Skip to main content

Nanoproducts: Biomedical, Environmental, and Energy Applications

  • Living reference work entry
  • First Online:
Handbook of Consumer Nanoproducts

Abstract

The word “nano,” derived from the Greek word nanos meaning “dwarf,” is now being extensively used not only by the scientific community but also by a common man in daily life. Many “nano-” words (nanometer, nanoscience, nanotechnology, nanoscale) can be easily found in dictionaries, and some recent additions are nanostructure, nanomaterial, nanoproduct, nanorobot, nanowire, nanodevices, nanoarrays, and nanotools, and the list is endless. The developments and advances in the field of nanoscience and nanotechnology have made life uber easy in this era. Nanotechnology represents an emerging field which deals with the designing, manufacturing, and application of materials at the atomic and molecular scale. These materials exhibit novel properties and functions with structural features having at least one dimension in the nanometer scale (1–100 nm). The important role and application of nanotechnology in almost every field of science is quite evident by large number of research papers published in this area.

Nanotechnology paved way to the development of new innovative materials, systems, and devices which seem to have promising results and potential to tackle most of the problems the world is facing today. It has benefitted almost every field of science including chemistry, biology, physics, material science, engineering, environmental science, food and agriculture, medicine, and information technology. This emerging research field has given new perspectives or solutions to many environmental problems like availability of clean water, nanocatalyst for hydrogen generation, dental materials, drug delivery systems, antimicrobial nano powders, nanosensors for detection of pathogens or toxic materials, gas-separation nanodevices, and many more. In recent years, it has also been applied to medicine and healthcare for the development of nanodevices to prevent, monitor, and treat lethal diseases, and promising results are achieved especially in the cancer treatment. Although the advancements and innovations in this field have significantly improved the standard of living, nevertheless, there are associated concerns and uncertainties about its impact on human health. These concerns can be overcome by utilizing the concepts of green chemistry and green engineering to produce nanomaterials and nanoproducts, which can significantly contribute toward novel discoveries and developments without causing detrimental effects on environment and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23:22–36

    Google Scholar 

  2. Taniguchi N, Arakawa C, Kobayashi T (1974) On the basic concept of nano-technology. In Proceedings of the International Conference on Production Engineering

    Google Scholar 

  3. Abdolmaleki A, Mallakpour S, Karshenas A (2017) Synthesis and characterization of new nanocomposites films using alanine-Cu-functionalized graphene oxide as nanofiller and PVA as polymeric matrix for improving of their properties. J Solid State Chem 253:398–405

    Article  CAS  Google Scholar 

  4. Subramanian V, Semenzin E, Hristozov D, Zondervan-van den Beuken E, Linkov I, Marcomini A (2015) Review of decision analytic tools for sustainable nanotechnology. Environ Syst Decis 35(1):29–41

    Article  Google Scholar 

  5. Hussain CM (ed) (2020) The ELSI handbook of nanotechnology: risk, safety, ELSI and commercialization. John Wiley & Sons

    Google Scholar 

  6. Miseljic M, Olsen SI (2014) Life-cycle assessment of engineered nanomaterials: a literature review of assessment status. J Nanopart Res 16(6):2427

    Article  CAS  Google Scholar 

  7. Moller M, Gros R, Moch K, Prakash S, Hermann A, Pistner C, ... Spieth-Achtnich-Spieth A (2012) Analysis and Strategic Management of Nanoproducts with Regard to Their Sustainability Potential. Nano-Sustainability Check. Umweltbundesamt

    Google Scholar 

  8. www.nanodb.dk

  9. Hansen SF, Heggelund LR, Besora PR, Mackevica A, Boldrin A, Baun A (2016) Nanoproducts–what is actually available to European consumers? Environ Sci Nano 3(1):169–180

    Article  CAS  Google Scholar 

  10. www.StatNano.com

  11. Graczyk A, Pawlowska R, Jedrzejczyk D, Chworos A (2020) Gold nanoparticles in conjunction with nucleic acids as a modern molecular system for cellular delivery. Molecules 25(1):204

    Article  CAS  Google Scholar 

  12. Zhang XF, Liu ZG, Shen W, Gurunathan S (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17(9):1534

    Article  CAS  Google Scholar 

  13. Bhowmick A, Jana P, Pramanik N, Mitra T, Banerjee SL, Gnanamani A et al (2016) Multifunctional zirconium oxide doped chitosan based hybrid nanocomposites as bone tissue engineering materials. Carbohydr Polym 151:879–888

    Article  CAS  Google Scholar 

  14. Mottaghitalab F, Farokhi M, Mottaghitalab V, Ziabari M, Divsalar A, Shokrgozar MA (2011) Enhancement of neural cell lines proliferation using nano-structured chitosan/poly (vinyl alcohol) scaffolds conjugated with nerve growth factor. Carbohydr Polym 86(2):526–535

    Article  CAS  Google Scholar 

  15. www.indiawaterportal.org

  16. Yang D, Sarina S, Zhu H, Liu H, Zheng Z, Xie M et al (2011) Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes. Angew Chem Int Ed 50(45):10594–10598

    Article  CAS  Google Scholar 

  17. Heiranian M, Farimani AB, Aluru NR (2015) Water desalination with a single-layer MoS2 nanopore. Nat Commun 6(1):1–6

    Article  CAS  Google Scholar 

  18. Kou J, Yao J, Wu L, Zhou X, Lu H, Wu F, Fan J (2016) Nanoporous two-dimensional MoS2 membranes for fast saline solution purification. Phys Chem Chem Phys 18(32):22210–22216

    Article  CAS  Google Scholar 

  19. Christensen FM, Brinch A, Kjølholt J, Mines PD, Schumacher N, Jørgensen TH, Hummelshøj M (2015) Nano-enabled environmental products and technologies-opportunities and drawbacks. Miljøprojekt nr 1803:2015

    Google Scholar 

  20. Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176(1):1–12

    Article  CAS  Google Scholar 

  21. Verma P, Maheshwari SK (2019) Applications of silver nanoparticles in diverse sectors. Int J Nano Dimens 10(1):18–36

    CAS  Google Scholar 

  22. Birmele M, Roberts M, McCoy L (2011, July) Disinfection of spacecraft potable water systems by passivation with ionic silver. In 41st International conference on environmental systems (p. 5278)

    Google Scholar 

  23. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  CAS  Google Scholar 

  24. Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34(1):43–69

    Article  CAS  Google Scholar 

  25. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602

    Article  CAS  Google Scholar 

  26. Mallakpour S, Khadem E (2019) Chapter 8 carbon nanotubes for heavy metals removal. In: Kyzas G, Mitrpoulos AC (eds) Composite Nanoadsorbents. Elsevier, Amsterdam, pp 181–210

    Chapter  Google Scholar 

  27. Li YH, Ding J, Luan Z, Di Z, Zhu Y, Xu C et al (2003) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41(14):2787–2792

    Article  CAS  Google Scholar 

  28. Gunawan P, Guan C, Song XH, Zhang QY, Leong SSJ, Tang CY, Chen Y, Chan-Park MB, Chang MW, Wang KA, Xu R (2011) Hollow Fiber membrane decorated with ag/MWNTs: toward effective water disinfection and biofouling control. ACS Nano 5(12):10033–10040

    Article  CAS  Google Scholar 

  29. Ding L, Zheng Y (2007) Nanocrystalline zeolite beta: the effect of template agent on crystal size. Mater Res Bull 42(3):584–590

    Article  CAS  Google Scholar 

  30. Vogel B, Schneider C, Klemm E (2002) The synthesis of cresol from toluene and N2O on H [Al] ZSM-5: minimizing the product diffusion limitation by the use of small crystals. Catal Lett 79(1–4):107–112

    Article  CAS  Google Scholar 

  31. Pal P (2017) Industrial water treatment process technology. Butterworth-Heinemann

    Google Scholar 

  32. Alvarez-Ayuso E, Garcıa-Sánchez A, Querol X (2003) Purification of metal electroplating waste waters using zeolites. Water Res 37(20):4855–4862

    Article  CAS  Google Scholar 

  33. Yeritsyan H, Sahakyan A, Harutyunyan V, Nikoghosyan S, Hakhverdyan E, Grigoryan N et al (2013) Radiation-modified natural zeolites for cleaning liquid nuclear waste (irradiation against radioactivity). Sci Rep 3:2900

    Article  Google Scholar 

  34. Laskar K, Rauf A (2017) Chitosan based nanoparticles towards biomedical applications. J Nanomed Res 5(2):00112

    Google Scholar 

  35. Bhatnagar A, Sillanpää M (2009) Applications of chitin-and chitosan-derivatives for the detoxification of water and wastewater-a short review. Adv Colloid Interf Sci 152(1–2):26–38

    Article  CAS  Google Scholar 

  36. Mohammad AM, Eldin TAS, Hassan MA, El-Anadouli BE (2017) Efficient treatment of lead-containing wastewater by hydroxyapatite/chitosan nanostructures. Arab J Chem 10(5):683–690

    Article  CAS  Google Scholar 

  37. Dave PN, Chopda LV (2014) Application of iron oxide nanomaterials for the removal of heavy metals. J Nanotechnol 2014

    Google Scholar 

  38. Vélez E, Campillo G E, Morales G, Hincapié C, Osorio J, Arnache O, ... Jaramillo F (2016, February) Mercury removal in wastewater by iron oxide nanoparticles. In J Phys Conf Ser 687, p. 012050)

    Google Scholar 

  39. Singh KK, Senapati KK, Sarma KC (2017) Synthesis of superparamagnetic Fe3O4 nanoparticles coated with green tea polyphenols and their use for removal of dye pollutant from aqueous solution. J Environ Chem Eng 5(3):2214–2221

    Article  CAS  Google Scholar 

  40. Es’haghzade Z, Pajootan E, Bahrami H, Arami M (2017) Facile synthesis of Fe3O4 nanoparticles via aqueous based electro chemical route for heterogeneous electro-Fenton removal of azo dyes. J Taiwan Inst Chem Eng 71:91–105

    Article  CAS  Google Scholar 

  41. Angamuthu M, Satishkumar G, Landau MV (2017) Precisely controlled encapsulation of Fe3O4 nanoparticles in mesoporous carbon nanodisk using iron based MOF precursor for effective dye removal. Microporous Mesoporous Mater 251:58–68

    Article  CAS  Google Scholar 

  42. Barakat MA, Al-Hutailah RI, Qayyum E, Rashid J, Kuhn JN (2014) Pt nanoparticles/TiO2 for photocatalytic degradation of phenols in wastewater. Environ Technol 35(2):137–144

    Article  CAS  Google Scholar 

  43. Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1

    Article  Google Scholar 

  44. Pena ME, Korfiatis GP, Patel M, Lippincott L, Meng X (2005) Adsorption of As (V) and As (III) by nanocrystalline titanium dioxide. Water Res 39(11):2327–2337

    Article  CAS  Google Scholar 

  45. Chobba MB, Messaoud M, Weththimuni ML, Bouaziz J, Licchelli M, De Leo F, Urzì C (2019) Preparation and characterization of photocatalytic Gd-doped TiO2 nanoparticles for water treatment. Environ Sci Pollut Res 26(32):32734–32745

    Article  CAS  Google Scholar 

  46. Salehi S, Niaei A, Hosseini SA, Salari D, Raeisipour J, Seifi A (2020) Chromite spinel nanocatalysts: promising photocatalysts for CO pollutant removal from the air. Appl Nanosci:1–14

    Google Scholar 

  47. Bhawana P, Fulekar M (2012) Nanotechnology: remediation technologies to clean up the environmental pollutants. Res J Chem Sci 2(2):90–96

    Google Scholar 

  48. Uchida T, Ohashi O, Kawamoto H, Yoshimura H, Kobayashi KI, Tanimura M et al (2006) Synthesis of single-wall carbon nanotubes from diesel soot. Jpn J Appl Phys 45(10R):8027

    Article  CAS  Google Scholar 

  49. https://www.understandingnano.com/air.html

  50. Sharmin R, Ray MB (2012) Application of ultraviolet light-emitting diode photocatalysis to remove volatile organic compounds from indoor air. J Air Waste Manage Assoc 62(9):1032–1039

    Article  CAS  Google Scholar 

  51. Sung WP, Tsai TT, Wu MJ, Wang HJ, Surampalli RY (2011) Removal of indoor airborne bacteria by nano-ag/TiO2 as photocatalyst: feasibility study in museum and nursing institutions. J Environ Eng 137(3):163–170

    Article  CAS  Google Scholar 

  52. United Nations, Department of Economic and Social Affairs, Population Division (2015) World population prospects: the 2015 revision. key findings and advance tables. New York, USA

    Google Scholar 

  53. Manjunatha SB, Biradar DP, Aladakatti YR (2016) Nanotechnology and its applications in agriculture: a review. J Farm Sci 29(1):1–13

    Google Scholar 

  54. www.pib.gov.in

  55. Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13(3):214–231

    Article  CAS  Google Scholar 

  56. Kwak SY, Wong MH, Lew TTS, Bisker G, Lee MA, Kaplan A et al (2017) Nanosensor technology applied to living plant systems. Annu Rev Anal Chem 10:113–140

    Article  Google Scholar 

  57. Cheng HN, Klasson KT, Asakura T, Wu Q (2016) In nanotechnology: delivering on the Promise Vol. 2. In ACS Symposium Series, Am. Chem. Soc (pp 233–242)

    Google Scholar 

  58. Miller JB, Zhang S, Kos P, Xiong H, Zhou K, Perelman SS et al (2017) Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew Chem Int Ed 56(4):1059–1063

    Article  CAS  Google Scholar 

  59. Kim DH, Gopal J, Sivanesan I (2017) Nanomaterials in plant tissue culture: the disclosed and undisclosed. RSC Adv 7(58):36492–36505

    Article  CAS  Google Scholar 

  60. Zhang M, Gao B, Chen J, Li Y, Creamer AE, Chen H (2014) Slow-release fertilizer encapsulated by graphene oxide films. Chem Eng J 255:107–113

    Article  CAS  Google Scholar 

  61. Dubey A, Mailapalli DR (2016) Nanofertilisers, nanopesticides, nanosensors of pest and nanotoxicity in agriculture. In: Sustainable agriculture reviews. Springer, Cham, pp 307–330

    Chapter  Google Scholar 

  62. Shojaei TR, Salleh MAM, Tabatabaei M, Mobli H, Aghbashlo M, Rashid SA, Tan T (2019).Applications of nanotechnology and carbon nanoparticles in agriculture. In Synthesis, Technology and Applications of Carbon Nanomaterials (pp 247–277). Elsevier

    Google Scholar 

  63. Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC et al (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13(1):37

    Article  Google Scholar 

  64. Yousefzadeh S, Sabaghnia N (2016) Nano-iron fertilizer effects on some plant traits of dragonhead (Dracocephalum moldavica L.) under different sowing densities. Acta Agric Slovenica 107(2):429–437

    Article  Google Scholar 

  65. Subramanian KS, Rajkishore SK (2018) Regulatory Framework for Nanomaterials in Agri-Food Systems. In Nanomaterials: Ecotoxicity, Safety, and Public Perception (pp. 319–342). Springer, Cham

    Google Scholar 

  66. www.dbtindia.gov.in

  67. Tala-Ighil R (2015) Nanomaterials in solar cells. Handbook of Nanoelectrochemistry:1–18

    Google Scholar 

  68. Garnett E, Yang P (2010) Light trapping in silicon nanowire solar cells. Nano Lett 10(3):1082–1087

    Article  CAS  Google Scholar 

  69. Miao X, Pan K, Pan Q, Zhou W, Wang L, Liao Y et al (2013) Highly crystalline graphene/carbon black composite counter electrodes with controllable content: synthesis, characterization and application in dye-sensitized solar cells. Electrochim Acta 96:155–163

    Article  CAS  Google Scholar 

  70. Lamberti A, Garino N, Sacco A, Bianco S, Manfredi D, Gerbaldi C (2013) Vertically aligned TiO2 nanotube array for high rate Li-based micro-battery anodes with improved durability. Electrochim Acta 102:233–239

    Article  CAS  Google Scholar 

  71. Saravanan S, Kato R, Balamurugan M, Kaushik S, Soga T (2017) Efficiency improvement in dye sensitized solar cells by the plasmonic effect of green synthesized silver nanoparticles. J Sci: Adv Mater Devices 2(4):418–424

    Google Scholar 

  72. Notarianni M, Vernon K, Chou A, Aljada M, Liu J, Motta N (2014) Plasmonic effect of gold nanoparticles in organic solar cells. Sol Energy 106:23–37

    Article  CAS  Google Scholar 

  73. Mahbubul IM, Khan MMA, Ibrahim NI, Ali HM, Al-Sulaiman FA, Saidur RJRE (2018) Carbon nanotube nanofluid in enhancing the efficiency of evacuated tube solar collector. Renew Energy 121:36–44

    Article  CAS  Google Scholar 

  74. Yousefi T, Veysi F, Shojaeizadeh E, Zinadini S (2012) An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renew Energy 39(1):293–298

    Article  CAS  Google Scholar 

  75. Otanicar TP, Phelan PE, Prasher RS, Rosengarten G, Taylor RA (2010) Nanofluid-based direct absorption solar collector. J. Renew Sust Energ 2(3):033102

    Article  CAS  Google Scholar 

  76. Serrano E, Rus G, Garcia-Martinez J (2009) Nanotechnology for sustainable energy. Renew Sust Energ Rev 13(9):2373–2384

    Article  CAS  Google Scholar 

  77. Sony (2005) Sony’s new Nexelion hybrid lithium ion batteries to have thirty-percent more capacity than conventional offering, 2005. https://www.sony.net/SonyInfo/News/Press/200502/05-006E/

  78. https://www.understandingnano.com/batteries.html

  79. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  CAS  Google Scholar 

  80. Dai L, Chang DW, Baek JB, Lu W (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 8(8):1130–1166

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikha Kaushik .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kaushik, S. (2021). Nanoproducts: Biomedical, Environmental, and Energy Applications. In: Handbook of Consumer Nanoproducts. Springer, Singapore. https://doi.org/10.1007/978-981-15-6453-6_63-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6453-6_63-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6453-6

  • Online ISBN: 978-981-15-6453-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics