k+\alpha ,k/2+\alpha /2}(\Omega ^T)}^2=\sum _{|\beta |+2i\le k}\Vert D_x^\beta \partial _t^iu\Vert _{L_2(\Omega ^T)}^2\\&\quad +\sum _{|\beta |=k}\intop _0^T\intop _\Omega \intop _\Omega {|D_{x'}^\beta u(x',t)-D_{x''}^\beta u(x'',t)|^2\over |x'-x''|^{3+2\alpha }}dx'dx''dt\\&\quad +\intop _\Omega \intop _0^T\intop _0^T {|\partial _{t'}^{[k/2]}u(x,t')-\partial _{t''}^{[k/2]}u(x,t'')|^2\over |t'-t''|^{1+\alpha }}dxdt'dt'',\end{aligned} \end{aligned}$$
(2.2.1)

where \(\alpha \in (0,1)\), [l] is the integer part of l,

$$\begin{aligned} D_x^\beta =\partial _{x_1}^{\beta _1}\partial _{x_2}^{\beta _2}\partial _{x_3}^{\beta _3}, \quad |\beta |=\beta _1+\beta _2+\beta _3. \end{aligned}$$

We need the Hilbert type spaces because their norms can be expressed in the Fourier-Laplace transforms. We also need the Hilbert type spaces because a proof of global existence of solutions to problem (1.18), (1.20) will be made by the energy method.

In this paper we also need the \(L_p\)-Besov spaces. Hence we recall some properties of isotropic Besov spaces which are frequently used in this paper. Next, we define anisotropic Besov spaces and formulate some imbedding theorems which we need.

Let us introduce the differences

$$\begin{aligned} \Delta _i(h)u(x)=u(x+he_i)-u(x), \end{aligned}$$

where \(x\in {\mathbb {R}}^n\) and \(e_i\) \(i=1,\dots ,n\), are the standard unit vectors. Then we define inductively the m-difference

$$\begin{aligned} \Delta _i^m(h)u(x)=\Delta _i(h)(\Delta _i^{m-1}(h)u(x))=\sum _{j=0}^m(-1)^{m-j} c_{jm}(x+jhe_i), \end{aligned}$$

where \(c_{jm}={m\atopwithdelims ()j}={m!\over j!(m-j)!}\). Moreover, we introduce the difference

$$\begin{aligned} \Delta (y)f(y)=f(x+y)-f(x),\ \ x,y\in {\mathbb {R}}^n, \end{aligned}$$

and inductively

$$\begin{aligned} \Delta ^m(y)f(x)=\Delta (y)(\Delta ^{m-1}(y)f(x)). \end{aligned}$$

Since

$$\begin{aligned} \Delta (x-y)f(y)=f(x)-f(y) \end{aligned}$$

we have

$$\begin{aligned} \Delta ^m(x-y)f(y)=\sum _{i=1}^m\Delta ^m((x-y)\cdot e_i)f(y)=\sum _{i=1}^m\Delta _i^m(h)f(y), \end{aligned}$$

where the last equality holds for \((x-y)\cdot e_i=h_i\).

We define the isotropic Besov spaces by introducing the norm (see [18, Ch. 4, Sect. 18])

$$\begin{aligned} \Vert u\Vert _{B_p^l({\mathbb {R}}^n)}=\Vert u\Vert _{L_p({\mathbb {R}}^n)}+\sum _{i=1}^n\bigg (\intop _0^{h_0}dh\intop _{{\mathbb {R}}^n} {|\Delta _i^m(h)\partial _{x_i}^ku|^p\over h^{1+(l-k)p}}dx\bigg )^{1/p}, \end{aligned}$$
(2.2.2)

where \(m>l-k\), \(m,k\in {\mathbb {N}}\cup \{0\}\), \(l\in {\mathbb {R}}_+\), \(l\not ={\mathbb {Z}}\), \(p\in (1,\infty )\).

It was shown in [19] that the Besov spaces defined by (2.2.2) all coincide and have equivalent norms for all m, k satisfying \(m>l-k\).

Next we define the \(L_p\)-scale of Sobolev-Slobodetskii spaces by introducing the norm

$$\begin{aligned} \Vert u\Vert _{W_p^l({\mathbb {R}}^n)}=\Vert u\Vert _{L_p({\mathbb {R}}^n)}+\sum _{i=1}^n\bigg (\intop _0^{h_0}dh\intop _{{\mathbb {R}}^n} {|\Delta _i(h)\partial _{x_i}^{[l]}u|^p\over h^{1+p(l-[l])}}dx\bigg )^{1/p}, \end{aligned}$$
(2.2.3)

where \(l\not \in {\mathbb {Z}}\), [l] is the integer part of l.

We frequently write \(l=k+\alpha \), \(k\in {\mathbb {N}}\cup \{0\}\), \(\alpha \in (0,1)\), so \(k=[l]\) and \(\alpha =l-[l]\).

By the Golovkin theorem (see [19]) the norms of the spaces \(B_p^l({\mathbb {R}}^n)\) and \(W_p^l({\mathbb {R}}^n)\) are equivalent.

We also define the norms

$$\begin{aligned} \Vert u\Vert _{{\tilde{B}}_p^l({\mathbb {R}}^n)}=\Vert u\Vert _{L_p({\mathbb {R}}^n)}+\sum _{|\alpha |=k}\bigg (\intop _{{\mathbb {R}}^n}dx\intop _{{\mathbb {R}}^n}dy {|\Delta ^m(x-y)D_y^\alpha u(y)|^p\over |x-y|^{n+p(l-k)}}\bigg )^{1/p} \end{aligned}$$
(2.2.4)

for any \(m>l-k\) and

$$\begin{aligned} \Vert u\Vert _{{\tilde{W}}_p^l({\mathbb {R}}^n)}=\Vert u\Vert _{L_p({\mathbb {R}}^n)}+\sum _{|\alpha |=[l]}\bigg (\intop _{{\mathbb {R}}^n}dx\intop _{{\mathbb {R}}^n} {|\Delta (x-y)D_y^\alpha u(y)|^p\over |x-y|^{n+p(l-[l])}}\bigg )^{1/p}. \end{aligned}$$
(2.2.5)

Now we introduce the partial derivatives

$$\begin{aligned}\begin{aligned} \langle u\rangle _{\alpha ,x,p,\Omega ^t}&=\bigg (\intop _0^tdt'\intop _\Omega \intop _\Omega {|u(x',t')-u(x'',t')|^p\over |x'-x''|^{3+p\alpha }}dx'dx''\bigg )^{1/p},\\ \langle u\rangle _{{\alpha \over 2},t,p,\Omega ^t}&=\bigg (\intop _\Omega dx\intop _0^t\intop _0^t{|u(x,t')-u(x,t'')|^p\over |t'-t''|^{1+p\alpha /2}}dt'dt'' \bigg )^{1/p}.\end{aligned} \end{aligned}$$

Let

$$\begin{aligned} L_p^k(\Omega )=\{u:\sum _{|\alpha |=k}\Vert D_x^\alpha u\Vert _{L_p(\Omega )}<\infty \}. \end{aligned}$$

We also need the following seminorms

$$\begin{aligned} \langle u\rangle _{\alpha ,x,p,\Omega }=\bigg (\intop _\Omega \intop _\Omega {|u(x')-u(x'')|^p\over |x'-x''|^{3+p\alpha }}dx'dx''\bigg )^{1/p} \end{aligned}$$

and

$$\begin{aligned} \langle u\rangle _{{\alpha \over 2},t,p,(0,t)}=\bigg (\intop _0^t\intop _0^t {|u(t')-u(t'')|^p\over |t'-t''|^{1+p\alpha /2}}dt'dt''\bigg )^{1/p}, \end{aligned}$$

where \(\Omega \subset {\mathbb {R}}^3\).

Lemma 2.2.1

The following imbeddings

$$\begin{aligned} \langle D^ku\rangle _{\beta ,x,p,\Omega }\le c\Vert u\Vert _{H^{l+\alpha }(\Omega )}, \end{aligned}$$
(2.2.6)

where

$$\begin{aligned}{} & {} {3\over 2}-{3\over p}+k+\beta \le l+\alpha ,\ \ \alpha ,\beta \in (0,1),\ \ p\in [1,\infty ],\ \ k,l\in {\mathbb {N}}\cup \{0\}, \nonumber \\{} & {} \quad \langle \partial _t^ku\rangle _{{\beta \over 2},t,p,(0,t)}\le c\Vert u\Vert _{H^{1/2+\alpha /2}(0,t)}, \end{aligned}$$
(2.2.7)

where

$$\begin{aligned} {1\over 2}-{1\over p}+{\beta \over 2}+k\le {l\over 2}+{\alpha \over 2} \end{aligned}$$

and

$$\begin{aligned} \Vert u\Vert _{L_p^k(\Omega )}\le c\Vert u\Vert _{H^{l+\alpha }(\Omega )}, \end{aligned}$$
(2.2.8)

where

$$\begin{aligned} {3\over 2}-{3\over p}+k\le l+\alpha , \end{aligned}$$

hold.

We recall the following theorems of imbedding freguently used in the paper

Lemma 2.2.2

  1. 1.

    Let \(l,l_1\in {\mathbb {R}}_+\), \(p,p_1\in (1,\infty )\), \(p_1\ge p\). Let \(\Omega \subset {\mathbb {R}}^3\). If \(3/p-3/p_1+l_1\le l\) then

    $$\begin{aligned} W_p^l(\Omega )\subset W_{p_1}^{l_1}(\Omega ). \end{aligned}$$
  2. 2.

    If \({3\over p}-{3\over q}+\alpha \le l\), \(\alpha \in {\mathbb {N}}\cup \{0\}\), \(q\in [1,\infty ]\).

Then

$$\begin{aligned} \partial _x^\alpha W_p^l(\Omega )\subset L_q(\Omega ). \end{aligned}$$

Consider anisotropic Sobolev-Slobodetskii spaces \(W_{p,q}^{l,l/2}(\Omega \times (0,T))\) with the norm

$$\begin{aligned}\begin{aligned} \Vert u\Vert _{W_{p,q}^{l,l/2}(\Omega \times (0,T))}&=\Vert u\Vert _{L_{p,q}(\Omega ^T)}+\langle D_x^{[l]}u\rangle _{l-[l],x,p,q,\Omega ^T}\\&\quad +\langle \partial _t^{[{l\over 2}u]}u\rangle _{{1\over 2}-[{l\over 2}],t,p,q,\Omega ^T},\end{aligned} \end{aligned}$$

where [l] is the integer part of \(l,p,q\in [1,\infty ]\),

$$\begin{aligned} \langle u\rangle _{\alpha ,x,p,q,\Omega ^T}=\bigg [\intop _0^Tdt\bigg (\intop _\Omega \intop _\Omega {|u(x',t)-u(x'',t)|^p\over |x'-x''|^{3+p\alpha }}dx'dx''\bigg )^{q/p} \bigg ]^{1/q}, \end{aligned}$$

where \(\alpha \in (0,1)\) and

$$\begin{aligned} \langle u\rangle _{\alpha ,t,p,q,\Omega ^T}=\bigg [\intop _\Omega dx\bigg (\intop _0^T \intop _0^T{|u(x,t')-u(x,t'')|^q\over |t'-t''|^{1+q\alpha }}dt'dt''\bigg )^{p/q} \bigg ]^{1/p}. \end{aligned}$$

Lemma 2.2.3

Let \(l,l'\in {\mathbb {R}}_+\), \(p,q,p',q'\in [1,\infty ]\), \(p'\ge p,q'\ge q\), \(\Omega \subset {\mathbb {R}}^3\). Let

$$\begin{aligned} {3\over p}+{2\over q}-{3\over p'}-{2\over q'}+l'\le l. \end{aligned}$$

Then the imbedding

$$\begin{aligned} W_{p,q}^{l,l/2}(\Omega \times (0,T))\subset W_{p',q'}^{l',l'/2}(\Omega \times (0,T)) \end{aligned}$$

holds.

Now, we recall the trace theorems from [20].

Lemma 2.2.4

(Trace theorem) Let \(S=\partial \Omega \). Let \(u\in W_{p,q}^{l,l/2}(\Omega \times (0,T))\), \(l\in {\mathbb {R}}_+\), \((p,q)\in (1,\infty )\). Let \(\varphi =u|_{S^T}\) be the trace of u on \(S^T\). Then \(\varphi \in W_{p,q}^{l-1/p,l/2-1/2q}(S\times (0,T))\) and

$$\begin{aligned} \Vert \varphi \Vert _{W_{p,q}^{l-1/p,l/2-1/2q}(S\times (0,T))}\le c\Vert u\Vert _{W_{p,q}^{l,l/2}(\Omega \times (0,T))}, \end{aligned}$$

where c does not depend on u.

Lemma 2.2.5

(Inverse trace theorem) Let \(\varphi \in W_{p,q}^{l-1/p,l/2-1/2q}(S\times (0,T))\), \(l\in {\mathbb {R}}_+\), \((p,q)\in (1,\infty )\). Then there exists a function \(u\in W_{p,q}^{l.l/2}(\Omega \times (0,T))\) such that \(u|_{S^T}=\varphi \) and there exists a constant c independent of \(\varphi \) such that

$$\begin{aligned} \Vert u\Vert _{W_{p,q}^{l.l/2}(\Omega \times (0,T))}\le c\Vert \varphi \Vert _{W_{p,q}^{l-1/p,l/2-1/2q}(S\times (0,T))}. \end{aligned}$$

Lemma 2.2.6

(Time trace theorem) Let \(u\in W_{p,q}^{l,l/2}(\Omega \times (0,T))\), \(l\in {\mathbb {R}}_+\), \(p,q\in (1,\infty )\), \(t_0\in (0,T)\). Then the time trace \(\varphi =u|_{t=t_0}\) belongs to \(W_p^{l-2/q}(\Omega )\) and there exists a constant c independent of u such that

$$\begin{aligned} \Vert \varphi \Vert _{W_p^{l-2/q}(\Omega )}\le c\Vert u\Vert _{W_{p,q}^{l,l/2}(\Omega \times (0,T))}. \end{aligned}$$

Lemma 2.2.7

(Inverse time trace theorem) Let \(\varphi \in W_p^{l-2/q}(\Omega )\), \(l\in {\mathbb {R}}_+\), \(p,q\in (1,\infty )\). Then there exists a function \(u\in W_{p,q}^{l,l/2}(\Omega \times (0,T))\) such that

$$\begin{aligned} u|_{t=t_0}=\varphi ,\quad t_0\in (0,T), \end{aligned}$$

and

$$\begin{aligned} \Vert u\Vert _{W_{p,q}^{l,l/2}(\Omega \times (0,T))}\le c\Vert \varphi \Vert _{W_p^{l-2/q}(\Omega )}. \end{aligned}$$

Finally, we introduce the energy type space

$$\begin{aligned} \Vert u\Vert _{V_2^{2+\alpha }(\Omega ^t)}=\sup _t\Vert u(t)\Vert _{H^{1+\alpha }(\Omega )}+ \Vert u\Vert _{H^{2+\alpha ,1+\alpha /2}(\Omega ^t)}. \end{aligned}$$

2.3 The Stokes System

We consider the following Stokes problem in a bounded domain \(\Omega \) in \({\mathbb {R}}^3\) with boundary S,

$$\begin{aligned} \begin{aligned}&w_{,t}-\textrm{div}\,{\mathbb {T}}(w,p)=f\quad&\textrm{in}\ \ \Omega ^T=\Omega \times (0,T),\\ {}&\textrm{div}\,w=0\quad&\textrm{in}\ \ \Omega ^T,\\ {}&w|_S=b\quad&\textrm{on}\ \ S^T=S\times (0,T),\\&w|_{t=0}=w_0\quad&\textrm{in}\ \ \Omega .\end{aligned} \end{aligned}$$
(2.3.1)

Lemma 2.3.1

(see [21])

  1. (a)

    Assume that \(f\in H^{\alpha ,\alpha /2}(\Omega ^T)\), \(b\in H^{3/2+\alpha ,3/4+\alpha /2}(S^T)\), \(w_0\in H^{1+\alpha }(\Omega )\), \(\alpha \in (0,1)\). Then there exists a solution to problem (2.3.1) such that \(w\in H^{2+\alpha ,1+\alpha /2}(\Omega ^T)\), \(\nabla p\in H^{\alpha ,\alpha /2}(\Omega ^T)\) and there exists a function c(TS) such that

    $$\begin{aligned} \begin{aligned}&\Vert w\Vert _{H^{2+\alpha ,1+\alpha /2}(\Omega ^t)}+\Vert \nabla p\Vert _{H^{\alpha ,\alpha /2}(S^t)}\\&\quad \le c(T,S)(\Vert f\Vert _{H^{\alpha ,\alpha /2}(\Omega ^t)}+ \Vert b\Vert _{H^{3/2+\alpha ,3/4+\alpha /2}(S^t)}\\&\qquad +\Vert w_0\Vert _{H^{1+\alpha }(\Omega )}),\end{aligned} \end{aligned}$$
    (2.3.2)

    where \(t\le T\).

  2. (b)

    Assume that \(f\in L_2(\Omega ^T)\), \(b\in H^{3/2,3/4}(S^T)\), \(w_0\in H^1(\Omega )\). Then there exists a solution to problem (2.3.1) such that \(w\in H^{2,1}(\Omega ^T)\), \(\nabla p\in L_2(\Omega ^T)\) and there exists a function c(TS) such that

    $$\begin{aligned} \begin{aligned}&\Vert w\Vert _{H^{2,1}(\Omega ^t)}+\Vert \nabla p\Vert _{L_2(\Omega ^t)}\le c(T,S)(\Vert f\Vert _{L_2(\Omega ^t)}\\&\quad +\Vert b\Vert _{H^{3/2,3/4}(S^t)}+\Vert w_0\Vert _{H^1(\Omega )}),\end{aligned} \end{aligned}$$
    (2.3.3)

    where \(t\le T\).

Consider the Neumann problem to the Stokes system

$$\begin{aligned} \begin{aligned}&v_{,t}-\textrm{div}\,{\mathbb {T}}(v,p)=f\quad&\textrm{in}\ \ \Omega ^T,\\ {}&\textrm{div}\,v=g\quad&\textrm{in}\ \ \Omega ^T,\\ {}&{\bar{n}}\cdot {\mathbb {T}}(v,p)=d\quad&\textrm{on}\ \ S^T,\\ {}&v|_{t=0}=v_0\quad&\textrm{in}\ \ \Omega \end{aligned} \end{aligned}$$
(2.3.4)

To apply [21] we introduce a function \(\varphi \) satisfying the Dirichlet problem to the Laplace equation

$$\begin{aligned} \begin{aligned}&\Delta \varphi =g\\&\varphi |_S=0\end{aligned} \end{aligned}$$
(2.3.5)

Then we introduce the divergence free function

$$\begin{aligned} w=v-\nabla \varphi , \end{aligned}$$
(2.3.6)

where w is a solution to the following problem

$$\begin{aligned} \begin{aligned}&w_t+\nabla \varphi _t-\nu \Delta w-2\nu \nabla g+\nabla p=f\quad&\textrm{in}\ \ \Omega ^T,\\ {}&\textrm{div}\,w=0\quad&\textrm{in}\ \ \Omega ^T,\\&{\bar{n}}\cdot {\mathbb {T}}(w,p)=d-{\bar{n}}\cdot {\mathbb {D}}(\nabla \varphi )\equiv h\quad&\textrm{on}\ \ S^T,\\ {}&w|_{t=0}=v_0-\nabla \varphi (0)\equiv w_0\quad&\textrm{in}\ \ \Omega .\end{aligned} \end{aligned}$$
(2.3.7)

The existence of solutions to problem (2.3.7) is described by the following lemma

Lemma 2.3.2

Let T be a positive arbitrary finite number, \(S\in H^{3/2+\alpha }\), \(\alpha \in (1/2,1)\). Let \(f,\nabla g,\nabla \varphi _t\in H^{\alpha ,\alpha /2}(\Omega ^T)\), \(w_0\in H^{1+\alpha }(\Omega )\), \(h\in H^{1/2+\alpha ,1/4+\alpha /2}(S^T)\). Assume the compatibility conditions

$$\begin{aligned} \textrm{div}\,w_0=0,\quad {{\bar{\tau }}}_\beta \cdot {\mathbb {T}}(w_0)\cdot {\bar{n}}|_S=h\cdot {{\bar{\tau }}}_\beta |_{t=0},\ \ \beta =1,2, \end{aligned}$$

where \({\bar{n}}\) and \({{\bar{\tau }}}_\beta \) are normal and tangent vectors to S.

Then there exists a unique solution to problem (2.3.7) such that \(w\in H^{2+\alpha ,1+\alpha /2}(\Omega ^t)\), \(p\in H^{\alpha ,\alpha /2}(\Omega ^t)\), \(\nabla p\in H^{\alpha ,\alpha /2}(\Omega ^t)\), \(p|_{S^t}\in H^{1/2+\alpha ,1/4+\alpha /2}(S^t)\) and the inequality holds

$$\begin{aligned} \begin{aligned}&\Vert w\Vert _{H^{2+\alpha ,1+\alpha /2}(\Omega ^t)}+\Vert \nabla p\Vert _{H^{\alpha ,\alpha /2}(\Omega ^t)}+\Vert p\Vert _{H^{\alpha ,\alpha /2}(\Omega ^t)}\\&\quad +\Vert p\Vert _{H^{1/2+\alpha ,1/4+\alpha /2}(S^t)}\le c(t)(\Vert \nabla \varphi _t\Vert _{H^{\alpha ,\alpha /2}(\Omega ^t)}\\&\quad +\Vert \nabla g\Vert _{H^{\alpha ,\alpha /2}(\Omega ^t)}+\Vert f\Vert _{H^{\alpha ,\alpha /2}(\Omega ^t)}+ \Vert h\Vert _{H^{1/2+\alpha ,1/4+\alpha /2}(S^t)}\\&\quad +\Vert w_0\Vert _{H^{1+\alpha }(\Omega )})\equiv H(t),\end{aligned} \end{aligned}$$
(2.3.8)

where \(t\le T\).

In view of (2.3.6) we can write (2.3.8) in the form

$$\begin{aligned} \begin{aligned}&\Vert v\Vert _{H^{2+\alpha ,1+\alpha /2}(\Omega ^t)}+\Vert \nabla p\Vert _{H^{\alpha ,\alpha /2}(\Omega ^t)}+\Vert p\Vert _{H^{\alpha ,\alpha /2}(\Omega ^t)}\\&\quad +\Vert p\Vert _{H^{1/2+\alpha ,1/4+\alpha /2}(S^t)}\le \Vert \nabla \varphi \Vert _{H^{2+\alpha ,1+\alpha /2}(\Omega ^t)}+H(t),\end{aligned} \end{aligned}$$
(2.3.9)

where H(t) is defined in (2.3.8).

Proofs of Lemmas 2.3.1 and 2.3.2 can be found in [21], where definitions of Besov spaces introduced in [22] were used.

Existence of solutions to the Stokes system can be also found in [23,24,25].

2.4 Transformation Between Eulerian and Lagrangian Coordinates

Let \(v=v(x,t)\) be given. Lagrangian coordinates are the Cauchy data for the problem

$$\begin{aligned} {dx\over dt}=v(x,t),\quad x|_{t=0}=\xi , \end{aligned}$$

where \(x=(x_1,x_2,x_3)\) are Cartesian coordinates.

Integrating the above problem with respect to time yields

$$\begin{aligned} x=\xi +\intop _0^tv(x,t')dt'=x_v(\xi ,t). \end{aligned}$$

Then we define

$$\begin{aligned} u(\xi ,t)=v(x_v(\xi ,t),t). \end{aligned}$$

Then the transformation between Cartesian coordinate x and Lagrangian coordinate \(\xi \) is described by the relation

$$\begin{aligned} x=\xi +\intop _0^tu(\xi ,t')dt'\equiv x_u(\xi ,t). \end{aligned}$$
(2.4.1)

The Jacobian of this transformation is the matrix

$$\begin{aligned} A=\{x_{i,\xi _j}\}=\{a_{ij}\}=\bigg \{\delta _{ij}+\intop _0^tu_{i,\xi _j}(\xi ,t')dt'\bigg \}. \end{aligned}$$

We have \(A^{-1}=\{\xi _{j,x_i}\}=\{a^{ji}\}\), \(\det A=\exp \intop _0^t\textrm{div}\,_uudt'=1\), \({\mathcal {A}}=(A^T)^{-1}\) is the matrix of cofactors. Denoting \({\mathcal {A}}=\{A_{ij}\}\) we have \(a^{mj}=A_{jm}\). Since incompressible motions are considered, we have \(\sum _kA_{ik,\xi _k}(\xi ,t)=0\) and \(\nabla _u={\mathcal {A}}\cdot \nabla _\xi =\nabla _\xi \cdot {\mathcal {A}}^T\).

Assume that \(S_t\) is given, at least locally, by the equation \(F(x)=0\) and \(S_0\) by \(F(\xi )=0\).

Then the normal vectors to \(S_t\) and \(S_0\) are given, respectively, by

$$\begin{aligned} {\bar{n}}_t={\nabla _xF(x)\over |\nabla _xF(x)|},\quad {\bar{n}}_0={\nabla _\xi F(\xi )\over |\nabla _\xi F(\xi )|}. \end{aligned}$$

Then

$$\begin{aligned} {\bar{n}}_u={\nabla _xF(x_u(\xi ,t))\over |\nabla _xF(x_u(\xi ,t))|}. \end{aligned}$$

Since \(\xi _x=x_\xi ^{-1}\) we obtain

$$\begin{aligned} |I-\xi _x|\le \bigg \Vert \intop _0^tu_{,\xi }(\xi ,t')dt'\bigg \Vert _{L_\infty (\Omega )}\phi \bigg (\bigg \Vert \intop _0^tu_{,\xi }(\xi ,t')dt'\bigg \Vert _{L_\infty (\Omega )}\bigg ), \end{aligned}$$

where \(\phi \) is an increasing positive function such that \(\phi (0)\not =0\). \(\phi \) will play a role of the generic function because it can change its form from formula to formula.

By imbedding we have

$$\begin{aligned} \begin{aligned}&\big \Vert \intop _0^tu_{,\xi }(\xi ,t')dt'\bigg \Vert _{L_\infty (\Omega )}\le \intop _0^t \Vert u_{,\xi }(\cdot ,t')\Vert _{L_\infty (\Omega )}dt'\\&\quad \le c\intop _0^t\Vert u_{,\xi }(\cdot ,t')\Vert _{H^{1+\alpha }(\Omega )}dt'\le ct^{1/2}\bigg (\intop _0^t\Vert u(\cdot ,t')\Vert _{H^{2+\alpha }(\Omega )}^2dt'\bigg )^{1/2}\\&\quad \equiv c\delta _u(t),\end{aligned} \end{aligned}$$
(2.4.2)

where \(\alpha >1/2\).

In view of definition of \(\delta _u(t)\) we have

$$\begin{aligned} \Vert I-\xi _x\Vert _{L_\infty (\Omega )}\le \delta _u(t)\phi (\delta _u(t)). \end{aligned}$$
(2.4.3)

Continuing, we have

$$\begin{aligned} |\xi _x|\le & {} |x_\xi ^{-1}|\le \phi (\delta _u(t)), \end{aligned}$$
(2.4.4)
$$\begin{aligned} |\xi _{xx}|\le & {} |(x_\xi ^{-1})_{,\xi }\xi _x|\le \bigg |\intop _0^tu_{\xi \xi }(\xi ,t')dt'\bigg | \phi (\delta _u(t)). \end{aligned}$$
(2.4.5)

2.5 Problem for the Magnetic Field

In this paper we restrict our considerations to transmission condition described in the case 2 of Remark 1.3. Then problem (1.20) takes the following form

$$\begin{aligned} \begin{aligned}&\mu _1{\mathop {H}\limits ^{1}}_{,t}+{1\over \sigma _1}\textrm{rot}\,^2{\mathop {H}\limits ^{1}}= {\mu _1\over \sigma _1}\textrm{rot}\,({\mathop {v}\limits ^{1}}\times {\mathop {H}\limits ^{1}})\quad&\textrm{in}\ \ \bigcup _t{\mathop {\Omega }\limits ^{1}}_t,\\ {}&\textrm{div}\,{\mathop {H}\limits ^{1}}=0\quad&\textrm{in}\ \ \bigcup _t{\mathop {\Omega }\limits ^{1}}_t,\\&\mu _2{\mathop {H}\limits ^{2}}_{,t}+{1\over \sigma _2}\textrm{rot}\,^2{\mathop {H}\limits ^{2}}=0\quad&\textrm{in}\ \ \bigcup _t{\mathop {\Omega }\limits ^{2}}_t,\\ {}&\textrm{div}\,{\mathop {H}\limits ^{2}}=0\quad&\textrm{in}\ \ \bigcup _t{\mathop {\Omega }\limits ^{2}}_t,\\&{\mathop {H}\limits ^{2}}\cdot {{\bar{\tau }}}_\alpha =H_{*\alpha },\ \ \textrm{div}\,{\mathop {H}\limits ^{2}}|_B=0,\ \ \tau _\alpha ,\ \ \alpha =1,2\\ {}&\quad \text {is a tangent vector to}\ B\quad&\textrm{on}\ \ B^t\\&\bigg ({1\over \sigma _1}\textrm{rot}\,{\mathop {H}\limits ^{1}}-\mu _1v\times {\mathop {H}\limits ^{1}}\bigg )\cdot {{\bar{\tau }}}_\alpha ={1\over \sigma _2}\textrm{rot}\,{\mathop {H}\limits ^{2}}\cdot {{\bar{\tau }}}_\alpha ,\ \ \alpha =1,2\quad&\textrm{on}\ \ \bigcup _tS_t,\\&{\mathop {H}\limits ^{1}}_\beta ={\mathop {H}\limits ^{2}}_\beta ,\ \ \beta =1,2,3,\quad&\textrm{on}\ \ \bigcup _tS_t,\\ {}&{\mathop {H}\limits ^{1}}|_{t=0}={\mathop {H}\limits ^{1}}(0),\ \ \textrm{div}\,{\mathop {H}\limits ^{1}}(0)=0\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_0,\\&{\mathop {H}\limits ^{2}}|_{t=0}={\mathop {H}\limits ^{2}}(0),\ \ \textrm{div}\,{\mathop {H}\limits ^{2}}(0)=0\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{2}}_0,\\ {}&{\mathop {\Omega }\limits ^{i}}_t|_{t=0}={\mathop {\Omega }\limits ^{i}}_0,\ \ i=1,2,\ \ S_t|_{t=0}=S_0.\end{aligned} \end{aligned}$$
(2.5.1)

Recall that problem (2.5.1) is formulated in Cartesian coordinates.

To examine problem (2.5.1) we have to consider first the following problem with constant coefficients formulated in Lagrangian coordinates

$$\begin{aligned} \begin{aligned}&\mu _1{\mathop {{\bar{H}}}\limits ^{1}}_{,t}+{1\over \sigma _1}\textrm{rot}\,_x^2{\mathop {{\bar{H}}}\limits ^{1}}={\mathop {M}\limits ^{1}},\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_0^T,\\&\textrm{div}\,_x{\mathop {{\bar{H}}}\limits ^{1}}={\mathop {N}\limits ^{1}},\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_0^T,\\&\mu _2{\mathop {{\bar{H}}}\limits ^{2}}_{,t}+{1\over \sigma _2}\textrm{rot}\,_x^2{\mathop {{\bar{H}}}\limits ^{2}}={\mathop {M}\limits ^{2}},\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{2}}_0^T,\\&\textrm{div}\,_x{\mathop {{\bar{H}}}\limits ^{2}}={\mathop {N}\limits ^{2}},\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{2}}_0^T,\\&\bigg ({1\over \sigma _1}\textrm{rot}\,_x{\mathop {{\bar{H}}}\limits ^{1}}-{1\over \sigma _2}\textrm{rot}\,_x{\mathop {{\bar{H}}}\limits ^{2}}\bigg )\cdot {{\bar{\tau }}}_\alpha =K_\alpha ,\ \ \alpha =1,2\quad&\textrm{on}\ \ S_0^T,\\&({\mathop {{\bar{H}}}\limits ^{1}}-{\mathop {{\bar{H}}}\limits ^{2}})\cdot {\bar{n}}\times {{\bar{\tau }}}_\alpha =L_\alpha ,\ \ \alpha =1,2\quad&\textrm{on}\ \ S_0^T,\\&{\mathop {{\bar{H}}}\limits ^{2}}\cdot {{\bar{\tau }}}_\alpha |_B=H_{*\alpha },\ \ \alpha =1,2,\ \ \textrm{div}\,_x{\mathop {{\bar{H}}}\limits ^{2}}|_B=0\quad&\textrm{on}\ \ B^T,\\ {}&{\mathop {{\bar{H}}}\limits ^{i}}|_{t=0}={\mathop {H}\limits ^{i}}(0),\ \ i=1,2\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{i}}_0.\end{aligned} \end{aligned}$$
(2.5.2)

To prove the existence of solutions to problem (2.5.2) we exploit the technique of regularizer described in [26, Ch. 4, Sect. 7] and also utilized in [2, Sect. 5 and Sect. 10].

Introduce function \({\mathop {\Phi }\limits ^{i}}\), \(i=1,2\), as a solution to the problem

$$\begin{aligned} \begin{aligned} \Delta {\mathop {\Phi }\limits ^{i}}&={\mathop {N}\limits ^{i}}\quad \textrm{in}\ \ {\mathop {\Omega }\limits ^{i}}_0,\\ {\mathop {\Phi }\limits ^{i}}|_{S_0}&=0,\quad \delta _{2i}{\mathop {\Phi }\limits ^{i}}|_B=0,\ \ i=1,2,\end{aligned} \end{aligned}$$
(2.5.3)

where \(\delta _{2i}\) is the Kronecker delta.

Lemma 2.5.1

Let \(\alpha \in (0,1)\) and let \(T>0\) be given. Assume that \({\mathop {M}\limits ^{i}}\in H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{i}}_0^t)\), \(\nabla {\mathop {{{\bar{\Phi }}}}\limits ^{i}}\in H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{i}}_0^t)\), \(\nabla {\mathop {N}\limits ^{i}}\in H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{i}}_0^t)\), \({\mathop {H}\limits ^{i}}(0)\in H^{1+\alpha }({\mathop {\Omega }\limits ^{i}}_0)\), \(i=1,2\). Assume that \(H_{*j}\in H^{2+\alpha -1/2,1+\alpha /2-1/4}(B^t)\), \(B\in H^{1/2+\alpha ,1/4+\alpha /2}(B^t)\), \(K_j\in H^{1/2+\alpha ,1/4+\alpha /2}(S_0^t)\), \(L_j\in H^{3/2+\alpha ,3/4+\alpha /2}(S_0^t)\), \(j=1,2\), \(t\le T\). Then there exists a unique solution to problem (2.5.2) such that \({\mathop {{\bar{H}}}\limits ^{i}}\in V_2^{2+\alpha }({\mathop {\Omega }\limits ^{i}}_0^t)\), \(i=1,2\), and

$$\begin{aligned} \begin{aligned}&\sum _{i=1}^2\Vert {\mathop {\bar{H}}\limits ^{i}}\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{i}}_0^t)}\le c\sum _{i=1}^2(\Vert {\mathop {M}\limits ^{i}}\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{i}}_0^t)}+ \Vert \nabla {\mathop {\Phi }\limits ^{i}}\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{i}}_0^t)}\\&\quad +\Vert \nabla {\mathop {N}\limits ^{i}}\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{i}}_0^t)}+ \Vert {\mathop {H}\limits ^{i}}(0)\Vert _{H^{1+\alpha }({\mathop {\Omega }\limits ^{i}}_0)})\\&\quad +c\sum _{j=1}^2\Vert H_{*j}\Vert _{H^{3/2+\alpha ,3/4+\alpha /2}(B^t)}+ \Vert B\Vert _{H^{1/2+\alpha ,1/4+\alpha /2}(B^t)}\\&\quad +c\sum _{j=1}^2(\Vert K_j\Vert _{H^{1/2+\alpha ,1/4+\alpha /2}(S_0^t)}+ \Vert L_j\Vert _{H^{3/2+\alpha ,3/4+\alpha /2}(S_0^t)}),\end{aligned} \end{aligned}$$
(2.5.4)

where \(t\le T\).

Proof

The proof is divided into the following steps:

  1. 1.

    First we introduce a partition of unity connected with the four kinds of subdomains:

    \(1_1\):

    a neighborhood of an interior point of \({\mathop {\Omega }\limits ^{1}}_0\) located in a positive distance from \(S_0\),

    \(1_2\):

    a neighborhood of an interior point of \({\mathop {\Omega }\limits ^{2}}_0\) located in a positive distance from \(S_0\) and B,

    \(1_3\):

    a neighborhood of a point of \(S_0\),

    \(1_4\):

    a neighborhood of a point of B.

    There is constructed a partition of unity with supports corresponding to mentioned above subdomains.

  2. 2.

    Using the partition of unity problem (2.5.2) is localized to the above neighborhoods. The local problems in subdomains \(1_1\) and \(1_2\) can be easily solved. The local problem in subdomain \(1_3\) is solved in Sect. 7 and in \(1_4\) in Sect. 8.

  3. 3.

    To solve problem (2.5.2) we collect results of all above defined local problems by using the key idea of resularizer (see [26, Ch. 4]). Using the proofs of existence of solutions to problem (2.5.2) in Sects. 5 and 10 from [2] we conclude the proof of the lemma.

\(\square \)

The result similar to Lemma 2.5.1 is also proved in [14].

2.6 Spaces Defined by the Fourier–Laplace Transforms

In this subsection we follow [25]. Assume that \(u\in H^{\alpha ,\alpha /2}({\mathbb {R}}^3\times {\mathbb {R}}_+)\). Assume that u can be extended by zero for \(t<0\) and the extended \(u\in H^{\alpha ,\alpha /2}({\mathbb {R}}^3\times {\mathbb {R}})\).

We define the Fourier-Laplace transform for functions vanishing sufficiently fast at infinity by

$$\begin{aligned} {\tilde{u}}(\xi ,s)=\intop _0^\infty e^{-st}ds\intop _{{\mathbb {R}}^3}u(x,t)e^{-ix\cdot \xi }dx, \end{aligned}$$

where Re \(s>0\).

For any \(u\in H^{\alpha ,\alpha /2}({\mathbb {R}}^3\times {\mathbb {R}})\) the Fourier-Laplace transform is a holomorphic function for Re \(s>\gamma \), \(\gamma >0\). We introduce the norm

$$\begin{aligned} \Vert u\Vert _{{\tilde{H}}_\gamma ^{\alpha ,\alpha /2}({\mathbb {R}}^3\times {\mathbb {R}})}=\intop _{{\mathbb {R}}^3}d\xi \intop _{-\infty }^\infty |{\tilde{u}}(\xi ,\gamma +i\xi _0)|^2(|s|+\xi ^2)^\alpha d\xi _0, \end{aligned}$$
(2.6.1)

where \(s=\gamma +i\xi _0\).

Lemma 2.6.1

(see Lemma 2.1 from [25]). There exist constants \(c_1\), \(c_2\) such that

$$\begin{aligned}\begin{aligned}&c_1\Vert u\Vert _{{\tilde{H}}_\gamma ^{\alpha ,\alpha /2}({\mathbb {R}}^3\times {\mathbb {R}})}\le \Vert u\Vert _{H^{\alpha ,\alpha /2}({\mathbb {R}}^3\times {\mathbb {R}})}\\&\quad \le c_2\Vert u\Vert _{{\tilde{H}}_\gamma ^{\alpha ,\alpha /2}({\mathbb {R}}^3\times {\mathbb {R}})}.\end{aligned} \end{aligned}$$

Finally, we recall

Lemma 2.6.2

(see Lemma 3.1 from [25]). Let \(e(x_3)=e^{-\tau x_3}\), \(\tau =\sigma s+\xi ^2\), \(s=\gamma +i\xi _0\), \(\gamma >0\). Then

$$\begin{aligned}\begin{aligned}&\intop _0^\infty \bigg |{d^j\over dx_3^j}e(x_3)\bigg |^2dx_3\le {1\over \sqrt{2}}|\tau |^{2j-1},\\&\intop _0^\infty \intop _0^\infty \bigg |{d^je(x_3+z)\over dx_3^j}-{d^je(x_3)\over dx_3^j}\bigg |^2 {dx_3dz\over z^{1+2\varkappa }}\le c|\tau |^{2(j+\varkappa )-1}.\\ \end{aligned} \end{aligned}$$

3 Method of Successive Approximations

Let \(v=v(x,t)\) be given, where \(x\in {\mathop {\Omega }\limits ^{1}}_t\).

Definition 3.1

The Lagrangian coordinates in \({\mathop {\Omega }\limits ^{1}}_0\) are initial data to the Cauchy problem

$$\begin{aligned} {dx\over dt}=v(x,t),\quad x|_{t=0}=\xi \in {\mathop {\Omega }\limits ^{1}}_0 \end{aligned}$$
(3.1)

Hence the domain \({\mathop {\Omega }\limits ^{1}}_t\) is defined by

$$\begin{aligned} {\mathop {\Omega }\limits ^{1}}_t=\bigg \{x\in {\mathbb {R}}^3:x=x(\xi ,t)=\xi +\intop _0^t{\bar{v}}(\xi ,t')dt',\xi \in {\mathop {\Omega }\limits ^{1}}_0\bigg \}, \end{aligned}$$

where \({\bar{v}}(\xi ,t)=v(x(\xi ,t),t)\).

In free boundary problems in hydrodynamics the free boundary is built from the same fluid particles as at time \(t=0\) because \(v|_{S_t}\) is tangent to \(S_t\). Then

$$\begin{aligned} S_t=\{x\in {\mathbb {R}}^3:x=x(\xi ,t),\xi \in S_0\}. \end{aligned}$$

To formulate problem (2.5.1) in Lagrangian coordinates we have to introduce them in \({\mathop {\Omega }\limits ^{2}}_0\). Since there is no velocity in \({\mathop {\Omega }\limits ^{2}}_t\), we have to introduce it artificially.

Definition 3.2

Let \({\mathop {v}\limits ^{1}}=v\) in \({\mathop {\Omega }\limits ^{1}}_t\) and construct \({\mathop {v}\limits ^{2}}\) in \({\mathop {\Omega }\limits ^{2}}_t\) as a solution to the nonstationary Stokes problem

$$\begin{aligned} \begin{aligned}&{\mathop {v}\limits ^{2}}_{,t}-\textrm{div}\,{\mathbb {T}}({\mathop {v}\limits ^{2}},q)=0\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{2}}_t,\\ {}&\textrm{div}\,{\mathop {v}\limits ^{2}}=0\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{2}}_t,\\ {}&{\mathop {v}\limits ^{2}}|_{S_t}={\mathop {v}\limits ^{1}}|_{S_t},\ \ {\mathop {v}\limits ^{2}}|_B=0,\\ {}&{\mathop {v}\limits ^{2}}|_{t=0}={\mathop {v}\limits ^{2}}(0)\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{2}}_0,\end{aligned} \end{aligned}$$
(3.2)

where q plays the role of pressure but it is not important for any estimate for \({\mathop {v}\limits ^{2}}\). It is introduced to have \({\mathop {v}\limits ^{2}}\) divergence free.

Finally, we construct \({\mathop {v}\limits ^{2}}(0)\) as a solution to the stationary Stokes system

$$\begin{aligned} \begin{aligned}&-\Delta {\mathop {v}\limits ^{2}}(0)+\nabla q(0)=0\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{2}}_0,\\ {}&\textrm{div}\,{\mathop {v}\limits ^{2}}(0)=0\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{2}}_0,\\ {}&{\mathop {v}\limits ^{2}}(0)|_{S_0}={\mathop {v}\limits ^{1}}(0)|_{S_0},\ \ {\mathop {v}\limits ^{2}}(0)|_B=0.\end{aligned} \end{aligned}$$
(3.3)

Having \({\mathop {v}\limits ^{2}}\) constructed by problems (3.2) and (3.3), we can introduce Lagrangian coordinates \({\mathop {\xi }\limits ^{1}}\), \({\mathop {\xi }\limits ^{2}}\) by the Cauchy data to the problems

$$\begin{aligned} {d{\mathop {x}\limits ^{i}}\over dt}={\mathop {v}\limits ^{i}}(x,t),\ \ {\mathop {x}\limits ^{i}}|_{t=0}={\mathop {\xi }\limits ^{i}}\in {\mathop {\Omega }\limits ^{i}}_0,\ \ i=1,2. \end{aligned}$$
(3.4)

Then

$$\begin{aligned} \begin{aligned} {\mathop {\Omega }\limits ^{i}}_t&=\bigg \{{\mathop {x}\limits ^{i}}\in {\mathbb {R}}^3:{\mathop {x}\limits ^{i}}={\mathop {x}\limits ^{i}}({\mathop {\xi }\limits ^{i}},t)= {\mathop {\xi }\limits ^{i}}+\intop _0^t{\mathop {v}\limits ^{i}}({\mathop {x}\limits ^{i}}({\mathop {\xi }\limits ^{i}},t'),t')dt'\\&={\mathop {\xi }\limits ^{i}}+\intop _0^t{\mathop {{\bar{v}}}\limits ^{i}}({\mathop {\xi }\limits ^{i}},t')dt',{\mathop {\xi }\limits ^{i}}\in {\mathop {\Omega }\limits ^{i}}_0\bigg \},\ \ i=1,2,\end{aligned} \end{aligned}$$
(3.5)

where \({\mathop {{\bar{v}}}\limits ^{i}}({\mathop {\xi }\limits ^{i}},t)={\mathop {v}\limits ^{i}}({\mathop {x}\limits ^{i}}({\mathop {\xi }\limits ^{i}},t),t)\), \({\mathop {\xi }\limits ^{i}}\in {\mathop {\Omega }\limits ^{i}}_0\), \(i=1,2\).

Expressing problems (1.18) and (2.5.1) in Lagrangian coordinates yields

$$\begin{aligned} \begin{aligned}&{\bar{v}}_{,t}-\textrm{div}\,_{{\bar{v}}}{\mathbb {T}}_{{\bar{v}}}({\bar{v}},{\bar{p}})={\bar{f}}+\mu _1\textrm{div}\,_{{\bar{v}}}{\mathbb {T}}({\mathop {{\bar{H}}}\limits ^{1}})\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_0^T,\\&\textrm{div}\,_{{\bar{v}}}{\bar{v}}=0\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_0^T,\\&{\bar{n}}_{{\bar{v}}}\cdot {\mathbb {T}}_{{\bar{v}}}({\bar{v}},{\bar{p}})=-\mu _1{\bar{n}}_{{\bar{v}}}\cdot {\mathbb {T}}({\mathop {{\bar{H}}}\limits ^{1}})\quad&\textrm{on}\ \ S_0^T,\\ {}&{\bar{v}}|_{t=0}=v_0\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_0\end{aligned} \end{aligned}$$
(3.6)

and

$$\begin{aligned} \begin{aligned}&\mu _1{\mathop {{\bar{H}}}\limits ^{1}}_{,t}+{1\over \sigma _1}\textrm{rot}\,_{{\mathop {{\bar{v}}}\limits ^{1}}}^2{\mathop {{\bar{H}}}\limits ^{1}}=\mu _1\textrm{rot}\,_{{\mathop {{\bar{v}}}\limits ^{1}}}({\mathop {{\bar{v}}}\limits ^{1}}\times {\mathop {{\bar{H}}}\limits ^{1}})+\mu _1{\mathop {{\bar{v}}}\limits ^{1}}\cdot \nabla _{{\mathop {{\bar{v}}}\limits ^{1}}}{\mathop {{\bar{H}}}\limits ^{1}}\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_0^T,\\&\textrm{div}\,_{{\mathop {{\bar{v}}}\limits ^{1}}}{\mathop {{\bar{H}}}\limits ^{1}}=0\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_0^T,\\&\mu _2{\mathop {H}\limits ^{2}}_{,t}+{1\over \sigma _1}\textrm{rot}\,_{{\mathop {{\bar{v}}}\limits ^{2}}}^2{\mathop {{\bar{H}}}\limits ^{2}}=\mu _2{\mathop {{\bar{v}}}\limits ^{2}}\cdot \nabla _{{\mathop {{\bar{v}}}\limits ^{2}}}{\mathop {{\bar{H}}}\limits ^{2}}\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_0^T,\\&\textrm{div}\,_{{\mathop {{\bar{v}}}\limits ^{2}}}{\mathop {{\bar{H}}}\limits ^{2}}=0\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_0^T,\\&\bigg ({1\over \sigma _1}\textrm{rot}\,_{{\mathop {{\bar{v}}}\limits ^{1}}}{\mathop {{\bar{H}}}\limits ^{1}}-{1\over \sigma _2}\textrm{rot}\,_{{\mathop {{\bar{v}}}\limits ^{2}}}{\mathop {{\bar{H}}}\limits ^{2}}\bigg ){{\bar{\tau }}}_{{\bar{v}}\alpha }=\mu _1{\bar{v}}\times {\mathop {{\bar{H}}}\limits ^{1}}\cdot {{\bar{\tau }}}_{{\bar{v}}\alpha },\ \ \alpha =1,2\quad&\textrm{on}\ \ S_0^T,\\&({\mathop {{\bar{H}}}\limits ^{1}}-{\mathop {{\bar{H}}}\limits ^{2}})\cdot {\bar{n}}_{{\bar{v}}}\times {{\bar{\tau }}}_{{\bar{v}}\alpha }=0,\ \ \alpha =1,2\quad&\textrm{on}\ \ S_0^T,\\&{\mathop {{\bar{H}}}\limits ^{2}}\cdot {{\bar{\tau }}}_\alpha |_B=H_{*\alpha },\ \ \alpha =1,2,\ \ \textrm{div}\,_{{\mathop {{\bar{v}}}\limits ^{2}}}{\mathop {{\bar{H}}}\limits ^{2}}|_B=0\quad&\textrm{on}\ \ B^T,\\ {}&{\mathop {{\bar{H}}}\limits ^{i}}|_{t=0}={\mathop {H}\limits ^{i}}(0),\ \ i=1,2\quad&\textrm{in}\ \ \Omega _0,\end{aligned} \end{aligned}$$
(3.7)

where \({\bar{v}}={\mathop {{\bar{v}}}\limits ^{1}}={\mathop {{\bar{v}}}\limits ^{2}}\) on \(S_0\) and \(\nabla _{{\bar{v}}}={\partial \xi _k\over \partial x}|_{x=x(\xi ,t)}\partial _{\xi _k}\).

Moreover, any operator with subscript \({\bar{v}}\) means that it contains the transformed gradient \(\nabla _{{\bar{v}}}\) and any operator with subscript \(\xi \) contains derivatives with respect to \(\xi \).

To prove existence of local solutions to problem (3.6), (3.7) we apply the following method of successive approximations

$$\begin{aligned} \begin{aligned}&{\bar{v}}_{n+1,t}-\textrm{div}\,_\xi {\mathbb {T}}_\xi ({\bar{v}}_{n+1},{\bar{p}}_{n+1})=-(\textrm{div}\,_\xi {\mathbb {T}}_\xi ({\bar{v}}_n,{\bar{p}}_n)\\&\quad -\textrm{div}\,_{{\bar{v}}_n}{\mathbb {T}}_{{\bar{v}}_n}({\bar{v}}_n,{\bar{p}}_n))+\mu _1\textrm{div}\,_{{\bar{v}}_n}{\mathbb {T}}({\mathop {{\bar{H}}}\limits ^{1}}_n)+{\bar{f}}\equiv F_n\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_0^T,\\&\textrm{div}\,_\xi {\bar{v}}_{n+1}=\textrm{div}\,_\xi {\bar{v}}_n-\textrm{div}\,_{{\bar{v}}_n}{\bar{v}}_n\equiv g_n\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_0^T,\\&{\bar{n}}_\xi \cdot {\mathbb {T}}_\xi ({\bar{v}}_{n+1},{\bar{p}}_{n+1})=({\bar{n}}_\xi \cdot {\mathbb {T}}_\xi ({\bar{v}}_n,{\bar{p}}_n)-{\bar{n}}_{{\bar{v}}_n}\cdot {\mathbb {T}}_{{\bar{v}}_n}({\bar{v}}_n,{\bar{p}}_n))\\&\quad -\mu _1{\bar{n}}_{{\bar{v}}_n}\cdot {\mathbb {T}}({\mathop {{\bar{H}}}\limits ^{1}}_n)\equiv G_n\quad&\textrm{on}\ \ S_0^T,\\ {}&{\bar{v}}_{n+1}|_{t=0}=v(0)\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_0,\end{aligned} \end{aligned}$$
(3.8)

where \({\bar{v}}_n={\mathop {{\bar{v}}}\limits ^{1}}_n\), and

$$\begin{aligned} \begin{aligned}&\mu _1{\mathop {{\bar{H}}}\limits ^{1}}_{n+1,t}+{1\over \sigma _1}\textrm{rot}\,_\xi ^2{\mathop {{\bar{H}}}\limits ^{1}}_{n+1}={1\over \sigma _1}(\textrm{rot}\,_\xi ^2{\mathop {{\bar{H}}}\limits ^{1}}_n-\textrm{rot}\,_{{\mathop {{\bar{v}}}\limits ^{1}}_n}^2{\mathop {{\bar{H}}}\limits ^{1}}_n)\\&\qquad +\mu _1\textrm{rot}\,_{{\mathop {{\bar{v}}}\limits ^{1}}_n}({\mathop {{\bar{v}}}\limits ^{1}}_n\times {\mathop {{\bar{H}}}\limits ^{1}}_n)+\mu _1{\mathop {{\bar{v}}}\limits ^{1}}_n\cdot \nabla _{{\mathop {{\bar{v}}}\limits ^{1}}_n}{\mathop {{\bar{H}}}\limits ^{1}}_n\equiv {\mathop {M}\limits ^{1}}_n\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_0^T,\\&\textrm{div}\,_\xi {\mathop {{\bar{H}}}\limits ^{1}}_{n+1}=\textrm{div}\,_\xi {\mathop {{\bar{H}}}\limits ^{1}}_n-\textrm{div}\,_{{\mathop {{\bar{v}}}\limits ^{1}}_n}{\mathop {{\bar{H}}}\limits ^{1}}_n\equiv {\mathop {N}\limits ^{1}}_n\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_0^T,\\&\mu _2{\mathop {{\bar{H}}}\limits ^{2}}_{n+1,t}+{1\over \sigma _2}\textrm{rot}\,_\xi ^2{\mathop {{\bar{H}}}\limits ^{2}}_{n+1}={1\over \sigma _2}(\textrm{rot}\,_\xi ^2{\mathop {{\bar{H}}}\limits ^{2}}_n-\textrm{rot}\,_{{\mathop {{\bar{v}}}\limits ^{2}}_n}{\mathop {{\bar{H}}}\limits ^{2}}_n)\\&\qquad +\mu _2{\mathop {{\bar{v}}}\limits ^{2}}_n\cdot \nabla _{{\mathop {{\bar{v}}}\limits ^{2}}_n}{\mathop {{\bar{H}}}\limits ^{2}}_n\equiv {\mathop {M}\limits ^{2}}_n\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{2}}_0^T,\\&\textrm{div}\,_\xi {\mathop {{\bar{H}}}\limits ^{2}}_{n+1}=\textrm{div}\,_\xi {\mathop {{\bar{H}}}\limits ^{2}}_n-\textrm{div}\,_{{\mathop {{\bar{v}}}\limits ^{2}}_n}{\mathop {{\bar{H}}}\limits ^{2}}_n\equiv {\mathop {N}\limits ^{2}}_n\qquad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{2}}_0^T,\\&\bigg ({1\over \sigma _1}\textrm{rot}\,_\xi {\mathop {{\bar{H}}}\limits ^{1}}_{n+1}-{1\over \sigma _2}\textrm{rot}\,_\xi {\mathop {{\bar{H}}}\limits ^{2}}_{n+1}\bigg )\cdot {{\bar{\tau }}}_\alpha \\&\quad ={1\over \sigma _1}(\textrm{rot}\,_\xi {\mathop {{\bar{H}}}\limits ^{1}}_n-\textrm{rot}\,_{{\bar{v}}_n}{\mathop {{\bar{H}}}\limits ^{1}}_n)\cdot {{\bar{\tau }}}_\alpha -{1\over \sigma _2}(\textrm{rot}\,_\xi {\mathop {{\bar{H}}}\limits ^{2}}_n-\textrm{rot}\,_{{\bar{v}}_n}{\mathop {{\bar{H}}}\limits ^{2}}_n)\cdot {{\bar{\tau }}}_\alpha \\&\qquad +{1\over \sigma _1}\textrm{rot}\,_{{\bar{v}}_n}{\mathop {{\bar{H}}}\limits ^{1}}_n\cdot ({{\bar{\tau }}}_\alpha -{{\bar{\tau }}}_{{\bar{v}}_n\alpha })-{1\over \sigma _2}\textrm{rot}\,_{{\bar{v}}_n}{\mathop {{\bar{H}}}\limits ^{2}}_n\cdot ({{\bar{\tau }}}_\alpha -{{\bar{\tau }}}_{{\bar{v}}_n\alpha })\\&\qquad +\mu _1{\bar{v}}_n\times {\mathop {{\bar{H}}}\limits ^{1}}_n\cdot {{\bar{\tau }}}_{{\bar{v}}_n\alpha }\equiv K_{\alpha n},\ \ \alpha =1,2\quad&\textrm{on}\ \ S_0^T, \\&({\mathop {{\bar{H}}}\limits ^{1}}_{n+1}-{\mathop {{\bar{H}}}\limits ^{2}}_{n+1})\cdot {\bar{n}}\times {{\bar{\tau }}}_\alpha \\&\quad =({\mathop {{\bar{H}}}\limits ^{1}}_n-{\mathop {{\bar{H}}}\limits ^{2}}_n)\cdot ({\bar{n}}\times {{\bar{\tau }}}_\alpha -{\bar{n}}_{{\bar{v}}_n}\times {{\bar{\tau }}}_{{\bar{v}}_n\alpha })\equiv L_{\alpha n}\ \ \alpha =1,2\quad&\textrm{on}\ \ S_0^T,\\&{\mathop {{\bar{H}}}\limits ^{2}}_{n+1}\cdot {{\bar{\tau }}}'_\alpha |_B=H_{*\alpha }\ \ \alpha =1,2,\ \ \textrm{div}\,_{{\mathop {{\bar{v}}}\limits ^{2}}_n}{\mathop {{\bar{H}}}\limits ^{2}}_{n+1}|_B=0\\&{\mathop {{\bar{H}}}\limits ^{i}}_{n+1}|_{t=0}={\mathop {H}\limits ^{i}}(0),\ \ i=1,2. \end{aligned} \end{aligned}$$
(3.9)

In problems (3.8) and (3.9) \({\mathop {{\bar{v}}}\limits ^{1}}_n\), \({\mathop {{\bar{v}}}\limits ^{2}}_n\), \({\mathop {{\bar{H}}}\limits ^{1}}_n\), \({\mathop {{\bar{H}}}\limits ^{2}}_n\) are treated as given.

Moreover, \({{\bar{\tau }}}_\alpha \), \(\alpha =1,2\), are tangent to \(S_0\), \({\bar{n}}\) is normal and \({{\bar{\tau }}}'_\alpha \), \(\alpha =1,2\), are tangent to B.

4 Estimates for Solutions to Problem (3.8)

Let \(\varphi _n\) be a solution to the problem

$$\begin{aligned} \begin{aligned} \Delta \varphi _n&=g_n\quad \textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_0,\\ \varphi _n|_{S_0}&=0.\end{aligned} \end{aligned}$$
(4.1)

There exists the Green function to problem (4.1) such that

$$\begin{aligned} \varphi _n(x,t)=\intop _{{\mathop {\Omega }\limits ^{1}}_0}G(x,y)g_n(y,t)dy. \end{aligned}$$
(4.2)

Lemma 2.3.2 yields

Lemma 4.1

Assume that \(F_n\in H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)\), \(\nabla g_n\in H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)\), \(G_n\in H^{1/2+\alpha ,1/4+\alpha /2}S_0^t)\), \(v(0)\in H^{1+\alpha }({\mathop {\Omega }\limits ^{1}}_0)\), \(\nabla \varphi _n\in H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)\), \(\nabla \varphi _t\in H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)\). Then there exists a unique solution to problem (3.8) such that \({\bar{v}}_{n+1}\in V_2^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0^t)\), \(\nabla {\bar{p}}_{n+1},{\bar{p}}_{n+1}\in H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)\), \({\bar{p}}_{n+1}\in H^{1/2+\alpha ,1/4+\alpha /2}(S_0^t)\) and the estimate holds

$$\begin{aligned} \begin{aligned}&\Vert {\bar{v}}_{n+1}\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0^t)}+\Vert \nabla {\bar{p}}_{n+1}\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}+\Vert {\bar{p}}_{n+1}\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\quad +\Vert {\bar{p}}_{n+1}\Vert _{H^{1/2+\alpha ,1/4+\alpha /2}(S_0^t)}\le c(\Vert F_n\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\quad +\Vert \nabla g_n\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}+ \Vert \nabla \varphi _n\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}+ \Vert \nabla \varphi _{nt}\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\quad +\Vert G_n\Vert _{H^{1/2+\alpha ,1/4+\alpha /2}(S_0^t)}+ \Vert v(0)\Vert _{H^{1+\alpha }({\mathop {\Omega }\limits ^{1}}_0)}).\end{aligned} \end{aligned}$$
(4.3)

The expressions on the r.h.s. of (4.3) depend on \({\bar{v}}_n\), \({\bar{p}}_n\) and \({\mathop {{\bar{H}}}\limits ^{1}}_n\). Therefore we estimate them using the dependence.

Lemma 4.2

Assume that \({\bar{v}}_n,{\mathop {{\bar{H}}}\limits ^{1}}_n\in H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)\), \({\bar{p}}_{n,\xi }\in H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)\).

Assume that \(\alpha >5/8\), \(a>0\).

Then

$$\begin{aligned} \begin{aligned}&\Vert F_n\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}\le t^a\phi (\delta _{{\bar{v}}_n}(t))(\Vert {\bar{v}}_n\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}+1)(\Vert {\bar{v}}_n\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\quad +\Vert {\bar{p}}_n\Vert _{L_2(0,t;H^1({\mathop {\Omega }\limits ^{1}}_0))}+\Vert {\bar{p}}_{n,\xi }\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}+\Vert {\mathop {{\bar{H}}}\limits ^{1}}_n\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}^2),\end{aligned} \end{aligned}$$
(4.4)

where \(\delta _{{\bar{v}}_n}(t)\) is introduced in (2.4.2).

Proof

We have

$$\begin{aligned} \begin{aligned} F_n&=-(\textrm{div}\,_\xi {\mathbb {T}}({\bar{v}}_n,{\bar{p}}_n)-\textrm{div}\,_{{\bar{v}}_n}{\mathbb {T}}_{{\bar{v}}_n}({\bar{v}}_n,{\bar{p}}_n))\\&\quad +\mu _1\textrm{div}\,_{{\bar{v}}_n}{\mathbb {T}}({\mathop {{\bar{H}}}\limits ^{1}}_n)+{\bar{f}}\equiv {\mathop {F}\limits ^{1}}_n+{\mathop {F}\limits ^{2}}_n+{\bar{f}}.\end{aligned} \end{aligned}$$
(4.5)

In this proof we drop the index n and introduce the simplified notation

$$\begin{aligned} v={\bar{v}}_n,\quad p={\bar{p}}_n,\quad H={\mathop {{\bar{H}}}\limits ^{1}}_n. \end{aligned}$$
(4.6)

First we consider

$$\begin{aligned} \begin{aligned} \Vert {\mathop {F}\limits ^{1}}\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}&\le c\Vert (I-\xi _x^2)v_{\xi \xi }+ \xi _x\xi _{xx}x_\xi v_\xi \Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\quad +c\Vert (I-\xi _x)p_\xi \Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}.\end{aligned} \end{aligned}$$
(4.7)

The norm of space \(H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)\) can be expressed in the form

$$\begin{aligned} \Vert {\mathop {F}\limits ^{1}}\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}= \Vert {\mathop {F}\limits ^{1}}\Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}+ \langle {\mathop {F}\limits ^{1}}\rangle _{\alpha ,x,2,{\mathop {\Omega }\limits ^{1}}_0^t}+ \langle {\mathop {F}\limits ^{1}}\rangle _{\alpha /2,t,2,{\mathop {\Omega }\limits ^{1}}_0^t}. \end{aligned}$$
(4.8)

Using Sect. 2.4 we have

$$\begin{aligned} \begin{aligned} \Vert {\mathop {F}\limits ^{1}}\Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}&\le c\Vert (I-\xi _x^2)v_{\xi \xi }\Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}+c\Vert \xi _x\xi _{xx}x_\xi v_\xi \Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\quad +c\Vert (I-\xi _x)p_\xi \Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}\le c\phi (\delta _v(t)) \bigg \Vert \intop _0^tv_\xi (\tau )d\tau v_{\xi \xi }\bigg \Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\quad +c\phi (\delta _v(t))\bigg \Vert \intop _0^tv_{\xi \xi }d\tau v_\xi \bigg \Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}+c\phi (\delta _\sigma (t))\bigg \Vert \intop _0^tv_\xi d\tau p_\xi \bigg \Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\le ct^{1/2}\phi (\delta _v(t))\bigg [\bigg (\intop _0^t \Vert v_\xi (\cdot ,\tau )\Vert _{L_\infty ({\mathop {\Omega }\limits ^{1}}_0)}^2d\tau \bigg )^{1/2} \Vert v_{\xi \xi }\Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\quad +\bigg (\intop _0^t\Vert v_\xi (\cdot ,\tau )\Vert _{L_4({\mathop {\Omega }\limits ^{1}}_0)}^2d\tau \bigg )^{1/2} \Vert v_\xi \Vert _{L_2(0,t;L_4({\mathop {\Omega }\limits ^{1}}_0))}\\&\quad +\bigg (\intop _0^t\Vert v_\xi (\cdot ,\tau )\Vert _{L_\infty ({\mathop {\Omega }\limits ^{1}}_0)}^2d\tau \bigg )^{1/2} \Vert p_\xi \Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}\bigg ]\\&\le ct^{1/2}\phi (\delta _v(t))(\Vert v\Vert _{L_2(0,t;H^2({\mathop {\Omega }\limits ^{1}}_0))}+ \Vert p\Vert _{L_2(0,t;H^1({\mathop {\Omega }\limits ^{1}}_0))}).\end{aligned} \end{aligned}$$
(4.9)

The second term on the r.h.s. of (4.8) is bounded by

$$\begin{aligned} \begin{aligned} \langle {\mathop {F}\limits ^{1}}\rangle _{\alpha ,x,2,{\mathop {\Omega }\limits ^{1}}_0^t}&\le \langle (I-\xi _x^2)v_{\xi \xi }\rangle _{\alpha ,x,2,{\mathop {\Omega }\limits ^{1}}_0^t}+\langle \xi _x\xi _{xx}x_\xi v_\xi \rangle _{\alpha ,x,2,{\mathop {\Omega }\limits ^{1}}_0^t}\\&\quad +\langle (I-\xi _x)p_\xi \rangle _{\alpha ,x,2,{\mathop {\Omega }\limits ^{1}}_0^t}\equiv L_1^1+L_1^2+L_1^3.\end{aligned} \end{aligned}$$
(4.10)

First, we examine

$$\begin{aligned}\begin{aligned} L_1^1&=\bigg (\intop _0^t\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _{{\mathop {\Omega }\limits ^{1}}_0} \bigg ({|(I-\xi _x^2(\xi ',t'))v_{\xi \xi }(\xi ',t') \over |\xi '-\xi ''|^{3+2\alpha }}\\&\quad -{(I-\xi _x^2(\xi '',t'))v_{\xi \xi }(\xi '',t')|^2 \over |\xi '-\xi ''|^{3+2\alpha }}\bigg )d\xi 'd\xi ''dt'\bigg )^{1/2}\\&\le \bigg (\intop _0^t\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _{{\mathop {\Omega }\limits ^{1}}_0} {|\xi _x^2(\xi ',t')-\xi _x^2(\xi '',t')|^2|v_{\xi \xi }(\xi ',t')|^2\over |\xi '-\xi ''|^{3+2\alpha }}d\xi 'd\xi ''dt'\bigg )^{1/2}\\&\quad +\bigg (\intop _0^t\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _{{\mathop {\Omega }\limits ^{1}}_0} {|I-\xi _x^2(\xi '',t')|^2|v_{\xi \xi }(\xi ',t')-v_{\xi \xi }(\xi '',t')|^2\over |\xi '-\xi ''|^{3+2\alpha }}d\xi 'd\xi ''dt'\bigg )^{1/2}\\ {}&\equiv J_1+J_2.\end{aligned} \end{aligned}$$

In view of properties of matrix \(\xi _x\), we have

$$\begin{aligned}\begin{aligned} J_1&\le \phi (\delta _v(t))\bigg (\intop _0^t\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _{{\mathop {\Omega }\limits ^{1}}_0} {|\intop _0^{t'}(v_\xi (\xi ',\tau )-v_\xi (\xi '',\tau ))d\tau |^2\over |\xi '-\xi ''|^{3/2+2\alpha }}\cdot \\&\quad \cdot {|v_{\xi \xi }(\xi ',t')|^2\over |\xi '-\xi ''|^{3/2}}d\xi 'd\xi ''dt'\bigg )^{1/2} \equiv J_1^1.\end{aligned} \end{aligned}$$

The Hölder inequality implies

$$\begin{aligned}\begin{aligned} J_1^1&\le \phi (\delta _v(t))\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _{{\mathop {\Omega }\limits ^{1}}_0} {|\intop _0^t(v_\xi (\xi ',\tau )-v_\xi (\xi '',\tau ))d\tau |^{2p}\over |\xi '-\xi ''|^{3+2p\alpha '}}d\xi 'd\xi ''\bigg )^{1/2p}\cdot \\&\quad \cdot \bigg [\intop _0^t\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _{{\mathop {\Omega }\limits ^{1}}_0} {|v_{\xi \xi }(\xi ',t')|^{2p'}\over |\xi '-\xi ''|^{(3/2)p'}}d\xi 'd\xi ''\bigg )^{1/p'}dt' \bigg ]^{1/2}\equiv J_1^{11}J_1^{12},\end{aligned} \end{aligned}$$

where \(1/p+1/p'=1\), \(p'<2\), \(\alpha '=\alpha +{1\over 2p}\big ({3\over 2}p-3\big )\).

By the Minkowski and Hölder inequalities we get

$$\begin{aligned}\begin{aligned} J_1^{11}&\le t^{1-1/2p}\phi (\delta _v(t))\bigg [\intop _0^t\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0} \intop _{{\mathop {\Omega }\limits ^{1}}_0}{|v_\xi (\xi ',t')-v_\xi (\xi '',t')|^{2p}\over |\xi '-\xi ''|^{3+2p\alpha '}}d\xi 'd\xi ''\bigg )^{1/p}dt'\bigg ]^{1/2}\\&\le ct^{1-1/2p}\phi (\delta _v(t))\bigg (\intop _0^t\Vert v\Vert _{H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0)}^2dt'\bigg )^{1/2},\end{aligned} \end{aligned}$$

where the above imbedding holds under the condition

$$\begin{aligned} {3\over 2}-{3\over 2p}+\alpha '\le 1+\alpha \quad \textrm{so}\quad {3\over 2}+{3\over 4}-{3\over p}\le 1 \end{aligned}$$
(4.11)

However \(p>2\) the last restriction can hold for p close to 2.

Since \(p'<2\) we obtain

$$\begin{aligned} J_1^{12}\le c\bigg [\intop _0^t\bigg (\ointop _{{\mathop {\Omega }\limits ^{1}}_0}|v_{\xi \xi }(\xi ',t')|^{2p'}d\xi ' \bigg )^{1/p'}\bigg ]^{1/2}\le c\Vert v\Vert _{L_2(0,t,H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))} \end{aligned}$$

where the last inequality holds for

$$\begin{aligned} {3\over 2}-{3\over 2p'}\le \alpha \end{aligned}$$
(4.12)

Conditions (4.11) and (4.12) imply

$$\begin{aligned} {5\over 8}\le \alpha . \end{aligned}$$
(4.13)

Summarizing,

$$\begin{aligned} L_1^1\le t^a\phi (\delta _v(t))\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))}^2, \end{aligned}$$
(4.14)

where we used that \(J_2\) is also bounded by the above bound.

Next, we examine

$$\begin{aligned}\begin{aligned} L_1^2&=\bigg (\intop _0^t\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _{{\mathop {\Omega }\limits ^{1}}_0} {|\xi _x(\xi ',t')\xi _{xx}(\xi ',t')x_\xi (\xi ',t')v_\xi (\xi ',t')\over |\xi '-\xi ''|^{3+2\alpha }}\\&\quad -{\xi _x(\xi '',t')\xi _{xx}(\xi '',t')x_\xi (\xi '',t')v_\xi (\xi '',t')|^2\over |\xi -\xi ''|^{3+2\alpha }}d\xi 'd\xi ''dt'\bigg )^{1/2}\\&\le \phi (\delta _v(t))\bigg (\intop _0^t\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _{{\mathop {\Omega }\limits ^{1}}_0} {|\intop _0^{t'}(v_\xi (\xi ',\tau )-v_\xi (\xi '',\tau ))d\tau |^2\over |\xi '-\xi ''|^{3+2\alpha }}\cdot \\&\quad \cdot \bigg |\intop _0^{t'}v_{\xi \xi }(\xi ',\tau )d\tau \bigg |^2 |v_\xi (\xi ',t')|^2d\xi 'd\xi ''dt'\bigg )^{1/2}\\&\quad +t^{1/2}\phi (\delta _v(t))\bigg (\intop _0^t\intop _{{\mathop {\Omega }\limits ^{1}}_0} \intop _{{\mathop {\Omega }\limits ^{1}}_0} {|\intop _0^{t'}(v_{\xi \xi }(\xi ',\tau )-v_{\xi \xi }(\xi '',\tau ))d\tau |^2\over |\xi '-\xi ''|^{3+2\alpha }}\\ {}&\quad \cdot |v_\xi (\xi ',t')|^2d\xi 'd\xi ''dt'\bigg )^{1/2}+t^{1/2}\phi (\delta _v(t))\\&\quad \cdot \bigg (\intop _0^t\intop _{{\mathop {\Omega }\limits ^{1}}_0} \intop _{{\mathop {\Omega }\limits ^{1}}_0} {|\intop _0^{t'}v_{\xi \xi }(\xi '',\tau )d\tau |^2 |v_\xi (\xi ',t')-v_\xi (\xi '',t')|^2\over |\xi '-\xi ''|^{3+2\alpha }}d\xi 'd\xi ''dt' \bigg )^{\!\!1/2}\\ {}&\equiv H_1+H_2+H_3.\end{aligned} \end{aligned}$$

First, similarly as in the estimate of \(J_1^1\) we derive

$$\begin{aligned} H_1\le t^a\phi (\delta _v(t))\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))}^2 \end{aligned}$$

Next

$$\begin{aligned} H_2\le t^{1/2}\phi (\delta _v(t))\Vert v_\xi \Vert _{L_2(0,t;L_\infty ({\mathop {\Omega }\limits ^{1}}_0))} \Vert v_{\xi \xi }\Vert _{L_2(0,t;H^\alpha ({\mathop {\Omega }\limits ^{1}}_0))} \end{aligned}$$

Finally, \(H_3\) is estimated by the same bound as \(H_1\).

Summarizing,

$$\begin{aligned} L_1^2\le t^a\phi (\delta _v(t))\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))}^2 \end{aligned}$$
(4.15)

Finally, we estimate the last term on the r.h.s. of (4.10),

$$\begin{aligned}\begin{aligned} L_1^3&=\bigg (\!\intop _0^t\!\intop _{{\mathop {\Omega }\limits ^{1}}_0}\!\intop _{{\mathop {\Omega }\limits ^{1}}_0} {|(I\!-\!\xi _x(\xi ',t'))p_\xi (\xi ',t')\!-\!(I\!-\!\xi _x(\xi '',t'))p_\xi (\xi '',t')|^2\over |\xi '-\xi ''|^{3+2\alpha }}d\xi 'd\xi ''dt'\bigg )^{\!\!1/2}\hspace{-2.0pt}\\&\le \bigg (\intop _0^t\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _{{\mathop {\Omega }\limits ^{1}}_0} {|\xi _x(\xi ',t')-\xi _x(\xi '',t')|^2|p_\xi (\xi ',t')|^2\over |\xi '-\xi ''|^{3+2\alpha }} d\xi d\xi ''dt'\bigg )^{1/2}\\&\quad +\bigg (\intop _0^t\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _{{\mathop {\Omega }\limits ^{1}}_0} {|I-\xi _x(\xi '',t')|^2|p_\xi (\xi ',t')-p_\xi (\xi '',t')|^2\over |\xi '-\xi ''|^{3+2\alpha }}d\xi 'd\xi ''dt'\bigg )^{1/2}\\ {}&\equiv M_1+M_2.\end{aligned} \end{aligned}$$

Using the form of \(\xi _x\), we have

$$\begin{aligned}\begin{aligned} M_1&\le \phi (\delta _v(t))\bigg (\intop _0^t\!\intop _{{\mathop {\Omega }\limits ^{1}}_0}\!\intop _{{\mathop {\Omega }\limits ^{1}}_0} {|\intop _0^t(v_\xi (\xi ',\tau )-v_\xi (\xi '',\tau ))d\tau |^2|p_\xi (\xi ',t')|^2\over |\xi '-\xi ''|^{3+2\alpha }}d\xi 'd\xi ''dt'\bigg )^{\!\!1/2}\\&\equiv M_1^1.\end{aligned} \end{aligned}$$

\(M_1^1\) has the same structure as \(J_1^1\), where \(v_{\xi \xi }\) is replaced by \(p_\xi \). Therefore, instead of (4.14) we derive the estimate

$$\begin{aligned} M_1^1\le t^a\phi (\delta _v(t))\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))} \Vert p_\xi \Vert _{L_2(0,t;H^\alpha ({\mathop {\Omega }\limits ^{1}}_0))}. \end{aligned}$$

Finally \(M_2\) is estimated by the same bound as \(M_1^1\).

Summarizing,

$$\begin{aligned} L_1^3\le t^a\phi (\delta _v(t))\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))} \Vert p_\xi \Vert _{L_2(0,t;H^\alpha ({\mathop {\Omega }\limits ^{1}}_0))} \end{aligned}$$
(4.16)

Using estimates (4.14), (4.15) and (4.16) in (4.10) yields

$$\begin{aligned} \begin{aligned} \langle {\mathop {F}\limits ^{1}}\rangle _{\alpha ,x,2,{\mathop {\Omega }\limits ^{1}}_0^t}&\le t^a\phi (\delta _v(t))\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0)} (\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))}\\&\quad +\Vert p_\xi \Vert _{L_2(0,t;H^\alpha ({\mathop {\Omega }\limits ^{1}}_0))}).\end{aligned} \end{aligned}$$
(4.17)

The last term on the r.h.s. of (4.8) can be bounded by

$$\begin{aligned} \begin{aligned} \langle {\mathop {F}\limits ^{1}}\rangle _{\alpha /2,t,2,{\mathop {\Omega }\limits ^{1}}_0^t}&=\langle (I-\xi _x^2) v_{\xi \xi }\rangle _{{\alpha \over 2},t,2,{\mathop {\Omega }\limits ^{1}}_0^t}\\&\quad +\langle \xi _x\xi _{xx}x_\xi v_\xi \rangle _{{\alpha \over 2},t,2,{\mathop {\Omega }\limits ^{1}}_0^t}+\langle (I-\xi _x)p_\xi \rangle _{{\alpha \over 2},t,2,{\mathop {\Omega }\limits ^{1}}_0^t}\\&\equiv A_1+A_2+A_3.\end{aligned} \end{aligned}$$
(4.18)

First, we estimate

$$\begin{aligned}\begin{aligned} A_1&=\bigg (\!\intop _{{\mathop {\Omega }\limits ^{1}}_0}\!\intop _0^t\!\intop _0^t \!{|(I-\xi _x^2(\xi ,t'))v_{\xi \xi }(\xi ,t')\!-\!(I-\xi _x^2(\xi ,t''))v_{\xi \xi }(\xi ,t'')|^2 \over |t'-t''|^{1+\alpha }}dt'dt''d\xi \!\bigg )^{\!\!1/2}\\&\le \bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _0^t\intop _0^t {|\xi _x^2(\xi ,t')-\xi _x^2(\xi ,t'')|^2\over |t'-t''|^{1+\alpha }}|v_{\xi \xi }(\xi ,t')|^2 dt'dt''d\xi \bigg )^{1/2}\\&\quad +\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _0^t\intop _0^t {|I-\xi _x^2(\xi ,t'')|^2|v_{\xi \xi }(\xi ,t')-v_{\xi \xi }(\xi ,t'')|^2\over |t'-t''|^{1+\alpha }}dt'dt''d\xi \bigg )^{1/2}\\ {}&\equiv A_1^1+A_1^2.\end{aligned} \end{aligned}$$

Using the form of \(\xi _x\) yields

$$\begin{aligned}\begin{aligned} A_1^1&\le \phi (\delta _v(t))\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _0^t\intop _0^t {|\intop _{t'}^{t''}v_\xi (\xi ,\tau )d\tau |^2|v_{\xi \xi }(\xi ,t')|^2\over |t'-t''|^{1+\alpha }}dt'dt''d\xi \bigg )^{1/2}\\&\le \phi (\delta _v(t))\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _0^t\intop _0^t |t'-t''|^{-\alpha }\intop _{t'}^{t''}|v_\xi (\xi ,\tau )|^2d\tau |v_{\xi \xi }(\xi ,t')|^2 dt'dt''d\xi \bigg )^{1/2}\\ {}&\le t^{1/2-\alpha /2}\phi (\delta _v(t))\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))} \Vert v\Vert _{L_2(0,t;H^2({\mathop {\Omega }\limits ^{1}}_0))}.\end{aligned} \end{aligned}$$

Exploiting the form of \(\xi _x\) and the imbedding

$$\begin{aligned} \Vert v_\xi \Vert _{L_\infty ({\mathop {\Omega }\limits ^{1}}_0)}\le c\Vert v\Vert _{H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0)}\quad \textrm{for}\ \ \alpha >1/2 \end{aligned}$$

we obtain

$$\begin{aligned} A_1^2\le t^{1/2}\phi (\delta _v(t))\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))} \Vert v_{\xi \xi }\Vert _{L_2(\Omega ;H^{\alpha /2}(0,t))}. \end{aligned}$$

Summarizing, we have

$$\begin{aligned} A_1\le t^a\phi (\delta _v(t))\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))} \Vert v\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}. \end{aligned}$$
(4.19)

Expression \(A_2\) has the form

$$\begin{aligned}\begin{aligned} A_2&=\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _0^t\intop _0^t {|\xi _x(\xi ,t')\xi _{xx}(\xi ,t')x_\xi (\xi ,t')v_\xi (\xi ,t')\over |t'-t''|^{1+\alpha }}\\&\quad -{\xi _x(\xi ,t'')\xi _{xx}(\xi ,t'')x_\xi (\xi ,t'')v_\xi (\xi ,t'')|^2\over |t'-t''|^{1+\alpha }}d\xi dt'dt''\bigg )^{1/2}\\&\le \bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _0^t\intop _0^t {|\xi _x(\xi ,t')-\xi _x(\xi ,t'')|^2|\xi _{xx}(\xi ,t')|^2|x_\xi (\xi ,t')|^2|v_\xi (\xi ,t)|^2 \over |t'-t''|^{1+\alpha }}dt'dt''d\xi \bigg )^{1/2}\\&\quad +\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _0^t\intop _0^t {|\xi _x(\xi ,t'')|^2|\xi _{xx}(\xi ,t')-\xi _{xx}(\xi ,t'')|^2|x_\xi (\xi ,t')|^2 |v_\xi (\xi ,t')|^2\over |t'-t''|^{1+\alpha }}dt'dt''d\xi \bigg )^{1/2}\\&\quad +\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _0^t\intop _0^t {|\xi _x(\xi ,t'')|^2|\xi _{xx}(\xi ,t'')|^2|x_\xi (\xi ,t')-x_\xi (\xi ,t'')|^2 |v_\xi (\xi ,t')|^2\over |t'-t''|^{1+\alpha }}dt'dt''d\xi \bigg )^{1/2}\\&\quad +\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _0^t\intop _0^t {|\xi _x(\xi ,t'')|^2|\xi _{xx}(\xi ,t'')|^2|x_\xi (\xi ,t'')|^2|v_\xi (\xi ,t')- v_\xi (\xi ,t'')|^2\over |t'-t''|^{1+\alpha }}dt'dt''d\xi \bigg )^{1/2}\\&\equiv \sum _{i=1}^4A_2^i.\end{aligned} \end{aligned}$$

First, we estimate

$$\begin{aligned}\begin{aligned} A_2^1&\le \!\phi (\delta _v(t))\bigg (\!\intop _{{\mathop {\Omega }\limits ^{1}}_0}\!\intop _0^t\!\intop _0^t {|\intop _{t'}^{t''}v_\xi (\xi ,\tau )d\tau |^2|\intop _0^{t'}v_{\xi \xi }(\xi ,\tau )d\tau |^2 |v_\xi (\xi ,t')|^2\over |t'-t''|^{1+\alpha }}dt'dt''d\xi \bigg )^{\!1/2}\\&\le t^{1/2-\alpha /2}\phi (\delta _v(t))\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _0^t |v_{\xi \xi }(\xi ,\tau )|^2d\tau \intop _0^t|v_\xi (\xi ,\tau )|^2d\tau \bigg )^{1/2}\\&\le t^{1/2-\alpha /2}\phi (\delta _v(t))\bigg (\intop _0^t \Vert v(\cdot ,\tau )\Vert _{H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0)}^2d\tau \bigg )^{1/2}\bigg (\intop _0^t \Vert v_{\xi \xi }(\cdot ,\tau )\Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0)}^2d\tau \bigg )^{1/2}\\&\le t^{1/2-\alpha /2}\phi (\delta _v(t))\Vert v\Vert _{L_2(0,t:H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))}^2.\end{aligned} \end{aligned}$$

Next, we estimate

$$\begin{aligned}\begin{aligned} A_2^2&\le \phi (\delta _v(t))\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _0^t\intop _0^t {|\intop _{t'}^{t''}v_{\xi \xi }(\xi ,\tau )d\tau |^2|v_\xi (\xi ,t')|^2\over |t'-t''|^{1+\alpha }}dt'dt''d\xi \bigg )^{1/2}\\ {}&\le t^{1/2-\alpha /2}\phi (\delta _v(t))\Vert v_{\xi \xi }\Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)} \bigg (\intop _0^t\Vert v_\xi (\cdot ,\tau )\Vert _{L_\infty ({\mathop {\Omega }\limits ^{1}}_0)}^2d \tau \bigg )^{1/2}\\ {}&\le t^{1/2-\alpha /2}\phi (\delta _v(t))\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))}^2.\end{aligned} \end{aligned}$$

Next \(A_2^3\le A_2^1\) and finally

$$\begin{aligned}\begin{aligned} A_2^4&\le t^{1/2}\phi (\delta _v(t))\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _0^t\intop _0^t\intop _0^{t'} |v_{\xi \xi }(\xi ,\tau )|^2d\tau {|v_\xi (\xi ,t')-v_\xi (\xi ,t'')|^2\over |t'-t''|^{1+\alpha }}dt'dt''d\xi \bigg )^{1/2}\\&\equiv A_2^{41}.\end{aligned} \end{aligned}$$

Applying the Hölder inequality with respect to \(\xi \) yields

$$\begin{aligned}\begin{aligned} A_2^{41}&\le t^{1/2}\phi (\delta _v(t))\bigg (\intop _0^t \Vert v_{\xi \xi }(\cdot ,\tau )\Vert _{L_{2p}({\mathop {\Omega }\limits ^{1}}_0)}^2d\tau \bigg )^{1/2}\cdot \\&\quad \cdot \bigg (\intop _0^t\intop _0^t {\Vert v_\xi (\cdot ,t')-v_\xi (\cdot ,t'')\Vert _{L_{2p'}({\mathop {\Omega }\limits ^{1}}_0)}^2\over |t'-t''|^{1+\alpha }}dt'dt''\bigg )^{1/2}\equiv A_2^{42},\end{aligned} \end{aligned}$$

where \(1/p+1/p'=1\).

In view of imbeddings

$$\begin{aligned}\begin{aligned}&\Vert v_{\xi \xi }\Vert _{L_{2p}({\mathop {\Omega }\limits ^{1}}_0)}\le c\Vert v\Vert _{H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0)}\quad \textrm{for}\ \ {3\over 2}-{3\over 2p}\le \alpha ,\\&\Vert v_\xi (\cdot ,t')-v_\xi (\cdot ,t'')\Vert _{L_{2p'}({\mathop {\Omega }\limits ^{1}}_0)}\le c\Vert v_\xi (\cdot ,t')-v_\xi (\cdot ,t'')\Vert _{H^1({\mathop {\Omega }\limits ^{1}}_0)}\end{aligned} \end{aligned}$$

which holds for \(3/2-3/2p'\le 1\), we finally obtain the estimate for \(\alpha \ge 1/2\)

$$\begin{aligned} A_2^{42}\le t^{1/2}\phi (\delta (t))\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))} \Vert v\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}. \end{aligned}$$

Summarizing,

$$\begin{aligned} A_2\le t^a\phi (\delta _v(t))\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))} \Vert v\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}. \end{aligned}$$
(4.20)

Since \(p_\xi \) in \(A_3\) plays the same role as \(v_{\xi \xi }\) in \(A_1\) we obtain from (4.19) the estimate

$$\begin{aligned} A_3\le t^a\phi (\delta _v(t))\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))} \Vert p_\xi \Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}. \end{aligned}$$
(4.21)

Using estimates (4.19), (4.20) and (4.21) in (4.18) implies

$$\begin{aligned} \begin{aligned} \langle {\mathop {F}\limits ^{1}}\rangle _{{\alpha \over 2},t,2,{\mathop {\Omega }\limits ^{1}}_0^t}&\le t^a\phi (\delta _v(t))\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))}\cdot \\&\quad \cdot (\Vert v\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}+ \Vert p_\xi \Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}).\end{aligned} \end{aligned}$$
(4.22)

Exploiting estimates (4.9), (4.17) and (4.22) in (4.8), we obtain

$$\begin{aligned} \begin{aligned} \Vert {\mathop {F}\limits ^{1}}\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}&\le t^a\phi (\delta _v(t))\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))}(\Vert v\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\quad +\Vert p\Vert _{L_2(0,t;H^1({\mathop {\Omega }\limits ^{1}}_0))}+ \Vert p_\xi \Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}),\end{aligned} \end{aligned}$$
(4.23)

where \(\alpha >5/8\).

Next, we estimate the norm

$$\begin{aligned} \Vert {\mathop {F}\limits ^{2}}\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}= \Vert {\mathop {F}\limits ^{2}}\Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}+ \langle {\mathop {F}\limits ^{2}}\rangle _{\alpha ,x,2,{\mathop {\Omega }\limits ^{1}}_0^t}+ \Vert \langle {\mathop {F}\limits ^{2}}\rangle _{\alpha /2,t,2,{\mathop {\Omega }\limits ^{1}}_0^t}. \end{aligned}$$
(4.24)

It is sufficient to estimate the last two term on the r.h.s. of (4.24) only. First we examine

$$\begin{aligned} \begin{aligned} \langle {\mathop {F}\limits ^{2}}\rangle _{\alpha ,x,2,{\mathop {\Omega }\limits ^{1}}_0^t}&=\bigg (\intop _0^t\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _{{\mathop {\Omega }\limits ^{1}}_0} \bigg ({|\xi _x(\xi ',t'){\mathop {H}\limits ^{1}}_\xi (\xi ',t'){\mathop {H}\limits ^{1}}(\xi ',t')\over |\xi '-\xi ''|^{3+2\alpha }}\\&\quad -{\xi _x(\xi '',t'){\mathop {H}\limits ^{1}}_\xi (\xi '',t'){\mathop {H}\limits ^{1}}(\xi '',t')|^2\over |\xi '-\xi ''|^{3+2\alpha }}\bigg )d\xi 'd\xi ''dt'\bigg )^{1/2}\\&\le \phi (\delta _v(t))\bigg (\intop _0^t\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _{{\mathop {\Omega }\limits ^{1}}_0}{|\intop _0^{t'}(v_\xi (\xi ',\tau )- v_\xi (\xi '',\tau ))d\tau |^2 |\over |\xi '-\xi ''|^{3+2\alpha }}\cdot \\&\quad \cdot {\mathop {H}\limits ^{1}}_\xi (\xi ',t')|^2{\mathop {H}\limits ^{1}}(\xi ',t')|^2d\xi 'd\xi ''dt'\bigg )^{1/2}+\phi (\delta _v(t))\bigg (\intop _0^t\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _{{\mathop {\Omega }\limits ^{1}}_0}\\&\quad \cdot {|{\mathop {H}\limits ^{1}}_\xi (\xi ',t')-{\mathop {H}\limits ^{1}}_\xi (\xi '',t')|^2\over |\xi '-\xi ''|^{3+2\alpha }} |{\mathop {H}\limits ^{1}}(\xi ',t')|^2d\xi 'd\xi ''dt'\bigg )^{1/2}\\&\quad +\phi (\delta _v(t))\bigg (\intop _0^t\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _{{\mathop {\Omega }\limits ^{1}}_0} |{\mathop {H}\limits ^{1}}_\xi (\xi '',t')|^2 \cdot \\&\quad \cdot {|{\mathop {H}\limits ^{1}}(\xi ',t')-{\mathop {H}\limits ^{1}}(\xi '',t')|^2\over |\xi '-\xi ''|^{3+2\alpha }} d\xi 'd\xi ''dt'\bigg )^{1/2}\\&\equiv P_1+P_2+P_3.\end{aligned} \end{aligned}$$
(4.25)

Applying the Hölder inequality with respect to \(\xi '\), \(\xi ''\) in \(P_1\) yields

$$\begin{aligned}\begin{aligned} P_1&\le t^{1/2}\phi (\delta _v(t))\bigg (\intop _0^t\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0} \intop _{{\mathop {\Omega }\limits ^{1}}_0}{|v_\xi (\xi ',t')-v_\xi (\xi '',t')|^{2p_1}\over |\xi '-\xi ''|^{3+2p_1\alpha '}}d\xi 'd\xi ''\bigg )^{1/p_1}\bigg )^{1/2}\cdot \\&\quad \cdot \bigg [\intop _0^t\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _{{\mathop {\Omega }\limits ^{1}}_0} {|{\mathop {H}\limits ^{1}}_\xi (\xi ',t')|^{2p_2}\over |\xi '-\xi ''|^{{3\over 2}p_2}} d\xi 'd\xi ''\bigg )^{1/p_2}\cdot \\&\quad \cdot \bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _{{\mathop {\Omega }\limits ^{1}}_0} |{\mathop {H}\limits ^{1}}(\xi ',t')|^{2p_3}d\xi '\bigg )^{1/p_3}\bigg ]^{1/2}\\ {}&\equiv P_1^1,\end{aligned} \end{aligned}$$

where \(1/p_1+1/p_2+1/p_3=1\), \(p_2<2\), \(\alpha '=\alpha +{1\over 2p_1}\big ({3\over 2}p_1-3\big )\).

we use imbeddings

$$\begin{aligned} \Vert v_\xi \Vert _{W_{2p_1}^{\alpha '}({\mathop {\Omega }\limits ^{1}}_0)}\le & {} c\Vert v\Vert _{H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0)},\ \ {3\over 2}-{3\over 2p_1}+\alpha '+1\le 2+\alpha , \end{aligned}$$
(4.26)
$$\begin{aligned} \Vert {\mathop {H}\limits ^{1}}_\xi \Vert _{L_{2p_2}({\mathop {\Omega }\limits ^{1}}_0)}\le & {} c\Vert {\mathop {H}\limits ^{1}}\Vert _{H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0)},\ \ {3\over 2}-{3\over 2p_2}+1\le 2+\alpha , \end{aligned}$$
(4.27)

and

$$\begin{aligned} \Vert {\mathop {H}\limits ^{1}}\Vert _{L_{2p_3}({\mathop {\Omega }\limits ^{1}}_0)}\le c\Vert {\mathop {H}\limits ^{1}}\Vert _{H^{1+\alpha }({\mathop {\Omega }\limits ^{1}}_0)},\ \ {3\over 2}-{3\over 2p_3}\le 1+\alpha . \end{aligned}$$
(4.28)

From (4.25)–(4.28) and the form of \(\alpha '\) we obtain the restrictions

$$\begin{aligned} {3\over 2}-{3\over p_1}+{3\over 4}\le 1,\ \ 3-{3\over p_2}\le 2+2\alpha ,\ \ 3-{3\over p_3}\le 2+2\alpha . \end{aligned}$$

Eliminating \(p_1\), \(p_2\), \(p_3\) yields the restriction

$$\begin{aligned} {3\over 8}\le \alpha . \end{aligned}$$

Hence

$$\begin{aligned} \begin{aligned} P_1&\le P_1^1\le t^{1/2}\phi (\delta _v(t))\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))} \Vert {\mathop {H}\limits ^{1}}\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))}\cdot \\&\quad \cdot \Vert {\mathop {H}\limits ^{1}}\Vert _{L_\infty (0,t;H^{1+\alpha }({\mathop {\Omega }\limits ^{1}}_0))}\end{aligned} \end{aligned}$$
(4.29)

Next, we examine \(P_2\),

$$\begin{aligned}\begin{aligned} P_2&\le \phi (\delta _v(t))\\&\quad \cdot \bigg [\intop _0^t\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0} \intop _{{\mathop {\Omega }\limits ^{1}}_0}{|{\mathop {H}\limits ^{1}}_\xi (\xi ',t')-{\mathop {H}\limits ^{1}}_\xi (\xi '',t')|^{2p_1}\over |\xi '-\xi ''|^{3+2p_1\alpha '}}d\xi 'd\xi ''\bigg )^{1/p_1}\cdot \\&\quad \cdot \bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0} |{\mathop {H}\limits ^{1}}(\xi ',t')|^{2p_2}d\xi '\bigg )^{1/p_2}dt'\bigg ]^{1/2}\equiv P_2^1,\end{aligned} \end{aligned}$$

where \(1/p_1+1/p_2=1\), \(p_2<2\), \(\alpha '=\alpha +{3\over 4}-{3\over 2p_1}\).

We use the imbeddings

$$\begin{aligned} \Vert {\mathop {H}\limits ^{1}}_\xi \Vert _{W_{2p_1}^{\alpha '}({\mathop {\Omega }\limits ^{1}}_0)}\le & {} c\Vert {\mathop {H}\limits ^{1}}\Vert _{H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0)},\ \ {3\over 2}-{3\over 2p_1}+\alpha '\le 1+\alpha , \end{aligned}$$
(4.30)
$$\begin{aligned} \Vert {\mathop {H}\limits ^{1}}\Vert _{L_{2p_2}({\mathop {\Omega }\limits ^{1}}_0)}\le & {} c\Vert {\mathop {H}\limits ^{1}}\Vert _{H^{1+\alpha }({\mathop {\Omega }\limits ^{1}}_0)},\ \ {3\over 2}-{3\over 2p_2}\le 1+\alpha . \end{aligned}$$
(4.31)

Since restrictions (4.30), (4.31) can hold together we obtain the estimate

$$\begin{aligned} \begin{aligned} P_2&\le P_2^1\le t^{1/2}\phi (\delta _v(t))\Vert {\mathop {H}\limits ^{1}}\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))}\cdot \\&\quad \cdot \Vert {\mathop {H}\limits ^{1}}\Vert _{L_\infty (0,t;H^{1+\alpha }({\mathop {\Omega }\limits ^{1}}_0))}.\end{aligned} \end{aligned}$$
(4.32)

Finally,

$$\begin{aligned} \begin{aligned} P_3&\le \phi (\delta _v(t))\\&\quad \cdot \bigg (\intop _0^t\Vert {\mathop {H}\limits ^{1}}_\xi (\cdot ,\tau )\Vert _{L_\infty ({\mathop {\Omega }\limits ^{1}}_0)}^2 d\tau \bigg )^{1/2}\Vert {\mathop {H}\limits ^{1}}\Vert _{L_\infty (0,t;H^\alpha ({\mathop {\Omega }\limits ^{1}}_0))}.\\&\le t^a\phi (\delta _v(t)))\bigg (\intop _0^t\Vert {\mathop {H}\limits ^{1}}_\xi (\cdot \tau )\Vert _{L_\infty ({\mathop {\Omega }\limits ^{1}}_0)}^{2\lambda }dt\bigg )^{1/2\lambda } \Vert {\mathop {H}\limits ^{1}}\Vert _{L_\infty (0,t;H^\alpha ({\mathop {\Omega }\limits ^{1}}_0))}\\ {}&\le t^a\phi (\delta _v(t))\Vert {\mathop {H}\limits ^{1}}\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}^2,\end{aligned} \end{aligned}$$
(4.33)

where \(\lambda <8/3\) and \(\alpha >5/8\).

Using estimates (4.29), (4.32) and (4.33) in (4.25) implies the estimate

$$\begin{aligned} \begin{aligned}&\langle F_2\rangle _{\alpha ,x,2,{\mathop {\Omega }\limits ^{1}}_0^t}\le t^a\phi (\delta _v(t)) (\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))}+1)\cdot \\&\quad \cdot \Vert {\mathop {H}\limits ^{1}}\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}^2.\end{aligned} \end{aligned}$$
(4.34)

Finally, we examine

$$\begin{aligned} \begin{aligned}&\langle F_2\rangle _{{\alpha \over 2},t,2,{\mathop {\Omega }\limits ^{1}}_0^t}\\&\quad =\!\bigg (\!\!\intop _{{\mathop {\Omega }\limits ^{1}}_0}\!\!\intop _0^t\!\!\intop _0^t {|\xi _x(\xi ,t'){\mathop {H}\limits ^{1}}_\xi (\xi ,t'){\mathop {H}\limits ^{1}}(\xi ,t')\!-\! \xi _x(\xi ,t''){\mathop {H}\limits ^{1}}_\xi (\xi ,t''){\mathop {H}\limits ^{1}}(\xi ,t'')|^2\over |t'-t''|^{1+\alpha }} dt'dt''d\xi \bigg )^{\!\!1/2}\hspace{-2.0pt}\\&\quad \le \bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _0^t\intop _0^t {|\xi _x(\xi ,t')-\xi _x(\xi ,t'')|^2\over |t'-t''|^{1+\alpha }} |{\mathop {H}\limits ^{1}}_\xi (\xi ,t')|^2|{\mathop {H}\limits ^{1}}(\xi ,t')|^2dt'dt''d\xi \bigg )^{1/2}\\&\qquad +\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _0^t\intop _0^t|\xi _x(\xi ,t'')|^2 {|{\mathop {H}\limits ^{1}}_\xi (\xi ,t')-{\mathop {H}\limits ^{1}}_\xi (\xi ,t'')|^2\over |t'-t''|^{1+\alpha }} |{\mathop {H}\limits ^{1}}(\xi ,t')|^2dt'dt''d\xi \bigg )^{1/2}\\&\qquad +\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _0^t\intop _0^t|\xi _x(\xi ,t'')|^2 |{\mathop {H}\limits ^{1}}_\xi (\xi ,t'')|^2{|{\mathop {H}\limits ^{1}}(\xi ,t')-{\mathop {H}\limits ^{1}}(\xi ,t'')|^2\over |t'-t''|^{1+\alpha }}dt'dt''d\xi \bigg )^{1/2}\\ {}&\quad \equiv Q_1+Q_2+Q_3.\end{aligned} \end{aligned}$$
(4.35)

First, we estimate

$$\begin{aligned}\begin{aligned} Q_1&\le \phi (\delta _v(t))\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _0^t\intop _0^t |t'-t''|^{-\alpha }\intop _{t'}^{t''}|v_\xi (\xi ,\tau )|^2d\tau \cdot \\&\quad \cdot |{\mathop {H}\limits ^{1}}_\xi (\xi ,t')|^2|{\mathop {H}\limits ^{1}}(\xi ,t')|^2dt'dt''d\xi \bigg )=Q_1^1.\end{aligned} \end{aligned}$$

Performing integration with respect to \(t''\) gives

$$\begin{aligned} \begin{aligned} Q_1&\le Q_1^1\le t^{1/2-\alpha /2}\phi (\delta _v(t))\bigg (\intop _0^t \Vert v_\xi (\cdot ,\tau )\Vert _{L_\infty ({\mathop {\Omega }\limits ^{1}}_0)}^2d\tau \bigg )^{1/2}\cdot \\&\quad \cdot \bigg (\intop _0^t\Vert {\mathop {H}\limits ^{1}}_\xi (\cdot ,t')\Vert _{L_\infty ({\mathop {\Omega }\limits ^{1}}_0}^2 dt'\bigg )\sup _t\Vert {\mathop {H}\limits ^{1}}\Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0)}\\ {}&\le t^{1/2-\alpha /2}\phi (\delta _v(t))\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))} \Vert {\mathop {H}\limits ^{1}}\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))}\cdot \\&\quad \cdot \Vert {\mathop {H}\limits ^{1}}\Vert _{L_\infty (0,t;L_2({\mathop {\Omega }\limits ^{1}}_0))}\\ {}&\le t^{1/2-\alpha /2}\phi (\delta _v(t))\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))} \Vert {\mathop {H}\limits ^{1}}\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}^2.\end{aligned} \end{aligned}$$
(4.36)

The second term \(Q_2\) is bounded by

$$\begin{aligned} \begin{aligned} Q_2&\le \phi (\delta _v(t))\Vert {\mathop {H}\limits ^{1}}_\xi \Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0;H^{\alpha /2}(0,t))}\cdot \Vert {\mathop {H}\limits ^{1}}\Vert _{L_\infty (0,t;L_\infty ({\mathop {\Omega }\limits ^{1}}_0))}\\ {}&\le t^a\phi (\delta _v(t))\Vert {\mathop {H}\limits ^{1}}_\xi \Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0;{\mathop {H}\limits ^{1}}^{\beta /2}(0,t))}\cdot \Vert {\mathop {H}\limits ^{1}}\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}\\ {}&\le t^a\phi (\delta _v(t))\Vert {\mathop {H}\limits ^{1}}\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}^2,\end{aligned} \end{aligned}$$
(4.37)

where \(\beta >\alpha \) and \(\beta \le 1+\alpha \).

Finally

$$\begin{aligned} \begin{aligned} Q_3&\le t^a\phi (\delta _v(t))\\&\quad \cdot \sup _t\Vert {\mathop {H}\limits ^{1}}_\xi \Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0)}\sup _\xi \Vert {\mathop {H}\limits ^{1}}\Vert _{H^{\beta /2}(0,t)}\\ {}&\le t^{1/2}\phi (\delta _v(t))\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))} \Vert {\mathop {H}\limits ^{1}}\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}^2,\end{aligned} \end{aligned}$$
(4.38)

where \(\beta >\alpha \), \(\beta \le 1/2+\alpha \).

Using estimates (4.36)–(4.38) in (4.35) yields

$$\begin{aligned} \langle F_2\rangle _{{\alpha \over 2},t,2,{\mathop {\Omega }\limits ^{1}}_0^t}\le t^a\phi (\delta _v(t))(\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))}+1) \Vert {\mathop {H}\limits ^{1}}\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}^2. \end{aligned}$$
(4.39)

Using (4.34) and (4.39) in (4.24) we obtain the estimate

$$\begin{aligned} \Vert {\mathop {F}\limits ^{2}}\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}\le t^a\phi (\delta _v(t))(\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))}+1)\cdot \Vert {\mathop {H}\limits ^{1}}\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}^2 \end{aligned}$$
(4.40)

From (4.23) and (4.40) and recalling the index n we derive (4.4). This concludes the proof of Lemma 4.2\(\square \)

From the properties of the space trace operators we have

Lemma 4.3

Let the assumptions of Lemma 4.2 hold. Then

$$\begin{aligned} \begin{aligned}&\Vert G_n\Vert _{H^{{1\over 2}+\alpha ,{1\over 4}+{\alpha \over 2}}(S_0^t)}\le t^a\phi (\delta _{v_n}(t))(\Vert {\bar{v}}_n\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\quad +\Vert {\bar{p}}_n\Vert _{H^{1/2+\alpha ,1/4+\alpha /2}(S_0^t)}+\Vert {\mathop {{\bar{H}}}\limits ^{1}}_n\Vert _{H^{2+\alpha ,1 +\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}^2).\end{aligned} \end{aligned}$$
(4.41)

In the next lemma we estimate norms of \(\nabla \varphi _n\) in the r.h.s. of (4.3).

Lemma 4.4

Assume that \({\bar{v}}_n\in V_2^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0^t)\), \(a>0\).

Then solutions to problem (4.1) satisfy

$$\begin{aligned} \Vert \nabla \varphi _{n,t}\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}\le \Vert \nabla \varphi _n\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}\le t^a\phi (\delta _{v_n}(t))\Vert {\bar{v}}_n\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0^t)}^2, \end{aligned}$$
(4.42)

where \(g_n\) is defined in \((3.8)_2\).

Proof

In the proof we use the simplified notation

$$\begin{aligned} \varphi =\varphi _n,\quad v={\bar{v}}_n \end{aligned}$$
(4.43)

The aim of this proof is to find an estimate for the expression

$$\begin{aligned} \begin{aligned}&\Vert \nabla \varphi \Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{i}}_0)}= |\nabla \varphi |_{2,\Omega ^t}+ \Vert \nabla \varphi \Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))}\\&\quad +\Vert \nabla \varphi \Vert _{L_2(\Omega ;H^{1+\alpha /2}(0,t))}\equiv I_1+I_2+I_3,\end{aligned} \end{aligned}$$
(4.44)

where

$$\begin{aligned} \varphi (x,t)=\intop _{{\mathop {\Omega }\limits ^{1}}_0}G(x,y)g(y,t)dy, \end{aligned}$$
(4.45)

where G is the Green function to the Dirichlet problem

$$\begin{aligned} \begin{aligned}&\Delta \varphi =g\quad \textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_0,\\&\varphi |_{S_0}=0.\end{aligned} \end{aligned}$$
(4.46)

Hence the Green function satisfies the condition

$$\begin{aligned} G(x,y)|_{y\in S_0}=0. \end{aligned}$$
(4.47)

Moreover

$$\begin{aligned} g=\partial _\xi [(1-\xi _x)v]. \end{aligned}$$
(4.48)

In view of (4.45), (4.47), (4.48) and the Calderon–Zygmund estimate we get

$$\begin{aligned} \begin{aligned} I_1&=|\nabla \varphi |_{2,\Omega ^t}=\bigg \Vert \nabla _x\intop _{{\mathop {\Omega }\limits ^{1}}_0} G(x,\xi )_\xi (I-\xi _x)vd\xi \bigg \Vert _{L_2(\Omega ^t)}\\ {}&\le t^{1/2}\phi (\delta _v(t))\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))} \Vert v\Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}.\end{aligned} \end{aligned}$$
(4.49)

Using definition (2.2.3) of the Besov space equivalent to definition (2.2.5) and applying the Calderon–Zygmund estimate, we obtain

$$\begin{aligned}\begin{aligned} I_2&=\Vert \nabla \varphi \Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))}\le c\Vert \nabla g\Vert _{L_2(0,t;H^\alpha ({\mathop {\Omega }\limits ^{1}}_0))}\\ {}&\le c\bigg (\intop _0^t\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _{{\mathop {\Omega }\limits ^{1}}_0}\bigg ( {|(I-\xi _x(\xi ',t'))v_{\xi \xi }(\xi ',t')\over |\xi '-\xi ''|^{3+2\alpha }}\\&\quad -{(I-\xi _x(\xi '',t'))v_{\xi \xi }(\xi '',t')|^2\over |\xi '-\xi ''|^{3+2\alpha }} \bigg )d\xi 'd\xi ''dt'\bigg )^{1/2}\\&\quad +c\bigg (\intop _0^t\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _{{\mathop {\Omega }\limits ^{1}}_0}\bigg ( {|\xi _{xx}(\xi ',t')x_\xi (\xi ',t')v_\xi (\xi ',t')\over |\xi '-\xi ''|^{3+2\alpha }}\\&\quad -{\xi _{xx}(\xi '',t')x_\xi (\xi '',t') v_\xi (\xi '',t')|^2\over |\xi '-\xi ''|^{3+2\alpha }}\bigg )d\xi 'd\xi ''dt'\bigg )^{1/2}\equiv J_1+J_2.\end{aligned} \end{aligned}$$

Considering \(J_1\), we have

$$\begin{aligned}\begin{aligned} J_1&\le \phi (\delta _v(t))\bigg (\intop _0^t\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _{{\mathop {\Omega }\limits ^{1}}_0} {|\intop _0^{t'}(v_\xi (\xi ',\tau )-v_\xi (\xi '',\tau ))d\tau |^2 |v_{\xi \xi }(\xi ',t')|^2\over |\xi '-\xi ''|^{3+2\alpha }}d\xi 'd\xi ''dt'\bigg )^{1/2}\\&\quad +\phi (\delta _v(t))\bigg (\intop _0^t\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _{{\mathop {\Omega }\limits ^{1}}_0} \bigg |\intop _0^{t'}v_\xi (\xi '',\tau )d\tau \bigg |^2 {|v_{\xi \xi }(\xi ',t')-v_{\xi \xi }(\xi '',t')|^2\over |\xi '-\xi ''|^{3+2\alpha }} d\xi 'd\xi ''dt'\bigg )^{1/2}\\&\equiv J_1^1+J_1^2,\end{aligned} \end{aligned}$$

where

$$\begin{aligned} J_1^2\le t^{1/2}\phi (\delta _v(t))\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))} \Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))}. \end{aligned}$$

To estimate \(J_1^1\) we use the Hölder inequality with respect to \(\xi '\), \(\xi ''\) and the Minkowski inequality.

Then we obtain

$$\begin{aligned}\begin{aligned} J_1^1&\le t^{1-1/2p}\phi (\delta _v(t))\bigg [\intop _0^t\bigg (\intop |v_{\xi \xi }(\xi ',t')|^{2p'}d\xi '\bigg )^{1/p'}\bigg ]^{1/2}\cdot \\&\quad \cdot \bigg [\intop _0^t\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _{{\mathop {\Omega }\limits ^{1}}_0} {|v_\xi (\xi ',\tau )-v_\xi (\xi '',\tau )|^{2p}\over |\xi '-\xi ''|^{3+2\alpha '}} d\xi 'd\xi ''dt'\bigg )^{1/p}d\tau \bigg ]^{1/2}\\ {}&\le t^{1-1/2p}\phi (\delta _v(t))\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))}^2,\end{aligned} \end{aligned}$$

where \(1/p+1/p'=1\), \(p'<2\), \(\alpha '=\alpha +{1\over 2p}\big ({3\over 2}p-3\big )\).

Next, we examine

$$\begin{aligned}\begin{aligned} J_2&\le t^{1/2}\phi (\delta _v(t))\bigg (\!\intop _0^t\!\intop _{{\mathop {\Omega }\limits ^{1}}_0}\! \intop _{{\mathop {\Omega }\limits ^{1}}_0}\!{\intop _0^{t'}|v_{\xi \xi }(\xi ',\tau )- v_{\xi \xi }(\xi '',\tau )|^2d\tau \over |\xi '-\xi ''|^{3+2\alpha }}|v_\xi (\xi ',t')|^2 d\xi 'd\xi ''dt'\!\bigg )^{\!\!1/2}\\&\quad +t^{1/2}\phi (\delta _v(t))\bigg (\!\intop _0^t\!\!\intop _{{\mathop {\Omega }\limits ^{1}}_0}\!\! \intop _{{\mathop {\Omega }\limits ^{1}}_0}\!\!\intop _0^t\!|v_{\xi \xi }(\xi '',\tau )|^2d\tau {|v_\xi (\xi ',t')-v_\xi (\xi '',t')|^2\over |\xi '-\xi ''|^{3+2\alpha }}d\xi 'd\xi ''dt' \bigg )^{\!\!1/2}\\&\equiv J_2^1+J_2^2,\end{aligned} \end{aligned}$$

where

$$\begin{aligned} J_2^1\le t^{1/2}\phi (\delta _v(t))\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))}^2. \end{aligned}$$

Finally, \(J_2^2\) can be treated in the same way as \(J_1^1\). Then we obtain

$$\begin{aligned} J_2^2\le t^{1-1/2p}\phi (\delta _v(t))\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))}^2. \end{aligned}$$

Summarizing,

$$\begin{aligned} I_2\le t^a\phi (\delta _v(t))\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))}^2 \end{aligned}$$
(4.50)

Finally, we examine \(I_3\). The Calderon–Zygmund theorem implies

$$\begin{aligned}\begin{aligned} I_3&\le c\Vert (I-\xi _x)v\Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0;H^{1+\alpha /2}(0,t))}=c\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0} \Vert (I-\xi _x)v\Vert _{H^{1+\alpha }(0,t)}^2d\xi \bigg )^{1/2}\\&=c\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\Vert (I-\xi _x)v_t-\xi _{xt}v\Vert _{H^\alpha (0,t)}^2 d\xi \bigg )^{1/2}\\&\le \bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _0^t\intop _0^t {|(I-\xi _x(\xi ,t'))v_t(\xi ,t')-(I-\xi _x(\xi ,t''))v_t(\xi ,t'')|^2\over |t'-t''|^{1+\alpha }}dt'dt''d\xi \bigg )^{1/2}\\&\quad +\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _0^t\intop _0^t {|\xi _{xt}(\xi ,t')v(\xi ,t')-\xi _{xt}(\xi ,t'')v(\xi ,t'')|^2\over |t'-t''|^{1+\alpha }}dt'dt''d\xi \bigg )^{1/2}\\ {}&\equiv L_1+L_2,\end{aligned} \end{aligned}$$

where

$$\begin{aligned}\begin{aligned} L_1&\le \bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _0^t\intop _0^t|1-\xi _x(\xi ,t')|^2 {|v_t(\xi ,t')-v_t(\xi ,t'')|^2\over |t'-t''|^{1+\alpha }}dt'dt''d\xi \bigg )^{1/2}\\&\quad +\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _0^t\intop _0^t {|\xi _x(\xi ,t')-\xi _x(\xi ,t'')|^2\over |t'-t''|^{1+\alpha }}|v_t(\xi ,t'')|^2 dt'dt''d\xi \bigg )^{1/2}\\ {}&\equiv L_1^1+L_1^2.\end{aligned} \end{aligned}$$

Estimating \(L_1^1\) yields

$$\begin{aligned} L_1^1\le t^{1/2}\phi (\delta _v(t))\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0))} \Vert v_t\Vert _{L_2(\Omega ;H^{\alpha /2}(0,t))}. \end{aligned}$$
(4.51)

Next, \(L_1^2\) is estimated by

$$\begin{aligned} \begin{aligned} L_1^2&\le \phi (\delta (t))\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _0^t\intop _0^t {|\intop _{t'}^{t''}v_\xi (\xi ,\tau )d\tau |^2\over |t'-t''|^{1+\alpha }} |v_t(\xi ,t'')|^2dt'dt''d\xi \bigg )^{1/2}\\&\le \phi (\delta _v(t))\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _0^t\intop _0^t |t'-t''|^{-\alpha }\intop _{t'}^{t''}v_\xi ^2(\xi ,\tau )d\tau |v_t(\xi ,t'')|^2 dt'dt''d\xi \bigg )^{1/2}\\ {}&\le t^{1/2-\alpha /2}\phi (\delta _v(t))\Vert v\Vert _{L_2(0,t;H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0)} \Vert v_t\Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}.\end{aligned} \end{aligned}$$
(4.52)

Finally, (4.51) and (4.52) imply

$$\begin{aligned} L_1\le t^a\phi (\delta _v(t))\Vert v\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}^2. \end{aligned}$$
(4.53)

Finally, we estimate \(L_2\),

$$\begin{aligned}\begin{aligned} L_2&\le \bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _0^t\intop _0^t {|\xi _{xt}(\xi ,t')-\xi _{xt}(\xi ,t'')|^2\over |t'-t''|^{1+\alpha }}|v(\xi ,t')|^2 dt'dt''d\xi \bigg )^{1/2}\\&\quad +\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _0^t\intop _0^t|\xi _{xt}(\xi ,t'')|^2 {|v(\xi ,t')-v(\xi ,t'')|^2\over |t'-t''|^{1+\alpha }}dt'dt''d\xi \bigg )^{1/2}\equiv L_2^1+L_2^2.\end{aligned} \end{aligned}$$

First, we consider

$$\begin{aligned}\begin{aligned} L_2^1&\le \phi (\delta _v(t))\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _0^t\intop _0^t {|v_\xi (\xi ,t')-v_\xi (\xi ,t'')|^2\over |t'-t''|^{1+\alpha }}|v(\xi ,t'')|^2 dt'dt''d\xi \bigg )^{1/2}\equiv L_2^{11}.\end{aligned} \end{aligned}$$

By the Hölder inequality we get

$$\begin{aligned}\begin{aligned} L_2^{11}&\le \phi (\delta _v(t))\bigg [\intop _{{\mathop {\Omega }\limits ^{1}}_0}\bigg (\intop _0^t\intop _0^t {|v_\xi (\xi ,t')-v_\xi (\xi ,t'')|^{2p}\over |t'-t''|^{1+2p\alpha '}}dt'dt'' \bigg )^{q/p}d\xi \bigg ]^{1/2q}\cdot \\&\quad \cdot \bigg [\intop _\Omega \bigg (\intop _0^t\intop _0^t {|v(\xi ,t')|^{2p'}\over |t'-t''|^{{1\over 2}p'}}dt'dt''\bigg )^{q'/p'}d\xi \bigg ]^{1/2q'}\equiv L_2^{12},\end{aligned} \end{aligned}$$

where \(1/p+1/p'=1\), \(1/q+1/q'=1\), \(p'<2\), \(\alpha '={\alpha \over 2}+{1\over 2p}\big ({1\over 2}p-1\big )\).

Performing integration with respect to \(t''\) in the second factor yields

$$\begin{aligned} \begin{aligned} L_2^1&\le L_2^{12}\le t^{1/2p'-1/4}\phi (\delta _v(t))\Vert v_\xi \Vert _{L_{2q}(\Omega ;W_{2p}^{\alpha '}(0,t))} \Vert v\Vert _{L_{2q'}(\Omega ;L_{2p'}(0,t))}\\ {}&\le t^{1/2p'-1/4}\phi (\delta _v(t))\Vert v\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0^t)}^2,\end{aligned} \end{aligned}$$
(4.54)

where we need the following restrictions

$$\begin{aligned}\begin{aligned}&{5\over 2}-{3\over 2q}-{2\over 2p}+\alpha +{1\over 2}-{1\over p}+1\le 2+\alpha \quad \textrm{so}\quad 3-{2\over p}-{3\over 2q}\le 1,\\&{5\over 2}-{3\over 2q'}-{1\over p'}\le 2+\alpha .\end{aligned} \end{aligned}$$

We see that the above inequalities do not imply any restriction.

Finally, we estimate

$$\begin{aligned}\begin{aligned} L_2^2&\le \phi (\delta _v(t))\bigg (\intop _{{\mathop {\Omega }\limits ^{1}}_0}\intop _0^t\intop _0^t |v_\xi (\xi ,t'')|^2{|v(\xi ,t')-v(\xi ,t'')|^2\over |t'-t''|^{1+\alpha }} dt'dt''d\xi \bigg )^{1/2}\\&\le \phi (\delta _v(t))\bigg [\intop _{{\mathop {\Omega }\limits ^{1}}_0}\bigg (\intop _0^t\intop _0^t {|v_\xi (\xi ,t'')|^{2p'}\over |t'-t''|^{{1\over 2}p'}}dt'dt''\bigg )^{q'/p'} d\xi \bigg ]^{1/2q'}\cdot \\&\quad \cdot \bigg [\intop _{{\mathop {\Omega }\limits ^{1}}_0}\bigg (\intop _0^t\intop _0^t {|v(\xi ,t')-v(\xi ,t'')|^{2p}\over |t'-t''|^{1+2p\alpha '}}dt'dt''\bigg )^{q/p}d\xi \bigg ]^{1/2q}\equiv L_2^2,\end{aligned} \end{aligned}$$

where \(1/p+1/p'=1\), \(1/q+1/q'=1\), \(p'<2\), \(\alpha '={\alpha \over 2}+{1\over 4}-{1\over 2p}\).

If the following restrictions hold

$$\begin{aligned}\begin{aligned}&{5\over 2}-{3\over 2q'}-{1\over p'}\le 1+\alpha ,\\ {}&3-{3\over 2q}-{2\over p}\le 2\end{aligned} \end{aligned}$$

we obtain the estimate

$$\begin{aligned} L_2^2\le t^{1/2p'-1/4}\phi (\delta _v(t))\Vert v\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0^t)}^2. \end{aligned}$$
(4.55)

Estimates (4.54) and (4.55) imply

$$\begin{aligned} L_2\le t^a\phi (\delta _v(t))\Vert v\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0^t)}^2. \end{aligned}$$
(4.56)

From (4.53) and (4.56) we derive the bound

$$\begin{aligned} I_3\le t^a\phi (\delta _v(t))\Vert v\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0^t)}^2. \end{aligned}$$
(4.57)

Using estimates (4.49), (4.50) and (4.57) in (4.44), we obtain

$$\begin{aligned} \Vert \nabla \varphi \Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}\le t^a\phi (\delta _{{\bar{v}}}(t))\Vert v\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0^t)}^2. \end{aligned}$$
(4.58)

Recalling notation (4.43) in (4.58) gives (4.42). This ends the proof. \(\square \)

Corollary 4.5

Using estimates (4.4), (4.41) and (4.42) in (4.3) yields

$$\begin{aligned} \begin{aligned}&\Vert {\bar{v}}_{n+1}\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0^t)}+\Vert \nabla {\bar{p}}_{n+1}\Vert _{H^{\alpha ,\alpha /2} ({\mathop {\Omega }\limits ^{1}}_0^t)}+\Vert {\bar{p}}_{n+1}\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\quad +\Vert {\bar{p}}_{n+1}\Vert _{H^{1/2+\alpha ,1/4+\alpha /2}(S_0^t)}\le t^a\phi (\delta _{{\bar{v}}_n}(t))\cdot \Vert {\bar{v}}_n\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)} [\Vert {\bar{v}}_n\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\quad +\Vert {\bar{p}}_n\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}+\Vert {\bar{p}}_{n,\xi }\Vert _{H^{\alpha ,\alpha /2} ({\mathop {\Omega }\limits ^{1}}_0^t)}+\Vert {\bar{p}}_n\Vert _{H^{1/2+\alpha ,1/4+\alpha /2}(S_0^t)}\\&\quad +\Vert {\mathop {{\bar{H}}}\limits ^{1}}_n\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}^2]+c (\Vert f\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}+ \Vert v(0)\Vert _{H^{1+\alpha }({\mathop {\Omega }\limits ^{1}}_0)}).\end{aligned} \end{aligned}$$
(4.59)

5 Estimates for Solutions to Problem (3.9)

Lemma 5.1

Assume that \({\mathop {v}\limits ^{i}}_n\), \({\mathop {{\bar{H}}}\limits ^{i}}_n\in V_2^{2+\alpha }({\mathop {\Omega }\limits ^{i}}_0^t)\), \(i=1,2\) and \(a>0\). Assume also that \(H_{*i}\in H^{3/2+\alpha ,3/4+\alpha /2}(B^t)\), \(i=1,2\), \({\mathop {H}\limits ^{i}}(0)\in H^{1+\alpha }({\mathop {\Omega }\limits ^{i}}_0)\), \(i=1,2\).

Then

$$\begin{aligned} \begin{aligned}&\sum _{i=1}^2\Vert {\mathop {{\bar{H}}}\limits ^{i}}_{n+1}\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0^t)}\le t^a\phi (\delta _{{\mathop {{\bar{v}}}\limits ^{1}}_n}(t),\delta _{{\mathop {{\bar{v}}}\limits ^{2}}_n}(t))\cdot \\&\quad \cdot \bigg (\sum _{i=1}^2(\Vert {\mathop {{\bar{H}}}\limits ^{i}}_n\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0^t)}+\Vert {\mathop {{\bar{v}}}\limits ^{i}}_n\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0^t)}\Vert {\mathop {{\bar{H}}}\limits ^{i}}_n\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0^t)})\\&\quad +c\sum _{i=1}^2\Vert H_{*i}\Vert _{H^{{3\over 2}+\alpha ,{3\over 4}+{\alpha \over 2}}(B^t)}+c\sum _{i=1}^2\Vert {\mathop {H}\limits ^{i}}(0)\Vert _{H^{1+\alpha }({\mathop {\Omega }\limits ^{i}}_0)}.\end{aligned} \end{aligned}$$
(5.1)

Proof

Applying Lemma 2.5.1 to problem (3.9) yields the existence of solutions such that \({\mathop {{\bar{H}}}\limits ^{i}}_{n+1}\in V_2^{2+\alpha }({\mathop {\Omega }\limits ^{i}}_0^t)\) satisfying boundary conditions \((3.9)_{5,6,7}\) and initial conditions \((3.9)_8\). Moreover, Lemma 2.5.1 implies the estimate

$$\begin{aligned} \begin{aligned}&\sum _{i=1}^2\Vert {\mathop {{\bar{H}}}\limits ^{i}}_{n+1}\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{i}}_0^t)}\le c\sum _{i=1}^2[\Vert {\mathop {M}\limits ^{i}}_n\Vert _{H_2^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{i}}_0^t)}\\&\quad +\Vert \nabla {\mathop {N}\limits ^{i}}_n\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{i}}_0^t)}+\Vert K_{in}\Vert _{H^{{1\over 2}+\alpha ,{1\over 4}+{\alpha \over 2}}(S_0^t)}\\&\quad +\Vert L_{in}\Vert _{H^{3/2+\alpha ,3/4+\alpha /2}(S_0^t)}+ \Vert \nabla {\mathop {\Phi }\limits ^{i}}_n\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{i}}_0^t)}\\&\quad +\Vert H_{*i}\Vert _{H^{3/2+\alpha ,3/4+\alpha /2}(B^t)}\\&\quad +\Vert {\mathop {H}\limits ^{i}}(0)\Vert _{H^{1+\alpha }({\mathop {\Omega }\limits ^{i}}_0)}]+ \Vert B_0\Vert _{H^{1/2+\alpha ,1/4+\alpha /2}(B^t)},\end{aligned} \end{aligned}$$
(5.2)

where \({\mathop {{{\bar{\Phi }}}}\limits ^{i}}_n\) is a solution to (2.5.3) with \({\mathop {N}\limits ^{i}}_n\) which replaces \({\mathop {N}\limits ^{i}}\), \(i=1,2\).

Recalling the forms of quantities \({\mathop {M}\limits ^{i}}_n\), \({\mathop {N}\limits ^{i}}_n\), \(i=1,2\), and repeating the estimations appeared in the proofs of Lemmas 4.2 and 4.4, we obtain

$$\begin{aligned} \begin{aligned}&\Vert {\mathop {M}\limits ^{1}}_n\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}+ \Vert \nabla {\mathop {N}\limits ^{1}}_n\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\quad \le t^a\phi (\delta _{{\mathop {{\bar{v}}}\limits ^{1}}_n}(t))(\Vert {\mathop {{\bar{v}}}\limits ^{1}}_n\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0^t)}+1)\Vert {\mathop {{\bar{H}}}\limits ^{1}}_n\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0^t)}\end{aligned} \end{aligned}$$
(5.3)

and

$$\begin{aligned} \begin{aligned}&\Vert {\mathop {M}\limits ^{2}}_n\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{2}}_0^t)}+ \Vert \nabla {\mathop {N}\limits ^{2}}_n\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{2}}_0^t)}\\&\quad \le t^a\phi (\delta _{{\mathop {{\bar{v}}}\limits ^{2}}_n}(t))(\Vert {\mathop {{\bar{v}}}\limits ^{2}}_n\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{2}}_0^t)}+1)\Vert {\mathop {{\bar{H}}}\limits ^{2}}_n\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{2}}_0^t)}.\end{aligned} \end{aligned}$$
(5.4)

Repeating the proof of (4.58) we obtain

$$\begin{aligned} \Vert \nabla {\mathop {\Phi }\limits ^{i}}\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{i}}_0^t)}\le t^a\phi (\delta _{{\mathop {{\bar{v}}}\limits ^{i}}_n}(t))\Vert {\mathop {{\bar{v}}}\limits ^{i}}_n\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{i}}_0^t)},\ \ i=1,2. \end{aligned}$$

Moreover, Sect. 7 implies the estimates

$$\begin{aligned}\begin{aligned}&\Vert K_{in}\Vert _{H^{1/2+\alpha ,1/4+\alpha /2}(S_0^t)}+\Vert L_{in}\Vert _{ H^{3/2+\alpha ,3/4+\alpha /2}(S_0^t)}\le t^a\phi (\delta _{{\mathop {{\bar{v}}}\limits ^{1}}_n}(t))\Vert {\mathop {{\bar{v}}}\limits ^{1}}_n\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0^t)}\cdot \\&\quad \cdot (\Vert {\mathop {{\bar{H}}}\limits ^{1}}_n\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0^t)}+\Vert {\mathop {{\bar{H}}}\limits ^{2}}_n\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{2}}_0^t)}).\end{aligned} \end{aligned}$$

The above estimates imply (5.1). This concludes the proof. \(\square \)

A solution \({\mathop {{\bar{v}}}\limits ^{2}}\) to problem (3.2) appeared in problem (3.7) can be estimated by appropriate norms of \({\mathop {{\bar{v}}}\limits ^{1}}\).

Expressing (3.2) in Lagrangian coordinates we obtain

$$\begin{aligned} \begin{aligned}&{\mathop {{\bar{v}}}\limits ^{2}}_t-\textrm{div}\,_{{\mathop {{\bar{v}}}\limits ^{2}}}{\mathbb {T}}_{{\mathop {{\bar{v}}}\limits ^{2}}}({\mathop {{\bar{v}}}\limits ^{2}},{\bar{q}})= {\mathop {{\bar{v}}}\limits ^{2}}\cdot \nabla _{{\mathop {{\bar{v}}}\limits ^{2}}}{\mathop {{\bar{v}}}\limits ^{2}}\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{2}}_0^T,\\&\textrm{div}\,_{{\mathop {{\bar{v}}}\limits ^{2}}}{\mathop {{\bar{v}}}\limits ^{2}}=0\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{2}}_0^T,\\&{\mathop {{\bar{v}}}\limits ^{2}}|_{S_0}={\mathop {{\bar{v}}}\limits ^{1}}|_{S_0},\ \ {\mathop {{\bar{v}}}\limits ^{2}}|_B=0,\\ {}&{\mathop {{\bar{v}}}\limits ^{2}}|_{t=0}={\mathop {v}\limits ^{2}}(0),\end{aligned} \end{aligned}$$
(5.5)

where \({\mathop {v}\limits ^{2}}(0)\) is a solution to problem (3.3)

$$\begin{aligned} \begin{aligned} -&\Delta _\xi {\mathop {v}\limits ^{2}}(0)+\nabla _\xi q(0)=0\\ {}&\textrm{div}\,_\xi {\mathop {v}\limits ^{2}}=0\\&{\mathop {v}\limits ^{2}}(0)|_{S_0}={\mathop {v}\limits ^{1}}(0)|_{S_0},\ \ {\mathop {v}\limits ^{2}}(0)|_B=0\end{aligned} \end{aligned}$$
(5.6)

We prove existence of solutions to problem (5.5) by the following method of successive approximations

$$\begin{aligned} \begin{aligned}&{\mathop {{\bar{v}}}\limits ^{2}}_{n+1,t}-\textrm{div}\,_\xi {\mathbb {T}}_\xi ({\mathop {{\bar{v}}}\limits ^{2}}_{n+1},{\bar{q}}_{n+1})= -(\textrm{div}\,_\xi {\mathbb {T}}_\xi ({\mathop {{\bar{v}}}\limits ^{2}}_n,{\bar{q}}_n)\quad&\\&\quad -\textrm{div}\,_{{\mathop {{\bar{v}}}\limits ^{2}}_n}{\mathbb {T}}_{{\mathop {{\bar{v}}}\limits ^{2}}_n}({\mathop {{\bar{v}}}\limits ^{2}}_n,{\bar{q}}_n)+{\mathop {{\bar{v}}}\limits ^{2}}_n\cdot \nabla _{{\mathop {{\bar{v}}}\limits ^{2}}_n}{\mathop {{\bar{v}}}\limits ^{2}}_n\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{2}}_0^T,\\&\textrm{div}\,_\xi {\mathop {{\bar{v}}}\limits ^{2}}_{n+1}=\textrm{div}\,_\xi {\mathop {{\bar{v}}}\limits ^{2}}_n-\textrm{div}\,_{{\mathop {{\bar{v}}}\limits ^{2}}_n}{\mathop {{\bar{v}}}\limits ^{2}}_n\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{2}}_0^t,\\&{\mathop {{\bar{v}}}\limits ^{2}}_{n+1}|_{S_0}={\mathop {{\bar{v}}}\limits ^{1}}|_{S_0},\quad&\textrm{on}\ \ S_0^T,\\ {}&{\mathop {{\bar{v}}}\limits ^{2}}_{n+1}|_B=0\quad&\textrm{on}\ \ B^T,\\ {}&{\mathop {{\bar{v}}}\limits ^{2}}_{n+1}|_{t=0}={\mathop {v}\limits ^{2}}(0)\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{2}}_0.\end{aligned} \end{aligned}$$
(5.7)

Lemma 5.2

Let \({\mathop {{\bar{v}}}\limits ^{1}}\in H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^T)\), \({\mathop {v}\limits ^{2}}(0)\in H^{1+\alpha }({\mathop {\Omega }\limits ^{2}}_0)\). Let \(\alpha >5/8\). Let \(D=c(\Vert {\mathop {{\bar{v}}}\limits ^{1}}\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}+ \Vert {\mathop {v}\limits ^{2}}(0)\Vert _{H^{1+\alpha }({\mathop {\Omega }\limits ^{2}}_0)})\). For T sufficiently small there exists a solution to problem (5.5) such that \({\mathop {{\bar{v}}}\limits ^{2}}\in H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{2}}_0^t)\), \(t\le T\) and the estimate

$$\begin{aligned} \Vert {\mathop {{\bar{v}}}\limits ^{2}}\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{2}}_0^t)}+\Vert {\bar{q}}_\xi \Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{2}}_0^t)}\le \gamma D, \end{aligned}$$
(5.8)

where \(\gamma >1\) holds.

Proof

We use the method of successive approximations described by (5.7). Using the techniques from the proofs of Lemmas 4.2 and 4.4 we obtain

$$\begin{aligned} \begin{aligned}&\Vert {\mathop {{\bar{v}}}\limits ^{2}}_{n+1}\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{2}}_0^t)}+\Vert {\bar{q}}_{n+1,\xi }\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{2}}_0^t)}\\&\quad \le t^a\phi (\delta _{{\mathop {{\bar{v}}}\limits ^{2}}_n}(t))(\Vert {\mathop {{\bar{v}}}\limits ^{2}}_n\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{2}}_0^t)}+\Vert {\bar{q}}_{n,\xi }\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{2}}_0^t)})\\&\qquad +c\Vert {\mathop {{\bar{v}}}\limits ^{1}}\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}+ c\Vert {\mathop {v}\limits ^{2}}(0)\Vert _{H^{1+\alpha }({\mathop {\Omega }\limits ^{2}}_0)},\end{aligned} \end{aligned}$$
(5.9)

where \(a>0\).

Let \(\gamma >1\). Assume that

$$\begin{aligned} X_n(t)\equiv \Vert {\mathop {{\bar{v}}}\limits ^{2}}_n\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{2}}_0^t)}+\Vert {\bar{q}}_{n,\xi }\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{2}}_0^t)}\le \gamma D, \end{aligned}$$
(5.10)

where

$$\begin{aligned} D=c(\Vert {\mathop {{\bar{v}}}\limits ^{1}}\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}+ \Vert {\mathop {v}\limits ^{2}}(0)\Vert _{H^{1+\alpha }({\mathop {\Omega }\limits ^{2}}_0)}). \end{aligned}$$

Then (5.9) yields

$$\begin{aligned} X_{n+1}\le t^a\phi (\gamma D)\gamma D+D. \end{aligned}$$
(5.11)

Let t be so small that

$$\begin{aligned} t^a\phi (\gamma D)\gamma \le \gamma -1. \end{aligned}$$

Then (5.11) yields

$$\begin{aligned} X_{n+1}\le \gamma D. \end{aligned}$$
(5.12)

Assuming that \(X_0=0\) estimate (5.12) implies

$$\begin{aligned} X_n\le \gamma D\quad \mathrm{for\ any}\ n\in {\mathbb {N}}. \end{aligned}$$
(5.13)

Introducing differences

$$\begin{aligned} X_n={\mathop {{\bar{v}}}\limits ^{2}}_n-{\mathop {{\bar{v}}}\limits ^{2}}_{n-1}+{\bar{q}}_{n,\xi }-{\bar{q}}_{n-1,\xi } \end{aligned}$$

we can show convergence of the constructed sequence. This concludes the proof of Lemma 5.2. \(\square \)

In D introduced in assumptions of Lemma 5.2 we have the term \({\mathop {v}\limits ^{2}}(0)\) which is a solution to problem (5.6). Therefore, we need

Lemma 5.3

Assume that \({\mathop {v}\limits ^{1}}(0)\in H^{1/2+\alpha }(S_0)\). Then there exists a solution to (5.6) such that \({\mathop {v}\limits ^{2}}(0)\in H^{1+\alpha }({\mathop {\Omega }\limits ^{2}}_0)\) and the estimate holds

$$\begin{aligned} \Vert {\mathop {v}\limits ^{2}}(0)\Vert _{H^{1+\alpha }({\mathop {\Omega }\limits ^{2}}_0)}\le c\Vert {\mathop {v}\limits ^{1}}(0)\Vert _{H^{1/2+\alpha }(S_0)}\le c\Vert {\mathop {{\bar{v}}}\limits ^{1}}\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}. \end{aligned}$$
(5.14)

Corollary 5.4

Using (5.8) and (5.14) in (5.1) yields

$$\begin{aligned} \begin{aligned}&\sum _{i=1}^2\Vert {\mathop {{\bar{H}}}\limits ^{i}}_{n+1}\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{i}}_0^t)}\le t^a(\phi (\delta _{{\mathop {{\bar{v}}}\limits ^{1}}}(t))\cdot \\&\quad \cdot \sum _{i=1}^2(1+\Vert {\mathop {{\bar{v}}}\limits ^{1}}_n\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0^t)})\Vert {\mathop {{\bar{H}}}\limits ^{i}}_n\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{i}}_0^t)})\\&\quad +c\sum _{i=1}^2(\Vert H_{*i}\Vert _{H^{{3\over 2}+\alpha ,{3\over 4}+\alpha /2}(B^t)}+\Vert {\mathop {H}\limits ^{i}}(0)\Vert _{H^{1+\alpha }({\mathop {\Omega }\limits ^{i}}_0)}).\end{aligned} \end{aligned}$$
(5.15)

6 Existence of Local Solutions to Problem (1.18), (1.20)

We prove existence of local solutions to problem (1.18), (1.20) by the method of successive approximations defined in Sect. 3.

Lemma 6.1

(uniform boundedness of the sequence introduced in Sect. 3) Assume that the quantity

$$\begin{aligned} \begin{aligned} D_0&=\Vert f\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}+ \Vert v(0)\Vert _{H^{1+\alpha }(\Omega _0)}\\&\quad +\sum _{i=1}^2(\Vert H_{*i}\Vert _{H^{3/2+\alpha ,3/4+\alpha /2}(B^t)}+ \Vert {\mathop {H}\limits ^{i}}(0)\Vert _{H^{1+\alpha }({\mathop {\Omega }\limits ^{i}}_0)}\end{aligned} \end{aligned}$$
(6.1)

is finite, where \(\alpha >5/8\).

Let

$$\begin{aligned} \begin{aligned} X_n(t)&=\Vert {\bar{v}}_n\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0^t)}+\Vert {\bar{p}}_n\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}+\Vert \nabla {\bar{p}}_n\Vert _{H^{\alpha ,\alpha /2}({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\quad +\Vert {\bar{p}}_n\Vert _{H^{1/2+\alpha ,1/4+\alpha /2}(S_0^t)}+\sum _{i=1}^2\Vert {\mathop {{\bar{H}}}\limits ^{i}}_n\Vert _{V_2^{2+\alpha }({\mathop {\Omega }\limits ^{i}}_0^t)}.\end{aligned} \end{aligned}$$
(6.2)

Then for t sufficiently small the following bound holds

$$\begin{aligned} X_n(t)\le c_0\gamma D_0\ \forall n\in {\mathbb {N}}, \end{aligned}$$
(6.3)

where \(\gamma >1\) and \(c_0\) is the constant which estimates constants in (4.59) and (5.15).

Proof

Inequalities (4.59) and (5.15) imply

$$\begin{aligned} X_{n+1}(t)\le t^a\phi (t^aX_n(t))X_n(t)+c_0D_0. \end{aligned}$$
(6.4)

Let \(\gamma >1\). Assume that

$$\begin{aligned} X_n(t)\le \gamma c_0D_0. \end{aligned}$$
(6.5)

Let t be so small that

$$\begin{aligned} t^a\phi (t^a\gamma c_0D_0)\gamma \le \gamma -1 \end{aligned}$$
(6.6)

Then (6.4) implies

$$\begin{aligned} X_{n+1}(t)\le \gamma c_0D_o. \end{aligned}$$
(6.7)

Assume that \(X_0=0\). Then (6.5) and (6.7) imply (6.3). This ends the proof. \(\square \)

To show convergence of the above sequence we need

Lemma 6.2

Let the sequence \(\{{\bar{v}}_n,{\bar{p}}_n,{\mathop {{\bar{H}}}\limits ^{1}}_n,{\mathop {{\bar{H}}}\limits ^{2}}_n\}\) be examined in Lemma 6.1. Let

$$\begin{aligned} \begin{aligned} Y_n(t)&=\Vert {\bar{V}}_n\Vert _{V_2^2({\mathop {\Omega }\limits ^{1}}_0^t)}+\Vert {\bar{P}}_{n,\xi }\Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}+\Vert {\bar{P}}_n\Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\quad +\Vert {\bar{P}}_n\Vert _{H^{1/2,1/4}(S_0^t)}+\sum _{i=1}^2\Vert {\mathop {{\bar{K}}}\limits ^{i}}_n\Vert _{V_2^2({\mathop {\Omega }\limits ^{i}}_0^t)}\end{aligned} \end{aligned}$$
(6.8)

where

$$\begin{aligned} {\bar{V}}_n={\bar{v}}_n-v_{n-1},\quad {\bar{P}}_n={\bar{p}}_n-{\bar{p}}_{n-1},\quad {\mathop {{\bar{K}}}\limits ^{i}}_n={\mathop {{\bar{H}}}\limits ^{i}}_n-{\mathop {{\bar{H}}}\limits ^{i}}_{n-1},\ \ j=1,2. \end{aligned}$$

Then

$$\begin{aligned} Y_{n+1}(t)\le t^a\phi (c_0D_0)Y_n, \end{aligned}$$
(6.9)

where \(a>0\).

Proof

Taking the difference of (3.8) for n and for \(n-1\) we obtain

$$\begin{aligned} \begin{aligned}&{\bar{V}}_{n+1,t}-\textrm{div}\,_\xi {\mathbb {T}}_\xi ({\bar{V}}_{n+1},{\bar{P}}_{n+1})\\&\quad =-[\textrm{div}\,_\xi {\mathbb {T}}_\xi ({\bar{V}}_n,{\bar{P}}_n)-\textrm{div}\,_{{\bar{v}}_n}{\mathbb {T}}_{{\bar{v}}_n}({\bar{V}}_n,{\bar{P}}_n)] \\&\qquad +[\textrm{div}\,_{{\bar{v}}_n}{\mathbb {T}}_{{\bar{v}}_n}({\bar{v}}_{n-1},{\bar{p}}_{n-1})-\textrm{div}\,_{{\bar{v}}_{n-1}}{\mathbb {T}}_{{\bar{v}}_{n-1}}({\bar{v}}_{n-1},{\bar{p}}_{n-1})]\\&\qquad +\mu _1[\textrm{div}\,_{{\bar{v}}_n}{\mathbb {T}}({\mathop {{\bar{H}}}\limits ^{1}}_n)-\textrm{div}\,_{{\bar{v}}_n}{\mathbb {T}}({\mathop {{\bar{H}}}\limits ^{1}}_{n-1})]\\&\qquad +\mu _1[\textrm{div}\,_{{\bar{v}}_n}{\mathbb {T}}({\mathop {{\bar{H}}}\limits ^{1}}_{n-1})-\textrm{div}\,_{{\bar{v}}_{n-1}}{\mathbb {T}}({\mathop {{\bar{H}}}\limits ^{1}}_{n-1})]\equiv J_n\equiv \sum _{i=1}^4 I_i, \\&\textrm{div}\,_\xi {\bar{V}}_{n+1}=\textrm{div}\,_\xi {\bar{V}}_n-[\textrm{div}\,_{{\bar{v}}_n}{\bar{v}}_n-\textrm{div}\,_{{\bar{v}}_n}{\bar{v}}_{n-1}]\\&\qquad -[\textrm{div}\,_{{\bar{v}}_n}{\bar{v}}_{n-1}-\textrm{div}\,_{{\bar{v}}_{n-1}}{\bar{v}}_{n-1}]\equiv G_n\\&\quad \equiv \textrm{div}\,_\xi {\bar{V}}_n+I_5+I_6,\\&{\bar{v}}_\xi \cdot {\mathbb {T}}_\xi ({\bar{V}}_{n+1},{\bar{P}}_{n+1})={\bar{n}}_\xi \cdot {\mathbb {T}}_\xi ({\bar{V}}_n,{\bar{P}}_n)\\&\qquad -({\bar{n}}_{{\bar{v}}_n}{\mathbb {T}}_{{\bar{v}}_n}({\bar{v}}_n,{\bar{p}}_n)-{\bar{n}}_{{\bar{v}}_{n-1}} {\mathbb {T}}_{{\bar{v}}_{n-1}}({\bar{v}}_{n-1},{\bar{p}}_{n-1}))\\&\qquad -\mu _1({\bar{n}}_{{\bar{v}}_n}\cdot {\mathbb {T}}({\mathop {{\bar{H}}}\limits ^{1}}_n)-{\bar{n}}_{{\bar{v}}_{n-1}}\cdot {\mathbb {T}}({\mathop {{\bar{H}}}\limits ^{1}}_{n-1}))\equiv L_n\\&{\bar{V}}_{n+1}|_{t=0}=0\end{aligned} \end{aligned}$$
(6.10)

Taking the difference of (3.9) for n and for \(n-1\) yields

$$\begin{aligned} \mu _1{\mathop {{\bar{K}}}\limits ^{1}}_{n+1,t}+{1\over \sigma _1}\textrm{rot}\,_\xi ^2{\mathop {{\bar{K}}}\limits ^{1}}_{n+1}= & {} {1\over \sigma _1}\textrm{rot}\,_\xi ^2{\mathop {{\bar{K}}}\limits ^{1}}_n-{1\over \sigma _1}(\textrm{rot}\,_{{\mathop {{\bar{v}}}\limits ^{1}}_n}^2{\mathop {{\bar{H}}}\limits ^{1}}_n-\textrm{rot}\,_{{\mathop {{\bar{v}}}\limits ^{1}}_{n-1}}^2{\mathop {{\bar{H}}}\limits ^{1}}_{n-1})\nonumber \\{} & {} \quad +\mu _1(\textrm{rot}\,_{{\mathop {{\bar{v}}}\limits ^{1}}_n}({\mathop {{\bar{v}}}\limits ^{1}}_n\times {\mathop {{\bar{H}}}\limits ^{1}}_n)-\textrm{rot}\,_{{\mathop {{\bar{v}}}\limits ^{1}}_{n-1}}({\mathop {{\bar{v}}}\limits ^{1}}_{n-1}\times {\mathop {{\bar{H}}}\limits ^{1}}_{n-1})\nonumber \\{} & {} \quad +\mu _1({\mathop {{\bar{v}}}\limits ^{1}}_n\cdot \nabla _{{\mathop {{\bar{v}}}\limits ^{1}}_n}{\mathop {{\bar{H}}}\limits ^{1}}_n-{\mathop {{\bar{v}}}\limits ^{1}}_{n-1}\cdot \nabla _{{\mathop {{\bar{v}}}\limits ^{1}}_{n-1}}{\mathop {{\bar{H}}}\limits ^{1}}_{n-1})\equiv {\mathop {M}\limits ^{1}}_n,\nonumber \\ \textrm{div}\,_\xi {\mathop {{\bar{K}}}\limits ^{1}}_{n+1}= & {} \textrm{div}\,_\xi {\mathop {{\bar{K}}}\limits ^{1}}_n-(\textrm{div}\,_{{\mathop {{\bar{v}}}\limits ^{1}}_n}{\mathop {{\bar{H}}}\limits ^{1}}_n-\textrm{div}\,_{{\mathop {{\bar{v}}}\limits ^{1}}_{n-1}}{\mathop {{\bar{H}}}\limits ^{1}}_{n-1})\equiv {\mathop {N}\limits ^{1}}_n,\nonumber \\{} & {} \quad \mu _2{\mathop {{\bar{K}}}\limits ^{2}}_{n+1,t}+{1\over \sigma _2}\textrm{rot}\,_\xi ^2{\mathop {{\bar{K}}}\limits ^{2}}_{n+1}={1\over \sigma _2}\textrm{rot}\,_\xi ^2{\mathop {{\bar{K}}}\limits ^{2}}{1\over \sigma _2}(\textrm{rot}\,_{{\mathop {{\bar{v}}}\limits ^{2}}_n}^2{\mathop {{\bar{H}}}\limits ^{2}}_n-\textrm{rot}\,_{{\mathop {{\bar{v}}}\limits ^{2}}_{n-1}}{\mathop {{\bar{H}}}\limits ^{2}}_{n-1})\nonumber \\{} & {} \quad +\mu _2({\mathop {{\bar{v}}}\limits ^{2}}_n\cdot \nabla _{{\mathop {{\bar{v}}}\limits ^{2}}_n}{\mathop {{\bar{H}}}\limits ^{2}}_n-{\mathop {{\bar{v}}}\limits ^{2}}_{n-1}\cdot \nabla _{{\mathop {{\bar{v}}}\limits ^{2}}_{n-1}}{\mathop {{\bar{H}}}\limits ^{2}}_{n-1})\equiv {\mathop {M}\limits ^{2}}_n,\nonumber \\ \textrm{div}\,_\xi {\mathop {{\bar{K}}}\limits ^{2}}_{n+1}= & {} \textrm{div}\,_\xi {\mathop {{\bar{K}}}\limits ^{2}}_n-(\textrm{div}\,_{{\mathop {{\bar{v}}}\limits ^{2}}_n}{\mathop {{\bar{H}}}\limits ^{2}}_n-\textrm{div}\,_{{\mathop {{\bar{v}}}\limits ^{2}}_{n-1}}{\mathop {{\bar{H}}}\limits ^{2}}_{n-1})\equiv {\mathop {N}\limits ^{2}}_n,\nonumber \\{} & {} \quad \bigg ({1\over \sigma _1}\textrm{rot}\,_\xi {\mathop {{\bar{K}}}\limits ^{1}}_{n+1}-{1\over \sigma _2}\textrm{rot}\,_\xi {\mathop {{\bar{K}}}\limits ^{2}}_{n+1}\bigg )\cdot {{\bar{\tau }}}_\alpha \nonumber \\ \end{aligned}$$
$$\begin{aligned}= & {} \bigg ({1\over \sigma _1}\textrm{rot}\,_\xi {\mathop {{\bar{K}}}\limits ^{1}}_n-{1\over \sigma _2}\textrm{rot}\,_\xi {\mathop {{\bar{K}}}\limits ^{2}}_n\bigg )\cdot {{\bar{\tau }}}_\alpha \nonumber \\{} & {} \quad -\bigg ({1\over \sigma _1}\textrm{rot}\,_{{\bar{v}}_n}{\mathop {{\bar{H}}}\limits ^{1}}_n-{1\over \sigma _1}\textrm{rot}\,_{{\bar{v}}_{n-1}}{\mathop {{\bar{H}}}\limits ^{1}}_{n-1})\cdot {{\bar{\tau }}}_\alpha \nonumber \\{} & {} \quad -{1\over \sigma _2}(\textrm{rot}\,_{{\bar{v}}_n}{\mathop {{\bar{H}}}\limits ^{2}}_n-\textrm{rot}\,_{{\bar{v}}_{n-1}}{\mathop {{\bar{H}}}\limits ^{2}}_{n-1})\cdot {{\bar{\tau }}}_\alpha \nonumber \\{} & {} \quad +{1\over \sigma _1}\textrm{rot}\,_{{\bar{v}}_n}{\mathop {{\bar{H}}}\limits ^{1}}_n\cdot ({{\bar{\tau }}}_\alpha -{{\bar{\tau }}}_{{\bar{v}}_n\alpha })-{1\over \sigma _1}\textrm{rot}\,_{{\bar{v}}_{n-1}}{\mathop {{\bar{H}}}\limits ^{1}}_{n-1}\cdot (\tau _\alpha -{{\bar{\tau }}}_{{\bar{v}}_{n-1\alpha }})\nonumber \\{} & {} \quad -{1\over \sigma _2}\textrm{rot}\,_{{\bar{v}}_n}{\mathop {{\bar{H}}}\limits ^{2}}_n\cdot ({{\bar{\tau }}}_\alpha -{{\bar{\tau }}}_{{\bar{v}}_n\alpha })+{1\over \sigma _2}\textrm{rot}\,_{{\bar{v}}_{n-1}}{\mathop {{\bar{H}}}\limits ^{2}}_{n-1}\cdot ({{\bar{\tau }}}_\alpha -{{\bar{\tau }}}_{{\bar{v}}_{n-1}\alpha })\nonumber \\{} & {} \quad +\mu _1{\bar{v}}_n\times {\mathop {{\bar{H}}}\limits ^{1}}_n\cdot {{\bar{\tau }}}_{{\bar{v}}_n\alpha }-\mu _1{\bar{v}}_{n-1}\times {\mathop {{\bar{H}}}\limits ^{1}}_{n-1}\cdot {{\bar{\tau }}}_{{\bar{v}}_{n-1}\alpha }\equiv {\mathop {P}\limits ^{1}}_n,\nonumber \\ ({\mathop {{\bar{K}}}\limits ^{1}}_{n+1}-{\mathop {{\bar{K}}}\limits ^{2}}_{n+1})\cdot {\bar{n}}\times {{\bar{\tau }}}_\alpha= & {} ({\mathop {{\bar{K}}}\limits ^{1}}_n-{\mathop {{\bar{K}}}\limits ^{2}}_n)\cdot {\bar{n}}\times {{\bar{\tau }}}_\alpha -({\mathop {{\bar{K}}}\limits ^{1}}_n-{\mathop {{\bar{K}}}\limits ^{2}}_n)\cdot {\bar{n}}_{{\bar{v}}_n}\times {{\bar{\tau }}}_{{\bar{v}}_n\alpha }\nonumber \\{} & {} \quad -({\mathop {{\bar{H}}}\limits ^{1}}_{n-1}-{\mathop {{\bar{H}}}\limits ^{2}}_{n-1})\cdot ({\bar{n}}_{{\bar{v}}_n}\times {{\bar{\tau }}}_{{\bar{v}}_n\alpha }-{\bar{n}}_{{\bar{v}}_{n-1}}\times {{\bar{\tau }}}_{{\bar{v}}_{n-1}\alpha })\equiv {\mathop {P}\limits ^{2}}_n,\hspace{85.35826pt}\nonumber \\{} & {} \quad {\mathop {{\bar{K}}}\limits ^{2}}_{n+1}\cdot {{\bar{\tau }}}_\alpha |_B=0,\ \ \alpha =1,2,\nonumber \\ \textrm{div}\,_{{\mathop {{\bar{v}}}\limits ^{2}}_n}{\mathop {{\bar{K}}}\limits ^{2}}_{n+1}= & {} -(\textrm{div}\,_{{\mathop {{\bar{v}}}\limits ^{2}}_n}{\mathop {{\bar{H}}}\limits ^{2}}_n-\textrm{div}\,_{{\mathop {{\bar{v}}}\limits ^{2}}_{n-1}}{\mathop {{\bar{H}}}\limits ^{2}}_n)\equiv Q_n,\nonumber \\{} & {} \quad {\mathop {{\bar{K}}}\limits ^{i}}_{n+1}|_{t=0}=0. \end{aligned}$$
(6.11)

First we examine problem (6.10).

Let \(\Phi _n\) be a solution to the problem

$$\begin{aligned} \begin{aligned}&\Delta \Phi _n=G_n\quad&\textrm{in}\ \ {\mathop {\Omega }\limits ^{1}}_0,\\&\Phi _n=0\quad&\textrm{on}\ \ S_0.\end{aligned} \end{aligned}$$
(6.12)

There exists the Green function G(xy) to problem (6.12) such that \(G(x,y)|_{S_0}=0\) and

$$\begin{aligned} \Phi _n(x,t)=\intop _{{\mathop {\Omega }\limits ^{1}}_0}G(x,y)G_n(y,t)dy. \end{aligned}$$
(6.13)

Applying Lemma 2.3.2 with estimate (2.3.9) to problem (6.10) yields

$$\begin{aligned} \begin{aligned}&\Vert {\bar{V}}_{n+1}\Vert _{V_2^2({\mathop {\Omega }\limits ^{1}}_0^t)}\le c(\Vert \nabla \Phi _n\Vert _{H^{2,1}({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\quad +\Vert J_n\Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}+\Vert \nabla G_n\Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}+\Vert L_n\Vert _{H^{1/2,1/4}(S_0^t)}).\end{aligned} \end{aligned}$$
(6.14)

We estimate a few terms from the r.h.s. of (6.14)

$$\begin{aligned}\begin{aligned}&\Vert \textrm{div}\,_\xi {\mathbb {T}}_\xi ({\bar{V}}_n,{\bar{P}}_n)-\textrm{div}\,_{{\bar{v}}_n}{\mathbb {T}}_{{\bar{v}}_n}({\bar{V}}_n,{\bar{P}}_n)\Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\quad \le \phi (\delta _{{\bar{v}}_n}(t))\bigg (\bigg \Vert \intop _0^t{\bar{v}}_{n,\xi }(\xi ,\tau )d\tau {\bar{V}}_{n,\xi \xi }\bigg \Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\qquad +\bigg \Vert \intop _0^t{\bar{v}}_{n,\xi \xi }(\xi ,\tau )d\tau {\bar{V}}_{n,\xi }\bigg \Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}+\bigg \Vert \intop _0^t{\bar{v}}_{n,\xi }(\xi ,\tau )d\tau P_{n,\xi }\bigg \Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}\\ {}&\quad \le t^a\phi (\delta _{{\bar{v}}_n}(t))\bigg (\intop _0^t\Vert {\bar{v}}_n\Vert _{H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0)}^2d\tau \bigg )^{1/2}(\Vert {\bar{V}}_{n,\xi }\Vert _{L_2(0,t;H^1({\mathop {\Omega }\limits ^{1}}_0))}+\Vert {\bar{P}}_{n,\xi }\Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}).\end{aligned} \end{aligned}$$

Continuing the considerations we derive

$$\begin{aligned} \begin{aligned}&\Vert {\bar{V}}_{n+1}\Vert _{V_2^2({\mathop {\Omega }\limits ^{1}}_0^t)}+\Vert {\bar{P}}_{n+1,\xi }\Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}+\Vert {\bar{P}}_{n+1}\Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}+\Vert {\bar{P}}_{n+1}\Vert _{H^{1,1/4}(S_0^t)}\\&\quad \le t^a\phi (c_0D_0)(\Vert {\bar{V}}_n\Vert _{V_2^2({\mathop {\Omega }\limits ^{1}}_0^t)}+\Vert {\bar{P}}_{n,\xi }\Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}+\Vert {\bar{P}}_n\Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\qquad +\Vert {\bar{P}}_n\Vert _{H^{1/2,1/4}(S_0^t)}+\Vert {\mathop {{\bar{K}}}\limits ^{1}}_n\Vert _{V_2^2({\mathop {\Omega }\limits ^{1}}_0^t)}).\end{aligned} \end{aligned}$$
(6.15)

Applying Lemma 2.5.1 in the case \(\alpha =0\) to problem (6.11) yields

$$\begin{aligned} \begin{aligned}&\sum _{i=1}^2\Vert {\mathop {{\bar{K}}}\limits ^{i}}_{n+1}\Vert _{V_2^2({\mathop {\Omega }\limits ^{i}}_0^t)}\le c\sum _{i=1}^2(\Vert {\mathop {M}\limits ^{i}}_n\Vert _{L_2({\mathop {\Omega }\limits ^{i}}_0^t)}\\&\quad +\Vert \nabla {\mathop {N}\limits ^{i}}_n\Vert _{L_2({\mathop {\Omega }\limits ^{i}}_0^t)})+c (\Vert {\mathop {P}\limits ^{1}}_n\Vert _{H^{{1\over 2},{1\over 4}}(S_0^t)}+ \Vert {\mathop {P}\limits ^{2}}_n\Vert _{H^{{3\over 2},{3\over 4}}(S_0^t)}\\&\quad +\Vert Q_n\Vert _{H^{1/2,1/4}(B^t)}).\end{aligned} \end{aligned}$$
(6.16)

We shall estimate some terms from the r.h.s. of (6.16). Hence, we examine the term

$$\begin{aligned}\begin{aligned} I&\equiv \Vert \textrm{rot}\,_\xi ^2{\mathop {{\bar{K}}}\limits ^{1}}_n-(\textrm{rot}\,_{{\mathop {{\bar{v}}}\limits ^{1}}_n}^2{\mathop {{\bar{H}}}\limits ^{1}}_n-\textrm{rot}\,_{{\mathop {{\bar{v}}}\limits ^{1}}_{n-1}}^2{\mathop {{\bar{H}}}\limits ^{1}}_{n-1})\Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}\\&=\Vert \textrm{rot}\,_\xi ^2{\mathop {{\bar{K}}}\limits ^{1}}_n-\textrm{rot}\,_{{\mathop {{\bar{v}}}\limits ^{1}}_n}^2{\mathop {{\bar{K}}}\limits ^{1}}_n-(\textrm{rot}\,_{{\mathop {{\bar{v}}}\limits ^{1}}_n}^2{\mathop {{\bar{H}}}\limits ^{1}}_{n-1}-\textrm{rot}\,_{{\mathop {{\bar{v}}}\limits ^{1}}_{n-1}}^2{\mathop {{\bar{H}}}\limits ^{1}}_{n-1})\Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\le \Vert \textrm{rot}\,_\xi ^2{\mathop {{\bar{K}}}\limits ^{1}}_n-\textrm{rot}\,_{{\mathop {{\bar{v}}}\limits ^{1}}_n}^2{\mathop {{\bar{K}}}\limits ^{1}}_n\Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}+\Vert \textrm{rot}\,_{{\mathop {{\bar{v}}}\limits ^{1}}_n}^2{\mathop {{\bar{H}}}\limits ^{1}}_{n-1}-\textrm{rot}\,_{{\mathop {{\bar{v}}}\limits ^{1}}_{n-1}}^2{\mathop {{\bar{H}}}\limits ^{1}}_{n-1}\Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\le \phi (\delta _{{\mathop {{\bar{v}}}\limits ^{1}}_n}(t))\bigg \Vert \intop _0^t{\mathop {{\bar{v}}}\limits ^{1}}_{n,\xi }(\xi ,\tau )d\tau {\mathop {{\bar{K}}}\limits ^{1}}_{n,\xi \xi }\bigg \Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\quad +\phi (\delta _{{\mathop {{\bar{v}}}\limits ^{1}}_n}(t))\bigg \Vert \intop _0^t{\mathop {{\bar{v}}}\limits ^{1}}_{n,\xi \xi }(\xi ,\tau )d\tau {\mathop {{\bar{K}}}\limits ^{1}}_{n,\xi }\bigg \Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\quad +\phi (\delta _{{\mathop {{\bar{v}}}\limits ^{1}}_n}(t),\delta _{{\mathop {{\bar{v}}}\limits ^{1}}_{n-1}}(t))\bigg \Vert \intop _0^t{\mathop {{\bar{V}}}\limits ^{1}}_{n,\xi }(\xi ,\tau )d\tau {\mathop {{\bar{H}}}\limits ^{1}}_{n-1,\xi \xi }\bigg \Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\quad +\phi (\delta _{{\mathop {{\bar{v}}}\limits ^{1}}_n}(t),\delta _{{\mathop {{\bar{v}}}\limits ^{1}}_{n-1}}(t))\bigg \Vert \intop _0^t{\mathop {{\bar{V}}}\limits ^{1}}_{n,\xi \xi }(\xi ,\tau )d\tau {\mathop {{\bar{H}}}\limits ^{1}}_{n-1,\xi }\bigg \Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0^t)}\\&\equiv \sum _{i=1}^4I_i,\end{aligned} \end{aligned}$$

where

$$\begin{aligned} I_1\le t^{1/2}\phi (\delta _{{\mathop {{\bar{v}}}\limits ^{1}}_n}(t))\bigg (\intop _0^t\Vert {\mathop {{\bar{v}}}\limits ^{1}}_{n,\xi }(\cdot ,\tau )\Vert _{L_\infty ({\mathop {\Omega }\limits ^{1}}_0)}^2d\tau \bigg )^{1/2} \Vert {\mathop {{\bar{K}}}\limits ^{1}}_n\Vert _{L_2(0,t;H^2({\mathop {\Omega }\limits ^{1}}_0))} \end{aligned}$$

and applying the Hölder inequality with respect to \(\xi \) yields

$$\begin{aligned}\begin{aligned} I_2&\le t^{1/2}\phi (\delta _{{\mathop {{\bar{v}}}\limits ^{1}}_n}(t))\bigg (\intop _0^t\Vert {\mathop {{\bar{v}}}\limits ^{1}}_{n,\xi \xi }(\cdot ,\tau )\Vert _{L_{2p}({\mathop {\Omega }\limits ^{1}}_0}^2d\tau \bigg )^{1/2}\cdot \\&\quad \cdot \bigg (\intop _0^t\Vert {\mathop {{\bar{K}}}\limits ^{1}}_{n,\xi }\Vert _{L_{2p'}({\mathop {\Omega }\limits ^{1}}_0)}^2dt'\bigg )^{1/2}\equiv I_2^1,\end{aligned} \end{aligned}$$

where \(1/p+1/p'=1\). Using the imbeddings

$$\begin{aligned} \begin{aligned}&\Vert u\Vert _{L_{2p}({\mathop {\Omega }\limits ^{1}}_0)}\le c\Vert u\Vert _{H^\alpha ({\mathop {\Omega }\limits ^{1}}_0)},\quad&{3\over 2}-{3\over 2p}\le \alpha ,\\&\Vert u\Vert _{L_{2p'}({\mathop {\Omega }\limits ^{1}}_0)}\le c\Vert u\Vert _{H^1({\mathop {\Omega }\limits ^{1}}_0)},\quad&{3\over 2}-{3\over 2p'}\le 1.\end{aligned} \end{aligned}$$
(6.17)

The above imbeddings can hold together because they imply the restriction

$$\begin{aligned} {3\over 2}\le 1+\alpha \end{aligned}$$

which holds for \(\alpha >1/2\). Then

$$\begin{aligned} I_2^1\le t^{1/2}\phi (\delta _{{\mathop {{\bar{v}}}\limits ^{1}}_n}(t))\bigg (\intop _0^t\Vert {\mathop {{\bar{v}}}\limits ^{1}}_n(\cdot ,\tau )\Vert _{H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0)}^2d\tau \bigg )\cdot \Vert {\mathop {{\bar{K}}}\limits ^{1}}_n\Vert _{V_2^2({\mathop {\Omega }\limits ^{1}}_0^t)}. \end{aligned}$$

Next, we estimate

$$\begin{aligned}\begin{aligned} I_3&\le t^{1/2}\phi (\delta _{{\mathop {{\bar{v}}}\limits ^{1}}_n}(t),\delta _{{\mathop {{\bar{v}}}\limits ^{1}}_{n-1}}(t)) \bigg (\intop _0^t\Vert {\mathop {{\bar{V}}}\limits ^{1}}_{n,\xi }(\cdot ,\tau )\Vert _{L_{2p'}({\mathop {\Omega }\limits ^{1}}_0)}d\tau \bigg )^{1/2}\cdot \\&\quad \cdot \bigg (\intop _0^t\Vert {\mathop {{\bar{H}}}\limits ^{1}}_{n-1,\xi \xi }(\cdot ,\tau ')\Vert _{L_{2p}({\mathop {\Omega }\limits ^{1}}_0)}^2dt'\bigg )^{1/2}\equiv I_3^1.\end{aligned} \end{aligned}$$

Applying imbeddings (6.17) yields

$$\begin{aligned}\begin{aligned} I_3^1&\le t^{1/2}\phi (\delta _{{\mathop {{\bar{v}}}\limits ^{1}}_n}(t),\delta _{{\mathop {{\bar{v}}}\limits ^{1}}_{n-1}}(t))\bigg (\intop _0^t\Vert {\mathop {{\bar{V}}}\limits ^{1}}_n(\cdot ,\tau )\Vert _{H^2({\mathop {\Omega }\limits ^{1}}_0)}^2d\tau \bigg )^{1/2}\cdot \\&\quad \cdot \bigg (\intop _0^t\Vert {\mathop {{\bar{H}}}\limits ^{1}}_{n-1}(\cdot ,t')\Vert _{H^{2+\alpha }({\mathop {\Omega }\limits ^{1}}_0)}^2dt'\bigg )^{1/2}.\end{aligned} \end{aligned}$$

Finally,

$$\begin{aligned}\begin{aligned} I_4&\le t^{1/2}\phi (\delta _{{\mathop {{\bar{v}}}\limits ^{1}}_n}(t),\delta _{{\mathop {{\bar{v}}}\limits ^{1}}_{n-1}}(t))\bigg (\intop _0^t\Vert {\mathop {{\bar{V}}}\limits ^{1}}_{n,\xi \xi }(\cdot ,\tau )\Vert _{L_2({\mathop {\Omega }\limits ^{1}}_0)}^2d\tau \bigg )^{1/2}\cdot \\&\quad \cdot \bigg (\intop _0^t\Vert {\mathop {{\bar{H}}}\limits ^{1}}_{n-1,\xi }(\cdot ,t')\Vert _{L_\infty ({\mathop {\Omega }\limits ^{1}}_0)}^2dt'\bigg )^{1/2}.\end{aligned} \end{aligned}$$

Summarizing and using Lemma 6.1 we obtain

$$\begin{aligned} I\le t^{1/2}\phi (c_0D_0)(\Vert {\mathop {{\bar{K}}}\limits ^{1}}_n\Vert _{L_2(0,t;H^2({\mathop {\Omega }\limits ^{1}}_0))}+\Vert {\mathop {{\bar{V}}}\limits ^{1}}_n\Vert _{L_2(0,t;H^2({\mathop {\Omega }\limits ^{1}}_0))}). \end{aligned}$$

Similar considerations can be applied to other terms from the r.h.s. of (6.16).

Estimating the terms from the r.h.s. of (6.16) we obtain

$$\begin{aligned} \begin{aligned}&\sum _{i=1}^2\Vert {\mathop {{\bar{K}}}\limits ^{i}}_{n+1}\Vert _{V_2^2({\mathop {\Omega }\limits ^{i}}_0^t)}\le t^a\phi (c_0D_0)\bigg (\sum _{i=1}^2\Vert {\mathop {{\bar{K}}}\limits ^{i}}_n\Vert _{V_2^2({\mathop {\Omega }\limits ^{i}}_0^t)}\\&\quad +\Vert {\bar{V}}_n\Vert _{V_2^2({\mathop {\Omega }\limits ^{i}}_0^t)}\bigg ),\end{aligned} \end{aligned}$$
(6.18)

where \(a>0\). Estimates (6.15) and (6.18) imply (6.9). This ends the proof. \(\square \)

7 Problem (2.5.2) in a Neighborhood of \(S_0\)

In this Section we consider problem (2.5.2) localized to a neighborhood of any pooint of \(S_0\). The problem is complicated because it describes interaction of magnetic fields through the free surface \(S_0\). The localization means that problem (2.5.2) is multiplied by a function \(\zeta \) from the partition of unity with a support in a neighborhood of a point of \(S_0\). Then we obtain a problem for functions \({\mathop {{\bar{H}}}\limits ^{i}}\zeta \), \(i=1,2\). Next, we apply a transformation which makes \(S_0\) locally flat. Moreover, we consider a more general transmission condition. Therefore, we derive the problem

$$\begin{aligned} \begin{aligned}&\mu _1{\mathop {u}\limits ^{1}}_{,t}-{1\over \sigma _1}\Delta _z{\mathop {u}\limits ^{1}}={\mathop {{\bar{f}}}\limits ^{1}}\quad&z_3>0,\\ {}&\textrm{div}\,{\mathop {u}\limits ^{1}}=0\quad&z_3>0,\\&\mu _2{\mathop {u}\limits ^{2}}_{,t}-{1\over \sigma _2}\Delta _z{\mathop {u}\limits ^{2}}={\mathop {{\bar{f}}}\limits ^{2}}\quad&z_3<0,\\ {}&\textrm{div}\,{\mathop {u}\limits ^{2}}=0\quad&z_3<0,\end{aligned} \end{aligned}$$
(7.1)

with transmission conditions

$$\begin{aligned} \begin{aligned}&(a_1\textrm{rot}\,_z{\mathop {u}\limits ^{1}}-a_2\textrm{rot}\,_z{\mathop {u}\limits ^{2}})\cdot {{\bar{\tau }}}_\alpha ={\bar{k}}_\alpha ,\ \ \alpha =1,2,\quad&z_3=0,\\&b_1{\mathop {u}\limits ^{1}}_\alpha -b_2{\mathop {u}\limits ^{2}}_\alpha ={\bar{l}}_\alpha ,\ \ \alpha =1,2,\quad z_3=0,\end{aligned} \end{aligned}$$
(7.2)

where \(a_i\), \(b_i\), \(i=1,2\), are some constants, \({{\bar{\tau }}}_1=(1,0,0)\), \({{\bar{\tau }}}_2=(0,1,0)\) and with the initial conditions

$$\begin{aligned} {\mathop {u}\limits ^{i}}|_{t=0}={\mathop {u}\limits ^{i}}(0),\ \ i=1,2, \end{aligned}$$
(7.3)

where \({\mathop {u}\limits ^{i}}(0)\), \(i=1,2\), are divergence free.

Since problem (7.1)–(7.3) is derived by the localization all data functions \(({\mathop {{\bar{f}}}\limits ^{i}},{\bar{k}}_i,{\bar{l}}_i,{\mathop {u}\limits ^{i}}(0),i=1,2)\) have compact supports.

In this Section we find estimates for solutions to problem (7.1)–(7.3) assuming that \({\mathop {{\bar{f}}}\limits ^{i}}\in H^{\alpha ,\alpha /2}({\mathbb {R}}_i^3\times (0,T))\), \({\mathbb {R}}_1^3=\{z:z_3>0\}\), \({\mathbb {R}}_2^3=\{z:z_3<0\}\), \({\bar{k}}_i\in H^{1+\alpha -1/2,1/2+\alpha /2-1/4}({\mathbb {R}}^2)\), \({\bar{l}}_i\in H^{2+\alpha -1/2,1+\alpha /2-1/4}({\mathbb {R}}^2)\), \({\mathbb {R}}^2=\{z:z_3=0\}\), \({\mathop {u}\limits ^{i}}(0)\in H^{1+\alpha }({\mathbb {R}}_i^3)\), \(i=1,2\), \(\alpha \in (0,1)\).

Remark 7.1

Functions \({\mathop {{\bar{f}}}\limits ^{i}}\), \(i=1,2\), are divergence free. This follows from the following construction of problem (7.1). Multiply equations \((2.5.1)_1\)\((2.5.1)_4\) by cut-off functions \({\mathop {\zeta }\limits ^{1}}\) and \({\mathop {\zeta }\limits ^{2}}\), respectively. Introduce the notation \({\mathop {{\bar{v}}}\limits ^{i}}={\mathop {H}\limits ^{i}}{\mathop {\zeta }\limits ^{i}}\), \(i=1,2,\). Then \((2.5.1)_2\) and \((2.5.1)_4\) take the form

$$\begin{aligned} \textrm{div}\,{\mathop {{\bar{v}}}\limits ^{i}}={\mathop {H}\limits ^{i}}\cdot \nabla {\mathop {\zeta }\limits ^{i}},\ \ i=1,2. \end{aligned}$$

Introducing function \({\mathop {\varphi }\limits ^{i}}\) as a solution to the problem

$$\begin{aligned}\begin{aligned}&\Delta {\mathop {\varphi }\limits ^{i}}={\mathop {H}\limits ^{i}}\cdot \nabla {\mathop {\zeta }\limits ^{i}},\ \ i=1,2,\\&\varphi ^i=0\quad \textrm{on}\ \ \partial \textrm{supp}\,{\mathop {\zeta }\limits ^{i}},\ \ i=1,2,\end{aligned} \end{aligned}$$

we construct the function

$$\begin{aligned} {\mathop {u}\limits ^{i}}={\mathop {{\bar{v}}}\limits ^{i}}-\nabla {\mathop {\varphi }\limits ^{i}},\ \ i=1,2, \end{aligned}$$

which is divergence free and satisfies the equation

$$\begin{aligned} \begin{aligned}&\mu _i{\mathop {u}\limits ^{i}}_{,t}-{1\over \sigma _i}\Delta {\mathop {u}\limits ^{i}}=-\mu _i\nabla {\mathop {\varphi }\limits ^{i}}_{,t}+{1\over \sigma _i}\Delta \nabla {\mathop {\varphi }\limits ^{i}}\\&\quad -{1\over \sigma _i}(2\nabla {\mathop {H}\limits ^{i}}\cdot \nabla {\mathop {\zeta }\limits ^{i}}+{\mathop {H}\limits ^{i}}\Delta {\mathop {\zeta }\limits ^{i}})+\delta _{1i} \textrm{rot}\,({\mathop {v}\limits ^{1}}\times {\mathop {H}\limits ^{1}}){\mathop {\zeta }\limits ^{1}}\nabla {\mathop {\psi }\limits ^{i}}\equiv {\mathop {f}\limits ^{i}},\end{aligned} \end{aligned}$$
(7.4)

where

$$\begin{aligned}\begin{aligned}&\Delta {\mathop {\psi }\limits ^{i}}=\mu _i\Delta {\mathop {\varphi }\limits ^{i}}_{,t}-{1\over \sigma _i}\Delta ^2{\mathop {\varphi }\limits ^{i}}+ {1\over \sigma _i}(2\nabla _j{\mathop {H}\limits ^{i}}_k\nabla _k\nabla _j{\mathop {\zeta }\limits ^{i}}+ {\mathop {H}\limits ^{i}}_k\nabla _k\Delta {\mathop {\zeta }\limits ^{i}})\\&\quad -\delta _{i1}\textrm{rot}\,(v\times {\mathop {H}\limits ^{1}})\cdot \nabla {\mathop {\zeta }\limits ^{i}},\\&{\mathop {\psi }\limits ^{i}}=0\quad \textrm{on}\ \ \partial \textrm{supp}\,{\mathop {\zeta }\limits ^{i}},\end{aligned} \end{aligned}$$

\(i=1,2\), \(\delta _{1i}\) is the Kronecker delta and \({\mathop {f}\limits ^{i}}\), \(i=1,2\), are divergence free. Passing to such coordinates that \(S_0\) becomes flat we derive system (7.1). Functions \({\mathop {\psi }\limits ^{i}}\) depend on \(\nabla {\mathop {H}\limits ^{i}}\), \({\mathop {H}\limits ^{i}}\), \(i=1,2\), so the dependence is not important in the proof of existence of solutions by the technique of regularizer. This ends Remark 7.1.

To make the initial data homogeneous we construct divergence free extensions \({\mathop {{\tilde{u}}}\limits ^{i}}\), \(i=1,2\), of initial data \({\mathop {u}\limits ^{i}}(0)\), \(i=1,2\), such that

$$\begin{aligned} {\mathop {{\tilde{u}}}\limits ^{i}}|_{t=0}={\mathop {u}\limits ^{i}}(0),\ \ i=1,2. \end{aligned}$$
(7.5)

Set

$$\begin{aligned} {\mathop {v}\limits ^{i}}={\mathop {u}\limits ^{i}}-{\mathop {{\tilde{u}}}\limits ^{i}},\ \ i=1,2. \end{aligned}$$
(7.6)

Then problem (7.1)–(7.3) takes the form

$$\begin{aligned} \begin{aligned}&\sigma _i\mu _i{\mathop {v}\limits ^{i}}_{,t}-\Delta {\mathop {v}\limits ^{i}}={\mathop {\sigma }\limits ^{i}}{\mathop {{\bar{f}}}\limits ^{i}}-(\sigma _i\mu _i{\mathop {{\tilde{u}}}\limits ^{i}}_t-\Delta {\mathop {{\tilde{u}}}\limits ^{i}})\equiv {\mathop {f}\limits ^{i}},\ \ i=1,2,\\ {}&\textrm{div}\,{\mathop {v}\limits ^{i}}=0,\\&(a_1\textrm{rot}\,{\mathop {v}\limits ^{1}}-a_2\textrm{rot}\,{\mathop {v}\limits ^{2}})\cdot {{\bar{\tau }}}_\alpha \\&={\bar{k}}_\alpha -(a_1\textrm{rot}\,{\mathop {{\tilde{u}}}\limits ^{1}}-a_2\textrm{rot}\,{\mathop {{\tilde{u}}}\limits ^{2}})\cdot {{\bar{\tau }}}_\alpha \equiv k'_\alpha ,\ \ \alpha =1,2,\ \ z_3=0,\\&b_1{\mathop {v}\limits ^{1}}_\alpha -b_2{\mathop {v}\limits ^{2}}_\alpha ={\bar{l}}_\alpha -(b_1{\mathop {{\tilde{u}}}\limits ^{1}}_\alpha -b_2{\mathop {{\tilde{u}}}\limits ^{2}}_\alpha )\equiv l'_\alpha ,\ \ \alpha =1,2,\ \ z_3=0.\end{aligned} \end{aligned}$$
(7.7)

Expressing the transimission condition explicitly and extending (7.7) for \(t<0\) we have

$$\begin{aligned} \begin{aligned}&\sigma _1\mu _1{\mathop {v}\limits ^{1}}_{,t}-\Delta {\mathop {v}\limits ^{1}}={\mathop {f}\limits ^{1}},\ \ \textrm{div}\,{\mathop {v}\limits ^{1}}=0,\ \ {}&z_3>0,\\&\sigma _2\mu _2{\mathop {v}\limits ^{2}}_{,t}-\Delta {\mathop {v}\limits ^{2}}={\mathop {f}\limits ^{2}},\ \ \textrm{div}\,{\mathop {v}\limits ^{2}}=0,\ \ {}&z_3<0,\\&a_1({\mathop {v}\limits ^{1}}_{2,z_3}-{\mathop {v}\limits ^{1}}_{3,z_2})-a_2({\mathop {v}\limits ^{2}}_{2,z_3}-{\mathop {v}\limits ^{2}}_{3,z_2})=k'_1,\ \ {}&z_3=0,\\&a_1({\mathop {v}\limits ^{1}}_{3,z_1}-{\mathop {v}\limits ^{1}}_{1,z_3})-a_2({\mathop {v}\limits ^{2}}_{3,z_1}-{\mathop {v}\limits ^{2}}_{1,z_3})=k'_2,\ \ {}&z_3=0,\\ {}&b_1{\mathop {v}\limits ^{1}}_i-b_2{\mathop {v}\limits ^{2}}_i=l'_i,\ \ i=1,2,\ \&z_3=0.\end{aligned} \end{aligned}$$
(7.8)

Since \({\mathop {f}\limits ^{i}}\in H^{\alpha ,\alpha /2}({\mathbb {R}}_i^3\times {\mathbb {R}}_+)\), \(\alpha \in (0,1)\), we can extend them by zero on \({\mathbb {R}}^3\), respectively. We denote the extnsions by \({\mathop {f'}\limits ^{i}}\), \(i=1,2\). Then we are looking for solutions to the problems

$$\begin{aligned} \begin{aligned}&\sigma _1\mu _1{\mathop {v'}\limits ^{1}}_{,t}-\Delta {\mathop {v'}\limits ^{1}}={\mathop {f'}\limits ^{1}},\ \ \textrm{div}\,{\mathop {v'}\limits ^{1}}=0\quad&\textrm{in}\ \ {\mathbb {R}}^3,\\&\sigma _2\mu _2{\mathop {v'}\limits ^{2}}_{,t}-\Delta {\mathop {v'}\limits ^{2}}={\mathop {f'}\limits ^{2}},\ \ \textrm{div}\,{\mathop {v'}\limits ^{2}}=0\quad&\textrm{in}\ \ {\mathbb {R}}^3.\end{aligned} \end{aligned}$$
(7.9)

Then the functions

$$\begin{aligned} {\mathop {w}\limits ^{i}}={\mathop {v}\limits ^{i}}-{\mathop {v'}\limits ^{i}},\ \ i=1,2, \end{aligned}$$
(7.10)

are solutions to the problem with vanishing initial data

$$\begin{aligned} \begin{aligned}&\sigma _1\mu _1{\mathop {w}\limits ^{1}}_{,t}-\Delta {\mathop {w}\limits ^{1}}=0,\ \ \textrm{div}\,{\mathop {w}\limits ^{1}}=0,\ \&z_3>0,\\ {}&\sigma _2\mu _2{\mathop {w}\limits ^{2}}_{,t}-\Delta {\mathop {w}\limits ^{2}}=0,\ \ \textrm{div}\,{\mathop {w}\limits ^{2}}=0,\ \ {}&z_3<0,\\&a_1({\mathop {w}\limits ^{1}}_{2,z_3}-{\mathop {w}\limits ^{1}}_{3,z_2})-a_2({\mathop {w}\limits ^{2}}_{2,z_3}-{\mathop {w}\limits ^{2}}_{3,z_2})\\&\quad =k'_1-a_1({\mathop {v'}\limits ^{1}}_{2,z_3}-{\mathop {v'}\limits ^{1}}_{3,z_2})+a_2({\mathop {v'}\limits ^{2}}_{2,z_3}-{\mathop {v'}\limits ^{3}}_{1,z_2})\equiv k_1,\ \ {}&z_3=0,\\&a_1({\mathop {w}\limits ^{1}}_{3,z_1}-{\mathop {w}\limits ^{1}}_{1,z_3})-a_2({\mathop {w}\limits ^{2}}_{3,z_1}-{\mathop {w}\limits ^{2}}_{1,z_3})\\&\quad =k'_2-a_1({\mathop {v'}\limits ^{1}}_{3,z_1}-{\mathop {v'}\limits ^{1}}_{1,z_3})+a_2({\mathop {v'}\limits ^{2}}_{3,z_1}-{\mathop {v'}\limits ^{2}}_{1,z_3})\equiv k_2,\ \ {}&z_3=0,\\&b_1{\mathop {w}\limits ^{1}}_i-b_2{\mathop {w}\limits ^{2}}_i=l'_i-(b_1{\mathop {v'}\limits ^{1}}_i-b_2{\mathop {v'}\limits ^{2}}_i\equiv l_i,\ \ i=1,2,\ \ {}&z_3=0.\end{aligned} \end{aligned}$$
(7.11)

Lemma 7.2

Assume that \(({\mathop {w}\limits ^{1}},{\mathop {w}\limits ^{2}})\) is a solution to (7.11). Let \(\alpha \in (0,1)\). Assume that \(k_i\in H^{1/2+\alpha ,1/4+\alpha /2} ({\mathbb {R}}^2\times {\mathbb {R}}_+)\), \(i=1,2\), \(l_i\in H^{3/2+\alpha ,3/4+\alpha /2}({\mathbb {R}}^2\times {\mathbb {R}}_+)\), \(i=1,2\).

Then there exists a solution to problem (7.11) such that \({\mathop {w}\limits ^{i}}\in H^{2+\alpha ,1+\alpha /2}({\mathbb {R}}_i^3\times {\mathbb {R}}_+)\), \({\mathop {w}\limits ^{i}}|_{t=0}=0\), \(i=1,2\), and

$$\begin{aligned} \begin{aligned}&\sum _{i=1}^2\Vert {\mathop {w}\limits ^{i}}\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathbb {R}}_i^3\times {\mathbb {R}}_+)}\\&\quad \le c\sum _{i=1}^2\Vert k_i\Vert _{H^{1/2+\alpha ,1/4+\alpha /2}({\mathbb {R}}^2\times {\mathbb {R}}_+)}\\&\qquad +c\sum _{i=1}^2\Vert l_i\Vert _{H^{3/2+\alpha ,3/4+\alpha /2}({\mathbb {R}}^2\times {\mathbb {R}}_+)}.\end{aligned} \end{aligned}$$
(7.12)

Proof

Apply the Fourier-Laplace transform

$$\begin{aligned} (Ff)(\xi ,z_3,s)={\tilde{f}}(\xi ,z_3,s)=\intop _0^\infty e^{-st}\intop _{{\mathbb {R}}^2}f(z',z_3,t)e^{-i\xi \cdot z'}dz'dt, \end{aligned}$$
(7.13)

\(\textrm{Re}\ s>0\), \(s=i\xi _0+\gamma \), \(\xi =(\xi _1,\xi _2)\), \(z'=(z_1,z_2)\), \(z'\cdot \xi =z_1\xi _1+z_2\xi _2\), \(z=(z_1,z_2,z_3)\), to problem (7.11). Then we have

$$\begin{aligned} \begin{aligned}&\tau _1^2{\mathop {{\tilde{w}}}\limits ^{1}}-{\mathop {{\tilde{w}}}\limits ^{1}}_{z_3,z_3}=0,\ \ i\xi _\alpha {\mathop {{\tilde{w}}}\limits ^{1}}_\alpha +{\mathop {{\tilde{w}}}\limits ^{1}}_{3,z_3}=0,\ \ {}&z_3>0,\\&\tau _2^2{\mathop {{\tilde{w}}}\limits ^{2}}-{\mathop {{\tilde{w}}}\limits ^{2}}_{z_3z_3}=0,\ \ i\xi _\alpha {\mathop {{\tilde{w}}}\limits ^{2}}_\alpha +{\mathop {{\tilde{w}}}\limits ^{2}}_{3,z_3}=0,\ \ {}&z_3<0,\\&a_1({\mathop {{\tilde{w}}}\limits ^{1}}_{2,z_3}-i\xi _2{\mathop {{\tilde{w}}}\limits ^{1}}_3)-a_2({\mathop {{\tilde{w}}}\limits ^{2}}_{2,z_3}-i\xi _2{\mathop {{\tilde{w}}}\limits ^{2}}_3)=k_1,\ \ {}&z_3=0,\\&a_1(i\xi _1{\mathop {{\tilde{w}}}\limits ^{1}}_3-{\mathop {{\tilde{w}}}\limits ^{1}}_{1,z_3})-a_2(i\xi _1{\mathop {{\tilde{w}}}\limits ^{2}}_3-{\mathop {{\tilde{w}}}\limits ^{2}}_{1,z_3})=k_2,\ \ {}&z_3=0,\\ {}&b_1{\mathop {{\tilde{w}}}\limits ^{1}}_i-b_2{\mathop {{\tilde{w}}}\limits ^{2}}_i=l_i,\ \ i=1,2,\ \ {}&z_3=0,\end{aligned} \end{aligned}$$
(7.14)

where \(\tau _1^2=\mu _1\sigma _1s+\xi ^2\), \(\tau _2^2=\mu _2\sigma _2s+\xi ^2\).

Solving \((7.14)_{1,2}\) and using the Shapiro-Lopatinskii condition we obtain

$$\begin{aligned} \begin{aligned}&{\mathop {{\tilde{w}}}\limits ^{1}}={\mathop {A}\limits ^{1}}e^{-\tau _1z_3},\quad&{\mathop {{\tilde{w}}}\limits ^{2}}={\mathop {A}\limits ^{2}}e^{\tau _2z_3},\\&-\tau _1{\mathop {A}\limits ^{1}}_3+i\xi _\alpha {\mathop {A}\limits ^{1}}_\alpha =0,\quad&\tau _2{\mathop {A}\limits ^{2}}_3+i\xi _\alpha {\mathop {A}\limits ^{2}}_\alpha =0.\end{aligned} \end{aligned}$$
(7.15)

Inserting \((7.15)_1\) in the transmission conditions \((7.14)_{3,4,5}\) yields

$$\begin{aligned} \begin{aligned}&a_1(-\tau _1{\mathop {A}\limits ^{1}}_2-i\xi _2{\mathop {A}\limits ^{1}}_3)-a_2(\tau _2{\mathop {A}\limits ^{2}}_2-i\xi _2{\mathop {A}\limits ^{2}}_3)={\tilde{k}}_1,\\&a_1(i\xi _1{\mathop {A}\limits ^{1}}_3+\tau _1{\mathop {A}\limits ^{1}}_1)-a_2(i\xi _1{\mathop {A}\limits ^{2}}_3-\tau _2{\mathop {A}\limits ^{2}}_1)={\tilde{k}}_2,\\&b_1{\mathop {A}\limits ^{1}}_j-b_2{\mathop {A}\limits ^{2}}_j={\tilde{l}}_j,\ \ j=1,2.\end{aligned} \end{aligned}$$
(7.16)

Using (7.15), we get

$$\begin{aligned} \begin{aligned}&{a_1\over \tau _1}[(\xi _2^2-\tau _1^2){\mathop {A}\limits ^{1}}_2+\xi _1\xi _2{\mathop {A}\limits ^{1}}_1]-{a_2\over \tau _2}[(\tau _2^2- \xi _2^2){\mathop {A}\limits ^{2}}_2-\xi _1\xi _2{\mathop {A}\limits ^{2}}_1]={\tilde{k}}_1,\\&{a_1\over \tau _1}[(\tau _1^2-\xi _1^2){\mathop {A}\limits ^{1}}_1-\xi _1\xi _2{\mathop {A}\limits ^{1}}_2]-{a_2\over \tau _2}[(\xi _1^2-\tau _2^2) {\mathop {A}\limits ^{2}}_1+\xi _1\xi _2{\mathop {A}\limits ^{2}}_2]={\tilde{k}}_2,\\&b_1{\mathop {A}\limits ^{1}}_j-b_2{\mathop {A}\limits ^{2}}_j={\tilde{l}}_j,\ \ j=1,2.\end{aligned} \end{aligned}$$
(7.17)

Using \((7.17)_3\) in \((7.17)_{1,2}\) and setting

$$\begin{aligned} d_1={a_1b_2\over \tau _1}+{a_2b_1\over \tau _2},\quad d_2=a_1b_2\tau _1+a_2b_1\tau _2 \end{aligned}$$
(7.18)

we obtain

$$\begin{aligned} \begin{aligned}&-(d_2-d_1\xi _2^2){\mathop {A}\limits ^{2}}_2+d_1\xi _1\xi _2{\mathop {A}\limits ^{2}}_1={\tilde{h}}_1,\\&-d_1\xi _1\xi _2{\mathop {A}\limits ^{2}}_2+(d_2-d_1\xi _1^2){\mathop {A}\limits ^{2}}_1={\tilde{h}}_2,\end{aligned} \end{aligned}$$
(7.19)

where

$$\begin{aligned} \begin{aligned} {\tilde{h}}_1&=b_1{\tilde{k}}_1-{a_1\over \tau _1}(\xi _2^2-\tau _1^2){\tilde{l}}_2-{a_1\over \tau _1}\xi _1\xi _2{\tilde{l}}_1,\\ {\tilde{h}}_2&=b_1{\tilde{k}}_2-{a_1\over \tau _1}(\tau _1^2-\xi _1^2){\tilde{l}}_1+{a_1\over \tau _1}\xi _1\xi _2{\tilde{l}}_2.\end{aligned} \end{aligned}$$
(7.20)

Solving (7.19) yields

$$\begin{aligned} \begin{aligned} {\mathop {A}\limits ^{2}}_1&={{\tilde{h}}_1d_1\xi _1\xi _2-{\tilde{h}}_2(d_2-d_1\xi _2^2)\over -d_2(d_2-d_1\xi ^2)}\\ {\mathop {A}\limits ^{2}}_2&={{\tilde{h}}_1(d_2-d_1\xi _1^2)-{\tilde{h}}_2d_1\xi _1\xi _2\over -d_2(d_2-d_1\xi ^2)}.\end{aligned} \end{aligned}$$
(7.21)

We have the qualitative relations

$$\begin{aligned} \begin{aligned}&|d_1|\sim {c\over |\tau |},\ \ |d_2|\sim c|\tau |,\ \ |{\tilde{h}}|\sim |{\tilde{k}}|+|\tau ||{\tilde{l}}|,\\&|{\mathop {A}\limits ^{2}}_1|\sim {|{\tilde{h}}|\over |\tau |},\ \ |{\mathop {A}\limits ^{2}}_2|\sim {|{\tilde{h}}|\over |\tau |},\end{aligned} \end{aligned}$$
(7.22)

where \({\tilde{h}}\), \(\tau \) replace \(({\tilde{h}}_1,{\tilde{h}}_2)\), \((\tau _1,\tau _2)\), respectively.

From (7.15) we have

$$\begin{aligned} \begin{aligned} {\mathop {{\tilde{w}}}\limits ^{1}}_\alpha&={\mathop {A}\limits ^{1}}_\alpha e^{-\tau _1z_3}=\bigg ({b_2\over b_1}{\mathop {A}\limits ^{2}}_\alpha +{1\over b_1}{\tilde{l}}_\alpha \bigg )e^{-\tau _1z_3},\ \ \alpha =1,2,\\ {\mathop {{\tilde{w}}}\limits ^{2}}_\alpha&={\mathop {A}\limits ^{2}}_\alpha e^{\tau _2z_3},\ \ \alpha =1,2.\end{aligned} \end{aligned}$$
(7.23)

Continuing,

$$\begin{aligned} \begin{aligned} {\mathop {{\tilde{w}}}\limits ^{1}}_3&={i\xi _\alpha \over \tau _1}{\mathop {A}\limits ^{1}}_\alpha e^{-\tau _1z_3}={i\xi _\alpha \over \tau _1}\bigg ({b_2\over b_1}{\mathop {A}\limits ^{2}}_\alpha +{1\over b_1}{\tilde{l}}_\alpha \bigg )e^{-\tau _1z_3},\\ {\mathop {{\tilde{w}}}\limits ^{2}}_3&=-{i\xi _\alpha \over \tau _2}{\mathop {A}\limits ^{2}}_\alpha e^{\tau _2z_3},\end{aligned} \end{aligned}$$
(7.24)

where the summation over \(\alpha \in \{1,2\}\) is assumed. Using Lemmas 2.6.1 and 2.6.2 we conclude the proof of Lemma 7.2. \(\square \)

8 Initial-Boundary Value Problem Near B

In the proof of Lemma 2.5.1 we distinguish a local problem near B (see \(1_4\)). To examine the problem we localize (2.5.2) to a neighborhood of some point of B using an appropriate function from the partition of unity. Introducing a new system of coordinates with the origin at the point of B and flattening locally B we obtain

$$\begin{aligned} \begin{aligned}&v_{,t}-\Delta v+\nabla \textrm{div}\,v=f\ \ t>0,\ \ x_3>0,\\&\textrm{div}\,v|_{x_3=0}=h,\ \ v_i|_{x_3}=b_i,\ \ i=1,2.\end{aligned} \end{aligned}$$
(8.1)

First we construct a function \({\mathop {v}\limits ^{1}}\) such that \(\textrm{div}\,{\mathop {v}\limits ^{1}}|_{x_3}=h\) so \({\mathop {v}\limits ^{1}}_{1,x_1}=h_1\), \({\mathop {v}\limits ^{1}}_{2,x_2}=h_2\), \({\mathop {v}\limits ^{1}}_{3,x_3}=h_3\), \(h=h_1+h_2+h_3\) on \(x_3=0\).

Next, we construct a function \({\mathop {v}\limits ^{2}}\) as a solution to the problem

$$\begin{aligned} \begin{aligned}&{\mathop {v}\limits ^{2}}_{,t}-\Delta {\mathop {v}\limits ^{2}}=f-\nabla \textrm{div}\,{\mathop {v}\limits ^{1}}\equiv g,\ \ t>0,\ \ x_3>0,\\ {}&{\mathop {v}\limits ^{2}}_1|_{x_3=0}={\mathop {v}\limits ^{2}}_2|_{x_3=0}=0,\ \ \textrm{div}\,{\mathop {v}\limits ^{2}}|_{x_3=0}=0.\end{aligned} \end{aligned}$$
(8.2)

Introducing the function

$$\begin{aligned} w=v-{\mathop {v}\limits ^{1}}-{\mathop {v}\limits ^{2}} \end{aligned}$$
(8.3)

we see that it is a solution to the following initial-boundary value problem

$$\begin{aligned} \begin{aligned}&w_{,t}-\Delta w+\nabla \textrm{div}\,w=0,\quad&\ \ z_3>0\\&w|_{t=0}=0,\quad&\ \ z_3>0,\\ {}&w_j=a_j,\ \ j=1,2,\ \ \textrm{div}\,w=0\quad&\textrm{on}\ \ z_3=0.\end{aligned} \end{aligned}$$
(8.4)

Lemma 8.1

Let \({\mathbb {R}}^2=\{x\in {\mathbb {R}}^3:x_3=0\}\). Assume that \(h\in H^{{1\over 2}+\alpha ,{1\over 4}+{\alpha \over 2}}({\mathbb {R}}^2\times {\mathbb {R}}_+)\). Then \({\mathop {v}\limits ^{1}}\in H^{2+\alpha ,1+\alpha /2}({\mathbb {R}}_+^3\times {\mathbb {R}}_+)\) and

$$\begin{aligned} \Vert {\mathop {v}\limits ^{1}}\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathbb {R}}_+^3\times {\mathbb {R}}_+)}\le c\Vert h\Vert _{H^{{1\over 2}+\alpha ,{1\over 4}+{\alpha \over 2}}({\mathbb {R}}^2\times {\mathbb {R}}_+)} \end{aligned}$$
(8.5)

Assume that \(g\in H^{\alpha ,\alpha /2}({\mathbb {R}}_+^3\times {\mathbb {R}}_+)\). Then there exists a solution to (8.2) such that \({\mathop {v}\limits ^{2}}\in H^{2+\alpha ,1+\alpha /2}({\mathbb {R}}_+^3\times {\mathbb {R}}_+)\) and

$$\begin{aligned} \Vert {\mathop {v}\limits ^{2}}\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathbb {R}}_+^3\times {\mathbb {R}}_+)}\le c\Vert g\Vert _{H^{\alpha ,\alpha /2}({\mathbb {R}}_+^3\times {\mathbb {R}}_+)}. \end{aligned}$$
(8.6)

Lemma 8.2

Assume that \(a_j\in H^{3/2+\alpha ,3/4+\alpha /2}({\mathbb {R}}^2\times {\mathbb {R}}_+)\), \(j=1,2\), \(\alpha \in (0,1)\). Then there exists a solution to problem (8.4) such that \(w\in H^{2+\alpha ,1+\alpha /2}({\mathbb {R}}_+^3\times {\mathbb {R}}_+)\), w is divergence free and

$$\begin{aligned} \Vert w\Vert _{H^{2+\alpha ,1+\alpha /2}({\mathbb {R}}_+^3\times {\mathbb {R}}_+)}\le c\sum _{j=1}^2\Vert a_j\Vert _{H^{3/2+\alpha ,3/4+\alpha /2}({\mathbb {R}}^2\times {\mathbb {R}}_+)}. \end{aligned}$$
(8.7)

Proof

Applying the Fourier–Laplace transform (7.13) to (8.4) yields

$$\begin{aligned} \begin{aligned}&s{\tilde{w}}_\beta -{\tilde{w}}_{\beta ,z_3z_3}+\xi ^2{\tilde{w}}_\beta +i\xi _\beta (i\xi _\gamma {\tilde{w}}_\gamma +{\tilde{w}}_{3,z_3})=0,\\&s{\tilde{w}}_3-{\tilde{w}}_{3,z_3z_3}+\xi ^2{\tilde{w}}_3+\partial _{z_3}(i\xi _\gamma {\tilde{w}}_\gamma +{\tilde{w}}_{3,z_3})=0,\\&{\tilde{w}}|_{z_3=0}=({\tilde{a}}_1,{\tilde{a}}_2,{\tilde{b}}),\end{aligned} \end{aligned}$$
(8.8)

where the summation convention over repeated Greek indices from 1 to 2 is assumed.

Simplifying (8.8) yields

$$\begin{aligned} \begin{aligned}&(s+\xi ^2){\tilde{w}}_\beta -{\tilde{w}}_{\beta ,z_3z_3}-\xi _\beta \xi _\gamma {\tilde{w}}_\gamma +i\xi _\beta {\tilde{w}}_{3,z_3}=0,\\&(s+\xi ^2){\tilde{w}}_3+i\xi _\gamma {\tilde{w}}_{\gamma ,z_3}=0,\\&{\tilde{w}}|_{z_3=0}=({\tilde{a}}_1,{\tilde{a}}_2,{\tilde{b}}).\end{aligned} \end{aligned}$$
(8.9)

Multiplying \((8.9)_1\) by \(\xi _\beta \) and summing with respect to \(\beta \) gives

$$\begin{aligned} (s+\xi ^2)\xi _\beta {\tilde{w}}_\xi -\xi _\beta {\tilde{w}}_{\beta ,z_3z_3}-\xi ^2\xi _\beta {\tilde{w}}_\beta +i\xi ^2{\tilde{w}}_{3,z_3}=0. \end{aligned}$$
(8.10)

Introducing the quantity

$$\begin{aligned} {\tilde{G}}=\xi _\beta {\tilde{w}}_\beta \end{aligned}$$
(8.11)

we obtain from (8.10), \((8.9)_{1,2}\) the following problem:

$$\begin{aligned} \begin{aligned}&(s+\xi ^2){\tilde{G}}-{\tilde{G}}_{,z_3z_3}-\xi ^2{\tilde{G}}+i\xi ^2{\tilde{w}}_{3,z_3}=0,\\&(s+\xi ^2){\tilde{w}}_3+i{\tilde{G}}_{,z_3}=0,\\&{\tilde{G}}|_{z_3=0}=\xi _\beta {\tilde{a}}_\beta .\end{aligned} \end{aligned}$$
(8.12)

From \((8.12)_2\) we have

$$\begin{aligned} {\tilde{w}}_3=-{i\over s+\xi ^2}{\tilde{G}}_{,z_3}. \end{aligned}$$
(8.13)

Inserting this in \((8.12)_1\) yields

$$\begin{aligned} s(s+\xi ^2){\tilde{G}}-s{\tilde{G}}_{,z_3z_3}=0. \end{aligned}$$
(8.14)

Since Re \(s>0\) we get

$$\begin{aligned} (s+\xi ^2){\tilde{G}}-{\tilde{G}}_{,z_3z_3}=0\quad {\tilde{G}}|_{z_3=0}=\xi _\beta {\tilde{a}}_\beta . \end{aligned}$$
(8.15)

Solving (8.15) gives

$$\begin{aligned} {\tilde{G}}=c_1\exp (\sqrt{s+\xi ^2}z_3)+c_2\exp (-\sqrt{s+\xi ^2}z_3),\ \ z_3>0. \end{aligned}$$
(8.16)

Since \(\textrm{Re}\sqrt{s+\xi ^2}>0\), we have to assume that \(c_1=0\). From boundary condition \((8.15)_2\) we obtain \(c_2=\xi _\beta {\tilde{a}}_\beta \). Hence

$$\begin{aligned} {\tilde{G}}=\xi _\beta {\tilde{a}}_\beta \exp (-\sqrt{s+\xi ^2}z_3). \end{aligned}$$
(8.17)

In view of (8.11) we have

$$\begin{aligned} \xi _\beta {\tilde{w}}_\beta =\xi _\beta {\tilde{a}}_\beta \exp (-\sqrt{s+\xi ^2}z_3), \end{aligned}$$

so

$$\begin{aligned} \xi _\beta ({\tilde{w}}_\beta -{\tilde{a}}_\beta \exp (-\sqrt{s+\xi ^2}z_3))=0. \end{aligned}$$

Hence

$$\begin{aligned} {\tilde{w}}_\beta ={\tilde{a}}_\beta \exp (-\sqrt{s+\xi ^2}z_3),\ \ \beta =1,2. \end{aligned}$$
(8.18)

In view of (8.13) and (8.17) we have

$$\begin{aligned} {\tilde{w}}_3={i\xi _\beta {\tilde{a}}_\beta \over \sqrt{s+\xi ^2}}\exp (-\sqrt{s+\xi ^2}z_3). \end{aligned}$$
(8.19)

Differentiating (8.19) with respect to \(z_3\) and projecting on the plane \(z_3=0\) we obtain

$$\begin{aligned} {\tilde{w}}_{3,z_3}-i\xi _\beta {\tilde{a}}_\beta =0\quad \textrm{on}\ \ z_3=0. \end{aligned}$$
(8.20)

Applying the inverse Laplace–Fourier transform we obtain condition \((8.4)_3\).

Finally, applying Lemmas 2.6.1 and 2.6.2 we derive (8.7). This ends the proof. \(\square \)