Skip to main content

Optimal Robust Controller Design for a Reduced Model AVR System Using CDM and FOPIλDμ

  • Conference paper
  • First Online:
Robotics, Control and Computer Vision

Abstract

Coefficient diagram method (CDM) is yet to be explored in many domains of fractional order control system design. In this research, an optimal non-integer PIλDμ controller is incorporated with the CDM method for regulating the terminal voltage of the reduced model of an automatic voltage regulator (AVR) system. In order to enhance the behaviour of the AVR system, parameters of the proposed PIλDμ controller are considered with the merits of CDM control strategy. A controller of fractional-order is designed using CDM and its effectiveness is collated with the conventional technique. Simulation results demonstrate that the standard performance characteristics are fully achieved by the CDM- FOPIλDμ controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Manabe,S.:Coefficient diagram method.In:IFAC Proceedings Volumes, 31(21), pp.211–222,(1998).

    Google Scholar 

  2. Bhusnur S (2020) An optimal robust controller design for automatic voltage regulator system using coefficient diagram method. J Inst Eng (India), Ser (B) 101(5):443–450

    Google Scholar 

  3. Podlubny I (1999) Fractional-order systems and PIλDμ controllers. IEEE Trans Autom Control 44(1):208–214

    Article  MathSciNet  MATH  Google Scholar 

  4. Monje CA, Vinagre BM, Feliu V, Chen Y (2008) Tuning and auto-tuning of fractional order controllers for industry applications. Control Eng Pract 16(7):798–812

    Article  Google Scholar 

  5. Padula F, Visioli A (2010) Tuning rules for optimal PID and fractional-order PID controllers. J Process Control 21(7):69–81

    MATH  Google Scholar 

  6. Shah P, Agashe S (2016) Review of fractional PID controller. Mechatronics 38:29–41

    Google Scholar 

  7. Silas M, Bhusnur S (2021) Augmenting DC buck converter dynamic response using an optimally designed fractional order PI controller. Design Eng: 4836–4849

    Google Scholar 

  8. Saadat H (1999) Power system analysis. McGraw-Hill, New-York

    Google Scholar 

  9. Gaing ZL (2004) A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans Energy Convers 19(2):384–391

    Google Scholar 

  10. Amer ML, Hassan HH, Youssef HM (2008) Modified evolutionary particle swarm optimization for AVR-PID tuning. In: Communications and information technology, systems and signals. pp 164–173

    Google Scholar 

  11. Pan I, Das S (2012) Chaotic multi-objective optimization based design of fractional order PIλDμ controller in AVR system. Int J Electr Power Energy Syst 43(1):393–407

    Article  Google Scholar 

  12. Verma SK, Yadav S, Nagar SK (2017) Optimization of fractional order PID controller using grey wolf optimizer. J Control Autom Electr Syst 28(3): 318–322

    Google Scholar 

  13. Zamani M, Karimi-Ghartemani M, Sadat N, Parniani M (2009) Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Eng Pract 17(12): 1380–1387

    Google Scholar 

  14. Manabe, S (2002) Brief tutorial and survey of coefficient diagram method. In: 4th Asian control conference. pp 25–27

    Google Scholar 

  15. Kim YC, Manabe S (2001) Introduction to coefficient diagram method. In: IFAC Proceedings vol 34, no 13. pp 147–152

    Google Scholar 

  16. Bhusnur S (2015) Effect of stability indices on robustness and system response in coefficient diagram method. Int J Res Eng Technology 4(10):282–287

    Article  Google Scholar 

  17. Manabe S (1999) Sufficient condition for stability and instability by Lipatov and its application to the coefficient diagram method. In: 9-th Workshop on Astrodynamics and Flight Mechanics, Sagamihara, ISAS, pp 440–449

    Google Scholar 

  18. Monje CA, Chen Y,Vinagre BM, Xue D, Feliu-Batlle V (2010) Fractional-order systems and controls fundamentals and applications. Springer Science & Business Media

    Google Scholar 

  19. Chen Y, Petras I, Xue D (2009) Fractional order control-a tutorial. In: American control conference, 2009. ACC’09. IEEE, pp 1397–411

    Google Scholar 

  20. Valerio D, Costa JS.da (2010) A review of tuning methods for fractional PIDs. In: 4th IFAC Workshop on fractional differentiation and its applications, FDA, vol 10

    Google Scholar 

  21. Yeroglu C, Tan N (2011) Note on fractional-order proportional–integral–differential controller design. IET Control Theory Appl 5(17):1978–1989

    Article  MathSciNet  Google Scholar 

  22. Xue D, Zhao C, Chen YQ (2006) Fractional order PID control of a DC-motor with elastic shaft: a case study. In: American control conference. pp 3182–3187

    Google Scholar 

  23. Monje,C.A. et al.: Proposals for fractional P I λD μ tuning. In: Proceedings of The First IFAC Symposium on Fractional Differentiation and its Applications (FDA04)., vol. 38, pp. 369–381,(2004).

    Google Scholar 

  24. Valério D, Costa J.Sá da (2004) Ninteger, a non-integer control toolbox for MatLab. In: Proc First IFAC Work Fract Differ Appl Bordeaux. pp 208–213

    Google Scholar 

  25. Oustaloup A, Melchior P, Lanusse P, Cois O, Dancla F (2000) The CRONE toolbox for Matlab. In: CACSD. Conference Proceedings. IEEE International symposium on Computer-Aided Control System Design (Cat.No.00TH8537). pp 190–195

    Google Scholar 

  26. Tepljakov A, Petlenkov E, Belikov J (2011) FOMCON: Fractional-order modeling and control toolbox for MATLAB. In: Mixed Design of Integrated Circuits and Systems (MIXDES), 2011 Proceedings of the 18th International Conference IEEE. pp 684–689

    Google Scholar 

  27. Vinagre BM, Podlubny I, Hernandez A, Feliu V (2000) Some approximations of fractional order operators used in control theroy and applications. Fract Calc Appl Anal 3(3):231–248

    Google Scholar 

  28. Maione G (2008) Continued fractions approximation of the impulse response of fractional-order dynamic systems. IET Control Theory Appl 2(7):564–572

    Article  MathSciNet  Google Scholar 

  29. Xue,D., Zhao,C.,Chen,Y.Q.:A modified approximation method of fractional order system.In: Proc. 2006 IEEE Int. Conf.Mechatron. Autom., pp. 1043–1048 ,Jun(2006).

    Google Scholar 

  30. Khanra,M., Pal,J.,Biswasl,K.:Rational approximation and analog realization of fractional order transfer function with multiple fractional powered terms. Asian J. Control, vol. 15, no. 4, (2013).

    Google Scholar 

  31. Verma SK, Nagar SK (2018) Design and optimization of fractional order PIλDμ controller using grey wolf optimizer for automatic voltage regulator system. Recent Advances in Electrical & Electronics Engineering (Formerly Recent Patents on Electrical & Electronics Engineering), vol. 11, no. 2. pp. 217–226

    Google Scholar 

  32. Tang Y, Cui M, Hua C, Li L, Yang YY (2012) Optimum design of fractional order PIλDμ controller for AVR system using chaotic ant swarm. Expert Syst Appl 39(8):6887–6896

    Article  Google Scholar 

  33. Majid Zamani NS, Karimi-Ghartemani M (2007) Fopid controller design for robust performance using practicle swarm Optimization. Fract Calc Appl Anal An Int J Theory Appl 10(2):169–187

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjusha Silas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silas, M., Bhusnur, S. (2023). Optimal Robust Controller Design for a Reduced Model AVR System Using CDM and FOPIλDμ. In: Muthusamy, H., Botzheim, J., Nayak, R. (eds) Robotics, Control and Computer Vision. Lecture Notes in Electrical Engineering, vol 1009. Springer, Singapore. https://doi.org/10.1007/978-981-99-0236-1_24

Download citation

Publish with us

Policies and ethics