Keywords

2010 AMS Mathematics Subject Classification:

1 Introduction

The classical result of Zygmund, for the absolute convergence of Fourier series if a function of bounded variation on \(\overline{T}\), where \(\mathbb {T}=[-\pi ,\pi )\) is the torus, is generalized in many ways and many interesting results are obtained for different generalized absolute convergence of Fourier of functions of different generalized classes (see [1, 4]). In 2006, Gogoladze and Meskhia [1] obtained sufficient conditions for the generalized absolute convergence of a single Fourier series. Moricz and Veres [2] obtained sufficient conditions for the generalized absolute convergence of single and multiple Fourier series of functions of the classes \(BV^{(p)}(\mathbb {\overline{T}})\) and \(BV^{(p)}(\mathbb {\overline{T}}^{N})\), respectively (also see [5]). In this paper, generalizing such results for single Fourier series, we have obtained sufficient conditions for the generalized absolute convergence of single Fourier series of functions of the classes \(\Lambda BV(\mathbb {\overline{T}})\) and \(\Lambda BV^{(p)}(\mathbb {\overline{T}})\).

In the sequel, \(\mathbb {L}\) is the class of non-decreasing sequence \(\Lambda =\{\lambda _i\}~ (i=1,2,\ldots )\) of positive numbers such that \(\sum _{i}\frac{1}{\lambda _{i}}\) diverges, a real number \(p\ge 1\) and C represents a constant vary time to time.

2 Notations and Definitions

For a complex valued, 2\(\pi \)-periodic, function \(f\in L^1(\overline{\mathbb {T}})\), its Fourier series is defined as

$$ f(x)~\sim ~\sum _{m\in \mathbb {Z}} \hat{f}(m)e^{imx}, \quad x\in \overline{\mathbb {T}}, $$

where

$$ \hat{f}(m)~=~\left( \frac{1}{2\pi }\right) \int _{\overline{\mathbb {T}}}~f(x)e^{-imx}~dx $$

denotes the mth Fourier coefficient of f.

For \(p\ge 1\), the p-integral modulus of continuity of f over \(\overline{\mathbb {T}}\) is define as

$$ \omega ^{(p)}(f;\delta ):={sup \atop 0<h\le \delta }\parallel T_hf-f\parallel _{p}, $$

where \(T_hf(x)=f(x+h)\) for all x and \(\parallel (^.)\parallel _{p}\) denotes the \(L^p\)-norm over \(\overline{\mathbb {T}}\). \(p=\infty \) gives the modulus of continuity \(\omega (f;\delta )\) of f.

Following the definition in [1], a sequence \(\gamma =\{\gamma _m:~m\in \mathbb {N}\}\) of nonnegative numbers is said to belongs to the class \(\mathcal {A}_\alpha \) for some \(\alpha \ge 1\) if

$$\begin{aligned} \left( \sum _{m\in \mathcal {D}_\mu } \gamma _{m}^\alpha \right) ^{1/\alpha }\le \kappa 2^{\mu (1-\alpha )/\alpha }\sum _{m\in \mathcal {D}_{\mu -1}} \gamma _m,~~~\mu \in \mathbb {N}, \end{aligned}$$
(2.1)

where

$$\begin{aligned} \mathcal {D}_0:=\{1\};~~~\mathcal {D}_\mu :=\{2^{\mu -1}+1,2^{\mu -1}+2,\ldots ,2^{\mu }\},~~~\mu \in \mathbb {N}; \end{aligned}$$
(2.2)

and the constant \(\kappa \) does not dependent on \(\mu \). Without the loss of generality, we assume that \(\kappa \ge 1\).

Note that,

$$\begin{aligned} \mathcal {A}_{\alpha _2}\subset \mathcal {A}_{\alpha _1},\quad where\quad 1\le \alpha _1< \alpha _2<\infty . \end{aligned}$$
(2.3)

If a sequences \(\gamma \) is such that

$$\begin{aligned} \max \{\gamma _m:m\in \mathcal {D}_\mu \} \le \kappa \ \min \{\gamma _m:m\in \mathcal {D}_{\mu -1}\},\quad \mu \in \mathbb {N}, \end{aligned}$$
(2.4)

then \(\gamma \in \mathcal {A}_{\alpha }\) for every \(\alpha \ge 1\). This inequality was introduced by Ul’yanov [3]. Moreover, Moricz and Veres [2] observed that, if a sequence \(\gamma =\{\gamma _m\}\) is of the form

$$ \gamma _m=m^\tau w(m),~~~m\in \mathbb {N}, $$

where \(\tau \in \mathbb {R}\) and \(w:\mathbb {R}_+\rightarrow \mathbb {R}_+\) is a slowly varying function, that is,

$$\begin{aligned} {\lim \atop x\rightarrow \infty } \frac{w(\lambda x)}{w(x)} = 1,~~~for~every~0<\lambda <\infty , \end{aligned}$$
(2.5)

then \(\gamma \in \mathcal {A}_\alpha \) for every \(\alpha \ge 1\).

For convenience in writing, put

$$\begin{aligned} \gamma _{-m}:=\gamma _{m},\quad m\in \mathbb {N}. \end{aligned}$$
(2.6)

Definition 2.1

Given \(\Lambda =\{\lambda _{n}\}\in \mathbb {L}\). A complex valued function f defined on an interval \(I:=[a,b]\) is said to be of \(p-\Lambda \)-bounded variation (that is, \(f\in \Lambda BV^{(p)} (I))\) if

$$ V_{\Lambda _{p}}(f,I)=\sup _{\{\textit{I}_k\}} \left( \sum _k\frac{|f(\textit{I}_{k})|^p}{\lambda _{k}}\right) ^{1/p}<\infty , $$

where \(\{\textit{I}_{k}\}\) is a finite collections of non-overlapping subintervals \(I_k=[a_k,b_k]\subset [a,b]\) and \(f(I_k)=f(b_k)-f(a_k)\).

Note that, for \(p=1\) and \(\Lambda =\{1\}\) (that is, \(\lambda _n=1\), for all n,) the class \(\Lambda BV^{(p)}(I)\) reduces to the class BV(I) (the class of functions of bounded variation). For \(p=1\) the class \(\Lambda BV^{(p)}(I)\) reduces to the class \(\Lambda BV(I)\); and for \(\Lambda =\{1\}\) the class \(\Lambda BV^{(p)}(I)\) reduces to the class \(BV^{(p)}(I)\) (the class of functions of p-bounded variation).

3 Results for Functions of Single Variable

Theorem 3.1

If \(f\in \Lambda BV(\overline{\mathbb {T}})\) and \(\gamma =\{\gamma _m\}\in \mathcal {A}_{2/(2-\beta )}\) for some \(\beta \in (0,2)\) then

$$ \sum (\gamma ;f)_{\beta }=\sum _{\vert m\vert \ge 1}\gamma _{m}\vert \hat{f}(m)\vert ^{\beta }\le \kappa C\sum _{\mu =0}^\infty 2^{-\mu \beta /2}\Gamma _{\mu -1}~\left( \frac{(\omega (f;\frac{\pi }{2^\mu }))}{\sum _{i=1}^{2^\mu }\frac{1}{\lambda _i}}\right) ^{\beta /2}, $$

where \(\kappa \) is from (2.1) corresponding to \(\alpha =2/(2-\beta )\) and C is a constant,

$$\begin{aligned} \Gamma _{\mu } := \sum _{m \in \mathcal{{D}}_{\mu }}\gamma _{m}\quad for \quad \mu \in \mathbb {N},\quad and \quad \Gamma _{-1} := \Gamma _{0}=\{\gamma _{1}\} \end{aligned}$$
(3.1)

Corollary 3.2

Under the hypothesis of Theorem 3.1, we have

$$ \sum (\gamma ;f)_\beta \le \kappa C\sum _{m =1}^\infty m^{-\beta /2}\gamma _m~\left( \frac{(\omega (f;\frac{\pi }{m}))}{\sum _{i=1}^m\frac{1}{\lambda _i}}\right) ^{\beta /2}, $$

In the case when \(\gamma _m\equiv 1\), it follows from the above Corollary that \(\sum (1;f)_\beta :=\sum _{|m|\ge 1}|\hat{f}(m)|^\beta \)

$$ \le C\sum _{m =1}^\infty m^{-\beta /2}~\left( \frac{(\omega (f;\frac{\pi }{m})}{\sum _{i=1}^m\frac{1}{\lambda _i}}\right) ^{\beta /2}. $$

This gives the result [6, Theorem1,with\(n_k=k\), forall k,] as a particular case.

Above corollary can easily follow from the Theorem 3.1.

Theorem 3.3

If \(f\in \Lambda BV^{(p)}(\overline{\mathbb {T}})\) and \(\gamma =\{\gamma _m\}\in \mathcal {A}_{2/(2-\beta )}\) for some \(\beta \in (0,2)\) then

$$ \sum (\gamma ;f)_\beta \le \kappa C\sum _{\mu =0}^\infty 2^{-\mu \beta /2}\Gamma _{\mu -1}~\left( \left( \frac{(\omega ^{((2-p)s+p)} (f;\frac{\pi }{2^\mu }))^{2r-p}}{\sum _{i=1}^{2^\mu }\frac{1}{\lambda _i}}\right) ^{1/r}\right) ^{\beta /2}, $$

where \(\frac{1}{r}+\frac{1}{s}=1,\ \kappa \) is from (2.1) corresponding to \(\alpha =2/(2-\beta )\) and C is a constant.

Corollary 3.4

Under the hypothesis of Theorem 3.3, we have

$$ \sum (\gamma ;f)_\beta \le \kappa C\sum _{m =1}^\infty m^{-\beta /2}\gamma _m~\left( \left( \frac{(\omega ^{((2-p)s+p)} (f;\frac{\pi }{m}))^{2r-p}}{\sum _{i=1}^m\frac{1}{\lambda _i}}\right) ^{1/r}\right) ^{\beta /2}, $$

In the case when \(\gamma _m\equiv 1\), it follows from the above Corollary that

$$\begin{aligned} \sum (1;f)_\beta&:=\sum _{|m|\ge 1}|\hat{f}(m)|^\beta \\&\quad \le C\sum _{m =1}^\infty m^{-\beta /2}~\left( \left( \frac{(\omega ^{((2-p)s+p)} (f;\frac{\pi }{m}))^{2r-p}}{\sum _{i=1}^m\frac{1}{\lambda _i}}\right) ^{1/r}\right) ^{\beta /2}. \end{aligned}$$

This gives the result [4, Theorem1, with \(n_k=k\), forall k,] as a particular case.

Above Corollary 3.4 can be easily follows from the Theorem 3.3.

Proof of Theorem 3.1 \(f\in \Lambda BV(\overline{\mathbb {T}})\) implies that f is bounded over \(\overline{\mathbb {T}}\) and hence \(f\in L^2(\overline{\mathbb {T}})\). For given \(h>0\), put \(f_j=T_{jh}f-T_{(j-1)h}f\), then \(\hat{f_j}(m)=2i\hat{f}(m)e^{im(j-\frac{1}{2}h)}\sin (\frac{mh}{2})\).

By Parseval’s equality, we get

$$ 4\sum _{m\in \mathbb {Z}}|\hat{f}(m)|^2\sin ^2\left( \frac{mh}{2}\right) =O(||f_j||_2^2). $$

Putting \(h=\frac{\pi }{2^{\mu }}\), \(\mu \in \mathbb {N}\), and observing that

$$ \frac{\pi }{4}<\frac{|m|\pi }{2^{\mu +1}}\le \frac{\pi }{2}~~~for~~~|m|\in \mathcal {D}_\mu ,~~~implies~~~\sin ^2\left( \frac{mh}{2}\right) >\frac{1}{2}. $$

Thus, we have

$$\begin{aligned} B&=\sum _{|m|\in \mathcal {D}_\mu }|\hat{f}(m)|^2 =O\left( ||f_j||_2^2\right) \nonumber \\&= O\left( \omega (f;h)\right) \left( \int _0^{2\pi }|f_j(x)| dx \right) . \end{aligned}$$
(3.2)

Multiplying both the sides of the above inequality by \(\frac{1}{\lambda _j}\) and then summing over \(j=1\) to \(j=2^\mu \), we have

$$ B = O\left( \frac{\omega (f;h)}{\sum _{j=1}^{^{2^\mu }}\frac{1}{\lambda _j}}\right) \left( \int _0^{2\pi }\sum _{j=1}^{2^{\mu }}\frac{(|f_j(x)|)}{\lambda _j}~dx\right) =O\left( \frac{\omega (f;h)}{\sum _{j=1}^{^{2^\mu }}\frac{1}{\lambda _j}}\right) , $$

as \(f\in \Lambda BV(\overline{\mathbb {T}})\) implies \(\sum _{j=1}^{2^{\mu }}\frac{(|f_j(x)|)}{\lambda _j}=O(1)\).

Since \(1=\frac{\beta }{2}+\frac{2-\beta }{2}\), by Holder’s inequality, for \(\mu \ge 1\), we have

$$\begin{aligned} S_\mu&:=\sum _{|m|\in \mathcal {D}_\mu }\gamma _m|\hat{f}(m)|^\beta \le \left( \sum _{|m|\in \mathcal {D}_\mu }|\hat{f}(m)|^2\right) ^{\beta /2}\left( \sum _{|m|\in \mathcal {D}_\mu }\gamma _m^{2/(2-\beta )}\right) ^{(2-\beta )/2}\nonumber \\&\quad \le C \left( \frac{\omega (f;h)}{\sum _{j=1}^{^{2^\mu }}\frac{1}{\lambda _j}}\right) ^{\frac{\beta }{2}} \left( \sum _{|m|\in \mathcal {D}_\mu }\gamma _m^{2/(2-\beta )}\right) ^{(2-\beta )/2}. \end{aligned}$$
(3.3)

Thus for \(\mu \ge 1\),

$$ S_\mu \le C \kappa \left( 2^{-\mu \beta /2}~\Gamma _{\mu -1}\left( \frac{\omega (f;h)}{\sum _{j=1}^{^{2^\mu }}\frac{1}{\lambda _j}}\right) ^{\frac{\beta }{2}}\right) . $$

If \(\mu =0\), then from (3.3) it follows that

$$ S_0:=\gamma _1(|\hat{f}(-1)|^\beta +|\hat{f}(1)|^\beta )=O\left( \gamma _1 \left( \frac{\omega (f;\pi )}{\frac{1}{\lambda _1}}\right) \right) . $$

Hence, the result follows from

$$ \sum _{|m|\ge 1}\gamma _m|\hat{f}(m)|^\beta =\sum _{\mu =0}^\infty S_\mu . $$

Proof of Theorem 3.3. \(f\in \Lambda BV^{(p)}(\overline{\mathbb {T}})\) implies that f is bounded over \(\overline{\mathbb {T}}\) [4, in view of Lemma 1, p.771] and hence \(f\in L^2(\overline{\mathbb {T}})\). Proceeding as in the proof of Theorem 3.1, we get (3.2).

Since \(2=\frac{(2-p)s+p}{s}+\frac{p}{r}\), by using Holder’s inequality, we have

$$ ||f_j||_2^2\le \left( ||f_j||_p\right) ^{p/r} \left( \int _0^{2\pi }|f_j|^{(2-p)s+p} dx\right) ^{1/s}\le \left( ||f_j||_p\right) ^{p/r}\Omega _h^{1/r}, $$

where \(\Omega _h^{1/r}=(\omega ^{(2-p)s+p}(f;h))^{2r-p}\).

This together with (3.2) implies

$$ B^r=\left( \sum _{|m|\in \mathcal {D}_\mu }|\hat{f}(m)|^2\right) ^r = O\left( \Omega _h~\int _0^{2\pi }|f_j(x)|^pdx\right) . $$

Multiplying both the sides of the above inequality by \(\frac{1}{\lambda _j}\) and then summing over \(j=1\) to \(j=2^\mu \), we have

$$ B^r = O\left( \frac{\Omega _h}{\sum _{j=1}^{^{2^\mu }}\frac{1}{\lambda _j}}\right) \left( \int _0^{2\pi }\sum _{j=1}^{2^{\mu }}\frac{(|f_j(x)|^p)}{\lambda _j}~dx\right) =O\left( \frac{\Omega _h}{\sum _{j=1}^{^{2^\mu }}\frac{1}{\lambda _j}}\right) .$$

Thus

$$ B= O\left( \frac{\Omega _h}{\sum _{j=1}^{^{2^\mu }}\frac{1}{\lambda _j}}\right) ^{1/r}. $$

Now, proceeding as in the proof of the Theorem 3.1 the result follows.