Skip to main content

Design and Performance Analysis of Body Worn Textile Antenna Using 100% Polyester at 2.4 GHz for Wireless Applications

  • Conference paper
  • First Online:
Recent Trends in Mechatronics Towards Industry 4.0

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 730))

Abstract

International Mobile Telecommunications-2020 (IMT-2020) is focused on creating a mobile ecosystem with a reasonable price and user friendly. With these reasons, the need for a communications framework that could be deployed at an affordable cost, compact and ease of mobility brought forward the concept of wearable technology. Wearable devices such as textile antennas are being developed with the potential to track, notify and demand attention where hospital emergencies are necessary. However, conventional antenna designs have a rigid structure, limited bandwidth, costly metallization and lack effectiveness. Therefore, in this paper, a simulation of a textile wearable antenna using 100% polyester as a substrate is designed for a wireless application at 2.4 GHz frequency. The antenna performance is observed in terms of reflection coefficient, bandwidth, Voltage Standing Wave Ratio (VSWR), gain and radiation pattern along with a thinner substrate compared to previous works to justify the validity of the current design proposed. The research paper has many possibilities for the future and could assist with when designing and manufacturing flexible and comfortable wearable devices for everyday use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al Kharusi KWS, Ramli N, Khan S, Ali MT, Abdul Halim MH (2020) Gain enhancement of rectangular microstrip patch antenna using air gap at 2.4 GHz. Int J Nanoelectronics Mater 13(Special Issue):211–224

    Google Scholar 

  2. Rais NHM, Soh PJ, Malek F, Ahmad S, Hashim NBM, Hall PS (2009) A review of wearable antenna. In: Loughborough antennas and propagation conference, Loughborough, pp 225–228

    Google Scholar 

  3. Sabri S, Sam SM, Kamardin K, Daud SM, Salleh NA (2016) Review of the current design on wearable antenna in medical field and its challenges. J Teknologi 111–117

    Google Scholar 

  4. Jaiswal P, Sinha P (2018) design of wearable textile based microstrip patch antenna for bandwidth enhancement. Int J Appl Eng Res 13(18):13647–13651

    Google Scholar 

  5. Mersani A, Osman L (2016) Design of dual-band textile antenna for 2.45/5.8-GHz wireless applications. In: 5th International conference on multimedia computing and systems (ICMCS), pp 397–399, Marrakech

    Google Scholar 

  6. Yang H-C, Azeez HL, Wu CK, Chen WS (2017) Design of a fully textile dual band patch antenna using denim Fabric. In: IEEE international conference on computational electromagnetics (ICCEM), pp 185–187, Kumamoto

    Google Scholar 

  7. Osmana MAR, Rahima MKA, Samsuria NA, Elbasheera MK, Alia ME (2012) UWB wearable textile antenna. J Teknologi Sci Eng 58(1):39–44

    Google Scholar 

  8. Jeyakumar S, Sakthimurugan K (2017) Wearable textile antenna for ISM band with different dielectric substrate materials. Int J Electron Eng Res 9(8):1259–1266

    Google Scholar 

  9. Ahmed I, Rahman M (2017) Design and optimization of a textile antenna for wearable communication. In: IEEE international conference power, control, signals and instrumentation engineering (ICPCSI), pp 0–4

    Google Scholar 

  10. Salvado R, Loss C, Gonçalves R, Pinho P (2012) Textile materials for the design of wearable antennas: a survey. Sensors 12:15841–15857

    Google Scholar 

  11. Ramachandran T, Sampath MB, Senthilkumar M (2009) Micro polyester fibers for moisture management. Ind Text J 21

    Google Scholar 

  12. Balanis CA (1992) Antenna theory: a review. Proc IEEE 80(1):7–23

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shehab Khan Noor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Noor, S.K., Ramli, N., Zaini, N.N., Abd Rahman, N.H. (2022). Design and Performance Analysis of Body Worn Textile Antenna Using 100% Polyester at 2.4 GHz for Wireless Applications. In: Ab. Nasir, A.F., Ibrahim, A.N., Ishak, I., Mat Yahya, N., Zakaria, M.A., P. P. Abdul Majeed, A. (eds) Recent Trends in Mechatronics Towards Industry 4.0. Lecture Notes in Electrical Engineering, vol 730. Springer, Singapore. https://doi.org/10.1007/978-981-33-4597-3_31

Download citation

Publish with us

Policies and ethics