Skip to main content

Targeting Reactive Oxygen Species (ROS) for Cancer Therapy

  • Living reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects
  • 84 Accesses

Abstract

Reactive oxygen species (ROS) are the highly reactive molecules that play vital roles in cancer progression as well as in the regulation of important cellular pathways. Interestingly, ROS also have beneficial roles such as it enhance the anti-tumorigenic signaling and increasing the cancer cell death by oxidative damage. ROS can be quenched by the antioxidant system, but these are not much effective at the time of the high level of ROS production, hence causing several pathological conditions such as tumor cell promotion and progression which affects the signaling pathways. It was observed that tumor cells generate a high level of ROS that results in increased metabolic rate, hypoxia, and mutation in the gene. Cancer cells also maintain a significant level of antioxidant enzymes that neutralize the effect of elevated ROS, indicating an intricate equilibrium of ROS is required for cancer cell survival and function. Further increase in ROS level may lead to programmed cell death (PCD). Elevated ROS levels generated by various metabolic pathways can work as Trojan horse for killing cancer cells. However, to precisely kill the cancer cells only signaling pathway that regulates diverse functions in cancer cells needs to be elucidated. This review focuses on ROS generation in tumor cells, their role in cancer biology, and the molecular mechanism of therapeutics based on altering the ROS level to treat cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Bagati A, Moparthy S, Fink EE, Bianchi-Smiraglia A, Yun DH, Kolesnikova M, Udartseva OO, Wolff DW, Roll MV, Lipchick BC, Han Z, Kozlova NI, Jowdy P, Berman AE, Box NF, Rodriguez C, Bshara W, Kandel ES, Soengas MS, Paragh G, Nikiforov MA (2019) KLF9-dependent ROS regulate melanoma progression in stage-specific manner. Oncogene 38:3585–3597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks SA, Lomax-Browne HJ, Carter TM, Kinch CE, Hall DM (2010) Molecular interactions in cancer cell metastasis. Acta Histochem 112:3–25

    Article  CAS  PubMed  Google Scholar 

  • Chandel NS (2014) Mitochondria as signaling organelles. BMC Biol 12:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Q, Lesnefsky EJ (2006) Depletion of cardiolipin and cytochrome c during ischemia increases hydrogen peroxide production from the electron transport chain. Free Radic Biol Med 40:976–982

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Bobko AA, Gross AC, Evans R, Marsh CB, Khramtsov VV, Eubank TD, Friedman A (2014) Involvement of tumor macrophage HIFs in chemotherapy effectiveness: mathematical modeling of oxygen, pH, and glutathione. PLoS One 9:e107511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen X, Qian Y, Wu S (2015) The Warburg effect: evolving interpretations of an established concept. Free Radic Biol Med 79:253–263

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Teo AE, McCarty N (2016) ROS-induced CXCR4 signaling regulates mantle cell lymphoma (MCL) cell survival and drug resistance in the bone marrow microenvironment via autophagy. Clin Cancer Res 22:187–199

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Cao X, Lu H, Wen P, Qi X, Chen S, Wu L, Li C, Xu A, Zhao G (2018) N-(3-oxo-acyl) homoserine lactone induced germ cell apoptosis and suppressed the over-activated RAS/MAPK tumorigenesis via mitochondrial-dependent ROS in C. elegans. Apoptosis 23:626–640

    Article  CAS  PubMed  Google Scholar 

  • D’Alessio M, Cerella C, De Nicola M, Bergamaschi A, Magrini A, Gualandi G, Alfonsi AM, Ghibelli L (2003) Apoptotic GSH extrusion is associated with free radical generation. Ann N Y Acad Sci 1010:449–452

    Article  PubMed  CAS  Google Scholar 

  • DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, Mangal D, Yu KH, Yeo CJ, Calhoun ES, Scrimieri F, Winter JM, Hruban RH, Iacobuzio-Donahue C, Kern SE, Blair IA, Tuveson DA (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475:106–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27:6245–6251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dikalov SI, Polienko YF, Kirilyuk I (2018) Electron paramagnetic resonance measurements of reactive oxygen species by cyclic hydroxylamine spin probes. Antioxid Redox Signal 28:1433–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doroshow JH (1983) Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase. Cancer Res 43:4543–4551

    CAS  PubMed  Google Scholar 

  • Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 9:447–464

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Jauregui CE, Teng Y (2017) Targeting autophagy as a strategy for drug discovery and therapeutic modulation. Future Med Chem 9:335–345

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Zhao X, Lang L, Shay C, Andrew Yeudall W, Teng Y (2018) Autophagy blockade sensitizes human head and neck squamous cell carcinoma towards CYT997 through enhancing excessively high reactive oxygen species-induced apoptosis. J Mol Med (Berl) 9:929–938

    Article  Google Scholar 

  • Gao L, Loveless J, Shay C, Teng Y (2020) Targeting ROS-mediated crosstalk between autophagy and apoptosis in cancer. Adv Exp Med Biol 1260:1–12

    Article  CAS  PubMed  Google Scholar 

  • Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12:931–947

    Article  CAS  PubMed  Google Scholar 

  • Guerrini G, Criscuoli M, Filippi I, Naldini A, Carraro F (2018) Inhibition of smoothened in breast cancer cells reduces CAXII expression and cell migration. J Cell Physiol 233:9799–9811

    Article  CAS  PubMed  Google Scholar 

  • Guo XL, Li D, Hu F, Song JR, Zhang SS, Deng WJ, Sun K, Zhao QD, Xie XQ, Song YJ, Wu MC, Wei LX (2012) Targeting autophagy potentiates chemotherapy-induced apoptosis and proliferation inhibition in hepatocarcinoma cells. Cancer Lett 320:171–179

    Article  CAS  PubMed  Google Scholar 

  • Haridas P, Penington CJ, McGovern JA, McElwain DLS, Simpson MJ (2017) Quantifying rates of cell migration and cell proliferation in co-culture barrier assays reveals how skin and melanoma cells interact during melanoma spreading and invasion. J Theor Biol 423:13–25

    Article  PubMed  Google Scholar 

  • He L, Nan MH, Oh HC, Kim YH, Jang JH, Erikson RL, Ahn JS, Kim BY (2011) Asperlin induces G2/M arrest through ROS generation and ATM pathway in human cervical carcinoma cells. Biochem Biophys Res Commun 409:489–493

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Hu X, Eno CO, Zhao G, Li C, White C (2013) An interaction between Bcl-xL and the voltage-dependent anion channel (VDAC) promotes mitochondrial Ca2+ uptake. J Biol Chem 288:19870–19881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurd TR, DeGennaro M, Lehmann R (2012) Redox regulation of cell migration and adhesion. Trends Cell Biol 22:107–115

    Article  CAS  PubMed  Google Scholar 

  • Jiao X, Li Y, Niu J, Xie X, Wang X, Tang B (2018) Small-molecule fluorescent probes for imaging and detection of reactive oxygen, nitrogen, and sulfur species in biological systems. Anal Chem 90:533–555

    Article  CAS  PubMed  Google Scholar 

  • Kamiya T, Goto A, Kurokawa E, Hara H, Adachi T (2016) Cross talk mechanism among EMT, ROS, and histone acetylation in phorbol ester-treated human breast cancer MCF-7 cells. Oxid Med Cell Longev 2016:1284372

    PubMed  PubMed Central  Google Scholar 

  • Karisch R, Fernandez M, Taylor P, Virtanen C, St-Germain JR, Jin LL, Harris IS, Mori J, Mak TW, Senis YA, Östman A, Moran MF, Neel BG (2011) Global proteomic assessment of the classical protein-tyrosine phosphatome and “Redoxome”. Cell 146:826–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SJ, Kim HS, Seo YR (2019) Understanding of ROS-inducing strategy in anticancer therapy. Oxid Med Cell Longev 2019:5381692

    PubMed  PubMed Central  Google Scholar 

  • Kotamraju S, Chitambar CR, Kalivendi SV, Joseph J, Kalyanaraman B (2002) Transferrin receptor-dependent iron uptake is responsible for doxorubicin-mediated apoptosis in endothelial cells: role of oxidant-induced iron signaling in apoptosis. J Biol Chem 277:17179–17187

    Article  CAS  PubMed  Google Scholar 

  • Lenaz G (2012) Mitochondria and reactive oxygen species. Which role in physiology and pathology? Adv Exp Med Biol 942:93–136

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Yin X, Wang W, Zhan M, Zhao B, Hou Z, Wang J (2016) The effects of buthionine sulfoximine on the proliferation and apoptosis of biliary tract cancer cells induced by cisplatin and gemcitabine. Oncol Lett 11:474–480

    Article  CAS  PubMed  Google Scholar 

  • Liao Z, Chua D, Tan NS (2019) Reactive oxygen species: a volatile driver of field cancerization and metastasis. Mol Cancer 18:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Liou GY, Döppler H, DelGiorno KE, Zhang L, Leitges M, Crawford HC, Murphy MP, Storz P (2016) Mutant KRas-induced mitochondrial oxidative stress in acinar cells upregulates EGFR signaling to drive formation of pancreatic precancerous lesions. Cell Rep 14:2325–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu C, Armstrong JS (2007) Role of calcium and cyclophilin D in the regulation of mitochondrial permeabilization induced by glutathione depletion. Biochem Biophys Res Commun 363:572–577

    Article  CAS  PubMed  Google Scholar 

  • Lukyanov KA, Belousov VV (2014) Genetically encoded fluorescent redox sensors. Biochim Biophys Acta 1840:745–756

    Article  CAS  PubMed  Google Scholar 

  • Magda D, Miller RA (2006) Motexafin gadolinium: a novel redox active drug for cancer therapy. Semin Cancer Biol 16:466–476

    Article  CAS  PubMed  Google Scholar 

  • Maheswari U, Ghosh K, Sadras SR (2018) Licarin A induces cell death by activation of autophagy and apoptosis in non-small cell lung cancer cells. Apoptosis 23:210–225

    Article  CAS  PubMed  Google Scholar 

  • Marchetti M, Resnick L, Gamliel E, Kesaraju S, Weissbach H, Binninger D (2009) Sulindac enhances the killing of cancer cells exposed to oxidative stress. PLoS One 4:e5804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marullo R, Werner E, Degtyareva N, Moore B, Altavilla G, Ramalingam SS, Doetsch PW (2013) Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS One 8:e81162

    Article  PubMed  PubMed Central  Google Scholar 

  • Moloney JN, Stanicka J, Cotter TG (2017) Subcellular localization of the FLT3-ITD oncogene plays a significant role in the production of NOX- and p22phox-derived reactive oxygen species in acute myeloid leukemia. Leuk Res 52:34–42

    Article  CAS  PubMed  Google Scholar 

  • Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy D, Esposito D, Muthuswamy L, Krasnitz A, McCombie WR, Hicks J, Wigler M (2011) Tumour evolution inferred by single-cell sequencing. Nature 472:90–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panieri E, Santoro MM (2016) ROS homeostasis and metabolism: a dangerous liaison in cancer cells. Cell Death Dis 7:e2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qutub AA, Popel AS (2008) Reactive oxygen species regulate hypoxia-inducible factor 1alpha differentially in cancer and ischemia. Mol Cell Biol 28:5106–5119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajkumar SV, Richardson PG, Lacy MQ, Dispenzieri A, Greipp PR, Witzig TE, Schlossman R, Sidor CF, Anderson KC, Gertz M (2007) Novel therapy with 2-methoxyestradiol for the treatment of relapsed and plateau phase multiple myeloma. Clin Cancer Res 13:6162–6167

    Article  CAS  PubMed  Google Scholar 

  • Russell EG, Guo J, O’Sullivan EC, O’Driscoll CM, McCarthy FO, Cotter TG (2016) 7-Formyl-10-methylisoellipticine, a novel ellipticine derivative, induces mitochondrial reactive oxygen species (ROS) and shows anti-leukaemic activity in mice. Invest New Drugs 34:15–23

    Article  CAS  PubMed  Google Scholar 

  • Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AM (2007) Mechanisms of cell death in oxidative stress. Antioxid Redox Signal 9:49–89

    Article  CAS  PubMed  Google Scholar 

  • Sayin VI, Ibrahim MX, Larsson E, Nilsson JA, Lindahl P, Bergo MO (2014) Antioxidants accelerate lung cancer progression in mice. Sci Transl Med 6:221ra15

    Article  PubMed  CAS  Google Scholar 

  • Schwarzländer M, Dick TP, Meyer AJ, Morgan B (2016) Dissecting redox biology using fluorescent protein sensors. Antioxid Redox Signal 24:680–712

    Article  PubMed  CAS  Google Scholar 

  • Shin DH, Dier U, Melendez JA, Hempel N (2015) Regulation of MMP-1 expression in response to hypoxia is dependent on the intracellular redox status of metastatic bladder cancer cells. Biochim Biophys Acta 1852:2593–2602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson MJ, Landman KA, Hughes BD, Newgreen DF (2006) Looking inside an invasion wave of cells using continuum models: proliferation is the key. J Theor Biol 243:343–360

    Article  PubMed  Google Scholar 

  • Simpson MJ, Treloar KK, Binder BJ, Haridas P, Manton KJ, Leavesley DI, McElwain DL, Baker RE (2013) Quantifying the roles of cell motility and cell proliferation in a circular barrier assay. J R Soc Interface 10:20130007

    Article  PubMed  PubMed Central  Google Scholar 

  • Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270:296–299

    Article  CAS  PubMed  Google Scholar 

  • Ushio-Fukai M, Tang Y, Fukai T, Dikalov SI, Ma Y, Fujimoto M, Quinn MT, Pagano PJ, Johnson C, Alexander RW (2002) Novel role of gp91(phox)-containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis. Circ Res 91:1160–1167

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  • Wan D, Ouyang H (2018) Baicalin induces apoptosis in human osteosarcoma cell through ROS-mediated mitochondrial pathway. Nat Prod Res 32:1996–2000

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Konorev EA, Kotamraju S, Joseph J, Kalivendi S, Kalyanaraman B (2004) Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms. Intermediacy of H2O2 and p53-dependent pathways. J Biol Chem 279:25535–25543

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Zhang T, Sun W, Wang H, Yin F, Wang Z, Zuo D, Sun M, Zhou Z, Lin B, Xu J, Hua Y, Li H, Cai Z (2017) Arsenic sulfide induces apoptosis and autophagy through the activation of ROS/JNK and suppression of Akt/mTOR signaling pathways in osteosarcoma. Free Radic Biol Med 106:24–37

    Article  CAS  PubMed  Google Scholar 

  • Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR, Chandel NS (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A 107:8788–8793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2017) Cancer. Available via DIALOG. http://www.who.int/mediacentre/factsheets/fs297/en/. Accessed 7 Dec 2017

  • Wu WS, Tsai RK, Chang CH, Wang S, Wu JR, Chang YX (2006) Reactive oxygen species mediated sustained activation of protein kinase C alpha and extracellular signal-regulated kinase for migration of human hepatoma cell Hepg2. Mol Cancer Res 4:747–758

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Li J, Chen L, Ma Z, Zhang W, Liu Z, Cheng Y, Du L, Li M (2014) Bioluminescent probe for hydrogen peroxide imaging in vitro and in vivo. Anal Chem 86:9800–9806

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Villani RM, Wang H, Simpson MJ, Roberts MS, Tang M, Liang X (2018) The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res 37:266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Li J, Zong L, Chen X, Chen K, Jiang Z, Nan L, Li X, Li W, Shan T, Ma Q, Ma Z (2016) Reactive oxygen species and targeted therapy for pancreatic cancer. Oxid Med Cell Longev 2016:1616781

    PubMed  PubMed Central  Google Scholar 

  • Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94:909–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou Z, Chang H, Li H, Wang S (2017) Induction of reactive oxygen species: an emerging approach for cancer therapy. Apoptosis 22:1321–1335

    Article  CAS  PubMed  Google Scholar 

  • Zucker SN, Fink EE, Bagati A, Mannava S, Bianchi-Smiraglia A, Bogner PN, Wawrzyniak JA, Foley C, Leonova KI, Grimm MJ, Moparthy K, Ionov Y, Wang J, Liu S, Sexton S, Kandel ES, Bakin AV, Zhang Y, Kaminski N, Segal BH, Nikiforov MA (2014) Nrf2 amplifies oxidative stress via induction of Klf9. Mol Cell 53:916–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Mohan .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mohan, H., Vandna, Soni, S., Syed, S. (2022). Targeting Reactive Oxygen Species (ROS) for Cancer Therapy. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-1247-3_273-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1247-3_273-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1247-3

  • Online ISBN: 978-981-16-1247-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics