Skip to main content

Thermal Stability and Flame Retardancy of Epoxy/Natural Fiber Composites

  • Reference work entry
  • First Online:
Handbook of Epoxy/Fiber Composites

Abstract

Natural fiber polymer composites (NFPCs) are materials of high-strength natural fiber-reinforced polymer matrices. With their eco-friendly nature and sustainability, NFPCs are getting more attention in academy and industrials to utilize natural fibers for potential applications, such as construction, automobile, marine, aerospace, and other applications. The mechanical characteristics and failure behaviors of NFPCs have been studied to compare with those of synthetic fiber-based composites. However, to replace the metal- or ceramic-based materials in the applications, an improvement of thermal stabilities, flame resistance, and dimensional stability at high temperature, which may extend their potential multidirectional applications, has also been presented.

With such context, this chapter provides the natural fiber-reinforced epoxy composites that showed high temperature stability and good flame retardancy and their applications. The effect of types and contents of natural fibers, modified surface fibers, and the addition of flame retardant on glass transition temperature, thermal degradation temperature, and flame retardancy of the composites have been investigated. Moreover, the important characteristics, such as physical and mechanical properties including strength under tensile, flexure, and impact loads, as well as water resistance, were also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • T. Ahamad, S. Alshehri, Thermal degradation and evolved gas analysis of epoxy (DGEBA)/novolac resin blends (ENB) during pyrolysis and combustion. J. Therm. Anal. Calorim. 111(1), 445–451 (2013)

    Article  CAS  Google Scholar 

  • Z.N. Azwa, B.F. Yousif, Characteristics of kenaf fibre/epoxy composites subjected to thermal degradation. Polym. Degrad. Stab. 98(12), 2752–2759 (2013)

    Article  CAS  Google Scholar 

  • E.V. Bachtiar, K. Kurkowiak, L. Yan, B. Kasal, T. Kolb, Thermal stability, fire performance, and mechanical properties of natural fibre fabric-reinforced polymer composites with different fire retardants. Polymers 11, 699 (2019)

    Article  CAS  Google Scholar 

  • M. Birkner, S. Spange, K. Koschek, Basalt fiber reinforced polymers with improved thermal and mechanical properties by combination of twin polymerization with epoxide chemistry. Polym. Compos. 40(8), 3115–3121 (2019)

    Article  CAS  Google Scholar 

  • L. Boccarusso, L. Carrino, M. Durante, A. Formisano, A. Langella, F. Memola Capece Minutolo, Hemp fabric/epoxy composites manufactured by infusion process: improvement of fire properties promoted by ammonium polyphosphate. Compos. Part B Eng. 89, 117–126 (2016)

    Article  CAS  Google Scholar 

  • L.N. Chang, M. Jaafar, W.S. Chow, Thermal behavior and flammability of epoxy/glass fiber composites containing clay and decabromodiphenyl oxide. J. Therm. Anal. Calorim. 112, 1157–1164 (2013)

    Google Scholar 

  • S.S. Chee, M. Jawaid, M.T.H. Sultan, O.Y. Alothman, L.C. Abdullah, Accelerated weathering and soil burial effects on colour, biodegradability and thermal properties of bamboo/kenaf/epoxy hybrid composites. Polym. Test. 79, 106054 (2019). https://doi.org/10.1016/j.polymertesting.2019.106054

    Article  CAS  Google Scholar 

  • J. Cheng, Curing behavior and thermal properties of trifunctional epoxy resin cured by 4, 4′-diaminodiphenyl sulfone. Express Polym. Lett. 3, 501–509 (2009)

    Article  CAS  Google Scholar 

  • Z. Cheng, M. Fang, X. Chen, Y. Zhang, Y. Wang, H. Li, J. Qian, Thermal stability and flame retardancy of a cured trifunctional epoxy resin with the synergistic effects of silicon/titanium. ACS Omega 5(8), 4200–4212 (2020)

    Article  CAS  Google Scholar 

  • C.W. Chin, B.F. Yousif, Potential of kenaf fibres as reinforcement for tribological applications. Wear 267(9), 1550–1557 (2009)

    Article  CAS  Google Scholar 

  • J. Dai, N. Teng, J. Liu, J. Feng, J. Zhu, X. Liu, Synthesis of bio-based fire-resistant epoxy without addition of flame retardant elements. Compos. Part B Eng. 179, 107523 (2019). https://doi.org/10.1016/j.compositesb.2019.107523

    Article  CAS  Google Scholar 

  • I.M. De Rosa, C. Santulli, F. Sarasini, Mechanical and thermal characterization of epoxy composites reinforced with random and quasi-unidirectional untreated Phormium tenax leaf fibers. Mater. Des. 31(5), 2397–2405 (2010)

    Article  CAS  Google Scholar 

  • N. Dodds, A.G. Gibson, D. Dewhurst, J.M. Davies, Fire behaviour of composite laminates. Compos. A: Appl. Sci. Manuf. 31(7), 689–702 (2000)

    Article  Google Scholar 

  • S. Fatima, A.R. Mohanty, Acoustical and fire-retardant properties of jute composite materials. Appl. Acoust. 72(2), 108–114 (2011)

    Article  Google Scholar 

  • Force Technology, Learnings from designing and producing composite components with natural fibres (2014), https://forcetechnology.com. Accessed 28 Jan 2021

  • P. Glaris, J.-F. Coulon, M. Dorget, F. Poncin-Epaillard, Fluorinated epoxy resin as a low adhesive mould for composite material. Compos. Part B Eng. 63, 94–100 (2014)

    Article  CAS  Google Scholar 

  • S. Grishchuk, Structure, thermal and fracture mechanical properties of benzoxazine-modified amine-cured DGEBA epoxy resins. Express Polym. Lett. 5, 273–282 (2011)

    Article  CAS  Google Scholar 

  • P. Hombunma, T. Parnklang, P. Mora, C. Jubsilp, S. Rimdusit, Shape memory polymers from bio-based benzoxazine/epoxidized natural oil copolymers. Smart Mater. Struct. 29(1), 015036 (2020). https://doi.org/10.1088/1361-665x/ab49e5

    Article  CAS  Google Scholar 

  • ICP Wind, ICP organic brake pad BSFG 300 series – replaces SVENDBORG 478-1486-802 (2016–2020), https://www.icpwind.com. Accessed 28 Jan 2021

  • H. Ishida, Process for preparation of benzoxazine compounds in solventless systems. US 5,543,516, 1996

    Google Scholar 

  • H. Ishida, Overview and historical background of polybenzoxazine research, in Handbook of Benzoxazine Resins, ed. by H. Ishida, T. Agag, (Elsevier, Amsterdam, 2011), pp. 3–81

    Chapter  Google Scholar 

  • F.-L. Jin, S.-J. Park, Thermomechanical behavior of epoxy resins modified with epoxidized vegetable oils. Polym. Int. 57, 577–583 (2008)

    Article  CAS  Google Scholar 

  • C. Jubsilp, T. Takeichi, S. Hiziroglu, S. Rimdusit, High performance wood composites based on benzoxazine-epoxy alloys. Bioresour. Technol. 99(18), 8880–8886 (2008)

    Article  CAS  Google Scholar 

  • C. Jubsilp, K. Punson, T. Takeichi, S. Rimdusit, Curing kinetics of benzoxazine–epoxy copolymer investigated by non-isothermal differential scanning calorimetry. Polym. Degrad. Stab. 95(6), 918–924 (2010)

    Article  CAS  Google Scholar 

  • C. Jubsilp, B. Ramsiri, S. Rimdusit, Effects of aromatic carboxylic dianhydrides on thermomechanical properties of polybenzoxazine-dianhydride copolymers. Polym. Eng. Sci. 52(8), 1640–1648 (2012)

    Article  CAS  Google Scholar 

  • P. Khalili, X. Liu, K.Y. Tshai, C. Rudd, X. Yi, I. Kong, Development of fire retardancy of natural fiber composite encouraged by a synergy between zinc borate and ammonium polyphosphate. Compos. Part B Eng. 159, 165–172 (2019)

    Article  CAS  Google Scholar 

  • H. Kimura, A. Matsumoto, K. Hasegawa, K. Ohtsuka, A. Fukuda, Epoxy resin cured by bisphenol A based benzoxazine. J. Appl. Polym. Sci. 68(12), 1903–1910 (1998)

    Article  CAS  Google Scholar 

  • S. Kumar, S. Krishnan, S. Mohanty, S.K. Nayak, Synthesis and characterization of petroleum and biobased epoxy resins: a review. Polym. Int. 67(7), 815–839 (2018)

    Article  CAS  Google Scholar 

  • S. Kurihara, H. Idei, Y. Aoyagi, M. Kuroe, Binder resin for friction material, binder resin composition for friction material, composite material for friction material containing the same, friction material and production method thereof. U.S. Patent 8,227,390 B2, 2012

    Google Scholar 

  • H. Lee, K. Neville, Handbook of Epoxy Resins (McGraw-Hill, New York, 1967)

    Google Scholar 

  • S.V. Levchik, E.D. Weil, Thermal decomposition, combustion and flame-retardancy of epoxy resins – a review of the recent literature. Polym. Int. 53(12), 1901–1929 (2004)

    Article  CAS  Google Scholar 

  • F. Liu, Z. Wang, Y. Wang, B. Zhang, Copolymer networks from carboxyl-containing polyaryletherketone and diglycidyl ether of bisphenol-A: preparation and properties. J. Polym. Sci. B Polym. Phys. 48, 2424–2431 (2010)

    Article  CAS  Google Scholar 

  • X.Q. Liu, W. Huang, Y.H. Jiang, J. Zhu, C.Z. Zhang, Preparation of a bio-based epoxy with comparable properties to those of petroleum-based counterparts. Express Polym. Lett. 6(4), 293–298 (2012)

    Article  CAS  Google Scholar 

  • Market Study Report, LLC, The new research report on “global epoxy resin market” offers crucial insights pertaining to the key growth catalysts alongside the vast historical data of this business vertical. The document also intends to provide critical information regarding the current trends as well as other potential scenarios which are impacting the growth matrix of this industry over 2020–2026 (2020), https://www.globenewswire.com. Accessed 28 Jan 2020

  • C.D. Mauro, S. Malburet, A. Genua, A. Graillot, A. Mija, Sustainable series of new epoxidized vegetable oil-based thermosets with chemical recycling properties. Biomacromolecules 21, 3923–3935 (2020)

    Article  CAS  Google Scholar 

  • V. Mittal, R. Saini, S. Sinha, Natural fiber-mediated epoxy composites-a review. Compos. Part B Eng. 99, 425–435 (2016)

    Article  CAS  Google Scholar 

  • F. Mustaţa, I. Bicu, Multifunctional epoxy resins: synthesis and characterization. J. Appl. Polym. Sci. 77, 2430–2436 (2000)

    Article  Google Scholar 

  • S. Nikafshar, O. Zabihi, S. Hamidi, Y. Moradi, S. Barzegar, M. Ahmadi, M. Naebe, A renewable bio-based epoxy resin with improved mechanical performance that can compete with DGEBA. RSC Adv. 7, 8694–8701 (2017)

    Article  CAS  Google Scholar 

  • R.N. O’Brien, K. Hartman, Air infrared spectroscopy study of the epoxy-cellulose interface. J. Polym. Sci. Part C: Polym. Symp. 34(1), 293–301 (1971)

    Article  Google Scholar 

  • S.-J. Park, F.-L. Jin, J.-R. Lee, Synthesis and thermal properties of epoxidized vegetable oil. Macromol. Rapid Commun. 25, 724–727 (2004)

    Article  CAS  Google Scholar 

  • K.L. Pickering, M.G.A. Efendy, T.M. Le, A review of recent developments in natural fibre composites and their mechanical performance. Compos. A: Appl. Sci. Manuf. 83, 98–112 (2016)

    Article  CAS  Google Scholar 

  • E. Pollitt, Automotive composites (2011), www.globalhemp.com. Accessed 28 Jan 2021

  • M.M. Raj, L.M. Raj, P.N. Dave, Glass fiber reinforced composites of phenolic–urea–epoxy resin blends. J. Saudi Chem. Soc. 16, 241–246 (2012)

    Article  CAS  Google Scholar 

  • M. Rajaei, N.K. Kim, D. Bhattacharyya, Effects of heat-induced damage on impact performance of epoxy laminates with glass and flax fibres. Compos. Struct. 185, 515–523 (2018)

    Article  Google Scholar 

  • Research and Markets, Composites market by fiber type (glass fiber composites, carbon fiber composites, natural fiber composites), resin type (thermoset composites, thermoplastic composites), manufacturing process, end-use industry and region – global forecast to 2025 (2020), https://www.researchandmarkets.com. Accessed 28 Jan 2021

  • S. Rimdusit, H. Ishida, Development of new class of electronic packaging materials based on ternary systems of benzoxazine, epoxy, and phenolic resins. Polymer 41, 7941–7949 (2000a)

    Article  CAS  Google Scholar 

  • S. Rimdusit, H. Ishida, Synergism and multiple mechanical relaxations observed in ternary systems based on benzoxazine, epoxy, and phenolic resins. J. Polym. Sci. Part B: Polym. Phys. 38, 1687–1698 (2000b)

    Article  CAS  Google Scholar 

  • S. Rimdusit, S. Pirstpindvong, W. Tanthapanichakoon, S. Damrongsakkul, Toughening of polybenzoxazine by alloying with urethane prepolymer and flexible epoxy: a comparative study. Polym. Eng. Sci. 45, 288–296 (2005)

    Article  CAS  Google Scholar 

  • S. Rimdusit, W. Tanthapanichakoon, C. Jubsilp, High performance wood composites from highly filled polybenzoxazine. J. Appl. Polym. Sci. 99, 1240–1253 (2006)

    Article  CAS  Google Scholar 

  • K. Senthilkumar, T. Ungtrakul, M. Chandrasekar, T. Senthil Muthu Kumar, N. Rajini, S. Siengchin, et al., Performance of sisal/hemp bio-based epoxy composites under accelerated weathering. J. Polym. Environ. 29, 624–636 (2021)

    Article  CAS  Google Scholar 

  • M. Shibata, T. Ohkita, Fully biobased epoxy resin systems composed of a vanillin-derived epoxy resin and renewable phenolic hardeners. Eur. Polym. J. 92, 165–173 (2017)

    Article  CAS  Google Scholar 

  • M. Shibata, N. Teramoto, K. Makino, Preparation and properties of biocomposites composed of epoxidized soybean oil, tannic acid, and microfibrillated cellulose. J. Appl. Polym. Sci. 120, 273–278 (2011)

    Article  CAS  Google Scholar 

  • J.Y. Shieh, T.H. Ho, C.S. Wang, Synthesis and modification of trifunctional epoxy resins with polydimethylsiloxane for microelectronic encapsulation. Angew. Makromol. Chem. 245, 125–137 (1997)

    Article  CAS  Google Scholar 

  • Specific Polymers, Bio-based epoxy resins (2021), https://ecoxy.eu. Accessed 28 Jan 2021

  • V.S. Srinivasan, S. Rajendra Boopathy, D. Sangeetha, B. Vijaya Ramnath, Evaluation of mechanical and thermal properties of banana–flax based natural fibre composite. Mater. Des. 60, 620–627 (2014)

    Article  CAS  Google Scholar 

  • S. Suhaily, H.P.S. Abdul Khalil, W.O. Wan Nadirah, M. Jawaid, Bamboo based biocomposites, material, design and applications, in Material Science: Advanced Topic, ed. by Y. Mastai, (IntechOpen, London, 2013), pp. 489–517

    Google Scholar 

  • B. Szolnoki, K. Bocz, P.L. Sóti, B. Bodzay, E. Zimonyi, A. Toldy, et al., Development of natural fibre reinforced flame retarded epoxy resin composites. Polym. Degrad. Stab. 119, 68–76 (2015)

    Article  CAS  Google Scholar 

  • T. Takeichi, Y. Guo, S. Rimdusit, Performance improvement of polybenzoxazine by alloying with polyimide: effect of preparation method on the properties. Polymer 46, 4909–4916 (2005)

    Article  CAS  Google Scholar 

  • T. Takeichi, T. Kawauchi, T. Agag, Polybenzoxazine/polyimide alloys, in Handbook of Benzoxazine Resins, ed. by H. Ishida, T. Agag, (Elsevier, Amsterdam, 2011), pp. 378–387

    Chapter  Google Scholar 

  • D.J. Van de Pas, K.M. Torr, Biobased epoxy resins from deconstructed native softwood lignin. Biomacromolecules 18, 2640–2648 (2017)

    Article  CAS  Google Scholar 

  • D.W. Van Krevelen, P.J. Hoftyzer, Properties of Polymer (Elsevier, New York, 1976)

    Google Scholar 

  • N. Venkateshwaran, A. Elaya Perumal, D. Arunsundaranayagam, Fiber surface treatment and its effect on mechanical and visco-elastic behaviour of banana/epoxy composite. Mater. Des. 47, 151–159 (2013)

    Article  CAS  Google Scholar 

  • F.S. Vom Saal, C. Hughes, An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment. Environ. Health Perspect. 113, 926–933 (2005)

    Article  CAS  Google Scholar 

  • S. Wang, S. Ma, C. Xu, Y. Liu, J. Dai, Z. Wang, X. Liu, J. Chen, X. Shen, J. Wei, J. Zhu, Vanillin-derived high-performance flame retardant epoxy resins: facile synthesis and properties. Macromolecules 50, 1892–1901 (2017)

    Article  CAS  Google Scholar 

  • M. Xie, Z. Wang, Synthesis and properties of a novel cycloaliphatic epoxide. Macromol. Rapid Commun. 22, 620–623 (2001)

    Article  CAS  Google Scholar 

  • X. Xin, C.G. Xu, L.F. Qing, Friction properties of sisal fibre reinforced resin brake composites. Wear 262, 736–741 (2007)

    Article  CAS  Google Scholar 

  • K. Yorseng, S.M. Rangappa, H. Pulikkalparambil, S. Siengchin, J. Parameswaranpillai, Accelerated weathering studies of kenaf/sisal fiber fabric reinforced fully biobased hybrid bioepoxy composites for semi-structural applications: morphology, thermo-mechanical, water absorption behavior and surface hydrophobicity. Constr. Build. Mater. 235, 117464 (2020)

    Article  CAS  Google Scholar 

  • S. Zhao, M.M. Abu-Omar, Synthesis of renewable thermoset polymers through successive lignin modification using lignin-derived phenols. ACS Sustain. Chem. Eng. 5, 5059–5066 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the funding and support of the following: Basic Research Fund (Blue Sky) of the National Research Council of Thailand; the 90th Anniversary of Chulalongkorn University Scholarship; the Ratchadaphiseksomphot Endowment Fund of Chulalongkorn University; the National Nanotechnology Center (NANOTEC); the NSTDA; the Ministry of Science and Technology, Thailand; the Office of National Higher Education Science Research and Innovation Policy Council (NXPO); Program Management Unit Competitiveness (PMU C) (grant number C16F630128); and the Thailand Science Research and Innovation Fund (grant number 032/2564).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarawut Rimdusit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jubsilp, C., Mora, P., Rimdusit, S. (2022). Thermal Stability and Flame Retardancy of Epoxy/Natural Fiber Composites. In: Mavinkere Rangappa, S., Parameswaranpillai, J., Siengchin, S., Thomas, S. (eds) Handbook of Epoxy/Fiber Composites . Springer, Singapore. https://doi.org/10.1007/978-981-19-3603-6_26

Download citation

Publish with us

Policies and ethics