Skip to main content

Built Environment Resilience to Face Climate Change Effects In Paraguay’s Social Housing

  • Conference paper
  • First Online:
Sustainability in Energy and Buildings 2020

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 203))

  • 967 Accesses

Abstract

Currently, the implementation of measures to improve buildings energy efficiency beyond being an opportunity to improve their thermal performance is a strategy of mitigation and adaptation to climate change effects. This paper aims to evaluate different thermal envelope constructive solutions of a type of social housing that is used in Paraguay to improve its energy efficiency and thermal performance. Two options for the roofs and three options for the walls were evaluated. Finally, the best roof option with the best wall option was assessed. A total of six different options were considered. For the original state of the dwelling, the results of the energy dynamic simulations revealed very high annual thermal discomfort rates. With the changes introduced, significant improvements were achieved, reducing considerably the annual overheating rates, improving the quality of life and the social housing inhabitants’ resilience facing climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. International Energy Agency, Market Report Series, Energy efficiency.: Analysis and outlooks to 2040 (2018)

    Google Scholar 

  2. IPCC.: Working Group III, Mitigation of climate change, Chapter 9, Buildings (2014)

    Google Scholar 

  3. IPCC.: In: Climate Change 2014. Synthesis Report. Summary for Policymakers (2014)

    Google Scholar 

  4. Colclough, S., Kinnane, O., Hewitt, N., Griffiths, P.: Investigation of NZEB social housing built to the passive house standard. Energy Build. 179 (2018). https://doi.org/10.1016/j.enbuild.2018.06.069.

  5. Comite Nacional de Eficiencia Energetica (CNEE).: Plan Nacional De Eficiencia Energética De La República De Paraguay. Asuncion, Paraguay. (2014)

    Google Scholar 

  6. Secretaria Nacional de la Vivienda y el Habitat.: Plan Nacional de Habitat y Vivienda Del Paraguay, Segunda. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH: Asuncion, Paraguay (2013)

    Google Scholar 

  7. Ministerio de Urbanismo Vivienda y Habitat. Mision—Vision (2019). https://www.muvh.gov.py/?page_id=42. Accessed Dec 18 2019

    Google Scholar 

  8. Silvero, F., Montelpare, S., Rodrigues, F., Spacone, E., Varum, H.: Energy retrofit solutions for heritage buildings located in hot-humid climates. Procedia Struct. Integr. 11, 52–59 (2018). https://doi.org/10.1016/J.PROSTR.2018.11.008

    Article  Google Scholar 

  9. Silvero, F., Rodrigues, F., Montelpare, S.: A Parametric study and performance evaluation of energy retrofit solutions for buildings located in the hot-humid climate of paraguay—sensitivity analysis. Energies 12(3), 427 (2019). https://doi.org/10.3390/en12030427

    Article  Google Scholar 

  10. Silvero, F., Rodrigues, F., Montelpare, S., Spacone, E., Varum, H.: Reabilitação Energética de Um Edificio Patrimonial Do Centro Historico de Assunção. In: 6to Conferencia sobre Patologa e Reabilitacao de Edificios—PATORREB 2018, POLI/UFRJ-Cidade Universitaria, Rio de Janeiro, Brazil (2018)

    Google Scholar 

  11. Cohenca, D., Robledo, R.: Estudio de Alternativas Para Mejorar La Eficiencia Energética En Viviendas Unifamiliares Economicas. Caso: Departamento de Central. V Encuentro Nacional y III Encuentro Latino-Americano sobre Edificaciones y Comunidades Sustentables (2009)

    Google Scholar 

  12. Cohenca, D., Bieber, D.: Prototipo de Vivienda Social Bioclimática. In: II Jornadas de Investigación en Ingenieria del NEA y Paises Limítrofes, Resistencia Chaco—Argentina (2012)

    Google Scholar 

  13. Cohenca, D.: Alternativas Para Mejorar La Eficiencia Energética En Viviendas, Editorial Academica Española, Ed., OmniScriptum GmH and Co (2014)

    Google Scholar 

  14. López, V.: Avalação Termoenergetica Preliminar de Edificações Verticais Em Assunção. Capital Da Republica Do Paraguai, Universidade Federal de Mato Grosso do Sul (2015)

    Google Scholar 

  15. Sartorio, D., Robledo, R., Lopez, R.: Estudio Del Desempeño Termico de Vivienda Economica. Caso de Vivienda Unifamiliar Tipica de La Zona Aledaña Al Area Metropolitana de La Ciudad de Asunción. Investig. y Estud. la UNA 5(2), 245–258 (2010)

    Google Scholar 

  16. Secretary of the Environment of Paraguay (SEAM); United Nations Development Programme (UNDP); Global Environment Facility (GEF).: Tercera Comunicación Nacional de Paraguay a La Convención Marco de Las Naciones Unidas Sobre El Cambio Climático, Asuncion, Paraguay (2017)

    Google Scholar 

  17. Economic Commission for Latin America and the Caribbean [ECLAC].: La Economía Del Cambio Climático En El Paraguay (Climate Change Economy in Paraguay), United Nations Publication, Santiago de Chile (2014)

    Google Scholar 

  18. Secretary of the Environment of Paraguay (SEAM). Segunda Comunicación Nacional Cambio Climático Paraguay (Second National Communication on Climate Change Paraguay), Asuncion, Paraguay (2011). https://doi.org/1234564879745612

    Google Scholar 

  19. Centro para el desarrollo de la investigación cientifica [CEDIC]; Investigacion para el desarrollo [ID]. Evaluación de La Vulnerabilidad y La Capacidad Para Enfrentar a Los Desafíos y Oportunidades Del Cambio Climático En Paraguay—Escenario RCP 8.5 (Assessment of Vulnerability and Capacity to Face the Challenges and Opportunities of Climate Change in Parag. pp. 41. Conacyt, Prociencia (2016)

    Google Scholar 

  20. Silvero, F., Lops, C., Montelpare, S., Rodrigues, F.: Impact assessment of climate change on buildings in paraguay — overheating risk under different future climate scenarios. Build. Simul. 12(6), 943–960 (2019). https://doi.org/10.1007/s12273-019-0532-6.

  21. European Committee for Standardization (CEN).: EN 15251: Indoor environmental input parameters for the design and assessment of energy performance of buildings. European Comission 2014, pp 1–81. https://doi.org/CEN/TC156WG19-N77.STDVersion2.1c.

    Google Scholar 

  22. Carlucci, S., Bai, L., de Dear, R., Yang, L.: Review of adaptive thermal comfort models in built environmental regulatory documents. Build. Environ. 137, 73–89 (2018). https://doi.org/10.1016/j.buildenv.2018.03.053

    Article  Google Scholar 

  23. Alves, C.A., Duarte, D.H.S., Gonçalves, F.L.T.: Residential buildings’ thermal performance and comfort for the elderly under climate changes context in the city of São Paulo Brazil. Energy Build. 114, 62–71 (2016). https://doi.org/10.1016/j.enbuild.2015.06.044

    Article  Google Scholar 

  24. Figueiredo, A., Figueira, J., Vicente, R., Maio, R.: Thermal comfort and energy performance: sensitivity analysis to apply the passive house concept to the portuguese climate. Build. Environ. 103, 276–288 (2016). https://doi.org/10.1016/j.buildenv.2016.03.031

    Article  Google Scholar 

  25. Roetzel, A., Tsangrassoulis, A.: Impact of climate change on comfort and energy performance in offices. Build. Environ. 57, 349–361 (2012). https://doi.org/10.1016/j.buildenv.2012.06.002

    Article  Google Scholar 

  26. Figueiredo, A., Vicente, R., Lapa, J., Cardoso, C., Rodrigues, F., Kämpf, J.: Indoor thermal comfort assessment using different constructive solutions incorporating PCM. Appl. Energy 208, 1208–1221 (2017). https://doi.org/10.1016/j.apenergy.2017.09.032

    Article  Google Scholar 

  27. Roetzel, A., Tsangrassoulis, A., Dietrich, U.: Impact of building design and occupancy on office comfort and energy performance in different climates. Build. Environ. 71, 165–175 (2014). https://doi.org/10.1016/j.buildenv.2013.10.001

    Article  Google Scholar 

  28. Rubio-Bellido, C., Pérez-Fargallo, A., Pulido-Arcas, J.A., Trebilcock, M.: Application of adaptive comfort behaviors in chilean social housing standards under the influence of climate change. Build. Simul. 10(6), 933–947 (2017). https://doi.org/10.1007/s12273-017-0385-9

    Article  Google Scholar 

  29. Argentine Institute for Standardization and Certification (IRAM). IRAM 11604: Thermal insulation in buildings. Verification of their hygrothermical conditions. Saving heating energy. Volumetric coefficient of heat loss G. calculation and limit values. Buenos Aires, Argentina (2001)

    Google Scholar 

  30. Brazilian Association of Technical Standards (ABNT). NBR 15220: 1–5 “Thermal performance in buildings.” ABNT/CB-02- Comitê Brasileiro de Construção Civil, pp. 1–66, Rio de Janeiro (2003)

    Google Scholar 

  31. Secretary of the Environment of Paraguay (SEAM). Primera Comunicación Nacional a La Convención Marco de Las Naciones Unidas Sobre Cambio Climático, Portillo, L., Scribano, R., Britez, N., Valdovinos, V., Valiente, M., Peralta, V (eds.) AGR Servicios Graficos, Asuncion, Paraguay (2001)

    Google Scholar 

  32. Peel, M.C., Finlayson, B.L., McMahon, T.A.: Updated World map of the köppen-geiger climate classification. Hydrol. Earth Syst. Sci. Discuss. 4(2), 439–473 (2007). https://doi.org/10.5194/hessd-4-439-2007

    Article  Google Scholar 

  33. Rubel, F., Kottek, M.: Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorol. Zeitschrift 19(2), 135–141 (2010). https://doi.org/10.1127/0941-2948/2010/0430

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Silvero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silvero, F., Goiris, M., Montelpare, S., Rodrigues, F. (2021). Built Environment Resilience to Face Climate Change Effects In Paraguay’s Social Housing. In: Littlewood, J., Howlett, R.J., Jain, L.C. (eds) Sustainability in Energy and Buildings 2020. Smart Innovation, Systems and Technologies, vol 203. Springer, Singapore. https://doi.org/10.1007/978-981-15-8783-2_18

Download citation

Publish with us

Policies and ethics