Skip to main content

Modeling and Simulation of Failure in Fiber-Reinforced Polymer Composites

  • Reference work entry
  • First Online:
Handbook of Epoxy/Fiber Composites

Abstract

This chapter provides an overview of widely used computational approaches to fracture and their application in the failure modeling and simulation of fiber-reinforced polymer composite materials and structures. Cohesive elements, eXtended finite element method (XFEM) as discrete crack approaches, and phase field models as a continuous crack approach are described in detail. Emphasis is placed on the mathematical formulation and numerical implementation aspects of these computational fracture approaches. Proper microscopic boundary conditions in the context of multiscale modeling are reported. The covered computational fracture approaches are used to investigate the failure responses of fiber-reinforced polymer composites subjected to monotonic loading, with failure resolution at different characteristic length scales. The investigations confirm the potential and power of the continuous and discontinuous crack approaches in predicting the complex failure mechanisms in composite structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abaqus, Abaqus 6.12 Theory Manual (Dassault Systèmes Simulia Corp., Providence, 2012)

    Google Scholar 

  • Y.A. Abdel-Nasser, Frontal crash simulation of vehicles against lighting columns using fem. Alex. Eng. J. 52(3), 295–299 (2013)

    Article  Google Scholar 

  • G. Alfano, M. Crisfield, Solution strategies for the delamination analysis based on a combination of local-control arc-length and line searches. Int. J. Numer. Methods Eng. 58(7), 999–1048 (2003)

    Article  Google Scholar 

  • H. Amor, J.-J. Marigo, C. Maurini, Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. J. Mech. Phys. Solids 57(8), 1209–1229 (2009)

    Article  Google Scholar 

  • I. Babuška, J.M. Melenk, The partition of unity method. Int. J. Numer. Methods Eng. 40(4), 727–758 (1997)

    Article  Google Scholar 

  • F.H. Bhuiyan, S.H.R. Sanei, R.S. Fertig III, Predicting variability in transverse effective elastic moduli and failure initiation strengths in UD composite microstructures due to randomness in fiber location and morphology. Compos. Struct., 111887 (2020)

    Google Scholar 

  • G.T. Camacho, M. Ortiz, Computational modelling of impact damage in brittle materials. Int. J. Solids Struct. 33(20–22), 2899–2938 (1996)

    Article  Google Scholar 

  • P.P. Camanho, C.G. Davila, M. De Moura, Numerical simulation of mixed-mode progressive delamination in composite materials. J. Compos. Mater. 37(16), 1415–1438 (2003)

    Article  Google Scholar 

  • J.L. Chaboche, F. Feyel, Y. Monerie, Interface debonding models: A viscous regularization with a limited rate dependency. Int. J. Solids Struct. 38(18), 3127–3160 (2001)

    Article  Google Scholar 

  • J. Chessa, P. Smolinski, T. Belytschko, The extended finite element method (XFEM) for solidification problems. Int. J. Numer. Methods Eng. 53(8), 1959–1977 (2002)

    Article  Google Scholar 

  • J. Dolbow, N. Moës, T. Belytschko, An extended finite element method for modeling crack growth with frictional contact. Comput. Methods Appl. Mech. Eng. 190(51-52), 6825–6846 (2001)

    Article  Google Scholar 

  • D.S. Dugdale, Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8(2), 100–104 (1960)

    Article  Google Scholar 

  • M.L. Falk, A. Needleman, J.R. Rice, A critical evaluation of cohesive zone models of dynamic fractur. Le Journal de Physique IV 11(PR5), Pr5–43 (2001)

    Google Scholar 

  • G.A. Francfort, J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)

    Article  Google Scholar 

  • I. Gad-el Hak, Fluid-structure interaction for biomimetic design of an innovative lightweight turboexpander. Biomimetics 4(1), 27 (2019)

    Article  CAS  Google Scholar 

  • Y. Gao, A. Bower, A simple technique for avoiding convergence problems in finite element simulations of crack nucleation and growth on cohesive interfaces. Model. Simul. Mater. Sci. Eng. 12(3), 453 (2004)

    Article  Google Scholar 

  • P.H. Geubelle, J.S. Baylor, Impact-induced delamination of composites: A 2d simulation. Compos. Part B 29(5), 589–602 (1998)

    Article  Google Scholar 

  • C. González, J. LLorca, Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: Microscopic mechanisms and modeling. Compos. Sci. Technol. 67(13), 2795–2806 (2007)

    Article  CAS  Google Scholar 

  • Z. Hashin, Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47, 329 (1980)

    Article  Google Scholar 

  • R. Hill, Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solids 11(5), 357–372 (1963)

    Article  Google Scholar 

  • A. Hillerborg, M. Modéer, P.-E. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6(6), 773–781 (1976)

    Article  Google Scholar 

  • C.B. Hirschberger, N. Sukumar, P. Steinmann, Computational homogenization of material layers with micromorphic mesostructure. Philos. Mag. 88(30–32), 3603–3631 (2008)

    Article  CAS  Google Scholar 

  • C. Hirschberger, S. Ricker, P. Steinmann, N. Sukumar, Computational multiscale modelling of heterogeneous material layers. Eng. Fract. Mech. 76(6), 793–812 (2009)

    Article  Google Scholar 

  • A.P. Joseph, P. Davidson, A.M. Waas, Open hole and filled hole progressive damage and failure analysis of composite laminates with a countersunk hole. Compos. Struct. 203, 523–538 (2018)

    Article  Google Scholar 

  • A.R. Khoei, Extended Finite Element Method: Theory and Applications (Wiley, 2014)

    Google Scholar 

  • D.V. Kubair, P.H. Geubelle, Comparative analysis of extrinsic and intrinsic cohesive models of dynamic fracture. Int. J. Solids Struct. 40(15), 3853–3868 (2003)

    Article  Google Scholar 

  • P. Liu, J. Zheng, Recent developments on damage modeling and finite element analysis for composite laminates: A review. Mater. Des. 31(8), 3825–3834 (2010)

    Article  CAS  Google Scholar 

  • J. LLorca, C. González, J.M. Molina-Aldareguía, J. Segurado, R. Seltzer, F. Sket, M. Rodríguez, S. Sádaba, R. Muñoz, L.P. Canal, Multiscale modeling of composite materials: A roadmap towards virtual testing. Adv. Mater. 23(44), 5130–5147 (2011)

    Article  CAS  Google Scholar 

  • C. Miehe, J. Schröder, M. Becker, Computational homogenization analysis in finite elasticity: Material and structural instabilities on the micro-and macro-scales of periodic composites and their interaction. Comput. Methods Appl. Mech. Eng. 191(44), 4971–5005 (2002)

    Article  Google Scholar 

  • C. Miehe, M. Hofacker, F. Welschinger, A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199(45–48), 2765–2778 (2010a)

    Article  Google Scholar 

  • C. Miehe, F. Welschinger, M. Hofacker, Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83(10), 1273–1311 (2010b)

    Article  Google Scholar 

  • N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999)

    Article  Google Scholar 

  • G. Molnár, A. Gravouil, 2d and 3d Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture. Finite Elem. Anal. Des. 130, 27–38 (2017)

    Article  Google Scholar 

  • A. Needleman, A continuum model for void nucleation by inclusion debonding. J. Appl. Mech. 54, 525 (1987)

    Article  Google Scholar 

  • V.P. Nguyen, An open source program to generate zero-thickness cohesive interface elements. Adv. Eng. Softw. 74, 27–39 (2014)

    Article  Google Scholar 

  • N. Nguyen, A.M. Waas, A novel mixed-mode cohesive formulation for crack growth analysis. Compos. Struct. 156, 253–262 (2016)

    Article  Google Scholar 

  • V.P. Nguyen, O. Lloberas-Valls, M. Stroeven, L.J. Sluys, Homogenization-based multiscale crack modelling: From micro-diffusive damage to macro-cracks. Comput. Methods Appl. Mech. Eng. 200(9–12), 1220–1236 (2011)

    Article  Google Scholar 

  • A.C. Orifici, I. Herszberg, R.S. Thomson, Review of methodologies for composite material modelling incorporating failure. Compos. Struct. 86(1–3), 194–210 (2008)

    Article  Google Scholar 

  • M. Ortiz, A. Pandolfi, Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int. J. Numer. Methods Eng. 44(9), 1267–1282 (1999)

    Article  Google Scholar 

  • K. Park, G.H. Paulino, J.R. Roesler, A unified potential-based cohesive model of mixed-mode fracture. J. Mech. Phys. Solids 57(6), 891–908 (2009)

    Article  CAS  Google Scholar 

  • T. Rabczuk, Computational methods for fracture in brittle and quasi-brittle solids: State-of-the-art review and future perspectives. ISRN Appl. Math. 2013 (2013)

    Google Scholar 

  • D.N. Saheb, J.P. Jog, Natural fiber polymer composites: A review. Adv. Polym. Technol. J. Polym. Process. Instit. 18(4), 351–363 (1999)

    Article  CAS  Google Scholar 

  • J. Schellekens, R. De Borst, On the numerical integration of interface elements. Int. J. Numer. Methods Eng. 36(1), 43–66 (1993)

    Article  Google Scholar 

  • A. Simone, Partition of unity-based discontinuous elements for interface phenomena: Computational issues. Commun. Numer. Methods Eng. 20(6), 465–478 (2004)

    Article  Google Scholar 

  • T. Strouboulis, K. Copps, I. Babuska, The generalized finite element method. Comput. Methods Appl. Mech. Eng. 190(32–33), 4081–4193 (2001)

    Article  Google Scholar 

  • N. Sukumar, D.L. Chopp, B. Moran, Extended finite element method and fast marching method for three-dimensional fatigue crack propagation. Eng. Fract. Mech. 70(1), 29–48 (2003)

    Article  Google Scholar 

  • E. Svenning, A weak penalty formulation remedying traction oscillations in interface elements. Comput. Methods Appl. Mech. Eng. 310, 460–474 (2016)

    Article  Google Scholar 

  • R. Talreja, C.V. Singh, Damage and Failure of Composite Materials (Cambridge University Press, 2012)

    Book  Google Scholar 

  • W. Tan, E. Martinez-Paneda, Phase field predictions of microscopic fracture and R-curve behaviour of fibre-reinforced composites. Compos. Sci. Technol. 202, 108539 (2020)

    Article  CAS  Google Scholar 

  • E. Totry, J.M. Molina-Aldareguia, C. Gonzalez, J. LLorca, Effect of fiber, matrix and interface properties on the in-plane shear deformation of carbon-fiber reinforced composites. Compos. Sci. Technol. 70(6), 970–980 (2010)

    Article  CAS  Google Scholar 

  • H. Tryggvason, F. Starker, C. Lecomte, F. Jonsdottir, Use of dynamic FEA for design modification and energy analysis of a variable stiffness prosthetic foot. Appl. Sci. 10(2), 650 (2020)

    Article  Google Scholar 

  • S.W. Tsai, Strength Characteristics of Composite Materials. Technical Report (Philco Corp, Newport Beach, 1965)

    Google Scholar 

  • S.W. Tsai, E.M. Wu, A general theory of strength for anisotropic materials. J. Compos. Mater. 5(1), 58–80 (1971)

    Article  Google Scholar 

  • A. Turon, P.P. Camanho, J. Costa, C. Davila, A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech. Mater. 38(11), 1072–1089 (2006)

    Article  Google Scholar 

  • A. Turon, C.G. Davila, P.P. Camanho, J. Costa, An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 74(10), 1665–1682 (2007)

    Article  Google Scholar 

  • V. Tvergaard, J.W. Hutchinson, The influence of plasticity on mixed mode interface toughness. J. Mech. Phys. Solids 41(6), 1119–1135 (1993)

    Article  Google Scholar 

  • F.P. Van der Meer, Mesolevel modeling of failure in composite laminates: Constitutive, kinematic and algorithmic aspects. Arch. Comput. Methods Eng. 19(3), 381–425 (2012)

    Article  Google Scholar 

  • C.V. Verhoosel, J.J. Remmers, M.A. Gutierrez, R. De Borst, Computational homogenization for adhesive and cohesive failure in quasi-brittle solids. Int. J. Numer. Methods Eng. 83(8–9), 1155–1179 (2010)

    Article  Google Scholar 

  • G. Vigueras, F. Sket, C. Samaniego, L. Wu, L. Noels, D. Tjahjanto, E. Casoni, G. Houzeaux, A. Makradi, J.M. Molina-Aldareguia, et al., An XFEM/CZM implementation for massively parallel simulations of composites fracture. Compos. Struct. 125, 542–557 (2015)

    Article  Google Scholar 

  • G.N. Wells, L. Sluys, A new method for modelling cohesive cracks using finite elements. Int. J. Numer. Methods Eng. 50(12), 2667–2682 (2001)

    Article  Google Scholar 

  • J.-Y. Wu, Y. Huang, Comprehensive implementations of phase-field damage models in Abaqus. Theor. Appl. Fract. Mech. 106, 102440 (2020)

    Article  Google Scholar 

  • D. Xie, A.M. Waas, Discrete cohesive zone model for mixed-mode fracture using finite element analysis. Eng. Fract. Mech. 73(13), 1783–1796 (2006)

    Article  Google Scholar 

  • D. Xie, A.G. Salvi, C. Sun, A.M. Waas, A. Caliskan, Discrete cohesive zone model to simulate static fracture in 2D triaxially braided carbon fiber composites. J. Compos. Mater. 40(22), 2025–2046 (2006)

    Article  CAS  Google Scholar 

  • H. Yu, J.S. Olsen, V. Olden, A. Alvaro, J. He, Z. Zhang, Viscous regularization for cohesive zone modeling under constant displacement: An application to hydrogen embrittlement simulation. Eng. Fract. Mech. 166, 23–42 (2016)

    Article  Google Scholar 

  • N. Zander, M. Ruess, T. Bog, S. Kollmannsberger, E. Rank, Multi-level hp-adaptivity for cohesive fracture modeling. Int. J. Numer. Methods Eng. 109(13), 1723–1755 (2017)

    Article  Google Scholar 

  • G. Zi, T. Belytschko, New crack-tip elements for XFEM and applications to cohesive cracks. Int. J. Numer. Methods Eng. 57(15), 2221–2240 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjin Xing or Youhong Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Xing, W., Tang, Y. (2022). Modeling and Simulation of Failure in Fiber-Reinforced Polymer Composites. In: Mavinkere Rangappa, S., Parameswaranpillai, J., Siengchin, S., Thomas, S. (eds) Handbook of Epoxy/Fiber Composites . Springer, Singapore. https://doi.org/10.1007/978-981-19-3603-6_42

Download citation

Publish with us

Policies and ethics