Skip to main content

Recognition of Moving Human Targets by Through the Wall Imaging RADAR Using RAMA and SIA Algorithms

  • Conference paper
  • First Online:
Advanced Techniques for IoT Applications (EAIT 2021)

Abstract

In this research work, we are locating the moving objects or targets inside a building. It is sensor technology, and standoff distance outstandingly increases for the classical urban battlefield. In this study, a thermal image has to be developed based on cross-range vs down range mechanism; these tracks the moving targets with a video frame rate. This mechanism had to design based on S-band frequency and TDMA-MIMO antenna array. The continuous wave modulating scheme acquires the image and display at the frame rate of 10.80 Hzs. The maximum allowed range is 20 m concrete wall and thickness of 20 cm. This modern system can locate humans either in moving or in standing positions, behind 20 m thickness of the concrete wall. The results challenging the present technologies and outperforms the performance metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Charvat, G.L.: A low-power radar imaging system. PhD dissertation, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, August 2007

    Google Scholar 

  2. Charvat, G.L., Kempel, L.C., Rothwell, E.J., Coleman, C., Mokole, E.J.: An Ultrawideband (UWB) switched-antenna-array radar imaging system. In: Proceedings of the IEEE International Symposium on Phased Array Systems and Technology (2010)

    Google Scholar 

  3. Ralston, T.S., Marks, D.L., Carney, P.S., Boppart, S.A.: Real-time interferometric synthetic aperture microscopy. Opt. Express 16(4), 2555–2569 (2008)

    Article  Google Scholar 

  4. Charvat, G.L., Kempel, L.C., Rothwell, E.J., Coleman, C., Mokole, E.L.: A through-dielectric radar imaging system. IEEE Trans. Antennas Propag. 58(8), 2594–2603 (2010)

    Article  Google Scholar 

  5. T.S. Ralston, G.L. Charvat, and J.E. Peabody, “Real-Time Through-Wall Imaging using an Ultrawideband Multiple-Input Multiple-Output (MIMO) Phased-Array Radar Sys-tem,” Proceedings of the IEEE International Symposium on Phased Array Systems and Technology, pp. 551–558, 2010.

    Google Scholar 

  6. Charvat, G.L., Ralston, T.S., Peabody, J.E.: A through-wall real-time MIMO radar sensor for use at stand-off ranges. MSS Tri-Services Radar Symposium, Orlando, Florida (2010)

    Google Scholar 

  7. Carrara, W.G., Goodman, R.S., Majewski, R.M.: Spotlight synthetic aperture radar signal processing algorithms. Bos-ton: Artech House (1995)

    Google Scholar 

  8. Marchand, P.R.H.: Penetration losses in construction materials and buildings. MIT Lincoln Laboratory Project Report TR-ACC-1, Rev. 1, 19 July 2006

    Google Scholar 

  9. Vo, B.N., Ma, W.K.: The Gaussian mixture probability hypothesis density filter. IEEE Trans. Signal Process. 54(11), 4091–4101 (2006)

    Article  Google Scholar 

  10. Syahrim, N., Anwar, N.: Multiple line cracks in concrete material. Int. J. Hum. Technol. Interact. 2 (2018)

    Google Scholar 

  11. Kaushal, S., Singh, D.: Sensitivity analysis of microwave UWB radar for TWI system. Int. J. Appl. Eng. Res. 12(19), 8665–8675 (2017)

    Google Scholar 

  12. Liang, F., et al.: Through the wall imaging of human vital signs based on UWB MIMO bioradar. Progress Electromagnet. Res. C 87, 119–133 (2018)

    Article  Google Scholar 

  13. Gennarelli, G., Soldovieri, F.: Radar imaging through cinderblock walls: Achievable performance by a model-corrected linear inverse scattering approach. IEEE Trans. Geosci. Remote Sens. 52(10), 6738–6749 (2014)

    Google Scholar 

  14. Miao, Z., Kosmas, P.: Cmpact of information loss on reconstruction quality in microwavetomography for medical imaging. Diagnostics 8(52), 1–15 (2018)

    Google Scholar 

  15. Nawawi, J., Sahrani, S., Anak, K., Ping, H.: Automated scaling region of interest with iterativeedge preserving in forward-backward time-stepping. Progress Electromagnet. Res. 67, 177–188 (2018)

    Article  Google Scholar 

  16. Joseph, E.J., et al.: Integration of image segmentation method in inverse scattering for braintumour detection. Progress Electromagnet. Res. 61, 111–122 (2017)

    Article  Google Scholar 

  17. Ping, K.H., Ng, S.W., Yong, G., Rajaee, N.: Elliptic filter and iterative inversion method forburied object detection applications. Appl. Mech. Mater. 833, 164–169 (2016)

    Article  Google Scholar 

  18. Elizabeth, M.A.P., Hong Ping, K.A., Rajaee, N.B., Moriyama, T.: Chebyshev filter applied to an inversion technique for breast tumour detection. Int. J. Res. Eng. Technol.4(5), 1–9 (2015)

    Google Scholar 

  19. Yong, G., et al.: Profile reconstruction utilizing forward-backward time-stepping with the integration of automated edge-preserving regularization technique for object detection applications. Progress Electromagnet. Res. M 54, 125–135 (2017)

    Article  Google Scholar 

  20. Jamali, N.H., Anak, K., Ping, H., Sahrani, S.: Image reconstruction based on combination of inverse scattering technique and total variation regularization method. Indonesian J. Electric. Eng. Comput. Sci. 5(3), 569–576 (2017)

    Article  Google Scholar 

  21. Xu, K., Zhong, Y., Chen, X., Lesselier, D.: A fast integral equation based method for solving electromagnetic inverse scattering problems with inhomogeneous background. IEEE Trans. Antennas Propag. 66(8), 4228–4239 (2018)

    Google Scholar 

  22. Gorji, A.B., Zakeri, B.: Time-reversal through-wall microwave imaging in rich scattering environment based on target initial reflection method time-reversal through-wall microwave imaging in rich scattering. Appl. Comput. Electromagn. Soc. J. 30, 625–637 (June 2015)

    Google Scholar 

  23. Selesnick, I., Rizzo, J., Rucker, J., Hudson, T.: A nonlinear generalization of the Savitzky-Golayfilter and the quantitative analysis of saccades. J. Vis. 9, 1–15 (2017)

    Google Scholar 

  24. Liu, Y., Dang, B., Li, Y., Lin, H., Ma, H.: Applications of Savitzky-Golay filter for seismicrandom noise reduction. Acta Geophys. 64(1), 101–124 (2016)

    Article  Google Scholar 

  25. Liang, X., Deng, J., Zhang, H., et al.: Ultra-wideband impulse radar through-wall detection of vital signs. Sci. Rep. 8, 13367 (2018)

    Article  Google Scholar 

  26. Kebe, M., Gadhafi, R., Mohammad, B., Sanduleanu, M., Saleh, H., Al-Qutayri, M.: Human vital signs detection methods and potential using radars: a review. Sensors 20, 1454 (2020)

    Article  Google Scholar 

  27. Liang, S.D.: Sense-through-wall human detection based on UWB radar sensors. Signal Process. 126, 117–124 (2016)

    Article  Google Scholar 

  28. Gu, C., Li, C.: Assessment of human respiration patterns via noncontact sensing using doppler multi-radar system. Sensors 15, 6383–6398 (2015)

    Article  Google Scholar 

  29. Lazaro, A., Girbau, D., Villarino, R.: Techniques for clutter suppression in the presence of body movements during the detection of respiratory activity through UWB radars. Sensors 14, 2595–2618 (2014)

    Article  Google Scholar 

  30. Chuantao, L., et al.: A method for remotely sensing vital signs of human subjects outdoors. Sensors 15, 14830–14844 (2015)

    Article  Google Scholar 

  31. Duan, Z., Liang, J.: Non-contact detection of vital signs using a UWB radar sensor. IEEE Access 7, 36888–36895 (2019)

    Article  Google Scholar 

  32. Liang, X., Lv, T., Zhang, H., Gao, Y., Fang, G.: `Through-wall human being detection using UWB impulse radar. EURASIP J. Wirel. Commun. Netw. 2018(1), 1–17 (2018). https://doi.org/10.1186/s13638-018-1054-0

    Article  Google Scholar 

  33. Yoo, S., Chung, S., Seol, D., Cho, S.H.: Adaptive clutter suppression algorithm for detection and positioning using IR-UWB Radar. In: 2018 9th International Conference on Ultrawide band and Ultrashort Impulse Signals (UWBUSIS), Odessa, pp. 40–43 (2018)

    Google Scholar 

  34. Pardhu, T., Kumar, V.: Reduction of Clutter using TWI Ultra-wide band Imaging. Int. J. Ultra-Wideband Commun. Syst. 3(2), 101–105 (2015)

    Google Scholar 

  35. Pardhu, T., Kumar, V.: An investigation of human identification behind the wall. J. Adv. Res. Dyn. Control Syst. 10(5), 122–129 (2018)

    Google Scholar 

  36. Pardhu, T., Kumar, V.: Implementation of TWI using UWB RADAR Signals. In: Proceedings of International Conference on Applications of Soft Computing Techniques in Engineering & Technology , Supported by IET (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thottempudi, P., Dasari, V.S.C.B., Sista, V.S.P. (2022). Recognition of Moving Human Targets by Through the Wall Imaging RADAR Using RAMA and SIA Algorithms. In: Mandal, J.K., De, D. (eds) Advanced Techniques for IoT Applications. EAIT 2021. Lecture Notes in Networks and Systems, vol 292. Springer, Singapore. https://doi.org/10.1007/978-981-16-4435-1_53

Download citation

Publish with us

Policies and ethics