Skip to main content

Radiation Dosimetry

  • Living reference work entry
  • First Online:
Handbook of Metrology and Applications

Abstract

Radiation dosimetry addresses determination of energy deposited in a given medium quantitatively by either calculations or measurements. The objective of radiation dosimetry is to determine absorbed dose in a medium using a detection device, i.e., a radiation detector. Toward this goal, this chapter presents general principles of radiation dosimetry. Interaction coefficients and quantities related to radiation dosimetry of ionizing radiation are included. The chapter also presents various cavity theories in detail that relate absorbed dose measured in one medium to other. Principles of radiation dose measurements involving various dosimeters are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • AAPM Task Group 21 Radiation Therapy Committee (1983) A protocol for the determination of absorbed dose from high-energy photon and electron beams. Med Phys 10:741–771

    Article  Google Scholar 

  • Almond PR, McCray K (1970) The energy response of LiF, CaF2 and Li2B4O7: Mn to high energy radiations. Phys Med Biol 15:335–342

    Article  Google Scholar 

  • Attix FH (1986) Introduction to radiological physics and radiation dosimetry new. Wiley, New York

    Book  Google Scholar 

  • Attix FH, DeLa LV, Ritz VH (1958) Cavity ionization as a function of wall material. J Res Natl Bur Stand 60:235–243

    Article  Google Scholar 

  • Borg J, Kawrakow I, Rogers DWO, Seuntjens JP (2000) Monte Carlo study of correction factors for Spencer–Attix cavity theory at photon energies at or above 100 keV. Med Phys 27:1804–1813

    Article  Google Scholar 

  • Bouchard H (2012) A theoretical re-examination of Spencer-Attix cavity theory. Phys Med Biol 57:3333–3358

    Article  Google Scholar 

  • Bouchard H, Seuntjens JP, Carrier JJ, Kawrakow I (2009) Ionization chamber gradient effects in nonstandard beams. Med Phys 36:4654–4663

    Article  Google Scholar 

  • Bragg WH (1910) Studies in radioactivity. Macmillan, New York

    MATH  Google Scholar 

  • Burlin TE (1966) A general theory of cavity ionisation. Br J Radiol 39:727–734

    Article  Google Scholar 

  • Burlin TE (1968) Cavity – chamber theory. In: Attix FH, Roesch WC (eds) Radiation dosimetry. Academic Press, New York/London

    Google Scholar 

  • Burlin TE, Snelling RJ (1969) The application of general cavity theory to the dosimetry of electron fields. In: Proceedings of the 2nd symposium on micro dosimetry, pp 455–473

    Google Scholar 

  • DeWerd LA, Bartol LJ, Davis SD (2009) Thermoluminescence dosimetry in clinical dosimetry measurements in radiotherapy. Medical Physics Publishing, Madison. Available from http://www.aapm.org/meetings/09SS/documents/2.pdf

    Google Scholar 

  • Dutreix JJ, Bernard M (1965) Etude du flux des électrons secondaires et de leur rétrodiffusion. Biophysik 2:179–192

    Google Scholar 

  • Glossary of Terms and Definitions of Basic Quantities (2020) J ICRU 20:9–12

    Article  Google Scholar 

  • Gray LH (1929) The absorption of penetrating radiation. Proc R Soc Lond A122:647–668

    ADS  MATH  Google Scholar 

  • Gray LH (1936) An ionization method for the absolute measurement of g-ray energy. Proc R Soc Lond A156:578–596

    ADS  Google Scholar 

  • Haider JA, Skarsgardz LD, Lamz GKY (1997) A general cavity theory. Phys Med Biol 42:491–500

    Article  Google Scholar 

  • Horowitz YS, Dubi A (1982) Proposed modifications of Burlin’s cavity theory for photons. Phys Med Biol 27:867–872

    Article  Google Scholar 

  • Horowitz YS, Moscovitch M, Dubi A (1983) Modified general cavity theory applied to the calculation of gamma dose in Co-60 thermoluminescence dosimetry. Phys Med Biol 28:829–840

    Article  Google Scholar 

  • IAEA (1987) Absorbed dose determination in photon and electron beams: an international code of practice technical report TRS-277. IAEA, Vienna

    Google Scholar 

  • International Commission on Radiation Units and Measurement (ICRU) (1984) Radiation Dosimetry: Electron Beams with Energies between 1 and 50 MeV, ICRU Report 35. ICRU, Bethesda

    Google Scholar 

  • International Commission on Radiation Units and Measurements (ICRU) (1962) Radiation quantities and units, ICRU Report 10a. ICRU, Bethesda

    Google Scholar 

  • International Commission on Radiation Units and Measurements (ICRU) (1993) Quantities and units in radiation protection dosimetry, ICRU Report 51. ICRU, Bethesda

    Google Scholar 

  • International Commission on Radiation Units and Measurements (ICRU) (1998) Quantities and units for ionising radiation, ICRU Report 60. ICRU, Bethesda

    Google Scholar 

  • International Commission on Radiation Units and Measurements (ICRU) (2011) Fundamental quantities and units for ionising radiation (revised): ICRU Report 85. ICRU, Bethesda

    Google Scholar 

  • Janssens A (1983) A proposed modification of Burlin’s general cavity theory for photons. Phys Med Biol 29:455–456

    Google Scholar 

  • Kawrakow I (2000) Accurate condensed history Monte Carlo simulation of electron transport: II. Application to ion chamber response simulations. Med Phys 27:499–513

    Article  Google Scholar 

  • Kearsley E (1984) A new general cavity theory. Phys Med Biol 29:1179–1187

    Article  Google Scholar 

  • Kim YK, Rudd ME (1994) Binary-encounter-dipole model for electron-impact ionization. Phys Rev A 50:3954–3967

    Article  ADS  Google Scholar 

  • La Russa DJ, Rogers DWO (2009) Accuracy of Spencer–Attix cavity theory and calculations of fluence correction factors for the air kerma. Med Phys 36:4173–4183

    Article  Google Scholar 

  • Ma CM, Nahum AE (1991) Bragg–Gray theory and ion chamber dosimetry for photon beams. Phys Med Biol 36:413–428

    Article  Google Scholar 

  • McLaughlin WL, Chen YD, Soares CG, Miller A, Van DG, Lewis DF (1991) Sensitometry of the response of a new radiochromic film dosimeter to gamma radiation and electron beams. Nucl Instrum Methods Phys Res 35:165–172

    Article  ADS  Google Scholar 

  • Nahum E (1978) Water/air stopping-power ratios for megavoltage photon and electron beams. Phys Med Biol 23:24–38

    Article  Google Scholar 

  • Palani Selvam T, Shrivastava V, Bakshi AK (2021) Monte Carlo calculation of Spencer-Attix and Bragg-Gray stopping-power ratios of tissue-to-air for ISO reference beta sources – an EGSnrc study. JINST 16:P03006

    Article  ADS  Google Scholar 

  • Rogers DWO (1992) In: Purdy J (ed) Advances in radiation oncology physics, Medical physics monograph no. 19. AAPM, New York, pp 181–223

    Google Scholar 

  • Rogers DWO (2009) General characteristics of radiation dosimeters and a terminology to describe them in clinical dosimetry measurements in radiotherapy. Medical Physics Publishing, Madison

    Google Scholar 

  • Rogers DWO, Kawrakow I (2003) Monte Carlo calculated correction factors for primary standards of air kerma. Med Phys 30:521–532

    Article  Google Scholar 

  • Sempau J, Andreo P, Aldana J, Mazurier J, Salvat F (2004) Electron beam quality correction factors for plane-parallel ionization chambers: Monte Carlo calculations using the PENELOPE system. Phys Med Biol 49:4427–4444

    Article  Google Scholar 

  • Spencer LV, Attix FH (1955) A theory of cavity ionization. Radiat Res 3:239–254

    Article  ADS  Google Scholar 

  • Wang LL, Rogers DWO (2007) Monte Carlo study of Si diode response in electron beams. Med Phys 34:1734–1742

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhalaxmi Mishra .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mishra, S., Selvam, T.P. (2023). Radiation Dosimetry. In: Aswal, D.K., Yadav, S., Takatsuji, T., Rachakonda, P., Kumar, H. (eds) Handbook of Metrology and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-19-1550-5_116-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1550-5_116-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1550-5

  • Online ISBN: 978-981-19-1550-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics