Skip to main content

Effect of Mechanical Alloying in Polymer/Ceramic Composites

  • Reference work entry
  • First Online:
Handbook of Consumer Nanoproducts
  • 1106 Accesses

Abstract

The chapter presents ceramics-polymers composites using mechanical alloying (MA). Ceramics are classified as inorganic and nonmetallic materials that are essential to our daily lifestyle. Many ceramics, both oxides and non-oxides, are currently produced from polymer precursors. Ceramics generally have an amorphous or a nanocrystalline structure and consist of excellent structural such as stability, oxidation resistance, creep resistance, high-temperature mechanical, and good dielectric properties. Nevertheless, they have a fundamental weakness in that they are easily fractured and require high-temperature processes for the fabrication of integrated substrates. Composites are now one of the most important classes of engineered materials, because they offer several outstanding properties as compared to conventional materials. Composites are fast-developing segment in the polymer industry; composites filled with materials having at least one dimension in the micro- and nanometer-size range such as nanofillers, nanoclays, or nanotubes and ceramics represent a step change in technology in the composite area. MA is a solid-state powder processing technique involving repeated welding, fracturing, and re-welding of powder particles in a high-energy ball mill. This technique was originally developed to produce oxide dispersion strengthened (ODS) nickel and iron-base super alloys for aerospace applications. MA has been substantiated to be capable of synthesizing a variety of equilibrium and nonequilibrium phases, including nanocrystalline and amorphous materials. Recently MA has been demonstrated to be a most versatile and economical process for synthesis of nanocrystalline materials, due to its simplicity, low cost, and ability to produce large amount of material. The chapter focuses on the preparation processes; general microstructures; mechanical, chemical, electrical, and optical properties; and potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang RM, Zheng SR, Zheng YG (2011) Polymer matrix composites and technology. Elsevier

    Book  Google Scholar 

  2. Thomas SEA (2012) Polymer composites. Trans R Soc Lond 1805(95):65–87

    Google Scholar 

  3. Fried J (2014) Polymer science and technology. Pearson Education

    Google Scholar 

  4. Rayson M (1983) Encyclopedia of composite materials and composites. Wiley, New York

    Google Scholar 

  5. Mallick P (2007) Fiber-reinforced composites: materials, manufacturing, and design. CRC Press

    Book  Google Scholar 

  6. Park SJ, Seo MK (2011) Interface science and composites. Academic Press

    Google Scholar 

  7. Clyne T (1996) Interfacial effects in particulate, fibrous and layered composite materials. Trans Tech

    Google Scholar 

  8. N. Council (2005) High-performance structural fibers for advanced polymer matrix composites. National Academies Press

    Google Scholar 

  9. Jawaid M, Khan MM (2018) Polymer-based nanocomposites for energy and environmental applications. Woodhead Publishing

    Google Scholar 

  10. Strong AB (1997) Materials and manufacturing processes, vol 12

    Google Scholar 

  11. Kingery W (1976) Introduction to ceramics, 2nd edn

    Google Scholar 

  12. Ichinose N et al (1987) Introduction to fine ceramics: applications in engineering, Chichester/New York, Wiley

    Google Scholar 

  13. Singer F (2013) Industrial ceramics. Springer

    Google Scholar 

  14. Ramaseshan R, Sundarrajan S, Jose R, Ramakrishna S (2007) Nanostructured ceramics by electrospinning. J Appl Phys 102(11):7

    Article  CAS  Google Scholar 

  15. Veniale F (1990) “Ceramic Applications of Clays and Clay Minerals. State-of-the-Art and Perspectives. in Ceramics Today- Tomorrow's Ceramics. Proc. 7 th Int. Meeting on Modern Ceramics Technologies(7 th CIMTEC- World Ceramics Congress).,” in Part A Montecatini Terme, 24–30 June

    Google Scholar 

  16. Feest E (1986) Metal matrix composites for industrial application. Mater Des 7(2):58–64

    Article  Google Scholar 

  17. Bunsell AR (2005) Fundamentals of fibre reinforced composite materials. CRC Press

    Book  Google Scholar 

  18. Mohanty P, Mohapatra S, Mohapatra J, Singh SK, Padhi P, Mishra DK (2016) Utilization of chemically synthesized fine powders of SiC/Al2O3 composites for sintering. Mater Manuf Processes 31(10):1311–1317

    Article  CAS  Google Scholar 

  19. Niihara K (1991) New design concept of structural ceramics. J Ceram Soc Jpn 99(1154):974–982

    Article  CAS  Google Scholar 

  20. Clauss B, Schawaller D (2006) Modern aspects of ceramic fiber development. In: Advances in science and technology. Trans Tech

    Google Scholar 

  21. Zhen Wang; Shaoming Dong; Ping He; Le Gao; Haijun Zhou; Jinshan Yang; Dongliang Jiang, “Fabrication of carbon fiber reinforced ceramic matrix composites with improved oxidation resistance using boron as active filler,” J Eur Ceram Soc, vol. 30(3), pp. 787–792, 2010

    Google Scholar 

  22. Laurent C, Demai JJ, Rousset A, Kannan KR, Rao CNR (1994) Fe–Cr/Al 2 O 3 metal-ceramic composites: Nature and size of the metal particles formed during hydrogen reduction. J Mater Res 9(1):229–235

    Article  CAS  Google Scholar 

  23. Balasubramanian M (2013) Composite materials and processing. CRC press

    Book  Google Scholar 

  24. Zhang D (2004) Processing of advanced materials using high-energy mechanical milling. Prog Mater Sci 49(3–4):537–560

    Article  CAS  Google Scholar 

  25. Koch CC, Whittenberger JD (1996) Mechanical milling/alloying of intermetallics. Intermetallics 4(5):339–355

    Article  CAS  Google Scholar 

  26. Benjamin J (1970) Dispersion strengthened superalloys by mechanical alloying. Metall Trans 1(10):2943–2951

    Article  CAS  Google Scholar 

  27. Budin S, Almanar IP, Kamaruddin S, Maideen NC, Zulkifli AH (2009) Modeling of vial and ball motions for an effective mechanical milling process. J Mater Process Technol 209(9):4312–4319

    Article  Google Scholar 

  28. Gupta RK, Murty BS, Birbilis N (2017) High-energy Ball Milling parameters in production of nanocrystalline Al alloys. In: An overview of high-energy Ball Milled nanocrystalline aluminum alloys. Springer, pp 7–28

    Chapter  Google Scholar 

  29. Delogu F, Gorrasi G, Sorrentino A (2017) Fabrication of polymer nanocomposites via ball milling: present status and future perspectives. Progress Mater Sci 86:75–126

    Article  CAS  Google Scholar 

  30. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1–2):1–184

    Article  CAS  Google Scholar 

  31. Baláž P, Rojac T et al (2013) Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42(18):7571–7637

    Article  CAS  Google Scholar 

  32. Fernandez-Bertran J (1999) Mechanochemistry: an overview. Pure Appl Chem 71(4):581–586

    Article  CAS  Google Scholar 

  33. Hamed MOM, Alduaij OK (2016) Green and effective one-pot synthesis of 5-Oxo-pyrazolidine and 5-Amino-2, 3-dihydro-1H-Pyrazole derivatives through Ball Milling under catalyst-free and solvent-free conditions. Asian J Chem 28(3):543

    Article  CAS  Google Scholar 

  34. Rodriguez B, Bruckmann A, Rantanen T, Bolm C (2007) Solvent-free carbon-carbon bond formations in ball mills. Adv Synth Catal 349(14–15):2213–2233

    Article  CAS  Google Scholar 

  35. Lin IJ, Nadiv S (1979) Review of the phase transformation and synthesis of inorganic solids obtained by mechanical treatment (mechanochemical reactions). Mater Sci Eng 39(2):193–209

    Article  CAS  Google Scholar 

  36. Gupta RK, Murty BS, Birbilis N (2017) An overview of high-energy Ball Milled nanocrystalline. In: Aluminum alloys. Springer

    Google Scholar 

  37. Mio H, Kano J, Saito F (2004) Scale-up method of planetary ball mill. Chem Eng Sci 59(24):5909–5916

    Article  CAS  Google Scholar 

  38. Tadayyon G, Zebarjad SM, Sajjadi SA (2011) Effect of mechanical milling on the thermal behavior of polyethylene reinforced with nano-sized alumina. Int Polym Process 26(4):354–360

    Article  CAS  Google Scholar 

  39. Huang YL, Xue DS, Zhou PH, Ma Y, Li FS (2003) α-Fe–Al2O3 nanocomposites prepared by sol–gel method. Mater Sci Eng 359(1–2):332–337

    Article  CAS  Google Scholar 

  40. Yang W, Xu J, Niu L, Ma B, Kang C (2019) Preparation and characterization of nano-Sb2O3/poly (butylene terephthalate) composite powders based on high-energy ball milling. J Vinyl Addit Technol 25(1):91–97

    Article  CAS  Google Scholar 

  41. Abareshi M, Zebarjad SM, Goharshadi EK (2009) Crystallinity behavior of MDPE-clay nanocomposites fabricated using ball milling method. J Comp Mater 43(23):2821–2830

    Article  CAS  Google Scholar 

  42. Shao W, Wang Q, Ma H (2005) Study of polypropylene/montmorillonite nanocomposites prepared by solid-state shear compounding (S3C) using pan-mill equipment: the morphology of montmorillonite and thermal properties of the nanocomposites. Polym Int 54(2):336–341

    Article  CAS  Google Scholar 

  43. Vertuccio L, Gorrasi G, Sorrentino A, Vittoria V (2009) Nano clay reinforced PCL/starch blends obtained by high energy ball milling. Carbohydr Polym 75(1):172–179

    Article  CAS  Google Scholar 

  44. Perrin-Sarazin F, Sepehr M, Bouaricha S, Denault J (2009) Potential of ball milling to improve clay dispersion in nanocomposites. Polym Eng Sci 49(4):651–665

    Article  CAS  Google Scholar 

  45. Koo CM, Ham HT, Choi MH, Kim SO, Chung IJ (2003) Characteristics of polyvinylpyrrolidone-layered silicate nanocomposites prepared by attrition ball milling. Polymer 44(3):681–689

    Article  CAS  Google Scholar 

  46. Li C, Zhang W, Zhao B, Liang M, Lu C (2010) Preparation, characterization and thermal behavior of poly (vinyl alcohol)/organic montmorillonite nanocomposites through solid-state shear pan-milling. J Therm Anal Calorim 103(1):205–212

    Article  CAS  Google Scholar 

  47. Sorrentino A, Gorrasi G, Tortora M, Vittoria V, Costantino U, Marmottini F, Padella F (2005) Incorporation of Mg–Al hydrotalcite into a biodegradable Poly (ε-caprolactone) by high energy ball milling. Polymer 46(5):1601–1608

    Article  CAS  Google Scholar 

  48. Moreira FK, Marconcini JM, Mattoso LH (2012) Solid state ball milling as a green strategy to improve the dispersion of cellulose nanowhiskers in starch-based thermoplastic matrices. Cellulose 19(6):2049–2056

    Article  CAS  Google Scholar 

  49. Jung J, Kim J, Uhm YR, Jeon J-K, Lee S, Lee HM, Rhee CK (2010) Preparations and thermal properties of micro-and nano-BN dispersed HDPE composites. Thermochim Acta 499(1–2):8–14

    Article  CAS  Google Scholar 

  50. Olmos D, Rodríguez-Gutiérrez E, González-Benito J (2012) Polymer structure and morphology of low density polyethylene filled with silica nanoparticles. Polym Compos 33(11):2009–2021

    Article  CAS  Google Scholar 

  51. Zhu YG, Li ZQ, Zhang D, Tanimoto T (2006) PET/SiO2 nanocomposites prepared by cryomilling. J Polym Sci B Polym Phys 44(8):1161–1167

    Article  CAS  Google Scholar 

  52. Lu D, Pan SW (2006) Effects of ball milling dispersion of nano-SiOx particles on impact strength and crystallization behavior of nano-SiOx–poly (phenylene sulfide) nanocomposites. Polym Eng Sci 46(6):820–825

    Article  CAS  Google Scholar 

  53. Castrillo PD, Olmos D, Amador DR, González-Benito J (2007) Real dispersion of isolated fumed silica nanoparticles in highly filled PMMA prepared by high energy ball milling. J Colloid Interface Sci 308(2):318–324

    Article  CAS  Google Scholar 

  54. Gonzalez-Benito J, Gonzalez-Gaitano G (2008) Interfacial conformations and molecular structure of PMMA in PMMA/silica nanocomposites. Effect of high-energy ball milling. Macromolecules 41(13):4777–4785

    Article  CAS  Google Scholar 

  55. Pantaleon R, Gonzalez-Benito J (2014) Structure and thermostability of PMMA in PMMA/silica nanocomposites: effect of high-energy ball milling and the amount of the nanofiller. Polym Compos 35(8):1507–1515

    CAS  Google Scholar 

  56. Hedayati M, Salehi M, Bagheri R, Panjepour M, Maghzian A (2011) Ball milling preparation and characterization of poly (ether ether ketone)/surface modified silica nanocomposite. Powder Technol 207(1–3):296–303

    Article  CAS  Google Scholar 

  57. Zhang G, Schlarb AK, Tria S, Elkedim O (2008) Tensile and tribological behaviors of PEEK/nano-SiO2 composites compounded using a ball milling technique. Compos Sci Technol 68(15–16):3073–3080

    Article  CAS  Google Scholar 

  58. Olmos D, González-Gaitano G, González-Benito J (2015) Effect of a silica nanofiller on the structure, dynamics and thermostability of LDPE in LDPE/silica nanocomposites. RSC Adv 5(44):34979–34984

    Article  CAS  Google Scholar 

  59. Yang K, Yang Q, Li G, Sun Y, Feng D (2006) Mechanical properties and morphologies of polypropylene with different sizes of calcium carbonate particles. Polym Compos 27(4):443–450

    Article  CAS  Google Scholar 

  60. Singh V, Tiwari AN, Kulkarni AR (1996) Electrical behaviour of attritor processed Al/PMMA composites. Mater Sci Eng 41(3):310–313

    Article  Google Scholar 

  61. Huang H-C, Huang S-P, Hsieh T-E, Chen C-H (2012) Characterizations of UV-curable montmorillonite/epoxy nanocomposites prepared by a hybrid of chemical dispersion and planetary mechanical milling process. J Appl Polym Sci 123(6):3199–3207

    Article  CAS  Google Scholar 

  62. Lu H-j, Liang G-Z, Ma X-y, Zhang B-y, Chen X-b (2004) Epoxy/clay nanocomposites: further exfoliation of newly modified clay induced by shearing force of ball milling. Polym Int 53(10):1545–1553

    Article  CAS  Google Scholar 

  63. Zhu YG, Li ZQ, Zhang D, Tanimoto T (2006) Abs/iron nanocomposites prepared by cryomilling. J Appl Polym Sci 99(2):501–505

    Article  CAS  Google Scholar 

  64. Zhu Y, Li Z, Zhang D (2008) Electromagnetic nanocomposites prepared by cryomilling of polyaniline and Fe nanoparticles. J Polym Sci B Polym Phys 46(15):1571–1576

    Article  CAS  Google Scholar 

  65. Lu C, Wang Q (2004) Preparation of ultrafine polypropylene/iron composite powders through pan-milling. J Mater Process Technol 145(3):336–344

    Article  CAS  Google Scholar 

  66. Bao L, Jiang JS (2005) Evolution of microstructure and phase of Fe3O4 in system of Fe3O4–polyaniline during high-energy ball milling. Phys B Condens Matter 182–187(1–4):367

    Google Scholar 

  67. Serra-Gómez R, González-Gaitano G, González-Benito J (2012) Composites based on EVA and barium titanate submicrometric particles: preparation by high-energy ball milling and characterization. Polym Compos 33(9):1549–1556

    Article  CAS  Google Scholar 

  68. Rashidi S, Ataie A (2016) Structural and magnetic characteristics of PVA/CoFe2O4 nano-composites prepared via mechanical alloying method. Mater Res Bull 80:321–328

    Article  CAS  Google Scholar 

  69. Vadivel M, Babu RR, Ramamurthi K, Arivanandhan M (2017) Enhanced dielectric and magnetic properties of polystyrene added CoFe2O4 magnetic nanoparticles. J Phys Chem Solids 102:1–11

    Article  CAS  Google Scholar 

  70. Nathani H, Gubbala S, Misra RDK (2004) Magnetic behavior of nickel ferrite–polyethylene nanocomposites synthesized by mechanical milling process. Mater Sci Eng B 95–100(2–3):111

    Google Scholar 

  71. Rashidi S, Ataie A (2015) A comparison study of polymer/cobalt ferrite nano-composites synthesized by mechanical alloying route. J Ultraf Grained Nanostruct Mater 59–67(2):48

    Google Scholar 

  72. Azhdar B, Stenberg B, Kari L (2008) Polymer–nanofiller prepared by high-energy ball milling and high velocity cold compaction. Polym Compos 29(3):22–261

    Article  CAS  Google Scholar 

  73. Gotoh Y, Ohkoshi Y, Nagura M, Akamatsu K (2000) Preparation and structure of copper nanoparticle/poly (acrylic acid) composite films. J Mater Chem 10(11):2548–2552

    Article  CAS  Google Scholar 

  74. Raju P, Murthy SRK (2013) Preparation and characterization of Ni–Zn ferrite+ polymer nanocomposites using mechanical milling method. Appl Nanosci 3(6):469–475

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Khumalo .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Khumalo, M.V., Khoathane, M.C. (2022). Effect of Mechanical Alloying in Polymer/Ceramic Composites. In: Handbook of Consumer Nanoproducts. Springer, Singapore. https://doi.org/10.1007/978-981-16-8698-6_4

Download citation

Publish with us

Policies and ethics