Skip to main content

Peptide-Based Biopolymers in Biomedicine and Biotechnology

  • Reference work entry
  • First Online:
Handbook of Biopolymers

Abstract

The emergence of peptide- and polypeptide-based materials in the field of biomedicine and biotechnology is gaining importance due to its unique physical, chemical, and biological properties like biocompatibility, tunability, ease of synthesis and removal from body, and lack of toxicity. These biocompatible materials are the most suitable for biomedical applications in vivo. The clear understanding of the protein-structure function and their self-assembling mechanism can pave way to obtaining molecular models suitable for different biomedical applications. This chapter aims to focus on the basic properties, synthesis techniques, design principles, and biomedical applications of peptide-based biopolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • P. Bertsch et al., Injectable biocompatible hydrogels from cellulose nanocrystals for locally targeted sustained drug release. ACS Appl. Mater. Interfaces 11(42), 38578–38585 (2019)

    Article  CAS  Google Scholar 

  • H. Betre, L.A. Setton, D.E. Meyer, A. Chilkoti, Characterization of a genetically engineered elastin-like polypeptide for cartilaginous tissue repair. Biomacromolecules 3(5), 910–916 (2002)

    Article  CAS  Google Scholar 

  • D. Bhadra, S. Bhadra, N.K. Jain, PEGylated peptide dendrimeric carriers for the delivery of antimalarial drug chloroquine phosphate. Pharm. Res. 23(3), 623–633 (2006)

    Article  CAS  Google Scholar 

  • J. Cappello et al., Genetic engineering of structural protein polymers. Biotechnol. Prog. 6(3), 198–202 (1990)

    Article  CAS  Google Scholar 

  • A. Chilkoti, T. Christensen, J. Andrew MacKay, Stimulus responsive elastin biopolymers: applications in medicine and biotechnology. Curr. Opin. Chem. Biol. 10(6), 652–657 (2006)

    Article  CAS  Google Scholar 

  • D. Chow et al., Peptide-based biopolymers in biomedicine and biotechnology. Mater. Sci. Eng. R. Rep. 62(4), 125–155 (2008)

    Article  Google Scholar 

  • M.-S.M. Cristina et al., A novel peptide-based electrochemical biosensor for the determination of a metastasis-linked protease in pancreatic cancer cells. Anal. Bioanal. Chem. 412(24), 6177–6188 (2020)

    Article  Google Scholar 

  • S. Das, H. Horo, L. M. Kundu, Biopolymers and peptide based materials for targeted antitumor drug delivery: an overview. Novel Approaches in Drug Designing & Development, Juniper Publishers Inc. 4(4), 98–101 (2019)

    Google Scholar 

  • A. Duro-Castano, I. Conejos-Sánchez, M.J. Vicent, Peptide-based polymer therapeutics. Polymers 6(2), 515–551 (2014)

    Article  Google Scholar 

  • A.O. Elzoghby, W.M. Samy, N.A. Elgindy, Protein-based nanocarriers as promising drug and gene delivery systems. J. Control. Release 161(1), 38–49 (2012). https://doi.org/10.1016/j.jconrel.2012.04.036

    Article  CAS  Google Scholar 

  • C.J. Er, T. Coes, K. Langer, H.V.O.N. Briesen, Gelatin nanoparticles by two step desolvation a new preparation method, surface modifications and cell uptake. 1978, 187–193 (2000)

    Google Scholar 

  • W. Frey, D.E. Meyer, A. Chilkoti, Dynamic addressing of a surface pattern by a stimuli-responsive fusion protein. Adv. Mater. 15(3), 248–251 (2003a)

    Article  CAS  Google Scholar 

  • W. Frey, D.E. Meyer, A. Chilkoti, Thermodynamically reversible addressing of a stimuli responsive fusion protein onto a patterned surface template. Langmuir 19(5), 1641–1653 (2003b)

    Article  CAS  Google Scholar 

  • D. Gao et al., Fabrication of antibody arrays using thermally responsive elastin fusion proteins. J. Am. Chem. Soc. 128(3), 676–677 (2006)

    Article  CAS  Google Scholar 

  • I. Ghosh, J. Chmielewski, Peptide self-assembly as a model of proteins in the pre-genomic world. Curr. Opin. Chem. Biol. 8(6), 640–644 (2004)

    Article  CAS  Google Scholar 

  • T.R. Hoare, D.S. Kohane, Hydrogels in drug delivery: progress and challenges. Polymer 49(8), 1993–2007 (2008)

    Article  CAS  Google Scholar 

  • E.E. Hood, J.M. Jilka, Plant-based production of xenogenic proteins. Curr. Opin. Biotechnol. 10(4), 382–386 (1999)

    Article  CAS  Google Scholar 

  • K. Hosoyama et al., Peptide-based functional biomaterials for soft-tissue repair. Front. Bioeng. Biotechnol. 7, 205 (2019)

    Article  Google Scholar 

  • A. Karimzadeh, M. Hasanzadeh, N. Shadjou, M. de la Guardia, Peptide based biosensors. TrAC Trends Anal. Chem. 107, 1–20 (2018). https://doi.org/10.1016/j.trac.2018.07.018

    Article  CAS  Google Scholar 

  • B.B. Kou et al., DNA enzyme-decorated DNA nanoladders as enhancer for peptide cleavage-based electrochemical biosensor. ACS Appl. Mater. Interfaces 8(35), 22869–22874 (2016)

    Article  CAS  Google Scholar 

  • T. Kowalczyk, K. Hnatuszko-Konka, A. Gerszberg, A.K. Kononowicz, Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers. World J. Microbiol. Biotechnol. 30(8), 2141–2152 (2014)

    Article  CAS  Google Scholar 

  • J.L. Lau, M.K. Dunn, Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg. Med. Chem. 26(10), 2700–2707 (2018). https://doi.org/10.1016/j.bmc.2017.06.052

    Article  CAS  Google Scholar 

  • J. Logie et al., Preclinical evaluation of Taxane-binding peptide-modified polymeric micelles loaded with docetaxel in an Orthotopic breast cancer mouse model. Biomaterials 123, 39–47 (2017). https://doi.org/10.1016/j.biomaterials.2017.01.026

    Article  CAS  Google Scholar 

  • R.B. Merrifield, Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85(14), 2149–2154 (1963)

    Article  CAS  Google Scholar 

  • R.B. Merrifield, Solid-phase peptide synthesis. Adv. Enzymol. Relat. Areas Mol. Biol. 32, 221–296 (1969)

    CAS  Google Scholar 

  • S. Nagarajan et al., Overview of protein-based biopolymers for biomedical application. Macromol. Chem. Phys. 220(14), 1–16 (2019)

    Article  Google Scholar 

  • M. Okamoto, B. John, Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog. Polym. Sci. 38(10–11), 1487–1503 (2013). https://doi.org/10.1016/j.progpolymsci.2013.06.001

    Article  CAS  Google Scholar 

  • A. Saxena, H.B. Kumar Sachin, Bohidar, and Anita Kamra Verma., Effect of molecular weight heterogeneity on drug encapsulation efficiency of gelatin nano-particles. Colloids Surf. B Biointerfaces 45(1), 42–48 (2005)

    Article  CAS  Google Scholar 

  • M.W. Tibbitt, J.E. Dahlman, R. Langer, Emerging frontiers in drug delivery. J. Am. Chem. Soc. 138(3), 704–717 (2016)

    Article  CAS  Google Scholar 

  • M. Tsuda, Y. Suzuki, Faithful transcription initiation of fibroin gene in a homologous cell-free system reveals an enhancing effect of 5′ flanking sequence far upstream. Cell 27(1 Part 2), 175–182 (1981)

    Article  CAS  Google Scholar 

  • D.W. Urry, Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J. Phys. Chem. B 101(51), 11007–11028 (1997)

    Article  CAS  Google Scholar 

  • A. Varanko, S. Saha, A. Chilkoti, Recent trends in protein and peptide-based biomaterials for advanced drug delivery. Adv. Drug Deliv. Rev. 156, 133–187 (2020). https://doi.org/10.1016/j.addr.2020.08.008

    Article  CAS  Google Scholar 

  • K. Varma, S. Gopi, Biopolymers and their Industrial Applications Biopolymers and Their Role in Medicinal and Pharmaceutical Applications (Elsevier, 2021). https://doi.org/10.1016/B978-0-12-819240-5.00007-9

    Book  Google Scholar 

  • R.T. Wang, X.Y. Zhi, S.Y. Yao, Y. Zhang, LFC131 peptide-conjugated polymeric nanoparticles for the effective delivery of docetaxel in CXCR4 overexpressed lung cancer cells. Colloids Surf. B: Biointerfaces 133, 43–50 (2015). https://doi.org/10.1016/j.colsurfb.2015.05.030

    Article  CAS  Google Scholar 

  • M.A. Ward, T.K. Georgiou, Thermoresponsive polymers for biomedical applications. Polymers 3(3), 1215–1242 (2011)

    Article  CAS  Google Scholar 

  • S.G. Wise et al., Tropoelastin: a versatile, bioactive assembly module. Acta Biomater. 10(4), 1532–1541 (2014). https://doi.org/10.1016/j.actbio.2013.08.003

    Article  CAS  Google Scholar 

  • S. Zhang, Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21(10), 1171–1178 (2003)

    Article  CAS  Google Scholar 

  • Y. Zhao, S. Zhang, D.W. Chan, M. He, Prediction signaling transduction pathways of cancer-related apoptosis protein Par-4. Zhongshan Daxue Xuebao/Acta Scientiarum Natralium Universitatis Sunyatseni 49(6), 83–88 (2010)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Varghese, R.T., Chirayil, C.J., Thomas, S. (2023). Peptide-Based Biopolymers in Biomedicine and Biotechnology. In: Thomas, S., AR, A., Jose Chirayil, C., Thomas, B. (eds) Handbook of Biopolymers . Springer, Singapore. https://doi.org/10.1007/978-981-19-0710-4_41

Download citation

Publish with us

Policies and ethics