Skip to main content

The Emerging Applications of Machine Learning in the Diagnosis of Multiple Sclerosis

  • Chapter
  • First Online:
Artificial Intelligence and Autoimmune Diseases

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1133))

  • 201 Accesses

Abstract

A chronic autoimmune inflammatory condition called multiple sclerosis (MS) affects the central nervous system which can cause issues related to the brain, optic nerve, and spinal cord. Machine learning (ML) and artificial intelligence (AI)-based multiple sclerosis diagnosis is a rapidly growing field. Multiple sclerosis is a chronic immune system disorder that impacts the central nervous system over an extended period of time and manifests as a variety of symptoms, making it difficult to diagnose. AI and ML techniques have the ability to increase the accuracy and efficiency of MS diagnosis by examining vast quantities of medical information and recognizing patterns that may be challenging for humans to identify. This chapter reviews the current state of the art in AI and ML-based diagnosis of MS, including the use of imaging data, clinical data, and biomarkers. Additionally, it highlights the challenges and limitations of AI and ML in MS diagnosis, along with the potential future possibilities of research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ciccarelli O, Barkhof F, Bodini B, De Stefano N, Golay X, Nicolay K et al (2014) Pathogenesis of multiple sclerosis: insights from molecular and metabolic imaging. Lancet Neurol 13(8):807–822

    Article  Google Scholar 

  2. Dargahi N, Katsara M, Tselios T, Androutsou M-E, De Courten M, Matsoukas J et al (2017) Multiple sclerosis: immunopathology and treatment update. Brain Sci 7(7):78

    Article  Google Scholar 

  3. Compston A, Coles A (2002) Multiple sclerosis. Lancet 359(9313):1221–1231

    Article  Google Scholar 

  4. Brambilla R (2019) The contribution of astrocytes to the neuroinflammatory response in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol 137(5):757–783

    Article  Google Scholar 

  5. Ebers GC, Sadovnick AD, Risch NJ (1995) A genetic basis for familial aggregation in multiple sclerosis. Nature 377(6545):150–151

    Article  Google Scholar 

  6. Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A, Vukusic S et al (2018) Multiple sclerosis. Nat Rev Dis Primers 4(1):1–27

    Google Scholar 

  7. Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Multiple Sclerosis Journal. 2020;26(14):1816–21.

    Google Scholar 

  8. Browne P, Chandraratna D, Angood C, Tremlett H, Baker C, Taylor BV et al (2014) Atlas of multiple sclerosis 2013: a growing global problem with widespread inequity. Neurology 83(11):1022–1024

    Article  Google Scholar 

  9. Sharma A, Sharma N, Singh S, Dua K (2023) Review on theranostic and neuroprotective applications of nanotechnology in multiple sclerosis. J Drug Deliv Sci Technol 2023:104220

    Google Scholar 

  10. Brownlee WJ, Hardy TA, Fazekas F, Miller DH (2017) Diagnosis of multiple sclerosis: progress and challenges. The Lancet 389(10076):1336–1346

    Article  Google Scholar 

  11. Damal K, Stoker E, Foley JF (2013) Optimizing therapeutics in the management of patients with multiple sclerosis: a review of drug efficacy, dosing, and mechanisms of action. Biol: Targets Therapy. 2013:247–58.

    Google Scholar 

  12. Wingerchuk DM, Carter JL (eds) (2014) Multiple sclerosis: current and emerging disease-modifying therapies and treatment strategies. Mayo clinic proceedings. Elsevier

    Google Scholar 

  13. Yadav MK, Ahmad S, Raza K, Kumar S, Eswaran M, Pasha KM (2023) Predictive modeling and therapeutic repurposing of natural compounds against the receptor-binding domain of SARS-CoV-2. J Biomol Struct Dyn 41(5):1527–1539

    Article  Google Scholar 

  14. Behara K, Bhero E, Agee JT, Gonela V (2022) Artificial intelligence in medical diagnostics: a review from a South African context. Scientific African, p e01360

    Google Scholar 

  15. Sahu A, Qazi S, Raza K, Singh A, Verma S (2022) Machine learning-based approach for early diagnosis of breast cancer using biomarkers and gene expression profiles. In: Computational intelligence in oncology: applications in diagnosis, prognosis and therapeutics of cancers: Springer, pp 285–306

    Google Scholar 

  16. Kumar Y, Koul A, Singla R, Ijaz MF (2022) Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. J Ambient Intell Human Comput

    Google Scholar 

  17. Qazi S, Iqbal N, Raza K (2021) Machine learning in cancer diagnosis, prognosis and therapy. Artif Intell Data-Driven Med Diagnosis 3:103

    Article  Google Scholar 

  18. Khan FN, Yousef M, Raza K (2022) Machine learning-based models in the diagnosis, prognosis and effective cancer therapeutics: current state-of-the-art. In: Computational intelligence in oncology: applications in diagnosis, prognosis and therapeutics of cancers. Springer, pp 19–54

    Google Scholar 

  19. Mirbabaie M, Stieglitz S, Frick NRJ (2021) Artificial intelligence in disease diagnostics: A critical review and classification on the current state of research guiding future direction. Heal Technol 11(4):693–731

    Article  Google Scholar 

  20. Kaplan A, Haenlein M (2019) Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus Horiz 62(1):15–25

    Article  Google Scholar 

  21. Yadav SS, Jadhav SM (2019) Deep convolutional neural network based medical image classification for disease diagnosis. J Big Data 6(1):1–18

    Article  Google Scholar 

  22. Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, Kim C (2017) Machine learning in materials informatics: recent applications and prospects. npj Comput Mater 3(1):54.

    Google Scholar 

  23. Quinlan JR (1986) Induction of decision trees. Mach Learn 1:81–106

    Google Scholar 

  24. Cox DD, Dean T (2014) Neural networks and neuroscience-inspired computer vision. Curr Biol 24(18):R921–R929

    Article  Google Scholar 

  25. French MN, Krajewski WF, Cuykendall RR (1992) Rainfall forecasting in space and time using a neural network. J Hydrol 137(1–4):1–31

    Article  Google Scholar 

  26. Kriegeskorte N, Golan T (2019) Neural network models and deep learning. Curr Biol 29(7):R231–R236

    Article  Google Scholar 

  27. Krogh A (2008) What are artificial neural networks? Nat Biotechnol 26(2):195–197

    Article  Google Scholar 

  28. Bishop CM (1994) Neural networks and their applications. Rev Sci Instrum 65(6):1803–1832

    Article  Google Scholar 

  29. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Google Scholar 

  30. Alzubi J, Nayyar A, Kumar A (ed) (2018) Machine learning from theory to algorithms: an overview. J Phys: Confer Ser. IOP Publishing

    Google Scholar 

  31. Shoeibi A, Khodatars M, Jafari M, Moridian P, Rezaei M, Alizadehsani R et al (2021) Applications of deep learning techniques for automated multiple sclerosis detection using magnetic resonance imaging: a review. Comput Biol Med 136:104697

    Article  Google Scholar 

  32. Brosch T, Tang LY, Yoo Y, Li DK, Traboulsee A, Tam R (2016) Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans Med Imaging 35(5):1229–1239

    Article  Google Scholar 

  33. Bot JC, Barkhof F, Polman C, à Nijeholt GL, De Groot V, Bergers E et al (2004) Spinal cord abnormalities in recently diagnosed MS patients: added value of spinal MRI examination. Neurology 62(2):226–233

    Google Scholar 

  34. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G et al (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17(2):162–173

    Article  Google Scholar 

  35. Xu J, Xue K, Zhang K (2019) Current status and future trends of clinical diagnoses via image-based deep learning. Theranostics. 9(25):7556

    Article  Google Scholar 

  36. Pretorius P, Quaghebeur G (2003) The role of MRI in the diagnosis of MS. Clin Radiol 58(6):434–448

    Article  Google Scholar 

  37. Avanzo M, Porzio M, Lorenzon L, Milan L, Sghedoni R, Russo G et al (2021) Artificial intelligence applications in medical imaging: a review of the medical physics research in Italy. Physica Med 83:221–241

    Article  Google Scholar 

  38. Alloghani M, Al-Jumeily D, Aljaaf AJ, Khalaf M, Mustafina J, Tan SY (eds) (2019) The application of artificial intelligence technology in healthcare: a systematic review. In: Applied computing to support industry: innovation and technology: first international conference, ACRIT 2019, Ramadi, Iraq, September 15–16, 2019, Revised Selected Papers; 2020: Springer

    Google Scholar 

  39. Vrenken H, Jenkinson M, Pham DL, Guttmann CRG, Pareto D, Paardekooper M et al (2021) Opportunities for understanding MS mechanisms and progression with MRI using large-scale data sharing and artificial intelligence. Neurology 97(21):989–999

    Article  Google Scholar 

  40. Aslam N, Khan IU, Bashamakh A, Alghool FA, Aboulnour M, Alsuwayan NM et al (2022) Multiple sclerosis diagnosis using machine learning and deep learning: challenges and opportunities. Sensors 22(20):7856

    Article  Google Scholar 

  41. Willemink MJ, Koszek WA, Hardell C, Wu J, Fleischmann D, Harvey H et al (2020) Preparing medical imaging data for machine learning. Radiology 295(1):4–15

    Article  Google Scholar 

  42. Dankwa-Mullan I, Weeraratne D (2022) Artificial intelligence and machine learning technologies in cancer care: addressing disparities, bias, and data diversity. Cancer Discov 12(6):1423–1427

    Article  Google Scholar 

  43. Ranschaert ER, Morozov S, Algra PR (2019) Artificial intelligence in medical imaging: opportunities, applications and risks. Springer

    Google Scholar 

  44. Myszczynska MA, Ojamies PN, Lacoste AM, Neil D, Saffari A, Mead R et al (2020) Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat Rev Neurol 16(8):440–456

    Article  Google Scholar 

  45. Shaikh F, Dehmeshki J, Bisdas S, Roettger-Dupont D, Kubassova O, Aziz M et al (2021) Artificial intelligence-based clinical decision support systems using advanced medical imaging and radiomics. Curr Probl Diagn Radiol 50(2):262–267

    Article  Google Scholar 

  46. McKinley R, Wepfer R, Aschwanden F, Grunder L, Muri R, Rummel C et al (2021) Simultaneous lesion and brain segmentation in multiple sclerosis using deep neural networks. Sci Rep 11(1):1087

    Article  Google Scholar 

  47. McKinley R, Meier R, Wiest R (eds) Ensembles of densely-connected CNNs with label-uncertainty for brain tumor segmentation. In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries: 4th international workshop, BrainLes 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers, Part II 4; 2019. Springer

    Google Scholar 

  48. Eshaghi A, Young AL, Wijeratne PA, Prados F, Arnold DL, Narayanan S et al (2021) Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data. Nat Commun 12(1):2078

    Article  Google Scholar 

  49. Pemberton HG, Zaki LAM, Goodkin O, Das RK, Steketee RME, Barkhof F et al (2021) Technical and clinical validation of commercial automated volumetric MRI tools for dementia diagnosis—a systematic review. Neuroradiology 63(11):1773–1789

    Article  Google Scholar 

  50. Mendelsohn Z, Pemberton HG, Gray J, Goodkin O, Carrasco FP, Scheel M et al (2023) Commercial volumetric MRI reporting tools in multiple sclerosis: a systematic review of the evidence. Neuroradiology 65(1):5–24

    Article  Google Scholar 

  51. Mande SS, Bose C, Kaur H (2022) System and method for risk assessment of multiple sclerosis. Google Patents

    Google Scholar 

  52. Sati P, Patil SG, Reich D (2022) Automatic identification of subjects at risk of multiple sclerosis. Google Patents

    Google Scholar 

  53. Keller A, Meese E, Borries A, Staehler PF, Beier M (2015) miRNA fingerprint in the diagnosis of multiple sclerosis. Google Patents

    Google Scholar 

  54. Schaevitz L, Ford DJ (2019) Method of predicting severity of multiple sclerosis. Google Patents

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, A., Sharma, N., Arora, A., Pal, R. (2024). The Emerging Applications of Machine Learning in the Diagnosis of Multiple Sclerosis. In: Raza, K., Singh, S. (eds) Artificial Intelligence and Autoimmune Diseases. Studies in Computational Intelligence, vol 1133. Springer, Singapore. https://doi.org/10.1007/978-981-99-9029-0_6

Download citation

Publish with us

Policies and ethics