Skip to main content

Real-Time Control Systems with Applications in Mechatronics

  • Living reference work entry
  • First Online:
Handbook of Real-Time Computing

Abstract

In this chapter, the basic ideas of real-time control systems with applications in mechatronics will be discussed. The chapter starts with the introduction of a real-time system (RTS), real-time operating system (RTOS), and digital control systems. Then several interesting engineering applications of RTS are demonstrated. The detailed arrangements of this chapter are as follows: In Sect. 1, the definition and characteristics of the RTS will first be discussed, then various controller designs with respect to RTS will be reviewed. In Sect. 2, 3, and 4, the applications and analyses for three different mechatronics systems, i.e., automotive steer-by-wire systems, electronic throttle systems, and linear motor systems, are given with detailed mathematical modeling and corresponding control design. In Sect. 5, conclusions of this chapter are drawn.

It is assumed that the reader has a solid background in basic control science and engineering or has some practical experience in the design or implementation of embedded systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • H.-S.S. Ahn, Y.Q. Chen, H.F. Dou, State-periodic adaptive compensation of cogging and Coulomb friction in permanent-magnet linear motors. IEEE Trans. Magn. 41(1), 90–98 (2005)

    Article  Google Scholar 

  • T. Aono, T. Kowatari, Throttle-control algorithm for improving engine response based on air-intake model and throttle-response model. IEEE Trans. Ind. Electron. 53(3), 915–921 (2006)

    Article  Google Scholar 

  • A.T. Azar, Q. Zhu, Advances and Applications in Sliding Mode Control Systems (Springer, 2015)

    Book  Google Scholar 

  • H.R. Baghaee, M. Mirsalim, G.B. Gharehpetian, H.A. Talebi, A decentralized power management and sliding mode control strategy for hybrid AC/DC microgrids including renewable energy resources. IEEE Trans. Ind. Inf. (2017)

    Google Scholar 

  • B. M. Chen, Robust and H∞ Control. Communications and Control Engineering. London, (2000). https://doi.org/10.1007/978-1-4471-3653-8

  • M.L. Dertouzos, A.K. Mok, Multiprocessor online scheduling of hard-real-time tasks. IEEE Trans. Softw. Eng. 15(12), 1497–1506 (1989)

    Article  Google Scholar 

  • Y. Feng, X. Yu, Z. Man, Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(12), 2159–2167 (2002)

    Article  MathSciNet  Google Scholar 

  • M. Fliess, J. Lévine, P. Martin, P. Rouchon, Flatness and defect of non-linear systems: introductory theory and examples. Int. J. Control. 61(6), 1327–1361 (1995)

    Article  MathSciNet  Google Scholar 

  • A. Gambier, Real-time control systems: a tutorial, in 5th Asian Control Conference, 2004, vol. 2, pp. 1024–1031

    Google Scholar 

  • IEEE Standard for Information Technology--Portable Operating System Interface (POSIX(TM)) Base Specifications, Issue 7, IEEE Std 1003.1-2017 (Revision IEEE Std 1003.1-2008), 2018, pp. 1–3951. https://doi.org/10.1109/IEEESTD.2018.8277153, https://ieeexplore.ieee.org/servlet/opac?punumber=8277151

  • S. Islam, X.P. Liu, Robust sliding mode control for robot manipulators. IEEE Trans. Ind. Electron. 58(6), 2444–2453 (2011)

    Article  Google Scholar 

  • U. Itkis, Control Systems of Variable Structure (Wiley, New York, 1976)

    Google Scholar 

  • H.K. Khalil, Nonlinear Systems (Prentice-Hall, New York, 2002)

    MATH  Google Scholar 

  • J. Kim, S. Choi, K. Cho, K. Nam, Position estimation using linear hall sensors for permanent magnet linear motor systems. IEEE Trans. Ind. Electron. 63(12), 7644–7652 (2016)

    Article  Google Scholar 

  • P. Krishnamurthy, F. Khorrami, Adaptive control of stepper motors without current measurements, in American Control Conference, 2001. Proceedings of the 2001, 2001, vol. 2, pp. 1563–1568

    Google Scholar 

  • M. Krstic, I. Kanellakopoulos, and P. V Kokotovic, Nonlinear and adaptive control design (Nonlinear and Adaptive Control Design (Adaptive and Learning Systems for Signal Processing, Communications and Control), vol. 222. Wiley, 1995

    Google Scholar 

  • J.Y.-T. Leung, J. Whitehead, On the complexity of fixed-priority scheduling of periodic, real-time tasks. Perform. Eval. 2(4), 237–250 (1982)

    Article  MathSciNet  Google Scholar 

  • A. Levant, Robust exact differentiation via sliding mode technique. Automatica 34(3), 379–384 (1998)

    Article  MathSciNet  Google Scholar 

  • A. Levant, Homogeneity approach to high-order sliding mode design. Automatica 41(5), 823–830 (2005)

    Article  MathSciNet  Google Scholar 

  • C.L. Liu, J.W. Layland, Scheduling algorithms for multiprogramming in a hard-real-time environment. J. ACM 20(1), 46–61 (1973)

    Article  MathSciNet  Google Scholar 

  • Y. Mi, Y. Fu, D. Li, C. Wang, P.C. Loh, P. Wang, The sliding mode load frequency control for hybrid power system based on disturbance observer. Int. J. Electr. Power Energy Syst. 74, 446–452 (2016)

    Article  Google Scholar 

  • S. Sastry, M. Bodson, Adaptive Control: Stability, Convergence, and Robustness. Prentice-Hall Advanced Reference Series (Engineering) (Prentice Hall, 2011)

    Google Scholar 

  • D. B. Stewart, P. K. Khosla, Real-time scheduling of dynamically reconfigurable systems, in IEEE International Conference on Systems Engineering, 1991, pp. 139–142

    Google Scholar 

  • V. Utkin, Variable structure systems with sliding modes. IEEE Trans. Automat. Control 22(2), 212–222 (1977)

    Article  MathSciNet  Google Scholar 

  • V. Utkin, J. Guldner, J. Shi, Sliding Mode Control in Electro-Mechanical Systems (CRC press, New York, 2009)

    Google Scholar 

  • W. Wang, J. Yi, D. Zhao, D. Liu, Design of a stable sliding-mode controller for a class of second-order underactuated systems. IEE Proc. Control Theory Appl. 151(6), 683–690 (2004)

    Article  Google Scholar 

  • H. Wang, Z. Man, W. Shen, Z. Cao, Robust control for steer-by-wire systems with partially known dynamics. IEEE Trans. Ind. Inf. 10(4), 2003–2015 (2014a)

    Article  Google Scholar 

  • H. Wang, Z. Man, W. Shen, J. Zheng, Sliding mode control for steer-by-wire systems with AC motors in road vehicles. IEEE Trans. Ind. Electron. 61(3), 1596–1611 (2014b)

    Article  Google Scholar 

  • H. Wang et al., Design and implementation of adaptive terminal sliding-mode control on a steer-by-wire equipped road vehicle. IEEE Trans. Ind. Electron. 63(9), 5774–5785 (2016a)

    Article  Google Scholar 

  • H. Wang et al., Robust adaptive position control of automotive electronic throttle valve using PID-type sliding mode technique. Nonlinear Dyn. 85(2), 1331–1344 (2016b)

    Article  Google Scholar 

  • H. Wang et al., Continuous fast nonsingular terminal sliding mode control of automotive electronic throttle systems using finite-time exact observer. IEEE Trans. Ind. Electron. 65(9), 7160–7172 (2018a)

    Article  Google Scholar 

  • H. Wang et al., Adaptive integral terminal sliding mode control for automobile electronic throttle via an uncertainty observer and experimental validation. IEEE Trans. Veh. Technol. 67(9), 8129–8143 (2018b)

    Article  Google Scholar 

  • L. Yang, J. Yang, Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems. Int. J. Robust Nonlinear Control 21(16), 1865–1879 (2011)

    Article  MathSciNet  Google Scholar 

  • X. Yu, Z. Man, Model reference adaptive control systems with terminal sliding modes. Int. J. Control. 64(6), 1165–1176 (1996)

    Article  MathSciNet  Google Scholar 

  • X. Yu, M. Zhihong, Fast terminal sliding-mode control design for nonlinear dynamical systems. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 49(2), 261–264 (2002)

    Article  MathSciNet  Google Scholar 

  • S. Yu, X. Yu, B. Shirinzadeh, Z. Man, Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)

    Article  MathSciNet  Google Scholar 

  • M. Zhihong, X.H. Yu, Terminal sliding mode control of MIMO linear systems. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(11), 1065–1070 (1997)

    Article  MathSciNet  Google Scholar 

  • M. Zhihong, A.P. Paplinski, H.R. Wu, A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans. Automat. Control 39(12), 2464–2469 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Wang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wang, H. et al. (2021). Real-Time Control Systems with Applications in Mechatronics. In: Tian, YC., Levy, D.C. (eds) Handbook of Real-Time Computing. Springer, Singapore. https://doi.org/10.1007/978-981-4585-87-3_41-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-4585-87-3_41-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4585-87-3

  • Online ISBN: 978-981-4585-87-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics