Skip to main content

Cyclodextrin Hybrid Inorganic Nanocomposites for Molecular Recognition, Selective Adsorption, and Drug Delivery

  • Living reference work entry
  • First Online:
Handbook of Macrocyclic Supramolecular Assembly

Abstract

Supramolecular hybrid inorganic nanocomposites, as a burgeoning type of hybrid nanomaterials, have been prepared by anchoring macrocyclic organic molecules and supramolecules onto inorganic nanoscaffolds. Macrocyclic organic molecules, such as crown ethers, cryptands, calixarenes, cucurbiturils, pillararene, and cyclodextrins, have frequently been used as building blocks for supramolecular hybrid inorganic materials. These macrocyclic molecules anchoring onto the surface of inorganic nanomaterials particularly act as the valid host molecules that one or more “guest” molecules can bind to a “host” cavity reversibly. Among the various macrocyclic molecules, native and modified cyclodextrins (CDs) have long been recognized as the host molecules with inherent hydrophobic internal cavity and hydrophilic external surface in host-guest chemistry ; therefore, much attention of CDs has attracted in the construction of supramolecular hybrid inorganic nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Rekharsky MV, Inoue Y (1998) Complexation thermodynamics of cyclodextrins. Chem Rev 98(5):1875–1918

    Article  CAS  PubMed  Google Scholar 

  2. Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98(5):1743–1754

    Article  CAS  PubMed  Google Scholar 

  3. Khan AR, Forgo P, Stine KJ, D'Souza VT (1998) Methods for selective modifications of cyclodextrins. Chem Rev 98(5):1977–1996

    Article  CAS  PubMed  Google Scholar 

  4. Prochowicz D, Kornowicz A, Lewiński J (2017) Interactions of native cyclodextrins with metal ions and inorganic nanoparticles: fertile landscape for chemistry and materials science. Chem Rev 11(7):13461–13501

    Article  CAS  Google Scholar 

  5. Kasprzak A, Poplawska M (2018) Recent developments in the synthesis and applications of graphene-family materials functionalized with cyclodextrins. Chem Commun 54(62):8547–8562

    Article  CAS  Google Scholar 

  6. Zhou J, Yu GC, Huang FH (2017) Supramolecular chemotherapy based on host-guest molecular recognition: a novel strategy in the battle against cancer with a bright future. Chem Soc Rev 46(22):7021–7053

    Article  CAS  PubMed  Google Scholar 

  7. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214

    Article  CAS  PubMed  Google Scholar 

  8. Guo YJ, Guo SJ, Ren JT, Zhai YM, Dong SJ, Wang EK (2010) Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: synthesis and host-guest inclusion for enhanced electrochemical performance. ACS Nano 4(7):4001–4010

    Article  CAS  PubMed  Google Scholar 

  9. Liu JL, Leng XY, Xiao Y, Hu CG, Fu L (2015) 3D nitrogen-doped graphene/β-cyclodextrin: host-guest interactions for electrochemical sensing. Nanoscale 7(28):11922–11927

    Article  CAS  PubMed  Google Scholar 

  10. Guo YJ, Guo SJ, Li J, Wang EK, Dong SJ (2011) Cyclodextrin-graphene hybrid nanosheets as enhanced sensing platform for ultrasensitive determination of carbendazim. Talanta 84(1):60–64

    Article  CAS  PubMed  Google Scholar 

  11. Zhang M, Zhang H, Zhai XC, Yang X, Zhao HT, Wang J, Dong AJ, Wang ZY (2017) Application of beta-cyclodextrin-reduced graphene oxide nanosheets for enhanced electrochemical sensing of the nitenpyram residue in real samples. New J Chem 41(5):2169–2177

    Article  CAS  Google Scholar 

  12. Liang WT, Rong YQ, Fan LF, Dong WJ, Dong QC, Yang C, Zhong ZH, Dong C, Shuang SM, Wong WY (2018) 3D graphene/hydroxypropyl-β-cyclodextrin nanocomposite as an electrochemical chiral sensor for the recognition of tryptophan enantiomers. J Mater Chem C 6(47):12822–12829

    Article  CAS  Google Scholar 

  13. Yang L, Fan S, Deng G, Li Y, Ran X, Zhao H, Li CP (2015) Bridged β-cyclodextrin-functionalized MWCNT with higher supramolecular recognition capability: the simultaneous electrochemical determination of three phenols. Biosens Bioelectron 68:617–625

    Article  CAS  PubMed  Google Scholar 

  14. Ul AA, Qin YH, Howlader MMR, Hu NX, Deen MJ (2018) Electrochemical sensing of acetaminophen using multi-walled carbon nanotube and β-cyclodextrin. Sens Actuator B-Chem 254:896–909

    Article  CAS  Google Scholar 

  15. Zarei K, Fatemi L, Kor K (2015) Stripping voltammetric determination of nicardipine using β-cyclodextrin incorporated carbon nanotube-modified glassy carbon electrode. J Anal Chem 70(5):615–620

    Article  CAS  Google Scholar 

  16. Le HTN, Jeong HK (2017) Enhanced supramolecular recognition capability of γ cyclodextrin-graphite oxide-carbon nanotube composite. Electrochim Acta 250:259–266

    Article  CAS  Google Scholar 

  17. Liu ZG, Xue Q, Guo YJ (2017) Sensitive electrochemical detection of rutin and isoquercitrin based on SH-β-cyclodextrin functionalized graphene-palladium nanoparticles. Biosens Bioelectron 89:444–452

    Article  CAS  PubMed  Google Scholar 

  18. Wang C, Li T, Liu Z, Guo Y, Li C, Dong C, Shuang S (2016) An ultra-sensitive sensor based on β-cyclodextrin modified magnetic graphene oxide for detection of tryptophan. J Electroanal Chem 781:363–370

    Article  CAS  Google Scholar 

  19. Dong SQ, Bi Q, Qiao CD, Sun YM, Zhang X, Lu XQ, Zhao L (2017) Electrochemical sensor for discrimination tyrosine enantiomers using graphene quantum dots and β-cyclodextrins composites. Talanta 173:94–100

    Article  CAS  PubMed  Google Scholar 

  20. Jie O, Zhu Y, Yong K, Ma J (2015) Graphene quantum dots/β-cyclodextrin nanocomposites: a novel electrochemical chiral interface for tryptophan isomer recognition. Electrochem Commun 60:60–63

    Article  CAS  Google Scholar 

  21. Lei P, Zhou Y, Zhang G, Zhang Y, Zhang C, Hong S, Yang Y, Dong C, Shuang S (2019) A highly efficient chiral sensing platform for tryptophan isomers based on a coordination self-assembly. Talanta 195:306–312

    Article  CAS  PubMed  Google Scholar 

  22. Zaidi SA (2017) Facile and efficient electrochemical enantiomer recognition of phenylalanine using β-Cyclodextrin immobilized on reduced graphene oxide. Biosens Bioelectron 94:714–718

    Article  CAS  PubMed  Google Scholar 

  23. Upadhyay SS, Kalambate PK, Srivastava AK (2017) Enantioselective analysis of moxifloxacin hydrochloride enantiomers with graphene-β-cyclodextrin-nanocomposite modified carbon paste electrode using adsorptive stripping differential pulse Voltammetry. Electrochim Acta 248:258–269

    Article  CAS  Google Scholar 

  24. Li Y, Gao Y, Li YA, Liu SY, Zhang H, Su XG (2014) A novel fluorescence probing strategy based on mono-6-(2-aminoethylamino)-6-deoxy-β-cyclodextrin functionalized graphene oxide for the detection of amantadine. Sens Actuator B-Chem 202:323–329

    Article  CAS  Google Scholar 

  25. Zor E, Saglam ME, Alpaydin S, Bingol H (2014) A reduced graphene oxide/α-cyclodextrin hybrid for the detection of methionine: electrochemical, fluorometric and computational studies. Anal Methods 6(16):6522–6530

    Article  CAS  Google Scholar 

  26. Mondal A, Jana NR (2012) Fluorescent detection of cholesterol using β-cyclodextrin functionalized graphene. Chem Commun 48(58):7316–7318

    Article  CAS  Google Scholar 

  27. Zhou SH, Xu HB, Gan W, Yuan QH (2016) Graphene quantum dots: recent progress in preparation and fluorescence sensing applications. RSC Adv 6(112):110775–110788

    Article  CAS  Google Scholar 

  28. Mondal S, Purkayastha P (2016) α-Cyclodextrin functionalized carbon dots: pronounced photoinduced electron transfer by aggregated nanostructures. J Phys Chem C 120(26):14365–14371

    Article  CAS  Google Scholar 

  29. Lin ZY, Kuo YC, Chang CJ, Lin YS, Chiu TC, Hu CC (2018) Highly sensitive sensing of hydroquinone and catechol based on β-cyclodextrin-modified carbon dots. RSC Adv 8(35):19381–19388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shao D, Sheng G, Chen C, Wang X, Nagatsu M (2010) Removal of polychlorinated biphenyls from aqueous solutions using β-cyclodextrin grafted multiwalled carbon nanotubes. Chemosphere 79(7):679–685

    Article  CAS  PubMed  Google Scholar 

  31. Salipira KL, Mamba BB, Krause RW, Malefetse TJ, Durbach SH (2008) Cyclodextrin polyurethanes polymerised with carbon nanotubes for the removal of organic pollutants in water. Water SA 34(1):113–118

    CAS  Google Scholar 

  32. Wei L, Jiang X, Chen X (2014) A novel method of synthesizing cyclodextrin grafted multiwall carbon nanotubes/iron oxides and its adsorption of organic pollutant. Appl Surf Sci 320:764–771

    Article  CAS  Google Scholar 

  33. Sinha A, Jana NR (2015) Separation of microcystin-LR by cyclodextrin-functionalized magnetic composite of colloidal graphene and porous silica. ACS Appl Mater Interfaces 7(18):9911–9919

    Article  CAS  PubMed  Google Scholar 

  34. Mphahlele K, Onyango MS, Mhlanga SD (2015) Adsorption of aspirin and paracetamol from aqueous solution using Fe/N-CNT/β-cyclodextrin nanocomopsites synthesized via a benign microwave assisted method. J Environ Chem Eng 3(4):2619–2630

    Article  CAS  Google Scholar 

  35. Siriviriyanun A, Tsai YJ, Voon SH, Kiew SF, Imae T, Kiew LV, Looi CY, Wong WF, Lee HB, Chung LY (2018) Cyclodextrin- and dendrimer-conjugated graphene oxide as a nanocarrier for the delivery of selected chemotherapeutic and photosensitizing agents. Mater Sci Eng C-Mater Biol Appl 89:307–315

    Article  CAS  PubMed  Google Scholar 

  36. Iannazzo D, Mazzaglia A, Scala A, Pistone A, Galvagno S, Lanza M, Riccucci C, Ingo GM, Colao I, Sciortino MT, Valle F, Piperno A, Grassi G (2014) β-Cyclodextrin-grafted on multiwalled carbon nanotubes as versatile nanoplatform for entrapment of guanine-based drugs. Colloid Surf B-Biointerfaces 123:264–270

    Article  CAS  Google Scholar 

  37. Srinivasarao M, Low PS (2017) Ligand-targeted drug delivery. Chem Rev 117(19):12133–12164

    Article  CAS  PubMed  Google Scholar 

  38. Yang Y, Zhang YM, Chen Y, Zhao D, Chen JT, Liu Y (2012) Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery. Chem Eur J 18(14):4208–4215

    Article  CAS  PubMed  Google Scholar 

  39. Hu Z, Wang C, Zhao F, Xu XR, Wang SH, Yu L, Zhang D, Huang YD (2017) Fabrication of a graphene/C60 nanohybrid via γ-cyclodextrin host-guest chemistry for photodynamic and photothermal therapy. Nanoscale 9(25):8825–8833

    Article  CAS  PubMed  Google Scholar 

  40. Zhang YM, Cao Y, Yang Y, Chen JT, Liu Y (2014) A small-sized graphene oxide supramolecular assembly for targeted delivery of camptothecin. Chem Commun 50(86):13066–13069

    Article  CAS  Google Scholar 

  41. Liang WT, Huang Y, Lu DT, Ma XW, Gong T, Cui XD, Yu BF, Yang C, Dong C, Shuang SM (2019) β-Cyclodextrin–hyaluronic acid polymer functionalized magnetic graphene oxide nanocomposites for targeted photo-chemotherapy of tumor cells. Polymers 11(1):133–148

    Article  CAS  PubMed Central  Google Scholar 

  42. Wei GC, Dong RH, Wang D, Feng L, Dong SL, Song AX, Hao JC (2014) Functional materials from the covalent modification of reduced graphene oxide and β-cyclodextrin as a drug delivery carrier. New J Chem 38(1):140–145

    Article  CAS  Google Scholar 

  43. Ko NR, Nafiujjaman M, Lee JS, Lim HN, Lee YK, Kwon IK (2017) Graphene quantum dot-based theranostic agents for active targeting of breast cancer. RSC Adv 7(19):11420–11427

    Article  CAS  Google Scholar 

  44. Dong HQ, Li YY, Yu JH, Song YY, Cai XJ, Liu JQ, Zhang JM, Ewing RC, Shi DL (2013) A versatile multicomponent assembly via β-cyclodextrin host-guest chemistry on graphene for biomedical applications. Small 9(3):446–456

    Article  CAS  PubMed  Google Scholar 

  45. Wang CL, Li B, Niu WF, Hong SS, Saif B, Wang SB, Dong C, Shuang SM (2015) β-Cyclodextrin modified graphene oxide-magnetic nanocomposite for targeted delivery and pH-sensitive release of stereoisomeric anti-cancer drugs. RSC Adv 5(108):89299–89308

    Article  CAS  Google Scholar 

  46. Boncel S, Herman AP, Budniok S, Jedrysiak RG, Jakobik-Kolon A, Skepper JN, Mueller KH (2016) In vitro targeting and selective killing of T47D breast cancer cells by purpurin and 5-fluorouracil anchored to magnetic CNTs: nitrene-based functionalization versus uptake, cytotoxicity, and intracellular fate. ACS Biomater Sci Eng 2(8):1273–1285

    Article  CAS  PubMed  Google Scholar 

  47. An-Hui L, Salabas EL, Ferdi S (2010) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244

    Google Scholar 

  48. Sophie L, Delphine F, Marc P, Alain R, Caroline R, Luce VE, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110

    Article  CAS  Google Scholar 

  49. Zhu J, Jiang HE, Xiaoyan DU, Ruihua LU, Huang L, Xia GE (2011) A facile and flexible process of β-cyclodextrin grafted on Fe3O4 magnetic nanoparticles and host-guest inclusion studies. Appl Surf Sci 257(21):9056–9062

    Article  CAS  Google Scholar 

  50. Wang CL, Huang LZ, Song SM, Saif B, Zhou YH, Dong C, Shuang SM (2015) Targeted delivery and pH-responsive release of stereoisomeric anti-cancer drugs using β-cyclodextrin assembled Fe3O4 nanoparticles. Appl Surf Sci 357:2077–2086

    Article  CAS  Google Scholar 

  51. Zhou YH, Sun LL, Wang HX, Liang WT, Yang J, Wang L, Shuang SM (2016) Investigation on the uptake and release ability of β-cyclodextrin functionalized Fe3O4 magnetic nanoparticles by methylene blue. Mat Chem Phys 170:83–89

    Article  CAS  Google Scholar 

  52. Wang HX, Zhou YH, Guo YJ, Liu WJ, Dong C, Wu YH, Li SD, Shuang SM (2012) β-Cyclodextrin/Fe3O4 hybrid magnetic nano-composite modified glassy carbon electrode for tryptophan sensing. Sensors Actuators B Chem 163(1):171–178

    Article  CAS  Google Scholar 

  53. Zhang Y, Wang W, Li Q, Yang QB, Li YX, Du JS (2015) Colorimetric magnetic microspheres as chemosensor for Cu2+ prepared from adamantane-modified rhodamine and β-cyclodextrin-modified Fe3O4@SiO2 via host-guest interaction. Talanta 141:33–40

    Article  CAS  PubMed  Google Scholar 

  54. Helal AS, Mazario E, Mayoral A, Decorse P, Losno R, Lion C, Ammar S, Hemadi M (2018) Highly efficient and selective extraction of uranium from aqueous solution using a magnetic device: succinyl-β-cyclodextrin-APTES@maghemite nanoparticles. Environ Sci Nano 5(1):158–168

    Article  CAS  Google Scholar 

  55. Cai KY, Li JH, Luo Z, Hu Y, Hou YH, Ding XW (2011) β-Cyclodextrin conjugated magnetic nanoparticles for diazepam removal from blood. Chem Commun 47(27):7719–7721

    Article  CAS  Google Scholar 

  56. Kong L, Yan LL, Qu Z, Yan NQ, Li L (2015) β-Cyclodextrin stabilized magnetic Fe3S4 nanoparticles for efficient removal of Pb(II). J Mater Chem A 3(30):15755–15763

    Article  CAS  Google Scholar 

  57. Chen X, Rao JA, Wang J, Gooding JJ, Zou G, Zhang QJ (2011) A facile enantioseparation for amino acids enantiomers using β-cyclodextrins functionalized Fe3O4 nanospheres. Chem Commun 47(37):10317–10319

    Article  CAS  Google Scholar 

  58. Sun ZB, Cui GJ, Li HZ, Liu Y, Tian YX, Yan SQ (2016) Multifunctional optical sensing probes based on organic-inorganic hybrid composites. J Mat Chem B 4(31):5194–5216

    Article  CAS  Google Scholar 

  59. Wu YP, Zuo F, Zheng ZH, Ding XB, Peng YX (2009) A novel approach to molecular recognition surface of magnetic nanoparticles based on host-guest effect. Nanoscale Res Lett 4(7):738–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jiang JJ, Lin XY, Ding D, Diao GW (2018) Enzyme-free homogeneous electrochemical biosensor for DNA assay using toehold-triggered strand displacement reaction coupled with host-guest recognition of Fe3O4@SiO2@ β-CD nanocomposites. Biosens Bioelectron 114:37–43

    Article  CAS  PubMed  Google Scholar 

  61. Munoz J, Gonzalez-Campo A, Riba-Moliner M, Baeza M, Mas-Torrent M (2018) Chiral magnetic-nanobiofluids for rapid electrochemical screening of enantiomers at a magneto nanocomposite graphene-paste electrode. Biosens Bioelectron 105:95–102

    Article  CAS  PubMed  Google Scholar 

  62. Wang W, Zhang Y, Yang QB, Sun MD, Fei XL, Song Y, Zhang YM, Li YX (2013) Fluorescent and colorimetric magnetic microspheres as nanosensors for Hg2+ in aqueous solution prepared by a sol-gel grafting reaction and host-guest interaction. Nanoscale 5(11):4958–4965

    Article  CAS  PubMed  Google Scholar 

  63. Badruddoza AZM, Tay ASH, Tan PY, Hidajat K, Uddin MS (2011) Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies. J Hazard Mater 185(2–3):1177–1186

    Article  CAS  PubMed  Google Scholar 

  64. Badruddoza AM, Bhattarai B, Suri RPS (2017) Environmentally friendly β-cyclodextrin-ionic liquid polyurethane-modified magnetic sorbent for the removal of PFOA, PFOS, and Cr(VI) from water. ACS Sustain Chem Eng 5(10):9223–9232

    Article  CAS  Google Scholar 

  65. Mu B, Kang YR, Wang AQ (2013) Preparation of a polyelectrolyte-coated magnetic attapulgite composite for the adsorption of precious metals. J Mater Chem A 1(15):4804–4811

    Article  CAS  Google Scholar 

  66. Guo ZQ, Li Y, Pan SH, Xu JZ (2015) Fabrication of Fe3O4@cyclodextrin magnetic composite for the high-efficient removal of Eu(III). J Mol Liq 206:272–277

    Article  CAS  Google Scholar 

  67. Fuhrer R, Herrmann IK, Athanassiou EK, Grass RN, Stark WJ (2011) Immobilized β-Cyclodextrin on surface-modified carbon-coated cobalt nanomagnets: reversible organic contaminant adsorption and enrichment from water. Langmuir 27(5):1924–1929

    Article  CAS  PubMed  Google Scholar 

  68. Gong T, Zhou YH, Sun LL, Liang WT, Yang J, Shuang SM, Dong C (2016) Effective adsorption of phenolic pollutants from water using β-cyclodextrin polymer functionalized Fe3O4 magnetic nanoparticles. RSC Adv 6(84):80955–80963

    Article  CAS  Google Scholar 

  69. Duan ZB, Ding XC, Wang Y, Zhu LJ, Xia DH (2018) A new strategy for fuel desulfurization by molecular inclusion with copper(II)-β-cyclodextrin@SiO2@Fe3O4 for removing thiophenic sulfides. Energy Fuel 32(11):11421–11431

    Article  CAS  Google Scholar 

  70. Sinha A, Basiruddin SK, Chakraborty A, Jana NR (2015) β-Cyclodextrin functionalized magnetic mesoporous silica colloid for cholesterol separation. ACS Appl Mater Interfaces 7(2):1340–1347

    Article  CAS  PubMed  Google Scholar 

  71. Guo J, Wang NJ, Peng L, Wu JJ, Ye QQ, Feng AC, Wang ZP, Zhang C, Xing XH, Yuan JY (2016) Electrochemically-responsive magnetic nanoparticles for reversible protein adsorption. J Mat Chem B 4(22):4009–4016

    Article  CAS  Google Scholar 

  72. Deng XJ, Li WB, Ding GS, Chen XP (2018) Enantioselective separation of RS-mandelic acid using β-cyclodextrin modified Fe3O4@SiO2/Au microspheres. Analyst 143(11):2665–2673

    Article  CAS  PubMed  Google Scholar 

  73. Yang X, Song X, Zhu H, Cheng C, Yu H, Zhang H (2018) Novel smart polymer brushes modified magnetic graphene oxide for highly efficient chiral recognition and enantioseparation of tryptophan enantiomers. ACS Appl Bio Mat 1(4):1074–1083

    Article  CAS  Google Scholar 

  74. Luo Z, Cai K, Hu Y, Li J, Ding X, Zhang B, Xu D, Yang W, Liu P (2012) Redox-responsive molecular nanoreservoirs for controlled intracellular anticancer drug delivery based on magnetic nanoparticles. Adv Mater 24(3):431–435

    Article  CAS  PubMed  Google Scholar 

  75. Lee JH, Chen KJ, Noh SH, Garcia MA, Wang H, Lin WY, Jeong H, Kong BJ, Stout DB, Cheon J, Tseng HR (2013) On-demand drug release system for in vivo cancer treatment through self-assembled magnetic nanoparticles. Angew Chem Int Edit 52(16):4384–4388

    Article  CAS  Google Scholar 

  76. Hong SS, Li ZB, Li CZ, Dong CA, Shuang SM (2018) β-Cyclodextrin grafted polypyrrole magnetic nanocomposites toward the targeted delivery and controlled release of doxorubicin. Appl Surf Sci 427:1189–1198

    Article  CAS  Google Scholar 

  77. Zhou J, Yang Y, Zhang CY (2015) Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chem Rev 115(21):11669–11717

    Article  CAS  PubMed  Google Scholar 

  78. Denis D, Shu-Han H, Nikodem T, Reinhoudt DN, Jurriaan H, Velders AH, Julius Vancso G (2010) Fabrication and luminescence of designer surface patterns with β-cyclodextrin functionalized quantum dots via multivalent supramolecular coupling. ACS Nano 4(1):137–142

    Article  CAS  Google Scholar 

  79. Palaniappan K, Hackney SA, Liu J (2004) Supramolecular control of complexation-induced fluorescence change of water-soluble, β-cyclodextrin-modified CdS quantum dots. Chem Commun 23(23):2704–2705

    Article  Google Scholar 

  80. Li H, Han C (2008) Sonochemical synthesis of cyclodextrin-coated quantum dots for optical detection of pollutant phenols in water. Chem Mater 20(19):6053–6059

    Article  CAS  Google Scholar 

  81. Shang ZB, Hu S, Wang Y, Jin WJ (2011) Interaction of β-cyclodextrin-capped CdSe quantum dots with inorganic anions and cations. Luminescence 26(6):585–591

    Article  CAS  PubMed  Google Scholar 

  82. Duran GM, Contento AM, Rios A (2015) Continuous method incorporating β-cyclodextrin modified CdSe/ZnS quantum dots for determination of ascorbic acid. Anal Methods 7(8):3472–3479

    Article  CAS  Google Scholar 

  83. Hu T, Na W, Xu Y, Su X (2017) Sensitive fluorescence detection of ATP based on host-guest recognition between near-infrared β-Cyclodextrin-CuInS2 QDs and aptamer. Talanta 165:194–200

    Article  CAS  PubMed  Google Scholar 

  84. Geng S, Lin SM, Liu SG, Li NB, Luo HQ (2016) A new fluorescent sensor for detecting p-nitrophenol based on β-cyclodextrin-capped ZnO quantum dots. RSC Adv 6(89):86061–86067

    Article  CAS  Google Scholar 

  85. Freeman R, Finder T, Bahshi L, Willner I (2009) β-cyclodextrin-modified CdSe/ZnS quantum dots for sensing and chiroselective analysis. Nano Lett 9(5):2073–2076

    Article  CAS  PubMed  Google Scholar 

  86. Durán GM, Abellán C, Contento AM, Ríos Á (2017) Discrimination of penicillamine enantiomers using β-cyclodextrin modified CdSe/ZnS quantum dots. Microchim Acta 184(3):815–824

    Article  CAS  Google Scholar 

  87. Han C, Li H (2010) Chiral recognition of amino acids based on cyclodextrin-capped quantum dots. Small 4(9):1344–1350

    Article  CAS  Google Scholar 

  88. Wei YL, Li HH, Hao HY, Chen YX, Dong C, Wang GF (2015) β-Cyclodextrin functionalized Mn-doped ZnSquantum dots for the chiral sensing of tryptophan enantiomers. Polym Chem 6(4):591–598

    Article  CAS  Google Scholar 

  89. Jie Z, Yun L, Zhang Z, Sha Y, Jian T, Wei L, Tang W (2016) Cyclodextrin-clicked silica/CdTe fluorescent nanoparticles for enantioselective recognition of amino acids. Nanoscale 8(10):5621–5626

    Article  CAS  Google Scholar 

  90. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779

    Article  CAS  PubMed  Google Scholar 

  91. Alvarez J, Liu J, Román E, Kaifer AE (2000) Water-soluble platinum and palladium nanoparticles modified with thiolated β-cyclodextrin. Chem Commun 13:1151–1152

    Article  Google Scholar 

  92. Zhao Y, Huang Y, Zhu H, Zhu Q, Xia Y (2016) Three-in-one: sensing, self-assembly, and cascade catalysis of cyclodextrin modified gold nanoparticles. J Am Chem Soc 138(51):16645–16654

    Article  CAS  PubMed  Google Scholar 

  93. Aswathy B, Avadhani GS, Suji S, Sony G (2012) Synthesis of β-cyclodextrin functionalized gold nanoparticles for the selective detection of Pb2+ ions from aqueous solution. Front Mater Sci 6(2):168–175

    Article  Google Scholar 

  94. Wang J, Kong LT, Guo Z, Xu JY, Liu JH (2010) Synthesis of novel decorated one-dimensional gold nanoparticle and its application in ultrasensitive detection of insecticide. J Mater Chem 20(25):5271–5279

    Article  CAS  Google Scholar 

  95. Wang M, Su K, Cao J, She Y, Wang Y (2018) “Off-On” non-enzymatic sensor for malathion detection based on fluorescence resonance energy transfer between β-cyclodextrin@Ag and fluorescent probe. Talanta 192:295–300

    Article  CAS  PubMed  Google Scholar 

  96. Qi M, Song JP, Zhang SF, Wang MF, Yong G, Dong C (2016) Colorimetric detection of riboflavin by silver nanoparticles capped with β-cyclodextrin-grafted citrate. Colloids Surf B Biointerfaces 148:66–72

    Article  CAS  Google Scholar 

  97. Liu C, Lian J, Liu Q, Xu C, Li B (2016) β-Cyclodextrin-modified silver nanoparticles as colorimetric probes for the direct visual enantioselective recognition of aromatic α-amino acids. Anal Methods 8(29):5794–5800

    Article  CAS  Google Scholar 

  98. Stiles PL, Dieringer JA, Shah NC, Van Duyne RP (2008) Surface-enhanced raman spectroscopy. Annu Rev Anal Chem (Palo Alto, Calif) 1:601–626

    Article  CAS  Google Scholar 

  99. Teng H, Fei M, Qi L (2009) Facile synthesis and one-dimensional assembly of cyclodextrin-capped gold nanoparticles and their applications in catalysis and surface-enhanced raman scattering. J Phys Chem C 113(31):13636–13642

    Article  CAS  Google Scholar 

  100. Dickson J, Geckeler KE (2009) Surfactant-directed multiple anisotropic gold nanostructures: synthesis and surface-enhanced Raman scattering. Langmuir the Acs J Surfaces Colloids 25(22):13224–13231

    Article  CAS  Google Scholar 

  101. Teng H, Fei M, Limin Q (2010) Controlled synthesis of dendritic gold nanostructures assisted by supramolecular complexes of surfactant with cyclodextrin. Langmuir 26(10):7582–7589

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaomin Shuang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Liang, W., Shuang, S. (2019). Cyclodextrin Hybrid Inorganic Nanocomposites for Molecular Recognition, Selective Adsorption, and Drug Delivery. In: Liu, Y., Chen, Y., Zhang, HY. (eds) Handbook of Macrocyclic Supramolecular Assembly . Springer, Singapore. https://doi.org/10.1007/978-981-13-1744-6_17-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1744-6_17-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1744-6

  • Online ISBN: 978-981-13-1744-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics