Skip to main content

Nanotechnology for Personalized Medicine

  • Living reference work entry
  • First Online:
Nanomedicine

Part of the book series: Micro/Nano Technologies ((MNT))

  • 61 Accesses

Abstract

Personalized medicine, also known as precision medicine, redefines current clinical practice by altering treatments to account for patient heterogeneity that collectively results from genetic, phenotypic, or psychologic variation. This concept dispenses with the “one size fit all” treatment regimen of traditional medicine and instead embraces the requirement for personalized care tailored to an individual’s specific healthcare needs. Nanotechnology is used in conjunction with advanced tools such as genomics, metabolomics, and proteomics to achieve more personalized therapeutic, diagnostic, and theranostic strategies. The chapter first introduces the transformative concept of personalized medicine, as well as the omics tools that serve as the critical driving forces for this paradigm. The chapter transitions to describe and discuss breakthrough advances in nanotechnology, with specific emphasis on commonly employed nanoparticles and nanostructures, for enhancing the clinical practice of personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. National Research Council (2011) Toward precision medicine: building a knowledge network for biomedical research and a new taxonomy of disease. National Academies Press

    Google Scholar 

  2. Jameson JL, Longo DL (2015) Precision medicine – personalized, problematic, and promising. Obstet Gynecol Surv 70(10):612–614

    Article  Google Scholar 

  3. Schork NJ (2015) Personalized medicine: time for one-person trials. Nature 520(7549):609–611

    Article  Google Scholar 

  4. Ashley EA (2016) Towards precision medicine. Nat Rev Genet 17(9):507

    Article  Google Scholar 

  5. Beger RD et al (2016) Metabolomics enables precision medicine: “a white paper, community perspective”. Metabolomics 12(9):149

    Article  Google Scholar 

  6. Taylor BS et al (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18(1):11–22

    Article  Google Scholar 

  7. Karczewski KJ, Snyder MP (2018) Integrative omics for health and disease. Nat Rev Genet 19(5):299

    Article  Google Scholar 

  8. Novelli G (2010) Personalized genomic medicine. Intern Emerg Med 5(1):81–90

    Article  Google Scholar 

  9. Haga SB et al (2011) Genomic risk profiling: attitudes and use in personal and clinical care of primary care physicians who offer risk profiling. J Gen Intern Med 26(8):834–840

    Article  Google Scholar 

  10. Mihaescu R et al (2011) Genetic risk profiling for prediction of type 2 diabetes. PLoS Curr:3

    Google Scholar 

  11. Sismani C, Koufaris C, Voskarides K (2015) Copy number variation in human health, disease and evolution. In: Genomic elements in health, disease and evolution. Springer, pp 129–154

    Chapter  Google Scholar 

  12. Jain KK (2010) Innovative diagnostic technologies and their significance for personalized medicine. Mol Diagn Ther 14(3):141–147

    Article  Google Scholar 

  13. Nasedkina TV et al (2009) Diagnostic microarrays in hematologic oncology. Mol Diagn Ther 13(2):91–102

    Article  Google Scholar 

  14. Yu X, Schneiderhan-Marra N, Joos TO (2010) Protein microarrays for personalized medicine. Clin Chem 56(3):376–387

    Article  Google Scholar 

  15. Legrain P et al (2011) The human proteome project: current state and future direction. Mol Cell Proteomics 10(7)

    Google Scholar 

  16. Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54(1):669–689

    Article  Google Scholar 

  17. Hollywood K, Brison DR, Goodacre R (2006) Metabolomics: current technologies and future trends. Proteomics 6(17):4716–4723

    Article  Google Scholar 

  18. Mohamadi MR et al (2006) Nanotechnology for genomics & proteomics. Nano Today 1(1):38–45

    Article  Google Scholar 

  19. Kobeissy FH et al (2014) Post-genomics nanotechnology is gaining momentum: nanoproteomics and applications in life sciences. OMICS J Integr Biol 18(2):111–131

    Article  Google Scholar 

  20. Herrmann IK, Rösslein M (2016) Personalized medicine: the enabling role of nanotechnology. Future Med

    Google Scholar 

  21. Heimeriks G (2013) Interdisciplinarity in biotechnology, genomics and nanotechnology. Sci Public Policy 40(1):97–112

    Article  Google Scholar 

  22. Coccia M (2012) Converging genetics, genomics and nanotechnologies for groundbreaking pathways in biomedicine and nanomedicine. Int J Healthc Technol Manag 13(4):184–197

    Article  Google Scholar 

  23. Cooper JM, Johannessen EA, Cumming DR (2004) Bridging the gap between micro and nanotechnology: using lab-on-a-chip to enable nanosensors for genomics, proteomics, and diagnostic screening. In: IFIP international conference on network and parallel computing. Springer

    Google Scholar 

  24. Mei Z, Tang L (2017) Surface-plasmon-coupled fluorescence enhancement based on ordered gold nanorod array biochip for ultrasensitive DNA analysis. Anal Chem 89(1):633–639

    Article  Google Scholar 

  25. Shrestha B, Tang L, Romero G (2019) Nanoparticles-mediated combination therapies for cancer treatment. Adv Ther 2(11):1900076

    Article  Google Scholar 

  26. Akhter F et al (2021) Assessment and modeling of plasmonic photothermal therapy delivered via a fiberoptic microneedle device ex vivo. Pharmaceutics 13(12):2133

    Article  Google Scholar 

  27. Akhter F et al (2020) Mechanical characterization of a fiberoptic microneedle device for controlled delivery of fluids and photothermal excitation. J Mech Behav Biomed Mater 112:104042

    Article  Google Scholar 

  28. Syedmoradi L et al (2017) Point of care testing: the impact of nanotechnology. Biosens Bioelectron 87:373–387

    Article  Google Scholar 

  29. Faraji AH, Wipf P (2009) Nanoparticles in cellular drug delivery. Bioorg Med Chem 17(8):2950–2962

    Article  Google Scholar 

  30. Scaletti F et al (2018) Protein delivery into cells using inorganic nanoparticle–protein supramolecular assemblies. Chem Soc Rev 47(10):3421–3432

    Article  Google Scholar 

  31. Deodhar GV, Adams ML, Trewyn BG (2017) Controlled release and intracellular protein delivery from mesoporous silica nanoparticles. Biotechnol J 12(1):1600408

    Article  Google Scholar 

  32. Zhou Y et al (2018) Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm Sin B 8(2):165–177

    Article  Google Scholar 

  33. Hwang JY, Li Z, Loh XJ (2016) Small molecule therapeutic-loaded liposomes as therapeutic carriers: from development to clinical applications. RSC Adv 6(74):70592–70615

    Article  Google Scholar 

  34. Karimi M et al (2016) Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 45(5):1457–1501

    Article  Google Scholar 

  35. Lombardo D, Kiselev MA, Caccamo MT (2019) Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater 2019

    Google Scholar 

  36. Shrestha B et al (2021) Smart nanoparticles for chemo-based combinational therapy. Pharmaceutics 13(6):853

    Article  Google Scholar 

  37. Uthaman S, Huh KM, Park I-K (2018) Tumor microenvironment-responsive nanoparticles for cancer theragnostic applications. Biomater Res 22(1):22

    Article  Google Scholar 

  38. Nam KC et al (2020) Photo-Functionalized Magnetic Nanoparticles as a Nanocarrier of Photodynamic Anticancer Agent for Biomedical Theragnostics. Cancer 12(3):571

    Article  Google Scholar 

  39. Piñeiro Y et al (2020) Hybrid nanostructured magnetite nanoparticles: from bio-detection and theragnostics to regenerative medicine. Magnetochemistry 6(1):4

    Article  Google Scholar 

  40. Duan S et al (2017) NIR-responsive polycationic gatekeeper-cloaked hetero-nanoparticles for multimodal imaging-guided triple-combination therapy of cancer. Small 13(9):1603133

    Article  Google Scholar 

  41. Xu C et al (2020) Polymer–mesoporous silica nanoparticle core–shell nanofibers as a dual-drug-delivery system for guided tissue regeneration. ACS Appl Nano Mater 3(2):1457–1467

    Article  Google Scholar 

  42. Kulkarni SA, Feng S-S (2013) Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res 30(10):2512–2522

    Article  Google Scholar 

  43. He C et al (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31(13):3657–3666

    Article  Google Scholar 

  44. Pantarotto D et al (2004) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed 43(39):5242–5246

    Article  Google Scholar 

  45. Elhissi A et al (2012) Carbon nanotubes in cancer therapy and drug delivery. J Drug Deliv

    Google Scholar 

  46. Antonelli A et al (2010) Improved cellular uptake of functionalized single-walled carbon nanotubes. Nanotechnology 21(42):425101

    Article  Google Scholar 

  47. Fröhlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 7:5577

    Article  Google Scholar 

  48. Nafee N et al (2009) Relevance of the colloidal stability of chitosan/PLGA nanoparticles on their cytotoxicity profile. Int J Pharm 381(2):130–139

    Article  Google Scholar 

  49. Jung SH et al (2009) Polyethylene glycol-complexed cationic liposome for enhanced cellular uptake and anticancer activity. Int J Pharm 382(1–2):254–261

    Article  Google Scholar 

  50. Papahadjopoulos D et al (1991) Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci 88(24):11460–11464

    Article  Google Scholar 

  51. Mariotto AB et al (2011) Projections of the cost of cancer care in the United States: 2010–2020. J Natl Cancer Inst 103(2):117–128

    Article  Google Scholar 

  52. Dharap S et al (2005) Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide. Proc Natl Acad Sci 102(36):12962–12967

    Article  Google Scholar 

  53. Chen C et al (2017) Peptide-22 and cyclic RGD functionalized liposomes for glioma targeting drug delivery overcoming BBB and BBTB. ACS Appl Mater Interfaces 9(7):5864–5873

    Article  Google Scholar 

  54. Miao D et al (2020) Facile construction of i-motif DNA-conjugated gold nanostars as near-infrared and pH dual-responsive targeted drug delivery systems for combined cancer therapy. Mol Pharm 17(4):1127–1138

    Article  Google Scholar 

  55. Hicke BJ et al (2006) Tumor targeting by an aptamer. J Nucl Med 47(4):668–678

    Google Scholar 

  56. Zununi Vahed S et al (2019) Targeted cancer drug delivery with aptamer-functionalized polymeric nanoparticles. J Drug Target 27(3):292–299

    Article  Google Scholar 

  57. Canakci MO, Thayumanavan S, Osborne BA (2017) Engineering of antibody conjugated nanogel platform for targeted drug delivery to CD4+ T lymphocytes. J Immnol 198

    Google Scholar 

  58. Cherkasov VR et al (2020) Antibody-directed metal-organic framework nanoparticles for targeted drug delivery. Acta Biomater 103:223–236

    Article  Google Scholar 

  59. Ventola CL (2017) Progress in nanomedicine: approved and investigational nanodrugs. Pharm Ther 42(12):742

    Google Scholar 

  60. Anselmo AC, Mitragotri S (2019) Nanoparticles in the clinic: an update. Bioeng Transl Med 4(3):e10143

    Article  Google Scholar 

  61. Jaggarapu MMCS et al (2020) NGRKC16-lipopeptide assisted liposomal-withaferin delivery for efficient killing of CD13 receptor-expressing pancreatic cancer and angiogenic endothelial cells. J Drug Deliv Sci Technol:101798

    Google Scholar 

  62. Kang S et al (2020) Muscone/RI7217 co-modified upward messenger DTX liposomes enhanced permeability of blood-brain barrier and targeting glioma. Theranostics 10(10):4308

    Article  Google Scholar 

  63. Lin C et al (2018) Dual-ligand modified liposomes provide effective local targeted delivery of lung-cancer drug by antibody and tumor lineage-homing cell-penetrating peptide. Drug Deliv 25(1):256–266

    Article  Google Scholar 

  64. Zhao Z et al (2019) Dual-active targeting liposomes drug delivery system for bone metastatic breast cancer: synthesis and biological evaluation. Chem Phys Lipids 223:104785

    Article  Google Scholar 

  65. Tambe P et al (2018) Decapeptide functionalized targeted mesoporous silica nanoparticles with doxorubicin exhibit enhanced apoptotic effect in breast and prostate cancer cells. Int J Nanomedicine 13:7669

    Article  Google Scholar 

  66. Qu Q, Ma X, Zhao Y (2016) Anticancer effect of α-tocopheryl succinate delivered by mitochondria-targeted mesoporous silica nanoparticles. ACS Appl Mater Interfaces 8(50):34261–34269

    Article  Google Scholar 

  67. Wu X et al (2016) Targeted mesoporous silica nanoparticles delivering arsenic trioxide with environment sensitive drug release for effective treatment of triple negative breast cancer. ACS Biomater Sci Eng 2(4):501–507

    Article  Google Scholar 

  68. Er Ö et al (2018) Selective photokilling of human pancreatic cancer cells using cetuximab-targeted mesoporous silica nanoparticles for delivery of zinc phthalocyanine. Molecules 23(11):2749

    Article  Google Scholar 

  69. Ahir M et al (2020) Delivery of dual miRNA through CD44-targeted mesoporous silica nanoparticles for enhanced and effective triple-negative breast cancer therapy. Biomater Sci 8(10):2939–2954

    Article  Google Scholar 

  70. Luo M et al (2019) Systematic evaluation of transferrin-modified porous silicon nanoparticles for targeted delivery of doxorubicin to glioblastoma. ACS Appl Mater Interfaces 11(37):33637–33649

    Article  Google Scholar 

  71. Yan H et al (2020) Preparation of RGD peptide/folate acid double-targeted mesoporous silica nanoparticles and its application in human breast cancer MCF-7 Cells. Front Pharmacol 11:898

    Article  Google Scholar 

  72. Masood F (2016) Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C 60:569–578

    Article  Google Scholar 

  73. Shrestha B et al (2020) Gold nanoparticles mediated drug-gene combinational therapy for breast cancer treatment. Int J Nanomedicine 15:8109–8119

    Article  Google Scholar 

  74. Antoniraj MG et al (2018) Cytocompatible chitosan-graft-mPEG-based 5-fluorouracil-loaded polymeric nanoparticles for tumor-targeted drug delivery. Drug Dev Ind Pharm 44(3):365–376

    Article  Google Scholar 

  75. Baião A et al (2020) Effective intracellular delivery of bevacizumab via PEGylated polymeric nanoparticles targeting the CD44v6 receptor in colon cancer cells. Biomaterials. Science

    Google Scholar 

  76. Han Z et al (2020) Improving tumor targeting of exosomal membrane-coated polymeric nanoparticles by conjugation with aptamers. ACS Appl Bio Mater 3(5):2666–2673

    Article  Google Scholar 

  77. Pan D et al (2016) The effect of polymeric nanoparticles on biocompatibility of carrier red blood cells. PLoS One 11(3):e0152074

    Article  Google Scholar 

  78. Kong M et al (2020) pH-responsive polymeric nanoparticles with tunable sizes for targeted drug delivery. RSC Adv 10(9):4860–4868

    Article  Google Scholar 

  79. Hyun H et al (2020) Optimization of cRGDfK ligand concentration on polymeric nanoparticles to maximize cancer targeting. J Ind Eng Chem 81:178–184

    Article  Google Scholar 

  80. Mathew ME et al (2010) Folate conjugated carboxymethyl chitosan–manganese doped zinc sulphide nanoparticles for targeted drug delivery and imaging of cancer cells. Carbohydr Polym 80(2):442–448

    Article  Google Scholar 

  81. You C et al (2018) Synthesis and biological evaluation of redox/NIR dual stimulus-responsive polymeric nanoparticles for targeted delivery of cisplatin. Mater Sci Eng C 92:453–462

    Article  Google Scholar 

  82. Zheng S et al (2020) Graphene quantum dots-decorated hollow copper sulfide nanoparticles for controlled intracellular drug release and enhanced photothermal-chemotherapy. J Mater Sci 55(3):1184–1197

    Article  Google Scholar 

  83. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  Google Scholar 

  84. Kayal S, Ramanujan R (2010) Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater Sci Eng C 30(3):484–490

    Article  Google Scholar 

  85. Chomoucka J et al (2010) Magnetic nanoparticles and targeted drug delivering. Pharmacol Res 62(2):144–149

    Article  Google Scholar 

  86. Liang P-C et al (2016) Doxorubicin-modified magnetic nanoparticles as a drug delivery system for magnetic resonance imaging-monitoring magnet-enhancing tumor chemotherapy. Int J Nanomedicine 11:2021

    Google Scholar 

  87. Unsoy G et al (2014) Synthesis of doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur J Pharm Sci 62:243–250

    Article  Google Scholar 

  88. Barahuie F et al (2017) Sustained release of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system. Int J Nanomedicine 12:2361

    Article  Google Scholar 

  89. Liu TY et al (2009) Temperature-sensitive nanocapsules for controlled drug release caused by magnetically triggered structural disruption. Adv Funct Mater 19(4):616–623

    Article  Google Scholar 

  90. Brazel CS (2009) Magnetothermally-responsive nanomaterials: combining magnetic nanostructures and thermally-sensitive polymers for triggered drug release. Pharm Res 26(3):644–656

    Article  Google Scholar 

  91. Pourjavadi A, Kohestanian M, Streb C (2020) pH and thermal dual-responsive poly (NIPAM-co-GMA)-coated magnetic nanoparticles via surface-initiated RAFT polymerization for controlled drug delivery. Mater Sci Eng C 108:110418

    Article  Google Scholar 

  92. Anirudhan T, Christa J (2020) Temperature and pH sensitive multi-functional magnetic nanocomposite for the controlled delivery of 5-fluorouracil, an anticancer drug. J Drug Deliv Sci Technol 55:101476

    Article  Google Scholar 

  93. Sangnier AP et al (2018) Targeted thermal therapy with genetically engineered magnetite magnetosomes@ RGD: photothermia is far more efficient than magnetic hyperthermia. J Control Release 279:271–281

    Article  Google Scholar 

  94. Komeri R et al (2019) Galactoxyloglucan-modified gold nanocarrier of doxorubicin for treating drug-resistant brain tumors. ACS Appl Nano Mater 2(10):6287–6299

    Article  Google Scholar 

  95. Khutale GV, Casey A (2017) Synthesis and characterization of a multifunctional gold-doxorubicin nanoparticle system for pH triggered intracellular anticancer drug release. Eur J Pharm Biopharm 119:372–380

    Article  Google Scholar 

  96. Crous A, Abrahamse H (2020) Effective gold nanoparticle-antibody-mediated drug delivery for photodynamic therapy of lung cancer stem cells. Int J Mol Sci 21(11):3742

    Article  Google Scholar 

  97. Sun Y et al (2017) Temperature-sensitive gold nanoparticle-coated pluronic-PLL nanoparticles for drug delivery and chemo-photothermal therapy. Theranostics 7(18):4424

    Article  Google Scholar 

  98. Li W et al (2016) Gold nanoparticle–mediated targeted delivery of recombinant human endostatin normalizes tumour vasculature and improves cancer therapy. Sci Rep 6:30619

    Article  Google Scholar 

  99. Wang R-H et al (2017) TAT-modified gold nanoparticle carrier with enhanced anticancer activity and size effect on overcoming multidrug resistance. ACS Appl Mater Interfaces 9(7):5828–5837

    Article  Google Scholar 

  100. Bobo D et al (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33(10):2373–2387

    Article  Google Scholar 

  101. Liu C, Zhang N (2011) Nanoparticles in gene therapy: principles, prospects, and challenges. In: Progress in molecular biology and translational science. Elsevier, pp 509–562

    Google Scholar 

  102. Ghosh PS et al (2008) Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano 2(11):2213–2218

    Article  MathSciNet  Google Scholar 

  103. Pinnapireddy SR et al (2017) Composite liposome-PEI/nucleic acid lipopolyplexes for safe and efficient gene delivery and gene knockdown. Colloids Surf B: Biointerfaces 158:93–101

    Article  Google Scholar 

  104. dos Santos Rodrigues B et al (2018) Dual functionalized liposome-mediated gene delivery across triple co-culture blood brain barrier model and specific in vivo neuronal transfection. J Control Release 286:264–278

    Article  Google Scholar 

  105. Xia T et al (2009) Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 3(10):3273–3286

    Article  Google Scholar 

  106. Zamboni CG et al (2017) Polymeric nanoparticles as cancer-specific DNA delivery vectors to human hepatocellular carcinoma. J Control Release 263:18–28

    Article  Google Scholar 

  107. Xiao X et al (2020) Delivery of plasmid DNA encoding Oct 4 with polyethylenimine-modified superparamagnetic iron oxide nanoparticles in HEK-293T cells. J Nanopart Res 22:128

    Article  Google Scholar 

  108. Peng S et al (2020) Redox-responsive polyethyleneimine-coated magnetic iron oxide nanoparticles for controllable gene delivery and magnetic resonance imaging. Polym Int 69(2):206–214

    Article  Google Scholar 

  109. Karimi S et al (2020) Development of dual functional nucleic acid delivery nanosystem for DNA induced silencing of Bcl-2 oncogene. Int J Nanomedicine 15:1693

    Article  Google Scholar 

  110. Shan Y et al (2012) Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors. Biomaterials 33(10):3025–3035

    Article  Google Scholar 

  111. Hou W et al (2016) Partially PEGylated dendrimer-entrapped gold nanoparticles: a promising nanoplatform for highly efficient DNA and siRNA delivery. J Mater Chem B 4(17):2933–2943

    Article  Google Scholar 

  112. Jang EH et al (2020) Hypoxia-responsive, organic-inorganic hybrid mesoporous silica nanoparticles for triggered drug release. J Drug Deliv Sci Technol 56:101543

    Article  Google Scholar 

  113. Wang Y et al (2020) A pH/reduction dual-sensitive copolymer inserted in liposomal bilayer acts as a protective “umbrella”. Colloids Surf A Physicochem Eng Asp:125128

    Google Scholar 

  114. Chen Z et al (2020) pH/GSH-dual-sensitive hollow mesoporous silica nanoparticle-based drug delivery system for targeted cancer therapy. ACS Biomater Sci Eng

    Google Scholar 

  115. Yang C et al (2020) An adjustable pH-responsive drug delivery system based on self-assembly polypeptide-modified mesoporous silica. Macromol Biosci:2000034

    Google Scholar 

  116. Liu T-I et al (2018) Radiotherapy-controllable chemotherapy from reactive oxygen species-responsive polymeric nanoparticles for effective local dual modality treatment of malignant tumors. Biomacromolecules 19(9):3825–3839

    Article  Google Scholar 

  117. Zhang L et al (2017) Enzyme and redox dual-triggered intracellular release from actively targeted polymeric micelles. ACS Appl Mater Interfaces 9(4):3388–3399

    Article  Google Scholar 

  118. Parhi P, Mohanty C, Sahoo SK (2012) Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov Today 17(17–18):1044–1052

    Article  Google Scholar 

  119. Shrestha B (2017) Combinational therapy using multifunctional nanoparticles for breast cancer therapy. The University of Texas at San Antonio

    Google Scholar 

  120. Hood RL et al (2013) Fiberoptic microneedle device facilitates volumetric infusate dispersion during convection-enhanced delivery in the brain. Lasers Surg Med 45(7):418–426

    Article  Google Scholar 

  121. Lotfi-Attari J et al (2017) Co-delivery of curcumin and chrysin by polymeric nanoparticles inhibit synergistically growth and hTERT gene expression in human colorectal cancer cells. Nutr Cancer 69(8):1290–1299

    Article  Google Scholar 

  122. Fan L et al (2010) Co-delivery of PDTC and doxorubicin by multifunctional micellar nanoparticles to achieve active targeted drug delivery and overcome multidrug resistance. Biomaterials 31(21):5634–5642

    Article  Google Scholar 

  123. Du C et al (2020) F7 and topotecan co-loaded thermosensitive liposome as a nano-drug delivery system for tumor hyperthermia. Drug Deliv 27(1):836–847

    Article  Google Scholar 

  124. Wang Y-P et al (2020) Novel anti-EGFR scFv human antibody-conjugated immunoliposomes enhance chemotherapeutic efficacy in squamous cell carcinoma of head and neck. Oral Oncol 106:104689

    Article  Google Scholar 

  125. Babos G et al (2018) Dual drug delivery of sorafenib and doxorubicin from PLGA and PEG-PLGA polymeric nanoparticles. Polymers 10(8):895

    Article  Google Scholar 

  126. Gupta J, Bhargava P, Bahadur D (2014) Methotrexate conjugated magnetic nanoparticle for targeted drug delivery and thermal therapy. J Appl Phys 115(17):17B516

    Article  Google Scholar 

  127. Gupta J et al (2016) A pH-responsive folate conjugated magnetic nanoparticle for targeted chemo-thermal therapy and MRI diagnosis. Dalton Trans 45(6):2454–2461

    Article  Google Scholar 

  128. Manrique-Bedoya S et al (2020) Multiphysics modeling of plasmonic photothermal heating effects in gold nanoparticles and nanoparticle arrays. J Phys Chem C 124(31):17172–17182

    Article  Google Scholar 

  129. Choi WI et al (2011) Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 5(3):1995–2003

    Article  Google Scholar 

  130. Kennedy LC et al (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7(2):169–183

    Article  Google Scholar 

  131. Liu Z et al (2020) Development of a multifunctional gold nanoplatform for combined chemo-photothermal therapy against oral cancer. Nanomedicine 15(07):661–676

    Article  Google Scholar 

  132. Padmanabhan P (2019) Nanotechnology-based diagnostics and therapy for pathogen-related infections in the CNS. ACS Chem Neurosci

    Google Scholar 

  133. Harilal S et al (2019) Advancements in nanotherapeutics for Alzheimer’s disease: current perspectives. J Pharm Pharmacol 71(9):1370–1383

    Article  Google Scholar 

  134. De Matteis L, Martín-Rapún R, de la Fuente JM (2018) Nanotechnology in personalized medicine: a promising tool for Alzheimer’s disease treatment. Curr Med Chem 25(35):4602–4615

    Article  Google Scholar 

  135. Mourtas S et al (2014) Multifunctional nanoliposomes with curcumin–lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. Eur J Med Chem 80:175–183

    Article  Google Scholar 

  136. Zhang C et al (2014) The potential use of H102 peptide-loaded dual-functional nanoparticles in the treatment of Alzheimer’s disease. J Control Release 192:317–324

    Article  Google Scholar 

  137. Bana L et al (2014) Liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide affect Aβ aggregation features and cross the blood–brain-barrier: implications for therapy of Alzheimer disease. Nanomedicine 10(7):1583–1590

    Article  MathSciNet  Google Scholar 

  138. Mancini S et al (2016) The hunt for brain Aβ oligomers by peripherally circulating multi-functional nanoparticles: potential therapeutic approach for Alzheimer disease. Nanomedicine 12(1):43–52

    Article  Google Scholar 

  139. Zhang C et al (2014) Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer’s disease mice. Biomaterials 35(1):456–465

    Article  Google Scholar 

  140. Carradori D et al (2018) Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer’s disease-like transgenic mouse model. Nanomedicine 14(2):609–618

    Article  Google Scholar 

  141. Do TD et al (2016) Guidance of magnetic nanocontainers for treating Alzheimer’s disease using an electromagnetic, targeted drug-delivery actuator. J Biomed Nanotechnol 12(3):569–574

    Article  Google Scholar 

  142. Amin FU et al (2017) Osmotin-loaded magnetic nanoparticles with electromagnetic guidance for the treatment of Alzheimer’s disease. Nanoscale 9(30):10619–10632

    Article  Google Scholar 

  143. Geng J et al (2012) Mesoporous silica nanoparticle-based H2O2 responsive controlled-release system used for Alzheimer’s disease treatment. Adv Healthc Mater 1(3):332–336

    Article  Google Scholar 

  144. Nday CM et al (2015) Quercetin encapsulation in modified silica nanoparticles: potential use against Cu (II)-induced oxidative stress in neurodegeneration. J Inorg Biochem 145:51–64

    Article  Google Scholar 

  145. Nazem A, Mansoori GA (2011) Nanotechnology for Alzheimer’s disease detection and treatment. Insciences J 1(4):169–193

    Article  Google Scholar 

  146. Cheng KK et al (2015) Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer’s disease mice using magnetic resonance imaging (MRI). Biomaterials 44:155–172

    Article  Google Scholar 

  147. Yang C-C et al (2011) Biofunctionalized magnetic nanoparticles for specifically detecting biomarkers of Alzheimer’s disease in vitro. ACS Chem Neurosci 2(9):500–505

    Article  Google Scholar 

  148. Fernández T et al (2018) Functionalization and characterization of magnetic nanoparticles for the detection of ferritin accumulation in Alzheimer’s disease. ACS Chem Neurosci 9(5):912–924

    Article  Google Scholar 

  149. Pham CT (2011) Nanotherapeutic approaches for the treatment of rheumatoid arthritis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3(6):607–619

    Article  Google Scholar 

  150. Hoes JN et al (2010) Current view of glucocorticoid co-therapy with DMARDs in rheumatoid arthritis. Nat Rev Rheumatol 6(12):693

    Article  Google Scholar 

  151. Lee S-M et al (2013) Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano 7(1):50–57

    Article  Google Scholar 

  152. Lee H et al (2014) Hyaluronate–gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. ACS Nano 8(5):4790–4798

    Article  Google Scholar 

  153. Zhang Q et al (2018) Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat Nanotechnol 13(12):1182–1190

    Article  Google Scholar 

  154. Peercy PS (2000) The drive to miniaturization. Nature 406(6799):1023–1026

    Article  Google Scholar 

  155. Di Trani N et al (2020) Silicon nanofluidic membrane for electrostatic control of drugs and analytes elution. Pharmaceutics 12(7):679

    Article  Google Scholar 

  156. Bocquet L (2020) Nanofluidics coming of age. Nat Mater 19(3):254–256

    Article  Google Scholar 

  157. Hood RL et al (2017) Pioneering medical advances through nanofluidic implantable technologies. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9(5):e1455

    Article  Google Scholar 

  158. Ho C-M (2001) Fluidics-the link between micro and nano sciences and technologies. In: Technical digest. MEMS 2001. 14th IEEE international conference on micro electro mechanical systems (Cat. No. 01CH37090). IEEE

    Google Scholar 

  159. Grattoni A et al (2011) Device for rapid and agile measurement of diffusivity in micro-and nanochannels. Anal Chem 83(8):3096–3103

    Article  Google Scholar 

  160. Ferrati S et al (2013) Leveraging nanochannels for universal, zero-order drug delivery in vivo. J Control Release 172(3):1011–1019

    Article  Google Scholar 

  161. Lesinski GB et al (2005) Release of biologically functional interferon-alpha from a nanochannel delivery system. Biomed Microdevices 7(1):71–79

    Article  Google Scholar 

  162. Sinha PM et al (2004) Nanoengineered device for drug delivery application. Nanotechnology 15(10):S585

    Article  Google Scholar 

  163. Fine D et al (2010) A robust nanofluidic membrane with tunable zero-order release for implantable dose specific drug delivery. Lab Chip 10(22):3074–3083

    Article  Google Scholar 

  164. Hood RL et al (2016) Nanochannel implants for minimally-invasive insertion and intratumoral delivery. J Biomed Nanotechnol 12(10):1907–1915

    Article  Google Scholar 

  165. Popat KC et al (2007) Titania nanotubes: a novel platform for drug-eluting coatings for medical implants? Small 3(11):1878–1881

    Article  Google Scholar 

  166. Hermida RC et al (2016) Chronotherapy with conventional blood pressure medications improves management of hypertension and reduces cardiovascular and stroke risks. Hypertens Res 39(5):277–292

    Article  Google Scholar 

  167. Fine D et al (2011) A low-voltage electrokinetic nanochannel drug delivery system. Lab Chip 11(15):2526–2534

    Article  Google Scholar 

  168. Pons-Faudoa FP et al (2019) Advanced implantable drug delivery technologies: transforming the clinical landscape of therapeutics for chronic diseases. Biomed Microdevices 21(2):47

    Article  Google Scholar 

  169. Schneider GF, Dekker C (2012) DNA sequencing with nanopores. Nat Biotechnol 30(4):326

    Article  Google Scholar 

  170. Schneider GF et al (2010) DNA translocation through graphene nanopores. Nano Lett 10(8):3163–3167

    Article  Google Scholar 

  171. Chang L, Hood RL, Akhter F (2021) Microneedle array electroporation system for cell transfection. Google Patents

    Google Scholar 

  172. Heerema SJ, Dekker C (2016) Graphene nanodevices for DNA sequencing. Nat Nanotechnol 11(2):127–136

    Article  Google Scholar 

  173. Das PM (2020) Recent progress in solid-state nanopore DNA sequencing. Biophys J 118(3):158a

    Article  Google Scholar 

  174. Wells DB et al (2012) Assessing graphene nanopores for sequencing DNA. Nano Lett 12(8):4117–4123

    Article  Google Scholar 

  175. Chen W et al (2017) Graphene nanopores toward DNA sequencing: a review of experimental aspects. SCIENCE CHINA Chem 60(6):721–729

    Article  Google Scholar 

  176. Paulechka E et al (2016) Nucleobase-functionalized graphene nanoribbons for accurate high-speed DNA sequencing. Nanoscale 8(4):1861–1867

    Article  Google Scholar 

  177. Traversi F et al (2013) Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nat Nanotechnol 8(12):939

    Article  Google Scholar 

  178. Postma HWC (2010) Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Lett 10(2):420–425

    Article  Google Scholar 

  179. Wilson J et al (2016) Graphene nanopores for protein sequencing. Adv Funct Mater 26(27):4830–4838

    Article  Google Scholar 

  180. Barati Farimani A et al (2017) Antibody subclass detection using graphene nanopores. J Phys Chem Lett 8(7):1670–1676

    Article  Google Scholar 

  181. Gorjikhah F et al (2016) Improving “lab-on-a-chip” techniques using biomedical nanotechnology: a review. Artif Cells Nanomed Biotechnol 44(7):1609–1614

    Article  Google Scholar 

  182. Sia SK, Kricka LJ (2008) Microfluidics and point-of-care testing. Lab Chip 8(12):1982–1983

    Article  Google Scholar 

  183. Figeys D, Pinto D (2000) Lab-on-a-chip: a revolution in biological and medical sciences. ACS Publications

    Google Scholar 

  184. Rodriguez-Manzano J et al (2020) Rapid detection of mobilized colistin resistance using a nucleic acid based lab-on-a-chip diagnostic system. Sci Rep 10(1):1–9

    Article  Google Scholar 

  185. Castillo-León J, Svendsen WE (2014) Lab-on-a-chip devices and micro-total analysis systems: a practical guide. Springer

    Google Scholar 

  186. Burns MA et al (1998) An integrated nanoliter DNA analysis device. Science 282(5388):484–487

    Article  Google Scholar 

  187. Kim S et al (2017) High-throughput automated microfluidic sample preparation for accurate microbial genomics. Nat Commun 8(1):1–10

    Google Scholar 

  188. Harrison DJ et al (2001) Enhancing the microfluidic toolbox for functional genomics and recombinant DNA methods. In: Micro total analysis systems 2001. Springer

    Google Scholar 

  189. Moon H et al (2006) An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS. Lab Chip 6(9):1213–1219

    Article  Google Scholar 

  190. Hughes AJ et al (2012) Microfluidic integration for automated targeted proteomic assays. Proc Natl Acad Sci 109(16):5972–5977

    Article  Google Scholar 

  191. Lee J, Soper SA, Murray KK (2009) Microfluidic chips for mass spectrometry-based proteomics. J Mass Spectrom 44(5):579–593

    Article  Google Scholar 

  192. Shintu L et al (2012) Metabolomics-on-a-chip and predictive systems toxicology in microfluidic bioartificial organs. Anal Chem 84(4):1840–1848

    Article  Google Scholar 

  193. Kraly JR et al (2009) Microfluidic applications in metabolomics and metabolic profiling. Anal Chim Acta 653(1):23–35

    Article  Google Scholar 

  194. Yakovleva J et al (2002) Microfluidic enzyme immunoassay using silicon microchip with immobilized antibodies and chemiluminescence detection. Anal Chem 74(13):2994–3004

    Article  Google Scholar 

  195. Shamsi MH et al (2014) A digital microfluidic electrochemical immunoassay. Lab Chip 14(3):547–554

    Article  Google Scholar 

  196. Prakash R et al (2013) Droplet microfluidic chip based nucleic acid amplification and real-time detection of influenza viruses. J Electrochem Soc 161(2):B3083

    Article  Google Scholar 

  197. Fang X et al (2010) Loop-mediated isothermal amplification integrated on microfluidic chips for point-of-care quantitative detection of pathogens. Anal Chem 82(7):3002–3006

    Article  Google Scholar 

  198. Sayad A et al (2018) A microdevice for rapid, monoplex and colorimetric detection of foodborne pathogens using a centrifugal microfluidic platform. Biosens Bioelectron 100:96–104

    Article  Google Scholar 

  199. Neužil P et al (2012) Revisiting lab-on-a-chip technology for drug discovery. Nat Rev Drug Discov 11(8):620–632

    Article  Google Scholar 

  200. St John A, Price CP (2014) Existing and emerging technologies for point-of-care testing. The. Clin Biochem Rev 35(3):155

    Google Scholar 

  201. Polavarapu L et al (2014) Optical sensing of biological, chemical and ionic species through aggregation of plasmonic nanoparticles. J Mater Chem C 2(36):7460–7476

    Article  Google Scholar 

  202. Tang L, Casas J (2014) Quantification of cardiac biomarkers using label-free and multiplexed gold nanorod bioprobes for myocardial infarction diagnosis. Biosens Bioelectron 61:70–75

    Article  Google Scholar 

  203. Elghanian R et al (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329):1078–1081

    Article  Google Scholar 

  204. Liu D et al (2014) Glucose oxidase-catalyzed growth of gold nanoparticles enables quantitative detection of attomolar cancer biomarkers. Anal Chem 86(12):5800–5806

    Article  Google Scholar 

  205. Abarghoei S et al (2019) A colorimetric paper sensor for citrate as biomarker for early stage detection of prostate cancer based on peroxidase-like activity of cysteine-capped gold nanoclusters. Spectrochim Acta A Mol Biomol Spectrosc 210:251–259

    Article  Google Scholar 

  206. Shayesteh OH, Ghavami R (2020) A novel label-free colorimetric aptasensor for sensitive determination of PSA biomarker using gold nanoparticles and a cationic polymer in human serum. Spectrochim Acta A Mol Biomol Spectrosc 226:117644

    Article  Google Scholar 

  207. Neely A et al (2009) Ultrasensitive and highly selective detection of Alzheimer’s disease biomarker using two-photon Rayleigh scattering properties of gold nanoparticle. ACS Nano 3(9):2834–2840

    Article  MathSciNet  Google Scholar 

  208. Pu Q et al (2019) Simultaneous colorimetric determination of acute myocardial infarction biomarkers by integrating self-assembled 3D gold nanovesicles into a multiple immunosorbent assay. Microchim Acta 186(3):138

    Article  Google Scholar 

  209. Tadepalli S et al (2015) Peptide functionalized gold nanorods for the sensitive detection of a cardiac biomarker using plasmonic paper devices. Sci Rep 5:16206

    Article  Google Scholar 

  210. Chiu RY et al (2014) Dextran-coated gold nanoprobes for the concentration and detection of protein biomarkers. Ann Biomed Eng 42(11):2322–2332

    Article  Google Scholar 

  211. Storhoff JJ et al (2004) Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat Biotechnol 22(7):883–887

    Article  Google Scholar 

  212. Li H, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci 101(39):14036–14039

    Article  Google Scholar 

  213. Liu P et al (2013) Enzyme-free colorimetric detection of DNA by using gold nanoparticles and hybridization chain reaction amplification. Anal Chem 85(16):7689–7695

    Article  Google Scholar 

  214. Conde J, de la Fuente JM, Baptista PV (2010) RNA quantification using gold nanoprobes-application to cancer diagnostics. J Nanobiotechnol 8(1):1–8

    Article  Google Scholar 

  215. Kato D, Oishi M (2014) Ultrasensitive detection of DNA and RNA based on enzyme-free click chemical ligation chain reaction on dispersed gold nanoparticles. ACS Nano 8(10):9988–9997

    Article  Google Scholar 

  216. Eissa S et al (2014) Direct detection of unamplified hepatoma upregulated protein RNA in urine using gold nanoparticles for bladder cancer diagnosis. Clin Biochem 47(1–2):104–110

    Article  Google Scholar 

  217. Tang L, Casas J, Venkataramasubramani M (2013) Magnetic nanoparticle mediated enhancement of localized surface plasmon resonance for ultrasensitive bioanalytical assay in human blood plasma. Anal Chem 85(3):1431–1439

    Article  Google Scholar 

  218. Ray PC (2010) Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem Rev 110(9):5332–5365

    Article  Google Scholar 

  219. Romo-Herrera JM, Alvarez-Puebla RA, Liz-Marzán LM (2011) Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 3(4):1304–1315

    Article  Google Scholar 

  220. Ofir Y, Samanta B, Rotello VM (2008) Polymer and biopolymer mediated self-assembly of gold nanoparticles. Chem Soc Rev 37(9):1814–1825

    Article  Google Scholar 

  221. Yang G et al (2017) Self-assembly of large gold nanoparticles for surface-enhanced Raman spectroscopy. ACS Appl Mater Interfaces 9(15):13457–13470

    Article  Google Scholar 

  222. Torabi S-F, Lu Y (2011) Small-molecule diagnostics based on functional DNA nanotechnology: a dipstick test for mercury. Faraday Discuss 149(1):125–135

    Article  Google Scholar 

  223. Liu D, Wang Z, Jiang X (2011) Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale 3(4):1421–1433

    Article  Google Scholar 

  224. Mani V, Chikkaveeraiah BV, Rusling JF (2011) Magnetic particles in ultrasensitive biomarker protein measurements for cancer detection and monitoring. Expert Opin Med Diagn 5(5):381–391

    Article  Google Scholar 

  225. Whiteaker JR et al (2007) Antibody-based enrichment of peptides on magnetic beads for mass-spectrometry-based quantification of serum biomarkers. Anal Biochem 362(1):44–54

    Article  Google Scholar 

  226. Muluneh M, Issadore D (2014) Microchip-based detection of magnetically labeled cancer biomarkers. Adv Drug Deliv Rev 66:101–109

    Article  Google Scholar 

  227. Freed GL et al (2008) Differential capture of serum proteins for expression profiling and biomarker discovery in pre-and posttreatment head and neck cancer samples. Laryngoscope 118(1):61–68

    Article  Google Scholar 

  228. Ghazani AA et al (2013) Comparison of select cancer biomarkers in human circulating and bulk tumor cells using magnetic nanoparticles and a miniaturized micro-NMR system. Nanomedicine 9(7):1009–1017

    Article  Google Scholar 

  229. Yang S-Y et al (2016) Development of an ultra-high sensitive immunoassay with plasma biomarker for differentiating Parkinson disease dementia from Parkinson disease using antibody functionalized magnetic nanoparticles. J Nanobiotechnol 14(1):41

    Article  Google Scholar 

  230. Fernández-Cabada T, Ramos-Gómez M (2019) A novel contrast agent based on magnetic nanoparticles for cholesterol detection as Alzheimer’s disease biomarker. Nanoscale Res Lett 14(1):1–6

    Article  Google Scholar 

  231. Wang W et al (2016) A magnetic nanoparticles relaxation sensor for protein–protein interaction detection at ultra-low magnetic field. Biosens Bioelectron 80:661–665

    Article  Google Scholar 

  232. Garcia J et al (2011) Multilayer enzyme-coupled magnetic nanoparticles as efficient, reusable biocatalysts and biosensors. Nanoscale 3(9):3721–3730

    Article  Google Scholar 

  233. Li J, Wei X, Yuan Y (2009) Synthesis of magnetic nanoparticles composed by Prussian blue and glucose oxidase for preparing highly sensitive and selective glucose biosensor. Sensors Actuators B Chem 139(2):400–406

    Article  Google Scholar 

  234. Zhang Y et al (2017) Ultrasensitive electrochemical biosensor for silver ion based on magnetic nanoparticles labeling with hybridization chain reaction amplification strategy. Sensors Actuators B Chem 249:431–438

    Article  Google Scholar 

  235. Mei Z et al (2016) Water dispersion of magnetic nanoparticles with selective Biofunctionality for enhanced plasmonic biosensing. Talanta 151:23–29

    Article  Google Scholar 

  236. Wanekaya AK et al (2006) Nanowire-based electrochemical biosensors. Electroanalysis 18(6):533–550

    Article  Google Scholar 

  237. Cui Y, Lieber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291(5505):851–853

    Article  Google Scholar 

  238. Cui Y et al (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289–1292

    Article  Google Scholar 

  239. Cao X et al (2013) Silver nanowire-based electrochemical immunoassay for sensing immunoglobulin G with signal amplification using strawberry-like ZnO nanostructures as labels. Biosens Bioelectron 49:256–262

    Article  Google Scholar 

  240. Murphy-Pérez E, Arya SK, Bhansali S (2011) Vapor–liquid–solid grown silica nanowire based electrochemical glucose biosensor. Analyst 136(8):1686–1689

    Article  Google Scholar 

  241. Su S et al (2010) A silicon nanowire-based electrochemical glucose biosensor with high electrocatalytic activity and sensitivity. Nanoscale 2(9):1704–1707

    Article  Google Scholar 

  242. Lee I et al (2012) Detection of cardiac biomarkers using single polyaniline nanowire-based conductometric biosensors. Biosensors 2(2):205–220

    Article  Google Scholar 

  243. Xue Q et al (2019) Printed highly ordered conductive polymer nanowires doped with biotinylated polyelectrolytes for biosensing applications. Adv Mater Interfaces 6(18):1900671

    Article  Google Scholar 

  244. Jung J, Lim S (2013) ZnO nanowire-based glucose biosensors with different coupling agents. Appl Surf Sci 265:24–29

    Article  Google Scholar 

  245. Xie P et al (2012) Local electrical potential detection of DNA by nanowire–nanopore sensors. Nat Nanotechnol 7(2):119–125

    Article  Google Scholar 

  246. Li Z et al (2004) Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett 4(2):245–247

    Article  Google Scholar 

  247. Chen C-P et al (2009) Label-free dual sensing of DNA molecules using GaN nanowires. Anal Chem 81(1):36–42

    Article  Google Scholar 

  248. Janissen R et al (2017) InP nanowire biosensor with tailored biofunctionalization: ultrasensitive and highly selective disease biomarker detection. Nano Lett 17(10):5938–5949

    Article  Google Scholar 

  249. Kim K et al (2016) Silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity. Biosens Bioelectron 77:695–701

    Article  Google Scholar 

  250. Li J et al (2016) Direct real-time detection of single proteins using silicon nanowire-based electrical circuits. Nanoscale 8(36):16172–16176

    Article  Google Scholar 

  251. Lin ZT et al (2018) A conductive nanowire-mesh biosensor for ultrasensitive detection of serum C-reactive protein in melanoma. Adv Funct Mater 28(31):1802482

    Article  Google Scholar 

  252. Verardo D et al (2019) Single-molecule detection with lightguiding nanowires: determination of protein concentration and diffusivity in supported lipid bilayers. Nano Lett 19(9):6182–6191

    Article  Google Scholar 

  253. Men D et al (2016) Fluorescent protein nanowire-mediated protein microarrays for multiplexed and highly sensitive pathogen detection. ACS Appl Mater Interfaces 8(27):17472–17477

    Article  Google Scholar 

  254. Le Borgne B et al (2018) Bacteria electrical detection using 3D silicon nanowires based resistor. Sensors Actuators B Chem 273:1794–1799

    Article  Google Scholar 

  255. Wang L et al (2020) Rapid and sensitive detection of Salmonella Typhimurium using nickel nanowire bridge for electrochemical impedance amplification. Talanta 211:120715

    Article  Google Scholar 

  256. Harris PJ, Harris PJF (2009) Carbon nanotube science: synthesis, properties and applications. Cambridge University Press

    Book  Google Scholar 

  257. De Volder MF et al (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539

    Article  Google Scholar 

  258. Zhou Y, Fang Y, Ramasamy RP (2019) Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development. Sensors 19(2):392

    Article  Google Scholar 

  259. Hashwan SSB et al (2017) Reduced graphene oxide–multiwalled carbon nanotubes composites as sensing membrane electrodes for DNA detection. Microsyst Technol 23(8):3421–3428

    Article  Google Scholar 

  260. Zhou Q et al (2016) Detection of circulating tumor DNA in human blood via DNA-mediated surface-enhanced Raman spectroscopy of single-walled carbon nanotubes. Anal Chem 88(9):4759–4765

    Article  Google Scholar 

  261. Li J, Lee E-C (2017) Functionalized multi-wall carbon nanotubes as an efficient additive for electrochemical DNA sensor. Sensors Actuators B Chem 239:652–659

    Article  Google Scholar 

  262. Tran TL et al (2017) Detection of influenza A virus using carbon nanotubes field effect transistor based DNA sensor. Physica E Low Dimens Syst Nanostruct 93:83–86

    Article  Google Scholar 

  263. Harvey JD et al (2019) HIV detection via a carbon nanotube RNA sensor. ACS Sens 4(5):1236–1244

    Article  Google Scholar 

  264. Harvey JD et al (2017) A carbon nanotube reporter of microRNA hybridization events in vivo. Nat Biomed Eng 1(4):1–11

    Article  Google Scholar 

  265. Feng T, Wang Y, Qiao X (2017) Recent advances of carbon nanotubes-based electrochemical immunosensors for the detection of protein cancer biomarkers. Electroanalysis 29(3):662–675

    Article  Google Scholar 

  266. Hendler-Neumark A, Bisker G (2019) Fluorescent single-walled carbon nanotubes for protein detection. Sensors 19(24):5403

    Article  Google Scholar 

  267. Huang Y et al (2017) Magnetized carbon nanotubes for visual detection of proteins directly in whole blood. Anal Chim Acta 993:79–86

    Article  Google Scholar 

  268. Bisker G et al (2018) Insulin detection using a corona phase molecular recognition site on single-walled carbon nanotubes. ACS Sens 3(2):367–377

    Article  Google Scholar 

  269. Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76

    Article  Google Scholar 

  270. Medintz IL et al (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446

    Article  Google Scholar 

  271. Loo AH et al (2016) Carboxylic carbon quantum dots as a fluorescent sensing platform for DNA detection. ACS Appl Mater Interfaces 8(3):1951–1957

    Article  Google Scholar 

  272. Sharon E, Freeman R, Willner I (2010) CdSe/ZnS quantum dots-G-quadruplex/hemin hybrids as optical DNA sensors and aptasensors. Anal Chem 82(17):7073–7077

    Article  Google Scholar 

  273. Wang G, Li Z, Ma N (2017) Next-generation DNA-functionalized quantum dots as biological sensors. ACS Chem Biol 13(7):1705–1713

    Article  Google Scholar 

  274. Canfarotta F, Whitcombe MJ, Piletsky SA (2013) Polymeric nanoparticles for optical sensing. Biotechnol Adv 31(8):1585–1599

    Article  Google Scholar 

  275. Cui Y et al (2016) Highly sensitive visual detection of mutant DNA based on polymeric nanoparticles-participating amplification. RSC Adv 6(116):115238–115246

    Article  Google Scholar 

  276. Melnychuk N, Klymchenko AS (2018) DNA-functionalized dye-loaded polymeric nanoparticles: ultrabright FRET platform for amplified detection of nucleic acids. J Am Chem Soc 140(34):10856–10865

    Article  Google Scholar 

  277. Gerard M, Chaubey A, Malhotra B (2002) Application of conducting polymers to biosensors. Biosens Bioelectron 17(5):345–359

    Article  Google Scholar 

  278. Xia L, Wei Z, Wan M (2010) Conducting polymer nanostructures and their application in biosensors. J Colloid Interface Sci 341(1):1–11

    Article  Google Scholar 

  279. Wang G et al (2018) Nanomaterial-doped conducting polymers for electrochemical sensors and biosensors. J Mater Chem B 6(25):4173–4190

    Article  Google Scholar 

  280. Zamani FG et al (2019) Current trends in the development of conducting polymers-based biosensors. TrAC Trends Anal Chem 118:264–276

    Article  Google Scholar 

  281. Azak H et al (2016) Electrochemical glucose biosensing via new generation DTP type conducting polymers/gold nanoparticles/glucose oxidase modified electrodes. J Electroanal Chem 770:90–97

    Article  Google Scholar 

  282. Shao Y et al (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10):1027–1036

    Article  Google Scholar 

  283. Varghese SS et al (2015) Recent advances in graphene based gas sensors. Sensors Actuators B Chem 218:160–183

    Article  Google Scholar 

  284. Kuila T et al (2011) Recent advances in graphene-based biosensors. Biosens Bioelectron 26(12):4637–4648

    Article  Google Scholar 

  285. Robinson JT et al (2008) Reduced graphene oxide molecular sensors. Nano Lett 8(10):3137–3140

    Article  Google Scholar 

  286. He Q et al (2012) Graphene-based electronic sensors. Chem Sci 3(6):1764–1772

    Article  Google Scholar 

  287. Kwak YH et al (2012) Flexible glucose sensor using CVD-grown graphene-based field effect transistor. Biosens Bioelectron 37(1):82–87

    Article  Google Scholar 

  288. Xuan X, Yoon HS, Park JY (2018) A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens Bioelectron 109:75–82

    Article  Google Scholar 

  289. Dhara K et al (2014) Pt-CuO nanoparticles decorated reduced graphene oxide for the fabrication of highly sensitive non-enzymatic disposable glucose sensor. Sensors Actuators B Chem 195:197–205

    Article  Google Scholar 

  290. Wei S et al (2020) Transfer-free CVD graphene for highly sensitive glucose sensors. J Mater Sci Technol 37:71–76

    Article  Google Scholar 

  291. Cui D et al (2019) Non-enzymatic glucose sensor based on micro-/nanostructured Cu/Ni deposited on graphene sheets. J Electroanal Chem 838:154–162

    Article  Google Scholar 

  292. Liu Q et al (2019) An ultra-low detection limit glucose sensor based on reduced graphene oxide-concave tetrahedral Pd NCs@ CuO composite. J Electrochem Soc 166(6):B381

    Article  Google Scholar 

  293. Jaberi SYS, Ghaffarinejad A, Omidinia E (2019) An electrochemical paper based nano-genosensor modified with reduced graphene oxide-gold nanostructure for determination of glycated hemoglobin in blood. Anal Chim Acta 1078:42–52

    Article  Google Scholar 

  294. Sampath U, Kim D, Song M (2019) Hemoglobin detection using a graphene oxide functionalized side-polished fiber sensor. In: Optical sensors 2019. International Society for Optics and Photonics

    Google Scholar 

  295. Wu S et al (2019) Layer-by-layer self-assembly film of PEI-reduced graphene oxide composites and cholesterol oxidase for ultrasensitive cholesterol biosensing. Sensors Actuators B Chem 298:126856

    Article  Google Scholar 

  296. Alexander S et al (2017) Modified graphene based molecular imprinted polymer for electrochemical non-enzymatic cholesterol biosensor. Eur Polym J 86:106–116

    Article  Google Scholar 

  297. Semwal V, Gupta BD (2017) LSPR-and SPR-based fiber-optic cholesterol sensor using immobilization of cholesterol oxidase over silver nanoparticles coated graphene oxide nanosheets. IEEE Sensors J 18(3):1039–1046

    Article  Google Scholar 

  298. Karimi-Maleh H, Arotiba OA (2020) Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J Colloid Interface Sci 560:208–212

    Article  Google Scholar 

  299. Sriram B et al (2019) Novel sonochemical synthesis of Fe3O4 nanospheres decorated on highly active reduced graphene oxide nanosheets for sensitive detection of uric acid in biological samples. Ultrason Sonochem 58:104618

    Article  Google Scholar 

  300. Yola ML, Atar N (2016) Functionalized graphene quantum dots with bi-metallic nanoparticles composite: sensor application for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. J Electrochem Soc 163(14):B718

    Article  Google Scholar 

  301. Jothi L et al (2018) Simultaneous determination of ascorbic acid, dopamine and uric acid by a novel electrochemical sensor based on N2/Ar RF plasma assisted graphene nanosheets/graphene nanoribbons. Biosens Bioelectron 105:236–242

    Article  Google Scholar 

  302. Kumarasamy J et al (2018) One-step coelectrodeposition-assisted layer-by-layer assembly of gold nanoparticles and reduced graphene oxide and its self-healing three-dimensional nanohybrid for an ultrasensitive DNA sensor. Nanoscale 10(3):1196–1206

    Article  Google Scholar 

  303. Gong Q et al (2019) Sensitive electrochemical DNA sensor for the detection of HIV based on a polyaniline/graphene nanocomposite. J Mater 5(2):313–319

    Google Scholar 

  304. Balaji A et al (2019) Graphene oxide-based nanostructured DNA sensor. Biosensors 9(2):74

    Article  Google Scholar 

  305. Song L et al (2019) Capturing hemoglobin on graphene sheet from sub-microliter whole blood for quantitative characterization by internal extractive electrospray ionization mass spectrometry. Talanta 202:436–442

    Article  Google Scholar 

  306. Mohanraj J et al (2020) Facile synthesis of paper based graphene electrodes for point of care devices: a double stranded DNA (dsDNA) biosensor. J Colloid Interface Sci 566:463–472

    Article  Google Scholar 

  307. Luker GD, Luker KE (2008) Optical imaging: current applications and future directions. J Nucl Med 49(1):1–4

    Article  Google Scholar 

  308. Rehemtulla A et al (2000) Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia 2(6):491–495

    Article  Google Scholar 

  309. Samanta A et al (2010) Development of photostable near-infrared cyanine dyes. Chem Commun 46(39):7406–7408

    Article  Google Scholar 

  310. Wang C et al (2017) Super-photostable phosphole-based dye for multiple-acquisition stimulated emission depletion imaging. J Am Chem Soc 139(30):10374–10381

    Article  Google Scholar 

  311. Ayare NN, Ramugade SH, Sekar N (2019) Photostable coumarin containing azo dyes with multifunctional property. Dyes Pigments 163:692–699

    Article  Google Scholar 

  312. Wilson BC, Jeeves WP, Lowe DM (1985) In vivo and post mortem measurements of the attenuation spectra of light in mammalian tissues. Photochem Photobiol 42(2):153–162

    Article  Google Scholar 

  313. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9(1):123–128

    Article  Google Scholar 

  314. Baker M (2010) Nanotechnology imaging probes: smaller and more stable. Nat Methods 7(12):957–962

    Article  Google Scholar 

  315. McHugh KJ et al (2018) Biocompatible semiconductor quantum dots as cancer imaging agents. Adv Mater 30(18):1706356

    Article  Google Scholar 

  316. Chen H et al (2014) Characterization of tumor-targeting Ag 2 S quantum dots for cancer imaging and therapy in vivo. Nanoscale 6(21):12580–12590

    Article  Google Scholar 

  317. Tang R et al (2015) Tunable ultrasmall visible-to-extended near-infrared emitting silver sulfide quantum dots for integrin-targeted cancer imaging. ACS Nano 9(1):220–230

    Article  Google Scholar 

  318. Rana M et al (2020) Glutathione capped core/shell CdSeS/ZnS quantum dots as a medical imaging tool for cancer cells. Inorg Chem Commun 112:107723

    Article  Google Scholar 

  319. Cong H et al (2020) Tuning the brightness and photostability of organic dots for multivalent targeted cancer imaging and surgery. ACS Nano

    Google Scholar 

  320. Sikorska K et al (2020) The impact of Ag nanoparticles and CdTe quantum dots on expression and function of receptors involved in amyloid-β uptake by BV-2 microglial cells. Materials 13(14):3227

    Article  Google Scholar 

  321. Feng L et al (2013) A quantum dot probe conjugated with Aβ antibody for molecular imaging of Alzheimer’s disease in a mouse model. Cell Mol Neurobiol 33(6):759–765

    Article  Google Scholar 

  322. Gao X et al (2008) Quantum dots bearing lectin-functionalized nanoparticles as a platform for in vivo brain imaging. Bioconjug Chem 19(11):2189–2195

    Article  Google Scholar 

  323. Hu J et al (2017) Quantum dots emitting in the third biological window as bimodal contrast agents for cardiovascular imaging. Adv Funct Mater 27(41):1703276

    Article  Google Scholar 

  324. Koshman YE et al (2008) Delivery and visualization of proteins conjugated to quantum dots in cardiac myocytes. J Mol Cell Cardiol 45(6):853–856

    Article  Google Scholar 

  325. Ross B, Chenevert T, Rehemtulla A (2002) Magnetic resonance imaging in cancer research. Eur J Cancer 38(16):2147–2156

    Article  Google Scholar 

  326. Evelhoch JL et al (2000) Applications of magnetic resonance in model systems: cancer therapeutics. Neoplasia 2(1–2, 152):–165

    Google Scholar 

  327. Kurhanewicz J, Vigneron DB, Nelson SJ (2000) Three-dimensional magnetic resonance spectroscopic imaging of brain and prostate cancer. Neoplasia 2(1–2):166–189

    Article  Google Scholar 

  328. Artemov D et al (2003) Magnetic resonance molecular imaging of the HER-2/neu receptor. Cancer Res 63(11):2723–2727

    Google Scholar 

  329. Amiri H et al (2013) Alzheimer’s disease: pathophysiology and applications of magnetic nanoparticles as MRI theranostic agents. ACS Chem Neurosci 4(11):1417–1429

    Article  Google Scholar 

  330. Khoo VS et al (1997) Magnetic resonance imaging (MRI): considerations and applications in radiotherapy treatment planning. Radiother Oncol 42(1):1–15

    Article  MathSciNet  Google Scholar 

  331. Golman K et al (2006) Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res 66(22):10855–10860

    Article  Google Scholar 

  332. Bhujwalla ZM et al (2001) Vascular differences detected by MRI for metastatic versus nonmetastatic breast and prostate cancer xenografts. Neoplasia 3(2):143–153

    Article  Google Scholar 

  333. Rehemtulla A et al (2002) Molecular imaging of gene expression and efficacy following adenoviral-mediated brain tumor gene therapy. Mol Imaging 1(1):15353500200200005

    Article  Google Scholar 

  334. Martincich L et al (2004) Monitoring response to primary chemotherapy in breast cancer using dynamic contrast-enhanced magnetic resonance imaging. Breast Cancer Res Treat 83(1):67–76

    Article  Google Scholar 

  335. Matson ML, Wilson LJ (2010) Nanotechnology and MRI contrast enhancement. Future Med Chem 2(3):491–502

    Article  Google Scholar 

  336. Hadjipanayis CG et al (2008) Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia. Small 4(11):1925–1929

    Article  Google Scholar 

  337. Khurshid H et al (2013) Core/shell structured iron/iron-oxide nanoparticles as excellent MRI contrast enhancement agents. J Magn Magn Mater 331:17–20

    Article  Google Scholar 

  338. Chen Z et al (2012) Applications of functionalized fullerenes in tumor theranostics. Theranostics 2(3):238

    Article  Google Scholar 

  339. Ghiassi KB, Olmstead MM, Balch AL (2014) Gadolinium-containing endohedral fullerenes: structures and function as magnetic resonance imaging (MRI) agents. Dalton Trans 43(20):7346–7358

    Article  Google Scholar 

  340. Wu H et al (2011) Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery. Acta Biomater 7(9):3496–3504

    Article  Google Scholar 

  341. Al Faraj A et al (2009) In vivo imaging of carbon nanotube biodistribution using magnetic resonance imaging. Nano Lett 9(3):1023–1027

    Article  MathSciNet  Google Scholar 

  342. Marangon I et al (2014) Covalent functionalization of multi-walled carbon nanotubes with a gadolinium chelate for efficient T1–weighted magnetic resonance imaging. Adv Funct Mater 24(45):7173–7186

    Google Scholar 

  343. Ito A et al (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100(1):1–11

    Article  Google Scholar 

  344. Pankhurst QA et al (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36(13):R167

    Article  Google Scholar 

  345. Abakumov MA et al (2015) VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor. Nanomedicine 11(4):825–833

    Article  Google Scholar 

  346. Liguori C et al (2015) Emerging clinical applications of computed tomography. Med Devices (Auckland, NZ) 8:265

    Google Scholar 

  347. Ou P et al (2007) Three-dimensional CT scanning: a new diagnostic modality in congenital heart disease. Heart 93(8):908–913

    Article  Google Scholar 

  348. Fan W et al (2019) Breaking the depth dependence by nanotechnology-enhanced X-ray-excited deep cancer theranostics. Adv Mater 31(12):1806381

    Article  Google Scholar 

  349. Anton N, Vandamme TF (2014) Nanotechnology for computed tomography: a real potential recently disclosed. Pharm Res 31(1):20–34

    Article  Google Scholar 

  350. Wang X et al (2019) Rhenium sulfide nanoparticles as a biosafe spectral CT contrast agent for gastrointestinal tract imaging and tumor theranostics in vivo. ACS Appl Mater Interfaces 11(37):33650–33658

    Article  Google Scholar 

  351. Mukundan S Jr et al (2006) A liposomal nanoscale contrast agent for preclinical CT in mice. Am J Roentgenol 186(2):300–307

    Article  Google Scholar 

  352. Danila D et al (2009) Antibody-labeled liposomes for CT imaging of atherosclerotic plaques: in vitro investigation of an anti-ICAM antibody-labeled liposome containing iohexol for molecular imaging of atherosclerotic plaques via computed tomography. Tex Heart Inst J 36(5):393

    Google Scholar 

  353. Chang Y-J et al (2010) Therapeutic efficacy and microSPECT/CT imaging of 188Re-DXR-liposome in a C26 murine colon carcinoma solid tumor model. Nucl Med Biol 37(1):95–104

    Article  Google Scholar 

  354. Xu H et al (2019) Nanoliposomes co-encapsulating CT imaging contrast agent and photosensitizer for enhanced, imaging guided photodynamic therapy of cancer. Theranostics 9(5):1323

    Article  Google Scholar 

  355. Gao C et al (2020) cRGD-modified and disulfide bond-crosslinked polymer nanoparticles based on iopamidol as a tumor-targeted CT contrast agent. Polym Chem 11(4):889–899

    Article  Google Scholar 

  356. Zhou W et al (2020) Iodine-rich semiconducting polymer nanoparticles for CT/fluorescence dual-modal imaging-guided enhanced photodynamic therapy. Small 16(5):1905641

    Article  Google Scholar 

  357. Tian C et al (2015) Poly (acrylic acid) bridged gadolinium metal–organic framework–gold nanoparticle composites as contrast agents for computed tomography and magnetic resonance bimodal imaging. ACS Appl Mater Interfaces 7(32):17765–17775

    Article  Google Scholar 

  358. Curry T et al (2014) Multifunctional theranostic gold nanoparticles for targeted CT imaging and photothermal therapy. Contrast Media Mol Imaging 9(1):53–61

    Article  Google Scholar 

  359. Meir R et al (2015) Nanomedicine for cancer immunotherapy: tracking cancer-specific T-cells in vivo with gold nanoparticles and CT imaging. ACS Nano 9(6):6363–6372

    Article  Google Scholar 

  360. Popovtzer R et al (2008) Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 8(12):4593–4596

    Article  Google Scholar 

  361. Kimm MA et al (2020) Gold nanoparticle mediated multi-modal CT imaging of Hsp70 membrane-positive tumors. Cancer 12(5):1331

    Article  Google Scholar 

  362. Shrestha B et al (2020) Photoacoustic imaging in tissue engineering and regenerative medicine. Tissue Eng B Rev 26(1):79–102

    Article  Google Scholar 

  363. Zhu Y et al (2018) Light emitting diodes based photoacoustic imaging and potential clinical applications. Sci Rep 8(1):1–12

    Google Scholar 

  364. Yu Q et al (2020) Label-free visualization of early cancer hepatic micrometastasis and intraoperative image-guided surgery by photoacoustic imaging. J Nucl Med 61(7):1079–1085

    Article  Google Scholar 

  365. Jnawali K et al (2020) Automatic cancer tissue detection using multispectral photoacoustic imaging. Int J Comput Assist Radiol Surg 15(2):309–320

    Article  MathSciNet  Google Scholar 

  366. Gharieb RR (2020) Photoacoustic imaging for cancer diagnosis: a breast tumor example. In: Photoacoustic imaging-principles, advances and applications. IntechOpen

    Chapter  Google Scholar 

  367. Xie H et al (2020) Biodegradable Bi2O2Se quantum dots for photoacoustic imaging-guided cancer photothermal therapy. Small 16(1):1905208

    Article  Google Scholar 

  368. Ge X et al (2020) A non-invasive nanoprobe for in vivo photoacoustic imaging of vulnerable atherosclerotic plaque. Adv Mater:2000037

    Google Scholar 

  369. Imaizumi Y et al (2020) P16 assessment of plaque vulnerability using a novel technique: multi-spectral photoacoustic imaging (CVENT-PAI). Artery Res 25(10):S59–S59

    Article  Google Scholar 

  370. Lv J et al (2020) In vivo photoacoustic imaging dynamically monitors the structural and functional changes of ischemic stroke at a very early stage. Theranostics 10(2):816

    Article  Google Scholar 

  371. Graham MT et al (2020) Photoacoustic image guidance and robotic visual servoing to mitigate fluoroscopy during cardiac catheter interventions. In: Advanced biomedical and clinical diagnostic and surgical guidance systems XVIII. International Society for Optics and Photonics

    Google Scholar 

  372. Joseph FK et al (2020) LED-based photoacoustic imaging for early detection of joint inflammation in rodents: towards achieving 3Rs in rheumatoid arthritis research. In: Photons plus ultrasound: imaging and sensing 2020. International Society for Optics and Photonics

    Google Scholar 

  373. Ogawa K et al (2019) Evaluation of arthritis with model rats using photoacoustic imaging system. In: European conference on biomedical optics. Optical Society of America

    Google Scholar 

  374. Chu C et al (2020) Multimodal photoacoustic imaging-guided regression of corneal neovascularization: a non-invasive and safe strategy. Adv Sci:2000346

    Google Scholar 

  375. Yang G et al (2020) Vascularization in tissue engineering: fundamentals and state-of-art. Prog Biomed Eng 2(1):012002

    Article  Google Scholar 

  376. Shrestha B et al (2020) Gold nanorods enable noninvasive longitudinal monitoring of hydrogels in vivo with photoacoustic tomography. Acta Biomater

    Google Scholar 

  377. García-Álvarez R et al (2020) Optimizing the geometry of photoacoustically active gold nanoparticles for biomedical imaging. ACS Photonics 7(3):646–652

    Article  Google Scholar 

  378. Chen Y-S et al (2019) Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window. Nat Nanotechnol 14(5):465–472

    Article  Google Scholar 

  379. Han S, Bouchard R, Sokolov KV (2019) Molecular photoacoustic imaging with ultra-small gold nanoparticles. Biomed Opt Express 10(7):3472–3483

    Article  Google Scholar 

  380. Lee S, Lee D, Kim C (2019) Photoacoustic imaging with carbon nanomaterials. In: Carbon nanomaterials for bioimaging, bioanalysis, and therapy, pp 139–166

    Google Scholar 

  381. Fu Q et al (2019) Photoacoustic imaging: contrast agents and their biomedical applications. Adv Mater 31(6):1805875

    Google Scholar 

  382. Dutta R et al (2019) Real-time detection of circulating tumor cells in living animals using functionalized large gold nanorods. Nano Lett 19(4):2334–2342

    Article  Google Scholar 

  383. Wang B et al (2010) Intravascular photoacoustic imaging of macrophages using molecularly targeted gold nanoparticles. In: Photons plus ultrasound: imaging and sensing 2010. International Society for Optics and Photonics

    Google Scholar 

  384. Goetz LH, Schork NJ (2018) Personalized medicine: motivation, challenges, and progress. Fertil Steril 109(6):952–963

    Article  Google Scholar 

  385. Kelkar SS, Reineke TM (2011) Theranostics: combining imaging and therapy. Bioconjug Chem 22(10):1879–1903

    Article  Google Scholar 

  386. Yang Z et al (2017) Self-assembly of semiconducting-plasmonic gold nanoparticles with enhanced optical property for photoacoustic imaging and photothermal therapy. Theranostics 7(8):2177

    Article  Google Scholar 

  387. Zhou P et al (2018) Photoacoustic-enabled self-guidance in magnetic-hyperthermia Fe@ Fe3O4 nanoparticles for theranostics in vivo. Adv Healthc Mater 7(9):1701201

    Article  Google Scholar 

  388. Xu H et al (2019) PEGylated liposomal photosensitizers as theranostic agents for dual-modal photoacoustic and fluorescence imaging-guided photodynamic therapy. J Innov Opt Health Sci 12(03):1941003

    Article  Google Scholar 

  389. Yang Z et al (2019) Precision cancer theranostic platform by in situ polymerization in perylene diimide-hybridized hollow mesoporous organosilica nanoparticles. J Am Chem Soc 141(37):14687–14698

    Article  Google Scholar 

  390. Dai Y et al (2019) Multifunctional thermosensitive liposomes based on natural phase-change material: near-infrared light-triggered drug release and multimodal imaging-guided cancer combination therapy. ACS Appl Mater Interfaces 11(11):10540–10553

    Article  Google Scholar 

  391. Zhao S et al (2018) Designing of UCNPs@ Bi@ SiO2 hybrid theranostic nanoplatforms for simultaneous multimodal imaging and photothermal therapy. ACS Appl Mater Interfaces 11(1):394–402

    Article  Google Scholar 

  392. Liu Z et al (2018) 2D superparamagnetic tantalum carbide composite MXenes for efficient breast-cancer theranostics. Theranostics 8(6):1648

    Article  Google Scholar 

  393. Yang S et al (2019) Rodlike MSN@ Au nanohybrid-modified supermolecular photosensitizer for NIRF/MSOT/CT/MR quadmodal imaging-guided photothermal/photodynamic cancer therapy. ACS Appl Mater Interfaces 11(7):6777–6788

    Article  Google Scholar 

  394. Patri AK (2020) Nanotechnology: over a decade of progress and innovation. FDA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Lyle Hood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shrestha, B., Tang, L., Hood, R.L. (2022). Nanotechnology for Personalized Medicine. In: Gu, N. (eds) Nanomedicine. Micro/Nano Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-9374-7_18-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9374-7_18-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9374-7

  • Online ISBN: 978-981-13-9374-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics