Skip to main content

Environmental and Occupational Health Hazards of Nanomaterials in Construction Sites

  • Living reference work entry
  • First Online:
Handbook of Consumer Nanoproducts

Abstract

The use of nanomaterials has become increasing in the field of construction to enhance the structural strength of the building and to conserve energy. Besides the foreseeable advantages of nanoproducts, many of the nanotoxicology studies have revealed that the impacts on both health and environment are severe. As large amount of nanomaterials are used in construction sites, its adverse effects on workers’ health and environment have to be addressed. Risk assessment (RA) and life cycle assessment (LCA) are the effective tools which are used to quantify the risk of both workers and environment. The quantified risk value gives a clear picture about the hazards which made the environment to get depleted as well as the occupational risk of workers. The most promising technical recommendations are suggested in order to overcome the risk of nanoproducts which are used in construction sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Khandve P (2014) Nanotechnology for building material. Int J Basic Appl Res 4:146–151

    Google Scholar 

  2. Khitab A, Tausif Arshad M (2014) Nano construction materials. Rev Adv Mater Sci 38(2)

    Google Scholar 

  3. Mukhopadhyay AK (2011) Next-generation nano-based concrete construction products: a review. In: Nanotechnology in civil infrastructure. Springer, Berlin/Heidelberg, pp 207–223

    Chapter  Google Scholar 

  4. Li H, Xiao HG, Ou JP (2004) A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials. Cem Concr Res 34(3):435–438

    Article  Google Scholar 

  5. Li H, Xiao HG, Ou JP (2004) A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials. Cem Concr Res 34(3):435–438

    Article  Google Scholar 

  6. Qing Y, Zenan Z, Deyu K, Rongshen C (2007) Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr Build Mater 21(3):539–545

    Article  Google Scholar 

  7. Cardenas HE, Struble LJ (2006) Electrokinetic nanoparticle treatment of hardened cement paste for reduction of permeability. J Mater Civ Eng 18(4):554–560

    Article  CAS  Google Scholar 

  8. Feng Q, Liang CD, Liu GM (2004) Experimental study on cement-based composites with nano-SiO 2. Cailiao Kexue yu Gongcheng. Mater Sci Eng (China) 22:224–227

    CAS  Google Scholar 

  9. Jayapalan AR, Lee BY, Fredrich SM, Kurtis KE (2010) Influence of additions of anatase TiO2 nanoparticles on early-age properties of cement-based materials. Transp Res Rec 2141(1):41–46

    Article  CAS  Google Scholar 

  10. Li H, Zhang MH, Ou JP (2007) Flexural fatigue performance of concrete containing nano-particles for pavement. Int J Fatigue 29(7):1292–1301

    Article  CAS  Google Scholar 

  11. Li Z, Wang H, He S, Lu Y, Wang M (2006) Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite. Mater Lett 60(3):356–359

    Article  CAS  Google Scholar 

  12. Fan JJ, Tang JY, Cong LQ, Mcolm IJ (2004) Influence of synthetic nano-ZrO2 powder on the strength property of Portland cement. Jianzhu Cailiao Xuebao 7(4):462–467

    CAS  Google Scholar 

  13. Cervellati G, Rosa R (2006) Use of calcium carbonate particles with high surface area in production of plaster, cement, mortar and concrete. PCT Int Appl WO, 2006134080, 40

    Google Scholar 

  14. Sato T, Diallo F (2010) Seeding effect of nano-CaCO3 on the hydration of tricalcium silicate. Transp Res Rec 2141(1):61–67

    Article  CAS  Google Scholar 

  15. Bigley C, Greenwood P (2003) Using silica to control bleed and segregation in self-compacting concrete. Concrete (London) 37(2):43–45

    Google Scholar 

  16. Hussain CM (ed) (2018) Handbook of nanomaterials for industrial applications. Elsevier

    Google Scholar 

  17. Dham M, Rushing TS, Helferich R, Marth T, Sengupta S, Revur R et al (2010) Enhancement of reactive powder concrete via nano cement integration. Transp Res Rec 2142(1):18–24

    Article  CAS  Google Scholar 

  18. Hussain CM, Mishra AK (2018) Nanotechnology in environmental science, 2 vols (vol 1). Wiley

    Google Scholar 

  19. Li GY, Wang PM, Zhao X (2005) Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 43(6):1239–1245

    Article  CAS  Google Scholar 

  20. Hussain CM (ed) (2020) The ELSI handbook of nanotechnology: risk, safety, ELSI and commercialization. Wiley

    Google Scholar 

  21. Oliveira ML, Izquierdo M, Querol X, Lieberman RN, Saikia BK, Silva LF (2019) Nanoparticles from construction wastes: a problem to health and the environment. J Clean Prod 219:236–243

    Article  CAS  Google Scholar 

  22. Hussain CM (ed) (2020) Handbook of functionalized nanomaterials for industrial applications. Elsevier

    Google Scholar 

  23. Palit S, Hussain CM (2020) Modern manufacturing and nanomaterial perspective. In: Handbook of nanomaterials for manufacturing applications. Elsevier, pp 3–20

    Chapter  Google Scholar 

  24. Palit S, Hussain CM (2018) Engineered nanomaterial for industrial use. In: Handbook of nanomaterials for industrial applications. Elsevier, pp 3–12

    Chapter  Google Scholar 

  25. Hincapié I, Caballero-Guzman A, Hiltbrunner D, Nowack B (2015) Use of engineered nanomaterials in the construction industry with specific emphasis on paints and their flows in construction and demolition waste in Switzerland. Waste Manag 43:398–406

    Article  Google Scholar 

  26. Husin SNH, Mohamad AB, Abdullah SRS, Anuar N (2012) Chemical health risk assessment at the chemical and biochemical engineering laboratory. Procedia Soc Behav Sci 60:300–307

    Article  Google Scholar 

  27. Saedi AM, Thambirajah JJ, Pariatamby A (2014) A HIRARC model for safety and risk evaluation at a hydroelectric power generation plant. Saf Sci 70:308–315

    Article  Google Scholar 

  28. Pramoth R, Sudha S, Kalaiselvam S (2020) Resilience-based integrated process system Hazard analysis (RIPSHA) approach: application to a chemical storage area in an edible oil refinery. Process Saf Environ Prot 141:246–258

    Article  Google Scholar 

  29. Al-Anbari S, Khalina A, Alnuaimi A, Normariah A, Yahya A (2015) Risk assessment of safety and health (RASH) for building construction. Process Saf Environ Prot 94:149–158

    Article  CAS  Google Scholar 

  30. Díaz-Soler BM, Martínez-Aires MD, López-Alonso M (2019) Potential risks posed by the use of nano-enabled construction products: a perspective from coordinators for safety and health matters. J Clean Prod 220:33–44

    Article  Google Scholar 

  31. Musikaphan W, Kitisriworaphan T (2009) Possible impacts of nanoparticles on children of Thai construction industry. In: Nanotechnology in construction 3. Springer, Berlin, Heidelberg, pp 329–336

    Chapter  Google Scholar 

  32. Linkov I, Satterstrom FK, Steevens J, Ferguson E, Pleus RC (2007) Multi-criteria decision analysis and environmental risk assessment for nanomaterials. J Nanopart Res 9(4):543–554

    Article  Google Scholar 

  33. Linkov I, Satterstrom FK, Kiker G, Batchelor C, Bridges T, Ferguson E (2006) From comparative risk assessment to multi-criteria decision analysis and adaptive management: recent developments and applications. Environ Int 32(8):1072–1093

    Article  CAS  Google Scholar 

  34. Guidelines and Best Practices for Safe Handling of Nanomaterials in Research Laboratories and Industries (2012). Centre for knowledge management of nanoscience and technology, India

    Google Scholar 

  35. Amoabediny GH, Naderi A, Malakootikhah J, Koohi MK, Mortazavi SA, Naderi M, Rashedi H (2009, May) Guidelines for safe handling, use and disposal of nanoparticles. In: Journal of physics: conference series (vol 170, no. 1, pp 1–12). IOP Publishing

    Google Scholar 

  36. Dhingra R, Naidu S, Upreti G, Sawhney R (2010) Sustainable nanotechnology: through green methods and life-cycle thinking. Sustainability 2(10):3323–3338

    Article  Google Scholar 

  37. Jacobs R, Meesters JA, ter Braak CJ, van de Meent D, van der Voet H (2016) Combining exposure and effect modeling into an integrated probabilistic environmental risk assessment for nanoparticles. Environ Toxicol Chem 35(12):2958–2967

    Article  CAS  Google Scholar 

  38. Kabir E, Kumar V, Kim KH, Yip AC, Sohn JR (2018) Environmental impacts of nanomaterials. J Environ Manag 225:261–271

    Article  CAS  Google Scholar 

  39. Aitken RJ, Hankin SM, Ross B, Tran CL, Stone V, Fernandes TF et al (2009) EMERGNANO: a review of completed and near completed environment, health and safety research on nanomaterials and nanotechnology Defra Project CB0409. Institute of Occupational Medicine Report TM/09/01

    Google Scholar 

  40. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21(10):1166–1170

    Article  CAS  Google Scholar 

  41. Hristozov D, Malsch I (2009) Hazards and risks of engineered nanoparticles for the environment and human health. Sustainability 1(4):1161–1194

    Article  CAS  Google Scholar 

  42. Romero-Franco M, Godwin HA, Bilal M, Cohen Y (2017) Needs and challenges for assessing the environmental impacts of engineered nanomaterials (ENMs). Beilstein J Nanotechnol 8(1):989–1014

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Arumugaprabu .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ajith, S., Arumugaprabu, V. (2021). Environmental and Occupational Health Hazards of Nanomaterials in Construction Sites. In: Handbook of Consumer Nanoproducts. Springer, Singapore. https://doi.org/10.1007/978-981-15-6453-6_66-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6453-6_66-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6453-6

  • Online ISBN: 978-981-15-6453-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics