Skip to main content

Piezoelectric Materials Based on Polymers and Their Composites

  • Living reference work entry
  • First Online:
Handbook of Energy Materials

Abstract

In the recent past, piezoelectric materials established on polymers and their composites have acquired incredible interests due to their unique properties as well as multipurpose applications. Polymers have recognizable advantages over ceramics in specific applications in terms of their easy processing ability at low temperatures, low density, low stiffness, flexibility, and mechanical robustness, such as toughness and high strains to failure. They are also advantageous in terms of biocompatibility for implantable harvesters and sensors. Polymer-based piezoelectric materials have demonstrated versatile applications in smart and multifunctional systems such as sensors, actuators, transducers, energy harvesting, and storage devices, in the form of fibers, foams, thin films, textiles, and coatings. The piezo-composite is a polymeric material in which engrafted organic/inorganic fillers are used and gives raise exciting properties and demonstrates outstanding potentiality that is promising for developing energy materials for advanced smart electronics. In this chapter, first of all a brief introduction of piezoelectricity is discussed, after that an overview of piezoelectric polymers and composites is presented along with their recent developments, properties, and advanced multifunctional applications. Eventually, a conclusion and several future perspectives of piezoelectric polymers and their composites as energy materials are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • P. Adhikary, D. Mandal, Enhanced electro-active phase in a luminescent P(VDF-HFP)/Zn2+ flexible composite film for piezoelectric based energy harvesting applications and self-powered UV light detection. Phys. Chem. Chem. Phys. 19, 17789–17798 (2017)

    Google Scholar 

  • P. Adhikary, S. Garain, D. Mandal, The co-operative performance of a hydrated salt assisted sponge like P (VDF-HFP) piezoelectric generator: An effective piezoelectric based energy harvester. Phys. Chem. Chem. Phys. 17, 7275–7281 (2015)

    Article  CAS  Google Scholar 

  • P. Adhikary, A. Biswas, D. Mandal, Improved sensitivity of wearable nanogenerators made of electrospun Eu3+ doped P(VDF-HFP)/graphene composite nanofibers for self-powered voice recognition. Nanotechnology 27, 495501–495511 (2016)

    Article  Google Scholar 

  • N.R. Alluri, B. Saravanakumar, S.J. Kim, Flexible, hybrid piezoelectric film (BaTi(1−x) ZrxO3)/PVDF nanogenerator as a self-powered fluid velocity sensor. ACS Appl. Mater. Interfaces 7(18), 9831–9840 (2015)

    Article  CAS  Google Scholar 

  • B. Ameduri, From vinylidene fluoride (VDF) to the applications of VDF-containing polymers and copolymers: Recent developments and future trends. Chem. Rev. 109, 6632–6686 (2009)

    Article  CAS  Google Scholar 

  • N. An, H. Liu, Y. Ding, M. Zhang, Y. Tang, Preparation and electroactive properties of a PVDF/nano-TiO2 composite film. Appl. Surf. Sci. 257, 3831–3835 (2011)

    Article  CAS  Google Scholar 

  • P. Anithakumari, B.P. Mandal, E. Abdelhamid, R. Naik, A.K. Tyagi, Enhancement of dielectric, ferroelectric and magneto-dielectric properties in PVDF–BaFe12O19 composites: A step towards miniaturizated electronic devices. RSC Adv. 6, 16073–16080 (2016)

    Article  CAS  Google Scholar 

  • S. Azimi, A. Golabchi, A. Nekookar, S. Rabbani, M.H. Amiri, K. Asadi, M.M. Abolhasani, Self-powered cardiac pacemaker by piezoelectric polymer nanogenerator implant. Nano Energy 83, 105781 (2021)

    Article  CAS  Google Scholar 

  • F. Bauer, IEEE Trans. Dielectr. Electr. Insul. 17, 1106–1112 (2010)

    Article  CAS  Google Scholar 

  • M. Benz, W.B. Euler, O.J. Gregory, The role of solution phase water on the deposition of thin films of poly(vinylidene fluoride). Macromolecules 35, 2682–2688 (2002)

    Article  CAS  Google Scholar 

  • V. Bhavanasi, V. Kumar, K. Parida, J. Wang, P.S. Lee, Enhanced piezoelectric energy harvesting performance of flexible PVDF-TrFE bilayer films with graphene oxide. ACS Appl. Mater. Interfaces 8, 521–529 (2016)

    Article  CAS  Google Scholar 

  • J.H. Cao, B.K. Zhu, G.L. Ji, Y.Y. Xu, Preparation and characterization of PVDF–HFP microporous flat membranes by supercritical CO2 induced phase separation. J. Membr. Sci. 266, 102–109 (2005)

    Article  CAS  Google Scholar 

  • X. Chen, J. Shao, N. An, X. Li, H. Tian, C. Xua, Y. Ding, Self-powered flexible pressure sensors with vertically well-aligned piezoelectric nanowire arrays for monitoring vital signs. J. Mater. Chem. C 3, 11806–11814 (2015)

    Article  CAS  Google Scholar 

  • Z. Cui, N.T. Hassankiadeh, Y. Zhuang, E. Drioli, Y.M. Lee, Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog. Polym. Sci. 51, 94–126 (2015)

    Article  CAS  Google Scholar 

  • A. Datta, Y.S. Choi, E. Chalmers, C. Ou, S. Kar-Narayan, Piezoelectric Nylon-11 nanowire arrays grown by template wetting for vibrational energy harvesting applications. Adv. Funct. Mater. 27, 1604262 (2017)

    Article  Google Scholar 

  • X. Du, J. Zheng, U. Belegundu, K. Uchino, Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary. Appl. Phys. Lett. 72, 2421–2423 (1998)

    Article  CAS  Google Scholar 

  • B. Dutta, E. Kar, N. Bose, S. Mukherjee, Significant enhancement of the electroactive β-phase of PVDF by incorporating hydrothermally synthesized copper oxide nanoparticles. RSC Adv. 5, 105422–105434 (2015)

    Article  CAS  Google Scholar 

  • E. Fukada, Piezoelectricity of wood. J. Phys. Soc. Jpn. 10, 149–154 (1955)

    Article  Google Scholar 

  • E. Fukada, Piezoelectricity as a fundamental property of wood. Wood Sci. Technol. 2, 299–307 (1968)

    Article  CAS  Google Scholar 

  • E. Fukada, Y. Ando, Piezoelectricity in oriented DNA films. J. Polym Sci Part A-2 Polym Phys 10, 565–567 (1972)

    Article  Google Scholar 

  • E. Fukada, I. Yasuda, Piezoelectric effects in collagen. Jpn. J. Appl. Phys. 3, 502B (1964)

    Google Scholar 

  • T. Furukawa, Ferroelectric properties of vinylidene fluoride copolymers. Phase Transit. 18, 143–211 (1989)

    Article  CAS  Google Scholar 

  • S. Garain, T.K. Sinha, P. Adhikary, K. Henkel, S. Sen, S. Ram, C. Sinha, D. Schmeißer, D. Mandal, Self-poled transparent and flexible UV light-emitting cerium complex–PVDF composite: A high-performance nanogenerator. ACS Appl. Mater. Interfaces 7, 1298–1307 (2015)

    Article  CAS  Google Scholar 

  • G.G. Genchi, L. Ceseracciu, A. Marino, M. Labardi, S. Marras, F. Pignatelli, L. Bruschini, V. Mattoli, G. Ciofani, P(VDF-TrFE)/BaTiO3 nanoparticle composite films mediate piezoelectric stimulation and promote differentiation of SH-SY5Y neuroblastoma cells. Adv. Healthc. Mater. 5, 1808–1820 (2016)

    Article  CAS  Google Scholar 

  • A. Gradys, P. Sajkiewicz, S. Adamovsky, A. Minakov, C. Schick, Crystallization of poly(vinylidene fluoride) during ultra-fast cooling. Thermochim. Acta 461, 153–157 (2007)

    Article  CAS  Google Scholar 

  • R. Gregorio, M. Cestari, Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene-fluoride). J. Polym. Sci. B Polym. Phys. 32, 859–870 (1994)

    Article  CAS  Google Scholar 

  • H. Guo, Z. Li, S. Dong, W. Chen, L. Deng, Y. Wang, D. Ying, Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications. Colloids Surf. B: Biointerfaces 96, 29–36 (2012)

    Article  CAS  Google Scholar 

  • V. Gupta, A. Babu, S.K. Ghosh, Z. Mallick, H.K. Mishra, D. Mandal, δ-PVDF based flexible nanogenerator. (2021). https://doi.org/10.48550/arXiv.2108.09581

  • B. Gusarov, PVDF Piezoelectric Polymers: Characterization and Application to Thermal Energy Harvesting (Université Grenoble Alpes, Electric power, 2015) English

    Google Scholar 

  • T. Hattori, M. Kanaoka, H. Ohigashi, Improved piezoelectricity in thick lamellar β-form crystals of poly(vinylidene fluoride) crystallized under high pressure. J. Appl. Phys. 79, 2016–2022 (1996)

    Google Scholar 

  • IEEE standard on piezoelectricity. https://doi.org/10.1109/IEEESTD.1988.79638

  • O.D. Jayakumar, B.P. Mandal, J. Majeed, G. Lawes, R. Naik, A.K. Tyagi, Inorganic–organic multiferroic hybrid films of Fe3O4 and PVDF with significant magneto-dielectric coupling. J. Mater. Chem. C 1, 3710–3715 (2013)

    Article  CAS  Google Scholar 

  • S. Katzir, The discovery of the piezoelectric effect. Arch. Hist. Exact Sci. 57, 61–91 (2003)

    Article  Google Scholar 

  • H. Kawai, The piezoelectricity of poly (vinylidene fluoride). Jpn. J. Appl. Phys. 8, 975–976 (1969)

    Article  CAS  Google Scholar 

  • A. Kholkin, N. Amdursky, I. Bdikin, E. Gazit, G. Rosenman, Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano 4, 610–614 (2010)

    Article  CAS  Google Scholar 

  • C. Lang, J. Fang, H. Shao, X. Ding, T. Lin, High-sensitivity acoustic sensors from nanofibre webs. Nat. Commun. 7, 11108–11115 (2016)

    Google Scholar 

  • J. Li, P. Khanchaitit, K. Han, Q. Wang, New route toward high-energy-density nanocomposites based on chain-end functionalized ferroelectric polymers. Chem. Mater. 22, 5350–5357 (2010)

    Article  CAS  Google Scholar 

  • M. Li, N. Stingelin, J.J. Michels, M.J. Spijkman, K. Asadi, K. Feldman, P.W.M. Blom, D.M. de Leeuw, Ferroelectric phase diagram of PVDF:PMMA. Macromolecules 45, 7477–7485 (2012)

    Article  CAS  Google Scholar 

  • H. Li, Y. Zhang, H. Dai, W. Tong, Y. Zhou, J. Zhao, Q. An, A self-powered porous ZnS/PVDF-HFP mechanoluminescent composite film that converts human movement into eye-readable light. Nanoscale 10, 5489–5495 (2018)

    Article  CAS  Google Scholar 

  • K. Maity, D. Mandal, Piezoelectric polymers and composites for multifunctional materials, in Advanced Lightweight Multifunctional Materials, (Woodhead Publishing in Materials, 2021), pp. 239–282

    Chapter  Google Scholar 

  • K. Maity, S. Garain, K. Henkel, D. Schmeißer, D. Mandal, Self-powered human-health monitoring through aligned PVDF nanofibers interfaced skin-interactive piezoelectric sensor. ACS Appl. Polym. Mater. 2, 862–878 (2020)

    Article  Google Scholar 

  • D. Mandal, S. Yoon, K.J. Kim, Origin of piezoelectricity in an electrospun poly(vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and Nano-pressure sensor. Macro. Rapid Comm. 32, 831–837 (2011)

    Article  CAS  Google Scholar 

  • D. Mandal, K.J. Kim, J.S. Lee, Simple synthesis of palladium nanoparticles, β-phase formation, and the control of chain and dipole orientations in palladium-doped poly(vinylidene-fluoride) thin films. Langmuir 28, 10310–10217 (2012)

    Article  CAS  Google Scholar 

  • P. Martins, A.C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 39, 683–706 (2014)

    Article  CAS  Google Scholar 

  • F. Mokhtari, B. Azimi, M. Salehi, S. Hashemikia, S. Danti, Recent advances of polymer-based piezoelectric composites for biomedical applications. J. Mech. Behav. Biomed. Mater. 122, 104669 (2021)

    Article  CAS  Google Scholar 

  • M.J. Moody, C.W. Marvin, G.R. Hutchison, Molecularly-doped polyurethane foams with massive piezoelectric response. J. Mater. Chem. C 4, 4387 (2016a)

    Article  CAS  Google Scholar 

  • M.J. Moody, C.W. Marvinb, G.R. Hutchison, Molecularly-doped polyurethane foams with massive piezoelectric response. J. Mater. Chem. C 4, 4387 (2016b)

    Article  CAS  Google Scholar 

  • B. A. Newman, P. Chen, K. D. Pae, J. I. Scheinbeim, Piezoelectricity in nylon 11. J. Appl. Phys. 51, 5161 (1980)

    Google Scholar 

  • F. Oliveira, Y. Leterrier, J.A. Manson, O. Sereda, A. Neels, A. Dommann, D. Damjanovic, Process influences on the structure, piezoelectric, and gas-barrier properties of PVDF-TrFE copolymer. J. Polym. Sci. B Polym. Phys. 52, 496–506 (2014)

    Article  CAS  Google Scholar 

  • X. Pan, Z. Wang, Z. Cao, S. Zhang, Y. He, Y. Zhang, K. Chen, Y. Hu, H. Gu, A self-powered vibration sensor based on electrospun poly(vinylidene fluoride) nanofibres with enhanced piezoelectric response. Smart Mater. Struct. 25,105010–105017 (2016)

    Google Scholar 

  • H. Parangusan, D. Ponnamma, M.A.A. AlMaadeed, Flexible tri-layer piezoelectric nanogenerator based on PVDF-HFP/Ni-doped ZnO nanocomposites. RSC Adv. 7, 50156–50165 (2017)

    Article  CAS  Google Scholar 

  • T.U. Patro, M.V. Mhalgi, D.V. Khakhar, A. Misra, Studies on poly(vinylidene fluoride)-clay nanocomposites: Effect of different clay modifiers. Polymer 49, 3486–3499 (2008)

    Article  CAS  Google Scholar 

  • L. Priya, J.P. Jog, Poly(vinylidene fluoride)/clay nanocomposites prepared by melt intercalation: Crystallization and dynamic mechanical behavior studies. J. Polym. Sci. B Polym. Phys. 40, 1682–1689 (2002)

    Article  CAS  Google Scholar 

  • C. Ribeiro, V. Sencadas, J.L. Gomez Ribelles, S. Lanceros-Méndez, Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly(vinylidene fluoride) electrospun membranes. Soft Mater. 8, 274–287 (2010)

    Article  CAS  Google Scholar 

  • F. Sadeghi, A. Ajji, Study of crystal structure of (polyvinylidene fluoride/clay) nanocomposite films: Effect of process conditions and clay type. Polym. Eng. Sci. 49, 200–207 (2009)

    Article  CAS  Google Scholar 

  • W.K. Sakamoto, S. Shibatta-Kagesawa, D.H.F. Kanda, S.H. Fernandes, E. Longo, G.O. Chierice, Piezoelectric effect in composite polyurethane –ferroelectric ceramics. Phys. Status Solidi 172, 265 (1999)

    Article  CAS  Google Scholar 

  • J.I. Scheinbeim, Piezoelectricity in γ-form Nylon 11. J. Appl. Phys. 52, 5939 (1981)

    Article  CAS  Google Scholar 

  • N. Senthilkumar, K.J. Babu, G.G. Kumar, A.R. Kim, D.J. Yoo, Flexible electrospun PVdF-HFP/ni/co membranes for efficient and highly selective enzyme free glucose detection. Ind. Eng. Chem. Res. 53, 10347–10357 (2014)

    Article  CAS  Google Scholar 

  • D. Shah, P. Maiti, E. Gunn, D.F. Schmidt, D.D. Jiang, C.A. Batt, E.R. Giannelis, Dramatic enhancements in toughness of polyvinylidene fluoride nanocomposites via nanoclay-directed crystal structure and morphology. Adv. Mater. 16, 1173–1177 (2004)

    Article  CAS  Google Scholar 

  • S. Siddiqui, D.I. Kim, L.T. Duy, M.T. Nguyen, S. Muhammad, W.S. Yoon, N.E. Lee, High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage. Nano Energy 15, 177–185 (2015)

    Article  CAS  Google Scholar 

  • T.K. Sinha, S.K. Ghosh, R. Maiti, S. Jana, B. Adhikari, D. Mandal, S.K. Ray, Graphene-silver induced self-polarized PVDF based flexible plasmonic nanogenerator towards the realization for new class of self powered optical sensor. ACS Appl. Mater. Interfaces 8(24), 14986–14993 (2016)

    Article  CAS  Google Scholar 

  • M. Smith, T. Chalklen, C. Lindackers, Y. Calahorra, C. Howe, A. Tamboli, D. V. Bax, D. J. Barrett, R. E. Cameron, S. M. Best, S. Kar-Narayan, Poly-L-lactic acid nanotubes as soft piezoelectric interfaces for biology: Controlling cell attachment via polymer crystallinity. ACS Appl. Bio Mater. 3, 2140–2149 (2020)

    Google Scholar 

  • A. Sultana, S.K. Ghosh, V. Sencadas, T. Zheng, M. Higgins, T.R. Middya, D. Mandal, Human skin interactive self-powered wearable piezoelectric bio-e-skin by electrospun poly-L-lactic acid nanofibers for non-invasive physiological signal monitoring. J. Mater. Chem. B 5, 7352–7359 (2017)

    Article  CAS  Google Scholar 

  • C. Sun, J. Shi, J.B. Dylan, X. Wang, PVDF microbelts for harvesting energy from respiration. Energy Environ. Sci. 4, 4508–4512 (2011)

    Article  CAS  Google Scholar 

  • Y. Tai, S. Yang, S. Yu, A. Banerjee, N.V. Myung, J. Nam, Modulation of piezoelectric properties in electrospun PLLA nanofibers for application-specific self-powered stem cell culture platforms. Nano Energy 89, 106444 (2021)

    Article  CAS  Google Scholar 

  • W. Wang, S. Zhang, L.O. Srisombat, T.R. Lee, R.C. Advincula, Gold-nanoparticle- and gold-nanoshell-induced polymorphism in poly(vinylidene fluoride). Macromol. Mater. Eng. 296, 178–184 (2011)

    Article  CAS  Google Scholar 

  • R.A. Whiter, V. Narayan, S. Kar-Narayan, A scalable nanogenerator based on self-poled piezoelectric polymer nanowires with high energy conversion efficiency. Adv. Energy Mater. 4, 1400519–1400525 (2014)

    Article  Google Scholar 

  • H. Xu, Z. Y. Cheng, D. Olson, T. Mai, Q. M. Zhang, G. Kavarnos, Erratum: Ferroelectric and electromechanical properties of poly(vinylidene-fluoride–trifluoroethylene–chlorotrifluoroethylene) terpolymer. Appl. Phys. Lett. 78, 2360–2362 (2001)

    Google Scholar 

  • H. Ye, W. Shao, L. Zhen, Crystallization kinetics and phase transformation of poly(vinylidene fluoride) films incorporated with functionalized BaTiO3 nanoparticles. J. Appl. Polym. Sci. 129, 2940–2949 (2013)

    Article  CAS  Google Scholar 

  • S. Yu, W. Zheng, W. Yu, Y. Zhang, Q. Jiang, Z. Zhao, Formation mechanism of β-phase in PVDF/CNT composite prepared by the sonication method. Macromolecules 42, 8870–8874 (2009)

    Article  CAS  Google Scholar 

  • D. Yuan, Z. Li, W. Thitsartarn, X. Fan, J. Sun, H. Lia, C. He, β phase PVDF-hfp induced by mesoporous SiO2 nanorods: Synthesis and formation mechanism. J. Mater. Chem. C 3, 3708–3713 (2015)

    Article  CAS  Google Scholar 

  • X. Yuan, X. Gao, J. Yang, X. Shen, Z. Li, S. You, Z. Wang, S. Dong, The large piezoelectricity and high power density of a 3D-printed multilayer copolymer in a rugby ball-structured mechanical energy harvester. Energy Environ. Sci. 13, 152–161 (2020)

    Google Scholar 

  • Y.Y. Zhang, S.L. Jiang, Y. Yu, G. Xiong, Q.F. Zhang, G.Z. Guang, Phase transformation mechanisms and piezoelectric properties of poly(vinylidene fluoride)/montmorillonite composite. J. Appl. Polym. Sci. 123, 2595–2600 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of grant (EEQ/2018/001130) from the Science and Engineering Research Board (SERB), Government of India, and NBU Research Grant from University Grant Commission (UGC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipankar Mandal .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Adhikary, P., Mandal, D. (2022). Piezoelectric Materials Based on Polymers and Their Composites. In: Gupta, R. (eds) Handbook of Energy Materials. Springer, Singapore. https://doi.org/10.1007/978-981-16-4480-1_74-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4480-1_74-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4480-1

  • Online ISBN: 978-981-16-4480-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics