Skip to main content

Piezoelectric Polymer Composites for Energy Harvesting

  • Living reference work entry
  • First Online:
Handbook of Smart Energy Systems
  • 56 Accesses

Abstract

Polymeric piezoelectric composites for energy harvesting applications are an important study subject because they offer mechanical versatility, adequate voltage with adequate output power, cheaper cost of manufacturing, and faster processing than ceramic-based composites. Several kinds of piezoelectric polymers and its composites are intensively discussed and explored as a viable alternative to lead-based piezo-ceramics in energy harvesting applications. The chapter focuses on the core theory and concepts of piezoelectric energy harvesting (PEH) devices, following the materials employed in the various devices. The many structural configurations involved in the production of PEH devices are described. This chapter also includes existing circumstances for PEH devices, main issues related with them, and the future outlook for such devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • 12 Emerging Technologies that May Help Power the Future (2018). Accessed March 2022. https://www.blueandpgroup.com/power-blog/12-emerging-technologies-that-may-help-power-the-future/

    Google Scholar 

  • A.H. Abdul Razak, A. Zayegh, R.K. Begg, Y. Wahab, Foot plantar pressure measurement system: A review. Sensors 12(7), 9884–9912 (2012)

    Article  Google Scholar 

  • J. Akedo, J.H. Park, Y. Kawakami, Piezoelectric thick film fabricated with aerosol deposition and its application to piezoelectric devices. Jpn. J. Appl. Phys. 57(7S1) (2018) p. 07LA02

    Google Scholar 

  • S. Bauer, S. Bauer-Gogonea, M. Dansachmuller, I. Graz, H. Leonhartsberger, H. Salhofer, R. Schwoediauer, Proceedings – IEEE Ultrasonics Symposium, vol 370 (2003)

    Google Scholar 

  • S.P. Beeby, M.J. Tudor, N.M. White, Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17(12), R175 (2006)

    Article  Google Scholar 

  • R. Caliò, U.B. Rongala, D. Camboni, M. Milazzo, C. Stefanini, G. De Petris, C.M. Oddo, Piezoelectric energy harvesting solutions. Sensors 14(3), 4755–4790 (2014)

    Article  Google Scholar 

  • J. Chen, R. Panda, Commercialization of piezoelectric single crystals for medical imaging applications. IEEE Ultrason. Symp. 1(September), 235–240 (2005) IEEE

    Google Scholar 

  • D.K. Das-Gupta, K. Doughty, R.S. Brockley, Charging and discharging currents in polyvinylidene fluoride. J. Phys. D. Appl. Phys. 13(11), 2101 (1980)

    Article  Google Scholar 

  • C.J. Dias, D.K. Das-Gupta, Inorganic ceramic/polymer ferroelectric composite electrets. IEEE Trans. Dielectr. Electr. Insul. 3(5), 706–734 (1996)

    Article  Google Scholar 

  • P. Dineva, D. Gross, R. Müller, T. Rangelov, Piezoelectric materials, in Dynamic Fracture of Piezoelectric Materials, (Springer, Cham, 2014), pp. 7–32

    Chapter  Google Scholar 

  • M.D. Donato, Ph.D. Thesis, Politecnico di Torino (Turin, Italy, 2015)

    Google Scholar 

  • P. Fischer, P. Röhl, Transient currents in oxidized low-density polyethylene, in Mehrphasige Polymersysteme, (Steinkopff, 1977), pp. 149–153

    Chapter  Google Scholar 

  • M.F. Galikhanov, D.A. Eremeev, R.Y. Deberdeev, Electret effect in compounds of polystyrene with Aerosil. Russ. J. Appl. Chem. 76(10), 1651–1654 (2003)

    Article  Google Scholar 

  • P.M. Galletti, D.E. De Rossi, A.S. DeReggi, Medical applications of piezoelectric polymers. J. Clin. Eng. 14(1), 84 (1989)

    Article  Google Scholar 

  • A. Gupta, M. Imran, R. Agarwal, R. Yadav, P. Jangir, R. Poonia, Energy harvesting through dance floor using piezoelectric device. Int. J. Eng. Manag. Res. 6(2), 36–39 (2016)

    Google Scholar 

  • H.S. Kim, J.H. Kim, J. Kim, A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 12(6), 1129–1141 (2011)

    Article  Google Scholar 

  • H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene. Nature 318(6042), 162–163 (1985)

    Article  Google Scholar 

  • H. Li, C. Tian, Z.D. Deng, Energy harvesting from low frequency applications using piezoelectric materials. Appl. Phys. Rev. 1(4), 041301 (2014)

    Article  Google Scholar 

  • Z. Lou, S. Chen, L. Wang, K. Jiang, G. Shen, An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy 23, 7–14 (2016)

    Article  Google Scholar 

  • T. Mizutani, T. Yamada, M. Ieda, Thermally stimulated currents in polyvinylidene fluoride. I. Unstretched alpha-form PVDF. J. Phys. D. Appl. Phys. 14(6), 1139 (1981)

    Article  Google Scholar 

  • F. Narita, M. Fox, Adv. Eng. Mater. 2018(20), 1700743 (2018)

    Article  Google Scholar 

  • R.E. Newnham, D.P. Skinner, L.E. Cross, Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull. 13(5), 525–536 (1978)

    Article  Google Scholar 

  • S. Priya, H.C. Song, Y. Zhou, R. Varghese, A. Chopra, S.G. Kim, I. Kanno, L. Wu, D.S. Ha, J. Ryu, R.G. Polcawich, A review on piezoelectric energy harvesting: Materials, methods, and circuits. Energy Harvest. Syst 4(1), 3–39 (2017)

    Article  Google Scholar 

  • K.S. Ramadan, D. Sameoto, S. Evoy, A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater. Struct. 23(3), 033001 (2014)

    Article  Google Scholar 

  • D. Shen, Piezoelectric Energy Harvesting Devices for Low Frequency Vibration Applications (Auburn University, 2009)

    Google Scholar 

  • K.Y. Shin, J.S. Lee, J. Jang, Highly sensitive, wearable and wireless pressure sensor using free-standing ZnO nanoneedle/PVDF hybrid thin film for heart rate monitoring. Nano Energy 22, 95–104 (2016)

    Article  Google Scholar 

  • T.V. Sreekumar, T. Liu, B.G. Min, H. Guo, S. Kumar, R.H. Hauge, R.E. Smalley, Polyacrylonitrile single-walled carbon nanotube composite fibers. Adv. Mater. 16(1), 58–61 (2004)

    Article  Google Scholar 

  • A. Toprak, O. Tigli, Appl. Phys. Rev. 1, 031104 (2014)

    Article  Google Scholar 

  • K. Uchino, T. Ishii, Energy flow analysis in piezoelectric energy harvesting systems. Ferroelectrics 400(1), 305–320 (2010)

    Article  Google Scholar 

  • T. Yamada, T. Ueda, T. Kitayama, Piezoelectricity of a high-content lead zirconate titanate/polymer composite. J. Appl. Phys. 53(6), 4328–4332 (1982)

    Article  Google Scholar 

  • G.T. Zack Mester, Future uses of the piezoelectric effect for energy production (2012, 1), https://www.academia.edu/9864968/future_uses_of_the_piezoelectric_effect_for_energy_production_how_the_piezoelectric_effect_works

  • Zervos, Piezoelectric energy harvesting: developments, challenges, future (2018). Accessed June 2018. https://www.idtechex.com/en/research-article/piezoelectric-energy-harvesting-developments-challenges-future/5074

  • G. Zhang, S. Gao, H. Liu, A utility piezoelectric energy harvester with low frequency and high-output voltage: Theoretical model, experimental verification and energy storage. AIP Adv. 6(9), 095208 (2016)

    Article  Google Scholar 

  • C. Zhao, J. Zhang, Z.L. Wang, K. Ren, A poly (l-lactic acid) polymer-based thermally stable cantilever for vibration energy harvesting applications. Adv. Sust. Syst. 1(9), 1700068 (2017)

    Article  Google Scholar 

  • Q. Zhou, K.H. Lam, H. Zheng, W. Qiu, K.K. Shung, Piezoelectric single crystal ultrasonic transducers for biomedical applications. Prog. Mater. Sci. 66, 87–111 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wazeer, A., Das, A., Sinha, A., Karmakar, A. (2022). Piezoelectric Polymer Composites for Energy Harvesting. In: Fathi, M., Zio, E., Pardalos, P.M. (eds) Handbook of Smart Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-72322-4_190-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72322-4_190-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72322-4

  • Online ISBN: 978-3-030-72322-4

  • eBook Packages: Springer Reference Economics and FinanceReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics