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Preface

We are delighted to present the proceedings of the Ist International Conference on
Modern Mathematical Methods and High Performance Computing in Science &
Technology (M3HPCST-2015) held at Raj Kumar Goel Institute of Technology,
Ghaziabad, India from December 27–29, 2015. The three-day conference received
an excellent response from number of national and international academicians. The
pre-conference souvenir had 181 abstracts. Out of 130 papers discussed, 25 were
selected for plenary talk and 106 for formal paper presentation. All papers were
appropriately reviewed by well-known academicians and researchers. Finally, as
many as 25 papers were selected for inclusion in the conference proceedings
published by Springer-Verlag.

As we all are aware, mathematics has always been a discipline of interest not
only to theoreticians but also to all professionals irrespective of their specific
profession. Be it science, technology, economics, high-performance computing, or
even sociology, new mathematical principles and models have been emerging and
helping in new research and in drawing inferences from practical data as well as
through scientific computing. The past few decades have seen enormous growth in
applications of mathematics in different multidisciplinary areas.

M3HPCST-2015 covered a wide range of research interests: advances in the area
of high-performance computing, which is applied to complex large-scale compu-
tational problems, numerical methods for partial differential equations, nonlinear
problems, linear and nonlinear optimization, orthogonal polynomials and applica-
tions, functional analysis, fluid dynamics, vibration phenomena, and last but not
least, biomathematics.

New problems with large-scale computing continually arise in many scientific
and engineering applications. The development of new technologies is associated
with the design of efficient algorithms in high-performance computing.

The theory of computation and its applications is one of the most important
developments in modern science. Three technical sessions were devoted to scien-
tific computing and computational methods for different engineering problems.
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Many phenomena in science and engineering are modeled by partial or ordinary
differential equations and nonlinear systems. They are usually treated numerically;
therefore it is necessary to improve algorithm in terms of stability. Four technical
sessions were devoted to represent trends in these areas of research.

Theoretical and practical applications pertaining to biological mathematics,
functional analysis, operator theory, and orthogonal polynomials appeared in four
technical sessions in which researchers presented the latest results in this area of
investigation.

A conference of this kind would not have been possible without the support from
different organizations and the people across different committees. We are indebted
to the Science and Engineering Research Board, Department of Science &
Technology Govt. of India, Dr. A.P.J. Abdul Kalam Technical University Lucknow,
U.P. Cloud 9, Irish-Hindon, and HP India for sponsoring the event. Their support
helped in significantly raising the profile of the conference.

All logistic and general organizational aspects were looked after locally by the
organizing committee members from the institute who spent their time and energy
in making the conference a grand success. The Technical Program Committee and
external reviewers helped in selecting the paper for presentations and working out
the technical program. We acknowledge the support and help from all of them.

Last but not least, our sincere thanks to all the authors, participants, and invited
speakers, who submitted their papers and contributed to the in-depth discussions.

The organizers also express their hearty thanks to Springer for agreeing to
publish the proceedings in its Mathematics and Computer Science series.

We sincerely hope that the reader will find the proceedings stimulating and
inspiring.

Ghaziabad, India Vinai K. Singh
Victoria, Canada H.M. Srivastava
Torino, Italy Ezio Venturino
Stuttgart, Germany Michael Resch
New Delhi, India Vijay Gupta
December 2015
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On Approximation Properties of Generalized
Durrmeyer Operators

Ali Aral and Tuncer Acar

Abstract The concern of this paper is to introduce new generalized Durrmeyer-type
operators from which classical operators can be obtained as a particular case, inspir-
ing from the Ibragimov–Gadjiev operators (Gadjiev and Ibragimov, Soviet Math.
Dokl. 11, 1092–1095, (1970) [8]). After the construction of newDurrmeyer operators
is given, we obtain some pointwise convergence theorems and Voronovskaya-type
asymptotic formula for new Durrmeyer-type operators. We establish a quantitative
version of the Voronovskaya-type formula with the aid of the weighted modulus of
continuity. Some special cases of new operators are presented as examples.

Keywords Ibragimov–Gadjiev operators · Durrmeyer operators · Voronovskaya
theorem · Weighted modulus of continuity

1 Introduction

In the field of approximation theory, several researchers have defined general
sequences of linear positive operators with the purpose of obtaining results which
are valid for the wide class of such sequences, one of the most important type of
generalized sequences introduced by Ibragimov and Gadjiev in 1970 [8]. From the
Gadjiev–Ibragimov operators, we can derive many of the classical sequences of lin-
ear positive operators by means of a suitable transformation. Now we recall these
operators called the Gadjiev–Ibragimov operators.

Let (ϕn (t))n∈N and (ψn (t))n∈N be sequences of functions in C
(
R

+)
which is the

space of continuous function on R
+ := [0, ∞) , such that ϕn (0) = 0, ψn (t) > 0,

for all t and limn→∞ 1/n2ψn (0) = 0. Also let (αn)n∈N denote a sequence of positive
numbers which satisfy the following conditions:
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lim
n→∞

αn

n
= 1 and lim

n→∞ αnψn (0) = l1, l1 ≥ 0. (1)

The Gadjiev–Ibragimov operators are defined by

Gn ( f ; x) =
∞∑

ν=0

f

(
ν

n2ψn (0)

)
∂ν

∂uν
Kn (x, t, u)

∣∣
∣∣
u=αnψn(t),t=0

(−αnψn (0))ν

ν! , (2)

where Kn (x, t, u)
(
x, t ∈ R

+ and − ∞ < u < ∞)
is a sequence of functions of

three variable and have to meet the following conditions:

1. Every function of this sequence is an entire function with respect to u for fixed
x, t ∈ R

+ and Kn (x, 0, 0) = 1 for x ∈ R
+ and n ∈ N,

2.
[
(−1)ν ∂ν

∂uν Kn (x, t, u)
∣∣
u=u1,t=0

]
≥ 0 for ν = 0, 1, . . . , any fixed u = u1 and x ∈

R
+,

(This notation means that the derivative with respect to u is taken ν times, then
one set u = u1 and t = 0)

3. ∂ν

∂uν Kn (x, t, u)
∣
∣
u=u1,t=0

= −nx

[
∂ν−1

∂uν−1 Km+n (x, t, u)

∣
∣∣
u=u1,t=0

]
for all x ∈ R

+

and n ∈ N, ν = 0, 1, . . ., where m is a number such that m + n = 0 or a nat-
ural number.

Evidently, by ν-times application of property (3) with u1 = αnψn (t) and t = 0,
operator (2) can be reduced to the form

Gn ( f ; x) =
∞∑

ν=0

f

(
ν

n2ψn (0)

)
n (n + m) . . . (n + (ν − 1)m) (αnψn (0))ν

ν! Kn+νm (x, 0, αnψn (0)) xν ,

One can obtain the well-known operators in particular cases (see [8]).
The operators Gn are linear and positive. It is well known that the operator Gn

preserves the degree of the polynomials and they approximate not only the function
but also its derivatives. They also have some shape preserving and weighted approx-
imation properties. We can find a large number of papers devoted to study of the
properties of convergence of these operators such as [1, 3, 5, 6, 9, 16].

On the other hand, Durrmeyer-type generalizations of approximation operators is
an important subject in approximation theory and they are themethod to approximate
Lebesgue integrable functions see [4, 7]. Now we recall some of them.

Mazhar andTotik [15]modified Szasz–Mirakyan operators and introduced Szasz–
Durrmeyer operators as

Ln ( f, x) = n
∞∑

k=0

bn,k (x)

∞∫

0

bn,k (t) f (t) dt, (3)
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where bn,k (x) = e−nx (nx)k /k!, and Durrmeyer-type modification of Baskakov
operators [17] was introduced as

Vn ( f, x) = (n − 1)
∞∑

k=0

νn,k (x)

∞∫

0

νn,k (t) f (t) dt, (4)

where νn,k (x) = (n+k−1
k

)
xk (1 + x)−n−k . Furthermore, as direct generalizations of

these Durrmeyer-type operators, producing summation-integral type operators hav-
ing different basis functions has been studied intensively. For details, we refer the
readers to [12, 18].

In the present paper, we introduce Durrmeyer modification of the operator (2).
It is defined by replacing the discrete values f

(
ν/n2ψn (0)

)
in (2) by an integral

over the weighted function in the mean of (7). In the next section, we will show that
many classical sequences of Durrmeyer type can be obtained by making an special
selection of Kn . Then we give some auxiliary results to construct the new operators
and calculatemoments for these operators.Weobtain pointwise convergence theorem
at continuity point of f and quantitative version of the approximation by using
suitable weightedmodulus of continuity for newDurrmeyer operators.We also study
Voronovskaya-type asymptotic formula and its quantitative version with the aid of
sameweightedmodulus of continuity. Formore details Voronovskaya type theorems,
we refer the readers to [2, 10, 11, 19] We note that, since our new operator is defined
on unbounded interval, use of such weighted modulus of continuity for estimation
of convergence is required.

2 Construction of Ibragimov–Gadjiev–Durrmeyer
Operators

By similar consideration constructed by Ibragimov andGadjiev, we purpose to define
general Durrmeyer-type operators including well-known Durrmeyer operators. In
order to achieve this in addition to the mentioned three conditions in introduction,
we also assume the following two conditions:

4. Kn (0, 0, u) = 1 for any u ∈ R, and

lim
x→∞ x p ∂ν

∂uν
Kn (x, t, u)

∣∣
∣∣
u=u1,t=0

= 0,

for any p ∈ N and fixed u = u1.
5. For any fixed t and u the function Kn (x, t, u) is continuously differentiable with

respect to variable x ∈ R
+ and satisfying the equality
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d

dx
Kn (x, 0, u1) = −nu1Km+n (x, 0, u1)

for fixed u = u1.

For simplicity, we use the notation K (ν)
n (x, 0, αnψn (0)) in place of

∂ν

∂uν Kn (x, t, u)|u=αnψn(0),t=0. By the Taylor expansion of entire function Kn (x, t, u)

in the powers of (ϕn (t) − αnψn (t)) and taking t = 0, since ϕn (0) = 0, we have the
following representation:

Kn (x, 0, 0) =
∞∑

ν=0

K (ν)
n (x, 0, αnψn (0))

(−αnψn (0))ν

ν!

Taking into account that Kn (x, 0, 0) = 1 by the condition (1), we have

∞∑

ν=0

K (ν)
n (x, 0, αnψn (0))

(−αnψn (0))ν

ν! = 1.

Lemma 1 Let ν be a nonnegative integer, x ∈ R
+ and m, n ∈ N. Then the condition

(5) is equivalent to the equality

d

dx
K (ν)

n (x, 0, u1) = ν

x
K (ν)

n (x, 0, u1) − nu1K
(ν)
n+m (x, 0, u1) .

Proof By ν-multiple application of condition (3), we obtain

K (ν)
n (x, 0, u1) = (−1)ν n (n + m) . . . (n + (ν − 1)m) xνKn+νm (x, 0, u1) . (5)

Applying condition (5) we get

(−1)ν
d

dx
K (ν)
n (x, 0, u1) = n (n + m) . . . (n + (ν − 1)m)

×
{
νxν−1Kn+νm (x, 0, u1) − xν (n + νm) u1Kn+(ν+1)m (x, 0, u1)

}
.

Using (5) we get desired result.

Lemma 2 Let ν be a nonnegative integer, x ∈ R
+ and m, n ∈ N. Then we have

∫ ∞

0
K (ν)

n (x, 0, u1) dx = (−1)ν
ν!

(n − m) uν+1
1

.

Proof Using integration by parts and conditions (1) and (4) we have

∫ ∞

0
K (ν)

n (x, 0, u1) dx = −
∫ ∞

0
x
d

dx
K (ν)

n (x, 0, u1) dx .
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Using Lemma 1, we get

∫ ∞

0
K (ν)

n (x, 0, u1) dx

= −ν

∫ ∞

0
K (ν)

n (x, 0, u1) dx + nu1

∫ ∞

0
xK (ν)

n+m (x, 0, u1) dx .

Also by condition (3) , we have

∫ ∞

0
K (ν)

n (x, 0, u1) dx

= −ν

∫ ∞

0
K (ν)

n (x, 0, u1) dx − u1

∫ ∞

0
K (ν+1)

n (x, 0, u1) dx .

Hence we can write
∫ ∞

0
K (ν)

n (x, 0, u1) dx = −u1
ν + 1

∫ ∞

0
K (ν+1)

n (x, 0, u1) dx .

By ν-times application of above equality and using condition (1) and (5), we get

∫ ∞

0
K (ν)

n (x, 0, u1) dx = − ν

u1

∫ ∞

0
K (ν−1)

n (x, 0, u1) dx

...

= (−1)ν
ν!
uν
1

∫ ∞

0
Kn (x, 0, u1) dx

= (−1)ν+1 ν!
(n − m) uν+1

1

∫ ∞

0

d

dx
Kn−m (x, 0, u1) dx

= (−1)ν
ν!

(n − m) uν+1
1

. (6)

Definition 1 Let ν be a nonnegative integer, x ∈ R
+ and m, n ∈ N. Choosing

u1 = αnψn (0) and t = 0,we can define Ibragimov–Gadjiev–Durrmeyer operators
as follows:

Mn ( f ; x) = (n − m) αnψn (0)
∞∑

ν=0

K (ν)
n (x, 0, αnψn (0))

[−αnψn (0)]ν

(ν)!

×
∫ ∞

0
f (y) K (ν)

n (y, 0, αnψn (0))
[−αnψn (0)]ν

(ν)! dy (7)
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We call these new operators as Ibragimov–Gadjiev–Durrmeyer operators. The
family of operators Mn ( f ; x) is linear and positive. Also, we have the following
operators in special cases.

Mn ( f ; x) Kn (x, t, u) αn ψn (0) m
Baskakov–Durrmeyer [1 + t + ux]−n n 1/n 1
Szasz–Durrmeyer e−n(t+ux) n 1/n 0
Generalized Baskakov–Durrmeyer Kn (t + ux) n 1/n 1

For the above special cases, see the papers [13, 15, 17], respectively.

Lemma 3 Let ν be a nonnegative integer, n,m ∈ N. For any natural number r we
have

∫ ∞
0

xr K (ν)
n (x, 0, u1) dx = (−1)ν (ν + r)!

(n − m) (n − 2m) . . . (n − pm) (n − (r + 1)m) uν+r+1
1

.

(8)

Proof Using the condition (3) recursively ν-times we get

∫ ∞
0

xr K (ν)
n (x, 0, u1) dx = − 1

n − m

∫ ∞
0

xr−1K (ν+1)
n−m (x, 0, u1) dx .

= 1

(n − m) (n − 2m)

∫ ∞
0

xr−2K (ν+2)
n−2m (x, 0, u1) dx

...

= (−1)r

(n − m) (n − 2m) . . . (n − rm)

∫ ∞
0

K (ν+r)
n−rm (x, 0, u1) dx .

Using (6) it follows

∫ ∞

0
xr K (ν)

n (x, 0, u1) dx

= (−1)ν (ν + r)!
(n − m) (n − 2m) . . . (n − rm) (n − (r + 1)m) uν+r+1

1

.

Lemma 4 Let ν be a nonnegative integer, m, n ∈ N. For any natural number r we
have

Mn
(
yr ; x) = n2r

(n − 2m) . . . (n − pm) (n − (r + 1)m) (αn)
r
(
n2ψn (0)

)r

×
r∑

j=0

n (n + m) . . . (n + ( j − 1)m)C j,r [αnψn (0)] j x j ,
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where C j,r = r !
j !
(r
j

)
. Also,

Mn (1; x) = 1, Mn (y; x) = n2

(n − 2m) αn

(
αn

n
x + 1

n2ψn (0)

)
,

Mn

(
y2; x

)
= n4

(n − 2m) (n − 3m) α2
n

(
(αn

n
x
)2 (m + n)

n
+ αn

n

4

n2ψn (0)
x + 2

(
n2ψn (0)

)2

)

.

(9)

Proof Directly from the definition of operator (7) we can write

Mn
(
yr ; x) = (n − m) αnψn (0)

∞∑

ν=0

K (ν)
n (x, 0, αnψn (0))

[−αnψn (0)]ν

(ν)!

×
∫ ∞

0
yr K (ν)

n (y, 0, αnψn (0))
[−αnψn (0)]ν

(ν)! dy.

Using (8) with u1 = αnψn (0) we conclude that

Mn
(
yr ; x) = (n − m) αnψn (0)

∞∑

ν=0

K (ν)
n (x, 0, αnψn (0))

[−αnψn (0)]ν

(ν)!

× (−1)ν (ν + r)!
(n − m) (n − 2m) . . . (n − rm) (n − (r + 1)m) (αnψn (0))ν+r+1

[−αnψn (0)]ν

(ν)! .

=
∞∑

ν=0

K (ν)
n (x, 0, αnψn (0))

[−αnψn (0)]ν

(ν)!

× 1

(n − 2m) . . . (n − rm) (n − (r + 1)m) (αnψn (0))r
(ν + r) . . . (ν + 1) .

Using the equality

(ν + r) . . . (ν + 1) =
r∑

j=1

C j,r

j−1∏

l=0

(ν − l) ,

where C j,r = r !
j !
(r
j

)
and (6) we have

Mn
(
yr ; x) =

∞∑

ν=0

K (ν)
n (x, 0, αnψn (0))

[−αnψn (0)]ν

(ν)!

× 1

(n − 2m) . . . (n − rm) (n − (r + 1)m) (αnψn (0))r

r∑

j=1

C j,r

j−1∏

l=0

(ν − l)
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= 1

(n − 2m) . . . (n − rm) (n − (r + 1)m) (αnψn (0))r

×
r∑

j=0

C j,r

∞∑

ν=0

j−1∏

l=0

(ν − l) K (ν)
n (x, 0, αnψn (0))

[−αnψn (0)]ν

(ν)!

= 1

(n − 2m) . . . (n − rm) (n − (r + 1)m) (αnψn (0))r

×
r∑

j=0

C j,r

∞∑

ν= j

K (ν)
n (x, 0, αnψn (0))

[−αnψn (0)]ν

(ν − j)!

= 1

(n − 2m) . . . (n − rm) (n − (r + 1)m) ur+1
1

×
r∑

j=1

C j,r x
j

∞∑

ν=0

K (ν)
n (x, 0, αnψn (0))

(−1) j [−αnψn (0)]ν+ j

(ν)!

= n2r

(n − 2m) . . . (n − rm) (n − (r + 1)m) (αn)
r
(
n2ψn (0)

)r

×
r∑

j=1

n (n + m) . . . (n + ( j − 1)m)C j,r [αnψn (0)] j x j .

Lemma 5 For each x ≥ 0 and n > 3m we have

(i) Mn (y − x; x) = 2mx
(n−2m)

+ 1
(n−2m)αnψn(0)

,

(ii) Mn
(
(y − x)2 ; x) = x2

[
m(2n+6m)

(n−2m)(n−3m)

]
+ (2n+6m)αnψn(0)x+2

(n−2m)(n−3m)α2
nψ

2
n (0) ,

(iii) Mn
(
(y − x)r ; x) = O

((
1

nαnψn(0)

)[ r+1
2 ]

)
(xr + · · · + x + 1) , where [.] is

integral part of (r + 1) /2.

Proof Proof is clear from the Lemma 4.

Remark 1 In the paper [18], Srivastava and Gupta considered a general sequence of
Durrmeyer operators. But the operators introduced there reduce to restricted number
of Durrmeyer type operators, but one can obtain any Durrmeyer operators from the
operators Mn as special cases.

3 Pointwise Convergence Results

For our main results, we consider the following function spaces. We will denote by
L∞ [0,∞) , the Lebesgue space of all essentially bounded functions and by ‖ f ‖∞
the corresponding norm.

Let Bx2 [0,∞) be the set of all functions f defined on [0,∞) satisfying the condi-
tion | f (x)| ≤ M f

(
1 + x2

)
with someconstantM f , dependingonlyon f .Cx2 [0,∞)
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denotes the subspace of all continuous function in Bx2 [0,∞). By Ck
x2 [0,∞), we

denote subspace of all functions f ∈ Cx2 [0,∞) for which limx→∞ f (x)
1+x2 = k, where

k is a constant depending on f .
Weighted modulus of smoothness is denoted by Ω ( f ; δ) and given by

Ω ( f ; δ) = sup
0≤h<δ, x∈[0,∞)

| f (x + h) − f (x)|
(
1 + h2

) (
1 + x2

) (10)

for f ∈ Ck
x2 [0,∞) (see [14]).

We know that for every f ∈ Ck
x2 [0,∞) , Ω (.; δ) has the properties

lim
δ→0

Ω ( f ; δ) = 0

and
Ω ( f ; λδ) ≤ 2 (1 + λ)

(
1 + δ2

)
Ω ( f ; δ) , λ > 0. (11)

For f ∈ Ck
x2 [0,∞) , from (10) and (11) we can write

| f (y) − f (x)| ≤ (
1 + (y − x)2

) (
1 + x2

)
Ω ( f ; |y − x |)

≤ 2

(
1 + |y − x |

δ

)
(
1 + δ2

)
Ω ( f ; δ)

(
1 + (y − x)2

) (
1 + x2

)

(12)

Theorem 1 If f ∈ L∞ [0,∞) then at every point x of continuity of f we have

lim
n→∞ Mn ( f ; x) = f (x) .

Moreover if the function f is uniformly continuous and bounded in [0,∞) then on
every compact interval J ⊂ [0,∞) we have

lim
n→∞ ‖(Mn ( f ; x) − f (x)) χJ‖∞ = 0

where χJ is the characteristic function of J .

Proof Since Mn (1; x) = 1 we can write

Mn ( f ; x) − f (x) = (n − m) αnψn (0)
∞∑

ν=0

K (ν)
n (x, 0, αnψn (0))

[−αnψn (0)]ν

(ν)!

×
∫ ∞
0

[ f (y) − f (x)] K (ν)
n (y, 0, αnψn (0))

[−αnψn (0)]ν

(ν)! dy.

Let ε > 0 be given. By the continuity of f at the point x there exists δ > 0 such that
| f (y) − f (x)| < ε whenever |y − x | < δ. For this δ > 0 we can write
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Mn ( f ; x) − f (x) = (n − m) αnψn (0)
∞∑

ν=0

K (ν)
n (x, 0, αnψn (0))

[−αnψn (0)]ν

(ν)!

×
(∫

|y−x |<δ

+
∫

|y−x |≥δ

)
[ f (y) − f (x)] K (ν)

n (y, 0, αnψn (0))
[−αnψn (0)]ν

(ν)! dy

= I1 + I2.

It is obvious that
|I1| ≤ εMn (1; x) = ε.

It remains to estimate I2. We can write

|I2| ≤ 2 ‖ f ‖∞ (n − m) αnψn (0)
∞∑

ν=0

K (ν)
n (x, 0, αnψn (0))

[−αnψn (0)]ν

(ν)!

×
∫

|y−x |≥δ

K (ν)
n (y, 0, αnψn (0))

[−αnψn (0)]ν

(ν)! dy

≤ 2
‖ f ‖∞

δ2
Mn

(
(t − x)2 ; x) .

If we choose δ = 1
3√nαnψn(0)

and use Lemma 5 we have

|I2| ≤ 2 ‖ f ‖∞

{

x2
m

(
nαnψ

2
n (0)

)1/3
(2n + 6m)

(n − 2m) (n − 3m)
+ n1/3 (2n + 6m) αnψn (0) x + 2n1/3

(n − 2m) (n − 3m)
(
αnψ2

n (0)
)5/3

}

,

which proves the theorem. The second part of the theorem is proved similarly.

Theorem 2 If f ∈ Ck
x2 [0,∞) then we have

|Mn ( f ; x) − f (x)| ≤ 16C
(
1 + x2

)3
Ω

(
f ; 1√

nαnψn (0)

)
,

where C is a positive constant independent of f and n.

Proof Using the inequality (12), we can write that

| f (y) − f (x)| ≤
{

2
(
1 + δ2

)2 (
1 + x2

)
Ω ( f ; δ) , |y − x | < δ

2
(
1 + δ2

)2 (
1 + x2

)
(y−x)4

δ4
Ω ( f ; δ) , |y − x | ≥ δ

and choosing δ < 1, we have

| f (y) − f (x)| ≤ 2
(
1 + δ2

)2 (
1 + x2

)
Ω ( f ; δ)

(
1 + (y − x)4

δ4

)

≤ 8
(
1 + x2

)
Ω ( f ; δ)

(
1 + (y − x)4

δ4

)
.
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Using above inequality we deduce that

|Mn ( f ; x) − f (x)| = (n − m) αnψn (0)
∞∑

ν=0

K (ν)
n (x, 0, αnψn (0))

[−αnψn (0)]ν

(ν)!

×
∫ ∞
0

| f (y) − f (x)| K (ν)
n (y, 0, αnψn (0))

[−αnψn (0)]ν

(ν)! dy.

≤ 8
(
1 + x2

)
Ω ( f ; δ)

(
1 + 1

δ4
Mn

(
(y − x)4 ; x

))
.

By Lemma 5, it follows that

|Mn ( f ; x) − f (x)| ≤ 8
(
1 + x2

)
Ω ( f ; δ)

(

1 +
(
x4 + · · · + x + 1

)

δ4
O

(
1

(nαnψn (0))2

))

.

Choosing δ = 1√
nαnψn(0)

we have desired result.

4 Voronovskaya-Type Results

In this section, we obtain some asymptotic estimates of the pointwise convergence
in case the function f is regular at the point x ∈ [0,∞).

Theorem 3 Let f ∈ Cx2 [0,∞). Suppose that the second derivative f ′′ exists at a
point x ∈ [0,∞) , then we have

lim
n→∞nαnψn (0) [Mn ( f ; x) − f (x)] = (2xml1 + 1) f ′ (x) + x (xml1 + 1) f ′′ (x) .

Proof Let f , f ′, f ′′ ∈ Cx2 [0,∞) and x ∈ [0,∞) be fixed. By Taylor expansion of
f we can write

f (t) = f (x) + (t − x) f ′ (x) + (t − x)2

2! f ′′ (x) +
(
f ′′ (ηx ) − f ′′ (x)

)

2
(t − x)2 .

(13)
After setting

r (t, x) :=
(
f ′′ (ηx ) − f ′′ (x)

)

2

from the condition of the theorem we have lim
t→x

r (t, x) = 0. Applying Mn to both

sides of (13) and multiplying nαnψn (0) respectively, we deduce that
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nαnψn (0) [Mn ( f ; x) − f (x)] = nαnψn (0) f ′ (x) Mn (t − x; x)
+ nαnψn (0) f ′′ (x)

2! Mn
(
(t − x)2 ; x)

+ nαnψn (0) Mn
(
r (t, x) (t − x)2 ; x) .

Using Lemma 5 and passing to limit with n → ∞, we have

lim
n→∞nαnψn (0) [Mn ( f ; x) − f (x)] = f ′ (x) lim

n→∞nαnψn (0) Mn (t − x; x)

+ f ′′ (x)
2! lim

n→∞nαnψn (0) Mn

(
(t − x)2 ; x

)

+ lim
n→∞nαnψn (0) Mn

(
r (t, x) (t − x)2 ; x

)

= (2xml1 + 1) f ′ (x) + x (xml1 + 1) f ′′ (x) + lim
n→∞Fn .

Now, it suffices to show that Fn → 0 as n → ∞. Let ε > 0 be given. Since r (t, x) →
0 as t → x, then there exists δ > 0 such that we have |r (t, x)| < ε when |t − x | < δ

and we can write

|r (t, x)| ≤ C ≤ C
(t − x)2

δ2
,

when |t − x | ≥ δ. Thus, for all x, t ∈ [0,∞), we have

|r (t, x)| ≤ ε + C
(t − x)2

δ2
,

and

Fn ≤ nαnψn (0) Mn

(
(t − x)2

(
ε + C

(t − x)2

δ2

)
, x

)

≤ nαnψn (0) εMn
(
(t − x)2 , x

) + C

δ2
nαnψn (0) Mn

(
(t − x)4 , x

)
.

By the property (i i i) of Lemma 5, we can say that

Mn
(
(t − x)4 , x

) = (
x4 + · · · + 1

)
O

(
1

(nαnψn (0))2

)
.

So, we get that Fn → 0 as n → ∞ which completes the proof.

Now we give quantitative version of Voronovskaya theorem for the operator (7).

Theorem 4 Let f
′′ ∈ Ck

x2 [0,∞) and x > 0 be fixed, m, n ∈ N. Then we have
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∣∣
∣nαnψn (0) [Mn ( f ; x) − f (x)] − f

′
(x) (2xml1 + 1) − f

′′
(x) x (xml1 + 1)

∣∣
∣

≤ f
′
(x) |nαnψn (0) Mn (y − x; x) − (2xml1 + 1)|

+ f
′′
(x)

2

∣∣nαnψn (0) Mn
(
(y − x)2 ; x) − 2x (xml1 + 1)

∣∣

+ 8C
(
1 + x2

)4
Ω

(
f

′′ ; 1

(nαnψn (0))1/2

)
,

where C is a positive constant.

Proof By the local Taylor’s formula there exists η lying between x and y such that

f (y) = f (x) + f ′ (x) (y − x) + f ′′ (x)
2

(y − x)2 + h (y, x) (y − x)2 ,

where

h (y, x) :=
(
f ′′ (η) − f ′′ (x)

)

2

and h is a continuous function which vanishes at 0. Applying the operator Mn to
above equality, we obtain the equality

Mn ( f ; x) − f (x) = f
′
(x) Mn (y − x; x) + f

′′
(x)

2
Mn

(
(y − x)2 ; x

)
+ Mn

((
h (y, x) (y − x)2

)
; x

)

also we can write that
∣∣∣∣∣
Mn ( f ; x) − f (x) − f

′
(x)

nαnψn (0)
(2xml1 + 1) − f

′′
(x)

nαnψn (0)
x (xml1 + 1)

∣∣∣∣∣

≤ f
′
(x)

(
Mn (y − x; x) − 1

nαnψn (0)
(2xml1 + 1)

)

+ f
′′
(x)

2

(
Mn

(
(y − x)2 ; x) − 2

nαnψn (0)
x (xml1 + 1)

)

+ Mn
(|h (y, x)| (y − x)2 ; x)

To estimate last inequality, using the inequality (12) and the inequality |η − x | ≤
|y − x | , we can write that

|h (y, x)| =
∣∣ f ′′ (η) − f ′′ (x)

∣∣

2

≤ 1

2
Ω ( f ; |η − x |) (

1 + (η − x)2
) (
1 + x2

)

≤ 1

2
Ω ( f ; |y − x |) (

1 + (y − x)2
) (
1 + x2

)
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≤
(
1 + |y − x |

δ

) (
1 + δ2

)
Ω

(
f

′′ ; δ
) (

1 + (y − x)2
) (
1 + x2

)
.

Since

|h (y, x)| ≤
{

2
(
1 + δ2

)2 (
1 + x2

)
Ω

(
f

′′ ; δ
)
, |y − x | < δ

2
(
1 + δ2

)2 (
1 + x2

)
(y−x)4

δ4
Ω

(
f

′′ ; δ
)
, |y − x | ≥ δ

choosing δ < 1, we have

|h (y, x)| ≤ 2
(
1 + δ2

)2 (
1 + x2

)
Ω

(
f

′′ ; δ
) (

1 + (y − x)4

δ4

)

≤ 8
(
1 + x2

)
Ω

(
f

′′ ; δ
) (

1 + (y − x)4

δ4

)
.

We deduce that

Mn
(
(y − x)2 |h (y, x)|)

= 8
(
1 + x2

)
Ω

(
f

′′ ; δ
) (

Mn
(
(y − x)2

) + 1

δ4
Mn

(
(y − x)6

))
.

From Lemma 5 we know that

Mn
(
(y − x)2

) = O

(
1

nαnψn (0)

) (
x2 + x + 1

)
,

and

Mn
(
(y − x)6

) = O

(
1

(nαnψn (0))3

) (
x6 + · · · + x + 1

)
.

Choosing δ = 1
(nαnψn(0))1/2

we have

Mn
(
(y − x)2 |h (y, x)|)

≤ 8
(
1 + x2

)
Ω

(
f

′′ ; 1

(nαnψn (0))1/2

) (
x6 + · · · x3 + 2x2 + 2x + 2

)

nαnψn (0)

Corollary 1 Let f
′′ ∈ Ck

x2 [0,∞) and x > 0 be fixed, m, n ∈ N. Then there holds

lim
n→∞ nαnψn (0) [Mn ( f ; x) − f (x)] = (2m
1x + 1) f

′
(x) + (

m
1x
2 + x

)
f

′′
(x)

As a corollary, we reach that the convergence in the Voronovskaya formula is
uniform on every compact interval in (0,∞).
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Regression-Based Neural Network
Simulation for Vibration Frequencies
of the Rotating Blade

Atma Sahu and S. Chakravarty

Abstract The aim of this paper is to demonstrate the use of regression-based neural
network (RBNN) method to study the problem of the natural frequencies of the rotor
blade for micro-unmanned helicopter [3]. The training of the traditional artificial
neural network (ANN) model and proposed RBNN model has been implemented in
the MATLAB environment using neural network tools (NNT) built-in functions. The
graphs for angular velocity (Omega) of the micro-unmanned helicopter are plotted
for estimation of the natural frequencies (f1, f2, f3) of transverse vibrations. The
results obtained in this research show that the RBNN model, when trained, can give
the vibration frequency parameters directly without going through traditional and
lengthy numerical solutions procedures. Succeeding this, the numerical results, when
plotted, show that with the increase in Omega, there is increase in lagging motion
frequencies. Additionally, it is found that the increase in the lower mode natural
frequencies is smaller than that of the higher modes. This finding is in agreement
with the results reported in earlier research [3–5] carried out by employing Rayleigh–
Ritz and FEM, respectively.
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1 Introduction

The micro-unmanned helicopters are quite different from the conventional manned
helicopters in their design scheme. Therefore, in the case of micro-unmanned heli-
copter, the rotor mechanism is altered in order to optimize the manufacturing costs
[3] without compromising on its needed functionality. In this paper, however, for the
prototype engineering design requirements, the vibrations of helicopter rotor blades,
whether manned or unmanned, are of a major concern. The purpose of this paper is
to use a regression-based neural network (RBNN) method [1] to solve the problem
of studying the natural frequencies of the rotor blade for micro-unmanned helicopter
[3]. With this R&D effort resulting in appropriate mathematical calculations, the
design engineers are able to overcome blade resonance problems (maybe by putting
damper on the blade or any other vibrations correction method). The authors choose
not to go into the fluid (air) resistance motion problem of blades’ airfoil system
(Appendix Fig. 5).

2 Transverse Vibrations Analysis

In this paper, the rotor manipulation mechanism is based on the use of the inertia
characteristic of the rotor and its elastic features as considered by J Lu [3]. Also, an
equally important characteristic in rotor parametric manipulation is the blade shape
change that can be affected by the leading and trailing edges of the entire airfoil
system (Appendix Fig. 8). However, the authors in this research paper will limit
the scope to RBNN-based analysis of the transverse vibrations of the rotor blade.
Also, it is reasonable to assume that the blade length is very large compared to its
width. For this reason, Euler–Bernoulli beam theory is adequate for our purposes.
The scheme of the blade and notations (see Appendix Fig. 8) is adopted in this paper
from Lü [3] to make comparisons of this work easier and comprehensible. In this
paper, ANN model for blade vibrations has been undertaken. The training of network
is performed using the pattern calculated with the help of Boundary Characteristic
Orthogonal Polynomials (BCOPs) in the Rayleigh–Ritz method.

We adopt below the kinetic energy (KE) and potential energy (PE) equations as
derived by Lü et al. [3]. Considering the conditions of small deflections, the KE of
the rotor blade of length L is given by T as follows:

T = 1
2

L∫

0
ρ

〈
.
u

2 + [
u2 + (a + x)2

] .

θ + 2
.

θ
.
u(a + x)

〉
dx;

and PE is given by U as follows:

U = 1
2

L∫

0
E Iu2

xdx + 1
2

∫ L
0

〈
1
2ρ

.

θ
2
(L2 − x2) + ρ

.

θ
2
a(L − x)

〉
(ux )

2dx

For harmonic motion, the blade deflection is given by u(x, t) = Y (x) sin(ωt+φ);
using u(x) in T and U above, Lagrangian is obtained. Following notations are used:
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L = Length of the blade (m), ρ = mass in unit length of the blade (kg/m), ω = θ̇ =
angular velocity of rotor, EI = flexural rigidity of the blade (Nm2

), XO’Y = Inertia
reference frame, xOu = Flying reference frame, Vji = Hidden layer weights, and
Wkj = Output layer weights.

Substituting the linear combination of BCOPs in the Rayleigh–Ritz method for T
and U, we may turn it to a standard eigenvalue problem. The solution of the standard
eigenvalue problem then gives the natural frequencies at various rotational speeds
[2]. The computations have been carried out by taking EI = 1.392 Nm, L = 0.15
m, ρ = 0.1260 Kg/m. [2]. As such natural frequencies have been computed for the
blade at various rotational speeds for the simulation in RBNN model. In the following
paragraphs, ANN architecture is described for the estimation of natural frequencies
for given values of Omega which is the angular velocity parameter.

3 Identification of the RBNN Model: Solution Technique

Three-layer architecture for regression-based artificial neural network approach is
considered here to understand the proposed model for solving the present problem.
Figure 1 show the neural network used in the process. The input layer consists of
single input as Omega and the output layer consists of three outputs in the form of
the corresponding frequency parameters f1, f2, and f3. Three cases of the number
of nodes depending upon the proposed parameter of the methodology have been
considered in the hidden layer to facilitate a comparative study on the architecture of
the network. The output of the network is computed by regression analysis combined

Hidden Layer

Hkj

f2

Input Layer

Omega

Output 
Layer

Wji

f1

f3

Fig. 1 ANN architecture used for estimation of frequencies for given values of Omega
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with neural activation function performed at two stages, i.e., the stage of hidden layer
and the stage of output layer. Number of neurons in the hidden layer depends upon
the degree of the regression polynomial that is used to fit the data between input and
output. If we consider a polynomial of degree n, then number of nodes in hidden layer
will be (n + 1) and the corresponding (n + 1) coefficients of this polynomial (say,
ai , i = 0, 1, . . . , n) are taken as the initial weights from input layer to the hidden
layer (Hk j ). Architecture of the network for a polynomial of nth degree is shown in
Fig. 1.

4 Numerical Results

The training of the traditional artificial neural network (ANN) model and proposed
RBNN model has been implemented in the MATLAB environment using neural
network tools (NNT) built-in functions. Also, in the following paragraphs, the graphs
for angular velocities (Omega) of the micro-unmanned helicopter are plotted for
estimation of the natural frequencies (f1, f2, f3).

4.1 The Experiment 1

The training of the traditional ANN model and proposed RBNN model has been
implemented for estimation of the frequencies with respect to omega values. In the
traditional model, the output of the network is computed by built-in transfer functions,
namely, tan-sigmoid (tansig) and linear (purelin) of the neural network tool (NNT)
performed at two stages, i.e., the stage of hidden layer and the stage of output layer.
The connection weights interconnecting the neurons between different layers are
taken through a random number generator built-in function in the NNT. The neural
network based on this feedforward back propagation algorithm has been trained with
Levenberg–Marquardt training function of the NNT.

4.2 The Experiment 2

In proposed RBNN model, regression polynomials of degree three are fitted to the
training patterns. The coefficients of this polynomial are taken as the connecting
weights for the hidden layer, as described earlier. The output of the neurons in the
hidden layer is calculated using activation function. At this stage, the error of the
RBNN model is calculated and a decision is taken as to whether the network has
been trained or not. If the tolerance level of the error is not achieved, the procedure
is repeated; otherwise, we say that the network has got trained. In this case, the
network has been converged with the desired accuracy as shown in the Fig. 1 for



Regression-Based Neural Network Simulation … 21

70

80

90

100

110

0 500 1000 1500 2000

omgea

f1
f1

NN

RBNN

450

500

550

600

650

700

750

0 500 1000 1500 2000
Omega

f2

f2

NN

RBNN

1350

1400

1450

1500

1550

1600

1650

0 500 1000 1500 2000

Omega

f3

f1

NN

RBNN

Fig. 2 Results of training of RBNN and ANN models for Omega verus Frequency F1, F2,
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Fig. 4 Performance of the proposed regression-based neural network for Omega versus Frequency
F1, F2, and F3 (D-4)

the problems under consideration. The output of the network f1, f2, and f3 and
the mean square error (MSE) between neural and desired output are calculated. In
this figure, f1, f2, and f3 represent the desired output values, NN represents these
values obtained by the traditional ANN models, and RBNN represents the values of
these parameters obtained from the proposed model with four nodes in the hidden
layer. The performance of the proposed model is given in the Fig. 2. The pattern
characteristics of the traditional ANN model and RBNN model for degree four are
incorporated in Fig. 3. The performance of the proposed model for degree four is
given in the Fig. 4.

5 Conclusion

The RBNN method employed to solve fourth order partial differential equation for
rotor blade in this paper gives a direct estimation of frequencies without going through
traditional and lengthy numerical solutions procedures. The numerical results, when
plotted, show that with the increase in Omega (angular velocity), there is increase
in lagging motion frequencies. The increase in the lower mode natural frequen-
cies is smaller than that of the higher modes. This finding is in agreement with the
results reported in earlier researches [3–5] that have been carried out by employing
Rayleigh–Ritz and FEM, respectively. Furthermore, RBNN soft computing method
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used in this research is useful to solve other beam, plates, and shell vibration prob-
lems and guide engineers immensely in their structures design needs. Last of all,
NN methods in general [2, 6] have attracted extensive attention in recent past as
NN approaches have led many efficient algorithms help in exploring the intrinsic
structure of data set.

Appendix

See Appendix Fig. 5.

Leading and trailing edges of a blade
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Fig. 5 Helicopter blade
scheme
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Abstract In the present paper, we propose a certain integral modification of the
operator, which involveCharlier polynomials with theweight function of generalized
Baskakov and Szász basis functions.We estimate some approximation properties and
asymptotic formula for these operators. Also, the weighted approximation for these
is given.
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asymptotic formula · Weighted approximation
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1 Introduction

Very recently,VarmaandTaşdelen [12] introduced theSzász-typeoperators involving
Charlier polynomials (1.1). Also, they estimated some results for the Kantorovich-
type generalization of these operators and established the convergence properties for
their operators with the help of Korovkin’s theorem and the order of approximation
by using the classical modulus of continuity. The operators discussed in [12] are
defined as

Ln( f ; x, a) = e−1

(
1 − 1

a

)(a−1)nx ∞∑

k=0

C (a)
k (−(a − 1)nx)

k! f

(
k

n

)
(1.1)
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where a > 0, x ∈ [0,∞) and C (a)
k be the Charlier polynomials, which have the

generating functions of the type

et
(
1 − t

a

)x

=
∞∑

k=0

C (a)
k (x)

k! t k, |t | < a,

and the explicit representation

C (a)
k (u) =

k∑

r=0

(
n

r

)
(−u)r

(
1

a

)

r

,

where (α)k is the Pochhammer’s symbol given by

(α)0 = 1, (α)r = α(α + 1) . . . (α + r − 1) r = 1, 2, . . .

Note that Charlier polynomials are positive if a > 0, u ≤ 0.
In order to approximate Lebesgue integrable functions, several newmodifications

of the discrete operators were discovered by the researchers in the last five decades.
We mention the recent book [8] for some of the work on the integral operators in
this direction and the references therein. Some other integral operators we mention
in the papers [5, 6, 9], etc.

Also, recently with an idea of generalization of the Phillips operators [11] (see
also [2, 3, 7]), Pǎltǎnea in [10] proposed the modified form of the Phillips opera-
tors based on certain parameter ρ > 0, which provide the link with the well-known
Szász–Mirakyan operators as ρ → ∞ for some class of functions.Motivated by such
modifications we propose here for a > 0, ρ ≥ 0 the integral-type generalization of
the operator (1.1) as follows:

Tn,ρ,c( f ; x, a) = e−1

(
1 − 1

a

)(a−1)nx [
C (a)
0 f (0) (1.2)

+
∞∑

k=1

C (a)
k (−(a − 1)nx)

k!
∫ ∞

0
Θ

ρ
n,k(t, c) f (t)dt

]

where C (a)
k (u) is the Charlier polynomial and

Θ
ρ
n,k(t, c) =

⎧
⎨

⎩

nρ
Γ (kρ)

e−nρt (nρt)kρ−1, c = 0

Γ ( nρ
c +kρ)

Γ (kρ)Γ ( nρ
c )

ckρt kρ−1

(1+ct)
nρ
c +kρ

, c = 1, 2, 3, . . . ,
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Remark 1 For f ∈ Π , whereΠ be the closure of the space of polynomials, we have

lim
ρ→∞ Tn,ρ,c( f ; x, a) = Ln( f ; x, a), for all x ∈ [0,∞).

Since,

∫ ∞

0
Θ

ρ
n,k(t, c)t

r dt = Γ (kρ + r)

Γ (kρ)

1
∏r

i=1(nρ − ic)
, nρ > rc

and

lim
ρ→∞

Γ (kρ + r)

Γ (kρ)

1
∏r

i=1(nρ − ic)
=

(
k

n

)r

, nρ > rc.

From this the result follows immediately.

Remark 2 We obtain Szász–Mirakyan operators by applying, respectively, the fol-
lowing operations to the both sides of (1.2)

(i) ρ → ∞,
(ii) a → ∞ and write x − 1

n instead of x .

In the present article, we first obtain the moments of the operators Tn,ρ,c( f ; x, a).

Then we establish some direct results in ordinary approximation, which include
the asymptotic formula, direct estimate in terms of modulus of continuity and the
weighted approximation.

2 Auxiliary Results

In this section we provide the following set of lemmas.

Lemma 1 ([12]) For Ln(tm; x, a), m = 0, 1, 2, we have

Ln(1; x, a) = 1,

Ln(t; x, a) = x + 1

n

Ln(t
2; x, a) = x2 + x

n

(
3 + 1

a − 1

)
+ 2

n2
.
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Lemma 2 For Tn,ρ,c(tm; x, a), m = 0, 1, 2, we have

Tn,ρ,c(1; x, a) = 1,

Tn,ρ,c(t; x, a) = ρ(nx + 1)

nρ − c

Tn,ρ,c(t
2; x, a) = n2

(nρ − c)(nρ − 2c)

[
ρ2x2 + ρx

n

(
3ρ + 1 + ρ

a − 1

)
+ ρ(2ρ + 1)

n2

]

Proof It is easy to see

∫ ∞

0
Θ

ρ
n,k(t, c)t

r dt = Γ (kρ + r)

Γ (kρ)

1
∏r

i=1(nρ − ic)
.

In view of Lemma 1, the zeroth order moment is

Tn,ρ,c(1; x, a) = e−1
(
1 − 1

a

)(a−1)nx
(

C (a)
0 f (0) +

∞∑

k=1

C (a)
k (−(a − 1)nx)

k!
∫ ∞

0
Θ

ρ
n,k(t)dt

)

= Ln(1; x, a) = 1.

First-order moment is

Tn,ρ,c(t; x, a) = e−1

(
1 − 1

a

)(a−1)nx ∞∑

k=1

C (a)
k (−(a − 1)nx)

k!
∫ ∞

0
Θ

ρ
n,k(t)tdt

= e−1

(
1 − 1

a

)(a−1)nx ∞∑

k=1

C (a)
k (−(a − 1)nx)

k!
Γ (kρ + 1)

Γ (kρ)

1

(nρ − c)

= nρ

(nρ − c)
e−1

(
1 − 1

a

)(a−1)nx ∞∑

k=0

C (a)
k (−(a − 1)nx)

k!
k

n

= nρ

(nρ − c)
Ln(t; x, a)

= ρ(nx + 1)

nρ − c
.

Second-order moment is

Tn,ρ,c(t
2; x, a) = e−1

(
1 − 1

a

)(a−1)nx ∞∑

k=1

C (a)
k (−(a − 1)nx)

k!
∫ ∞

0
Θ

ρ
n,k(t)t

2dt

= e−1
(
1 − 1

a

)(a−1)nx ∞∑

k=1

C (a)
k (−(a − 1)nx)

k!
Γ (kρ + 2)

Γ (kρ)

1

(nρ − c)(nρ − 2c)
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= n2ρ2

(nρ − c)(nρ − 2c)
e−1

(
1 − 1

a

)(a−1)nx ∞∑

k=0

C (a)
k (−(a − 1)nx)

k!
k2

n2

+ nρ

(nρ − c)(nρ − 2c)
e−1

(
1 − 1

a

)(a−1)nx ∞∑

k=0

C (a)
k (−(a − 1)nx)

k!
k

n

= n2ρ2

(nρ − c)(nρ − 2c)
Ln(t

2; x, a) + nρ

(nρ − c)(nρ − 2c)
Ln(t; x, a)

= n2

(nρ − c)(nρ − 2c)

[
ρ2x2 + ρx

n

(
3ρ + 1 + ρ

a − 1

)
+ ρ(2ρ + 1)

n2

]
.

Remark 3 By simple computation, we have

Tn,ρ,c(t − x; x, a) = cx + ρ

nρ − c

Tn,ρ,c((t − x)2; x, a) = 1

(nρ − c)(nρ − 2c)

[
(nρ + 2c)cx2 + nρx

(
ρ + 1 + ρ

a − 1

)

+ 4ρcx + ρ(2ρ + 1)

]

3 Direct Result and Asymptotic Formula

In this sectionwediscuss the direct result andVoronovskaja-type asymptotic formula.
Let the space CB[0,∞) of all continuous and bounded functions be endowed

with the norm ‖ f ‖ = sup{| f (x)| : x ∈ [0,∞)}. Further let us consider the following
K-functional:

K2( f, δ) = inf
g∈W 2

{‖ f − g‖ + δ‖g′′‖},

where δ > 0 and W 2 = {g ∈ CB[0,∞) : g′, g′′ ∈ CB[0,∞)}. By ([1] p. 177,
Th. 2.4), there exists an absolute constant C > 0 such that

K2( f, δ) ≤ C ω2( f,
√

δ), (3.1)

where

ω2( f,
√

δ) = sup
0<h≤√

δ

sup
x∈[0,∞)

| f (x + 2h) − 2 f (x + h) + f (x)|

is the second-order modulus of smoothness of f ∈ CB[0,∞).
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Theorem 1 For f ∈ CB[0,∞) and a > 1, we have

|Tn,ρ,c( f ; x, a) − f (x)| ≤ Cω2( f,
√

δ) + ω

(
f,

∣∣∣∣
cx + ρ

nρ − c

∣∣∣∣

)

where C is a positive constant and δ = ∣∣Tn,ρ,c((t − x)2; x, a)
∣∣ + 1

2

(
cx+ρ
nρ−c

)2
. Also,

the both ω( f, δ) and ω2( f,
√

δ) tends to zero as δ → 0.

Proof We introduce auxiliary operators T n,ρ,c as follows:

T n,ρ,c( f ; x, a) = Tn,ρ,c( f ; x, a) − f

(
x + cx + ρ

nρ − c

)
+ f (x).

These operators are linear and preserve the linear functions in view of Lemma 2. Let
g ∈ W 2. From the Taylor’s expansion of g we have

g(t) = g(x) + (t − x)g′(x) +
∫ t

x
(t − u)g′′(u)du.

Applying the operator T n,ρ,c on above

T n,ρ,c(g; x, a) = g(x) + g′(x)T n,ρ,c((t − x); x, a) + T n,ρ,c

(∫ t

x
(t − u)g′′(u)du; x, a

)

|T n,ρ,c(g; x, a) − g(x)| =
∣∣∣∣T n,ρ,c

(∫ t

x
(t − u)g′′(u)du; x, a

)∣∣∣∣

≤
∣∣∣∣Tn,ρ,c

(∫ t

x
(t − u)g′′(u)du; x, a

)∣∣∣∣

+
∣∣∣
∣∣

∫ x+ cx+ρ
nρ−c

x

(
x + cx + ρ

nρ − c
− u)g′′(u)

)
du

∣∣∣
∣∣

≤
[∣∣∣
∣Tn,ρ,c

(∣∣
∫ t

x
|t − u| du∣∣; x, a

)∣∣∣
∣

+
∣
∣∣∣∣

∫ x+ cx+ρ
nρ−c

x

∣∣∣∣x + cx + ρ

nρ − c
− u

∣∣∣∣ du

∣
∣∣∣∣

]

‖g′′‖

≤
[
∣
∣Tn,ρ,c((t − x)2; x, a)

∣
∣ + 1

2

(
cx + ρ

nρ − c

)2
]

‖g′′‖ (3.2)

= δ‖g′′‖, (3.3)

where δ = ∣∣Tn,ρ,c((t − x)2; x, a)
∣∣ + 1

2

(
cx+ρ
nρ−c

)2
.
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|Tn,ρ,c( f ; x, a) − f (x)| ≤ |T n,ρ,c( f − g; x, a) − ( f − g)(x)| + |T n,ρ,c(g; x, a) − g(x)|
+

∣
∣∣
∣ f

(
x + cx + ρ

nρ − c

)
− f (x)

∣
∣∣
∣

≤ 2‖ f − g‖ + δ‖g′′‖ + ω

(
f,

∣
∣∣
∣
cx + ρ

nρ − c

∣
∣∣
∣

)
.

Taking infimum over all g ∈ W 2, we get

|Tn,ρ,c( f ; x, a) − f (x)| ≤ 2K2( f, δ) + ω

(
f,

∣∣∣∣
cx + ρ

nρ − c

∣∣∣∣

)
.

In view of (3.1), we obtain

|Tn,ρ,c( f ; x, a) − f (x)| ≤ Cω2( f,
√

δ) + ω

(
f,

∣∣∣∣
cx + ρ

nρ − c

∣∣∣∣

)
,

which proves the theorem.

Our next result in this section is the Voronovskaja-type asymptotic formula:

Theorem 2 For any function f ∈ CB[0,∞) and a > 1 such that f ′, f ′′ ∈ CB
[0,∞), we have

lim
n→∞ n[Tn,ρ,c( f ; x, a) − f (x)] = cx + ρ

ρ
f ′(x) + x

2ρ

(
cx + ρ + 1 + ρ

a − 1

)
f ′′(x)

for every x ≥ 0.

Proof Let f, f ′, f ′′ ∈ CB[0,∞) and x ∈ [0,∞) be fixed. By Taylor expansion we
can write

f (t) = f (x) + (t − x) f ′(x) + (t − x)2

2! f ′′(x) + r(t, x)(t − x)2,

where r(t, x) is the Peano form of the remainder, r(t, x) ∈ CB[0,∞) and
lim
t→x

r(t, x) = 0. Applying Tn,ρ,c, we get

n[Tn,ρ,c( f ; x, a) − f (x)] = f ′(x)nTn,ρ,c(t − x; x, a) + f ′′(x)
2! nTn,ρ,c((t − x)2; x, a)

+ nTn,ρ,c(r(t, x)(t − x)2; x, a)
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lim
n→∞ n[Tn,ρ,c( f ; x, a) − f (x)] = f ′(x) lim

n→∞ nTn,ρ,c(t − x; x, a)

+ f ′′(x)
2! lim

n→∞(x)Tn,ρ,c((t − x)2; x, a)

+ lim
n→∞ nTn,ρ,c(r(t, x)(t − x)2; x, a)

= cx + ρ

ρ
f ′(x) + x

2ρ

(
cx + ρ + 1 + ρ

a − 1

)
f ′′(x)

+ lim
n→∞ nTn,ρ,c

(
r(t, x)(t − x)2; x, a

)

= cx + ρ

ρ
f ′(x) + x

2ρ

(
cx + ρ + 1 + ρ

a − 1

)
f ′′(x) + E .

By Cauchy–Schwarz inequality, we have

|E | ≤ lim
n→∞ nTn,ρ,c(r

2(t, x); x, a)1/2Tn,ρ,c
(
(t − x)4; x, a)1/2

. (3.4)

It is easy to show that Tn,ρ,c
(
(t − x)4; x, a)1/2

is bounded for x ∈ [0, A]. Also,
observe that r2(x, x) = 0 and r2(., x) ∈ CB[0,∞). Then, it follows that

lim
n→∞ nTn,ρ,c(r

2(t, x); x, a) = r2(x, x) = 0 (3.5)

uniformly with respect to x ∈ [0, A]. Now from (3.4), (3.5) we obtain

lim
n→∞ nTn,ρ,c(r(t, x)(t − x)2; x, a) = 0.

Hence, E = 0. Thus, we have

lim
n→∞ n[Tn,ρ,c( f ; x, a) − f (x)] = cx + ρ

ρ
f ′(x) + x

2ρ

(
cx + ρ + 1 + ρ

a − 1

)
f ′′(x),

which completes the proof.

4 Weighted Approximation

Let Bx2 [0,∞)= { f : for every x ∈ [0,∞), | f (x)| ≤ M f (1 + x2), M f being a con-
stant depending on f }. By Cx2 [0,∞), we denote the subspace of all
continuous functions belonging to Bx2 [0,∞). Also,C∗

x2 [0,∞) is subspace of all

functions f ∈ Cx2 [0,∞) for which lim
x→∞

f (x)

1 + x2
is finite. The norm on C∗

x2 [0,∞) is

‖ f ‖x2 = sup
x∈[0,∞)

| f (x)|
1 + x2

.
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Theorem 3 For each f ∈ C∗
x2 [0,∞), we have

lim
n→∞ ‖Tn,ρ,c( f ; ., a) − f ‖x2 = 0

Proof Using [4] we see that it is sufficient to verify the following conditions

lim
n→∞ ‖Tn,ρ,c(t

ν; x, a) − xν‖x2 = 0, ν = 0, 1, 2. (4.1)

Since Tn,ρ,c(1; x, a) = 1,therefore for ν = 0 (4.1) holds.
By Lemma 2 for n > c

ρ
, we have

‖Tn,ρ,c(t; x, a) − x‖x2 = sup
x∈[0,∞)

|Tn,ρ,c(t; x, a) − x |
1 + x2

≤
(

nρ

nρ − c
− 1

)
sup

x∈[0,∞)

x

1 + x2
+ ρ

nρ − c

≤
(

c + 2ρ

2(nρ − c)

)
,

the condition (4.1) holds for ν = 1 as n → ∞.
Again by Lemma 2 for n > 2c

ρ
, we have

‖Tn,ρ,c(t
2; x, a) − x2‖x2 = sup

x∈[0,∞)

|Tn,ρ,c(t2; x, a) − x2|
1 + x2

≤
∣
∣
∣∣

n2ρ2

(nρ − c)(nρ − 2c)
− 1

∣
∣
∣∣ sup
x∈[0,∞)

x2

1 + x2

+ nρ

(nρ − c)(nρ − 2c)

(
3ρ + 1 + ρ

a − 1

)
sup

x∈[0,∞)

x

1 + x2

+ ρ(2ρ + 1)

(nρ − c)(nρ − 2c)

]

≤
∣
∣∣
∣

n2ρ2

(nρ − c)(nρ − 2c)
− 1

∣
∣∣
∣

+ nρ

(nρ − c)(nρ − 2c)

(
3ρ + 1 + ρ

a − 1

)
+ ρ(2ρ + 1)

(nρ − c)(nρ − 2c)
,

the condition (4.1) holds for ν = 2 as n → ∞.

Hence the theorem.

Corollary 1 For each f ∈ Cx2 [0,∞), a > 1 and α > 0, we have

lim
n→∞ sup

x∈[0,∞)

|Tn,ρ,c( f ; x, a) − f (x)|
(1 + x2)α

= 0.

Proof For any fixed x0 > 0,
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sup
x∈[0,∞)

|Tn,ρ,c( f ; x, a) − f (x)|
(1 + x2)1+α

≤ sup
x≤x0

|Tn,ρ,c( f ; x, a) − f (x)|
(1 + x2)1+α

+ sup
x≥x0

|Tn,ρ,c( f ; x, a) − f (x)|
(1 + x2)1+α

≤ ‖Tn,ρ,c( f ; ., a) − f ‖C[0,x0] + ‖ f ‖x2 sup
x≥x0

|Tn,ρ,c(1 + t2; x, a)|
(1 + x2)1+α

+ sup
x≥x0

| f (x)|
(1 + x2)1+α

.

The first term of the above inequality tends to zero from Theorem 1. By Lemma 2

for any fixed x0 it is easily seen that sup
x≥x0

|Tn,ρ,c(1 + t2; x, a)|
(1 + x2)1+α

≤ M

(1 + x20 )
α
for some

positive constant M independent of x . We can choose x0 so large that the right-hand
side of the former inequality and last part of above inequality can be made small
enough.

Thus the proof is completed.

Acknowledgments Authors are thankful to the referees for valuable suggestions, leading to an
overall better presentation in the paper.
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Abstract In this paper, we give some identities of symmetry for the generalized
degenerate Euler polynomials attached to χ which are derived from the symmetric
properties for certain fermionic p-adic integrals on Zp.
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1 Introduction and Preliminaries

Let p be a fixed odd prime. Throughout this paper, Zp,Qp and Cp will be the ring
of p-adic integers, the field of p-adic rational numbers and the completion of the
algebraic closure of Qp, respectively.

The p-adic norm |·|p in Cp is normalized as |p|p = 1
p . Let f (x) be continuous

function on Zp. Then the fermionic p-adic integral on Zp is defined as

I−1 ( f ) =
∫

Zp

f (x) dμ−1 (x) (1.1)
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= lim
N→∞

pN−1∑

x=0

f (x) (−1)x , (see [9]) .

From (1.1), we note that

I−1 ( fn) + (−1)n−1 I−1 ( f ) = 2
n−1∑

l=0

(−1)n−1−l f (l) , (see [7]) , (1.2)

where n ∈ N.
As is well known, the Euler polynomials are defined by the generating function

∫

Zp

e(x+y)t dμ−1 (y) = 2

et + 1
ext =

∞∑

n=0

En (x)
tn

n! . (1.3)

When x = 0, En = En (0) are called the Euler numbers (see [1–19]).
For a fixed odd integer d with (p, d) = 1, we set

X = lim←
N

Z/dpN
Z, X∗ =

⋃

0<a<dp
(a,p)=1

(
a + dpZp

)
,

a + dpN
Zp = {

x ∈ X | x ≡ a (mod dpN )
}
,

where a ∈ Z lies in 0 ≤ a < dpN .
It is known that

∫

Zp

f (x) dμ−1 (x) =
∫

X
f (x) dμ−1 (x) , (see [7−9]) ,

where f is a continuous function on Zp.
Let d ∈ N with d ≡ 1 (mod 2) and let χ be a Dirichlet character with conductor

d. Then the generalizedEuler polynomials attached toχ are defined by the generating
function (

2
∑d−1

a=0 (−1)a χ (a) eat

edt + 1

)

ext =
∞∑

n=0

En,χ (x)
tn

n! . (1.4)

In particular, for x = 0, En,χ = En,χ (0) are called the generalized Euler numbers
attached to χ .
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For d ∈ N with d ≡ 1 (mod 2), by (1.2), we get

∫

X
χ (y) e(x+y)t dμ−1 (y) (1.5)

= 2
∑d−1

a=0 (−1)a χ (a) eat

edt + 1
ext

=
∞∑

n=0

En,χ (x)
tn

n! , (see [9−11]) .

From (1.5), we have

∫

X
χ (y) (x + y)n dμ−1 (y) = En,χ (x) , (n ≥ 0) . (1.6)

Carlitz considered the degenerate Euler polynomials given by the generating func-
tion

2

(1 + λt)
1
λ + 1

(1 + λt)
x
λ (1.7)

=
∞∑

n=0

En (x | λ)
tn

n! , (see [3]) .

Note that limλ→0 En (x | λ) = En (x), (n ≥ 0).
From (1.2), we note that

∫

X
(1 + λt)

x+y
λ dμ−1 (y) (1.8)

= 2

(1 + λt)
1
λ + 1

(1 + λt)
x
λ

=
∞∑

n=0

En (x | λ)
tn

n! .

Thus, by (1.8), we get

∫

X
(y + x | λ)n dμ−1 (y) = En (x | λ) , (n ≥ 0) , (1.9)

where (x | λ)n = x (x − λ) · · · (x − (n − 1) λ), for n ≥ 1, and (x | λ)0 = 1.
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From (1.2), we can derive the following equation:

∫

X
χ (y) (1 + λt)

x+y
λ dμ−1 (y) (1.10)

= 2
∑d−1

a=0 (−1)a χ (a) (1 + λt)
a
λ

(1 + λt)
d
λ + 1

(1 + λt)
x
λ ,

where d ∈ N with d ≡ 1 (mod 2).
In view of (1.5), we define the generalized degenerate Euler polynomials attached

to χ as follows:

2
∑d−1

a=0 (−1)a χ (a) (1 + λt)
a
λ

(1 + λt)
d
λ + 1

(1 + λt)
x
λ =

∞∑

n=0

En,λ,χ (x)
tn

n! . (1.11)

When x = 0, En,λ,χ = En,λ,χ (0) are called the generalized degenerate Euler numbers
attached to χ .

Let n be an odd natural number. Then, by (1.2), we get

∫

X
χ (x) (1 + λt)

nd+x
λ dμ−1 (x) +

∫

X
χ (x) (1 + λt)

x
λ dμ−1 (x) (1.12)

= 2
nd−1∑

l=0

(−1)l χ (l) (1 + λt)
l
λ .

Now, we set

Rk (n, λ | x) = 2
n∑

l=0

(−1)l χ (l) (l | λ)k . (1.13)

From (1.2) and (1.12), we have

∫

X
(1 + λt)

x+dn
λ χ (x) dμ−1 (x) +

∫

X
χ (x) (1 + λt)

x
λ dμ−1 (x) (1.14)

= 2
∫
X (1 + λt)

x
λ χ (x) dμ−1 (x)

∫
X (1 + λt)

ndx
λ dμ−1 (x)

=
∞∑

k=0

Rk (nd − 1, λ | χ)
t k

k! ,

where n, d ∈ N with n ≡ 1 (mod 2), d ≡ 1 (mod 2).
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In this paper, we give some identities of symmetry for the generalized degenerate
Euler polynomials attached to χ derived from the symmetric properties of certain
fermionic p-adic integrals on Zp.

2 Identities of Symmetry for the Generalized
Degenerate Euler Polynomials

Letw1, w2 be odd natural numbers. Thenwe consider the following integral equation:

∫
X

∫
X (1 + λt)

w1x1+w2x2
λ χ (x1) χ (x2) dμ−1 (x1) dμ−1 (x2)

∫
X (1 + λt)

dw1w2x
λ dμ−1 (x)

(2.1)

=
2

(
(1 + λt)

dw1w2
λ + 1

)

(
(1 + λt)

w1d
λ + 1

) (
(1 + λt)

w2d
λ + 1

)

×
d−1∑

a=0

χ (a) (1 + λt)
w1a

λ (−1)a

×
d−1∑

b=0

χ (b) (1 + λt)
w2b
λ (−1)b .

From (1.10) and (1.11), we note that

∫

X
χ (y) (x + y | λ)n dμ−1 (y) = En,λ,χ (x) , (n ≥ 0) . (2.2)

By (1.14), we get

∫

X
χ (x) (x + dn | λ)k dμ−1 (x) +

∫

X
χ (x) (x | λ)k dμ−1 (x) = Rk (nd − 1, λ | x) ,

(2.3)
where k ≥ 0.
Thus, by (2.2) and (2.3), we get

Ek,λ,χ (nd) + Ek,λ,χ = Rk (nd − 1, λ | χ) , (2.4)

where k ≥ 0, n, d ∈ N with n ≡ 1 (mod 2), d ≡ 1 (mod 2).
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Now, we set

Iχ (w1, w2 | λ) =
∫
X

∫
X χ (x1) χ (x2) (1 + λt)

w1x1+w2x2+w1w2x
λ dμ−1 (x1) dμ−1 (x2)

∫
X (1 + λt)

dw1w2x
λ dμ−1 (x)

.

(2.5)
From (2.5), we have

Iχ (w1, w2 | λ) (2.6)

=
2

(
(1 + λt)

dw1w2
λ + 1

)
(1 + λt)

w1w2x
λ

(
(1 + λt)

w1d
λ + 1

) (
(1 + λt)

w2d
λ + 1

)

×
d−1∑

a=0

χ (a) (−1)a (1 + λt)
w1a
λ

×
d−1∑

b=0

χ (b) (−1)b (1 + λt)
w2b
λ .

Thus, by (2.6), we see that Iχ (w1, w2 | λ) is symmetric in w1, w2. By (1.12),
(1.14), (2.2) and (2.5), we get

2Iχ (w1, w2 | λ) (2.7)

=
∞∑

l=0

(
l∑

i=0

(
l

i

)
Ei, λ

w2
,χ (w1x) wi

2w
l−i
1 R

(
dw2 − 1,

λ

w1

∣∣∣∣χ
))

t l

l! .

From the symmetric property of Iχ (w1, w2 | λ) in w1 and w2, we have

2Iχ (w1, w2 | λ) (2.8)

= 2Iχ (w2, w1 | χ)

=
∞∑

l=0

(
l∑

i=0

(
l

i

)
Ei, λ

w1
,χ (w2x) wi

1w
l−i
2 R

(
dw1 − 1,

λ

w2

∣∣∣∣χ
))

t l

l! .

Therefore, by (2.7) and (2.8), we obtain the following theorem.

Theorem 1 For w1, w2, d ∈ N with w1 ≡ w2 ≡ d ≡ 1 (mod 2), let χ be a Dirich-
let character with conductor d. Then, we have
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l∑

i=0

(
l

i

)
Ei, λ

w1
,χ (w2x) wi

1w
l−i
2 R

(
dw1 − 1,

λ

w2

∣∣
∣∣χ

)

=
l∑

i=0

(
l

i

)
Ei, λ

w2
,χ (w1x) wi

2w
l−i
1 R

(
dw2 − 1,

λ

w1

∣∣∣∣ χ
)

,

where l ≥ 0.

When x = 0, by Theorem 1, we get

l∑

i=0

(
l

i

)
Ei, λ

w1
,χwi

1w
l−i
2 R

(
dw1 − 1,

λ

w2

∣∣∣∣χ
)

=
l∑

i=0

(
l

i

)
Ei, λ

w2
,χwi

2w
l−i
1 R

(
dw2 − 1,

λ

w1

∣∣∣
∣χ

)
, (l ≥ 0) .

By (2.5), we get

2Iχ (w1, w2 | λ) (2.9)

=
dw2−1∑

l=0

(−1)l χ (l)
∫

X
(1 + λt)

w2
λ

(
w2+w1x+ w1

w2
l
)

χ (x2) dμ−1 (x)

=
∞∑

n=0

(
dw2−1∑

l=0

(−1)l χ (l) En, λ
w2

,χ

(
w1x + w1

w2
l

)
wn

2

)
tn

n! .

On the other hand,

2Iχ (w2, w1 | λ) = 2Iχ (w1, w2 | λ) (2.10)

=
∞∑

n=0

(
dw1−1∑

l=0

(−1)l χ (l) En, λ
w1

,χ

(
w2x + w2

w1
l

)
wn

1

)
tn

n! .

Therefore, by (2.9) and (2.10), we obtain the following theorem.

Theorem 2 For w1, w2, d ∈ N with d ≡ 1 (mod 2), w1 ≡ 1 (mod 2) and w2 ≡ 1
(mod 2), let χ be a Dirichlet character with conductor d. Then, we have

wn
2

dw2−1∑

l=0

(−1)l χ (l) En, λ
w2

,χ

(
w1x + w1

w2
l

)

= wn
1

dw1−1∑

l=0

(−1)l χ (l) En, λ
w1

,χ

(
w2x + w2

w1
l

)
, (n ≥ 0) .
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To derive some interesting identities of symmetry for the generalized degener-
ate Euler polynomials attached to χ , we used the symmetric properties for certain
fermionic p-adic integrals on Zp. When w2 = 1, from Theorem 2, we have

d−1∑

l=0

(−1)l χ (l) En,λ,χ (w1x + w1l)

= wn
1

dw1−1∑

l=0

(−1)l χ (l) En, λ
w1

,χ

(
x + 1

w1
l

)
.

In particular, for x = 0, we get

d−1∑

l=0

(−1)l χ (l) En,λ,χ (w1l)

= wn
1

dw1−1∑

l=0

(−1)l χ (l) En, λ
w1

,χ

(
1

w1
l

)
.
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Using MathLang to Check the Correctness
of Specifications in Object-Z

David Feller, Fairouz Kamareddine and Lavinia Burski

Abstract The importance of thoroughly checking software specifications is widely
recognised in the software industry, particularly for software involved in dealing with
safety critical systems. The MathLang project has been successfully used to check
large mathematical texts for correctness in a stepwise fashion. Currently MathLang
is being tested for checking the correctness of formal specifications written in Z.
Since object-orientation is a vital concept for software specification, it is important
that the tools available for thoroughly checking specifications can be used with
a language powerful enough to express specifications for object-oriented software.
This paper aims to test the usefulness of MathLang for the computerisation of formal
specifications written in Object-Z.

Keywords Software specification and correctness · Object-oriented design ·
MathLang · Object-Z

1 Introduction

Inadequate checking of software is a serious problem in the software industry.
According to Frentiu [1]:

Experience shows that more than 75% of finished software products have errors during
maintenance, and deadlines are missed and cost overruns are a rule not an exception. It was
estimated that more than 50% of the development effort was spent on testing and debugging.
Nevertheless, some errors are not detected by testing, and some of them are never detected.
More, there are projects that have never been finished. And it is not an exception; it is
estimated that from each six large projects two of them are never finished.

Rigorous checking of software systems could help with these issues. This is of
particular importance to the designers of safety critical systems who cannot afford
to find bugs in their software by testing it on users. This is because such a bug could
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cause injury or death in the course of being found. According to MacKenzie [2],
the total number of computer-related accidental deaths, worldwide, to the end of
1992, can be expressed, in conventional format, as 1,100 +/− 1,000. One can easily
imagine other cases where a high degree of confidence that a piece of software will
always function as intended is needed before it can be used (e.g., software dealing
with sensitive information). This paper is concerned with creating software which
aids in the formal proof of software correctness.

1.1 Why Formally Prove Software Correctness?

Formally proving that a piece of software is correct can give us a high degree of
confidence that it will function as intended; checking the validity of that proof, even
more so. Testing and debugging can fail because of some condition that the software
developers forgot to check. As Dijkstra [3] observed: program testing can be used to
show the presence of bugs, but never to show their absence. Testing and debugging
can take much longer than expected to locate those errors that are hard to isolate and
hence fixing those errors can only happen late in the development cycle. However, a
specification that has been proven correct should function as defined, provided that
said proof is correct.

1.2 The Difficulties of Formally Proving Correctness

For large systems, formally proving correctness canbe repetitive and labour intensive.
It is not guaranteed that software developers have a great deal of experience with
formal proof and it is certainly not guaranteed that every developer working on a
large piece of software could aid in the formal checking of software correctness. As
[4] states, many software engineers reject the use of formal methods for software
validation, arguing that it is too complex and time-consuming a process for most
programmers. Further it is still possible for such proofs to be subject to human error.
As such, it is important that we have good tools to aid in formally checking the
correctness of software specifications.

Contributions This paper presents the first step in the development of a new tool
to aid in a stepwise easy to use fashion in the formal checking of the correctness of
software specifications written in the specification language Object Z [5, 6]. This
first step allows for the type checking and grammatical correctness of documents
written in Object Z. We present a development path for expansion of the tool to
aid in more complete checking of specifications in Object Z where also logical and
rhetorical correctness can be checked. We also explain why our proposed method
might provide a basis for development of tools for checking correctness in other
specification languages.
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1.3 Related Work

One usually formalises a Z [7] specification into a complete proof right away [8–11],
as shown by arrow e in Fig. 1. The thickness of the arrow here represents the level of
difficulty, the huge expertise needed, and the amount of work necessary to take that
path. Our proposal is to carry out the correctness checking in smaller steps, each of
which is more focused and very simple to carry out. These smaller steps are based on
MathLang [12]. MathLang is a system for computerising mathematical texts which
aims to reduce the complexity of checking the correctness of a text by breaking down
the process into more manageable steps which can be easily completed with the aid
of a computer. MathLang starts by separating out the work that needs to be done
in computerising a mathematical text into three main aspects. These are the Core
Grammatical aspect (CGa), the Document Rhetorical aspect (DRa) and the Text and
Symbol aspect (TSa).

The CGa checks the internal grammatical structure of a text is correct by capturing
the structures and common concepts with a finite set of concepts which are derived
from weak type theory. The TSa captures the mathematical relations which hold
between the parts of the text as represented by the CGa. The DRa captures the logical
roles that are held by chunks of text that tell us where they feature in an argument
or proof. This information can be used to generate a proof skeleton in a theorem
prover making the move from document to formal checking much simpler. Further
it allows simple checking of the grammar and general structure of the document to
be performed automatically.

Fig. 1 The different steps taken to achieve a full proof using the ZMathLang method
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MathLang for Z (ZMathLang) [13], divides e into a number of smaller paths via
a, b, c and d. Following this path the user would apply the Z core grammatical aspect
(ZCGa) and the Z document rhetorical aspect (ZDRa), to show that the specification
is weakly type checked and is also rhetorically correct (i.e. no loops in the reasoning).
Then the user would take the ZCGa and ZDRa annotated specification into a general
proof skeleton, then a ‘half-baked’ proof and ultimately a complete proof. Breaking
this down would allow a user with minimal theorem prover expertise to obtain a fully
proved Z specification.

UnlikeMathLang for mathematics, ZMathLang does not require a Text-Symbolic
aspect (TSa) as the mathematical relations in Z are already formal.

Object-ZObject-Z [14] is an extension of the Z language for writing formal specifi-
cations that has added functionality for dealing with object-oriented concepts. Both
Z and Object-Z have been designed to make formally proving the correctness of
specifications relatively easy. They each have a standard notation which can be eas-
ily manipulated in a mathematical fashion, allowing for proof of correctness using
standard mathematical methods.

Z allows specifications to be split up into different schema boxes—each of which
represent individual functions within the software. The input, output and manipula-
tion of data is expressed through a mathematical notation based around set theory.
Object Z introduces class boxes, which allow a specification to be identified with
a class of objects and standard notation for creating instances of objects and for
initialising and running methods within a specification.

Why Choose Object-Z over Z as a Specification Language for Correctness
Checking? Object-oriented programming allows developers to separate out pro-
grams into modules whose functions and interactions are (relatively) easy for devel-
opers to understand and whose contents are easier to alter without needing to change
too much of the rest of the code. This is especially important for large pieces of
software with multiple developers whose code can quickly grow unmanageable and
difficult for humans to interpret. Most popular languages in use today are object
oriented. Examples include Java, Python, C++, Visual Basic .NET and Ruby. It is
important, therefore, that our tool for checking formal correctness works for speci-
fications of object-oriented languages. Smith [14] noted the following benefits of an
object-oriented specification language:

• The modularity it brings to system design. Modularity increases the clarity of
specifications by allowing a reader to focus on one part at a time.

• It provides a precise methodology for system design. This methodology involves
the specification of a system by first specifying the behaviour of its constituent
objects by classes, andbyutilising inheritance andpolymorphismwhere appropriate

• Seamless development—the use of common concepts and system structuring at
each stage of system development: from the specification right through to the
implementation. This is possible when using an object-oriented approach to spec-
ification and then implementing in an object-oriented programming language.
It makes the specification more accessible to the programmer, who may not be
a formalist, and facilitates his or her task of transforming the specification to
implementation.
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Another reason to prefer Object-Z over Z when using MathLang to check the
correctness of formal specifications is that checking the correctness of Object-Z gives
us much more confidence that MathLang is well suited to checking the correctness
of software specifications than checking the correctness of Z alone does, as object-
oriented models might present unique problems for conversion into a framework like
that of MathLang due to the subtyping of objects.

Tools for Object-Z TOZE [15] is a graphical editor for Object-Z documents which
allows syntax and type checking without demanding experience with LaTeX or
requiring the user to save the specification and use tools outside the text editor.
Kimber [16] gives a tool which maps 80% of Object-Z to perfect developer [17]
allowing the direct verification of the soundness of simple specifications.

By checking Object-Z in MathLang, one allows some flexibility in whether to
perform syntax and weak type checking, or check that simple dependencies are
fulfilled, or provide a full proof. Another benefit especially when the soundness of
an Object-Z specification is difficult to verify directly, consists of the MathLang
automated layers which are crucial to embed the entire specification into a theorem
prover. This could particularly be useful in large software projects where no or very
few individuals are familiar with a theorem prover, and it would take a long time to
translate the full specification into a theorem prover by hand.

1.4 Overview

In Sect. 2 we create a newweak typing system forMathLang to incorporate Object-Z
specifications.We give theweak types and the rules inwhichwe check specifications.
In Sect. 2.2 we give a step by step example of how we can check for weak typing
errors in an Object-Z specification. We explain how to label the specification and
how to run the weak type checker on the specification. Section3 goes on to explain
how we implemented the Object-Z Core Grammatical aspect (OZCGa), and how it
has been tested. The problems encountered and how theywere dealt with is described
in Sect. 3.4. Finally, our conclusion along with benefits and limitations is described
in Sect. 4.

2 Adapting MathLang to Include Object-Z

We look at the first aspect of the ZMathLang framework (CGa) extended to weak
type check Object-Z specifications.

OZCGa includes 7 weak types Spec, �, T , S, Z , E , D,O,M corresponding to

and respectively. We categorise the parts of the Z syntax using
these types in order to define the core grammatical aspect OZCGa.
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We have three types of variables in our syntax

• V = V T , Variables giving terms.
• V = V S, Variables giving sets.
• V = VO, Variables giving objects.

We have three types of constants in our syntax:

• C = CT , Constants for terms.
• C = CS, Constants for sets.
• CE , Constants giving expressions. These can be further broken down into the
following:

– Cbool, constants ⊆, =, �= taking expressions as parameters.
– Ctermop, constant term operators <, ≤, =, >, ≥, �= taking two terms as parame-
ters.

– Csetop, constant set operators ⊆, =, �=, partition taking a set and a sequence of
sets as parameters.

– Ctermsetop, constant term/set operators ∈, /∈ taking one term and one set as para-
meters.

– Cobjop, constant object operators =, �= taking two objects as parameters.
– Cobjsetop, constant object/set operators ∈, /∈ taking one object and one set as
parameters.

We have three types of constants for our Object-Z syntax:

• C = CO, Constants for objects.
• C = CM, Constants for methods.

– C = Cobop, constant for object operator taking an object as a parameter.
– C = Cmethop, constant for method operator o

9 taking two methods as parameters.

We have three types of binders in Z

• BS, the binder ∪ giving sets and taking sets as parameters.
• BE , binders ∃, ∀ giving expressions and taking expressions as parameters.
• ↓, gives an object and takes an object as its parameter.

Definitions inObject-Z can define constants including those of the formCO which
take a specification as its parameter.

Declarations express the relationship between something and its type. In the ZCGa
wehave twokinds of declarations, these can beSET (the type of all sets) or a particular
set. We write either V S : SET , V T : S or VO : S.

Expressions, terms and sets in Z are given as described in our rules for constants
variables and binders.

A schematext can be empty or it can contain a declaration, expression or method.
A declaration in a schematext represents the introduction of a new variable of a
known type.
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A specification is either empty or it consists of schematext and definitions where
the parts of the schematext which are not defined inside the schematext itself have a
corresponding definition in the specification.

2.1 A Formalisation of These Typing Rules

If we formally represent these typing rules we see that they are a subset of the
typing rules of MathLang. The only differences [13] are that we change book to
specification, context becomes schematext and statements become expressions. We
eliminate nouns and adjectives and only have one syntax for definition.

We use the notation :: for typing between an entity and its weak type and � to
denote derivability. Here are some examples (we only state the meaning of the first
3 and leave the rest as obvious):

1. spec is a weakly typed specification:
� spec :: Spec

2. Γ is a weakly well typed paragraph relative to specification spec:
spec � Γ :: �

3. t is a weakly typed term, relative to specification spec and schematext Γ :
spec; Γ � t :: T

4. spec; Γ � s :: S
5. spec; Γ � Z :: Z
6. spec; Γ � e :: E
7. spec; Γ � D :: D
8. spec; Γ � o :: O
9. spec; Γ � m ::M
The next definition is crucial for analysing the grammatical correctness of the speci-
fication since it collects the defined constants and declared variables of specifications
and paragraphs:

Definition 1 1. Let θ ∈ spec be a definition paragraph Γ � D where D is of the
form c(x1, . . . , xn) := A. We define defcons(D) = c.

2. defcons(spec) = {defcons(D) |Γ � D is a paragraph of spec for some Γ }.
3. Internal constants defined using == are noted as defcons(Γ ).
4. We define for parameter P the weak type of P with respect to spec and Γ as:

wtspec; Γ (P) = W if and only if spec; Γ � P ::W.
5. Predefined constants such as P, dom and ran are noted as prefcons(spec).
6. We use OK(spec;Γ ) to denote � spec :: Spec and spec � Γ :: �.
7. We define dvar(Γ ) as follows:

(a) if Γ = ∅, then dvar(Γ ) = ∅.
(b) if Γ = Γ ′, x : A and x /∈ dvar(Γ ), then dvar(Γ ) = dvar(Γ ′), x.
(c) Otherwise, if Γ = Γ ′, e, then dvar(Γ ) = dvar(Γ ′).
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The next definition gives the typing rules that deal with type-orientedness:

Definition 2 1. Derivation rule for variables

OK(spec, Γ ), x ∈ V T /S/O, x ∈ dvar(Γ )

spec;Γ � x :: T /S/O
(var)

2. Derivation rule for internal constants

OK(spec,Γ ),Γ �D∈spec,dvar(Γ ′)=(x1,...,xn),defcons(D)=c∈CT /S/O/E/M,

wtspec;Γ (Pi)=wtspec;Γ ′ (xi),for alli=1,...,n

spec;Γ � c(P1, . . . ,Pn) :: T /S/O/E/M (int − cons)

3. Derivation rule for external constants

OK(spec,Γ ), c external to spec, c :: k1,...,kn→k,
spec;Γ �Pi :: ki(i=1,...,n)

spec;Γ � c(P1, . . . ,Pn) :: k (ext − cons)

4. Derivation rule for binders:

OK(spec;Γ ;Z), b ∈ B, b :: k1 → k2, spec;Γ,Z � E :: k1
spec;Γ � bz(E) :: k2 (bind)

5. Derivation rule for definitions:

spec,Γ �o::O,OK(spec′,Γ ′),
c∈CO,c/∈prefcons(spec)∪defcons(spec)

spec;Γ � classbox(c(spec′, Γ ′), o) ::D (obj − def )

That is, an entity that consists of a set equalling a number of variables bound by
a constant and that has not yet been defined has weak type definition.

6. Derivation rule for an empty schematext is

� spec ::Spec
spec � ∅ :: � (emp − cont)

7. Derivation rule for adding a set declaration to a paragraph is

OK(spec;Γ ), x ∈ V S, x /∈ dvar(Γ )

spec � Γ, x : SET :: � (set − dec)

8. Derivation rule for adding a term declaration is

OK(spec;Γ ), spec;Γ � s :: S, x ∈ V T , x /∈ dvar(Γ )

spec � Γ, x : s :: � (term − dec)
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9. Derivation rule for adding an object declaration to a paragraph

OK(spec;Γ ), spec;Γ � s ::S/O, x ∈ VO, x /∈ dvar(Γ )

spec � Γ, x : s ::� (obj − dec)

10. Derivation rule for adding an expression is

OK(spec;Γ ), spec;Γ � e :: E
spec � Γ, x : e :: � (assump)

11. Derivation rule for adding methods

OK(spec;Γ ), spec;Γ � m ::M
spec � Γ, x : m :: � (meth)

12. Derivation rule for an empty specification

� ∅ ::Spec (emp − spec)

13. Derivation rule for extending a specification is

spec � Γ :: �
� spec, Γ ::Spec (spec − ext)

2.2 An Example of an Object-Z Class with Weak Types
Labelled

Wehave implemented the above syntax and type derivation rules to obtain anOZCGa
type checker that checks whether specifications written in Object-Z are grammati-
cally correct. To use this type checker, we need first to annotate the Object-Z speci-
fication with our weak types. For this, we create commands within a LATEX package
(see Table1) where each of the weak types, is associated to a LATEX command and
the colour in which the contents appears.

We use an example of an Object-Z specification ‘TwoCards’ which describes an
action where the balance is the first card plus the second card. Money is allowed
to be withdrawn on both these cards. An example of the specification is shown in
Fig. 5 (source file in Fig. 2). We use the commands from Table1 to annotate this
specification, giving us the source code shown in Fig. 3 (Fig. 4).
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Table 1 The LATEX
commands to annotate an
Object-Z specification with

Fig. 2 Part of an Object-Z
specification source code

\begin{schema}{TwoCards}
c1,c2:CreditCard \\
totalbal:\num
\where
c1 \neq c2\\
totalbal = c1.balance + c2.balance
\end{schema}

\begin{schema}{withdraw1}
\where
c1.withdraw
\end{schema}

\begin{schema}{withdraw2}
\where
c2.withdraw
\end{schema}

\begin{schema}{tranferAvail}
\where
c1.withdrawAvail \semi c2.deposit
\end{schema}

Colours now appear around each grammatical part of the specification (Fig. 5).
These colours can be used to reduce the complexity of the specification and can also
assist beginners in learning the syntax of Object-Z. More examples of the labelling
and weakly typed Object-Z specification can be found in Appendix D. Other exam-
ples of weakly typed Z specifications are also given in Appendixes A, B and C.

After the specification has been labelled using the ‘ozcga’ package in LATEX,
our weak type checker goes through the specification an checks it for grammati-
cal correctness. This weak type checking is run in a terminal through a program
implemented in python.
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Fig. 3 Part of an Object-Z
specification labelled in
OZCGa source code. The
full version can be found in
appendices

\begin{class}{\object{TwoCards}}
\also
\specification{
\begin{schema}{TwoCards}
\text{\declaration{\object{c1},\object{c2}:
\expression{CreditCard}}\\
\declaration{\term{totalbal}:\expression{\num}}}
\where
\text{\expression{\object{c1}\neq\object{c2}}\\
\expression{\term{totalbal}=
\term{\object{c1}.\term{balance}+\object{c2}.
\term{balance}}}}
\end{schema}
\begin{schema}{withdraw1}
\where
\text{\method{\object{c1}.withdraw}}
\end{schema}
\begin{schema}{withdraw2}
\where
\text{\method{\object{c2}.withdraw}}
\end{schema}
\begin{schema}{tranferAvail}
\where
\text{\method{\method{
\object{c1}.withdrawAvail}\semi\method{\object{c2}.
deposit}}}
\end{schema}}
\end{class}

Fig. 4 Part of an Object-Z
specification
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Fig. 5 Part of an Object-Z specification labelled in OZCGa and compiled with pdflatex. The full
version can be found in Appendix D

3 Implementation of the OZCGa

In this sectionwe look at the specific implementation of the CoreGrammatical aspect
ofMathLang for Object-Z (OZCGa), that we created.We go over the implementation
and the specific examples we used to test it.

3.1 Expansion of Existing Functional Software

The LATEX style file used for labelling Object-Z specifications to be checked by the
OZCGa.py is built around the oz style file [18], which is the file the Community Z
Tools website [19] suggests for typesetting Object-Z documents in LATEX, so it can
be easily applied to existing Object-Z documents. The software for the OZCGa itself
is built around the software used for the ZCGa—so we can be fairly confident that
the functionality and reliability of the ZCGa has been preserved in the adaptation to
the OZCGa. In addition it means that Z specifications which can be checked by the
ZCGa do not need changing to be checked with the OZCGa.



Using MathLang to Check the Correctness of Specifications in Object-Z 57

3.2 The Style File

The zcga.sty style file used for labelling Z specifications for the ZCGa imports the
zed.sty style file. For the ozcga.sty style file we chose to import the oz.sty style file to
deal with specifications written in Object-Z. We chose oz.sty because it contained all
the commands used in the zed.sty style file so ZCGa specifications written in LaTeX
with the ozcga.sty style file in place of the zcga.sty style file are compatible with the
ZCGa. We have also kept the original weak type labels and used the same format for
labelling the two additional weak types object and method.

3.3 The Code Structure

We have retained all the original code for the ZCGa python file (though we have
added to several functions within it as well as incorporating new functions). This
makes us much more confident in the backwards compatibility of the OZCGa. It also
gives us a very high degree of confidence that the structures present in both Z and
Object-Z are type checked correctly.

Where possible we have copied the parts of each typing rule for terms as closely as
possiblewhen expanding the rules to deal with objects.Most the expression constants
between objects and sets and between objects and other objects are the same as
those between terms and sets and those between terms and other terms respectively.
Similarly the declaration rule for objects closely resembles the declaration rules for
terms. This allows us to have a high degree of confidence that these rules are well
implemented—as they follow the same structure as well implemented code.

3.4 Problems Encountered

While the typing rules of Z are perfectly compatible with the object definition rule
of Object-Z the way in which they are realised in the zcga.py file makes the object
declaration rule difficult to implement without extensive restructuring of the code.
The reason for this is that the ZCGa assumes that only one specification is checked
at a time so the checking of specifications is not separable from the checking of
documents. There are two problems with this approach when checking Object-Z
specifications which require that the specifications contained within them are them-
selves well typed.

• A document can easily contain two specifications which are individually badly
typed, but together well typed (if types only defined in one specification are used
in the other).
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• Adocument can easily contain twowell typed specifications whichwould be badly
typed if treated like they were one specification (if the same type is declared in
each specification).

Our Solution Since we wanted to retain as much of the structure of the ZCGa as
possible our solution is to ask the user to break down their specification so that
only one class is checked at once. In order to do this all data from other classes,
apart from the declarations of terms called within the class being checked using
object.term should be deleted. An example of how this breakdown is done can be
found in Appendix E.

4 Conclusion

In this paper we described a new translation path from an Object-Z specification into
a theorem prover in a stepwise fashion. We have derived and implemented a new
weak typing system for Object Z and thus completing the first step in the ZMath-
Lang path. This weak typing system is defined by weak types and derivation rules
for object-orientedness and shows that the system can weakly type check Object-Z
specifications. The style file which was produced also acts as a clear visual reference
for the typing of an Object-Z specification, many errors can be caught at the stage of
adding these labels.

This paper is concerned with the Core Grammatical aspect of Object-Z. The next
step is taking Object-Z specification through to the Document Rhetorical aspect to
check the document rhetorical correctness (e.g. loops in the reasoning). Using the
DRa we can automatically produce dependencies graphs and the proof skeleton.
Other work which might be of interest is to create the MathLang path for other
languages such as SysML or for specifications which are written non-formally in
natural language.

Limitations to the ZDRa are that specifications need to be labelled by hand and the
program runs on a terminal. Perhaps having a user interface to label the specification
and run the program may make things more friendly to use.
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Appendices

A Credit Card ZCGa
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B CheckIn ZCGa
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C Rich Tea ZCGa
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D OZCGa LATEX file
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E A Breakdown of the Specification for Checking
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Ultimate Numerical Bound Estimation
of Chaotic Dynamical Finance Model

Dharmendra Kumar and Sachin Kumar

Abstract This paper has investigated the boundedness of a 3D chaotic Dynamical
Finance Model. We have discussed two bounds of this model. First by Lagrange
multiplier method and second by optimization method. It was verified by using
fmincon solver. Lyapunov Exponent calculated using Wolf algorithm and presented
graphically in this paper. Lyapunov dimension of Dynamic Finance Model also dis-
cussed. Numerical simulations are presented to show the effectiveness of the pro-
posed scheme.

Keywords Ultimate bounds · Chaotic finance model · Lyapunov stability theory ·
Positively invariant set · Fmincon · Optimization

1 Introduction

Lorenz first studied the chaotic dynamics in 1963 [9]. Dynamical diagnosis of finan-
cial models observed in recent research on financial chaotic dynamics. To understand
the highly complex dynamics of real economic and financial systems, we need to
study its global dynamical properties. Chaotic behaviour is not stochastic or ran-
dom. On the contrary, a chaotic system is one that is completely deterministic, yet
appears as if it were purely random, even to the extent of satisfying standard tests
of randomness. Such systems are not predictable. Further, they do not necessarily
require systems of complex equations to describe them. Remarkably, chaos may be
generated from the simplest of nonlinear equations where, unlike in linear systems,
the smallest changes can lead to extreme variability.
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Chaotic phenomenon in economics was first found in 1985 [1]. The instability and
complexity make the precise economic prediction greatly limited, and the reasonable
prediction behaviour has become complicated as well. In the fields of finance, stocks
and social economics, with all kinds of economic problems being more and more
complicated. So it has become more and more important to make a systematic and
deep study in the internal structural characteristics in such a complicated economic
system. Chaos is about the irregular behaviour of solutions to deterministic equations
of motion, and has received much attention frommathematicians and physicists over
recent years. The equations must be nonlinear to generate chaotic solutions, but apart
from that it can be remarkably simple. A nonlinear difference equation in one variable
can generate chaos. Even in an ordinary differential equation in three variables can
generate chaos. Chaotic solutions are only accurate for a length of time governed
by the errors on initial conditions and the Lyapunov exponent of the system, which
quantifies the exponential divergence of trajectories in chaotic systems. However,
when considered in the underlying state space, in many cases chaotic solutions relax
onto a strange attractor, which has a fractal structure and typically a non-integral
dimension.

As we know, though a chaotic system is bounded, it is not an easy work to
estimate and examine its bound. Therefore, an interesting fundamental question is
how to estimate the bound of strange attractor. This objective can be achieved using
four methods viz

1. the hyper plane oriented method [3],
2. the iteration theorem and the first order extremum theorem [23],
3. Lyapunov stability theory combined with the comparison principle method [8],
4. the optimization method [4, 19].

In recent papers, optimization theory is used for estimating the ultimate bounds
of a class of High Dimensional Quadratic Autonomous Dynamical System [20].
The composition operators on Lorentz–Karamata–Bochner spaces and characteri-
zation of the properties like boundedness, closedness and essential range of these
operators on the space has been discussed in [13, 14]. By using Boyd and Wong
fixed point theorem, some existence, and uniqueness theorems of solutions and iter-
ative approximation for solving these class of functional equations are established in
[2, 15, 16]. In [21, 24], author used the Lagrange multiplier method to find two kinds
of explicit ultimate bound sets and estimates the Hausdorff dimension of the novel
hyperchaotic system. An estimate through the Lyapunov function of the upper bound
of a threshold is precisely the threshold itself [17]. Using optimization method and
the comparison principle, ultimate bounds and positively invariant sets of the hyper-
chaotic Lorenz Stenflo system found in [19]. Four-dimensional ellipsoidal ultimate
bound and two-dimensional parabolic bound of Lorenz Haken system discussed in
[7]. Ultimate bound and positively invariant set for the Lorenz system and the unified
chaotic systems was studied in [6]. The discussion on ellipsoidal ultimate bound for
unified chaotic system and two dimensional bound for the Chen system, Lu system,
and unified system can be found in [5]. In [10], unification of the Lorenz and the Chen
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system using the unified system. Partial bound for the Chen system using suitable
Lyapunov function [18] was discussed.

Chaos can be defined on bounded-state behaviour that is not equilibrium solution
or a periodic solution or a quasi-periodic solution. This article is focused on analysis
of dynamic properties and possible occurrence of chaotic behaviour. In this article,
we found the Lyapunov Exponents and two types of bounds one from Lagrange
method of multiplier and another by method of optimization with the help of toolbox
in MATLAB namely fmincon solver.

2 Dynamic Finance Model

In [11, 12], author reported a dynamicmodel of finance, composed of three first-order
differential equations. Themodel describes the time-variation of three state variables:
the interest rate, x, the investment demand, y, and the price index, z. The factors that
influence changes in x mainly come from two aspects: first, contradictions from
the investment market, i.e. the surplus between investment and savings, and second,
structural adjustment from good prices. The changing rate of y is in proportion to
the rate of investment, and in proportion to an inversion with the cost of investment
and interest rates. Changes in z, on the one hand, are controlled by a contradiction
between supply and demand in commercial markets, and on the other hand, are
influenced by inflation rates. By choosing, an appropriate coordinate system and
setting appropriate dimensions for every state variable, [11, 12] offer the simplified
finance model as

ẋ = z + (y − a)x

ẏ = 1 − by − x2 (1)

ż = −x − cz

where a is the saving amount, b is the cost per investment, and c is the elasticity of
demand of commercial markets. It is obvious that all three constants a, b, and c, are
non-negative. The parameters were chosen to be

a = 3, b = 1

10
, c = 1.0 (2)

with an initial state (x0, y0, z0) = (2, 3, 2). In this case, the system has Lyapunov
Exponents:

L1 = 0.7848, L2 = 0.2260, L3 = −1.3332

It can be seen that the largest Lyapunov exponent is positive, indicating that the
system has chaotic characteristics. Two L1, L2 are positive Lyapunov exponent, and
the third one is negative. Thus, the system is chaotic. The time histories, phase



74 D. Kumar and S. Kumar

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
1.5

2

2.5

3

3.5

4

4.5

5

5.5

x

y

1.5 2 2.5 3 3.5 4 4.5 5 5.5
−1.5

−1

−0.5

0

0.5

1

1.5

y

z

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

x

z

−2
−1

0
1

2

0

2

4

6
−3

−2

−1

0

1

2

3

z
y

x

(a) (b)

(c) (d)

Fig. 1 Phase diagrams for the dynamic finance model. a Phase Portrait in x-y plane. b Phase
Portrait in y-z plane. c Phase Portrait in x-z plane. d Phase Portrait in x-y-z plane

diagrams, and the largest Lyapunov Exponent were used to identify the dynamics
of the system. The largest Lyapunov Exponent were calculated using the scheme
proposed by Wolf [22].

Therefore, the Lyapunov dimension of the new chaotic (1) is given by

DL = j + 1

|Lj+1|
j∑

i=1

Li = 2 + L1 + L2
|L3| = 2.7582 (3)

So, the chaos in this system (1) is very obvious. Thus the corresponding attractors
are shown in Fig. 1.

3 Dynamical Behaviors of the Financial Chaotic System

3.1 Symmetry and Invariance

The system is invariant under the transformation (Fig. 2)

(x(t), y(t), z(t)) → (−x(t), y(t),−z(t))
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Fig. 2 Lyapunov exponent
of the dynamic finance
model
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Thus, if (x(t), y(t), z(t)) is a solution, so is (−x(t), y(t),−z(t)). We see from
Eq. (1) that is if x(0) = 0 and z(0) = 0 thus x and z remain zero for all t

ẏ = 1 − by

which is linear in y(t). Solution is given by

y(t) = 1

b
+

(
y(0) − 1

b

)
e−bt (4)

Unlike Lorenz equations instead of z-axis, the y-axis is always a part of the stable
manifold for the equilibrium at the origin.

3.2 Dissipativity and Existence of Attractor

For the (1), it can be observed that

∇V = ∂ ẋ

∂x
+ ∂ ẏ

∂y
+ ∂ ż

∂z
= −(a + b + c) (5)

So, when (a + b + c) > 0, ∇V < 0, (1) is dissipative, with an exponential contrac-
tion rate:

dV

dt
= −(a + b + c)V (6)

That is, a volume element V0 is contracted by the flow into a volume element

V (t) = V0e
−(a+b+c)t in time t.



76 D. Kumar and S. Kumar

With our canonical values of 3 for a and 1/10 for b and 1 for c, this is

V (t) = V0e
−4.1t

This means that each volume containing the system trajectory shrinks to zero as
t → ∞ at an exponential rate, (a + b + c). Therefore, all systemorbits are ultimately
confined to a specific subset of zero volume, and the asymptotic motion settles onto
an attractor.

4 Main Result

Theorem 4.1 ([21]) All solution of system with parameters are globally bounded
for time t.

Proof 4.2 Define the Lyapunov function

V (x, y, z) = 1

2
(x2 + y2 + (z − a)2) (7)

Computing the derivative of V (x, y, z) along the trajectory of (1) gives

V̇ = xẋ + yẏ + (z − a)ż

= x(z + (y − a)x) + y(1 − by − x2) + (z − a)(−x − cz)

= −ax2 + ax − by2 + y − cz2 + caz

Hence, one may take d0 sufficiently large such that

a

(
x − 1

2

)2

+ b

(
y − 1

2b

)2

+ c(z − a)2 >
1

4b
+ a

4
+ ca2 (8)

That is equivalent to say (8) provided that (x, y, z) satisfies V (x, y, z) = d with d >

d0. Consequently, on the surface

{(x, y, z)|V (x, y, z) = d}

where d > d0, one has V̇ (x, y, z) < 0, which implies that the set

{(x, y, z)|V (x, y, z) ≤ d}

is a trapping region, so that the solutions of (1) are globally bounded. In particular,
when the system parameters are specified, it is easy to obtain Max V . For example,
when a = 3, b = 0.1, c = 1.0.
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4.1 Langrange Multiplier Method

Consider the following problem, which is constructed using Lyapunov function
theory

Max V (x, y, z) = 1

2
(x2 + y2 + (z − a)2) (9)

Subject to constraint:

� : 3
(
x − 1

2

)2

+ 1

10
(y − 5)2 + (z − 3)2 = 11

4
(10)

In order to solve the above maximization problem using Lagrange multiplier, we let

L = 1

2
(x2 + y2 + (z − 3)2) + μ

(

3

(
x − 1

2

)2

+ 1

10
(y − 5)2 + (z − 3)2 − 11

4

)

(11)

and

Lx = x + 6μ

(
x − 1

2

)
= 0 (12)

Ly = y + μ

5
(y − 5) = 0 (13)

Lz = (z − 3) + 2μ(z − 3) = 0 (14)

Lμ = 3

(
x − 1

2

)2

+ 1

10
(y − 5)2 + (z − 3)2 − 11

4
= 0 (15)

Here, we will discuss for μ = −9.7675:

x = 0.5086, y = 10.2438, z = 2.9999 (16)

Max V = 52.5971.
Therefore, the estimate of ultimate bound for (1) is

� =
{
(x, y, z)|1

2
(x2 + y2 + (z − 3)2) ≤ 52.5971

}
(17)

is called positively invariant set for a = 3, b = 0.1, c = 1 and (x0, y0, z0) = (2, 3, 2).
Based on these parameters, maximization problem givesRmax = 52.5971. Therefore,
the corresponding ultimate bound of system is achieved.
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4.2 Optimization Method Using Matrix Analysis

Theorem 4.3 ([20]) Suppose that there exits a real symmetric matrix P > 0 and a
vector μ ∈ R

3 such that

Q = ATP + PA + 2(BT
1Pu

T ,BT
2Pu

T , . . . ,BT
n Pu

T )T < 0

and
∑

xiXT (BT
i P + PBi)X = 0 for any X = (x1, x2, . . . , xn)T ∈ R

3 and u =
(u1, u2, . . . , un) = 2μTP then (1) is bounded and has the following ultimate bound
set also called positively invariant set:

� = {
X ∈ R

3|(X + μ)TP(X + μ) ≤ Rmax
}

(18)

where Rmax is a real number to be determined by

Max (X + μ)TP(X + μ) (19)

subject to

XTQX + 2(μTPA + CTP)X + 2CTPμ = 0. (20)

A =
⎛

⎝
−a 0 1
0 −b 0

−1 0 −c

⎞

⎠ ;X =
⎛

⎝
x1
x2
x3

⎞

⎠ ;B1 =
⎛

⎝
0 1/2 0

−1 0 0
0 0 0

⎞

⎠ ;B2 =
⎛

⎝
1/2 0 0
0 0 0
0 0 0

⎞

⎠ ;

B3 =
⎛

⎝
0 0 0
0 0 0
0 0 0

⎞

⎠ ;C =
⎛

⎝
0
1
0

⎞

⎠ ;

P =
⎛

⎝
p11 0 0
0 p11 0
0 0 p33

⎞

⎠ ;μ =
⎛

⎝
0

−cp11
0

⎞

⎠ ;Q =

⎛

⎜⎜
⎝

−2ap11 − 2cp211 0 p11 − p33
0 −2bp11 0

p11 − p33 0 −2cp33

⎞

⎟⎟
⎠

Theorem 4.4 Suppose that a > 0, b > 0, c > 0, p11 > 0, p33 > 0. Denote

� = {
X ∈ R

3|p11x21 + p11 (−a + x2)
2 + p33x

2
3 ≤ Rmax

}
(21)
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Then � is the ultimate bound of system (1), where Rmax can be derived from the
following optimization problem (Fig.3 and Table1):

Maximize : p11x21 + p11 (cp11 + x2)
2 + p33x

2
3

subject to constraint:

(−2ap11 − 2cp211)x1 + (p11 − p33)x3 −2bp11x2 (p11 − p33)x1 − 2cp33x3

−4
−2

0
2

4

0

2

4
6

−4

−2

0

2

4

6

x(t)
y(t)

z(
t)

−10
−5

0
5

10

−10
−5

0
5

10
−5

0

5

10

15

y(t)z(t)

x(
t)

Fig. 3 The bound of the chaotic attractor of system with a = 3, b = 0.1 and c = 1, p11 = 1,
p33 = 2

Table 1 Simulation results using MATLAB

Parameters values Initial condition (x0, y0, z0) Rmax

p11 = 1, p33 = 2 (2, 3, 2) 281560.49

p11 = 0.1, p33 = 0.2 (2, 3, 2) 129247.49

p11 = 0.001, p33 = 0.001 (2, 3, 2) 56796

p11 = 0.001, p33 = 0.002 (2, 3, 2) 79519.34

p11 = 1000, p33 = 2 (2, 3, 2) 1.2E48

p11 = 1, p33 = 2000 (2, 3, 2) 1.2E12

p11 = 0.001, p33 = 0.001 (2, 3, 2) 56796

p11 = 1, p33 = 2 (0, 0, 0) 165775.15

p11 = 1, p33 = 1 (2, 3, 2) 639152.0
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5 Conclusion

Research on the ultimate bound for dynamics system is very important in both con-
trol theory and synchronization. It is very difficult to estimate the ultimate bounds of
some typical chaotic systems. Even for the classical Chen system, there does not exist
any effective bound estimation method reported over the last decade. In this paper,
we have investigated the ultimate bound and positively invariant set for a financial
dynamic model. To the best of our knowledge, we discussed first time Lyapunov
Exponent and it is proved that positive value of Lyapunov Exponent shows chaotic
nature of the dynamic finance model. Further, using MATLAB bounds are numeri-
cally calculated and observed for different parameters. In this paper, we have shown
the ellipsoidal boundedness of the financial dynamic model. Numerical simulations
show the effectiveness and advantage of our methods.
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Basic Results on Crisp Boolean Petri Nets

Gajendra Pratap Singh and Sangita Kansal

Abstract The concept of Petri net as a discrete event-driven dynamical system was
invented by Carl Adam Petri in his doctoral thesis ‘Communication with Automata’
in 1962. Petri nets are one of the best defined approach to modeling of discrete and
concurrent systems. The dynamics of Petri nets represent the long-term behavior
of the modeled system. Petri nets combine mathematical concepts with a pictorial
representation of the dynamical behavior of the modeled systems. A Petri net is a
bipartite directed graph consisting of two type of nodes, namely, place nodes and
transition nodes. Directed arcs connect places to transitions and transitions to places
to represent flow relation. In this paper, we present some basic results on 1-safe
Petri net that generates every binary n-vector exactly once as marking vectors in its
reachability tree, known as crisp Boolean Petri net. These results can be used for
characterizing crisp Boolean Petri nets.

Keywords 1-safe Petri net · Binary n-vectors · Hamming distance · Reachability
tree · Digraphs

1 Introduction

Petri nets are the graphical tool invented by Carl Adam Petri [8]. They are very reli-
able tool to model and study the structure of those discrete event-driven systems that
are complex and tricky in nature. Petri nets are frequently used in many fields such
as manufacturing processes, logistics, supply chain management, inventory, mar-
keting, optimization, telecommunication systems, traffic systems, biological system

G.P. Singh (B)
School of Computational and Integrative Sciences, Jawaharlal Nehru University,
New Mehrauli Road, New Delhi 110067, India
e-mail: gajendraresearch@gmail.com

S. Kansal
Department of Applied Mathematics, Delhi Technological University,
New Delhi 110042, Delhi, India
e-mail: sangita_kansal15@rediffmail.com

© Springer Science+Business Media Singapore 2016
V.K. Singh et al. (eds.), Modern Mathematical Methods and High Performance
Computing in Science and Technology, Springer Proceedings
in Mathematics & Statistics 171, DOI 10.1007/978-981-10-1454-3_7

83



84 G.P. Singh and S. Kansal

[2, 3], etc. Of all existing models, Petri nets and their extensions are of undeniable
fundamental interest because they define easy graphical support for the representa-
tion and the understanding of basic mechanism and behaviors. It has changed the
outlook of researchers of mathematics and computer science due to its applicability
into real-life modeling problems related to engineering, computer science, technol-
ogy, etc. The structure of Petri net is a bipartite directed graph. As a graphical tool,
Petri net can be used for planning and designing a system with given objectives more
practically effective than flowchart and block design diagrams. As a mathematical
tool, it enables one to set up state equations, algebraic equations, and other math-
ematical models which govern the behavior of discrete dynamical systems. Kansal
et al. [6] proposed a 1-safe star Petri net Sn, with |P| = n and |T | = n+ 1, having a
central transition. This Petri net Sn generates all the binary n-vectors, as its marking
vectors. We call such Petri nets as Boolean Petri nets [5]. In this paper, some basic
results on crisp Boolean Petri nets have been presented. By a crisp Boolean Petri net,
we mean a 1-safe Petri net which generates all the binary n-vectors as its marking
vectors exactly once [7]. These marking vectors containing binary bits ‘0’ and ‘1’
are very much used in the design of generalized cyclic multiswitches such as those
used to control automatic washing machine [1] and many interconnection networks
with many alternatives and well-known properties such as regularity, symmetry, star
networks, etc.

2 Preliminaries

For standard terminology and notation on Petri nets, we refer the reader to
Peterson [9].

A Petri net is a 5-tuple C = (P,T , I−, I+, μ0), where
(a) P is a nonempty set of ‘places’,
(b) T is a nonempty set of ‘transitions’,
(c) P ∩ T = ∅,
(d) I−, I+ : P×T −→ N , where N is the set of nonnegative integers, are called the
negative and the positive ‘incidence functions’ (or, ‘flow functions’) respectively,
(e) ∀ p ∈ P, ∃t ∈ T : I−(p, t) �= 0 or I+(p, t) �= 0 and

∀t ∈ T , ∃p ∈ P : I−(p, t) �= 0 or I+(p, t) �= 0,
(f) μ0 : P → N is the initial marking.

In fact, I−(p, t) and I+(p, t) represent the number of arcs from p to t and t to p
respectively. I−, I+ and μ0 can be viewed as matrices of size |P|× |T |, |P|× |T | and
|P| × 1, respectively.

A marking μ is a mapping μ : P −→ N . A marking μ can hence be represented
as a vector μ ∈ Nn, n = |P|, such that the ith component of μ is the value μ(pi).

A transition t ∈ T is said to be enabled atμ if and only if I−(p, t) ≤ μ(p), ∀p ∈ P.
An enabled transition may or may not ‘fire’ (depending on whether or not the event
actually takes place). After firing at μ, the new marking μ′ is given by the rule

μ′(p) = μ(p) − I−(p, t) + I+(p, t), for all p ∈ P.
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We say that t fires atμ to yieldμ′ (or, that t firesμ toμ′), and we writeμ
t−→ μ′,

whence μ′ is said to be directly reachable from μ. Hence, it is clear, what is meant
by a sequence like

μ0 t1−→ μ1 t2−→ μ2 t3−→ μ3 . . .
tk−→ μk,

which simply represents the fact that the transitions t1, t2, t3, . . . , tk have been
successively fired to transform the marking μ0 into the marking μk . The whole
of this sequence of transformations is also written in short, μ0 σ−→ μk , where
σ = t1, t2, t3, . . . , tk .

A marking μ is said to be reachable from μ0, if there exists a sequence of transi-
tions which can be successively fired to obtain μ from μ0. The set of all markings of
a Petri net C reachable from a given marking μ is denoted byM(C, μ) and, together

with the arcs of the form μi tr−→ μj, represents what in standard terminology called
the reachability graph R(C, μ) of the Petri net C. If the reachability graph has no
cycle then it is called reachability tree of the Petri net C.

A place in a Petri net is safe if the number of tokens in that place never exceeds
one. A Petri net is safe if all its places are safe.

The preset of a transition t is the set of all input places to t, i.e., •t = {p ∈ P :
I−(p, t) > 0}. The postset of t is the set of all output places from t, i.e., t• = {p ∈
P : I+(p, t) > 0}. Similarly, p′s preset and postset are •p = {t ∈ T : I+(p, t) > 0}
and p• = {t ∈ T : I−(p, t) > 0}, respectively.

A transition without any input place is called a source transition, i.e., •t = ∅.
A source transition is unconditionally enabled that represents an event or operation
which can occur in every step. A transition without any output place is called a sink
transition, i.e., t• = ∅. The firing of a sink transition consumes tokens but does not
generate new token in the net.

LetC = (P,T , I−, I+, μ0) be a Petri net with |P| = n and |T | = m, the incidence
matrix I = [aij] is an n×mmatrix of integers, |P| = n and |T | = m and its entries are
given by aij = a+

ij − a−
ij where a

+
ij = I+(pi, tj) is the number of arcs from transition

tj to its output place pi, known as positive incidence matrix and a−
ij = I−(pi, tj) is the

number of arcs from place pi to its output transition tj, known as negative incidence
matrix. In other words, I = I+ − I−.

The Hamming distance between two bit-strings u = u1, u2, . . . , un, v = v1,

v2, . . . , vn∈ {0, 1}n of length n is the number of bit positions in which u and v

differ: dnH(u, v) = |{i ∈ {1, 2, . . . , n} : ui �= vi}|. The Hamming distance between
1011101 and 1001001 is two.

Let C = (P,T , I−, I+, μ0) be a Petri net and Z be a subnet of C. Then Z is called
a strong chain cycle (SCC) of C or C is said to have a strong chain cycle (SCC) Z ,
if |•t| = 2, |p•| = 2 and |t•| = 1 ∀ p, t ∈ Z [10]. If an SCC Z contains all the places
of C then C is said to have a strong chain cycle covering all the places as shown in
the following Fig. 1. Note that an SCC containing k places, where k ≤ n = |P| will
always have k self-loops.
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Fig. 1 Petri net having an
SCC covering all the places t1

1
p

n
p

2
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tn
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3 Results on Crisp Boolean Petri Nets

In this section, some results on crisp Boolean Petri net have been discussed.

Lemma 1 In a crisp Boolean Petri net C = (P,T , I−, I+, μ0), |P| = n, there exists
exactly one sink transition.

Proof Let C = (P,T , I−, I+, μ0) be a crisp Boolean Petri net, i.e., a 1-safe Petri
net that generates every binary n-vector exactly once. We shall prove this result by
contradiction. SupposeC has two sink transitions, say ti and tj. Therefore •ti �= ∅ and
•tj �= ∅. Since C is Boolean, μ0(p) = 1, ∀ p ∈ P ([7]). Therefore, all the transitions
are enabled and fire. Now three cases arise.

Case 1: |•ti| = |•tj| = n. Then both the transitions ti and tj after firing produce
zero marking vector, i.e., (0, 0, 0, . . . , 0). This leads to the contradiction that C
is crisp Boolean.

Case 2: |•ti| = |•tj| = 1. This case has two subcases;

subcase 1: •ti = •tj = {pk}, after firing of ti and tj, same binary n-vector
will be generated which has 0 at kth place and 1 at other places, again a
contradiction.

subcase 2: •ti = {pi} and •tj = {pj},∀ i �= j. If ti fires, it generates themarking
vector (1, 1, . . . 0, 1 . . . , 1), i.e., 0 at ith place. Now at this marking vector tj
is enabled and after firing it generates (1, 1, . . . , 0, 1, . . . , 0, . . . , 1), i.e., 0 at
ith and jth places and 1 at other places. The same vector will be generated if tj
fires first at μ0 and then ti, again a contradiction.

Case 3: 1 < |•ti| < n and 1 < |•tj| < n. Let |•ti| = m and |•tj| = r, 1 < m; r < n.
After firing of ti and tj at μ0, we get the marking vectors of Hamming distance m
and r from μ0, respectively, at the first stage only. So not all the binary n-vector
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of Hamming distance less than m and r will be generated after the first stage of
firing (Remark 3.4.2 [10]), which is a contradiction that C is crisp Boolean.

Hence C cannot have more than one sink transition.

Lemma 2 If t be the only sink transition in a crisp Boolean Petri net C =
(P,T , I−, I+, μ0), |P| = n, then |•t|=1 or n.
Proof Let |•t| = m where 1 < m < n. Let •t = {p1, p2, p3, . . . , pm}. Since μ0(p) =
1, ∀p ∈ P, t is enabled and fires. After firing, it generates the marking vector having
0 at m places and 1 at other places. That means, we cannot get the zero marking
vector. This leads to the contradiction to the assumption.

Lemma 3 If C = (P,T , I−, I+, μ0), |P|=n > 2 be a crisp Boolean Petri net, then
•ti �= •tj and t•i �= t•j , ∀ i �= j.

Proof Suppose C = (P,T , I−, I+, μ0), |P|=n > 2 be a crisp Boolean Petri net and
let •ti = •tj and t•i = t•j , ∀ i �= j. In this case, repetition of binary n-vectors occur,
contradiction to the fact that C is crisp Boolean. Hence, •ti �= •tj and t•i �= t•j ,∀ i �= j.

4 Conclusions and Scope

In this paper, we have discussed some basic results on crisp Boolean Petri net. It
has several properties that makes it attractive, e.g., the situation where the decision
can be made at once. Further, one can think about to develop an algorithm for the
embedding of a 1-safe Petri net into a crisp Boolean Petri net. Embedding [11, 12] is
very useful concept in computer science to embed any subsystem into the connected
networks. At presently, a computationally good characterization of crisp Boolean
Petri net is still open.
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Galina Filipuk

Abstract In this paper some computational aspects of studying various properties of
multiple orthogonal polynomials are presented. The results were obtained using the
symbolic and numerical computations in Mathematica (www.wolfram.com). This
paper is mainly based on papers Filipuk et al., J Phys A: Math Theor 46:205–204,
2013, [1], Van Assche et al., J Approx Theory 190:1–25, 2015, [2], Zhang and
Filipuk, Symmetry Integr GeomMethods Appl 10:103, 2014, [3] (joint with W. Van
Assche and L. Zhang). We also perform the Painlevé analysis of certain nonlinear
differential equation related to multiple Hermite polynomials and show the existence
of two types of polar expansions, which might be useful to obtain relations for zeros
of these polynomials.
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1 Introduction

The theory of orthogonal polynomials began in the nineteenth century in the papers
of Hermite, Laguerre, Chebyshev, Jacobi, Bessel, and others. Nowadays the theory
of orthogonal polynomials is a vivid, dynamic and an important part of the mod-
ern theory of special functions and mathematical analysis. Orthogonal polynomials
also appear in quantum mechanics, number theory, approximation theory, stochastic
processes, and other areas of mathematics and mathematical physics.
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Let μ be a positive measure on the real line for which all the moments μn =∫
xndμ(x) are finite. It is well known (see, for example, [4–6]) that there exists a

sequence of orthogonal polynomials (pn)n∈IN (with a positive leading coefficient)
such that ∫

pn(x)pk(x) dμ(x) = δn,k, (1)

where δn,k is the Kronecker delta. These orthonormal polynomials satisfy the so-
called three-term recurrence relation:

xpn(x) = an+1 pn+1(x) + bn pn(x) + an pn−1(x), (2)

where p−1 = 0 and the recurrence coefficients are given by the following integrals:

an =
∫

xpn(x)pn−1(x) dμ(x), bn =
∫

xp2n(x) dμ(x). (3)

Monic polynomials pn(x) = xn + ... satisfy a similar three-term recurrence relation:

xpn(x) = pn+1(x) + bn pn(x) + a2n pn−1(x).

There exist various generalizations of orthogonal polynomials, for instance, mul-
tiple orthogonal polynomials. The topics connected to multiple orthogonal polyno-
mials have become popular in recent years. This field of research is relatively new
and has many open problems. Multiple orthogonal polynomials originated from the
Hermite-Padé approximation in the context of irrationality and transcendence proofs
in number theory (see, for instance, [5, 7, 8]). They also play a significant role in
other areas of modernmathematics, for instance, in randommatrix theory and certain
models of mathematical physics [9].

2 Multiple Orthogonal Polynomials

Multiple orthogonal polynomials are polynomials of one variable orthogonal with
respect to r differentmeasuresμ1,μ2, . . . ,μr , where r is a natural number and r > 1.
Let �n = (n1, n2, . . . , nr ) ∈ INr be a multi-index of size |�n| = n1 + n2 + . . . + nr ,
and suppose that μ1,μ2, . . . ,μr are positive measures on the real line which are
absolutely continuous with respect to the Lebesgue measure μ.

Multiple orthogonal polynomials of type I are given by a vector (A�n,1, . . . , A�n,r ),
where A�n, j are polynomials of degree ≤ n j − 1, for which

∫
xk

r∑

j=1

A�n, j (x)w j (x) dμ(x) = 0, k = 0, 1, . . . , |�n| − 2, (4)
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wherew j is theRadon–Nikodymderivativedμ j/dμ, and the followingnormalization
condition holds: ∫

x |�n|−1
r∑

j=1

A�n, j (x)w j (x) dμ(x) = 1. (5)

Multiple orthogonal polynomials of type II are monic polynomials P�n(x) = x |�n| +
· · · , of degree |�n|, for which

∫
P�n(x)xk dμ1(x) = 0, k = 0, 1, . . . , n1 − 1,

... (6)∫
P�n(x)xk dμr (x) = 0, k = 0, 1, . . . , nr − 1.

The type I and II multiple orthogonal polynomials satisfy certain biorthogonality
condition [5]. Multiple orthogonal polynomials of type I are much less studied than
the polynomials of type II.

For instance, let r = 2, �n = (n,m) and c1 �= c2. The multiple Hermite polynomi-
als of type II are defined by

∫ ∞

−∞
xk Hn,m(x)e−x2+c1x dx = 0, k = 0, 1, . . . , n − 1,

∫ ∞

−∞
xk Hn,m(x)e−x2+c2x dx = 0, k = 0, 1, . . . ,m − 1.

There exists an explicit formula for multiple Hermite polynomials using the usual
Hermite polynomials which is useful to study them numerically.

3 Recurrence Relations for Multiple Orthogonal
Polynomials

There exist recurrence relations similar to (2) for multiple orthogonal polynomials
[10]. However, they are more complicated then in the case r = 1. For instance, in
case r = 2 the recurrence relations are given by

x Pn,m(x) = Pn+1,m(x) + cn,m Pn,m(x) + an,m Pn−1,m(x) + bn,m Pn,m−1(x),

x Pn,m(x) = Pn,m+1(x) + dn,m Pn,m(x) + an,m Pn−1,m(x) + bn,m Pn,m−1(x)

with a0,m = 0 and bn,0 = 0 for all n,m ≥ 0. For general r > 1 one has the following
nearest-neighbor recurrence relations:
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x P�n(x) = P�n+�e1(x) + b�n,1P�n(x) + ∑r
j=1 a�n, j P�n−�e j (x),

...

x P�n(x) = P�n+�er (x) + b�n,r P�n(x) + ∑r
j=1 a�n, j P�n−�e j (x),

where �e j = (0, . . . , 0, 1, 0, . . . , 0) is the j th standard unit vector with 1 on the j th
entry and (a�n,1, . . . , a�n,r ), (b�n,1, . . . , b�n,r ) are the recurrence coefficients. For r = 2
the following notation for the recurrence coefficients is used:

a�n,1 = an,m, a�n,2 = bn,m, b�n,1 = cn,m, b�n,2 = dn,m .

4 Linear Ordinary Differential Equations for Multiple
Orthogonal Polynomials

Paper [1] is devoted to the derivation of differential equations for multiple orthogonal
polynomials (of the first and second type). The ladder operators are found formultiple
orthogonal polynomials ([1, Theorems 2.1 and 2.2]) by using the Riemann–Hilbert
problem and the Christoffel–Darboux formula. The ladder operators allow one to
factorize the differential equations formultiple orthogonal polynomialswith very few
assumptions on the weight function. Several cases of weights of multiple orthogonal
polynomials are considered (Hermite, Laguerre of the first and second kinds and
with the cubic exponential function). Differential equations are computed for these
weights to illustrate the general method. To give an example, the following theorem
is proved in this paper.

Theorem 1 ([1, Theorem 2.1]) Let μ1, . . . ,μr be absolutely continuous measures
with the weights w1, . . . , wr and let the weights wi vanish at the endpoints of the
support of the measure μi . Suppose that all the indices �n = (n1, . . . , nr ) ∈ INr are
normal (see [1, p. 3] for the definition) and the functions

{w1, xw1, . . . , x
n1−1w1, w2, xw2, . . . , x

n2−1w2, . . . , wr , xwr , . . . , x
nr−1wr }

are linearly independent. Then the type II multiple orthogonal polynomials satisfy
the following equations:

P ′
�n(x) = P�n(x)

∫
P�n(t)

r∑

k=1

A�n,k (t)
v′
k (t) − v′

k (x)

x − t
wk (t) dt

−
r∑

j=1

a�n, j P�n−�e j (x)
∫

P�n(t)
r∑

k=1

A�n+�e j ,k (t)
v′
k (t) − v′

k (x)

x − t
wk (t) dt,
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P ′
�n−�ei (x) = P�n(x)

∫
P�n−�ei (t)

r∑

k=1

A�n,k (t)
v′
k (t) − v′

k (x)

x − t
wk (t) dt

−
r∑

j=1

⎛

⎝a�n, j

∫
P�n−�ei (t)

r∑

k=1

A�n+�e j ,k (t)
v′
k (t) − v′

k (x)

x − t
wk (t) dt − v′

i (x)δi, j

⎞

⎠ P�n−�e j (x),

where vk(x) := − lnwk(x), and a�n, j are the recurrence coefficients for multiple
orthogonal polynomials.

A similar result [1, Theorem 2.2] is proved for multiple orthogonal polynomials of
type I. In case r = 1 (ordinary orthogonal polynomials) this result coincides with
the results in [11].

For multiple Hermite polynomials Hn,m the recurrence coefficients are known
explicitly:

2an,m = n, 2bn,m = m, 2cn,m = c1, 2dn,m = c2.

The following lowering and raising equations for Hn,m hold:

H ′
n,m(x) = nHn−1,m(x) + mHn,m−1(x),

H ′
n−1,m(x) = −2Hn,m(x) + (2x − c1)Hn−1,m(x),

H ′
n,m−1(x) = −2Hn,m(x) + (2x − c2)Hn,m−1(x).

Ladder operators allow one to find linear equations for multiple orthogonal poly-
nomials ([1, Sect. 2.1]). For instance, the type II multiple orthogonal polynomials
Hn,m satisfy the following linear differential equation of order 3:

p′′′(x) + (c1 + c2 − 4x)p′′(x) + (
c1(c2 − 2x) + 2(m + n − 1 − c2x + 2x2)

)
p′(x)

+ 2(c1m + c2n − 2(m + n)x)p(x) = 0. (7)

Similar results hold for multiple orthogonal polynomials of the first type.
We can actually search for the multiple Hermite polynomials symbolically in

Mathematica. The following code produces the type IImultiple Hermite polynomials
from the differential equation:

f[m_, n_, p_] := D[p,{x, 3}] + (c1 + c2 - 4 x) D[p,{x, 2}]
+(c1 (c2- 2 x) + 2 (m + n - 1 - c2 x + 2 x2)) D[p,x]
+ 2 (c1 m + c2 n - 2 (m + n) x) p;
g[m_, n_] := Module[{k = m + n}, ((Sum[a[i] xi , {i, 0, k}] //.
Solve[(# == 0) & /@ (CoefficientList[ f[m, n,
Sum[a[i] xi , {i, 0, k}] /. a[k] -> 1], x]),
Table[a[i], {i, 0, k - 1}]]) /. a[k] -> 1)[[1]]]

Similarly, for multiple Laguerre polynomials of the first kind Ln,m defined by the
orthogonality conditions
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∫ ∞

0
xk Ln,m(x)xα1e−x dx = 0, k = 0, 1, . . . , n − 1,

∫ ∞

0
xk Ln,m(x)xα2e−x dx = 0, k = 0, 1, . . . ,m − 1,

where α1,α2 > 0 and α1 − α2 /∈ ZZ, the ladder operators have the following form:

xL ′
n,m(x) = (n + m)Ln,m(x) +

(
n(n + α1)(n + α1 − α2)

n − m + α1 − α2

)
Ln−1,m(x)

+
(
m(m + α2)(m + α2 − α1)

m − n + α2 − α1

)
Ln,m−1(x),

xL ′
n−1,m(x) = −Ln,m(x) − (n + α1 − x) Ln−1,m(x),

xL ′
n,m−1(x) = −Ln,m(x) − (m + α2 − x) Ln,m−1(x).

Furthermore, the third order differential equation satisfied by Ln,m is given by

x2 p′′′(x) + (−2x2 + (α1 + α2 + 3)x
)
p′′(x)

+ (
x2 − x(α1 + α2 − n − m + 3) + (α1 + 1)(α2 + 1)

)
p′(x)

− (x(n + m) − (n + m + nm + α1m + α2n)) p(x) = 0. (8)

5 Wronskians with Multiple Orthogonal Polynomials

Karlin and Szegő developed an interesting and general theory regarding the deter-
minants whose entries are orthogonal polynomials. Let

Qn(x) = kn(−x)n + . . . , kn > 0, n ∈ IN = {0, 1, 2, 3, . . .}

be a sequence of polynomials. The Wronskian of these polynomials is defined by

W (n, l; x) := W (Qn(x), Qn+1(x), . . . , Qn+l−1(x))

= det

⎛

⎜⎜⎜⎜⎜
⎝

Qn(x) Qn+1(x) · · · Qn+l−1(x)
Q′

n(x) Q′
n+1(x) · · · Q′

n+l−1(x)
...

...
...

...

Q(l−1)
n (x) Q(l−1)

n+1 (x) · · · Q(l−1)
n+l−1(x)

⎞

⎟⎟⎟⎟⎟
⎠

.
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It is known that, for l even,

(−1)l/2W (n, l; x) > 0, x ∈ IR,

i.e., theWronskian keeps a constant sign for all real x ; if l is odd, thenW (n, l; x) has
exactly n simple real zeros and the zeros of W (n, l; x) and W (n + 1, l; x) strictly
interlace.

Another important class of determinants is the Hankel determinant

T (n, l; x) := T (Qn(x), Qn+1(x), . . . , Qn+l−1(x))

= det

⎛

⎜⎜
⎜⎜⎜
⎝

Qn(x) Qn+1(x) · · · Qn+l−1(x)
Qn+1(x) Qn+2(x) · · · Qn+l(x)

...
...

...
...

Qn+l−1(x) Qn+l(x) · · · Qn+2l−2(x)

⎞

⎟⎟
⎟⎟⎟
⎠

,

which is called the Turánian. Karlin and Szegő showed that, if l is even, T (n, l; x)
has the sign (−1)l/2 on a certain interval I for specific three classical systems of
orthogonal polynomials. Note that, if l = 2, then one has

T (n, 2; x) = Q2
n+1(x) − Qn(x)Qn+2(x) > 0.

This inequality is called the Turán inequality, whichwas first proved for the Legendre
polynomials Pn(x) = P (1/2)

n (x).
It is known that the Turán type inequalities are true for the majority of classical

orthogonal polynomials. There have been numerous studies and generalizations of
the classical results. Also Turán type inequalities have recently been found for many
special functions and their q-analogues (numerous papers by A. Baricz et al.).

In paper [3] the Wronskians with the multiple orthogonal polynomials are stud-
ied. It is proved that depending on the size of the determinant some determinants
have constant sign and others may have zeros ([3, Theorems 1.1–1.3]). These results
generalize similar statements of Karlin and Szegő for ordinary orthogonal polyno-
mials. The Túran type inequalities are proved for multiple Hermite and Laguerre
polynomials ([3, Theorems 4.1 and 4.2]).

To give more details from [3], we suppose thatw1, w2, . . . , wr are r weights with
supports on the real axis. Define �n0, �n1, . . . , �nl−1 to be a path from �n to an arbitrary
multi-index �nl−1, where in each step the multi-index �nk , for k = 0, . . . , l − 1, is
increased by one at exactly one direction. For instance, for r = 2 we have in each
step either (n,m) → (n + 1,m) or (n,m) → (n,m + 1). For every such kind of
fixed path, we define the associated Wronskian by
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W (�n, l; x) := W
(
P�n0(x), P�n1(x), . . . , P�nl−1(x)

)

= det

⎛

⎜⎜⎜⎜⎜
⎝

P�n0(x) P�n1(x) · · · P�nl−1(x)
P ′

�n0(x) P ′
�n1(x) · · · P ′

�nl−1
(x)

...
...

...
...

P (l−1)
�n0 (x) P (l−1)

�n1 (x) · · · P (l−1)
�nl−1

(x)

⎞

⎟⎟⎟⎟⎟
⎠

,

where P�n is the type II multiple orthogonal polynomial. Clearly, W (�n, l; x) is a
polynomial in x depending on the parameters �n, l and the path starting from �n.

It is proved in [3] that if l is even, then

W (�n, l; x) > 0, x ∈ IR.

If l is odd, then for each fixed multi-index �n the polynomialsW (�n, l; x) have exactly
|�n| simple zeros on the real axis. Furthermore, given two paths with l multi-indices,
if the last l − 1multi-indices of one path coincide with the first l − 1multi-indices of
another path, then the real zeros of two associated Wronskians strictly interlace [3].

The Turán type inequalities for multiple Hermite polynomials are given by

H�n+�ek (x)H�n+�e j (x) − H�n(x)H�n+�ek+�e j (x) > 0, x ∈ IR,

for j, k = 1, . . . , r , where �ek = (0, . . . , 0, 1, 0, . . . , 0) denotes the kth standard unit
vector with 1 on the kth entry. In particular, by taking j = k, we have

H 2
�n+�ek (x) − H�n(x)H�n+2�ek (x) > 0, x ∈ IR.

Multiple Laguerre polynomials of the first kind for general r are defined by

∫ ∞

0
xk L �α

�n (x)x
α j e−x dx = 0, k = 0, 1, . . . , n j − 1,

for j = 1, . . . , r , where α j > −1 and αi − α j /∈ ZZ whenever i �= j . As in the case
ofmultipleHermite polynomials, there also exists an explicit formula for themultiple
Laguerre polynomials of the first kind.We have the followingTurán type inequalities:

L �α
�n+�ek (x)L

�α−�e j
�n+�e j (x) − L �α

�n (x)L
�α−�e j
�n+�e j+�ek (x) > 0, x > 0,

for �α > �0 and j, k = 1, . . . , r .
We can check the validity of the Turán type inequalities by using the function

Reduce inMathematica:
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h[m_, n_] := g[m + 1, n]2- g[m, n] g[m + 2, n] // Together

Reduce[h[3, 2] > 0]

The zero distribution on the complex plane of multiple orthogonal polynomials
and their Wronskians can be studied numerically (using the program Mathematica)
(see [3] for details) and it is shown that the zero distribution has a regular structure.

6 Multiple Orthogonal Polynomials Associated
with an Exponential Cubic Weight

In paper [2] certain multiple orthogonal polynomials (and their properties), defined
on some curves in the complex plane with the cubic exponential weight function, are
studied ([2, Sect. 1.2]). The Rodrigues formula is found ([2, Sect. 1.2]); it is proved
that the recurrence coefficients can be expressed in terms of the solutions of the
discrete Painlevé equation ([2, Proposition 1.1, Theorem 1.3]); the ratio asymptot-
ics of the polynomials is given ([2, Theorem 4.2]), asymptotics of the recurrence
coefficients is studied ([2, Proposition 3.1]) and the zero distribution on the com-
plex plane is presented (numerical computations are given in the computer program
Mathematica).

To summarize the construction of multiple orthogonal polynomials associated
with an exponential cubic weight function, we consider the three rays

Γk = {z ∈ C : arg z = ωk}, ω = e2πi/3, k = 0, 1, 2,

where the orientations are all taken from left to right.
We shall denote by p(1)

n the monic orthogonal polynomials satisfying

∫

Γ

pn(x)x
ke−x3dx = 0, k = 0, 1, . . . , n − 1, (9)

with Γ = Γ0 ∪ Γ1 and recurrence coefficients β(1)
n and (α(1)

n )2. In a similar manner,
we set p(2)

n to be the polynomials satisfying (9) withΓ = Γ0 ∪ Γ2, and denote by β(2)
n

and (α(2)
n )2 the associated recurrence coefficients. The three-term recurrence relation

is given by
xpn(x) = pn+1(x) + βn pn(x) + α2

n pn−1(x),

where

βn =
∫
Γ
xp2n(x)e

−x3dx
∫
Γ
p2n(x)e

−x3dx
, α2

n =
∫
Γ
xpn(x)pn−1(x)e−x3dx
∫
Γ
p2n−1(x)e

−x3dx
,

and the initial condition is taken to beα2
0 p−1 = 0. It can be shown (for instance, using

ladder operators) that the recurrence coefficientsβn andα2
n satisfy the following string

equations:
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α2
n+1 + β2

n + α2
n = 0, 3α2

n(βn−1 + βn) = n.

One can determine (β(1),(2)
n ,

(
α2
n

)(1),(2)
) recursively from the string equations with

initial condition (
Γ (2/3)
Γ (1/3)e

πi/3, 0) and (
Γ (2/3)
Γ (1/3)e

−πi/3, 0) respectively. Actually, one can
prove that

β(1)
n = bne

πi/3, (α(1)
n )2 = ane

−πi/3, β(2)
n = bne

−πi/3, (α(2)
n )2 = ane

πi/3,

where
an + an+1 = b2n, 3an+1(bn + bn+1) = n + 1.

For (k, l) ∈ IN2 one can define the multiple orthogonal polynomials Pk,l of degree
k + l which satisfy the orthogonality conditions

∫

Γ0∪Γ1

xi Pk,l(x)e
−x3dx = 0, i = 0, 1, . . . , k − 1,

∫

Γ0∪Γ2

xi Pk,l(x)e
−x3dx = 0, i = 0, 1, . . . , l − 1.

If one of k and l is equal to zero, then Pk,l reduce to the usual orthogonal polynomials
with respect to the exponential cubic weight e−x3 , i.e.,

Pk,0(x) = p(1)
k (x), P0,k(x) = p(2)

k (x).

It can be shown that the following Rodrigues formula holds:

Pn,n+m(x) = (−1)n

3n ex
3 dn

dxn

(
e−x3 P0,m(x)

)
,

Pn+m,n(x) = (−1)n

3n ex
3 dn

dxn

(
e−x3 Pm,0(x)

)
.

The recurrence coefficients of multiple orthogonal polynomials defined in such a
way are also connected to the string equations.

7 The Painlevé Analysis of the Differential Equation
Related to Multiple Hermite Polynomials

In [12] a method to find relations between zeros of orthogonal polynomials using
a differential equation is presented. In short, given a differential equation, e.g.,
y′′(x) − 2xy′(x) + 2ny(x) = 0 for theHermite polynomials, we compute a differen-
tial equation for the logarithmic derivative w(x) = y′(x)/y(x), which is the Riccati
equation w′(x) + w2(x) − 2xw(x) + 2n = 0 in our example. The equation for the
function w(x) is nonlinear and, hence, the Painlevé analysis can be performed, i.e.,
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we search for the expansions of solutions of the form
∑∞

m=−r cm(x − x0)m, r > 0,
in the neighborhood of the movable pole x = x0 in the complex plane and find the
coefficients cm . On the other hand, the expansion of the functionw(x) in the Laurent
series in the neighborhood of the zero x j of the polynomial y(x) will be of the form

w(x) = e j
x − x j

−
∞∑

m=0

⎛

⎝
∑

k �=i

ek
(xk − x j )m+1

⎞

⎠ (x − x j )
m,

where e j denotes the multiplicity of the zero. The identification of two expansions
leads to relations between zeros. For instance, for the Hermite polynomials one has
the famous relation

∑n
k �= j (z j − zk)−1 − z j = 0, j = 1, . . . , n.

We can perform the Painlevé analysis for the second order nonlinear differential
equation

w′′ + w(3w′ + 2(m + n − 1 − c2x + 2x2) + c1(c2 + 2x)) + w′(c1 + c2 − 4x)

+ w3 + (c1 + c2 − 4x)w2 + 2c1m + 2c2n − 4mx − 4nx = 0, (10)

for the functionw(x) = p′(x)/p(x),where p(x) solves equation (7) for the multiple
Hermite polynomials (with assumptions that c1 �= c2 andm, n ≥ 0). This yields two
types of expansions

w(x) = 1

x − x0
+ c0 − 1

3
q1(x − x0) + . . . , (11)

where c0 is arbitrary and q1 = 2(m + n − 1) + (2x0 − c1)(2x0 − c2) + 2(c1 + c2 −
4x0)c0 + 3c20, and

w(x) = 2

x − x0
+ 1

3
(4x0 − c1 − c2) + 1

18
q2(x − x0) + . . . ,

whereq2 = c21 − c1c2 + c22 − 6(m + n − 3) − 2(c1 + c2)x0 + 4x20 .Suchexpansions
might be useful to further study the relations between zeros of multiple Hermite
polynomials. A similar analysis of other differential equations related to multiple
orthogonal polynomials will be published elsewhere.

Assume that the solutions of theRiccati equationw′(x) = a(x)w(x)2 + b(x)w(x)
+ c(x) are simultaneously the solutions of equation (10). We get that a(x) = −1,
c(z) can be expressed in terms of b(x), which, in turn, satisfies a certain second
order nonlinear differential equation. In particular, if we assume that b(x) is linear,
i.e., b(x) = Bx + B1, then B = 0 and either B1 = −c2, n = 0 and c(x) = −2m or
B1 = −c1, m = 0 and c(x) = −2n (compare to the nonlinear equation related to
the Hermite polynomials). The Painlevé analysis of the nonlinear equation for b(x)
shows that there are also two types of polar expansions with residues 1 (with an
arbitrary coefficient) and 2. Further, expansion (11) comes from the Riccati equation
(with the expansion for b(x) with the residue 2).
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The Problem of Soliton Collision
for Non-integrable Equations

Georgy A. Omel’yanov

Abstract We describe an approach to construct multi-soliton asymptotics for non-
integrable equations. The general idea is realized in the case of three waves and for
the KdV-type equation with nonlinearity u4.

Keywords Generalized Korteweg-de Vries equation · Soliton · Interaction ·Weak
asymptotics method · Weak solution · Non-integrability
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1 Introduction

1.1 Statement of the Problem

Themain question under consideration in this paper is the following: do the integrable
equations form a compact cluster with a sharp frontier or there are non-integrable
equations which preserve in a sense some properties of integrability? The standard
approach to this problem is the investigation of small perturbations of integrable
equations. On the contrary, we consider essentially non-integrable equations which
cannot be reduced to an integrable case. Note that we study the waves of arbitrary
amplitudes but assume the smallness of the dispersion ε. The last is equivalent to
the consideration of large distances and time intervals. We restrict ourself to the
generalized Korteweg-de Vries-4 equation,

∂ u

∂ t
+ ∂ u4

∂ x
+ ε2

∂3u

∂ x3
= 0, x ∈ R, t > 0, ε << 1, (1)

and we consider the scenario of solitary wave collision only.
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It is well known that an arbitrary number of solitary waves collide for inte-
grable nonlinear equations in an remarkable manner: they pass through each other
almost as linear waves. In particular, it is true for the KdV equation. Moreover, there
exist explicit N-phase formulas which describe this collision. Conversely, for non-
integrable equations there are neither exactly the same manner of interaction nor
explicit N-phase formulas. However, it is possible to prove that in an asymptotic
sense two waves interact almost elastically [1]. More in detail, let us consider the
linear combination of two perturbed solitary waves

u =
2∑

i=1

Giω
(
βi(x − ϕi)/ε

)
(2)

with variable amplitudes Gi = Gi(t, ε) and nonlinear phases ϕi = ϕi(t, ε). Here ω
is a function such that Aω

(
β(x − ϕ0)/ε

)
with A = const and

ω(η) = cosh−2/3(3η/2), A = cβ2/3, c = (5/2)1/3, ϕ0 = V t, V = β2 (3)

represents the explicit solitary wave solution of (1) with the normalization condition
ω(0) = 1. Then there exist functionsGi(t, ε),ϕi(t, ε), i = 1, 2 such that (2) describes
elastic interaction of two solitary waves in the weak asymptotic sense [1]:

Definition 1 A sequence u(t, x, ε), belonging to C∞(0,T; C∞(R1
x)) for

ε = const > 0 and belonging to C(0,T;D′(R1
x)) uniformly in ε ≥ 0, is called a

weak asymptotic mod OD′(ε2) solution of (1) if the relations

d

dt

∫ ∞

−∞
uψdx −

∫ ∞

−∞
u4

∂ ψ

∂ x
dx = O(ε2), (4)

d

dt

∫ ∞

−∞
u2ψdx − 2

4

5

∫ ∞

−∞
u5

∂ ψ

∂ x
dx + 3

∫ ∞

−∞

(
ε
∂ u

∂ x

)2 ∂ ψ

∂ x
dx = O(ε2) (5)

hold uniformly in t for any test function ψ = ψ(x) ∈ D(R1).

Here, the right-hand sides are C∞-functions for ε = const > 0 and piecewise
continuous functions uniformly in ε ≥ 0. The estimates are understood in the C(0,T)

sense:
g(t, ε) = O(εk) ↔ max

t∈[0,T ] |g(t, ε)| ≤ cεk .

It turned out however that Definition1 doesn’t support asymptotics with three or
more phases since it implies the appearance of ill-posed model equations for the
parameters of the solutions (they are well-posed for the case of two phases). To
overcome the obstacle it is necessary to change the viewpoint on theweak asymptotic
solution: the analysis in [2] showed that for two-phase solutions the Definition1
implies the fulfilment of two conservation laws in the weak sense.Moreover, the one-
phase asymptotic theory for perturbed equations implies the fulfilment of a single
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“conservation law” again in the weak sense. Thus there appears the hypotheses that
to construct N-phase asymptotics it is necessary to use N conservation laws. The
first step in order to realize an appropriate construction has been done in [2]. The
aim of this paper is to complete the analysis and to prove rigorously the existence of
3-phase asymptotic solution.

1.2 Weak Asymptotics Method: The Main Idea

The basic remark is very simple: rapidly varying solitary wave solutions (soliton or
kink type) tend to distributions as the small parameter tends to zero. This allows us to
treat the equation in the weak sense and, respectively, look for singularities instead
of regular functions. Obviously, non-integrability implies that we cannot find neither
classical nor weak exact solutions. However, we can construct an asymptotic weak
solution considering the smallness of the remainder in the weak sense. In a sense,
the situation here is similar to the shock waves: various regularization generates
various profile for the wave, but in the limiting passage we obtain the same Rankine–
Hugoniot conditions. For solitons the passage to the weak expansion results in the
disappearance of the shape, but preserves the soliton’s characteristics: amplitudes
and phases. For the problem of interaction these parameters vary in a neighborhood
of the time instant of the collision and stabilize ourself after that. Deriving uniform
in time model equations for the parameters we can describe the scenario of the wave
interaction.

Originally, such idea had been suggested by V. Danilov and V. Shelkovich for
shock wave type solutions (1997, [3]), then generalized for soliton type solutions
(V.Danilov andG.Omel’yanov 2003 [1]), and it has been developed and adapted later
for many other problems (V. Danilov, G. Omel’yanov, V. Shelkovich, D. Mitrovic
and others, see [4, 5] and references therein). Let us note finally that the treatment
[2] of weak asymptotics as functions which satisfy some conservation or balance
laws takes us back to the ancient Whitham’s idea to construct one-phase asymptotic
solution satisfying a Lagrangian. Now, for essentially non-integrable equations and
multi-phase solutions, we use the appropriate number of the laws and satisfy them
in the weak sense.

2 Asymptotics Construction

The gKdV-4 equation consists of three conservation laws, which we write in the
differential form with the remainder:

∂ Qj

∂ t
+ ∂ Pj

∂ x
= OD′(ε2), j = 1, 2, 3. (6)
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Here

Q1 = u, P1 = u4, Q2 = u2, P2 = 8

5
u5 − 3(εux)

2, (7)

Q3 = (εux)
2 − 2

5
u5, P3 = 16u3(εux)

2 − u8 − 3(ε2uxx)
2, (8)

and we use the following definition of the smallness:

Definition 2 A function v(t, x, ε) is said to be of the value OD′(εk) if the relation

∫ ∞

−∞
v(t, x, ε)ψ(x)dx = O(εk)

holds uniformly in t for any test function ψ ∈ D(R1
x).

Let us consider three-phase asymptotic solution for the gKdV-4 Eq. (1) supplied by
the initial condition

u|t=0 =
3∑

i=1

Aiω
(
βi(x − x(i,0))/ε

)
. (9)

Contrarily to Definition1 we define the asymptotics in the following manner:

Definition 3 Let a sequence u = u(t, x, ε) belong to the functional space indicated
in Definition 1. Then u is called a 3-phase weak asymptotic mod OD′(ε2) solution
of (1) if the relations (6) hold uniformly in t.

To construct the asymptotics we present the ansatz in the form similar to (2), that
is

u =
3∑

i=1

Giω
(
βi(x − ϕi)/ε

)
. (10)

Here

Gi = Ai + Si(τ ), ϕi = ϕi0(t) + εϕi1(τ ), τ = β1
(
ϕ30(t) − ϕ10(t)

)
/ε, (11)

Ai are the original amplitudes and ϕi0 = Vit + x(i,0) describe the trajectories of the
noninteracting waves; βi, Ai, and Vi are connected by the equalities (3); the “fast
time” τ characterizes the distance between the first and third trajectories. Next we set
A1 < A2 < A3, x(i,0) − x(i+1),0) ≥ const > 0, i = 1, 2, and suppose the intersection
of all trajectories x = ϕi0(t) at the same point (x∗, t∗). We assume also that the
amplitude and phase corrections Si(τ ), ϕi1(τ ) are such that

Si → 0 as τ → ±∞, (12)

ϕi1 → 0 as τ → −∞, ϕi1 → ϕ∞
i1 = consti as τ → +∞ (13)

with an exponential rate.
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To find Si(τ ), ϕi1(τ ) we should calculate the weak expansions for Qi and Pi. It is
easy to check that

u = εa1

3∑

i=1

β−1
i Giδ(x − ϕi) + OD′(ε3). (14)

Here and in what follows we use the notation

ak =
∫ ∞

−∞
ωk(η) dη, a(l)

k =
∫ ∞

−∞

(
dlω

dηl

)k

dη, k ≥ 1, l ≥ 1. (15)

Next we take into account that Si(τ ) vanish exponentially fast as |ϕ1 − ϕ3| grows,
thus, the main contribution gives the point (x∗, t∗). We write

ϕi0 = x∗ + Vi(t − t∗) = x∗ + ε
Vi

ψ̇0
τ and ϕi = x∗ + εχi, χi = Viτ/ψ̇0 + ϕi1, (16)

where ψ̇0 = β1(V3 − V1). Thus, we can modify (14) to the final form:

u = εa1

3∑

i=1

Ai

βi
δ(x − ϕi) + εa1

3∑

i=1

Si
βi

{
δ(x − x∗) − εχiδ

′(x − x∗)
} + OD′(ε3).

(17)
Concerning nonlinear terms let us note that all the products of thewaveswith different
phases are concentrated near the point (x∗, t∗). Thus, for any smooth function F =
F(z0, . . . , zk) we write the corresponding weak expansion:

F

(

u, . . . ,

(
ε

∂

∂ x

)k

u

)

= ε

{
3∑

i=1

a(0)
F,i

βi
δ(x − ϕi) + 1

β3
R(0)

F δ(x − x∗)

}

− ε2

{
3∑

i=1

a(1)
F,i

β2
i

δ′(x − ϕi) +
(

χ3

β3
R(0)

F + 1

β2
3

R(1)
F

)
δ′(x − x∗)

}

+ OD′(ε3). (18)

Here

a(n)
F,i =

∫ ∞

−∞
ηnF

(
Aiω(η), . . . ,Aiβ

k
i ω

(k)(η)
)
dη, n = 0, 1, (19)

R(n)
F =

∫ ∞

−∞
ηn

{

F

(
3∑

i=1

Giω(ηi3), . . . ,

3∑

i=1

Giβ
k
i ω

(k)(ηi3)

)

−
3∑

i=1

F
(
Aiω(ηi3), . . . ,Aiβ

k
i ω

(k)(ηi3)
)}

dη, (20)
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where
ηij = θijη − σij, θij = βi/βj, σij = βi(ϕi − ϕj)/ε. (21)

Calculating weak expansions for all terms of Definition3 and substituting them into
(6)weobtain linear combinations of δ′(x − ϕi), i = 1, 2, 3, δ(x − x∗), and δ′(x − x∗).
Therefore, we pass to the following system of model equations:

Vi a
(0)
Qj,i

− a(0)
Pj,i

= 0, i = 1, 2, 3, j = 1, 2, 3, (22)

R(0)
Qj

= 0, j = 1, 2, 3, (23)

ψ̇0
d

dτ

{
3∑

i=1

ϕi1

a(0)
Qj,i

βi
+ χ3

β3
R(0)

Qj
+ 1

β2
3

R(1)
Qj

}

− 1

β3
R(0)

Pj
= 0, j = 1, 2, 3. (24)

For each i the system (22) of three equation contains only two free parameters
Ai = Ai(βi), Vi = Vi(βi). However, there is not any contradiction [2]:

Lemma 1 Let ω(η), Ai = A(βi), and Vi = V (βi) be of the form (3). Then the equal-
ities (22) are satisfied uniformly in βi > 0.

Let us simplify the Eq. (24). We take into account the equalities (23) and the
following consequence of the definitions (16), (21) of ϕi and σi3:

ϕi1 = ϕ31 + β−1
i σi3 − ψ̇−1

0 τ (Vi − V3), i = 1, 2. (25)

Then the system (24) can be transformed to the form

ψ̇0rj
dϕ31

dτ
+ ψ̇0

d

dτ

{
2∑

i=1

a(0)
Qj,i

β2
i

σi3 + 1

β2
3

R(1)
Qj

}

= fj, j = 1, 2, 3, (26)

where

rj =
3∑

i=1

β−1
i a(0)

Qj,i
, fj = β−1

3 R(0)
Pj

+
2∑

i=1

β−1
i a(0)

Qj,i
(Vi − V3). (27)

Now it is clear that (26) contains three unknown functions, namely ϕ31, σ13, and σ23.
Moreover, (26) can be reduced easily to a system which contains σi3, i = 1, 2, only.

Taking into account our hypothesis (13) we supply (26) by the scattering-type
condition

ϕ31 → 0, σi3/τ → ξi3 as τ → −∞, i = 1, 2, (28)

where ξi3 = βi(Vi − V3)/ψ̇0.
The behavior of the solution of the problem (26), (28) describes the scenario of

the wave collision: if ϕ31 remains bounded and σi3/τ → ξi3 when τ → ∞, then the
waves interact elastically; each other behavior of the solutionmeans another scenario
of collision.
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3 Analysis of the Model Equations

To simplify the further analysis let us assume that

θ23 = μ3, θ13 = μ3(3+α)/2, where α ∈ [0, 1) and μ is a small parameter. (29)

Lemma 2 Letσi3 → ∞as τ → ∞, i = 1, 2. Then for sufficiently smallμ the system
(23) has a unique solution which satisfies the assumption (12).

Proof We look for the asymptotic solution of the system (23) in the form:

S1 = 1

2

cβ1

β
1/3
3

μα(y − μ2−αx), S2 = −1

2

cβ2

β
1/3
3

μα(y + μ2−αx), S3 = cβ2/3
3 μ2x, (30)

where x and y are free functions. Then the Eq. (23) for j = 1 is verified automatically.
Furthermore, let us consider the monoids

Mm = um, M(k)
2 = (εku(k)

x )2, M3,2 = u3(εux)
2, where m ≥ 2, k ≥ 1. (31)

Combining the general formula (18)–(20) with the representation (30) and omitting
algebraic calculations we obtain the statement:

Lemma 3 Under the assumption (29) the following relations hold

R(0)
Mm

= (cβγ
3 )mmμ2

{
amx + λ(0)

m−1,0,1(η23) − 1

2
μ2(m−2)+α

(
amy − 2λ(0)

m−1,0,1(η12)
)

+ 1

2
μ1+α

(
2λ(0)

m−1,0,1(η13) − yλ(0)
m−1,0,1(η23)

)} + OS(μ2m−1+2α), (32)

R(0)

M(k)
2

= c2β2(γ+k)
3 μ2

{
2a(k)

2 x + OS(μ2)
}
, (33)

R(0)
M3,2

= c5β8γ
3 μ2{5xλ(0)

3,2,0 + 3λ(0)
2,2,1(η23) + OS(μ1+α)

}
. (34)

Here and in what follows we use the notation

λ(n)
k,p,l(ηij) =

∫ ∞

−∞
ηnωk(η)

(
ω′(η)

)p
ωl(ηij)dη, n = 0, 1, (35)

and the following definition of the smallness:

Definition 4 A function v(σ13,σ23,μ) is said to be of the value OS(μκ) if there
exists a function f (τ ) ≥ 0 from the Schwartz space S such that the inequality

|v(σ13,σ23,μ)| ≤ μκ f (τ )

holds uniformly in τ ∈ R.



108 G.A. Omel’yanov

The formulas (32), (33) allow us to pass to the asymptotic representation of the
Eq. (23) for j = 2, 3:

a2

(
x − 1

2
μαy

)
= −λ(0)

1,0,1(σ23) − μαλ(0)
1,0,1(σ12) + OS(μ1+α), (36)

(
2a(1)

2 − 5a5
)
x = 5λ(0)

4,0,1(σ23) + 5μ1+α

(
λ(0)
4,0,1(σ13) − 1

2
yλ(0)

4,0,1(σ23)

)
+ OS(μ2).

Obviously, the matrix in the left-hand side of (36) is degenerate mod O(μα). How-
ever, the right-hand side has the same rank.

Lemma 4 For the function ω of the form (3) the relation

(
5a5 − 2a(1)

2

)
λ(0)
1,0,1(σln) = 5a2λ

(0)
4,0,1(σln) + OS(θln) (37)

holds for all indices l, n.

Now we set
x = −λ(0)

1,0,1(σ23) + μαx1/a2 (38)

and transform (36) to the final form:

x1 − a2
2
y = −λ(0)

1,0,1(σ12) + OS(μ), (39)

x1 = 5

4
μ

(
2λ(0)

4,0,1(σ13) − yλ(0)
4,0,1(σ23)

)
+ OS(μ2−α).

Since the matrix in the left-hand side of the system (39) is non-singular, we obtain
the desired assertion of Lemma2. �

The last step of the construction is the analysis of the problem (26), (28). To do it
we use again the assumption (29) and the formulas (20), (32)–(34). However, since
the calculation precision should be very high we omit the tedious algebra and present
the final result only.

Lemma 5 Let the assumption (29) be verified. Then the Eq. (26) can be reduced to
the system

d

dτ

{
�1(σ13 − ξ13τ ) + μ1+αZ1

}
= −2μ(3+α)/2F1, (40)

d

dτ

{
�2(σ23 − ξ23τ ) − μ(1+3α)/2Z2

}
= 2μ(3+α)/2F2, (41)

where �i = 1 + O(μ(1+α)/2) are constants, ξi3 are defined in (28), and
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Z2 = 20

a5
λ(1)
4,0,1(η23) + OS(μ), Z1 = Z2 + μ(1−α)/2σ13y + OS(μ),

F2 = 31

7
x + 40

7a5
λ(0)
4,0,1(η23) + OS(μ(1+α)/2), F1 = F2 + OS(μ(1−α)/2).

Obviously, for sufficiently small μ the problem (40), (41), (28) has the unique solu-
tion such that σi3/τ → ξi3 as τ → ∞, i = 1, 2. Moreover, σi3 − ξi3τ are uniformly
bounded functions which tend to constants as τ → ∞.

Finally, we integrate the Eq. (26) with j = 1 and obtain the function ϕ31 such that
ϕ31 → const as τ → ∞. Now, it remains to calculate ϕi1, i = 1, 2, in accordance
with (25) and conclude that the phase corrections ϕi1 satisfy the assumptions (13).
Therefore, we can summarize the main result of the paper

Theorem 1 Under the assumption (29), the three-phase asymptotic solution (10)
exists and describes a mod OD′(ε2) scenario of KdV type solitary waves interac-
tion.
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Explicit Solutions of the Poisson Equation
in Plane Domains

H. Begehr

Dedicated to the memory of Prof. Dr. Fritz Gackstatter who has
passed away in March 2016

Abstract The two basic boundary value problems for the Laplace operator are the
Dirichlet and the Neumann problems. Their theories are well known and explained in
all textbooks on partial differential equations. The solutions of these boundary value
problems to the Poisson equation in smooth domains are given via the Green and the
Neumann functions, respectively. As examples serve the unit disc or unit ball and
occasionally half planes or half spaces. In the two-dimensional case where complex
methods are available the conformal invariance of the Green and the Neumann func-
tions is used to get solutions to the problems in plane domains conformally equivalent
to the unit disc. But these conformal mappings are only in particular cases known
in explicit form. The parqueting-reflection principle, however, serves to construct
Green and Neumann functions for a large class of plane domains in explicit form
[8, 9].

Keywords Poisson equation · Plane domains · Green and Neumann functions ·
Dirichlet and Neumann boundary value problems · Parqueting-reflection principle ·
Strips · Half strips · Hyperbolic half planes · Hyperbolic strips

1 The Parqueting-Reflection Principle

To explain the basic idea of this principle the particular case of a half plane, say
the upper half planeH+ = {0 < Imz} is investigated. ReflectingH+ at its boundary,
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the real axis R = {Imz = 0}, onto the lower half plane H
− = {Imz < 0} gives a

parqueting of the complex plane C via C = H+ ∪ H
−. Choosing an arbitrary point

z ∈ H
+ as a pole of an as simple as possiblemeromorphic functionP and its reflection

z ∈ H
− atR as a zero of this function, leads to P(z, ζ ) = ζ−z

ζ−z . The Green function for

H
+ has the form G1(z, ζ ) = log |P(z, ζ )|2 = log | ζ−z

ζ−z |2. The Neumann function for

this half plane is N1(z, ζ ) = − log |(ζ − z)(ζ − z)|2. Both formulas also represent
the respective Green and Neumann functions for H− where now z ∈ H

−.

Definition 1 A set of domains Dj, j ∈ J, J some set of indices, in the plane C is
called a parqueting of C if Dj ∩ Dk = ∅ for any j, k ∈ J, j �= k, and C = ⋃

j∈J Dj.

Definition 2 A domain D of the complex plane C with piecewise smooth boundary
∂D is called admissible for the parqueting-reflection, if continued reflections at the
boundary parts achieve a parqueting ofCwith possible exceptions of singular points.

Remark For reflecting, ∂D must consist of arcs from circles and straight lines.

Definition 3 For z ∈ C the point zre satisfying

αzrez + azre + az + β = 0,

is called the reflection point of z at the straight line or circle

� = {z ∈ C : αzz + az + az + β = 0, 0 < aa − αβ, a ∈ C, α, β ∈ R}.

If z ∈ � then zre = z!
The Principle. The original domainD is called a pole-domain. Any direct reflection
of D at some parts of ∂D is called a zero-domain. A reflection of a zero-domain at
some parts of its boundary is a pole-domain, a reflection of a pole-domain at some
parts of its boundary is a zero-domain.

Choosing an arbitrary point z ∈ D it will become a pole of an as simple as possible
meromorphic function P. Any reflection of z into a zero-domain will become a zero
of P. Any reflection of a zero (in a zero-domain) will become a pole of P in a
pole-domain and vice versa.

Examples for domains admissible for the parqueting-reflection are, e.g. circles,
half planes, quarter planes, certain sectors of the plane or of circles, certain convex
polygons as triangles, rectangles, hexagons, strips, certain lenses, hyperbolic strips,
circular rings, ring sectors, etc. [5, 6, 12–16].

Remark In case of reflection at a circle |z − z0| = r instead of the factor ζ − r2

z−z0
of

P often the factor r2 − (z − z0)ζ is preferred.

For the quarter disc Q++ = {0 < Rez, 0 < Imz, |z| < 1}, e.g. the point z ∈ Q
++

is reflected at R onto z, at iR onto −z and at ∂D = {|z| = 1} onto 1
z . For the

parqueting of C one of the quarter discs Q
+− = {0 < Rez, Imz < 0, |z| < 1} and
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Q
−+ = {Rez< 0, 0 < Im, |z| < 1} must be reflected onto Q

−− = {Rez < 0,
Imz < 0, |z| < 1} providing −z as reflection of z, and of −z, respectively. More-
over, the three quarter discs Q+−,Q−+,Q−− have to be reflected at ∂D to finalize
the parqueting. This leads to the points 1

z ,− 1
z ,− 1

z .
For the meromorphic function P the points z,−z, 1

z ,− 1
z become poles while

z,−z, 1
z ,− 1

z are zeros. Hence,

P(z, ζ ) = ζ − z

ζ − z

ζ + z

ζ + z

1 − zζ

1 − zζ

1 + zζ

1 + zζ
= ζ 2 − z2

ζ 2 − z2
1 − z2ζ 2

1 − z2ζ 2
.

Thus, the Green and the Neumann functions for any of the four quarter circles are

G1(z, ζ ) = log
∣∣∣ ζ 2−z2

ζ 2−z2
1−z2ζ 2

1−z2ζ 2

∣∣∣
2
,N1(z, ζ ) = − log |(ζ 2 − z2)(ζ 2 − z2)(1 − z2ζ 2)(1 −

z2ζ 2)|2.

2 Parqueting of the Plane Through Reflections of Strips

2.1 Strip

Let for 0 < α < π, a ∈ R
+ the set S1 be the strip

S1 = {z ∈ C : z = e2iαz + 2iateiα, 0 < t < 1}.

The boundary parts

∂−S1 = {z ∈ C : z = e2iαz}, ∂+S1 = {z ∈ C : z = e2iαz + 2iaeiα}

are parallel lines with angle α against the positive real axis, the first one passing
through the origin, the second one above the first in distance a to the former.

Continued reflection of S1 at the boundaries provides a parqueting of C through
the strips

Sk+1 = {z ∈ C : z = e2iαz + 2ia(k + t)eiα, 0 < t < 1}, k ∈ Z,

C =
⋃

k∈Z
Sk, Sk ∩ Sl = ∅ for k �= l.

An arbitrary point z ∈ S1 has the representation z = e2iαz + 2iateiα for some t, 0 <

t < 1. Reflecting this point at the line z = e2iαz + 2iaeiα gives the image

z2 = e2iαz + 2iaeiα ∈ S2.
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Reflecting this point at the line z = e2iαz + 4iaeiα leads to

z3 = e2iαz2 + 4iaeiα = z + 2iaeiα ∈ S3.

Inductively, z2k+1 = z + 2iakeiα ∈ S2k+1, z2k = e2iαz + 2iakeiα ∈ S2k, k ∈ Z,

follow. Choosing the z2k as zeros and the z2k+1 as poles leads to the meromorphic
function

P(z, ζ ) = ζ − e2iαz

ζ − z

∞∏

k=1

ζ − e2iαz − 2iakeiα

ζ − z − 2iakeiα
ζ − e2iαz + 2iakeiα

ζ − z + 2iakeiα

= ζ − e2iαz

ζ − z

∞∏

k=1

(ζ − e2iαz)2 − (2iakeiα)2

(ζ − z)2 − (2iakeiα)2
= sin π

ζ−e2iαz
2iaeiα

sin π
ζ−z
2iaeiα

.

G1(z, ζ ) = log |P(z, ζ )|2 is the Green function for S1. For α = 0, a = 1 this is a clas-

sical result, see, e.g. [7]. N1(z, ζ ) = − log
∣∣∣sin π

ζ−e2iαz
2iaeiα sin π

ζ−z
2iaeiα

∣∣∣
2
is the Neumann

function for S1. By the way, the symmetry of both the Green and the Neumann
functions are obvious.

The outward normal vector on ∂+S1 is ν = ieiα and the outward normal deriv-
ative is ∂ν = ieiα∂z − ie−iα∂z. For real functions ∂ν = −2Imeiα∂z. For the integral
representation formulas related to the Dirichlet and the Neumann boundary value
problems the derivatives of the Green and Neumann functions are needed.

∂νzG1(z, ζ ) = −2Imeiα
(
e−iαπ

2ia
cot π

ζeiα − ze−iα

−2ia
+ π

2iaeiα
cot π

ζ − z

2iaeiα

)

.

On ∂+S1, i.e. for ze−iα = zeiα + 2ia this becomes

∂νzG1(z, ζ ) = 2π

a
Re cot π

ζ − z

2iaeiα
.

As A cot A − 1 = o(1) as A → 0, then on ∂+S1

∂νzG1(z, ζ ) = (1 + o(1))2ie−iα ζ − ζe2iα − 2iaeiα

|z − ζ |2

for ζ ∈ S1 → z.
Interchanging the roles of z and ζ gives

∂νζ
G1(z, ζ ) = (1 + o(1))2ie−iα z − ze2iα − 2iaeiα

|ζ − z|2 ,
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for z ∈ S1 → ζ ∈ ∂+S1, where up to the first factor on the right-hand side the Poisson
kernel for the half planes with the boundary ∂+S1 appears. Using the reflection point
z2 = ze2iα + 2iaeiα, then

∂νζ
G1(z, ζ ) = (1 + o(1))2ie−iα z − z2

|ζ − z|2 .

The treatment of the normal derivative of the Green function on ∂−S1 is analogue.
Just the sign of the normal vector has to be changed.

The Neumann kernel for S1 becomes on ∂+S1 for ζ ∈ S1, similarly as before for
the Green function,

∂νzN1(z, ζ ) = 2Imeiα
(
e−iαπ

2ia
cot π

ζeiα − ze−iα

−2ia
− π

2iaeiα
cot π

ζ − z

2iaeiα

)

= π

a
Re2iIm cot π

ζ − z

2iaeiα
= 0.

But for ζ on ∂+S1, i.e. ζ = ζe2iα + 2iaeiα a singularity appears, so that

−2Imeiα∂zN1(z, ζ ) = Im
π

ia

(

cot π
ζ − e−2iαz

−2iae−iα
− cot π

ζ − z

2iaeiα

)

= −π

a
Re

(
cot π

(ζ − z)e−iα

−2ia
− cot π

ζ − z

2iaeiα

)

= 2π

a
Re cot π

ζ − z

2iaeiα
.

Thus for z ∈ S1 → ζ ∈ ∂+S1

−2Imeiα∂zN1(z, ζ ) = (1 + o(1))2ie−iα z − ze2iα − 2iaeiα

|ζ − z|2
= (1 + o(1))2ie−iα z − z2

|ζ − z|2 .

These formulas for the Neumann function also hold for ∂−S1 when changing the
sign of the normal vector.

From the Green and the Neumann representation formulas for certain smooth
functions w in regular domains D,

w(z) = − 1

4π

∫

∂D

w(ζ )∂νζ
G1(z, ζ )dsζ − 1

π

∫

D

wζζ (ζ )G1(z, ζ )dξdη,

where s denotes the arc length parameter, ζ = ξ + iη, and
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w(z) = − 1

4π

∫

∂D
{w(ζ )∂νζ

N1(z, ζ ) − ∂νζ
w(ζ )N1(z, ζ )}dsζ

− 1

π

∫

D
wζζ (ζ )N1(z, ζ )dξdη,

see, e.g. [1, 2, 4, 8, 11], the following statements hold.

Theorem 1 The Dirichlet problem

wzz = f , in S1, w = γ on ∂S1,

f ∈ Lp,2(S1;C), 2 < p, γ ∈ C(∂S1;C),

lim
x→∞ x1+εγ (x + iy) = 0, x + iy ∈ S1, 0 < ε,

is uniquely solvable by

w(z) = − 1

2a

∫

∂−S1

γ (ζ )Re cot π
ζ − z

2iaeiα
dsζ − 1

2a

∫

∂+S1

γ (ζ )Re cot π
ζ − z

2iaeiα
dsζ

+ 1

π

∫

S1

f (ζ ) log

∣∣∣
∣∣
sin π

ζ−e2iαz
2iaeiα

sin π
ζ−z
2iaeiα

∣∣∣
∣∣

2

dξdη.

Theorem 2 The Neumann problem

wzz = f , in S1, ∂νw = γ on ∂S1,

f ∈ Lp,2(S1;C), 2 < p, γ ∈ C(∂S1;C),

lim
x→∞ x1+εγ (x + iy) = 0, x + iy ∈ S1, 0 < ε,

is for any c ∈ C solvable by

w(z) = c − 1

2π

∫

∂−S1
γ (ζ ) log

∣∣∣∣sin π
ζ − z

2iaeiα

∣∣∣∣

2

dsζ

− 1

2π

∫

∂+S1
γ (ζ ) log

∣
∣∣∣sin π

ζ − z

2iaeiα

∣
∣∣∣

2

dsζ

+ 1

π

∫

S1

f (ζ ) log

∣∣∣
∣sin π

ζ − e2iαz

2iaeiα
sin π

ζ − z

2iaeiα

∣∣∣
∣

2

dξdη.

Remark The Neumann problem is unconditionally solvable for the strip due to the
circumstance that the normal derivative of the Neumann function vanishes at the
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boundary of the strip as long as the other variable lies inside the strip. The proofs of
both results are straightforward by verification.

2.2 Half Strip

Let for 0 < α < π, a ∈ R the set S+
1 be the half strip

S+
1 = {z ∈ C : z = e2iαz + 2iateiα, 0 < t < 1, e−iαz + eiαz > 0}.

Reflecting this half strip at the segment of its boundary part on the line z = −e2iαz
maps it onto its complementary half strip

S−
1 = {z ∈ C : z = e2iαz + 2iateiα, 0 < t < 1, e−iαz + eiαz < 0},

while z ∈ S+
1 is reflected onto ẑ = −e2iαz. This latter point satisfies

e−iα ẑ + eiα ẑ = −{e−iαz + eiαz} < 0.

Continued reflections of the points z, ẑ ∈ S1 lead to the points z2k = e2iαz + 2iakeiα,

ẑ2k+1 = −e2iαz + 2iakeiα and to ẑ2k = −z + 2iakeiα, z2k+1 = z + 2iakeiα, for any
k ∈ Z. The first two sets of points are chosen as zeros for P the others become poles.
Hence,

P(z, ζ ) = ζ − e2iαz

ζ − z

ζ + e2iαz

ζ + z

∞∏

k=1

(ζ − e2iαz)2 − (2iakeiα)2

(ζ − z)2 − (2iakeiα)2

(ζ + e2iαz)2 − (2iakeiα)2

(ζ + z)2 − (2iakeiα)2

= sin π
ζ−e2iαz
2iaeiα

sin π
ζ−z
2iaeiα

sin π
ζ+e2iαz
2iaeiα

sin π
ζ+z
2iaeiα

.

The Green function for S+
1 is thus G1(z, ζ ) = log |P(z, ζ )|2, its Neumann function

is

N1(z, ζ ) = − log

∣∣∣
∣sin π

ζ − e2iαz

2iaeiα
sin π

ζ − z

2iaeiα
sin π

ζ + e2iαz

2iaeiα
sin π

ζ + z

2iaeiα

∣∣∣
∣

2

.

3 Parqueting of the Plane Through Reflections
of Hyperbolic Strips

Hyperbolic geometry can in the complex plane either be studied in the unit disc or in
the upper half plane. Here the unit disc D = {|z| < 1} is investigated. Straight lines
in this geometry are segments of circles orthogonal to the unit circle. They are of the
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form ∂Dm(r) = {|z − m| = r}, where 1 < |m|, 0 < r, |m|2 = 1 + r2. A hyperbolic
half plane and a hyperbolic strip will be investigated. As before parquetings of the
complex plane will be constructed and harmonic Green and Neumann functions
attained, see [1, 3, 10].

3.1 Hyperbolic Half Plane

For simplicity the centre m of the circle orthogonal to ∂D is assumed to be real
and positive, 1 < m and m2 = 1 + r2. The hyperplane D = D ∩ Dm(r),Dm(r) =
{|z − m| < r}, is a convex lentil. ReflectingD at its boundary part from ∂Dm(r)maps
D ontoD\D because ∂Dm(r) stays pointwise fixed and as orthogonality is preserved
the part of ∂Dm(r) from ∂D is mapped on its complementary arc. Similarly, reflection
at the boundary part from ∂DmapsD onto the complementDm(r)\D. Reflecting the
unit discD at its boundary completes the parqueting of the planeC. The same would
be reached by reflecting Dm(r) at its boundary.

A point z ∈ D is reflected at ∂D to 1
z ∈ Dm(r)\D. Both these points z, 1

z ∈ Dm(r)
are reflected at ∂Dm(r) to the points

m + r2

z − m
= zm − 1

z − m
,m + r2

1
z − m

= m − z

1 − mz
,

respectively. The parqueting-reflection principle leads to the rational function

P(z, ζ ) = 1 − zζ

ζ − z

m(ζ + z) − (1 + zζ ))

ζ + z − m(1 + zζ )
.

The Green and Neumann functions for D are again G1(z, ζ ) = log |P(z, ζ )|2, and

N1(z, ζ ) = − log |(ζ − z)(1 − zζ )(ζ + z − m(1 + zζ ))(1 + zζ − m(ζ + z))|2.

The Poisson kernel is given for the part of ∂D on |z| = 1 as

∂νzG1(z, ζ ) = 2Re

{
ζ + z

ζ − z
+ ζ − z − m(1 − zζ )

ζ + z − m(1 + zζ )

}
.

Similarly, for the part on |z − m| = r

∂νzG1(z, ζ ) = 2Re

{
ζ + z − 2m

ζ − z
− 1 + zζ − 2mζ

1 − zζ

}

,

see [9]. On the boundary part of D from ∂D
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N1(z, ζ ) = −2 log |(ζ − z)(ζ + z − m(1 + zζ ))|2

and

∂νzN1(z, ζ ) = 2Re{z∂zN(z, ζ )}

= 2Re

{
z

ζ − z
+ zζ

1 − zζ
− z(1 − mζ )

ζ + z − m(1 + zζ )

− z(ζ − m)

1 + zζ − m(ζ + z)

}

= −4.

Similarly, for the boundary part on ∂Dm(r)

N1(z, ζ ) = −2 log |(ζ − z)(1 − zζ )|2 − 4 log r

and

∂νzN1(z, ζ ) = 2Re{(z − m)∂zN1(z, ζ )}

= 2Re

{
z − m

ζ − z
+ (z − m)ζ

1 − zζ
− (z − m)(1 − mζ )

ζ + z − m(1 + zζ )

− (z − m)(ζ − m)

1 + zζ − m(ζ + z)

}

= −4.

These formulas hold for any ζ ∈ D. For |ζ | = 1 and z ∈ D instead

2Re{z∂zN1(z, ζ )} = 2

(
ζ

ζ − z
+ ζ

ζ − z
− 1

)

− 4 + o(1)

for |z| →1, and for |ζ − m| = r and z ∈ D

2Re{(z − m)∂zN1(z, ζ )} = 2

(
ζ − m

ζ − z
+ ζ − m

ζ − z
− 1

)

− 4 + o(1)

for |z − m| → r.

Remark From the mentioned reflections of the point z it is seen that the same expres-
sions will appear when z belongs to any of the other domains in the parqueting of
the plane. Therefore, the Green and Neumann functions attained hold in same forms
for any of these four domains.

Theorem 3 The Dirichlet problem

wzz = f in D, f ∈ Lp(D;C), 2 < p, w = γ on ∂D, γ ∈ C(∂D;C)
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is uniquely solvable by

w(z) = 1

2π i

∫

∂D∩∂D

γ (ζ )Re

{
ζ + z

ζ − z
+ ζ − z + m(1 − zζ )

ζ + z − m(1 + zζ )

}
dζ

ζ

+ 1

2π i

∫

∂D∩∂Dm(r)
γ (ζ )Re

{
ζ + z − 2m

ζ − z
+ 1 + zζ − 2mζ

1 − zζ

}
dζ

ζ − m

− 1

π

∫

D
f (ζ ) log

∣∣
∣∣∣
1 − zζ

ζ − z

m(ζ + z) − (1 + zζ ))

ζ + z − m(1 + zζ )

∣∣
∣∣∣

2

dξdη.

Theorem 4 The Neumann problem

wzz = f in D, ∂νw = γ on ∂D,

is solvable if and only if

1

4π

∫

∂D
γ (ζ )dsζ = 1

π

∫

D
f (ζ )dξdη

is satisfied. The solution then is given for any c ∈ C by

w(z) = c − 1

2π

∫

∂D∩∂D

γ (ζ ) log |(ζ − z)(ζ + z − m(1 + zζ ))|2 dζ

ζ

− 1

2π

∫

∂D∩∂Dm(r)
γ (ζ )

(
log |(ζ − z)(1 − zζ )|2 + log r2

) dζ

ζ − m

+ 1

π

∫

D
f (ζ ) log |(ζ − z)(1 − zζ )(ζ + z − m(1 + zζ ))

(1 + zζ − m(ζ + z))|2dξdη.

Remark Obviously, the term log r2 in the second line integral may be skipped. The
proof follows by direct verification. The uniqueness—up to the constant c—follows
from the general Neumann representation formula [1, 4].

3.2 Hyperbolic Strip

A strip is the set between two lines. Thus a hyperbolic strip is the complement with
regard to the unit disc of two nonintersecting discs with boundaries orthogonal to the
unit disc. Again for simplicity the centres of both discs are assumed to be on the real
axis. Just a particular situation is investigated. Some others are discussed in [3]. For
four real numbers m1,m2 greater than 1 and positive r1, r2 given such that 1 + r21 =
m2

1, 1 + r22 = m2
2 the circles ∂D−m1(r1), ∂Dm2(r2) where Dm(r) = {|z − m| < r} for

0 < r, 1 < m, 1 + r2 = m2 are orthogonal to the unit circle ∂D. For r1 + r2 < m1 +
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m2 the relations −1 < r1 − m1 < 0 < m2 − r2 < 1 hold. Both circles are disjoint
and D = D\{D−m1(r1) ∪ Dm2(r2)} is a hyperbolic strip, [3].

For any z ∈ C the reflected point zre at |z − m| = r is given by the relation (zre −
m)(z − m) = r2. If in particular 1 + r2 = |m|2 then zre = mz−1

z−m
. Reflection at circles

or lines transforms any circle or line into a circle or a line. Moreover, orthogonality
is preserved.

A parqueting of the entire complex plane C can be achieved by successively
reflecting the strip on its boundary parts as is obvious for the case of an Euclidean
strip. In this way two sets on hyperbolic strips are attainedmatching together with the
original strip D in a parqueting of the unit disc, i.e. the hyperbolic plane. Reflecting
this parqueting at the unit circle ∂D leads to a parqueting of the complement C D of
the unit disc D. Altogether they compose a parqueting of C.

In [3] these reflections are calculated and the two sets of discs

D−m2k−1(r2k−1),Dm2k (r2k), k ∈ N,

and the reflection points from z ∈ D

z1 = −m1z + 1

z + m1
, z2k+1 = −m2k+1z2k−1 + 1

z2k−1 + m2k+1
= α2k−1z2k−3 − β2k−1

−β2k−1z2k−3 + α2k−1
, k ∈ N,

and

z2 = m2z − 1

z − m2
, z2k+2 = m2k+2z2k − 1

z2k − m2k+2
= α2kz2k−2 + β2k

β2kz2k−2 + α2k
, k ∈ N,

are attained. Here m2
3 = 1 + r23 ,m

2
4 = 1 + r24 ,

m3 = 2αβ − m2(α
2 + β2)

(α2 + β2) − 2αβm2
,m4 = (α2 + β2)m1 − 2αβ

2αβm1 − α2 − β2
,

α = m1m2 + 1, β = m1 + m2,

m2
2k+3 = r22k+3 + 1, m2k+3 = 2α2k−1β2k−1 + m2k−1(α

2
2k−1 + β2

2k−1)

α2
2k−1 + β2

2k−1 + 2α2k−1β2k−1m2k−1
,

α2k−1 = m2k−1m2k+1 − 1, β2k−1 = m2k−1 − m2k+1, k ∈ N,

and

r22k+4 + 1 = m2
2k+4, m2k+4 = 2α2kβ2k + (α2

2k + β2
2k)m2k

α2
2k + β2

2k + 2α2kβ2km2k
,

α2k = m2km2k+2 − 1, β2k = m2k − m2k+2, k ∈ N.



122 H. Begehr

For k ∈ N the estimates

1 < m2k+1 < m2k−1,m
2
4k+1 − 1 ≤ q2

k
(m2

1 − 1),m2
4k+3 − 1 ≤ q2

k
(m2

3 − 1),

1 < m2k+2 < m2k,m
2
4k+4 − 1 < q2k(m2

4 − 1), m2
4k+2 − 1 < q2k(m2

2 − 1),

q = m1 + 1

m1 − 1

m3 − 1

m3 + 1
= m2 + 1

m2 − 1

m4 − 1

m4 + 1
= m1 − 1

m1 + 1

m2 − 1

m2 + 1
< 1

are shown, implying
lim
k→∞

m2k+1 = 1, lim
k→∞

m2k = 1.

Thus the sequence of discs D−m2k+1(r2k+1) shrinks to the point −1 while the discs
Dm2k (r2k) shrink to the point 1.

The reflections z2k+1, z2k+2, (k + 1) ∈ N, satisfy

0 < 1 − |z4k+1|2 ≤ 2r4k+1 ≤ 2qkr1, 0 < 1 − |z4k+3|2 ≤ 2r4k+3 ≤ 2qkr2,

0 < 1 − |z4k+2|2 ≤ 2r4k+2 ≤ 2qkr2, 0 < 1 − |z4k+4|2 ≤ 2r4k+4 ≤ 2qkr1.

In [1] the simplified representations

m2k+1 = m2k−1α + β

m2k−1β + α
, m2k+2 = m2kα + β

m2kβ + α
,

whereα−1 = α0 = α, β0 = β−1 = β, are proved for any k ∈ N.Moreover, from here
follow inductively as well

m2k+1 = m1γk + δk

m1δk + γk
,m2k+2 = m2γk + δk

m2δk + γk
,

γk =
[ k2 ]∑

ν=0

(
k

2ν

)
αk−2νβ2ν, δk =

[ k−1
2 ]∑

ν=0

(
k

2ν + 1

)
αk−2ν−1β2ν+1.

as

z2k+1 = αz2k−3 − β

α − βz2k−3
, z2k+2 = αz2k−2 + β

α + βz2k−2
,

for any k ∈ N. Also

z4k−1 = γkz − δk

γk − δkz
, z4k+1 = γkz1 − δk

γk − δkz1
, z1 = −m1z + 1

z + m1
,
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i.e.

z4k+1 = − γ̂kz + δ̂k

δ̂kz + γ̂k
, γ̂k = γkm1 + δk, δ̂k = δkm1 + γk,

and

z4k = γkz + δk

γk + δkz
, z4k+2 = γkz2 + δk

γk + δkz2
, z2 = m2z − 1

z − m2
,

i.e.

z4k+2 = γ̃kz − δ̃k

δ̃kz − γ̃k
, γ̃k = γkm2 + δk, δ̃k = δkm2 + γk,

for any k ∈ N are shown.
With this point set z ∈ D, zk, k ∈ N, the harmonic Green function is constructed

and the Dirichlet problem is solved for the Poisson equation in the hyperbolic strip
D. For the harmonic Neumann problem besides the above parqueting two more
parquetings ofC are required. They arise from reflecting the parquetings of the discs
D−m1(r1) and Dm2(r2) at their boundaries rather than reflecting D at its boundary.
These reflections produce the same parqueting of the complex plane and the same
point set zk out of the point z, but their representations differ. This turns out to be
more proper for the different parts of the boundary ∂D, see [1].

The coincidence as well of the reflections

ẑ2k = −m1z2k+1 + 1

z2k+1 + m1
= κ2k+1z2k−1 + λ2k+1

λ2k+1z2k−1 + κ2k+1
,

κ2k+1 = m1m2k+1 − 1, λ2k+1 = m1 − m2k+1,

of

z2k+1 = −m2k+1z2k−1 + 1

z2k−1 + m2k+1
,

at ∂D−m1(r1) with z2k as of the reflections

ẑ2k−1 = m2z2k+2 − 1

z2k+2 − m2
= κ2k+2z2k − λ2k+2

κ2k+2 − λ2k+2z2k
,

κ2k+2 = m2m2k+2 − 1, λ2k+2 = m2 − m2k+2,

of

z2k+2 = m2k+2z2k − 1

z2k − m2k+2
,

at ∂Dm2(r2) with z2k−1 are shown in [1].
By the parqueting-reflection principle the harmonic Green function forD is given

as G1(z, ζ ) = log |P(z, ζ |2 with
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P(z, ζ ) = 1 − zζ

ζ − z

ζ − z1
1 − z1ζ

ζ − z2
1 − z2ζ

∞∏

k=1

1 − z4k−1ζ

ζ − z4k−1

1 − z4kζ

ζ − z4k

ζ − z4k+1

1 − z4k+1ζ

ζ − z4k+2

1 − z4k+2ζ
.

The Neumann function for D is

N1(z, ζ ) = − log |Q(z, ζ )|2, z ∈ D, ζ ∈ D,

with

Q(z, ζ ) = (ζ − z)(1 − zζ )

∞∏

k=1

ζ − z2k−1

ζ + 1

1 − z2k−1ζ

z2k−1(1 + ζ )

ζ − z2k
ζ − 1

1 − z2kζ

z2k(1 − ζ )
.

By experience it is known that Green and Neumann functions are related with one
another. Choosing all the points from the parqueting-reflection construction as poles
rather than as poles and zeroes of a meromorphic function provides the Neumann
function. However, in case of infinitely many poles the product involved does not
need to converge. If it does not, convergence providing analytic factors have to be
incorporated not adding further poles and zeroes to the function.

As it turns out, it is more proper here for the case of the hyperbolic strip to alter
the factors of the infinite product for the Neumann function in replacing the form
1 − zkζ by 1

zk
− ζ . The function N1(z, ζ ) constructed here is just some harmonic

Neumann function for D, neither satisfying the often used normalization condition
[5, 7] nor being symmetric in its two variables.

For the Dirichlet problem the Poisson kernel, i.e. the normal derivatives of the
Green function at the boundary ∂D, for the Neumann problem the normal derivatives
of the Neumann function have to be calculated. This is done in detail in [1, 3]. Here
the results differ for the three different parts of the boundary ∂D.

Theorem 5

1. For ζ ∈ ∂D ∩ ∂D, the four corner points {− 1
2 ± i r1m1

, 1
2 ± i r2m2

} excluded, and
z ∈ D

lim|z|→1
(ζ ∂ζ + ζ∂ζ )G1(z, ζ ) = −2 lim|z|→1

[ ζ

ζ − z
+ ζ

ζ − z
− 1

]
,

lim|z+m1|→r1
(ζ ∂ζ + ζ∂ζ )G1(z, ζ ) = 0,

lim|z−m2|→r2
(ζ ∂ζ + ζ∂ζ )G1(z, ζ ) = 0.

2. For ζ ∈ ∂D ∩ ∂D−m1(r1), the two corner points {− 1
2 ± i r1m1

} excluded, and
z ∈ D

lim|z|→1
∂νζ

G1(z, ζ ) = 0,
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lim|z+m1|→r1
∂νζ

G1(z, ζ ) = 2

r1
lim|z+m1|→r1

[ζ + m1

ζ − z
+ ζ + m1

ζ − z
− 1

]
,

lim|z−m2|→r2
∂νζ

G1(z, ζ ) = 0.

3. For ζ ∈ ∂D ∩ ∂Dm2(r2), the two corner points { 12 ± i r2m2
} excluded, and z ∈ D

lim|z|→1
∂νζ

G1(z, ζ ) = 0,

lim|z+m1|→r1
∂νζ

G1(z, ζ ) = 0,

lim|z−m2|→r2
∂νζ

G1(z, ζ ) = 2

r2
lim|z−m2|→r2

[ζ − m2

ζ − z
+ ζ − m2

ζ − z
− 1

]
.

Theorem 6 The Dirichlet problem

wzz = f in D, f ∈ Lp(D;C), 2 < p,

w = γ on ∂D, γ ∈ C(∂D;C), γ (−1

2
± i

m1

r1
) = γ (

1

2
± i

m2

r2
) = 0,

is uniquely solvable by

w(z) = − 1

4π

∫

∂D
γ (ζ )∂νζ

G1(z, ζ )dsζ − 1

π

∫

D
f (ζ )G1(z, ζ )dξdη.

The proof follows by verification on the basis of properties of the Poisson kernels
and of the Pompeiu operator [4].

For any z ∈ D the normal derivative of N1(z, ·) at the boundary ∂D\{− 1
2 ±

i r1m1
, 1
2 ± i r2m2

} is

∂νζ
N1(z, ζ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2Re(ζ ∂ζ )N1(z, ζ ) = −2, ζ ∈ ∂D ∩ ∂D,

−2Re((ζ + m1)∂ζ )N1(z, ζ ) = 2 − 4
m1 − 1

|ζ + 1|2 ,

z ∈ ∂D ∩ ∂D−m1(r1),

−2Re((ζ − m2)∂ζ )N1(z, ζ ) = 2 − 4
m2 − 1

|ζ − 1|2 ,

z ∈ ∂D ∩ ∂Dm2(r2).

Obviously, N1(z, ζ ) is also harmonic in the variable z. Its normal derivative with
respect to this variable is also important.
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On ∂D the normal derivative of N1(z, ζ ) with respect to the variable z except at
the corner points is

∂νzN1(z, ζ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2, z ∈ ∂D ∩ ∂D, ζ ∈ D\∂D,

−1 − |z|2
|z|2 , z ∈ ∂D ∩ ∂D−m1 (r1), ζ ∈ D\∂D−m1 (r1),

z ∈ ∂D ∩ ∂Dm2 (r2), ζ ∈ D\∂Dm2 (r2),

2

(
ζ

ζ − z
+ ζ

ζ − z
− 2

)

, z, ζ ∈ ∂D ∩ ∂D,

−2

(
ζ + m1

ζ − z
+ ζ + m1

ζ − z
− 1

)

− 1 − |z|2
|z|2 , z, ζ ∈ ∂D ∩ ∂D−m1 (r1),

−2

(
ζ − m2

ζ − z
+ ζ − m2

ζ − z
− 1

)

− 1 − |z|2
|z|2 , z, ζ ∈ ∂D ∩ ∂Dm2 (r2).

Any w ∈ C2(D;C) ∩ C1(D;C) for regular domains D is representable as

w(z) = − 1

4π

∫

∂D
{w(ζ )∂νζ

N1(z, ζ ) − ∂νζ
w(ζ )N1(z, ζ )}dsζ

− 1

π

∫

D
wζζ (ζ )N1(z, ζ )dξdη.

Here N1(z, ζ ) is the harmonic Neumann function for D. This representation formula
provides the solution to the Neumann problem for the Poisson equation in case it
exists.

Theorem 7 The Neumann problem for the Poisson equation

wzz = f in D, ∂νw = γ on ∂D,

for f ∈ Lp(D;C), 2 < p, γ ∈ C(∂D;C), γ (− 1
2 ± i m1

r1
) = γ ( 12 ± i m2

r2
) = 0, is

solvable if and only if

1

2π

∫

∂D
γ (ζ )dsζ = 2

π

∫

D
f (ζ )dξdη.

The solution then is with some arbitrary c ∈ C

w(z) = c + 1

4π

∫

∂D
γ (ζ )N1(z, ζ )dsζ − 1

π

∫

D
f (ζ )N1(z, ζ )dξdη.

Remark The assumption on the boundary function to vanish at the corner points can
in principal be abandoned for both the Dirichlet and the Neumann problems, see, e.g.
[8, 15]. Obviously, the given Neumann function fails to be symmetric in its variables.
If no normalization condition is required in principal some harmonic functions in just
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one of the variables not depending on the other one can be added. What is important
here, is the fact, that the normal derivatives besides the Poisson kernels are constant
in the respective variable. However, the Green function in general is symmetric. As
is well known, this is a consequence from its three basic properties.
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A Genetically Distinguishable Competition
Model

Irene Azzali, Giulia Marcaccio, Rosanna Turrisi and Ezio Venturino

Abstract A mathematical ecogenetic model of competition type is presented. The
system behavior is completely assessed, either analytically when possible or through
numerical simulations. No sustained oscillations are possible, while the equilibria
of the system are linked via a chain of transcritical bifurcations. The most important
result of the investigation shows that the principle of competitive exclusion is possibly
violated in suitable situations.

Keywords Ecogenetic models · Genotypes · Competing models · Equilibria ·
Stability · Bifurcations

1 Introduction

Genetically distinguishable populations have been recently considered also in the
context of ecology, giving rise to mathematical ecogenetic models, [1, 3]. The demo-
graphic situation envisioned in the former papers was always the interaction among
predators and prey, with the possibility of having the genetically distinguishable pop-
ulation to be either one of the two. Other possible interactions can be considered,
among which the most important one is the competition of different populations. To
this purpose, in this paper we want to present and investigate a competition model
in which one of the population exhibits genetic variability.
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The system behavior is completely characterized, either analytically or when this
is not possible via numerical simulations. Persistent oscillations are shown never
to arise, while the equilibria of the system are related to each other via a chain of
transcritical bifurcations. The major result that is achieved in this context is that
the well-known principle of competitive exclusion, [4], does not necessarily hold in
this context. There is a certain parameter range for which it is violated, where both
populations can coexist.

The paper is organized as follows.We present the system in the next section. After
easily establishing the boundedness of the trajectories, we analyze the equilibria in
Sect. 3 and then their stability, Sect. 4. The overall system’s behavior is examined in
Sect. 5 and a final discussion on the findings concludes the paper.

2 The Model

In this article, we describe a model of competition between two populations, one
of which presents two different genotypes. Let Y (t) and Z(t) denote the two dis-
tinct genotypes and let X (t) be the variable that represents the other species. We
assume that the populations live in the same environment and that X (t) reproduces
logistically.

We consider the following model:

dX

dτ
= r

(
1 − X

K

)
X − hX Z − gXY

dY

dτ
= p(aY + bZ) − cY 2 − f Y Z − uY X

dZ

dτ
= q(aY + bZ) − nZ2 − mY Z − vZ X. (1)

Here all the parameters are always assumed to be nonnegative. Let r denote the
reproduction rate of X , let K be its carrying capacity and let h and g, respectively,
be the competition rates suffered by X against the two subpopulations Z and Y .
The constants c, f and n, m are the intraspecific competition coefficients of the
genotypesY and Z , with other individuals of the samegenotype or the other genotype.
Instead, u and v represent the interspecific competition of Y and Z against the other
population X . We also assume that the two genotypically distinct subpopulations Y
and Z reproduce at rates a and b, respectively; in general we take a �= b because the
difference in genotype can cause different reproduction capabilities. In this situation,
the key factor is here represented by the term in bracket in the last two equations of
(1), that describes the fact that the two subpopulations can give rise to newborns of
both genotypes. The fractions of newborns of Y and of Z , respectively, are p and q
with p + q = 1.

The model can be nondimensionalized letting X (τ ) := αx(t), Y (τ ) := βy(t),
Z(τ ) := γ z(t), τ := δt . We then have

dX

dτ
= α

dx

dt

dt

dτ
,

dY

dτ
= β

dy

dt

dt

dτ
,

dZ

dτ
= γ

dz

dt

dt

dτ
.
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Substituting into the system and choosing α := K , β := b
c , γ := b

f , δ := b and

defining the new parameters A := r
b , B := h

f , C := g
c , D := a

b , E := c
f , U := uK

b ,

N := n
f , M := m

c , V := vK
b we have the rescaled model

dx

dt
= A(1 − x)x − Bxz − Cxy

dy

dt
= p(Dy + Ez) − y2 − yz −Uyx

dz

dt
= q

(
D

E
y + z

)
− Nz2 − Mzy − V zx . (2)

Boundedness of the system’s trajectories can be easily discussed, following the
steps of [1] even with some simplifications. Let W = x + y + z denote the total
ecosystem population. For 0 < η, we have

dW

dt
+ ηW ≤ (A + η)x − Ax2

+ 1

E
(pDE + Eη + qD) y − y2 + (pE + q + η)z − Nz2

≤ A + η

4A
+ pDE + Eη + qD

4E
+ pE + q + η

4N
= L

so that ultimately we find W (t) ≤ max{W (0), Lη−1}, as desired.

3 Equilibria

The possible equilibria of the system (2) are the system total collapse, E0 = (0, 0, 0),
the first-population-only point, at the carrying capacity level, E1 = (1, 0, 0), the
second-population-only equilibrium E2 = (0, y2, z2), andpossibly coexistence E∗ =
(x∗, y∗, z∗). The first two equilibria are always feasible. We now investigate E2. Its
subpopulation levels can analytically be assessed, as the intersections of the following
two conic sections:

y2 + y(z − pD) − pEz = 0 ENz2 + zE(My − q) − qDy = 0. (3)

We can rewrite these curves as

z(y) = y
y − pD

Ep − y
, y(z) = Ez

Nz − q

qD − EMz
. (4)

The curve z(y) in the system (4) presents a vertical asymptote, y = Ep, and crosses
the y-axis at y = 0 and y = pD. Therefore, it is necessary to distinguish the cases
Ep > pD and Ep < pD to determine the configuration of the points belonging to
the curve. Similarly, the equation for y(z) presents an horizontal asymptote, z = qD

ME ,
and crosses the z-axis at z = 0 and z = q

N . Here again there are the two cases
qD
ME <

q
N

and qD
ME >

q
N . Thus, overall there are four possible situations depicted in Fig. 1.
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Fig. 1 The four possible positions of the conic sections a ME
N < D < E b D < min

{
E1

ME
N

}

c D > max
{
E1

ME
N

}
d E < D < ME

N

In any case we always find an intersection in the first quadrant, which means that
the equilibrium E2 is always feasible.

We now analyze the coexistence. Solving for x from the first equation of (2),

x = 1 − B

A
z − C

A
y. (5)

and substituting into the other two equations we obtain a system for the following
two conic sections:

Γ : y2(UC − A) + y(pDA −U A) + yz(UB − A) + pAEz = 0,

Φ : z2(EV B − NEA) + z(q AE − V AE) + yz(VCE − MAE) + qDAy = 0,
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Since the determinants of thematrices associatedwith the conics are always negative,
Γ and Φ are hyperbolae. To obtain a nonnegative value for x∗ from (5), we need to
find their intersection in the half plane z > C

B y + A
B .

The curve Γ has the following properties: its center is the point CΓ , its intersec-
tionswith the axes areO = (0, 0), P1; its asymptotes are y = yCΓ

and z = mΓ y + qΓ

where qΓ = zCΓ
− mΓ yCΓ

and

CΓ = (
yCΓ

, zCΓ

) =
(

ApE

A −UB
,
2ApE(UC − A) + (ApD − AU )(A −UB)

(A −UB)2

)
,

P1 =
(
AU − ApD

UC − A
, 0

)
, mΓ = A −UC

UB − A
.

For Φ the center is CΦ , the intersections with the axes are O = (0, 0) and P2 and
the asymptotes are z = zCΦ

and y = mΦz + qΦ with qΦ = yCΦ
− mΦzCΦ

and where

CΦ = (
yCΦ

, zCΦ

) =
(

AqE − EV A

MAE − VCE
+ 2(EV B − NEA),

AqD

MAE − VCE

)
,

P2 =
(
0,

V AE − q AE

EV B − NEA

)
, mΦ = MAE − EVC

EV B − NEA
.

Unfortunately, all the coefficients appearing in the above expressions are of uncer-
tain sign, so that to study the conic sections, we need to locate their centers in every
possible way in the four quadrants. In the following Table, we provide sufficient
conditions for the existence of at least one intersection in the first quadrant between
the hyperbolae Γ and Φ. Figure2 contains an illustration of case (7).

Fig. 2 Illustration of case (7)
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(1) yCΓ
, zCΓ

, yCΦ
, zCΦ

> 0: (2) yCΓ
, zCΓ

, yCΦ
> 0, zCΦ

< 0:

mΦ > mΓ > 0; qΓ < 0, qΦ > 0 mΦ > 0 > mΓ ; qΓ , qΦ > 0

(3) yCΓ
, zCΓ

> 0, yCΦ
, zCΦ

< 0: (4) yCΓ
> 0, zCΓ

, yCΦ
, zCΦ

< 0:

0 < mΦ < mΓ ; qΓ > 0, qΦ < 0 mΦ > 0 > mΓ ; qΓ , qΦ < 0

(5) yCΓ
, zCΓ

, yCΦ
, zCΦ

< 0: (6) yCΓ
, zCΦ

< 0, zCΓ
, yCΦ

> 0:

mΦ > mΓ > 0; qΓ , qΦ > 0 mΦ > mΓ > 0; qΓ , qΦ > 0

(7) yCΓ
, zCΦ

> 0, zCΓ
, yCΦ

< 0: (8) yCΓ
, zCΓ

, zCΦ
> 0, yCΦ

< 0:

mΦ,mΓ > 0; qΓ , qΦ < 0 mΦ > 0,mΓ < 0; qΓ > 0, qΦ < 0

(9) yCΓ
, yCΦ

, zCΦ
> 0, zCΓ

< 0: (10) zCΓ
> 0, yCΓ

, yCΦ
, zCΦ

< 0:

mΦ,mΓ < 0; qΓ < 0, qΦ > 0 mΓ > mΦ > 0; qΓ > 0, qΦ < 0

(11) yCΦ
> 0, yCΓ

, zCΓ
, zCΦ

< 0: (12) yCΓ
, yCΦ

> 0, zCΓ
, zCΦ

< 0:

mΦ > mΓ > 0; qΓ , qΦ > 0 mΓ > mΦ > 0; qΓ < 0, qΦ > 0

(13) zCΓ
, zCΦ

> 0, yCΓ
, yCΦ

< 0: (14) yCΦ
, zCΦ

> 0, yCΓ
, zCΓ

< 0:

mΓ > mΦ > 0; qΓ > 0, qΦ < 0. mΦ,mΓ > 0; qΓ , qΦ < 0.

(15) zCΦ
> 0, yCΓ

, zCΓ
, yCΦ

< 0: (16) zCΓ
, yCΦ

, zCΦ
> 0, yCΓ

< 0:

mΓ ,mΦ > 0; qΓ , qΦ < 0. mΓ > mΦ > 0; qΓ > 0, qΦ < 0.

4 Stability Analysis

To assess the stability of the various equilibria of (2) we need its Jacobian:

⎛

⎝
A − 2Ax − Bz − Cy −Cx −Bx

−Uy pD − 2y − z −Ux pE − y
−V z q D

E − Mz q − 2Nz − My − V x

⎞

⎠ (6)

At the origin, we find eigenvalues: λ1 = pD + q > 0, λ2 = 0, and λ3 = A > 0,
from which the instability of this point is immediate.
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4.1 Equilibrium E1

At E1 one eigenvalue is immediately factorized, λ1 = −A, while the remaining
ones are the roots of the quadratic equation P(λ) := λ2 + (V − pD − q +U )λ −
V pD −Uq +UV . Its roots are

λ2,3 = 1

2
(pD + q −U − V ) ± √

Δ

with

Δ = (V − pD − q +U )2 − 4(UV −Uq − V pD)

= (pD)2 + (2V − 2U + 2q)pD + q2 + V 2 +U 2 − 2qV − 2UV + 2qU.

We now investigate this discriminant in terms of the model parameters.
Consider at first the case Δ = 0, regarding the last above expression as the fol-

lowing quadratic equation in terms of pD, observing that it is a convex function:

(pD)2 + (2V − 2U + 2q)pD + q2 + V 2 +U2 − 2qV − 2UV + 2qU = 0. (7)

Its discriminant is

δ = (2V − 2U + 2q)2 − 4(q2 +U2 + V 2 − 2qV − 2UV + 2qU ) = 16q(V −U ). (8)

Observe that pD is the product of two parameters of the model (2) so that it has to
be real and nonnegative. Hence, we must impose that the discriminant δ (8) of (7)
is nonnegative, i.e., V ≥ U . Otherwise, the two roots of (7) would not be real, since
in fact (7) represents a parabola with positive concavity, it would not intersect the
pD-axis. We can conclude that for V ≥ U , for all values of the parameters we obtain
δ > 0, i.e., we have two different roots, which are

pD± = 2U − 2q − 2V ± 4
√
q(V −U )

2
= U − q − V ± 2

√
q(V −U ).

Further we can note that if V = U we have pD1,2 = −q < 0 which cannot hold,
since as mentioned pD is nonnegative. Therefore, in order to have acceptable values
we have to take V > U . Nevertheless, under this condition, the value pD− = U −
q − V − 2

√
q(V −U ) is negative and then not admissible. Similarly, we ask pD+

to be positive, and this amounts to have 2
√
q(V −U ) > q + V −U , which cannot

be verified because from V > U , it would then follow (q +U − V )2 < 0. Hence we
are in the same situation described before: there are no possible solutions. In view
of these considerations, we can conclude that Δ = 0 is impossible and therefore it
is of one sign. We always have Δ > 0, because its expression is a convex parabola
as observed above. Hence λ2, λ3 ∈ R : λ2 �= λ3.
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ByDescartes’ rule of sign on (7) we can obtain necessary and sufficient conditions
for a stable equilibrium. If there are two permanences of the sign in P(λ) then λ2

and λ3 will be negative. This is verified if and only if

pD < V +U − q, pD <
U (V − q)

V
.

The quantity U (V − q)V−1 must be positive, therefore we have to impose q < V .
Also note that

min

{
V +U − q,

U (V − q)

V

}
= U (V − q)

V
,

otherwise we would have U + V − q ≤ U −UqV−1 and in turn V 2 ≤ Vq −Uq.
On the other hand we took q < V , which implies Vq < V 2 so that finally we find
Vq ≤ Vq −Uq which is a contradiction since Uq > 0. We can therefore conclude
that under the following assumptions

q < V, pD <
U (V − q)

V
(9)

all the eigenvalues of the characteristic polynomial are negative, thus E1 is asymp-
totically stable. Note that there is a transcritical bifurcation for

D† = U

p

(
1 − q

V

)
. (10)

We give a numerical example of such situation. We change only the parameter D
while maintaining all the other ones fixed, at the values: A = 1.7, B = 2, C = 0.5,
p = 0.67, E = 2.3, U = 2, q = 0.33, N = 2, M = 2.2, V = 3.

Figure3 illustrates the change of stability of E1. As long as 0 < D < U (V −
q)(V p)−1 holds, E1 is stable, if D > U (V − q)(V p)−1 it becomes unstable and the
system settles first to the coexistence equilibrium and then to the equilibrium E2.

4.2 Equilibrium E2

In this case the Jacobian also factorizes to give one explicit eigenvalue, A − Bz2 −
Cy2, while the remaining ones, using the equilibrium equations, come from the 2 × 2
matrix

Ĵ =
(

−y2 − pE z2
y2

pE − y2
q D

E − Mz2 −Nz2 − q Dy2
Ez2

)

.

The Routh–Hurwitz conditions become
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Fig. 3 Transcritical bifurcation at E1 in terms of the parameter D. In the top frame we have
equilibrium E1, for low values of the bifurcation parameter, D = 1.2. In the central frame, we
have the coexistence equilibrium, for larger values, D = 3. Finally in the bottom frame, we find
equilibrium E2 for even larger values, D = 6

−tr( Ĵ ) = y2 + pE
z2
y2

+ Nz2 + q
Dy2
Ez2

> 0,

det( Ĵ ) =
(
y2 + pE

z2
y2

)(
Nz2 + q

Dy2
Ez2

)
− (E − y2)

(
q
D

E
− Mz2

)
> 0, (11)

the first one of which is easily seen to be satisfied.

4.3 Coexistence E∗

Using the equilibrium equations, the Jacobian evaluated at E∗ becomes

J|(x∗ ,y∗,z∗)
=

⎛

⎝
−Ax∗ −Cx∗ −Bx∗
−Uy∗ −y∗ − pE z∗

y∗ pE − y∗

−V z∗ q D
E − Mz∗ −Nz∗ − q D

E
y∗
z∗

⎞

⎠ .

The characteristic equation of the Jacobian evaluated at E∗ is the monic cubic

3∑

i=0

a3−iλ
i = 0
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with the coefficients

a1 = −tr(J ) = Ax∗ + y∗ + pE
z∗

y∗ + Nz∗ + q
D

E

y∗

z∗

a2 = 1

2
(tr(J )2 − tr(J 2)) = Ax∗

(
y∗ + pE

z∗

y∗

)
−UCx∗y∗ +

(
y∗ + pE

z∗

y∗

)

×
(
Nz∗ + q

D

E

y∗

z∗

)
−

(
q
D

E
− Mz∗

)
(pD − y∗)

+ Ax∗
(
Nz∗ + q

D

E

y∗

z∗

)
− V Bx∗z∗

a3 = −det(J ) = Ax∗
(
y∗ + pE

z∗

y∗

) (
Nz∗ + q

D

E

y∗

z∗

)
+ CV x∗z∗(y∗ − pE)

+ BUx∗y∗
(
Mz∗ − q

D

E

)
.

Applying the Routh–Hurwitz criterion to the cubic we have that E2 is stable if and
only if

a1 > 0, a3 > 0 and a1a2 − a3 > 0.

5 Bifurcations and System’s Behavior

In this section, we summarize the system’s behavior. In Fig. 4 we plot the bifur-
cation diagram of the system as function of the bifurcation parameter D. Initially,
for values of D below 3, we find equilibrium E1. Then at D = 3 a transcritical
bifurcation occurs, for which the coexistence equilibrium arises for 3 < D < 4.
Another transcritical bifurcation is found at D = 4 giving equilibrium E2 for larger
values of D.

Note that Hopf bifurcations never arise in this model. In fact, they are not possible
at equilibrium E0 in view of the fact that the eigenvalues are real. At E1 we have
also shown that the characteristic equation factorizes to give a quadratic, for which
the roots are once again always real. At E2 the trace of the 2 × 2 reduced Jacobian
is strictly negative, compare indeed the first condition in (11). Empirically, finally,
we have seen that no persistent oscillations arise at coexistence, see the portion of
Fig. 4 in which the coexistence equilibrium is found. Thus persistent oscillations are
excluded in this context.
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Fig. 4 System’s behavior as function of the bifurcation parameter D. Starting from low values of D
we encounter first equilibrium E1, then coexistence E∗, then finally equilibrium E2. No oscillations
are found around coexistence

6 Conclusion

We have introduced and presented a competition model between two species, of
which one exhibits two different genotypes. Boundedness of the system’s trajecto-
ries shows that the ultimate system’s behavior is captured by the equilibria analysis.
We have found explicitly two equilibria: the origin E0 corresponding to system’s
disappearance, which however cannot occur in view of its instability, and the equi-
librium with just the population that is not genetically distinct, E1. We have further
shown the existence of the equilibrium in which only the genetically distinguishable
population thrives, E2, and of the coexistence, which has also been shown to be feasi-
ble by numerical simulations. Analytically, for the latter, we have provided sufficient
conditions for its feasibility. The major result in this context however is the fact that
the well-known principle of competitive exclusion, for which in classical models [4]
only one of the two competitors ultimately survives, here does not necessarily hold.
It is violated in fact, at coexistence, as shown explicitly in Fig. 4 for an intermediate
range of the bifurcation parameter.

Comparing these results with the predator–prey models already studied, [1, 2],
here we find four equilibria instead of three. The reason is that here both populations
can thrive independently, while in the predator–prey situation, since the predators
are assumed to be specialists, they cannot survive without prey. The essence of the
equilibria in the two types of models is however the same, corresponding to system’s
collapse, which in all the models is not possible, a good result from the conservation-
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ist viewpoint, the one-population-only equilibrium, which is the prey-only point in
[1, 2] and here is given by E1 and E2, and coexistence of the whole ecosystem.

The system’s behavior mainly depends on the parameter D = ab−1 representing
the ratio between the growth rates of the two genetically distinguishable subpop-
ulations y and z. Focusing on E1, we have found that for values of D below the
threshold (10) it is stable, while for values above it, it exhibits instability, and the
system settles to coexistence. It is worthy to note that the same type of bifurcation
appears in the model [2], relative to the equilibrium in which the distinguishable
predators are extinct. In our model a further transition has been found by simulations
for which from E∗ we recover the second-population-only equilibrium E2.

Also, no persistent oscillations have been discovered numerically, and in some
instances also shown analytically not to arise.

Another interesting feature of the system, in line with what has already been
observed in both [1, 2], is that the equilibrium in which just one of the genotypes
thrives is not possible. The reason is that both genotypes generate, although possibly
at different rates, individuals of the other one, so that if the latter becomes extinct, it
can always be regenerated by the first subpopulation.
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Discrete and Phase-Only Receive
Beamforming
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Abstract Weconsider an analog receive beamforming problem for awireless board-
to-board communication scenariowith a static channel andfixedpositions of all trans-
ceivers. Each transceiver is equippedwith an antenna array for receiving signals from
the neighboring board. Every single antenna element of the array is controlled by a
phase shifter and an amplifier with finite resolution only (known as discrete beam-
forming). Hence, maximizing the Signal-to-Interference-and-Noise Ratio (SINR)
yields a difficult discrete optimization problem. As first contribution, we present an
overview of recently developed inexact and exact solution methods for this discrete
SINR-maximization problem. The branch-and-bound principle is a basic tool for
the exact methods. In this context, upper bounds for the SINR at the nodes of the
branch-and-bound tree play an important role for the efficiency of such methods. We
show in particular how tight upper bounds can be obtained by means of fractional
programming. Our second contribution is for the case of phase-only beamforming,
i.e., if the amplitudes of the antenna elements are fixed. We show for this case how
the quality of the upper bounds can be improved.Moreover, we compare the different
approaches with respect to the achieved SINR and the computational expense.
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1 Introduction

Analog beamforming is an important technique in wireless communications, espe-
cially for mm-wave systems [17]. In comparison to digital beamforming, the analog
technique provides less functionalities but only requires a single ADC/DAC per
antenna array which yields lower energy consumption and production costs [16].
Since energy efficiency is an essential criterion for intended applications [14], we
consider analog beamforming in this paper. In that case, the use of finite resolution
phase shifters reduces the system complexity and production costs, but implicates
that the considered optimization problems are discrete.

Analog beamforming with a quantized number of phase shifts and aiming at
the minimization of a mean squared error has been considered in [19]. Transmit
beamforming with discrete phases and amplitudes is studied, for example in [8, 9].
In this paper, we focus on discrete receive beamforming. We present and compare
different inexact and exact solution approaches for the discrete SINR-maximization
problem based on results in [11–13]. Additionally, a greedy approach is discussed
as an alternative heuristic method.

Moreover, we consider discrete phase-only beamforming, i.e., the beamform-
ing weights have constant magnitudes and variable discrete phases. Phase-only
beamforming yields difficult optimization problems also in the case of continu-
ous phases. In contrast to the SINR-maximization problem with continuous beam-
forming weights (which has a closed-form solution), there is no direct solution to
the corresponding phase-only beamforming problem [18]. Some algorithms for a
local solution were introduced, for example in [1, 18]. Many other approaches for
phase-only problems are based on heuristic optimization methods, e.g., [4]. Discrete
phase-only beamforming in the transmit case has recently been studied in [6, 7].
For phase-only receive beamforming, the approach on discrete SINR-maximization
from [12] will be improved with respect to the tightness of upper bounds needed
for using the branch-and-bound principle. The results presented in this paper can
also be used to obtain an approximate solution for the continuous phase-only SINR-
maximization problem by replacing the continuous phases by a sufficiently fine grid
of discrete phases.

The paper is organized as follows: In Sect. 2, the discrete SINR-maximization
problem is introduced. In Sect. 3, we discuss inexact solution strategies: a simple
roundedCaponbeamformer, a greedy approach, and an approximatemethodbasedon
branch-and-bound. Exact approaches for the discrete SINR-maximization problem
are presented in Sect. 4. There, the existing approaches [12, 13] are briefly described
and applied to the phase-only beamforming case. In Sect. 5, the different approaches
are compared for a set of simulation scenarios. Section6 concludes this paper.
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2 Discrete Receive Beamforming

In the receive beamforming case, an antenna array receives the desired signal s1
and interfering signals s2, . . . , sD from D different directions. It is assumed that all
signals arrive as plane waves. Without loss of generality, the signal power P1 of the
desired signal is normalized to 1. The M individual antenna elements are assumed
to be omnidirectional. A vector w ∈ CM is called beamformer if its k-th component
wk describes the amplification |wk | and the phase shift arg(wk) which acts on the
received signal at the k-th antenna element.

We aim at maximizing the Signal-to-Interference-and-Noise Ratio

SINR(w) := |wHa|2
wHRw

,

where a is the array steering vector for the desired signal and R is the interference-
and-noise covariance matrix. The matrix R can be modeled as

R =
D∑

d=2

Pdad(ad)H + σ2I.

Here, Pd and ad are the signal power and the steering vector according to the signal
sd and σ2 denotes the variance of the uncorrelated noise. In our static scenario with
given positions of all transceivers, we can assume that the steering vector a and the
covariance matrix R are known. In the case of continuous beamforming weights
(phases and amplitudes) the SINR is maximized by the Capon beamformer [5]

wcap := R−1a

aHR−1a
(1)

and by all of its nonzero complex multiples.
For finite resolution phase shifters and amplifiers the discrete SINR-maximization

problem is

max
w∈DM

|wHa|2
wHRw

(2)

with D denoting the discrete set of all feasible phase-and-amplitude combinations.
In case of discrete phase-only beamforming (only the phase of the signal can be
changed at the receive antennas) we assume that the corresponding phase shifters
have a resolution of m bit. Then, the discrete set D is given by

D :=
{

e jϕ
∣∣
∣∣ ϕ ∈

{
kπ

2m−1

∣∣
∣∣ k ∈ {0, 1, . . . , 2m − 1}

}}

. (3)
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3 Inexact Solution Strategies

We present three different approaches for an approximate solution of the discrete
SINR-maximization problem (2). The easiest idea is a simple rounding strategy,
where the Capon beamformer wcap is rounded to the nearest feasible beamformerwr

in the discrete set DM , i.e.,

wr ∈ argmin
w∈DM

‖w − wcap‖, (4)

where ‖z‖ is given by
√
zHz for any complex vector z.

A more sophisticated approach for problem (2) is the use of a greedy algorithm
related to [2]. We start with an arbitrary feasible beamformer w0, e.g., a rounded
Capon beamformerwr from (4). Then, we successively try to improve one individual
component of w while all other components remain fixed. This is repeated with
the next component of w and so on until no further improvement is possible. The
procedure is summarized in Algorithm 1.

Algorithm 1 (Greedy coordinate search)

1: Choose w0 ∈ DM and set i := 0.
2: for k = 1 : M do
3: Choose wi+1

k ∈ argmax
d∈D

{
SINR(wi+1

1 , . . . ,wi+1
k−1, d,wi

k+1, . . . ,w
i
M )

}
.

4: end for
5: if SINR(wi+1) > SINR(wi ) then
6: i �→ i + 1 and goto line 2.
7: else
8: wgreedy := wi and stop.
9: end if

Remark 1 Weemphasize that a greedy beamformerwgreedy is generally not a solution
of problem (2), but it cannot be improved by only changing a single component.

Branch-and-bound is awell-knownprinciple that can often be successfully applied
to discrete optimization problems to obtain an exact solution [15]. For using this prin-
ciple, it is necessary to compute (preferably tight) bounds for certain subproblems. In
our case, the objective function SINR(·) is nonconcave, indeed it is a fraction of two
convex functions—a so-called convex–convex (quadratic) fractional program.There-
fore, replacing the discrete set D by C (the usual relaxation technique for obtaining
bounds) leads to nonconcave subproblems. Even if these subproblems arise by sim-
ply fixing certain components of w (as it will be done later), the Capon beamformer
is not applicable since w cannot be arbitrarily scaled anymore. Therefore, instead
of maximizing the SINR, it was suggested in [11] to replace (2) by a minimization
problem with a convex objective, namely

min
w∈DM

fc,z(w) := wHRw + c|wHa − z|2. (5)
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The parameter c > 0 is a weighting parameter and the parameter z ∈ C \ {0}
describes the desired antenna array output. The function fc,z is the weighted sum
of interference and noise wHRw and of the squared deviation from the desired
array output |wHa − z|2. The parameter c enables a trade-off between the min-
imization of these two objectives. Obviously, fc,z is a convex function for any
(c, z) ∈ (0,∞) × C. The continuous relaxation of (5) (D is replaced by C) has
the unique solution

w f = cz(R + caaH)−1a.

The discrete problem (5) can now be solved by branch-and-bound. The subproblems
can be generated by a successive fixing of the individual beamforming components.
The continuous relaxation of the resulting subproblems is always a convex func-
tion with a closed-form solution, i.e., it can be obtained with low computational
expense, see [11] for details. The solution wapprox of the discrete optimization prob-
lem (5) provides a certain approximation for the exact solution of the original discrete
SINR-maximization problem (2). Simulation results with respect to the quality of
the approximate solutions are given in Sect. 5.

4 Exact Solution of the Discrete SINR-Maximization
Problem

For an exact solution of the discrete SINR-maximization problem (2) the branch-and-
bound principle can be applied successfully as well. To this end, reasonable upper
bounds for subproblems arising in the branch-and-bound tree are required.We briefly
describe the corresponding approach from [13], where the SINR-maximization prob-
lem with discrete phases and amplitudes is solved exactly.

During the branch-and-bound procedure, the components of the beamforming
vector w are fixed successively. Depending on the node in the branch-and-bound
tree, letw1 ∈ D k consist of all fixed entries ofw, whereasw2 contains the remaining
variable components, i.e., w = (w1,w2). Then,

SINR(w1,w2) =

∣∣∣∣∣

(
w1

w2

)H (
a1
a2

)∣∣∣∣∣

2

(
w1

w2

)H (
R11 R12

R21 R22

) (
w1

w2

),

where,with L := M − k, the vectorsa1 ∈ Ck ,a2 ∈ CL , and thematricesR11 ∈ Ck×k ,
R12 ∈ Ck×L , R21 ∈ CL×k , R22 ∈ CL×L denote the appropriate components of a and
R, respectively. Now, the subproblems at any node of the branch-and-bound tree can
be written as

max
w2∈DL

SINR(w1,w2) (6)
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with appropriatew1 ∈ D k dependingon the node.Aswealreadymentioned inSect. 3,
an easy solution of the continuous relaxation of (6) cannot be expected. However, a
weaker relaxation is given by

max
ξ ∈ C,w2 ∈ CL

(ξw1,w2) �= 0

SINR(ξw1,w2).
(7)

Fortunately, this problem has the closed-form solution

(
ξ�

w�
2

)
= S−1b

bHS−1b
, (8)

where

S :=
(
wH

1 R11w1 wH
1 R12

R21w1 R22

)
and b :=

(
wH

1 a1
a2

)
,

see [13]. Hence, the subproblems (7) can be solved with low computational burden.
Moreover, it can be shown that the optimal values for (7) and for the continuous
relaxation of (6) are generally equal and only differ in a very special case, see [13]
for details. In other words, the introduction of the additional variable ξ simplifies
the problem without worsening the optimal value. The branch-and-bound algorithm
for the exact solution of the discrete SINR-maximization problem (2) is described in
[13]. There, the beamforming weights are fixed successively and upper bounds for
the corresponding subproblems (6) are obtained from the solution of (7).

The simulation results in [13] show that the number of required bounds for the
branch-and-bound method is low compared to the cardinality of the discrete set
DM . However, it is of interest to further reduce the number of required bounds such
that the algorithm might be applied for larger numbers of antenna elements. Such a
reduction can be achieved by calculating tighter bounds for the subproblems in the
algorithm. Generally, the computation of improved bounds goes along with a higher
computational burden. In [12] it is shown how tighter bounds can be computed
efficiently by means of a fractional programming technique. There, the problem

max
w2∈CL

SINR(w1,w2)

s.t. ‖w2‖2 ≤ Lqmax

(9)

is considered as a relaxation of (6), where qmax := max{|d|2 | d ∈ D} is the square
of the maximal amplitude of a single antenna element.

For phase-only beamforming, the amplitude for each antenna element is fixed (to
1 for simplicity). Therefore, we suggest to tighten the bound that is derived from the
solution of (9) by the optimal value of

max
w2∈CL

SINR(w1,w2)

s.t. ‖w2‖2 = L .
(10)
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Note that the optimal value of this new problem is still an upper bound for the optimal
value of the subproblem (6). The concept for solving (10) is similar to the approach
for (9) which is based on [3] and has been discussed in [12]. Therefore, we only
briefly summarize the procedure. Instead of w2 ∈ CL , a real vector x ∈ R2L is used.
For that purpose, let

x :=
(
Re(w2)

Im(w2)

)
, b1 :=

(
Re(a2aH

1 w1)

Im(a2aH
1 w1)

)
, b2 :=

(
Re(R21w1)

Im(R21w1)

)
,

A1 :=
(
Re(a2aH

2 ) −Im(a2aH
2 )

Im(a2aH
2 ) Re(a2aH

2 )

)
, A2 :=

(
Re(R22) −Im(R22)

Im(R22) Re(R22)

)
,

c1 := wHa1aH
1 w1, c2 := wH

1 R11w1

and the functions f1, f2 : R2L → R with

fk(x) := x
Akx + 2b

k x + ck, k = 1, 2

be defined. Then, we have

SINR(w1,w2) = SINR(w1, x) = x
A1x + 2b

1 x + c1

x
A2x + 2b

2 x + c2

= f1(x)

f2(x)

and the optimization problem (10) is equivalent to

max
x∈X

f1(x)

f2(x)
, (11)

where
X :=

{
x ∈ R2L

∣∣
∣ x
x = L

}
.

This problem is a convex–convex quadratically constrained quadratic fractional pro-
gram (QQFP) and can be solved efficiently by means of the Dinkelbach method [10].
With the definition

F(α) := max
x∈X

{ f1(x) − α f2(x)} , (12)

the following equivalence holds [10]:

max
x∈X

f1(x)

f2(x)
= α� ⇐⇒ F(α�) = 0.

Hence, the optimal value of (11) can be obtained by means of the unique root of
F : R → R. For the computation of α� the solution of the generally nonconcave
maximization problem in (12) is needed for various values of α. However, this
problemcan be reformulated as a convex optimization problemwhose solution can be
obtained from the dual problem. Finally, we only have to determine η > λ1 such that
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2L∑

�=1

h2�
(η − λ�)2

= L (13)

holds for knownλ� and h� (see [3, 12] for details). There, η is the Lagrangemultiplier
according to the norm constraint for x. In the general case with variable discrete
amplitudes and the constraint x
x ≤ Lqmax also η ≥ 0 has to be satisfied which
requires a case study, see [12]. In the case of phase-only beamforming, only η > λ1

is needed such that the secular equation (13) always has a unique solution which can
be obtained by Newton’s method [3]. In summary, problem (11) can be solved by
means of the following algorithm:

Algorithm 2 (Dinkelbach algorithm)

1: Choose ε ≥ 0, x0 ∈ X , set α0 := f1(x0)
f2(x0)

and k := 0.
2: while F(αk) > ε do
3: k �→ k + 1.
4: Determine xk ∈ argmax

x∈X
{ f1(x) − αk−1 f2(x)}.

5: Set αk := f1(xk )
f2(xk )

.
6: end while

It can be shown that Algorithm 2 converges to the global optimum of problem
(11), see [20]. Finally, the new subproblems (10) can be solved in an analog manner
as proposed in [12]. For phase-only beamforming, the use of (10) instead of (9) as
relaxation for the branch-and-bound subproblems yields a tighter bound, but with
similar computational expense.

Although the solution of the subproblems in the Dinkelbach procedure can be
obtained from the solution of a convex optimization problem and finally by solving
the secular equation (13), it still requires a higher computational effort to solve (9)
or (10) than the weaker relaxation (7). It is known [12] that the bound derived from
(7) is equal to the bound derived from (9) if

‖(ξ�)−1 · w�
2‖2 ≤ Lqmax (14)

holds for a solution (ξ�,w�
2) of (7). Thus, to reduce the computational burden the

bound derived from (9) shall only be used at nodes in a branch-and-bound algorithm
if the constraint (14) is violated and if the value SINR(ξ�w1,w�

2) is larger than the
current lower bound (otherwise a tighter upper bound is not required since the node
will be pruned by the algorithm anyway).

In the phase-only beamforming scenario considered here we obtain a stronger
result. A tighter bound can be expected if ‖(ξ�)−1 · w�

2‖2 �= L holds for the solution
(ξ�,w�

2) of (7). Therefore, the bound derived from problem (10) almost always
improves the bound from (7). Nevertheless, to lower the computational expense, it is
still beneficial to avoid too many bounds from problem (10) and, therefore, to make
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use of the bound derived from problem (7) which can be solved quite efficiently. This
idea is described in (S3) of the following improved branch-and-bound algorithm for
the exact solution of the discrete SINR-maximization problem (2) for the phase-only
beamforming scenario. This algorithm generates a branch-and-bound tree whose
nodes can be identified with subsets X ofDM . By p(X) the number of parent nodes
of X is denoted. In particular, p(DM) is set to 0.

Algorithm 3 (Branch-and-bound algorithm for phase-only SINR-maximization)
(S1) - Initialization

1: Set G := {DM } and b(DM ) := SINR(wcap). Choose x ∈ DM and set b̂ := SINR(x).
(S2) - Branch:

2: Choose X ∈ G so that p(X) = max{p(Y ) : Y ∈ G } and
b(X) = max{b(Y ) : Y ∈ G and p(Y ) = p(X)}.

3: Set k := p(X) + 1 and L := M − k.
4: Partition X into X1, . . . , X |D|, where X� is the set of vectors in X with wk = d� ∈ D .

(S3) - Bound:
5: for � = 1 : |D | do
6: Determine upper bound

b(X�) := max
ξ ∈ C, (w1,w2) ∈ X�

(ξw1,w2) �= 0

SINR(ξw1,w2).

7: if b(X�) > b̂ then
8: By means of Algorithm 2 determine α� such that F(α�) = 0.
9: Calculate

ŵ2 ∈ argmax
u∈R2L , ‖u‖2=L

{
f1(u) − α� f2(u)

}

10: and set

b(X�) := f1(ŵ2)

f2(ŵ2)
.

11: end if
12: end for

(S4) - Update:
13: Set G := (G \X) ∪ {X1, . . . , X |D|}.
14: for all Y ∈ G do
15: if b(Y ) ≤ b̂ then
16: Set G := G \Y .
17: else if |Y | = 1 (Y = {y}) and SINR(y) > b̂ then
18: Set b̂ := SINR(y) and x := y.
19: end if
20: end for
21: if G �= ∅ then
22: Goto line 2.
23: else
24: Set w� := x and stop.
25: end if
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Remark 2 A reasonable choice for the initial vector x in (S1) of Algorithm 3 would
be a greedy beamformer wgreedy obtained from Algorithm 1 with starting point wr.
The branching rule in (S2) is a depth-first search, where among the nodes with
maximal number of parent nodes the node with the best bound is chosen.

The phases in the set D are equidistant with distance δ := π/2m−1. Thus, for
any solution w� of the discrete phase-only SINR-maximization problem (2), the
beamformers e jkδ · w� belong toDM for k = 0, 1, . . . , 2m − 1 and provide the same
optimal SINR as w�. Therefore, the set DM in Algorithm 3 is replaced by the set
{1} × DM−1 to reduce computational costs.

Remark 3 The additional constraint ‖w‖2 ≤ Lqmax or ‖w‖2 = L can also be applied
for the approximate approach from [11]. This would yield a similar trade-off with
respect to a reduced number of required bounds and higher computational effort for
the individual bounds. Further discussion on this is out of the scope of the paper.

5 Simulation Results

In this section, the beamformers previously presented are compared with respect to
the achieved SINR and the computational effort within a phase-only beamforming
scenario. Recall that we have introduced

• a rounded Capon beamformer wr in (4),
• a greedy beamformer wgreedy obtained from Algorithm 1,
• an approximate beamformer wapprox as solution of (5), and
• an exact beamformer w� as solution of (2).

We created 100 random scenarios under the same conditions as in [12], assum-
ing an AWGN channel with σ2 = 0.1, a single desired signal, and three interfering
signals. The directions of the incoming signals are chosen from the intervals

θ1 ∈ [−25◦,−15◦], θ2 ∈ [−80◦,−40◦], θ3 = −10◦, θ4 ∈ [45◦, 75◦],

such that the desired signal from direction θ1 is always relatively close to the inter-
fering signal from the fixed direction θ3. The signal power of all incoming signals
is equal to 1 and the receiver is a uniform linear receive antenna with M = 8 omni-
directional antenna elements of half-wavelength distance. We assume m-bit phase
shifters and a fixed amplitude equal to 1, such that the discrete set D is given by
(3). Figure1 shows the (ordered) simulation results for phase shifters with resolution
m = 5. The choices for the parameters in the approximate approach are c = 0.2 and
z = M (since, with a fixed amplitude of 1 for each antenna element, the maximal
array output is |wHa| = M). It can be observed from Fig. 1 that the simple rounding
strategy is (as expected) clearly outperformed by the alternative methods. In several
cases, the SINR belonging to a greedy or an approximate beamformer is equal or
close to the SINRof an exact solution. Quantitative differences can be seen in Table1.
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Fig. 1 Comparison of
achieved SINR for different
discrete beamforming
approaches
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Table 1 Average achieved SINR (in dB) for different beamforming strategies

m = 4 m = 5 m = 6

w� 16.40 16.80 16.91

wapprox 16.06 16.62 16.73

wgreedy 15.91 16.59 16.82

wr 13.52 14.15 14.21

This table provides simulation results for the same setting with m = 4, m = 5, and
m = 6. It can beobserved that the roundedCaponbeamformerwr provides bad results
even for a very fine resolution. On the other hand, the greedy beamformer wgreedy

yields good results which are even slightly better than the results for the approxi-
mate beamformer wapprox for m = 6. We want to emphasize that usually much more
computational effort is required to determine wapprox compared to wgreedy.

All optimization (sub)problems in Sects. 3 and 4 have at least one solution. If it
is not unique, an arbitrary solution is chosen. Taking another solution might only
change the SINR for the heuristic greedy beamformer. All other SINR values do not
change since they are optimal in the sense described in the previous sections.

Finally, we discuss the computational effort for the exact approaches. Table2
provides the required number of visited nodes in the branch-and-bound tree for the
exact approaches, i.e., how often (S3) for the respective algorithms in [12, 13] and
Algorithm 3 is executed. The simulation setting is the same as in [12]. There, a
rounded Capon beamformer wr is used as a starting point for the branch-and-bound
algorithm. For the improved Algorithm 3 we chose a greedy beamformerwgreedy (see
Remark 2) as initial beamformer.

If only the relaxation (7) is considered (algorithm in [13]), then much more nodes
in the branch-and-bound procedure are required. For the subproblems (9) with an
inequality norm constraint (algorithm in [12]) some additional bound computation
in (S3) are needed but this leads to a considerable reduction of the overall number of
nodes. The phase-only-specific Algorithm 3 yields a further reduction of nodes. In
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Table 2 Number of computed upper bounds for standard and advanced branch-and-bound algo-
rithm versus the number of all discrete beamformers

m = 4 m = 5 m = 6 m = 7

# nodes for Alg.
in [13]

1.2 × 104 1.2 × 105 3.0 × 106 1.4 × 108

# nodes for Alg.
in [12]

3.2 × 103 1.7 × 104 2.1 × 105 5.4 × 106

# nodes for Alg. 3 2.7 × 103 1.4 × 104 1.5 × 105 3.3 × 106

# extra bounds
for Alg. in [12]

3.4 × 102 1.1 × 103 9.7 × 103 1.5 × 105

# extra bounds
for Alg. 3

4.0 × 102 1.2 × 103 8.8 × 103 1.2 × 105

|DM | 4.3 × 109 1.1 × 1012 2.8 × 1014 7.2 × 1016

the simulations the saving is in the range of 15% (m = 4) to 39% (m = 7) compared
to the algorithm in [12]. Clearly, the time saving for the different approaches depends
on the computing system, the implementation, and also on the stopping parameter.
In our implementation the time effort was approximately the same for Algorithm 3
as compared to the algorithm in [12] for m = 4 and m = 5, while a time saving of
17 and 23% was reached in the cases m = 6 and m = 7, respectively.

6 Conclusions

We provided an overview of several approaches for the solution of the discrete and
phase-only SINR-maximization problem (2). A simple rounded Capon beamformer
wr does not produce appropriate results but can be used as a starting point for other
approaches. With an approximate beamformer wapprox better results are possible but
with high computational costs. A greedy beamformer yields a good approximation
of the maximal SINR and can easily be improved using multiple starting points.

For an exact solution of the discrete SINR-maximization problem, the relaxation
(7) from [13] enables a reasonable application of the branch-and-bound principle.
The bounds obtained by this relaxation can be improved by introducing an addi-
tional constraint in the corresponding subproblems [12]. For discrete phase-only
beamforming the equality constraint ‖w2‖2 = L yields even stronger bounds which
can also be computed efficiently by applying the Dinkelbach method (Algorithm 2).
In our simulations, this yields a significant reduction of required nodes within the
branch-and-bound procedure.
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On the Stability of a Variable Step
Exponential Splitting Method for Solving
Multidimensional Quenching-Combustion
Equations

Joshua L. Padgett and Qin Sheng

Abstract This paper concerns the numerical stability of a splitting scheme for solv-
ing the three-dimensional degenerate quenching-combustion equation.Thediffusion-
type nonlinear equation possess highly nonlinear source terms, and is extremely
important to the study of numerical combustions. Arbitrary fixed nonuniform spa-
tial grids, which are not necessarily symmetric, are considered in our investigation.
The numerical solution is advanced through a semi-adaptive exponential splitting
strategy. The temporal adaptation is achieved via a suitable arc-length monitoring
mechanism. Criteria for preserving the linear numerical stability of the decomposi-
tion method is proven under the spectral norm. A new stability criterion is proposed.

Keywords Combustion ·Quenching singularity ·Degeneracy ·Nonuniform grids ·
Mesh adaptation · Exponential splitting · Numerical stability

1 Introduction

Let E = (0, a) × (0, b) × (0, c) ⊂ R
3, where a, b, c > 0, and ∂E be its boundary.

Denote � = E × (t0, T ), S = ∂E × (t0, T ) for given 0 ≤ t0 < T < ∞. Consider
the following singular reaction–diffusion problem,

s(x, y, z)ut = uxx + uyy + uzz + f (u), (x, y, z, t) ∈ �, (1.1)

u(x, y, z, t) = 0, (x, y, z, t) ∈ S, (1.2)

u(x, y, z, t0) = u0(x, y, z), (x, y, z) ∈ E, (1.3)
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where s(x, y, z) = √
x2 + y2 + z2. Further, for 0 ≤ u < 1 we have

f (0) = f0 > 0, lim
u→1−

f (u) = ∞.

In idealized solid fuel combustion applications [1, 3, 14], u represents the temper-
ature in the combustion channel, and the x-, y-, and z-coordinates coincide with
the channel walls. We require that 0 ≤ u0 � 1. The function s(x, y, z) represents
certain singularities in the temperature transportation speed within the channel wall
[4, 12, 15, 19]. The solution u of (1.1)–(1.3) is said to quench if there exists a finite
time T > 0 such that

sup {|ut (x, y, z, t)| : (x, y, z) ∈ E} → ∞ as t → T −. (1.4)

The value T is then defined as the quenching time [1, 2, 11]. It has been shown that
a necessary condition for quenching to occur is

max
{|u(x, y, z, t)| : (x, y, z) ∈ Ē} → 1− as t → T −. (1.5)

Further, such a T exists only when certain spatial references, such as the size and
shape of E, reach their critical limits. A domain E∗ is called the critical domain if
the solution of (1.1)–(1.3) exists for all time when E ⊆ E∗, and (1.5) occurs when
E∗ ⊆ E for a finite T [11].

Numerous computational procedures, including moving mesh adaptive methods,
have been constructed for solving lower dimensional quenching-combustion prob-
lems in the past decades [2, 7, 8, 15, 19]. Though in the former case, adaptations
are frequently achieved via monitoring functions on the arc length of the function
u; in the latter situation, adaptations are more likely to be built upon the arc length
of ut , since it is directly proportional to f (u), which blows up as u stops existing
[6, 11, 17].

As mentioned in many recent studies, when quenching locations can be predeter-
mined, it is preferable to use nonuniform spatial grids throughout the computations
[4, 10, 19]. In this case, key quenching characteristics such as the quenching time
and critical domain, are more easily observed; Also important numerical properties
of underlying algorithms, in particularly the numerical stability need to be precisely
studied. To that end, this paper continues discussions on our temporally adaptive
splitting scheme utilizing predetermined variable spatial grids. The numerical stabil-
ity of the method will be targeted in this paper. Our discussions will be organized as
follows. In the next section, the variable step exponential splitting scheme for solv-
ing (1.1)–(1.3) will be constructed and studied. Section3 is devoted to the stability
analysis of the variable step splitting scheme. The analysis will first be carried out
for a fully linearized scheme, and then a more realistic stability analysis is proposed
without freezing the source term. Simulations of some preliminary computational
results will be provided. Finally, concluding remarks and proposed future work will
be given in Sect. 4.
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2 Variable Step Exponential Splitting Scheme

Utilizing the transformations x̃ = x/a, ỹ = y/b, z̃ = z/c, and reusing the original
variables for simplicity, we may reformulate (1.1)–(1.3) as

ut = 1

a2φ
uxx + 1

b2φ
uyy + 1

c2φ
uzz + g(u), (x, y, z, t) ∈ �, (2.1)

u(x, y, z, t) = 0, (x, y, z) ∈ S, (2.2)

u(x, y, z, t0) = u0, (x, y, z) ∈ E, (2.3)

where g(u) = f (u)/φ, φ = φ(x, y, z) = (
a2x2 + b2y2 + c2z2

)q/2
, and E = (0, 1)

× (0, 1) × (0, 1) ⊂ R
3.

Let N1, N2, N3 
 1. We inscribe over Ē the following variable grid: Eh ={
(xi , y j , zk)|i = 0, . . . , N1 + 1; j = 0, . . . , N2 + 1; k = 0, . . . , N3 + 1; x0 = y0 =

z0 = 0, xN1+1 = yN2+1 = zN3+1 = 1
}
.Denoteh1,i = xi+1 − xi > 0, h2, j = y j+1 −

y j > 0, and h3,k = zk+1 − zk > 0 for 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3. Let
ui, j,k(t) be an approximation of the solution of (2.1)–(2.3) at (xi , y j , zk, t) and con-
sider the following variable step finite differences [19]:

∂2u

∂x2

∣∣∣∣
i, j,k

≈ 2ui−1, j,k

h1,i−1(h1,i−1 + h1,i )
− 2ui, j,k

h1,i−1h1,i
+ 2ui+1, j,k

h1,i (h1,i−1 + h1,i )
,

∂2u

∂y2

∣
∣∣∣
i, j,k

≈ 2ui, j−1,k

h2, j−1(h2, j−1 + h2, j )
− 2ui, j,k

h2, j−1h2, j
+ 2ui, j+1,k

h2, j (h2, j−1 + h2, j )
,

∂2u

∂z2

∣∣∣∣
i, j,k

≈ 2ui, j,k−1

h3,k−1(h3,k−1 + h3,k)
− 2ui, j,k

h3,k−1h3,k
+ 2ui, j,k+1

h3,k(h3,k−1 + h3,k)
.

Further, denote v(t) = (u1,1,1, u2,1,1, . . . , uN1,1,1, u1,2,1, u2,2,1, . . . , uN1,2,1, . . . ,

u1,N2,1, u2,N2,1, . . . , uN1,N2,1, . . . , u1,N2,N3 , u2,N2,N3 , . . . , uN1,N2,N3)
ᵀ ∈ R

N1N2N3 and
let g(v) be a discretization of the nonhomogeneous term of (2.1). We obtain readily
from (2.1)–(2.3) the following method of line system:

v′(t) =
3∑

σ=1

Mσv(t) + g(v(t)), t0 < t < T, (2.4)

v(t0) = v0, (2.5)

where
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M1 = 1

a2
B(IN3 ⊗ IN2 ⊗ T1),

M2 = 1

b2
B(IN3 ⊗ T2 ⊗ IN1),

M3 = 1

c2
B(T3 ⊗ IN2 ⊗ IN1),

where INσ
∈ R

Nσ×Nσ , σ = 1, 2, 3, are identity matrices, and

B = diag
(
φ−1
1,1,1,φ

−1
2,1,1, . . . ,φ

−1
N1,1,1,φ

−1
1,2,1, . . . ,φ

−1
N1,N2,N3

) ∈ R
N1N2N3×N1N2N3 ,

φi, j,k =
⎡

⎣a2

(
i−1∑

�=0

h1,�

)2

+ b2

(
j−1∑

�=0

h2,�

)2

+ c2
(

k−1∑

�=0

h3,�

)2
⎤

⎦

q/2

,

Tσ = tridiag
(
lσ,k−2, mσ,k−1, nσ,k−1

) ∈ R
Nσ×Nσ , σ = 1, 2, 3,

and for the above

lσ, j = 2

hσ, j (hσ, j + hσ, j+1)
, nσ, j = 2

hσ, j (hσ, j−1 + hσ, j )
, j = 1, . . . , Nσ − 1,

mσ, j = − 2

hσ, j−1hσ, j
, j = 1, . . . , Nσ; σ = 1, 2, 3.

The formal solution of (2.4) and (2.5) can thus be written as

v(t) = E

(

t
3∑

σ=1

Mσ

)

v0 +
∫ t

t0

E

(

(t − τ )

3∑

σ=1

Mσ

)

g(v(τ ))dτ , t0 < t < T .

(2.6)
Note that, based on a first-order exponential splitting [14], we have

E

(

γ

3∑

σ=1

Mσ

)

= exp

(

γ

3∑

σ=1

Mσ

)

= eγM1eγM2eγM3 + O (
γ2) , γ → 0+.

Consider [1/1] Padé approximations for the exponential matrices, we have

E

(

γ

3∑

σ=1

Mσ

)

= p(γ) + O (
γ2

)
, γ → 0+,

where

p(γ) =
3∏

σ=1

(
I − γ

2
Mσ

)−1 (
I + γ

2
Mσ

)
.

Thus, a trapezoidal rule for (2.6) leads to
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v(t) = p(t)

[
v0 + t

2
g(v0)

]
+ t

2
g(v(t)) + O (

(t − t0)
2
)
, t → t0. (2.7)

The above is a typical Local-One-Dimensional (LOD) algorithmwhich is exponential
splitting based, rather than the Alternative-Direction-Implicit (ADI) related [16]. It
provides a highly efficient way to compute numerical solutions of multidimensional
problems such as (2.1)–(2.3) [13, 15]. Based on (2.7), we obtain the following first-
order variable step exponential splitting scheme:

v�+1 =
[

3∏

σ=1

(
I − τ�

2
Mσ

)−1 (
I + τ�

2
Mσ

)](
v� + τ�

2
g(v�)

)
+ τ�

2
g(v�+1),

(2.8)

where v� and v�+1 are approximations of v(t�) and v(t�+1), respectively, v0 is the

initial vector, t� = t0 +
�−1∑

k=0
τk, � = 0, 1, 2, . . . , and {τ�}�≥0 is a set of variable tem-

poral steps determined by an adaptive procedure. In order to avoid a fully implicit
scheme, g(v�+1) may be approximated by g(w�), where w� is an approximation to
v�+1, such as

w� = v� + τ�(Cv� + g(v�)), 0 < τ� � 1, (2.9)

in practical computations.
Due to a strong quenching singularity, the selection of proper nonuniform

temporal steps τ� is vital. As an illustration, in Fig. 1, we show the projected numer-
ical solution and its temporal derivative of a typical three-dimensional quenching-
combustion initial-boundary value problem over the x-interval [0,π]. The initial
function u0(x, y, z) = 0.001 sin(x) sin(y) sin(z), f (u) = 1/(1 − u), and homoge-
neous Dirichlet boundary condition are employed. It is evident that vt changes dra-
maticallywhen comparedwith v.Recalling (1.4) and (1.5), we consider the following
arc-length monitoring function on vt ,
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Fig. 1 Numerical solution (left) and its temporal derivative (right) immediately before quenching.
It is observed that as max

x
v(x) → 1−, we have max

x
vt 
 600. The computed quenching time is

T ≈ 0.780265747310047
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m

(
∂v

∂t
, t

)
=

√

1 +
(

∂2v

∂t2

)2

, t0 < t < T .

Setting the twomaximal arc lengths in neighboring intervals [t�−2, t�−1] and [t�−1, t�]
equal [10, 18, 19], we acquire the following quadratic equations from the above,

τ 2
� = τ 2

�−1 +
(

∂v�−1

∂t
− ∂v�−2

∂t

)2

−
(

∂v�

∂t
− ∂v�−1

∂t

)2

, � = 1, 2, 3, . . . ,

with τ0 given.

3 Stability

Nonlinear stability has been an extremely difficult issue when nonlinear quenching-
combustion equations are concerned [1, 4, 5, 15, 17, 19]. However, when the numer-
ical solution varies relatively slowly, that is, before reaching a certain neighborhood
of quenching, instability may be detected through a linear stability analysis of the
nonlinear scheme utilized [7, 10, 20]. Although the application of such an analysis to
nonlinear problems cannot be rigorously justified, it has been found to be remarkably
informative in practical computations. In the following study, we will first carry out
a linearized stability analysis in the von Neumann sense for (2.8) with its nonlinear
source term frozen. This is equivalent to assuming that the source term is effectively
accurate. The analysis will then be extended to circumstances where the nonlinear
term is not frozen. In the later case, the boundedness of the Jacobian of the source
term, ‖gv(v)‖2, which is equivalent to assuming that we are some neighborhood
away from quenching, is assumed.

In the following, let A ∈ C
n×n and again denote E(·) = exp(·) for n > 1.

Definition 3.1 Let ‖ · ‖ be an induced matrix norm. Then the associated logarithmic
norm μ : Cn×n → R of A is defined as

μ(A) = lim
h→0+

‖In + h A‖ − 1

h
,

where In ∈ C
n×n is the identity matrix.

For the variable step splitting method (2.8) with its nonlinear source term frozen,
regularity conditions need to be imposed upon the nonuniform spatial grids for a
linear stability analysis. For this purpose, let us denote hσ = min j=1,...,Nσ

{hσ, j }, σ =
1, 2, 3.
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Lemma 3.1 If

1

h2
1φi−1, j,k

− 1

h1,i−1h1,iφi, j,k
≤ K

2
, (3.1)

1

h2
2φi, j−1,k

− 1

h2, j−1h2, jφi, j,k
≤ K

2
, (3.2)

1

h2
3φi, j,k−1

− 1

h3,k−1h3,kφi, j,k
≤ K

2
, (3.3)

where the constant K > 0 is independent of hσ, j , j = 1, . . . , Nσ, σ = 1, 2, 3. then

μ(Mσ) ≤ K , σ = 1, 2, 3.

Proof We only need to consider the case involving M1 since the other cases are
similar. Note that μ(M1) = 1

2λmax
(
M1 + Mᵀ

1

)
and

1

2

(
M1 + Mᵀ

1

) = diag(X1,1, . . . , X N2,1, X1,2, . . . , X N2,N3) ∈ R
N1N2N3×N1N2N3 ,

where

(
X j,k

)
n,p

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m1,n

φn, j,k
, if n = p,

n1,n−1

2φn−1, j,k
+ l1,n−1

2φn, j,k
, if n − p = 1,

n1,n

2φn, j,k
+ l1,n

2φn+1, j,k
, if p − n = 1,

0, otherwise.

We apply Gers̆chgorin’s circle theorem to an arbitrary X j,k and note that a similar
argument works for each X j,k, j = 1, . . . , N2, k = 1, . . . , N3. Further, notice that
we only need to consider circumstances where the bandwidth of M1 + Mᵀ

1 is three.
Thus,

∣∣
∣∣λ1,i − m1,i

φi, j,k

∣∣
∣∣ ≤

∣∣
∣∣

n1,i−1

2φi−1, j,k
+ l1,i−1

2φi, j,k

∣∣
∣∣ +

∣∣
∣∣

n1,i

2φi, j,k
+ l1,i

2φi+1, j,k

∣∣
∣∣ ≤ 2

h2
1φi−1, j,k

,

i = 2, . . . , N1 − 1, j = 1, . . . , N2, k = 1, . . . , N3.

We then see that (3.1) follows immediately from the above and the fact that

2

h21φi−1, j,k
− 2

h1,i−1h1,i φi, j,k
≤ K , i = 2, . . . , N1 − 1, j = 1, . . . , N2, k = 1, . . . , N3.

�
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Lemma 3.2 If (3.1)–(3.3) hold then

∥∥∥
∥
(

I − τ�

2
Mσ

)−1 (
I + τ�

2
Mσ

)∥∥∥
∥
2

≤ 1 + τ�K + O (
τ 2
�

)
, � ≥ 0, σ = 1, 2, 3,

(3.4)
for sufficiently small τ� > 0.

Proof Recalling the [1/1] Padé approximation utilized in Sect. 2, we have

(
I − τ�

2
Mσ

)−1 (
I + τ�

2
Mσ

)
= E(τ�Mσ) + O (

τ 3
�

)
, σ = 1, 2, 3.

Now, based on Lemma 3.1,

∥∥∥
∥
(

I − τ�

2
Mσ

)−1 (
I + τ�

2
Mσ

)∥∥∥
∥
2

≤ E(τ�μ(Mσ)) + O (
τ 3
�

)

≤ [
1 + τ�K + O (

τ 2
�

)] + O (
τ 3
�

)

= 1 + τ�K + O (
τ 2
�

)
,

which is the desired bound. �

Combining the above results gives the following theorem.

Theorem 3.1 If (3.1)–(3.3) hold, then the variable step exponential splitting method
(2.8) with the source term frozen is unconditionally stable in the von Neumann sense
under the spectral norm, that is,

‖z�+1‖2 ≤ c‖z0‖2, � ≥ 0,

where z0 = v0 − ṽ0 is an initial error, z�+1 = v�+1 − ṽ�+1 is the (� + 1)th perturbed
error vector, and c > 0 is a constant independent of � and τ�.

Proof When the nonlinear source term is frozen, z�+1 takes the form of

z�+1 =
3∏

σ=1

(
I − τ�

2
Mσ

)−1 (
I + τ�

2
Mσ

)
z�, � ≥ 0. (3.5)

Recall that
�∑

k=0
τk ≤ T, � > 0. It follows by taking the norm on both sides of (3.5)

that
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‖z�+1‖2 ≤
3∏

σ=1

∥∥∥
∥
(

I − τ�

2
Mσ

)−1 (
I + τ�

2
Mσ

)∥∥∥
∥
2

‖z�‖2

≤ (
1 + 3τ�K + c2τ

2
�

) ‖z�‖2 ≤
�∏

k=0

(
1 + 3τk K + c3τ

2
k

) ‖z0‖2

≤
(

1 + 3K T + c4

�∑

k=0

τ 2
k

)

‖z0‖2 ≤ c‖z0‖2,

where c1, c2, c3, c4, and c are positive constants independent of �, τk, 0 ≤ k ≤ �.

Therefore, the theorem is clear. �

We now consider the case without freezing the nonlinear source term in (2.8). In
this situation, restrictions upon the Jacobian matrix gv(v) become necessary.

Theorem 3.2 Let τk, 0 ≤ k ≤ �, be sufficiently small and (3.1)–(3.3) hold. If there
exists a constant G < ∞ such that

‖gv(ξ)‖2 ≤ G, ξ ∈ R
N1N2N3 , (3.6)

then the variable step exponential splitting method (2.8) is unconditionally stable in
the von Neumann sense, that is,

‖z�+1‖2 ≤ c̃ ‖z0‖2, � > 0,

where z0 = v0 − ṽ0 is an initial error, z�+1 = v�+1 − ṽ�+1 is the (� + 1)th perturbed
error vector, and c̃ > 0 is a constant independent of � and τ�.

Proof By definition we have

v�+1 =
3∏

σ=1

(
I − τ�

2
Mσ

)−1 (
I + τ�

2
Mσ

) (
v� + τ�

2
g(v�)

)
+ τ�

2
g(v�+1)

= ��

(
v� + τ�

2
g(v�)

)
+ τ�

2
g(v�+1),

where

�� =
3∏

σ=1

(
I − τ�

2
Mσ

)−1 (
I + τ�

2
Mσ

)
.

It follows that

z�+1 = ��z� + τ�

2
��gv(ξ�)z� + τ�

2
gv(ξ�+1)z�+1,
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where ξk ∈ L(vk, ṽk), k = �, � + 1. Rearranging the above equality, we have

(
I − τ�

2
gv(ξ�+1)

)
z�+1 = ��

(
I + τ�

2
gv(ξ�)

)
z�.

Further, recall (3.6). When τk is sufficiently small we may claim that

(
I − τk

2
gv(ξ)

)−1
, I + τk

2
gv(ξ) = E

(τk

2
gv(ξ)

)
+ O (

τ 2
k

)
.

Thus,

z�+1 =
{

�∏

k=0

[
E

(τk

2
gv(ξk+1)

)
+ O (

τ 2
k

)]
�k

[
E

(τk

2
gv(ξk)

)
+ O (

τ 2
k

)]
}

z0.

It follows therefore

‖z�+1‖2 ≤
{

�∏

k=0

∥∥∥E
(τk

2
gv(ξk+1)

)∥∥∥
2
‖�k‖2

∥∥∥E
(τk

2
gv(ξk)

)∥∥∥
2
+ c1,kτ

2
k

}

‖z0‖2

≤
(

1 + 3K T + c
�∑

k=0

τ 2
k

)(

eGT + c1

�∑

k=0

τ 2
k

)

‖z0‖2 ≤ c̃ ‖z0‖2,

where c1,k, k = 1, 2, . . . , �, are positive constants and c, c1, c̃ are positive constants
independent of � and τ�, � > 0. Thus giving the desired stability. �

The above theoremprovides a precise insight as towhy the standard linear analysis
can reach in estimating a nonlinear stability. The extra cost paid, however, is assuming
the boundedness of ‖gv(ξ)‖2. Nevertheless, the approach is an improvement upon
the traditional methodology of having the nonlinear source term frozen. In fact, the
aforementioned bound is well observed in numerical experiments up to the situation
when certain neighborhoods of quenching are reached.

To illustrate, we show our preliminary computational results in Fig. 2. The par-
ticular source function is again chosen as f (u) = 1/(1 − u). With s(x, y, z) =√

x2 + y2 + z2 and sufficiently large domain E, the quenching can be predicted to
occur about (0.28, 0.28, 0.28) on the regularized domain [4, 7]. Thus we may select
desirable variable spatial grids illustrated in Fig. 2. In Fig. 3, we show our prelimi-
nary numerical results immediately before quenching in a reduced three-dimensional
projected space.
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Fig. 2 An illustration of a typical variable step spatial grids in a regularized X -Y plane
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Fig. 3 Projected numerical solution (left) and its temporal derivative (right) immediately before
quenching. It can be observed that as max

(x,y,z)
v(x, y, z) → 1−, we have max

(x,y,z)
vt (x, y, z) 
 100

4 Conclusions

Our variable step exponential splitting scheme is developed for solving singular
reaction–diffusion equations possessing strong quenching nonlinearities in general.
While a temporal adaptation is performed via an arc-length monitoring mechanism
of the temporal derivative of the solution, variable spatial grids are considered for
applications of variety of adaptive strategies. The novel splitting method is implicit
and the impact of the degeneracy is found to be limited. Rigorous analysis is given for
the stability of the numerical solution. Important criteria to guarantee the property,
which depend upon the variable steps and degeneracy, are established.

Under much weaker requirements (see the latest results in [4]), the temporal step
restriction for guaranteeing monotone numerical solutions of our splitting scheme
has been reduced to only one-half of those in uniform spatial mesh cases [15].
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Furthermore, a realistic method of targeting the realization of nonlinear stability
analysis is proposed and shown to be successful. Though this new strategy needs
the boundedness of ‖gv(ξ)‖2, the requirement is well justified before quenching is
reached. This improved methodology not only provides further insight into the sta-
bility, but also offers explanations as to why the linear stability analysis must be
valid before quenching. On the other hand, simulations of real multidimensional
solutions still remain as one of the most challenging tasks even with the help of par-
allel processors and large data storage. Possible highly accurate exponential splitting
formulae, such as the Strang’s formula and asymptotic formulae [16], also remain to
be explored.
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Perspectives in High Performance Computing

Michael Resch

Abstract HighPerformanceComputing is undergoing amajor change in the coming
years. This paper discusses the perspectives that HPC has in the coming years and
how these perspectives are going to change thewaywe operate and useHPC systems.
The paper discusses the technologies that HPC will use, discusses the current trends
based on the TOP500 list and argues that a further improvement in performance will
basically be driven by software rather than by hardware.

Keywords High performance computing · Trends · Hardware · Software

1 Introduction

High Performance Computing (HPC) architectures are a hotly debated issue as the
designers of such systems are increasingly facing new challenges. Looking at current
developments traditional approaches seem to be running out of steam. A few years
ago, HPC centers were concerned about the lack of variety of architectures and
suspected that a monocultural world would take hold of the HPC market. In fact, a
monopoly of architectures can already be seen today with many vendors having left
themarket. In recent discussions on architectures at the International Supercomputing
Conference at Dresden [1] it became clear that this monopoly is triggering a new
development of architectures. Most of them are not yet mature enough such that it
is unclear which of them will reach a level of maturity that would allow their usage
in everyday production. This has made it increasingly difficult to make investment
decisions when it comes to designing large-scale systems. On the other hand, HPC
centers are still concerned that they might be running out of options when it comes
to procuring for next-generation systems.
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The situation in the field of HPC is actually more complicated than it was 10 years
ago. IBMrecently decided to sell itsmanufacturing facilities. The step thatwaswidely
assumed to be a starting point of an exit strategy from the hardware business. At the
same time, IBM made the design for the Power architecture publicly available—
giving the market another visible signal for a retreat from the HPC market. These
were two steps that followed the decision of IBM to sell its x86 activities to Lenovo–
a Chinese vendor that already took over when IBM dropped their laptop business.
Furthermore, the market receives signals that the highly successful BlueGene line
of IBM may not see a follow-on product. With IBM giving mixed signals for HPC,
and with the disappearance of vendors like SUN, the HPC market is left with few
options—having experienced a continuous decline in number of stable vendors over
the last years.

Technically HPC is facing the end of a development that used to be called
Moore’s law [2]. Processor clock frequencies–which carried the main load of speed-
ing up hardware—cannot be further increased since 2004.Multi-core processors have
become standard. So-called accelerators provide solutions that push the number of
cores on a single chip to extremes but leave the users with adapting their codes to a
new architecture and a new programming model.

In this paper,wewill investigate a number of questions that comeup in this context.
We will explore the messages that the history of the TOP500 [3] list provides. In
most recent editions, we have seen interesting developments that will be important
for centers and users alike. We will furthermore look into technically new trends that
may help to overcome some of the limitations that we face with massively parallel
systems. Finally, we will try to explore and evaluate new technologies that might be
available to the market in the near future.

2 A Little Bit of History

HPC has for a while been dominated by a development that was described by Gordon
Moore in 1965 [2]. Basically, Moore figured that the number of components on a
chip of the same size had doubled consistently over a certain period of time. From
this, he concluded—by making an economical argument rather than diving too deep
into technical details—that a similar development could be expected in the near
future. Originally, he assumed a doubling of components every 12 months and later
on modified this to a doubling every 18 months. As a corollary from this, it was
assumed for a long time that clock frequencies of processors could be doubled every
18 months. The basic assumption was that reducing the feature size would reduce
the distance for a signal to travel and hence increase the clock frequency.

For several decades, Moore’s expectation proved to be right. Clock frequencies
actually increased and basically followed the expected path. The development started
to slow down for high-end processors in the mid-1990s. Clock frequencies were at
about 0.5GHz and higher. At the same time so-called standard processors (at the
time provided by Intel and AMD) rapidly caught up with HPC systems—driven by
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increased clock frequencies and by a market that was eager to absorb whatever new
processor became available for the consumer market.

The slow down in clock rate increasewas foreseeable and parallelismwas early on
investigated as a concept to overcome the problem. With the introduction of parallel
processing the focus shifted from single processor speed to number of cores available
in a single system. Early adopters of the concept failed but provided the necessary
groundwork for our current technology inHPC. By 2004—when clock speeds started
to stall at a value around 2–3GHz—parallelism took over as the leading principal in
HPC [4].

3 Technology Trends

Tomake up for the lack of acceleration based on increased clock frequencies parallel
computing was pushed to the extreme over the last decade. Parallelism is not a new
paradigm. It was exploited over time in a variety of architectures. Actually, even a
standard technology like pipelining is in a sense some sort of parallelism exploited in
the architecture. However, at the processor level parallelism arrived relatively late and
the level of parallelism employed in high performance computing systems remained
relatively moderate for a while. The number of processors used was hovering around
512–1024—with the Thinking Machine approach being the notable exception.

The currently fastest system in the world is based on about 3 million compute
cores bundled in a single system [3]. This development is based on the fact, that the
principal idea of Gordon Moore is still true. The number of components on a chip
can still be further increased and most likely will grow over the next years according
to the International Technology Roadmap for Semiconductors [5].

When it comes to exploiting parallelism in hardware there are two paths themarket
is following.

3.1 Thin Core Concept

The concept of thin cores is mainly focused on parallelism. The basic idea is to
build relatively simple cores but to build a large number of them on a single chip.
Graphics processing units (GPU) heavily influenced this concept. Some solutions
actually evolve originally from GPUs, which were modified in order to meet the
requirements of high speed computing.

The thin core concept is based on the reasonable idea that hardware designed for
high speed computing—which is typically measured in floating-point operations—
should be focusing on floating-point units only. The perfect solution would be a
concept in which a core is not much more than a floating-point unit.
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The concept as described above is based on low clock frequencies and large
numbers of cores on a chip. Very oftenmanufacturing technology is not leading edge,
as mass production for GPUs does not require high-end manufacturing technology.

Increased speed can therefore be expected for this concept from two sources
mainly:

• Higher clock frequencies: Thin core concepts are typically based on a relatively
moderate clock frequency in the range of 1GHz or less. This allows to keep power
consumption relatively low and hence squeeze more cores on a chip. Theoreti-
cally, clock frequencies still have the potential to grow by about a factor of 2–4
over the coming years. They will then have reached the level of current state-of-
the-art standard processors and a further increase would lead to similar cooling
and power consumption problems as with standard processors. But to increase
clock frequency—even if only moderately—is an option to go for higher total
performance of a chip.

• Higher core numbers:Usingmore advancedmanufacturing technology, the num-
ber of components on a chip will be increased. Keeping the design of an individual
core as simple as possible, the additional components can be used to increase the
number of cores on a chip. This could potentially increase the number of cores on
a chip by a factor of 4–8 in the coming decade.

Putting together these two trends it seems to be possible to both increase clock
frequencies slightly and to further increase the number of cores on a chip. For a
General Purpose GPU or for similar accelerator concepts we can expect to see a
factor of 2–32 in peak performance over the coming years.

Current developments, however, seem to indicate another trend. With an increas-
ing demand for these kinds of accelerators designers are trying to turn these cores
into floating-point machines that better fit the requirements for standard simulations.
Having learned that cheap GPUs can be used to speed up high-end computing sys-
tems companies increasingly see the potential in the HPC market for their product.
However, the complexity of the cores has to be increased to meet the requirements of
the HCP user community. Extrapolating the trend one might expect to see a stagna-
tion in number of cores on a chip while complexity and clock frequency are increased
harvesting the potential of new manufacturing technologies.

What might be expected is a moderate growth in speed only but an increase in
potential for standard applications.

3.2 Fat Core Concept

The concept of fat cores could be described as the “classical” approach to high perfor-
mance computing architectures. The increased speed required forHPC is delivered by
increasing the complexity of processor architectures. A lot of complexity is added
for example to overcome the limitations of slow memory subsystems. Additional
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available components are also used to add further functional units. By doing this we
gain an additional level of parallelism directly on the chip. Performance is increased
by having 4 or 8 ADD-Mult per clock cycle rather than speeding up each individual
ADD-Mult.

A number of processor could be described as “fat” with each of them following
a different path of development.

• X86 architectures: The x86 processor family is the standard architecture in
HPC for several years now. The number of ores is relatively low with currently
8–16 cores for a single CPU. Each of the cores itself is a highly tuned architecture
with a number of sophisticated features that—if adequately programmed—turn
these processors into high-end computing engines.

• IBM Power: The IBM Power processors is the last surviving specialized standard
processor in the arena of HPC. The first standard multi-core chip for HPC was a
Power processor and since then the Power processor has proven to be always of
the leading edge of processor technology.

• Vector processors: Vector processors seemed to be extinct when NEC dropped
out of what later was to become the Japanese K Computer project. However, they
reappeared in 2014 when NEC introduced its SX-ACE line. The concept follows
a traditional approach with introducing vector pipes as the core to achieve per-
formance and a relatively sophisticated memory subsystem that allows pushing
sustained performance to a level hardly reachable by standard processors. How-
ever, the prize for such systems is still comparably high and hence they hardly
make an appearance in the TOP500 list.

3.3 Memory

At this point it makes sense to talk about memory technology. High Performance
Computing hit the memory wall about 20 years ago. Increased processor speed
was not matched by memory speed—neither in terms of latency nor in terms of
bandwidth. Modern architectures have become increasingly imbalanced. As a result,
users can expect a sustained level of performance that varies widely. The more a
code is limited by memory speed the lower its sustained performance. Experts speak
of about 3–5% of performance that can be achieved when working without cache
aware programming.

Caches were seen to be the way to overcome memory speed limitations. Introduc-
ing small but fast caches on-chip, vendors were hoping to break the memory wall.
Over time cache levels were introduced and as of today we expect to see three levels
of caches in a high-end HPC processor. But as memory and cache systems get more
complex users are facing two further problems.

• Complexity:With the growing complexity of cache hierarchies it gets increasingly
difficult to optimize a code for a given hardware architecture. Once optimized for
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one architecture the changes in cache hierarchy of another architecture may cause
a drop in performance by asmuch as a factor of 10 or more. In order to fully exploit
an architecture, programmers would have to be aware of the architecture—which
changes rapidly and increases its complexity continuously.

• Imbalance: At the same time as users struggle with cache hierarchies and their
complexities architect are faced with handling the memory subsystem side effects.
As a result users are increasingly facing imbalances between memory and cache
hierarchies on the one hand and architectural features on the other side. The most
simple problem is that for some cache hierarchies to work properly a processor
needs enough registers to handle all the traffic. If this is ignored it is in the end the
processor architecture that kills the memory and cache subsystem.

3.4 TOP500 Trends

The HPC community criticized the TOP500 [3] list for many years. There is at least
one large-scale installation that refused to participate in the list claiming that the
Linpack benchmark has no whatsoever justification to be used as a yardstick for
HPC systems. Although there is some truth to this claim the TOP500 list has shown
to be an interesting collection of statistical data from which at least trends can be
extracted [6].

Exploring recent developments in the list allows getting a better understanding
of trends and markets in HPC. Over the last years, the most striking feature is that
the replacement rate of systems in the list for high-end systems is slowing down. A
brief analysis of the TOP10 systems over the last years shows the following:

• In November 2011 three new systems were in the TOP 10 compared to November
2010

• InNovember 2012 eight new systemswere in the TOP 10 compared to the previous
year

• InNovember 2013 three new systemswere in the TOP 10 compared to the previous
year

• In November 2014 one system was new compared to the previous year—and even
this system was not a full replacement but an upgraded version of an existing
system

• In November 2015, we were back to three new systems.

When we look at the five fastest systems we see no change since 2013.
What is more interesting is the trend line that can be retrieved from the last 21

years of collecting information about the fastest systems in the world. Figure1 shows
the trend lines for the performance of



Perspectives in High Performance Computing 175

Fig. 1 Trend lines of the TOP500 list. Basic data from www.top500.org with added trend lines by
the author

(a) The number 500 system (lower line),
(b) The fastest system (middle line), and
(c) The sum of all systems on the list

The figure was taken from the TOP500 webpage. The authors added trend lines.
The figure indicates that the number 500 system—the slowest system on the list—

is unable to follow the general trend since about 2009/2010. A similar trend cannot
yet be seen for the sum of performance of all systems. It looks though as if for the
last four years the slope of the trend is smoother. It is too early to say that this is
a general trend. However, it remains to be seen what is going to happen. The most
recent version of the list—as published in June 2015—indicates that we may see a
smoother slope for the total performance too.

There is an optimistic scenario for the trendwhich claims that especially the slower
systems have not yet adopted the accelerator technology that allows faster systems
to still keep pace with Moore’s law. Following this scenario, the market should catch
up over the coming 2 years and the trend of the number 500 systems should go back
to what it used to be. It remains to be seen though whether the owners of smaller
system are able to exploit the potential of accelerators. For those among them that
work in a research environment—like universities or research labs—this should not
be too difficult. However, the many industrial users of low-end HPC systems may
not see an incentive in investing into a technology for which there is not yet a defined

www.top500.org
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standard and for which there are not too many industrial codes that can easily run
on accelerator systems. Looking back into the history of parallel computing we find
that industry did catch up on parallelism but with the growing number of processors,
industrial usage was increasingly decoupled from research trends.

There is also a pessimistic scenario, which claims that accelerators are a work-
around for the problems of stagnating processor performance. The pessimistic sce-
nario assumes that we will start to see a changing trend line also for the number one
systems in the years ahead. The pessimistic scenario would suggest that the rule of
Moore’s law is over.

An interim report of the “Committee on Future Directions for NSF Advanced
Computing Infrastructure to SupportU.S. Science in 2017–2020” released inNovem-
ber 2014 states: It is an accepted truth today that Moore’s Law will end sometime
in the next decade, causing significant impact to high-end systems. And the report
continues: The transition implied by the anticipated end of Moore’s Law will be even
more severe—absent development of disruptive technologies; it could mean, for the
first time in over three decades, the stagnation of computer performance and the end
of sustained reductions in the price–performance ratio. [7]

If we believe in the end of Moore’s law we need to face the consequences and
prepare for the time after.

4 What to Expect?

First, and foremost, we would have to accept that the end of Moore’s law has been
reached. This does not come entirely as a surprise—it was on the contrary rather
surprising to see technology follow such an impressive path for more than three
decades. However, it is not a reason for pessimism but rather a reason to step up the
research efforts in HPC. Three main consequences follow from what we have found
so far.

4.1 We Need More Investment in Better Technology

Hardware development is going to address a number of new issues beyond perfor-
mance. It is reasonable to expect to see processors that are not built for floating-point
performance but rather for the growing needs of data analytics. Furthermore power
consumption will become a growing issue for processor architecture design. Even
more than now, hardware designers will put their focus on reducing power consump-
tion thus providing the user with lower operational costs of systems. How much this
in turn will trigger a further increase in number of cores or processors remains to be
seen. We may see a moderate growth into the billions of cores after a while.

We may, for example, expect to see some sort of follow-on project of the IBM
BlueGene. It would be interesting to see an architecture built from billions of



Perspectives in High Performance Computing 177

low-power embedded processors. As much as this would be a challenge for pro-
grammers it could yield to interesting architectural concepts.

In any case investment will not stop at hardware. There is a growing need for
better programming tools. Handling millions of cores is counterintuitive for the
human being. All concepts that are able to reduce this complexity—like hybrid
programming models that merge MPI and OpenMP—will be extremely useful for
the user. However, such concepts are in their infancy and will require a lot of effort
before they can be turned into standards and supported by all necessary tools.

4.2 Convergence and Segmentation

Thin core concepts will increase clock frequencies and will—for the sake of being
useful for HPC—increase complexity of each core. Hence, they will grow fatter and
hit the frequency barrier. Fat core concepts will reduce complexity in order to reduce
power consumption and in order to be able to increase the number of cores. Therefore,
it has to be expected that the thin core concept and the fat core concept will somehow
converge. What we see already today in the market is a trend to merge accelerator
technology onto standard processor parts. Sometimes these are called “fused parts.”
Wealso see technologies like theAurora concept of the Japanese vendorNEC [8]. The
basic concept of Aurora is to turn the traditional vector processor concept (a typical
fat core concept) into an accelerator that could be used like existing accelerators.

Given the wide variety of options in the design space for future processor architec-
tures we can expect to see a market evolving that is similar to other mature markets.
We can expect to see cheap solutions with a reasonable performance for a low price.
We can also expect to see tailored high-end solutions for which niches will have to
be carved out to survive. In any case we currently see a growing number of different
solutions that all follow similar lines of architectural concepts but with the exception
of the x86 architecture there is currently no solution available that could claim to be
a standard solution.

4.3 Software Beats Hardware

Regardless of the directions that hardware design takes, software will become more
important. As of today,we expect to see single digit sustained performance figures for
large-scale systems.The recently initiatedHPCGbenchmark initiative [9] reveals that
even for a standardized benchmark—which should by now be highly optimized—
sustained performance numbers are embarrassingly low. In the future, optimization
of codes is going to be a major issue. Given that hardware architecture development
will slow down software developers will be given more time to get the most out of
a given hardware concept. With hardware stagnation, it also makes sense to rethink
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many of the old models that are used by HPC users for decades now. In the future
software will make the difference between a standard system and a high performance
computing system.

5 Summary

HPC is facing the end of the basis for its success story over the last three decades.With
Moore’s law ending, peak performance is no longer something that just so happens.
This will have implications for users, vendors, and HPC centers. Centers will have
to invest much more in quality of services and will have to work intensively with
software developers to be able to provide high quality services. Hardware vendors
will have to focus more on improved quality of hardware rather than on speed. They
will have to explore and carve out niches in which HPC as a business can create
a reasonable ecosystem. This will bring industrial users much more into the focus
of activities than has been the case over the last decades. HPC users will have a
much harder time improving their simulations. The focus will have to move from
speed to quality. This is the time when software has to be improved. This is the
time when models have to be improved. This is the time when algorithms have to
be improved. This is going to be a great time for HPC experts—computer scientists,
mathematicians, computational scientists, and engineers.
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Abstract In this paper, we consider linear combinations of Beta-Durrmeyer
operators Ln(f , x) and study the direct theorem in terms of higher order modulus
of continuity in simultaneous approximation and inverse theorem for these operators
in ordinary approximation.
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1 Introduction and Definitions

Gupta and Ahmad [7] defined Beta operators as

Bn (f , x) = 1

n

∞∑

k=0

pn,k(x)f

(
k

n + 1

)
, x ∈ [0,∞), (1.1)

where

pn,k(x) = (n + k)!
k!(n − 1)!

xk

(1 + x)n+k+1
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and the Durrmeyer variant of these operators

Ln(f (t); x) = 1

n

∞∑

k=0

pn,k(x)
∫ ∞

0
pn,k(t)f (t)dt =

∫ ∞

0
Wn(t, x)f (t)dt, (1.2)

has been studied by Deo [3].
Throughout the paper, Cα [0,∞) will denote the space of all real-valued contin-

uous functions on [0,∞) satisfying growth condition |f (t)| ≤ Mtα, M > 0, α > 0
with the norm ∥∥f

∥∥
α

= sup
0≤t<∞

∣∣f (t)
∣∣t−α.

To improve the saturation order O(n−1) for the operators (1.2), we use the tech-
nique of linear combination as described by May [12] for a sequence of positive lin-
ear operators. We consider the linear combination of the operators (1.2) as described
below

The linear combinations Ln (f , (d0, d1, d2, . . . , dk) , x) of Ldjn(f , x), j = 0, 1,
2, . . . , k are defined by

Ln (f , (d0, d1, d2, . . . , dk) , x) =
k∑

j=0

C(j, k)Ldjn(f , x),

where d0, d1, d2, . . . , dk are arbitrary but fixed distinct positive integers and

C(j, k) =
k∏

i=0
i �=j

dj
dj − di

for k �= 0 & C(0, 0) = 1.

Definition 1.1 The mth order modulus of continuity ωm(f , η, a, b) for a function f
continuous on the interval [a, b] is defined by

ωm(f , η, a, b) = sup
{∣∣�m

h f (x)
∣
∣ : |h| ≤ η; x, x + mh ∈ [a, b]} .

For m = 1, ωm(f , η) is written simply the ordinary modulus of continuity ωf (η) or
ω(f , η).

The function f is said to belong to the generalized Zygmund class Liz (α,m, a, b)
if for η > 0 there exists a constant M such that

ω2m(f , η, a, b) ≤ Mηαm,

where ω2m(f , η, a, b) denotes the modulus of continuity of 2mth order of f (x) on
the interval [a, b] . For the class Liz (α, 1, a, b) is more commonly denoted by
Lip*(α, a, b).
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Definition 1.2 Let us assume that 0 < a < a1 < b1 < b < ∞ and f ∈ Cα [0,∞),
then form ∈ N the Steklovmean fη,m ofmth order corresponding to f , for sufficiently
small values of η > 0 is defined by

fη,m(x) = η−m

(∫ η/2

−η/2

)m
⎧
⎨

⎩
f (x) + (−1)m−1�m

m∑

i=1
xi
f (x)

⎫
⎬

⎭

m∏

i=1

dxi, (1.3)

where x ∈ [a, b] and �m
η f (x) is the mth order forward difference with step length η.

It is easily checked (see e. g., [5], [9]) that
(i) fη,m ∈ C[a, b];
(ii)

∥∥f (r)
η,m

∥∥
C[a1,b1] ≤ M1η

−rωr(f , η, a, b), r = 1, 2, . . . ,m;
(iii)

∥∥f − fη,m

∥∥
C[a1,b1] ≤ M2ωm(f , η, a, b);

(iv)
∥∥fη,m

∥∥
C[a1,b1] ≤ M3

∥∥f
∥∥
C[a,b] ≤ M4

∥∥f
∥∥
Cα

,

where Mi, i = 1, 2, 3, 4 are certain constants independent of f and η.

In this paper, we obtain direct theorem in terms of higher order modulus of conti-
nuity in simultaneous approximationwith the help of properties of Steklovmeans and
in the last section of this paper, we give inverse theorem for these linear combination
of the operators Ln in ordinary approximation.

2 Preliminary Results

In order to prove the Theorem, we shall require the following results:

Lemma 2.1 ([4]) Let m ∈ N0 (the set of nonnegative integers) and the mth moment
for the operators (1.1) be defined by

Un,m(x) =
∞∑

k=0

(
k

n + 1
− x

)m

pn,k(x).

Then

(n + 1)Un,m+1(x) = x (1 + x)
[
U ′

n,m(x) + mUn,m−1(x)
]
, (x ≥ 0,m ≥ 1) .

Consequently

(i) Un,m(x) is a polynomial in x of degree ≤ m;
(ii) Un,m(x) = O

(
n−[(m+1)/2]

)
where [β] denotes the integer part of β.

Lemma 2.2 ([3]) Let m ∈ N0, we define the function Tn,m(x) as

Tn,m(x) = 1

(n + r)

∞∑

k=0

pn+r,k(x)
∫ ∞

0
pn−r,k+r(t)(t − x)mdt.
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Then Tn,0(x) = 1, Tn,1(x) = (1+2x)(1+r)
n−r−1 and

(n − m − r − 1)Tn,m+1(x) = x(1 + x)
[
T ′
n,m(x) + 2mTn,m−1(x) + (1 + 2x)

(r + m + 1)Tn,m(x),
]
, (n > m + r + 1) .

Further, for all x ∈ [0,∞)

Tn,m(x) = O
(
n−[(m+1)/2]

)
.

Lemma 2.3 ([3]) If f is r − 1 times (r = 1, 2, 3, . . .) differentiable on [0,∞) such
that f (r−1) is absolutely continuous with f (r−1)(t) = O(tα) for someα > 0 as t → ∞
and n > α + r, then we have

L(r)
n (f , x) = (n − r − 1)!(n + r − 1)!

n!(n − 1)!
∞∑

k=0

pn+r,k(x)
∫ ∞

0
pn−r,k+r(t)f

(r)(t)dt.

(2.1)

Lemma 2.4 ([11]) There exist polynomials qi,j,r(x) independent of n and k such that

{x(1 + x)}r d
r

dxr
[pn,k(x)] =

∑

2i+j≤r
i,j≥0

(n + 1)i
∣∣k − (n + 1)x

∣∣jqi,j,r(x)pn,k(x).

Lemma 2.5 If f is a function in Cα [0,∞), such that f (2k+r+2) exists at a point
x ∈ (0,∞), then

lim
n→∞ nk+1 {

L(r)
n (f , (d0, d1, d2, . . . , dk) , x) − f (r)(x)

} =
2k+r+2∑

i=r

Q(i, k, r, x)f (i)(x),

where Q(i, k, r, x) are certain polynomial in x of degree i.

The proof of Lemma 2.5 follows along the lines of [8].

Lemma 2.6 Let δ and γ be any two positive numbers and [a, b] ⊂ [0,∞). Then,
for any m > 0 there exists a constant Mm such that

∥∥∥∥

∫
∣∣t−x

∣∣≥δ

Wn(t, x)t
γdt

∥∥∥∥
C[a,b]

≤ Mmn
−m

The proof of this result follows easily by using Schwarz inequality and Lemma
2.7 from [1].
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3 Direct Theorem

In this section, we study direct result in terms of higher order modulus of continuity
in simultaneous approximation for the operators (1.2).

Theorem 3.1 Let f (r) ∈ Cα [0,∞) and 0 < a < a1 < b1 < b < ∞. Then for all n
sufficiently large, we have

∥∥L(r)
n (f , (d0, d1, d2, . . . , dk) , •) − f (r)

∥∥
C[a1,b1]

≤ Max
{
C1ω2k+2(f

(r); n−1/2, a, b) + C2n
−(k+1)

∥∥f
∥∥

α

}
,

where C1 = C1(k, r) and C2 = C2(k, r, f ).

Proof Using linearity property

∥∥L(r)
n (f , (d0, d1, d2, . . . , dk) , •) − f (r)

∥∥
C[a1,b1]

≤ ∥∥L(r)
n

((
f − f2k+2,η

)
, (d0, d1, d2, . . . , dk) , •) ∥∥

C[a1,b1]
+ ∥∥L(r)

n

(
f2k+2,η, (d0, d1, d2, . . . , dk) , •) − f (r)

2k+2,η

∥∥
C[a1,b1]

+ ∥∥f (r) − f (r)
2k+2,η

∥∥
C[a1,b1]

:= E1 + E2 + E3.

Since, f (r)
2k+2,η(t) = (

f (r)
)
2k+2,η (t), by property (iii) of Steklov mean, we obtain

E3 ≤ C1ω2k+2(f
(r), η, a, b).

By Lemma 2.5, we get

E2 ≤ C2n
−(k+1)

2k+r+2∑

j=r

∥∥f (j)
2k+2,η

∥∥
C[a,b].

Using the interpolation property due to Goldberg and Meir [6] for each j = r, r +
1, . . . , 2k + r + 2, we get

∥
∥∥f (r)

2k+2,η

∥
∥∥
C[a,b]

≤ C3

{∥
∥f2k+2,η

∥
∥
C[a,b] +

∥
∥∥f (2k+r+2)

2k+2,η

∥
∥∥
C[a,b]

}
.

Now using properties (ii) and (iv) of Steklov mean, we obtain

E2 ≤ C4n
−(k+1)

{∥∥f
∥∥

α
+ η−(2k+2)ω2k+2(f

(r), η)
}
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To estimate E1, choosing a
′
, b

′
such that

0 < a < a
′
< a1 < b1 < b

′
< b < ∞.

Also let ψ(t) be the characteristic function of the interval [a′
, b

′ ], then

E1 ≤ ∥
∥L(r)

n

(
ψ(t)

(
f (t) − f2k+2,η(t)

)
(d0, d1, d2, . . . , dk) , •) ∥

∥
C[a1,b1]

+ ∥∥L(r)
n

(
(1 − ψ(t))

(
f (t) − f2k+2,η(t)

)
(d0, d1, d2, . . . , dk) , •) ∥∥

C[a1,b1]
:= E4 + E5.

Wenote that in order to estimateE4 andE5, it is sufficient to consider their expressions
without the linear combination. It is clear that by Lemma 2.3, we obtain

L(r)
n

(
ψ(t)

(
f (t) − f2k+2,η(t)

)
, x

)

= (n − r − 1)!(n + r − 1)!
n!(n − 1)!

∞∑

k=0

pn+r,k(x)
∫ ∞

0
pn−r,k+r(t)ψ(t)

(
f (r)(t) − f (r)

2k+2,η(t)
)
dt.

Hence

∥∥L(r)
n

(
ψ(t)

(
f (t) − f2k+2,η(t)

)
, •) ∥∥

C[a,b] ≤ C5

∥∥f (r) − f (r)
2k+2,η

∥∥
C[a′

,b′ ].

Nowfor x ∈ [a1, b1] and t ∈ [0,∞) /
[
a

′
, b

′]
wecan choose anη1 satisfying

∣∣t − x
∣∣ ≥

η1. Therefore by Lemma 2.4 and Schwarz inequality, we obtain

I ≡ ∣∣L(r)
n

(
(1 − ψ(t))

(
f (t) − f2k+2,η(t)

)
, x

) ∣∣

≤ 1

n

∑

2i+j≤r
i,j≥0

ni
∣
∣qi,j,r(x)

∣
∣

xr

∞∑

k=0

pn,k(x)
∣
∣k − (n + 1)x

∣
∣j

∫ ∞

0
pn,k(t) (1 − ψ(t))

∣
∣f (t) − f2k+2,η(t)

∣
∣dt

≤ C6
∥
∥f

∥
∥

α

∑

2i+j≤r
i,j≥0

ni−1
∞∑

k=0

pn,k(x)
∣
∣k − (n + 1)x

∣
∣j

∫
∣∣t−x

∣
∣≥η1

pn,k(t)dt

≤ C6
∥
∥f

∥
∥

α
η−2s
1

∑

2i+j≤r
i,j≥0

ni−1
∞∑

k=0

pn,k(x)
∣
∣k − (n + 1)x

∣
∣j

(∫ ∞

0
pn,k(t)dt

)1/2 (∫ ∞

0
pn,k(t)(t − x)4sdt

)1/2

≤ C6
∥∥f

∥∥
α
η−2s
1

∑

2i+j≤r
i,j≥0

ni
(
1

n

∞∑

k=0

pn,k(x)(k − (n + 1)x)2j
)1/2( 1

n

∞∑

k=0

pn,k(x)
∫ ∞

0
pn,k(t)(t − x)4sdt

)1/2

.

Hence by Lemma 2.1 and Lemma 2.2, we have

I ≤ C7

∥
∥f

∥
∥

α

∑
n(i+ j

2 −s) ≤ C7n
−q

∥
∥f

∥
∥

α
,
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where q = (s − r/2). Now for s > 0 and q ≥ k + 1, then I ≤ C7n−(k+1)
∥∥f

∥∥
α
. So by

property (iii) of Steklov mean, we have

E1 ≤ C8

∥∥f (r) − f (r)
2k+2,η

∥∥
C[a′

,b′ ] + C7n
−(k+1)

∥∥f
∥∥

α

≤ C9ω2k+2(f
(r), η, a, b) + C7n

−(k+1)
∥∥f

∥∥
α
.

Hence with η = n−1/2, the theorem follows. �

Definition 3.2 The function f is said to belong to the generalized Zygmund class
Lip(α, k, a, b) if there exists a constant M such that

ω2k (f , δ) ≤ Mδαk, δ > 0

whereω2k (f , δ) denotes themodulus of continuity of 2kth order on the interval [a, b].
The class Lip(α, k, a, b) is more commonly denoted by Lip∗(α, a, b)

4 Inverse Theorem

In this section we shall prove the following inverse result.

Theorem 4.1 If 0 < α < 2, 0 < a1 < a2 < b2 < b1 < ∞ and suppose f ∈ Cα

[0,∞), then in the following statements are equivalent.
(i)

∥∥Ln(f , (d0, d1, d2, . . . , dk) , •) − f
∥∥
C[a1,b1] = O

(
n−α(k+1)/2

)
, where f ∈ Cα

[a, b],
(ii) f ∈ Lip(α, k + 1, a2, b2).

Proof Let us choose points a′, a′′, b′, b′′ in such a way that a1 < a′ < a′′ < a2 <

b2 < b′′ < b′ < b1. Also suppose g ∈ C∞
0 with supp g ⊂ (a′′, b′′) and g(x) = 1 on

the interval x ∈ [a2, b2]. To prove the assertion, it is sufficient to show that

∥∥Ln(f g, (d0, d1, d2, . . . , dk) , •) − (f g)
∥∥
C[a′,b′] = O

(
n−α(k+1)/2

) ⇒ (ii). (4.1)

Using F in place of f g for all the values of h > 0, we get

∥∥�2k+2
h F

∥∥
C[a′′,b′′] ≤ ∥∥�2k+2

h (F − Ln(F, (d0, d1, d2, . . . , dk) , •))
∥∥
C[a′′,b′′]

+ ∥∥�2k+2
h Ln(F, (d0, d1, d2, . . . , dk) , •)

∥∥
C[a′′,b′′] (4.2)
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Therefore, by definition of �2k+2
h ,

∥∥�2k+2
h Ln (F, (d0, d1, d2, . . . , dk) , •)

∥∥
C[a′′,b′′]

=
∥∥∥∥

∫ h

0
...

∫ h

0
Ln

(
F, (d0, d1, d2, . . . , dk) , • +

2k+2∑

i=1

xi
)
dx1...dx2k+2

∥∥∥∥
C[a′′,b′′]

≤ h2k+2
∥∥L(2k+2)

n (F, (d0, d1, d2, . . . , dk) , •)
∥∥
C[a′′,b′′+(2k+2)h]

≤ h2k+2
{∥
∥L(2k+2)

n

(
F − Fη,2k+2, (d0, d1, d2, . . . , dk) , •) ∥

∥
C[a′′,b′′+(2k+2)h]

+ ∥∥L(2k+2)
n

(
Fη,2k+2, (d0, d1, d2, . . . , dk) , •) ∥∥

C[a′′,b′′+(2k+2)h]
}
, (4.3)

whereFη,2k+2 is the Steklovmean of (2k + 2)th order corresponding toF.ByLemma
3 from [1], we get

∫ ∞

0

∣∣∣∣
∂2k+2

∂x2k+2
Wn(t, x)dt

∣∣∣∣

≤
∑

2i+j≤2k+2
i,j≥0

1

n

∞∑

k=0

(n + 1)i
∣∣k − (n + 1)x

∣∣j
∣∣qi,j,2k+2(x)

∣∣

{x(1 + x)}2k+2
pn,k(x)

∫ ∞

0
pn,k(t)dt.

Since
∫ ∞
0 pn,k(t)dt = 1. By Lemma 2.1, we have

∞∑

k=0

pn,k(x)
(
k − (n + 1)x

)2j = (n + 1)2j
∞∑

k=0

pn,k(x)

(
k

n + 1
− x

)2j

= O(nj).

(4.4)

Using Schwarz inequality, we obtain

∥∥L(2k+2)
n

(
F − Fη,2k+2, (d0, d1, d2, ..., dk) , •) ∥∥

C[a′′,b′′+(2k+2)h] ≤ K1n
k+1∥∥F − Fη,2k+2

∥∥
C[a′′,b′′].

(4.5)

By Lemma 2 from [1], we get

∫ ∞

0

[
∂k

∂xk
Wn(t, x)

]
(t − x)idt = 0, for k > i. (4.6)

By Taylor’s expansion, we obtain

Fη,2k+2(t) =
2k+1∑

i=0

F(i)
η,2k+2(x)

i! (t − x)i + F(2k+2)
η,2k+2(ξ)

(t − x)2k+2

(2k + 2)! , (4.7)
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where ξ lies between t and x. By (4.6) and (4.7), we get

∥∥∥
∂2k+2

∂x2k+2
Ln

(
Fη,2k+2, (d0, d1, d2, ..., dk) , •) ∥∥∥

C[a′′,b′′+(2k+2)h]

≤
k∑

j=0

∣∣C(j, k)
∣∣

(2k + 2)!
∥∥∥F(2k+2)

η,2k+2

∥∥∥
C[a′′,b′′]

∥∥∥
∫ ∞

0

[
∂2k+2

∂x2k+2
Wdjn(t, x)

]
(t − x)2k+2dt

∥∥∥
C[a′′,b′′]

.

Again applying Schwarz inequality for integration and summation and Lemma 3
from [1], we obtain

I ≡
∫ ∞

0

∣
∣∣
∣

∂2k+2

∂x2k+2
Wn(t, x)

∣
∣∣
∣(t, x)

2k+2dt

≤ 1

n

∑

2i+j≤2k+2
i,j≥0

∞∑

k=0

(n + 1)ipn,k(x)
∣
∣k − (n + 1)x

∣
∣j

∣
∣qi,j,2k+2(x)

∣
∣

{x(1 + x)}2k+2

∫ ∞

0
pn,k(t)(t − x)2k+2dt

≤
∑

2i+j≤2k+2
i,j≥0

(n + 1)i
∣
∣qi,j,2k+2(x)

∣
∣

{x(1 + x)}2k+2

{ ∞∑

k=0

pn,k(x)(k − (n + 1)x)2j
}1/2

×
{
1

n

∞∑

k=0

pn,k(x)
∫ ∞

0
pn,k(t)(t − x)4k+4dt

}1/2

. (4.8)

Using Lemma 2 from [1]

1

n

∞∑

k=0

pn,k(x)
∫ ∞

0
pn,k(t)(t − x)4k+4dt = Tn,4k+4(x) = O

(
n−(2k+2)

)
. (4.9)

Using (4.4) and (4.9) in (4.8), we obtain

I ≤
∑

2i+j≤2k+2
i,j≥0

(n + 1)i
∣∣qi,j,2k+2(x)

∣∣

{x(1 + x)}k+1
O(nj/2)O

(
n−(k+1)

) = O(1).

Hence

∥∥W (2k+2)
n

(
Fη,2k+2, (d0, d1, d2, ..., dk) , •) ∥∥

C[a′′,b′′+(2k+2)h] ≤ K2

∥
∥∥F(2k+2)

η,2k+2

∥
∥∥
C[a′′,b′′]

.

(4.10)

On combining (4.2), (4.3), (4.5) and (4.10) it follows

∥∥�2k+2
h F

∥∥
C[a′′,b′′] ≤ ∥∥�2k+2

h (F − Ln(F, (d0, d1, d2, ..., dk) , •))
∥∥
C[a′′,b′′]

+ K3h
2k+2

(
nk+1

∥∥F − Fη,2k+2

∥∥
C[a′′,b′′] + ∥∥F(2k+2)

η,(2k+2)

∥∥
C[a′′,b′′]

)
.
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For h > 0, the above relation holds, it follows from the properties ofFη,2k+2 and (4.1)
that

ω2k+2(F, l, [a′′, b′′]) ≤ K4

{
n−α(k+1)/2 + l2k+2

(
nk+1 + η−2k+2

)

ω2k+2

(
F, η, [a′′, b′′])

}
.

Choosing η such that n < η−2 < 2h and followingBerens and Lorentz [2], we obtain

w2k+2(F, l, [a′′, b′′]) = O(lα(k+1)). (4.11)

Since F(x) = f (x) in [a2, b2], from (4.11) we have

w2k+2(f , l, [a2, b2]) = O(lα(k+1)), i.e., f ∈ Liz(α, k + 1, a2, b2).

Let us assume (i). Putting τ = α(k + 1), we first consider the case 0 < τ ≤ 1. For
x ∈ [a′, b′], we get

Ln(f g, (d0, d1, d2, . . . , dk) , x) − f (x)g(x) = g(x)Ln ((f (t) − f (x)) , (d0, d1, d2, . . . , dk) , x)

+
k∑

j=0

C (j, k)
∫ b1

a1
Wdj ,n(t, x)f (x) (g(t) − g(x)) dt

+ O
(
n−k+1)

)
= I1 + I2 + O

(
n−(k+1)

)
, (4.12)

where the O-term holds uniformly for x ∈ [a′, b′]. Since by assumption

∥∥Ln(f , (d0, d1, d2, . . . , dk) , •) − f
∥∥
C[a1,b1] = O

(
n−τ/2

)
,

we have

∥∥I1
∥∥
C[a′,b′] ≤ ∥∥g

∥∥
C[a′,b′]

∥∥Ln(f , (d0, d1, d2, . . . , dk) , •) − f
∥∥
C[a′,b′] ≤ K5n

−τ/2.

(4.13)

By mean value theorem, we get

I2 =
k∑

j=0

C(j, k)
∫ b1

a1

Wdj,n(t, x)f (t)
{
g′(ξ)(t − x)

}
dt.

Again applying Cauchy–Schwarz inequality and Lemma 2 from [1], we get

∥
∥I2

∥
∥
C[a′,b′] ≤ ∥

∥f
∥
∥
C[a1,b1]

∥
∥g′

∥∥
∥
C[a′,b′]

( k∑

j=0

|C(j, k)|
)

max
0≤j≤k

∥
∥
∥∥

∫ ∞

0
Wdj ,n(t, x)(t − x)2dt

∥
∥
∥∥

1/2

C[a′,b′]

= O
(
n−τ/2

)
. (4.14)
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Combining (4.12)–(4.14), we obtain

∥∥Ln(f g, (d0, d1, d2, . . . , dk) , •) − f g
∥∥
C[a′,b′] = O

(
n−τ/2

)
, for 0 < τ ≤ 1.

Now to prove the implication for 0 < τ < 2k + 2, it is sufficient to assume it for
τ ∈ (m − 1,m) and prove it for τ ∈ (m,m + 1), (m = 1, 2, 3, . . . , 2k + 1). Since
the result holds for τ ∈ (m − 1,m), we choose two points x1, y1 in such a way that
a1 < x1 < a′ < b′ < y1 < b1. Then in view of assumption (i) ⇒ (ii) for the interval
(m − 1,m) and equivalence of (ii) it follows that f (m−1) exists and belongs to the
class Lip(1 − δ, x1, y1) for any 0 < δ < 1. Let g ∈ C∞

0 be such that g(x) = 1 on
[a′′, b′′] and supp g ⊂ [a′′, b′′]. Then with χ(t) denoting the characteristic function
of the interval [x1, y1], we have

∥∥Ln(f , g, (d0, d1, d2, . . . , dk) , •) − f , g
∥∥
C[a′,b′]

≤ ∥∥Ln(g(x)f (t) − f (x)), (d0, d1, d2, . . . , dk) , •)
∥∥
C[a′,b′]

+ ∥∥Ln(f (t)(g(t) − g(x))χ(t), (d0, d1, d2, . . . , dk) , •)
∥∥
C[a′,b′] + O

(
n−(k+1)

)
.

(4.15)

Now

∥∥Ln(g(x)(f (t) − f (x)), (d0, d1, d2, . . . , dk) , •)
∥∥
C[a′,b′]

≤ ∥∥g
∥∥
C[a′′,b′′]

∥∥Ln(f , (d0, d1, d2, . . . , dk) , •) − f
∥∥
C[a1,b1] = O

(
n−τ/2) . (4.16)

Applying Taylor’s expansion of f , we have

I3 ≡ ∥∥Ln(f (t), g(t) − g(x))χ(t), (d0, d1, d2, . . . , dk) , •)
∥∥
C[a′,b′]

=
∥∥∥∥Ln

([ m−1∑

i=0

f (i)(x)

i! (t − x)i +
{
f (m−1)(ξ) − f (m−1)(x)

}

(m − 1)!
]

× (g(t) − g(x))χ(t), (d0, d1, d2, . . . , dk) , •
)∥∥∥∥

C[a′,b′]
,

where ξ lies between t and x. Since f (m−1) ∈ Lip(1 − δ, x1, y1),

∣∣f (m−1)(ξ) − f (m−1)(x)
∣∣ ≤ K6

∣∣ξ − x
∣∣1−δ ≤ K6

∣∣t − x
∣∣1−δ

,

where K6 is the Lip(1 − δ, x1, y1) constant for f (m−1), we have
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I3 ≤
∥∥∥
∥Ln

( m−1∑

i=0

f (i)(x)

i! (t − x)i(g(t) − g(x))χ(t), (d0, d1, d2, . . . , dk) , •
)∥∥∥

∥
C[a′,b′]

+ K6

(m − 1)!
∥∥g′∥∥

C[a′′,b′′]

( k∑

j=0

∣∣C(j, k)
∣∣
)∥∥Ldj,n(

∣∣t − x
∣∣m+1−δ

χ(t), •)
∥∥
C[a′,b′]

= I4 + I5 (say). (4.17)

By Taylor’s expansion of g and Lemma 2.5, we have

I4 = O
(
n−(k+1)

)
. (4.18)

Also, by Hölder’s expansion of g and Lemma 2 from [1], we have

I5 ≤ K6

(m − 1)!
∥∥g′∥∥

C[a′′,b′′]

( k∑

j=0

∣∣C(j, k)
∣∣
)

max
0≤j≤k

∥∥∥
∥

∫ y1

x1

Wdj,n(t − x)
∣∣t − x

∣∣m+1−δ
dt

∥∥∥
C[a′,b′]

≤ K7 max
0≤j≤k

∥∥∥∥

∫ y1

x1

Wdj,n(t − x)(t − x)2(m+1)dt

∥∥∥∥

(m+1−δ)
2(m+1)

C[a′,b′]

= O
(
n−(m+1−δ)/2

) = O
(
nτ/2

)
, (4.19)

by choosing such that 0 < δ < m + 1 − δ. Combining the estimate (4.15)–(4.19),
we get ∥∥Ln(f g, (d0, d1, d2, . . . , dk) , •) − f g

∥∥
C[a′,b′] = O

(
nτ/2

)
.

This completes the proof of the Theorem 4.1. �
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Big Data Gets Cloudy: Challenges
and Opportunities

Pramila Joshi

Abstract Cloud computing and big data are complementary, forming a dialectical
relationship. Cloud computing and the widespread use of internet application is the
ultimate need of the hour. Though seen as full of promising opportunities, both the
fields have their own challenges. Cloud computing is a trend in technology devel-
opment, while big data is an inevitable phenomenon of the rapid development of a
modern information society. Modern means like Cloud computing technologies are
needed to solve big data problems. With the advent of new technologies in the field
of data and computing, innumerable services are emerging on the net, generating
huge volume of data. The data so generated is becoming too large and complex to
be effectively processed by conventional means. How to store, manage, and create
values from this huge ocean of big data has become an important research prob-
lem in today’s time. Presently, users are accessing multiple data storage platforms
to accomplish their operational and analytical requirements. Efficient integration of
different data sources, in themerger of the two technologies, i.e., BigData andCloud,
poses considerable challenges. Data integration here plays a very important role for
both commercial and scientific domains in order to combine data from different
sources and provides users with a unified view of these data. Keeping in mind the
4 V’s of Big Data (volume, velocity, variety, and veracity), studying the challenges
and opportunities coming in the way of efficient data integration is a key research
direction for scientists. This paper will describe • How cloud and big data technolo-
gies are converging to offer a cost-effective delivery model for cloud-based big data
analytics. • Big Data Challenges. • Challenges in cloud computing. • Challenges
when big data moves to cloud.
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Fig. 1 Big data on cloud

1 Introduction

Two IT initiatives are currently top of mind for organizations across the globe: big
data analytics and cloud computing. Whereas big data analytics offers the promise
of providing valuable insights that can create competitive advantage, revolutionize
the trends and more turnover by organizations, Cloud computing has the potential
to enhance business agility and productivity at reduced cost while enabling greater
efficiencies. Both technologies are making rapid progress and a large number of
organizations are developing efficient and agile cloud solutions with cloud providers
expanding their service offerings. On the other hand, IT organizations are looking
up to cloud computing as the solution to support their big data projects [1] (Fig. 1).

2 Challenges in Big Data Analysis

There being no single universally accepted definition, Big Data has been defined
differently by different people;

Big Data refers to datasets whose size is beyond the capability of typical database
software tools to capture, store, manage, and analyze.—McKinsey.

Big Data is high volume, high velocity, and/or high variety information assets
that require new forms of processing to enable enhanced decision making, insight
discovery, and process optimization.—Gartner.

There are multiple phases in the Big Data analysis pipeline which pose some
common challenges in the field of big data.
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2.1 Heterogeneity and Incompleteness

In the current scenario, data sources are multiplying and data formats are exploding
ranging from structured information to free text which is highly unstructured. Data
being processed is becoming increasingly diverse in variety. Traditional data like
Documents, Stock record, personal files, finances, etc., have become things of the
past. A variety of data like Photographs, Pictures, Audio and Video data, 2D and 3D
models, Simulations, Locations data are being stacked [2].

2.2 Scale

Whereas volume indicates more data, it is the gritty behavior of the data that makes it
unique. Big Data is trending towards high volumes of low-density data which means
data of unknown value, such as social media messages, twitter data feeds, sensor-
enabled equipment capturing data at the speed of light, clicks on a web page, and
many more. The ability of Big Data to convert low-density data into high-density
data is what makes it so valuable. For some organizations, this might be in terabytes,
for others it may be hundreds of petabytes [2].

2.3 Timeliness

To deliver analytical results in time keeping in mind the massive volumes and het-
erogeneity in formats is a great challenge. The architecture and design of a system
also influences the speed of data processing. However, when one speaks of Velocity
in the context of Big Data, it means how fast the data is generated and processed
to meet the demands and the challenges which lie ahead in the path of growth and
decision-making [2].

2.4 Privacy

Unlike other services, cloud computing involves big data and thus safety, security,
and privacy of the data assumes great significance. Apart from legal issues ethical
issues are also involved. Though there are stringent laws governing use of personal
data, the same is not applicable to other data. These issues can best be addressed
using technology and ethical training.
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2.5 Human Collaboration

Whatever be the technological advancement, the human factor in any form of com-
puting cannot be negated. The big data analytics cannot entirely be computational.
The present day complexities require obtaining opinion of multiple experts who may
be located in different geographical areas. The big data analytics must provide a
means to collect and synthesize this data obtained frommultiple experts in real time.

2.6 The Cost Problem

To begin with, let us examine the cost factor of managing centralized data storage and
processing. Initially, highly expensive high-end mainframe or midrange servers with
high speed, high-reliability disk arrays to guarantee data processing performance
were used. The software, by virtue of the huge R&D cost involved, were also equally
expensive. Requirement of trained professionals further led to cost escalation.

2.7 The Value Mining Problem

Growing volumes of details let to reduction in the value density per data unit and at
the same time increased big data value. Deep data mining and analysis is essential
to discern hidden patterns from massive data volumes. Big data mining, however,
differs significantly from conventional data mining in that the volume of data is huge
requiring distributed and parallel processing models.

3 Rethinking Data Management: The Rise of Cloud
Computing and Cloud Data Stores to Handle Big Data

Cloud computing has developed greatly since 2007. The core model of Cloud com-
puting is large-scale distributed system which provides, storage, computing, net-
working, and other resources which can be used as needed. Meanwhile, two parallel
breakthroughs have further helped accelerate the adoption of solutions for handling
Big Data:

• The availability of cloud-based solutions has dramatically lowered the cost of
storage, amplified by the use of commodity hardware. Virtual file systems, either
open source or vendor specific, helped transition from a managed infrastructure
to a service-based approach;
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• Newdesigns for databases and efficientways to supportmassively parallel process-
ing have led to a new generation of products like the so-called noSQL databases
and the Hadoop MapReduce platform [3].

4 Challenges of Cloud Computing

In Spite of the ever present challenges in the field of cloud computing, it has immense
business value and companies are venturing into this field to exploit its full potential.
However, like any new technology, the adoption of cloud computing has its own
challenges some of which are enumerated below.

4.1 Security and Privacy

As valuable enterprise data will reside outside the corporate firewall, it will be sus-
ceptible to Hacking and various other forms of attacks, which in turn has the potential
of affecting multiple clients even if only one site is attacked [4].

4.2 Service Delivery and Billing

The costs involved in providing such a service will be difficult to determine due the
nature of the service unless provider has some good and comparable benchmarks to
offer.

4.3 Interoperability and Portability

Clientsmust have the discretion tomove in and out of the cloud at theirwill in addition
to the freedomof selection among different service providers. Interoperability among
different platforms will play a key role in the success or failure of the service.

4.4 Reliability and Availability

As brought earlier, uninterrupted service is a major factor as frequent outages will
be detrimental to the businesses. Checks and balances to monitor the quality and
reliability of the service through internal or third-party tools will be essential.
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Fig. 2 Hadoop as big data
solution

4.5 Performance and Bandwidth Cost

However, since the service is bandwidth-based, businesses may save money on hard-
ware but will have to spend for the bandwidth. Though smaller applicationsmay have
a smaller cost, data-intensive applications will entail significant costs as delivering
intensive and complex data over the network requires sufficient bandwidth.

4.6 Moving Everything to the Cloud

It may be premature to move everything to the cloud. It may be prudent to carefully
analyse and determine the fields where cloud computing could be utilized optimally
without any security challenges (Fig. 2).

5 Taking Big Data to the Cloud: Hadoop as Big Data
Solution on Cloud

Hadoop, as a cloud computing solution service, enables access to speedy and accurate
processing of medium and large-scale data at reduced costs. Insignificant operational
challenges of running Hadoop enable emphasis on other more relevant business
activities.

New Opportunities—Why Hadoop in the Cloud

Since cloud computing offers unlimited scaling and on-demand access to compute
and storage capacity, it is the perfect match for big data processing [5].
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5.1 On-Demand Elastic Cluster: Scale and Performance

One big advantage of taking big data to Hadoop cluster is the ease with which extra
nodes can be added or removed from clusters automatically depending on data size
to improve performance [5].

5.2 Integrated Big Data Software

Hadoop platform is comprised of two main components, HDFS and MapReduce.
HDFS is a reliable fully distributed file system which includes full integration with
the Hadoop MapReduce, Hive, Pig, Oozie, Sqoop, Spark, and Presto.

5.3 Simplified Cluster Management

Organisations using Hadoop need not worry about devoting extra time and resources
to manage nodes, set up clusters and infrastructure scaling as everything is handled
very efficiently by Qubole Data Service which offers a fully managed Hadoop-based
cluster.

5.4 Lower Costs

No advance expenditure is required for on-site hardware or IT support in Hadoop
Cloud. Costs greatly come down by 90% because of spot instant pricing as compared
to on-demand instances.

5.5 Cost Efficiency

Built-in software scalability, elasticity, flexibility, and availability features make
HDFS highly reliable on industry-standard hardware. Organizations can optimize
their hardware expenditures working in tandem with Hadoop’s open source eco-
nomics resulting in reduced costs as compared to their traditional architecture costs
(Figs. 3 and 4).
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Fig. 3 Big data in cloud growing

Fig. 4 How it works

5.6 Integrated Computing and Storage

HDFS and the Hadoop frameworks are tightly integrated and physically collocated
within the same server in a cluster to provide the shortest path between data and
computing, which brings accessibility and throughput to any workload with any data
within the system.
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5.7 Unified and Flexible Storage

The design of HDFS lets organizations capture data once into efficient, vernacular,
and open formats that permits shared simultaneous access to that data by all current
and future Hadoop processing and analytic frameworks.

5.8 Durability and Security

Durability and Security assurance by HDFS facilitates uninterrupted business con-
tinuity through built-in software high-availability, snapshots, and data replication
facilities.

6 Challenges Coming on the Way: Big Data on Cloud

After the data management structure is established and operating well, one is ready
to take on the new frontier of data management in the cloud.

6.1 Institutional Data Management

When a firm decides to move its data on the cloud, what happens to data manage-
ment? The data to be stored, managed, and analyzed by multiple providers can be a
big security threat. Also what happens to firm’s data management plan in this new
environment? [6].

6.2 Data Dictionary

One particularly significant challenge might be the management of data dictionary.
Cloud services may or may not be different from the organisation’s in-house archi-
tecture [6].

6.3 How to Handle Basic Change Management

The challenges of moving big data to cloud also involve basic change management:
new options including data feeds will be available at a greater pace as compared to
when the system was hosted locally [6, 7].
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6.4 Access and Security Issues

Access and security issues due to physical location of the servers away from their
businesses make clients hesitate to adopt cloud services [6].

6.5 Data Life Cycle and Retention

Another threatening challenge in a cloud environment is data life cycle and retention
even though the cloud companies promise to copy and protect your data, often with
exorbitant possession claims [6].

6.6 Data Governance

The data governance group itself is a challenge. While the group primarily focuses
on internally controllable aspects of data management, as more and more data moves
to cloud it might need to add a senior contracts administrator or an attorney [6, 7].

6.7 Moving Large Data Sets to the Cloud

Cloud adoption by businesses has been limited because of the problem of moving
their data into and out of the cloud. Data migration in large volumes to and from the
cloud may be cost prohibitive [7].

6.8 Data Location as a Security Challenge

Cloud computing technology allows cloud servers to reside anywhere, thus the organ-
isation may not know the physical location of the server being used to store and
process their data and applications.

6.9 Commingled Data as a Security Threat

Application sharing and multi-tenancy of data is one of the characteristics associ-
ated with cloud computing. Although many Cloud Service Providers have secure
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multi-tenant applications which are also scalable and customizable, still security and
privacy issues often come up among enterprises.

6.10 Cloud Security Policy/Procedures Transparency

Some CSPs may have less transparency than others about their information security
policy. The rationalization for such difference is the policies may be proprietary. As
a result, it may create conflict with the enterprise’s information compliance require-
ment.

6.11 Cloud Data Ownership

Cloud data ownership can be a big challenge. It may be the case that the Cloud
Provider owns the data stored in the cloud computing environment according to the
contract agreements [8].

6.12 Lock-in with CSPs Proprietary Application
Programming Interfaces (API)

Currently many Cloud service Providers adopt proprietary APIs and then implement
their application. As a result, it has become extremely difficult and time-consuming
for the enterprise to make transition from one CSP to another CSP if it wishes [8].

6.13 Compliance Requirements

The enterprise taking cloud services for its data does not actually know where does
the data reside and also is unaware if it is fully compliant with laws and regulations?
The enterprise is still responsible for its data.

6.14 Disaster Recovery

When an enterprise decides tomove its data on the cloud, deciding about how resilient
the services of the CSP is a challenging task since data may be stored at geographi-
cally far apart locations around multiple servers. Also the data can be scattered and
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Fig. 5 Big data security in
cloud: major issue

commingled. In conventional hosting platforms, the enterprise knows exactly where
their data is located to be able to be retrieved rapidly in the event of disaster [8]
(Fig. 5).

7 Conclusions and Future Directions

In an increasingly competitive and complex business environment, organizations are
exploring new ways and means to improve their competitive edge. Cloud computing
provides them with one such tool. However, this service is not without its pitfalls.
Business must carry out a deliberate evaluation of their security concerns taking into
account the existing architecture and legacy systems prior to switching to a potentially
complex private or hybrid cloud deployment. Issues regarding the process which
need to be changed and the legacy processes which can be accommodated should be
deliberated upon at length. Placing data pertaining to core competencies on cloud
may not be prudent.

However, the fact that cloud computing and big data is here to stay cannot be
negated. Ways and means will have to be designed to address and overcome the
various concerns associated with cloud computing in order to exploit this technology
optimally.
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AMoored Ship Motion Analysis in Realistic
Pohang New Harbor and Modified PNH

Prashant Kumar, Gulshan Batra and Kwang Ik Kim

Abstract In recent decades, loading and unloading of moored ship is difficult task
during the extremewave oscillation in a harbor during the seasonalweather condition.
In this paper, we have analyzed the six different modes of ship motion such as
surge, sway, heave, roll, pitch, and yaw components using six degree of freedom for
Pohang NewHarbor (PNH) and modified PNH. A general mathematical formulation
is designed based on Helmholtz and Laplace equation, which is solved byusing 3-D
Boundary Element Method (BEM). Hydrodynamic forces acting on the mooring
ropes and fenders also considered to determine added mass and damping coefficient
in PNH. Based on simulation results, some tactics such as adding breakwater at
entrance is implemented in modified PNH. In result, the added mass and damping
coefficient of six modes of moored ship motion is reduced in modified PNH. Thus,
the present numerical model can be implemented to any other realistic harbor with
complex geometry to analyze the moored ship motion.

Keywords Equation of motion ·Boundary element method ·Moored ship motion ·
Pohang New Harbor

1 Introduction

During the loading and unloading activities, the ship is severely affected by moored
ship motion (surge, sway, heave, roll, pitch, and yaw) that is induced by long waves
with small amplitude, shallowwater waves, harbor oscillation, mooring systems, and
wind velocity. Harbor resonance causes several problems such as breaking mooring
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ropes, fenders, and breaking coastal structure. In order to ensure safe cargo handling,
we required to predict the wave field, resonance frequencies near moored ship, estab-
lishing the effective countermeasures are also required to improve the moored ship
motion, and increase the effective harbor working day.

Several researchers have analyzed the moored ship motion in a harbor using
various numerical schemes [1–5] and predict the wave field under the resonance
conditions. However, these numerical approaches are based on harbor model but
they are very useful to predict the wave field in an irregular geometry. The Boundary
Integral Equation Method (BIEM) is used by Sawaragi and Kubo [2], in which 3-D
Green’s functions was applied on a rectangular floating body in a rectangular harbor.
Takagi and Naito [6] investigated mild slope equation model along with the variable
bathymetry, which solved by Finite Element Method (FEM). Further, a combined
method is formulated with the combination of 3-D BEM and 2-D FEM, which was
applied on moored ship motion in a harbor [3, 7]. A hybrid Boussinesq panel method
is utilized to predict the various modes of moored ship motion in restricted water
depth [8–12].

Themoored shipmotion in a harbor under the resonance conditions are analyzed in
realistic Pohang New Harbor (PNH). After adding breakwater at entrance, geometry
of original PNH is modified, so we say it modified PNH. Then we compute the six
components of the moored ship motion such as surge, sway, heave, roll, pitch and
yaw for original and modified PNH. In comparison, harbor resonance is reduced for
modified PNH as compared to original PNH. In this study, investigation of moored
ship oscillation helped to find the cause and countermeasure of harbor oscillation
generated by typhoon and applied some tactics to reduce the oscillation.

2 Mathematical Formulation

The geometry of the mathematical model of PNH is described in Fig. 1. The model
geometry is divided into three domains, i.e., bounded, unbounded and the ship
domain. The boundary of the ship region is denoted by S0, the depth is uniformly
both bounded and unbounded region as h. The origin is located at the entrance, x-axis
and y-axis is directed along the shoreline and towards the open sea, respectively, and
z-axis is directed vertically upwards from the sea surface. The ship region is small
enveloped area in the bounded region, which encircled the moored ship SM. The
Incident wave directed toward the entrance is shown in Fig. 1 at various directions
and the exterior and interior boundary is given at entrance of PNH (Fig. 1).

The Helmholtz equation (∇2 + k2) f = 0 is derived from the continuity equation
both bounded and unbounded region and wave function fb in the bounded region and
fu in the unbounded region, which is determined in term of unknown normal deriva-
tives at the entrance [13]. Hence the matching boundary condition at the entrance is
given by fb = fu and ∂ fb/∂n = −∂ fu/∂n, where, flow into the harbor is the oppo-
site direction to outward the normal vector, so negative sign is taken in the boundary
condition at the entrance.
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Fig. 1 Model sketch of
PNH along with governing
equations and boundary
conditions. The ship region
S0 includes moored ship SM

In order to determine the velocity potential completely, we have to determine the
bounded wave function by using the following integral equation

fb(x, y) = − i

4
∫�b

[
f (x0, y0)

∂

∂n
(H (1)

0 (kr)) − H (1)
0 (kr)

∂

∂n
( f (x0, y0))

]
ds, (2.1)

where fb(x, y) the wave function inside the harbor at any point (x, y), (x0, y0) is
defined as the integration variable on the boundary, r = √

(x − x0)2 + (y − y0)2 is
distance between interior point to the boundary points, H (1)

0 (kr) the Hankel function
of zeroth order of first kind and k is the wave number can be defined as dispersion
relation ω2 = gk tanh kh. In ship region, the velocity potential is defined as the sum
of diffraction potential and radiation potential

φ(s)(x, y, z, t) = Re

⎡

⎣

⎧
⎨

⎩
A0φ0(x, y, z) +

6∑

j=1

ξ jφ j (x, y, z)

⎫
⎬

⎭
e−iωt

⎤

⎦ , (2.2)

whereA0 is the incidentwave amplitude,φ0 is diffraction potential, andφ j is radiation
potential for various mode of ship motion j = 1, 2, . . . , 6 and ξ j is the incident wave
amplitude for j th mode, and ω is the radian frequency. The diffraction potential is
described such that φ0 = φI R + φs = φI + φR + φs, where, φI is the incident wave
is potential, φR is the reflection wave potential, and φs is the scattering wave potential
representing the disturbance of the incident and reflected waves by the moored ship.
The potential function φ j satisfies the Laplace equation
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∇2φ j = 0 for j = 0, 1, 2, . . . , 6 . (2.3)

Thus the boundary condition acting on the moored ship SM can be define as the
kinematic boundary condition for the free water surface ∂φi/∂z − (ω2/g)φi = 0
and boundary condition at bottom of sea floor is given as ∂φi/∂z = 0 for i =
0, 1, 2, . . . , 6. Further the boundary conditions applicable tomoored ship SM is given

∂φi

∂n
= −iωni on SM for i = 1, 2, 3, (2.4)

∂φi

∂n
= −iω(rs × n)i−3 on SM for i = 4, 5, 6. (2.5)

Thenormal vectorsn1, n2, . . . , n6 is defined the as the generalizeddirection cosine
acting on moored ship. The Green’s theorem can be applied to solve the Eq. (2.3) in
fluid domain �s, where we employed a 3D-BEM model and the velocity potential
in ship region is determined by following integral

φ
(s)
j (�x) = −1

c

⎧
⎪⎨

⎪⎩

∫

S0

{
φ j (�x0) ∂G

∂n
− G

∂φ j (�x0)
∂n

}
ds +

∫

SM∪SB

{
φ j (�x0) ∂G

∂n
ds −

∫

SM

n jGds

⎫
⎪⎬

⎪⎭
,

(2.6)

where G denotes the Green’s function, i.e., G = 1/4πr,where r = |�x − �x0| . and
the coefficient c is 1/2π depending on the interior point (x, y) ∈ S0 and 1/4π for
(x, y) /∈ S0.

The hydrodynamic forces and moments acting on the body surface are calculated
by integration on the surface. The hydrodynamic forces can be described as

Xk = −ρ

∫ ∫

S0

φ0
∂φk

∂n
dS, k = 1, 2, 3, . . . , 6 (2.7)

where Xk is the complex amplitude of the forces or moments which is acting toward
on the body kth direction for the incident wave with unit amplitude. The added mass
coefficients, damping coefficients and wave exciting forces are calculated for the
rectangular ship which moves with six degree of freedom. The equation of motion
with six degree of freedom considering the mooring ropes and fenders is written as
follows:

6∑

j=1

[
−ω2(Mkj + akj) + iωbkj + Ckj

]
ζ j = Xk +

Nl∑

i=1

Lkj+
N f∑

i=1

Fkj, k = 1, 2, 3, . . . , 6.

(2.8)
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Here, Mkj is the moment of Inertia matrix, bkj is a damping coefficient, and akj is
the added mass coefficient, Ckj is a matrix of buoyancy(hydrostatic resorting force)
coefficients, Xk is the wave exciting force with respect to time [14] and Nl and N f

is the total no of mooring ropes and fenders, respectively. Lkj denotes the resulting
force acting of kth mooring ropes acting about the center of gravity of ship motion
and Fkj denotes the fender force in kth fender.

3 Convergence of the Numerical Method

The convergence of numerical scheme in PNH domain, the boundary of the PNH
is discretized into N1= 251 segment divisions, N2= 502 segment divisions and
N3= 1004 segment divisions and entrance is divided into P1= 17 segments, P2= 34
segments and P3= 68 segments, respectively.

In Fig. 2, the amplification factor for N1= 251, N2= 502 andN3= 1004 segment
divisions are represented by red, green and blue asterisk line, respectively, for the
boundary of PNH. The numerical scheme has high accuracy as the segment divisions
increased across the boundary PNH. An analytical approximation of the numerical
scheme obtained optimum solution for the discretization N= 1004. It is difficult
to get good convergence on sharp corners besides that we have reasonably good
convergence at corner also because of the discretization near the corner have been
taken into account very precisely.

Fig. 2 Convergence graph
for different number of
discrete boundary points,
N= 251 N2= 502 and
N3= 1004 boundary
segment divisions
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4 Numerical Simulation Results

The numerical simulation has been carried in realistic PNH domain for the analysis
of moored ship motion. The six different modes of ship motion such as surge, sway,
heave, roll, pitch, and yawmotion have been analyzed in PNH. The current numerical
scheme applied to original PNH (see Fig. 1) and modified PNH (additional breakwa-
ter on entrance E1E2) to analyze the various modes of ship motions as surge added
mass (A11/M), sway added mass (A22/M), heave added mass (A33/M), roll added
mass (A44/MLs2), pitch added mass (A55/MLs2) and yaw added mass (A66/MLs2)
coefficient (see Fig. 3, upper part). Further, damping coefficient of different modes
as the surge (B11/ωM), sway (B22/ωM), heave (B33/ωM), roll (B44/ωML2

s ),
pitch (B55/ωML2

s ) and yaw damping coefficient (B66/ωML2
s ) is also analyzed for

original and modified PNH (see Fig. 3). The added mass and damping coefficients
for various modes of moored ship motion has been reduced in modified PNH as
compare to original PNH. In modified PNH, we have restricted the incident waves

Fig. 3 Surge added mass (A11/M) sway added mass (A22/M) heave added mass (A33/M), roll
added mass (A44/MLs2), pitch added mass (A55/MLs2) and yaw added mass (A66/MLs2) for orig-
inal and modified PNH is given in upper part of figure.Surge damping coefficient (B11/ωM), sway
damping coefficient (B22/ωM), heave damping coefficient (B33/ωM), roll damping coefficient
(B44/ωM), pitch damping coefficient (B55/ωML2

s ) and yaw damping coefficient (B66/ωML2
s )

is given for the same region. On the x-axis nondimensional frequency ω2Ls/g is taken, where ω

angular frequency is, LS is the length of model ship, and g the gravitational constant
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entering directly towards entrance. The resonant frequencies for moored ship motion
can be predicted for various modes of moored ship.

Once we implant the breakwater on the harbor’s entrance to restrict such incident
waves, the various modes of moored ship motion is subjugated significantly for
modified PNH compared to original PNH. The impact of each component of moored
ship motion can be identified. Therefore moored ship motion including surge, sway,
heave, roll, pitch and yaw motion at specific location near boundary of harbor can be
predicted under the resonance conditions. The numerical scheme can be implemented
to any complex geometry harbors in the world.

5 Conclusion

We have modeled the realistic PNH domain to predict the linear and nonlinear
response of a moored ship motion in the restricted water. In simulation results,
the added masses and damping coefficients for original PNH and modified PNH
are compared. Further, the various modes of moored ship motion in modified PNH
are reduced as compared to original PNH. Thus, the direction of the incident wave
dramatically affects the wave oscillation in a harbor. Small tactics such as implant
breakwaters in a harbor can significantly reduce the oscillation in a harbor. The res-
onance modes of moored ship motion are reduced in modified PNH as compared to
original PNH (see Fig. 3).
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The Legacy of ADI and LOD Methods and
an Operator Splitting Algorithm for Solving
Highly Oscillatory Wave Problems

Qin Sheng

Abstract Different splitting methods have been playing an important role in com-
putations of numerical solutions of partial differential equations. Modern numerical
strategies including mesh adaptations, linear and nonlinear transformations are also
utilized together with splitting algorithms in applications. This survey concerns two
cornerstones of the splittingmethods, that is, theAlternatingDirection Implicit (ADI)
and Local One-Dimensional (LOD) methods, as well as their applications together
with an eikonal mapping for solving highly oscillatory paraxial Helmholtz equations
in slowly varying envelope approximations of active laser beams. The resulted finite
difference scheme is not only oscillation-free, but also asymptotically stable. This
ensures the high efficiency and applicability in optical wave applications.

Keywords Splitting methods · Decompositions · Eikonal transformation · Wave
equations · Oscillations · Numerical stability

AMS Subject Claasifications: 65N06 · 65N12 · 65Y05 · 35M06

1 Introduction

It has been known that many natural, human or biological, chemical, mechanical,
economical or financial systems and processes can be described at a macroscopic
level by a set of partial differential equations governing averaged quantities such as
density, temperature, concentration, velocity, etc. [6]. In some sense, partial differen-
tial equations are the basis of all physical theorems. As the computer and computa-
tional technologies develop, numerical partial differential equations has become an
extremely important branch of numerical analysis that studies the numerical solution
of partial differential equations for the real world.
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Finite differencemethods have been extremely important to the numerical solution
of partial differential equations. Splitting methods have been playing a key role in
finite difference strategies. Associated with finite differences, finite elements, hybrid
multi-scale settings or adaptations, various kinds of splitting algorithms are widely
used and proven to be very effective and efficient for solving all major classes of
different differential equations in various applications.

While the mathematical foundation of splitting methods can be traced back to
the pioneering work of Hausdorff, Trotter et al. [7, 22], the philosophic inspirations
of the modern computational strategy came actually from René Descartes in 1637
[2]: ...The first rule was never to accept anything as true unless I recognized it to
be certainly and evidently such.... The second was to divide each of the difficulties
which I encountered into as many parts as possible, and as might be required for an
easier solution.

This brief survey on splitting methods consists of the following four consecutive
parts:

1. Alternating Direction Implicit (ADI) Methods.
2. Local One-Dimensional (LOD) Methods.
3. Connections and Further Developments.
4. Applications in Highly Oscillatory Wave Computations.
5. Typical Oscillatory Waves Computed.

2 Alternating Direction Implicit Methods

ADI methods have been a family of classical splitting methods with extraordinary
features in structure simplicity, computational efficiency and flexibility in applica-
tions.

The original ADI idea was due to D.W. Peaceman and H.H. Rachford, Jr. in 1955
[5, 14]. Later, J. Douglas, Jr. and H.H. Rachford, Jr. were able to implement the
algorithm by splitting the time-step procedure into two fractional steps. The strategy
of the ADI approach can be readily explained in a contemporary way of modern
numerical analysis.

To see the underlying strategy of ADI, we may let E be an n-dimensional domain,
and consider the following evolution equation:

∂u

∂t
(x, t) = Fu(x, t) x ∈ E, t > t0, (2.1)

where F = F1 + F2 + · · · + Fm, m ≥ 2, is a differential operator.
For the simplicity of discussion, we may set n = m = 2. Assume that a semidis-

cretization of (2.1) together with suitable boundary conditions yields the following
ordinary differential system:
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v′ = Av + Bv, t > t0, (2.2)

where A, B ∈ C
n×n, AB �= BA in general, and v ∈ C

n.

If v(t0) = v0 is an initial vector, then for τ > 0, the solution of (2.2) can be
expressed as

v(t + τ ) = eτ Av(t) +
∫ τ

0
e(τ−ξ)ABv(t + ξ)dξ, t ≥ t0.

An application of the left-point rule and [0/1] Padé approximant yields

w(t + τ ) = (I − τ A)−1(I + τ B)w(t), t ≥ t0, (2.3)

where w approximates v. Proceed for one more step, we have

w(t + 2τ ) = (I − τ B)−1(I + τ A)w(t + τ ), t + τ ≥ t0. (2.4)

Both (2.3) and (2.4) are first order approximations.
Combining (2.3) and (2.4) we acquire immediately that

w(t + 2τ ) = (I − τ B)−1(I + τ A)(I − τ A)−1(I + τ B)w(t), t ≥ t0. (2.5)

The above is the standard ADI formula. It is frequently called a Peaceman–
Rachford splitting. It is a splitting algorithm not based on any exponential splitting
[15]. It is of second order in accuracy for solving (2.2).

The formula (2.5) occasionally shows us in a slightly different form. To see it, we
denote �t = 2τ , w� = w(t), w�+1 = w(t + �tu). Thus, (2.5) becomes

(
I − �t

2
B

)
w�+1 =

(
I + �t

2
A

) (
I − �t

2
A

)−1 (
I + �t

2
B

)
w�. (2.6)

Example Consider the two-dimensional advection-diffusion equation

∂u

∂t
= ∇(a(x, y)∇u), a ≤ x, y ≤ b,

where a is sufficiently smooth, together with homogeneous Dirichlet boundary con-
ditions. A straightforward semidiscretization leads to

v′
k, j = 1

h2
[
ak−1/2, jvk−1, j − (

ak−1/2, j + ak+1/2, j
)
vk, j + ak+1/2, jvk+1, j

]

+ 1

h2
[
ak, j−1/2vk, j−1 − (

ak. j−1/2 + ak, j+1/2
)
vk, j + ak, j+1/2vk, j+1

]

k, j = 1, 2, . . . , n, 0 < h � 1.
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This yields the system (2.2) where block tridiagonal A, B contain the contribution
of the differentiation in the x- and y- variables, respectively. An ADI procedure (2.5)
or (2.6) can be applied immediately.

Remark 1 ADI methods can be used for solving linear nonhomogeneous equations
with nonhomogeneous boundary conditions too.

Remark 2 ADI methods can be extended for the numerical solution of certain non-
linear, or even singular, partial differential equations.

Remark 3 The ADI strategy can be utilized for solving partial differential equations
consisting of multiple components, such as Schrödinger equations.

Remark 4 ADI methods can be used together with other highly effective numerical
strategies, such as temporal and spacial adaptations, and compact finite difference
schemes.

Remark 5 ADImethods can bemodified for solving other types of equations includ-
ing integro-differential equations.

Remark 6 We note that A, B in (2.2) are not necessary matrices. They can be more
general linear or nonlinear operators. This leads to an exciting research field of
operator splitting, in which important mathematical tools, such as semigroups, Hopf
algebra, graph theory, and symplectic integrations, can be applied.

Remark 7 Key ideas of ADI methods have been extended well beyond the territory
of computational mathematics to areas such as fractional PDEs, hybrid modeling
and realizations.

3 Local One-Dimensional Methods

Needless to say, the introduction and original analysis of this type of splitting meth-
ods are due to E.G. D’Yakonov, G.I. Marchuk, A.A. Samarskii and N.N. Yanenko
[4, 11, 23].

To see the general LOD splitting strategy, we recall the first order exponential
splitting [9, 12, 13, 15],

eτ (A+B) = eτ Aeτ B + O(τ 2), τ → 0+. (3.1)

Thus, the solution of the semidiscretized system (2.2) can be approximated
through

v(t + 2τ ) ≈ e2τ Ae2τ Bv(t), t ≥ t0.

Now, an application of the [1/1] Padé approximant leads immediately to the Local
One-Dimensional configuration:
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w(t + 2τ ) = (I − τ A)−1(I + τ A)(I − τ B)−1(I + τ B)w(t), t ≥ t0. (3.2)

This new formula may look like another Peaceman–Rachford splitting by a first
glance. However, (2.5) and (3.2) are fundamentally different.

To see this, we may re-list both the formulas as follows:

• LOD splitting formula:

w(t + 2τ ) = (I − τ A)−1(I + τ A)(I − τ B)−1(I + τ B)w(t).

• ADI splitting formula:

w(t + 2τ ) = (I − τ B)−1(I + τ A)(I − τ A)−1(I + τ B)w(t), .

Apparently, LODmethods are exponential splitting oriented [15]. It can be viewed as
a consecutive application of two one-dimensional Crank–Nicolson methods. It can
be readily proven that the LOD method is unconditionally stable if all eigenvalues
of A, B lie in the left half of the complex plane. This also leads to the convergence.
Further, LOD methods can be conveniently extended for approximating solutions of
multidimensional problems. However, (3.2) is first order in accuracy.

But, can LOD methods be more accurate?
The answer is YES. This leads to the study of exponential splitting. Some of the

basic exponential splitting formulas include

e2τ (A+B) = e2τ Ae2τ B + O(τ 2),

e2τ (A+B) = 1

2

(
e2τ Ae2τ B + e2τ Be2τ A

) + O(τ 3),

e2τ (A+B) = eτ Ae2τ Beτ A + O(τ 3).

They are considered as the discretization parameter τ → 0+.

The next question may be whether exponential splitting formulas can be as accu-
rate as we wish?

The answer is NO. This is because of the following Sheng–Suzuki Theorem:

Theorem 3.1 The order of accuracy of a exponential splitting based method cannot
be more than two, if a diffusion type stability needs to be observed.

For more detailed discussions, the reader is referred to [1, 15, 17, 21].

4 Connections and Further Developments

To see possible internal connections between ADI and LOD formulations, let us start
from the ADI formula:
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w(t + 4τ ) = [
(I − τ B)−1(I + τ A)(I − τ A)−1(I + τ B)

]2
w(t)

= (I − τ B)−1(I + τ A)(I − τ A)−1(I + τ B)(I − τ B)−1

×(I + τ A)(I − τ A)−1(I + τ B)w(t), t ≥ t0.

Thus, by denoting
w0(ξ) = (I + τ B)w(ξ)

and drop all truncation errors incurred, we have

w0(t + 4τ ) = e2τ Be2τ Ae2τ Be2τ Aw0(t) = (
e2τ Be2τ A

)2
w0(t), t ≥ t0. (4.1)

The above implies repeated applications of the same LOD method!
The research over generalized ADI, LOD and exponential splitting methods has

been very active. Interested readers may search recent publications of the following
researchers:

• R. McLachlan, R. Quispel, S. Descombes
• S. Blanes, F. Casas, J. M. Sanz-Serna
• L. Einkemmer, A. Iserles, E. Hansen, Alex Ostermann
• V. K. Singh, G. Strang, S. Chin, Q. Sheng...

Intensive research information and the latest meeting and workshops can also be
found in the Splitting in Action! website.

Beyond the traditional local traction error estimates, the study of global error
estimates for exponential splitting has been in excellent progresses. To see some of
the recent results, we may let A, B ∈ C

n×n, t ≥ 0 and

E1(t) = et Aet B − et (A+B)

E2(t) = e
t
2 Aet Be

t
2 A − et (A+B),

E3(t) = 1

2

(
et Aet B + et Bet A

) − et (A+B).

It can be shown [13, 16] that

‖E1(t)‖ ≤ t2

2
‖[A, B]‖max

{
etμ(A+B), et (μ(A)+μ(B))

}
,

‖E2(t)‖ ≤ t3

6

∥∥∥∥
1

2
A + B

∥∥∥∥ ‖[A, B]‖max
{
et(

1
2 μ(A)+μ( 1

2 A+B)), etμ(A+B)
}

×max
{
eθ( 1

2 μ(A)+μ(B)), eθμ( 1
2 A+B)

}
,

‖E3(t)‖ ≤ t3

6
‖A − B‖‖[A, B]‖max

{
etμ(A+B), et (μ(A)+μ(B))

}
,

where μ(M) is the logarithmic norm of M [12].
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Fig. 1 The imaginary part of a typical numerical error of computed highly oscillatory waves via
LOD methods [18, 19]

However, the study of global error estimates whenmultiple operators are involved
is still in its infancy. Since the Pandora’s box has been opened, there are just more
questions than answers in split computations nowadays [3, 10]. For example, in
multiple physics applications, we often need to evaluate (Fig. 1)

1. global errors of multiple component splitting such as

E1,n(t) = et A1et A2 . . . et An−1et An − et (A1+A2+···An−1+An),

E∗
1,n(t) = et A1et A2 . . . et An−1et An − et An et A2 . . . et An−1et A1;

2. complex time exponential splitting such as

S =
n∏

k=1

ebkhAeakhB, ak, bk ∈ C;

3. asymptotically perturbed exponential splitting;
4. compact splitting, domain splitting and physical preservations.

5 Applications in Highly Oscillatory Wave Computations

We consider a highly oscillatory wave problem in which a slowly varying envelope
approximation of the laser beam is considered. In the case, the paraxial Helmholtz
equation,

2iκuz = uxx + uyy + f (u), 0 ≤ x, y ≤ �, z ≥ z0, (5.1)
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plays an important role. When f is linear, then (5.1) can be simplified to

2iκuz = uxx + uyy, 0 ≤ x, y ≤ �, z ≥ z0. (5.2)

There have beenmanymodern numericalmethods for solving similarwave problems,
including

• Different coordinate transforms for overcoming the numerical inefficiency
• Stratton-Chu scattering diffraction integral configurations
• Other integral methods possessing different advantages under particular circum-
stances

• Filon and Levin type collocations
• Spectral methods, finite element methods.

However, since the wave number κ is extremely large in optical applications, con-
sequently the energy function u is highly oscillatory. Therefore mesh steps often
need to be extremely small in computations. Therefore Eq. (5.1) is costly to solve via
any existing conventional methods. Challenges remain in balancing the algorithmic
simplicity, accuracy and efficiency [8, 19].

Recall the nonlinear ray transformation in geometrical optics,

u(x, y, z) = φ(x, y, z) exp{iκψ(x, y, z)}, (5.3)

where φ, ψ are nonoscillatory real functions and φ �= 0 is for wavefronts of the
disturbance.

Utilizing (5.3), we acquire from (5.1) the following coupled eikonal system

φz = α
(
ψxx + ψyy

) + f1, (5.4)

ψz = β
(
φxx + φyy

) + f2, (5.5)

where

α = φ

2
, β = − 1

2κ2φ
, f1 = φxψx + φyψy, f2 = ψxψx + ψyψy

2
.

Note that solutions φ, ψ are not oscillatory! Further, (5.4) and (5.5) can be written
as

wz = Mwxx + Mwyy + f

together with
w(x, y, z0) = g0(x, y).
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Denote

w =
(

φ
ψ

)
, f =

(
f1
f2

)
, M =

(
0 α
β 0

)
.

Lemma 5.1 M is similar to a skew symmetric matrix and thus its eigenvalues are
pure imaginary. Further, for any φ �= 0, the matrix has a pair of constant eigenvalues
λM = ± i/(2κ) and thus a spectral radius ρ(M) = 1/(2κ). Hence, cond2(M) = 1,
and ‖M‖2 = max{|α|, |β|} is small when κ is large.

Consider

w(0, y, z) = w(�, y, z) = 0, w(x, 0, z) = w(x, �, z) = 0, (5.6)

and then

wx (0, y, z) = wx (�, y, z) = 0, wy(x, 0, z) = wy(x, �, z) = 0. (5.7)

The aboveboundary settings are typical. They imply that laser beams are concentrated
symmetrically around its geometric center and the light intensity is negligible near
the boundaries in both x and y directions. Certainly more general conditions, such
as the reflective or absorbing boundary conditions, can be employed.

Note that our eikonal equation can be reconfigured to

wz = (A + B)w + φ,

where A, B are spatial differential operators involved. Recall the discussion of (2.2).
We have the formal solution

w(z + h) = eh(A+B)w(z) +
∫ h

0
e(h−ξ)(A+B)φ(z + ξ)dξ.

An exponential splitting leads to

w(z + h) = ehBehA
(

w(z) + h

2
φ(z)

)
+ h

2
φ(z + h)

= ehBv(z) + h

2
φ(z + h).

Subsequently,

v(z) = ehA
(

w(z) + h

2
φ(z)

)
,

w(z + h) = ehBv(z) + h

2
φ(z + h).
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This leads to the complete LOD scheme

(
I − h

2
A

)
v(z) =

(
I + h

2
A

)
w(z) + h

2

(
I + h

2
A

)
φ(z),

(
I − h

2
B

)
w(z + h) =

(
I + h

2
B

)
v(z) + h

2

(
I − h

2
B

)
φ(z + h)

via an [1/1] Padé approximation.
Now, denote

(
I + h

2
A

)
f (z) = f1(z),

(
I − h

2
B

)
f (z) = f2(z),

wr = w(zr ), wr+1/2 = v(zr ), wr+1 = w(zr + h)

on a z-mesh.
We obtain the following semidiscretized PDE system,

wr+1/2 − wr = h

2

(
Mwr+1/2

xx + Mwr
xx

) + h

2
f r1 ,

wr+1 − wr+1/2 = h

2

(
Mwr+1/2

yy + Mwr+1
yy

) + h

2
f r+1/2
2 .

Since each of the above equations is implicit in one spacial dimension, we may
employ standard central difference approximations in space:

δ2xv
r
s,t = (

vrs+1,t − 2vrs,t + vrs−1,t

)
h−2
x ,

δ2yv
r
s,t = (

vrs,t+1 − 2vrs,t + vrs,t−1

)
h−2
y .

The above leads to the following fully discretized coupled difference equations

w
r+1/2
s,t − wr

s,t = h

2
Mr

s,t

(
δ2xw

r+1/2
s,t + δ2xw

r
s,t

)
+ h

2
f r1,s,t ,

wr+1
s,t − w

r+1/2
s,t = h

2
Mr+1/2

s,t

(
δ2yw

r+1/2
s,t + δ2yw

r+1
s,t

)
+ h

2
f r+1/2
2,s,t ,

where (xs, yt , zr ) is any internal mesh point with steps hx , hy, h. For the simplicity
in discussions, we may let hx = hy = �/(n + 1).

Under the first boundary condition (5.6), we obtain a block tridiagonal system
from the above:

(
I − μMr

)
wr+1/2 = (

I + μMr
)
wr + h

2
f r , (5.8)

(
I − ηMr+1/2

)
vr+1 = (

I + ηMr+1/2
)
vr+1/2 + h

2
gr+1/2, (5.9)
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where

• I ∈ R
2n2×2n2 is an identity matrix,

• μ = h/(2h2x), η = h/(2h2y) are dimensional Courant numbers [9],
• vσ = Pwσ, f σ = f σ

1 , gσ = P f σ
2 , P is a permutation matrix,

• σ = 0, 1/2, 1, 3/2, 2, . . . , r, r + 1/2, r + 1, . . .

Further, Mσ is block-diagonal. Let Nσ = P−1MσP. Then (5.8) and (5.9) can be
conveniently reformulated as

(
I − μMr

)
wr+1/2 = (

I + μMr
)
wr + h

2
f r ,

(
I − ηNr+1/2) wr+1 = (

I + ηNr+1/2) wr+1/2 + h

2
gr+1/2.

Lemma 5.2 The eigenvalues of matrices Mσ, Nσ are pure imaginary.

Lemma 5.3 We have ρ(Sσ) = O(1/κ), where κ is the wave number.

Theorem 5.4 Suppose that the homogeneous Dirichlet boundary condition (5.6)
is used and ρ(Mσ) = O (

κ−c
)
, c > 1/2. Then the semidiscretization based split-

ting method (5.8) and (5.9) is unconditionally asymptotically stable. Further, the
asymptotical stability index of the scheme is c.

Proofs of the lemmas and theorem are straightforward. A key to notice is that the
perturbation matrix (I − μMr )−1 (I + μMr ) is actually an [1/1] Padé approximant
of the matrix exponential e2μM

r
.

Now, what may happen if the Neumann boundary condition (5.7) is adopted? In
the case we may acquire the linear system

(
I − μQr

)
wr+1/2 = (

I + μQr
)
wr + h

2
f r , (5.10)

(
I − ηQr+1/2

)
vr+1 = (

I + ηQr+1/2
)
vr+1/2 + h

2
gr+1/2. (5.11)

Again, there exists a permutation matrix P such that vσ = Pwσ.We denote Rσ =
P−1QσP.

Lemma 5.5 The eigenvalues of the matrices Qσ, Rσ are pure imaginary.

Theorem 5.6 Suppose that the homogeneous Neumann boundary condition (5.7)
is used and ρ(Qσ) = O

(
κ−c

)
, c > 1/2. Then the semidiscretization based split-

ting method (5.10) and (5.11) is unconditionally asymptotically stable. Further, the
asymptotical stability index of the scheme is c.

Their proofs are similar to that of the last results for the Helmholtz equation under
Dirichlet boundary conditions.



226 Q. Sheng

How to compute such eikonal systems? In fact, either the system (5.8), (5.9) or
(5.10), (5.11) can be comprised to yield

Arψ
r+1/2 = μDβr Sgr1 + gr2, (5.12)

φr+1/2 = μDαr Sψr+1/2 + gr1, (5.13)

Br+1/2ψ̃
r+1 = ηDβr+1/2 Sg

r+1/2
3 + g

r+1/2
4 , (5.14)

φ̃r+1 = ηDαr+1/2 Sψ̃r+1 + g
r+1/2
3 , (5.15)

r = 0, 1, 2, . . . ,

where Ar = I − μ2Dβr SDαr S, Br+1/2 = I − η2Dβr+1/2 SDαr+1/2 S are quintic diag-
onal.

The ordered systems can further be compressed into an imbedded form

φr+1/2 = μDαr S A−1
r

(
μDβr Sgr1 + gr2

) + gr1,

φ̃r+1 = ηDαr+1/2 SB−1
r+1/2

(
ηDβr+1/2 Sg

r+1/2
3 + g

r+1/2
4

)
+ g

r+1/2
3 ,

r = 0, 1, 2, . . .

Needless to say, above procedures are considerably simple, effective, efficient and
user-friendly. They can be conveniently parallelized. These are desirable characters
for engineering and industrial software package implementations.

Since Dβr S and Dαr S are both tridiagonal, Dβr SDαr S is quintic diagonal. We
have

Theorem 5.7 There exist reasonable values of μ, η such that Ar and Br+1/2 are
nonsingular. Therefore the solution of system (5.12)–(5.15) exists and is unique.

The above study indicates that splitting methods are highly successful for solv-
ing highly oscillatory wave problems, given that proper auxiliary tools, such as the
eikonal transformation, can be equipped [20]. However, are there any unanswered
questions or out cries from the physical or engineering applications? YES, there are
many. Such as the splitting methods, in particular ADI and LOD schemes, when
nonlinear stabilities are involved. Further, difficult research associate with splitting
methods include:

1. Physical and mathematical preservations,
2. High dimensional decomposition and analysis,
3. Parallel computation realizations...

Back to the nonlinear waves. How to use splitting methods for similar singular
wave applications? Are there higher order splitting algorithms for multidimensional
Schrödinger equations, Korteweg–de Vries equations, quenching-combustion equa-
tions, sine-Gordon equation and stochastic Black–Scholes equations and inequal-
ities? These are apparently open challenges to everyone here for the M3HPCST
Conference in India.
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6 Typical Oscillatory Wave Examples

In this section, we show a few typical highly oscillatory wave projections computed
via our LOD based eikonal splitting schemes. Boundary conditions (5.6) is utilized.
Parallel MapLab software packages and cluster computer platforms are used.

6.1 Highly Oscillatory Gaussian Beam (Laser Optical Waves)

See Figs. 2, 3 and 4.
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Fig. 2 3D Gaussian beam plot: real part of a computed highly oscillatory optical wave via LOD
methods
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Fig. 3 3D Gaussian beam plot: imaginary part of a computed highly oscillatory optical wave via
LOD methods
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Fig. 4 3D Gaussian beam plot: modules of a computed highly oscillatory optical wave via LOD
methods
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Generalized Absolute Convergence
of Trigonometric Fourier Series

R.G. Vyas

Abstract Recently, Moricz and Veres generalized the classical results of Bernstein,
Szasz, Zygmund and others related to the absolute convergence of single andmultiple
Fourier series. In this paper, we have extended this result for single Fourier series of
functions of the classes �BV (T) and �BV (p)(T).

Keywords Generalized β−absolute convergence · Fourier series · �BV (p)(T)
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1 Introduction

The classical result of Zygmund, for the absolute convergence of Fourier series if a
function of bounded variation on T , where T = [−π,π) is the torus, is generalized
in many ways and many interesting results are obtained for different generalized
absolute convergence of Fourier of functions of different generalized classes (see
[1, 4]). In 2006, Gogoladze and Meskhia [1] obtained sufficient conditions for the
generalized absolute convergence of a single Fourier series. Moricz and Veres [2]
obtained sufficient conditions for the generalized absolute convergence of single and

multiple Fourier series of functions of the classes BV (p)(T) and BV (p)(T
N
), respec-

tively (also see [5]). In this paper, generalizing such results for single Fourier series,
we have obtained sufficient conditions for the generalized absolute convergence of
single Fourier series of functions of the classes �BV (T) and �BV (p)(T).

In the sequel, L is the class of non-decreasing sequence � = {λi} (i = 1, 2, . . .)
of positive numbers such that

∑
i
1
λi
diverges, a real number p ≥ 1 and C represents

a constant vary time to time.
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2 Notations and Definitions

For a complex valued, 2π-periodic, function f ∈ L1(T), its Fourier series is defined as

f (x) ∼
∑

m∈Z
f̂ (m)eimx, x ∈ T,

where

f̂ (m) =
(

1

2π

) ∫

T

f (x)e−imx dx

denotes the mth Fourier coefficient of f .
For p ≥ 1, the p-integral modulus of continuity of f over T is define as

ω(p)(f ; δ) := sup

0 < h ≤ δ
‖ Thf − f ‖p,

where Thf (x) = f (x + h) for all x and ‖ (.) ‖p denotes the Lp-norm over T. p = ∞
gives the modulus of continuity ω(f ; δ) of f .

Following the definition in [1], a sequence γ = {γm : m ∈ N} of nonnegative
numbers is said to belongs to the class Aα for some α ≥ 1 if

⎛

⎝
∑

m∈Dμ

γα
m

⎞

⎠

1/α

≤ κ2μ(1−α)/α
∑

m∈Dμ−1

γm, μ ∈ N, (2.1)

where
D0 := {1}; Dμ := {2μ−1 + 1, 2μ−1 + 2, . . . , 2μ}, μ ∈ N; (2.2)

and the constantκ does not dependent onμ.Without the loss of generality, we assume
that κ ≥ 1.

Note that,
Aα2 ⊂ Aα1 , where 1 ≤ α1 < α2 < ∞. (2.3)

If a sequences γ is such that

max{γm : m ∈ Dμ} ≤ κ min{γm : m ∈ Dμ−1}, μ ∈ N, (2.4)

then γ ∈ Aα for everyα ≥ 1. This inequality was introduced byUl’yanov [3]. More-
over, Moricz and Veres [2] observed that, if a sequence γ = {γm} is of the form

γm = mτw(m), m ∈ N,
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where τ ∈ R and w : R+ → R+ is a slowly varying function, that is,

lim

x → ∞
w(λx)

w(x)
= 1, for every 0 < λ < ∞, (2.5)

then γ ∈ Aα for every α ≥ 1.
For convenience in writing, put

γ−m := γm, m ∈ N. (2.6)

Definition 2.1 Given � = {λn} ∈ L. A complex valued function f defined on an
interval I := [a, b] is said to be of p − �-bounded variation (that is, f ∈ �BV (p)(I))
if

V�p(f , I) = sup
{Ik}

(
∑

k

|f (Ik)|p
λk

)1/p

< ∞,

where {Ik} is a finite collections of non-overlapping subintervals Ik = [ak, bk] ⊂
[a, b] and f (Ik) = f (bk) − f (ak).

Note that, for p = 1 and � = {1} (that is, λn = 1, for all n,) the class �BV (p)(I)
reduces to the classBV (I) (the class of functions of bounded variation). For p = 1 the
class �BV (p)(I) reduces to the class �BV (I); and for � = {1} the class �BV (p)(I)
reduces to the class BV (p)(I) (the class of functions of p-bounded variation).

3 Results for Functions of Single Variable

Theorem 3.1 If f ∈ �BV (T) and γ = {γm} ∈ A2/(2−β) for some β ∈ (0, 2) then

∑
(γ; f )β =

∑

|m|≥1

γm|f̂ (m)|β ≤ κC
∞∑

μ=0

2−μβ/2�μ−1

(
(ω(f ; π

2μ ))
∑2μ

i=1
1
λi

)β/2

,

where κ is from (2.1) corresponding to α = 2/(2 − β) and C is a constant,

�μ :=
∑

m∈Dμ

γm for μ ∈ N, and �−1 := �0 = {γ1} (3.1)
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Corollary 3.2 Under the hypothesis of Theorem 3.1, we have

∑
(γ; f )β ≤ κC

∞∑

m=1

m−β/2γm

(
(ω(f ; π

m ))
∑m

i=1
1
λi

)β/2

,

In the case when γm ≡ 1, it follows from the above Corollary that
∑

(1; f )β :=
∑

|m|≥1 |f̂ (m)|β

≤ C
∞∑

m=1

m−β/2

(
(ω(f ; π

m )
∑m

i=1
1
λi

)β/2

.

This gives the result [6, Theorem1,withnk = k, forall k,] as a particular case.
Above corollary can easily follow from the Theorem 3.1.

Theorem 3.3 If f ∈ �BV (p)(T) and γ = {γm} ∈ A2/(2−β) for some β ∈ (0, 2) then

∑
(γ; f )β ≤ κC

∞∑

μ=0

2−μβ/2�μ−1

⎛

⎝

(
(ω((2−p)s+p)(f ; π

2μ ))2r−p

∑2μ

i=1
1
λi

)1/r
⎞

⎠

β/2

,

where 1
r + 1

s = 1, κ is from (2.1) corresponding to α = 2/(2 − β) and C is a con-
stant.

Corollary 3.4 Under the hypothesis of Theorem 3.3, we have

∑
(γ; f )β ≤ κC

∞∑

m=1

m−β/2γm

⎛

⎝

(
(ω((2−p)s+p)(f ; π

m ))2r−p

∑m
i=1

1
λi

)1/r
⎞

⎠

β/2

,

In the case when γm ≡ 1, it follows from the above Corollary that

∑
(1; f )β :=

∑

|m|≥1

|f̂ (m)|β

≤ C
∞∑

m=1

m−β/2

⎛

⎝

(
(ω((2−p)s+p)(f ; π

m ))2r−p

∑m
i=1

1
λi

)1/r
⎞

⎠

β/2

.

This gives the result [4, Theorem1, with nk = k, forall k,] as a particular case.
Above Corollary 3.4 can be easily follows from the Theorem 3.3.

Proof of Theorem 3.1 f ∈ �BV (T) implies that f is bounded over T and hence
f ∈ L2(T). For given h > 0, put fj = Tjhf − T(j−1)hf , then f̂j(m) = 2if̂ (m)eim(j− 1

2 h)

sin(mh2 ).
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By Parseval’s equality, we get

4
∑

m∈Z
|f̂ (m)|2 sin2

(
mh

2

)
= O(||fj||22).

Putting h = π
2μ , μ ∈ N, and observing that

π

4
<

|m|π
2μ+1

≤ π

2
for |m| ∈ Dμ, implies sin2

(
mh

2

)
>

1

2
.

Thus, we have

B =
∑

|m|∈Dμ

|f̂ (m)|2 = O
(||fj||22

)

= O (ω(f ; h))
(∫ 2π

0
|fj(x)|dx

)
. (3.2)

Multiplying both the sides of the above inequality by 1
λj

and then summing over
j = 1 to j = 2μ, we have

B = O

⎛

⎝ ω(f ; h)
∑2μ

j=1
1
λj

⎞

⎠

⎛

⎝
∫ 2π

0

2μ∑

j=1

(|fj(x)|)
λj

dx

⎞

⎠ = O

⎛

⎝ ω(f ; h)
∑2μ

j=1
1
λj

⎞

⎠ ,

as f ∈ �BV (T) implies
∑2μ

j=1
(|fj(x)|)

λj
= O(1).

Since 1 = β
2 + 2−β

2 , by Holder’s inequality, for μ ≥ 1, we have

Sμ :=
∑

|m|∈Dμ

γm|f̂ (m)|β ≤
⎛

⎝
∑

|m|∈Dμ

|f̂ (m)|2
⎞

⎠

β/2 ⎛

⎝
∑

|m|∈Dμ

γ2/(2−β)
m

⎞

⎠

(2−β)/2

≤ C

⎛

⎝ ω(f ; h)
∑2μ

j=1
1
λj

⎞

⎠

β
2
⎛

⎝
∑

|m|∈Dμ

γ2/(2−β)
m

⎞

⎠

(2−β)/2

. (3.3)

Thus for μ ≥ 1,

Sμ ≤ Cκ

⎛

⎜
⎝2−μβ/2 �μ−1

⎛

⎝ ω(f ; h)
∑2μ

j=1
1
λj

⎞

⎠

β
2

⎞

⎟
⎠ .
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If μ = 0, then from (3.3) it follows that

S0 := γ1(|f̂ (−1)|β + |f̂ (1)|β) = O

(

γ1

(
ω(f ;π)

1
λ1

))

.

Hence, the result follows from

∑

|m|≥1

γm|f̂ (m)|β =
∞∑

μ=0

Sμ.

Proof of Theorem 3.3. f ∈ �BV (p)(T) implies that f is bounded over T [4, in view
of Lemma 1, p.771] and hence f ∈ L2(T). Proceeding as in the proof of Theorem
3.1, we get (3.2).

Since 2 = (2−p)s+p
s + p

r , by using Holder’s inequality, we have

||fj||22 ≤ (||fj||p
)p/r

(∫ 2π

0
|fj|(2−p)s+pdx

)1/s

≤ (||fj||p
)p/r

�
1/r
h ,

where �
1/r
h = (ω(2−p)s+p(f ; h))2r−p.

This together with (3.2) implies

Br =
⎛

⎝
∑

|m|∈Dμ

|f̂ (m)|2
⎞

⎠

r

= O

(
�h

∫ 2π

0
|fj(x)|pdx

)
.

Multiplying both the sides of the above inequality by 1
λj

and then summing over
j = 1 to j = 2μ, we have

Br = O

⎛

⎝ �h
∑2μ

j=1
1
λj

⎞

⎠

⎛

⎝
∫ 2π

0

2μ∑

j=1

(|fj(x)|p)
λj

dx

⎞

⎠ = O

⎛

⎝ �h
∑2μ

j=1
1
λj

⎞

⎠ .

Thus

B = O

⎛

⎝ �h
∑2μ

j=1
1
λj

⎞

⎠

1/r

.

Now, proceeding as in the proof of the Theorem 3.1 the result follows.
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Some New Inequalities for the Ratio
of Gamma Functions

Sourav Das and A. Swaminathan

Abstract In this work, certain new inequalities involving ratios of q-analogue of
Euler gamma function are derived. Interesting generalizations and particular cases
are also discussed.

Keywords Euler gamma function ·Polygamma function · Inequalities · q-analogue

1 Introduction

In 1729, Euler introduced the gamma function for the generalization of n! for non-
integral values of n. He [4] discovered that

∫ 1

0
(−ln t)xdt =

∫ ∞

0
t x e−t dt (x > −1) (1)

which gives x ! for x ∈ N. Later, Legendre [12, Vol. 1, p. 221] denoted the integral
(1) as Γ (x + 1) and is known as the gamma function. It can be noted that the integral
on the right side of (1) converges for x ∈ C if �(x) > −1. For the brief history of
the gamma function and its applications in various fields we refer to [2–9, 20–22]
and references therein.

The problem of finding new inequalities for the ratio of gamma functions has
attracted the attention of many researchers [1, 6, 10, 11, 13–19, 21]. In particular
C. Alsina and M.S. Tomás [1] found the following inequality
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1

n! ≤ Γ (1 + x)n

Γ (1 + nx)
≤ 1.

for all x ∈ [0, 1] and all nonnegative integers n, which was generalized in [19].
There are several generalization of the above mentioned inequalities exist in the

literature. For example [8, Theorem 2.1]

1

Γq(1 + a)
≤ Γq(1 + x)a

Γq(1 + ax)
≤ 1,

for all a ≥ 1 and all x ∈ [0, 1] with q ∈ (0, 1).
For the case q → 1, it was given by J. Sándor [19]. Similarly, the inequality [13,

Theorem 2.3]

Γq(a)c

Γq(b)d
≤ Γq(a + bx)c

Γq(b + ax)d
≤ Γq(a + b)c

Γq(a + b)d
(2)

forq → 1was provedbyA.Sh. Shabani [16,Theorem2.4] using series representation
of digamma function ψ(x) = Γ ′(x)

Γ (x) .
A.Sh. Shabani [18] generalized [17] and unified many existing for q-analogue of

gamma functions by

Γq(a + b)c

Γq(d + e) f
≤ Γq(a + bx)c

Γq(d + ex) f
≤ Γq(a)c

Γq(d) f
(3)

for q ∈ (0, 1), x ∈ [0, 1], a + bx > 0, d + ex > 0, a + bx ≤ d + ex , e f ≥ bc > 0
with ψq(a + bx) > 0 or ψq(d + ex) > 0.

In this work, we are interested in establishing some double inequalities for the
polygamma function related to (2) and (3). This article is organized as follows. First
we will establish the bounds for the ratio of ψ(n)

q (a + bx)c in Sect. 2. In Sect. 3, we
will generalize the results of Sect. 2 and find the bounds for the ratio ofψ(n)

q (a + bx)c.
In Sect. 4 bounds for the ratio of Γ (x + α) and its q-analogue are established.

2 Inequalities Involving q-Analogue of Polygamma
Functions

Note that digamma function is defined as ψ(x) = Γ ′(x)
Γ (x) . Polygamma function is

defined as the nth order derivative of digamma function. The q-analogue of digamma

function and polygamma function are defined, respectively, as ψq(x) = Γ ′
q (x)

Γq (x)
and

ψ(n)
q (x) = dn

dxn ψq(x).
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From [15, Eq. 1.17] we have, for 0 < q < 1,

ψq(x) = −ln(1 − q) + ln q
∞∑

k=1

qkx

1 − qk
. (4)

Differentiating (4) with respect to x , n times we have

ψ(n)
q (x) = (ln q)n+1

∞∑

k=1

knqkx

1 − qk
, n ≥ 1. (5)

Since ln q < 0 for 0 < q < 1, it is easy to see that

ψ(n)
q (x) =

{
> 0, if n is odd;
< 0, if n is even.

Lemma 1 Let x ∈ [0, 1], q ∈ (0, 1) and a, b be any two real numbers such that
a ≥ b > 0. Then

ψ(n)
q (a + bx) ≥ ψ(n)

q (b + ax), if n is even;

ψ(n)
q (a + bx) ≤ ψ(n)

q (b + ax), if n is odd.

Proof Let x ≥ y > 0. Then, from (5);

ψ(n)
q (x) − ψ(n)

q (y) = (ln q)n+1
∞∑

k=1

kn

(1 − qk)
(qkx − qky).

Now,
x ≥ y > 0 =⇒ qx ≤ qy for 0 < q < 1.

Hence, ψ(n)
q (x) − ψ(n)

q (y) ≥ 0 (≤ 0) if n is even (odd). Replacing x by a + bx and
y by b + ax gives the result.

Lemma 2 Let n be any odd natural number and x ∈ [0, 1], q ∈ (0, 1), a, b be any
two real numbers such that a ≥ b > 0. Let c, d be any two positive real numbers
such that ad ≥ bc > 0. Then

bcψ(n+1)
q (a + bx)ψ(n)

q (b + ax) − adψ(n)
q (a + bx)ψ(n+1)

q (b + ax) ≥ 0.

Proof Let n be odd natural number. Then

ψ(n)
q (a + bx) > 0, ψ(n)

q (b + ax) > 0, ψ(n+1)
q (a + bx) < 0 and ψ(n+1)

q (b + ax) < 0.
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Now by Lemma 1, we have

bcψ(n+1)
q (a + bx)ψ(n)

q (b + ax) ≥ adψ(n+1)
q (a + bx)ψ(n)

q (b + ax)

≥ adψ(n+1)
q (b + ax)ψ(n)

q (a + bx)

and the proof is complete.

Theorem 1 Let f (x) be a function defined as

f (x) = ψ(n)
q (a + bx)c

ψ
(n)
q (b + ax)d

.

Let n be odd natural number, x ∈ [0, 1], q ∈ (0, 1), a ≥ b > 0, c, d > 0 with ad ≥
bc > 0. Then f (x) is increasing on [0, 1] and the following double inequality holds:

ψ(n)
q (a)c

ψ
(n)
q (b)d

≤ ψ(n)
q (a + bx)c

ψ
(n)
q (b + ax)d

≤ ψ(n)
q (a + b)c

ψ
(n)
q (a + b)d

.

Proof Let g(x) = log f (x). Then

g′(x) = bcψ(n+1)
q (a + bx)ψ(n)

q (b + ax) − adψ(n+1)
q (b + ax)ψ(n)

q (a + bx)

ψ
(n)
q (a + bx)ψ(n)

q (b + ax)
.

By Lemma 2, g′(x) > 0, which implies g(x) is increasing function on [0, 1]. Hence
f (x) is also increasing function on [0, 1]. Consequently, using f (0) ≤ f (x) ≤ f (1),
proves the theorem.

These results can be obtained for other cases like x ≥ 1 and n being even natural
numbers, by similar procedures. We state some of them without proof.

Lemma 3 Let x ≥ 1, q ∈ (0, 1) and a, b > 0 with b ≥ a. Then

ψ(n)
q (a + bx) ≥ ψ(n)

q (b + ax), if n is even;
ψ(n)

q (a + bx) ≤ ψ(n)
q (b + ax), if n is odd.

Lemma 4 Let x ≥ 1, q ∈ (0, 1), b ≥ a > 0 and c, d be any two real numbers such
that ad ≥ bc > 0. Then

bcψ(n+1)
q (a + bx)ψ(n)

q (b + ax) − adψ(n)
q (a + bx)ψ(n+1)

q (b + ax) ≥ 0

for n as odd natural number.



Some New Inequalities for the Ratio of Gamma Functions 243

Theorem 2 Let x ≥ 1, q ∈ (0, 1) and b ≥ a > 0 and c, d be two real numbers such

that ad ≥ bc > 0. Then
ψ(n)
q (a + bx)c

ψ
(n)
q (b + ax)d

is an increasing function on [1,∞) for any

odd natural number n.

For even numbers, the results follows in similar way. We omit the proof.

Lemma 5 Let n be any even natural number, x ∈ [0, 1], q ∈ (0, 1), a ≥ b > 0 and
c, d be two real numbers such that bc ≥ ad > 0. Then

bcψ(n+1)
q (a + bx)ψ(n)

q (b + ax) − adψ(n)
q (a + bx)ψ(n+1)

q (b + ax) ≥ 0.

Lemma 6 Let n any even natural number, x ≥ 1, q ∈ (0, 1), b ≥ a > 0 and c, d > 0
be such that bc ≥ ad > 0. Then

bcψ(n+1)
q (a + bx)ψ(n)

q (b + ax) − adψ(n)
q (a + bx)ψ(n+1)

q (b + ax) ≤ 0.

Theorem 3 Let f (x) be a function defined as

f (x) = ψ(n)
q (a + bx)c

ψ
(n)
q (b + ax)d

.

Let n be any even natural number, x ∈ [0, 1], q ∈ (0, 1), a ≥ b > 0 and c, d be any
two real numbers such that bc ≥ ad > 0. Then f (x) is decreasing on [0, 1] and
satisfy the following double inequality:

ψ(n)
q (a + b)c

ψ
(n)
q (a + b)d

≤ ψ(n)
q (a + bx)c

ψ
(n)
q (b + ax)d

≤ ψ(n)
q (a)c

ψ
(n)
q (b)d

.

Theorem 4 Let n be any even natural number, x ≥ 1, q ∈ (0, 1), b ≥ a > 0 and

c, d be any real numbers such that ad ≥ bc > 0. Then ψ
(n)
q (a+bx)c

ψ
(n)
q (b+ax)d

is an decreasing

function on [1,∞).

3 Some Generalizations

In this section we will generalize the results of Sect. 2. The following result is similar
to Lemma 1.

Lemma 7 Let q ∈ (0, 1) and y > x > 0. Then

ψ(n)
q (x) < ψ(n)

q (y), if n is even;
ψ(n)

q (x) > ψ(n)
q (y), if n is odd.

With the help of Lemma 7 it is easy to prove the following lemma.
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Lemma 8 Let q ∈ (0, 1) and a + bx > 0, d + ex > 0with a + bx ≤ d + ex. Then

ψ(n)
q (a + bx) − ψ(n)

q (d + ex) ≤ 0 if n is even;
ψ(n)

q (a + bx) − ψ(n)
q (d + ex) ≥ 0 if n is odd.

Lemma 9 Let a, b, c, d, e, f be real numbers such that a + bx > 0, d + ex > 0,
a + bx ≤ d + ex and bc ≥ e f > 0 > 0. Let q ∈ (0, 1) and n be odd. Then

bcψ(n+1)
q (a + bx)ψ(n)

q (d + ex) − e f ψ(n+1)
q (d + ex)ψ(n)

q (a + bx) ≤ 0.

Proof Let n be odd. Then ψ(n+1)
q (a + bx) < 0 and ψ(n)

q (d + ex) > 0. Now by
Lemma 8 we have,

bcψ(n+1)
q (a + bx)ψ(n)

q (d + ex) ≤ e f ψ(n+1)
q (a + bx)ψ(n)

q (d + ex)

≤ e f ψ(n+1)
q (d + ex)ψ(n)

q (a + bx).

which proves the result.

Theorem 5 Let n be any odd natural number and f (x) be a function defined as

f (x) = ψ(n)
q (a + bx)c

ψ
(n)
q (d + ex) f

, x ≥ 0, q ∈ (0, 1)

where a, b, c, d, e, f are real numbers such that a + bx > 0, d + ex > 0, a + bx ≤
d + ex with bc ≥ e f > 0. Then f (x) is decreasing for x ≥ 0 and for all x ∈ [0, 1],
the following double inequality holds:

ψ(n)
q (a + b)c

ψ
(n)
q (d + e) f

≤ ψ(n)
q (a + bx)c

ψ
(n)
q (d + ex) f

≤ ψ(n)
q (a)c

ψ
(n)
q (d) f

. (6)

Proof Let n be odd. Then ψ(n)
q (a + bx), ψ(n)

q (d + ex) > 0. Let g(x) = log f (x).
Then

g′(x) = bcψ(n+1)
q (a + bx)ψ(n)

q (d + ex) − e f ψ(n+1)
q (d + ex)ψ(n)

q (a + bx)

ψ
(n)
q (a + bx)ψ(n)

q (d + ex)
.

Now by using Lemma 9, we have g′(x) ≤ 0. Hence g(x) is decreasing for all x ≥ 0,
which implies that f (x) is decreasing for all x ≥ 0. Consequently, f (x) is decreasing
in [0, 1]. Hence f (1) ≤ f (x) ≤ f (0) for x ∈ [0, 1], which proves the theorem.

The results for even numbers follows in similar way. For clarity, the results are
directly stated.
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Lemma 10 Let a, b, c, d, e, f be real numbers such that a + bx > 0, d + ex > 0,
a + bx ≤ d + ex and e f ≥ bc > 0. Let q ∈ (0, 1) and n be even natural number.
Then

bcψ(n+1)
q (a + bx)ψ(n)

q (d + ex) − e f ψ(n+1)
q (d + ex)ψ(n)

q (a + bx) ≥ 0.

Theorem 6 Let f (x) be a function defined as

f (x) = ψ(n)
q (a + bx)c

ψ
(n)
q (d + ex) f

, x ≥ 0, q ∈ (0, 1)

where a, b, c, d, e, f are real numbers such that a + bx > 0, d + ex > 0, a + bx ≤
d + ex and e f ≥ bc > 0. If n is even natural number then f (x) is increasing for all
x ≥ 0 and for all x ∈ [0, 1], the following double inequality holds:

ψ(n)
q (a)c

ψ
(n)
q (d) f

≤ ψ(n)
q (a + bx)c

ψ
(n)
q (d + ex) f

≤ ψ(n)
q (a + b)c

ψ
(n)
q (d + e) f

. (7)

Remark 1 For particular values of parameters given in this section, results of previ-
ous section and other results in the literature can be obtained.

4 Inequalities Involving the Gamma Function

The results given in this section are different from the inequalities of (2) and (3).
However, the results are given there due to their importance in Asymptotic analysis.

In this section, we will find bounds for Γ (x+α)

Γ (x+β)
and Γq (x+α)

Γq (x+β)
for α ≥ β > 0 and

q ∈ (0, 1) using techniques given in [11].

Theorem 7 Let x > 0 and α ≥ β > 0, then

e(α−β)ψ(x+β) ≤ Γ (x + α)

Γ (x + β)
≤ e(α−β)ψ(x+α)

holds true and the equality holds if and only if α = β.

Proof The case α = β is trivial.
Let f (t) = logΓ (t). Then for fixed x > 0, the classical mean value theorem on

[x + β, x + α], gives

f ′(d) = log Γ (x+α)

Γ (x+β)

α − β
for d ∈ (x + β, x + α).

Taking d = c + x we have, (α − β)ψ(x + c) = log Γ (x+α)

Γ (x+β)
, c ∈ (β, α).
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Since ψ(x) is increasing for x > 0, we get

(α − β)ψ(x + β) < log
Γ (x + α)

Γ (x + β)
< (α − β)ψ(x + α)

=⇒ e(α−β)ψ(x+β) <
Γ (x + α)

Γ (x + β)
< e(α−β)ψ(x+α).

The following generalization is immediate.

Theorem 8 Let x > 0, q ∈ (0, 1) and α ≥ β > 0, then

e(α−β)ψq (x+β) ≤ Γq(x + α)

Γq(x + β)
≤ e(α−β)ψq (x+α)

holds true and the equality holds if and only if α = β.
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Some New I-Lacunary Generalized
Difference Sequence Spaces in n-Normed
Space

Tanweer Jalal

Abstract In this paper, we introduce a new class of ideal convergent (briefly
I -convergent) sequence spaces using, infinite matrix, lacunary sequences with
respect to a sequence of modulus functions and difference operator defined on n-
normed space. We study these spaces for some linear topological structures and
algebraic properties.We also give some inclusion relations for these sequence spaces.

Keywords I -convergence · n-normed · Infinite matrix · Lacunary sequences ·
Modulus function

1 Introduction

The notion of ideal convergence (I -convergence) was first introduced by Kostyrko
et al. [12] as a generalization of statistical convergence of sequences in a metric
space and studied some properties of such convergence. Since then many researchers
have studied these subjects and obtained various results (see [12, 13]). Note that I
-convergence is an interesting generalization of statistical convergence.

Let X be a nonempty set, then a family of sets I ⊂ 2x (the class of all subsets of
all X ) is called an ideal if and only if for each A, B ∈ I , we have A ∪ B ∈ I and
for each A ∈ I and B ⊂ A, we have B ∈ I . A non-empty family of sets F ⊂ 2x

is a filter on X if and only if φ /∈ F , for each A, B ∈ F , we have A ∩ B ∈ F and
for each A ∈ F and each A ⊂ F , we have B ∈ F . An ideal I is called nontrivial
ideal if each I �= φ and X /∈ I . Evidently I ⊂ 2x is a nontrivial ideal if and only if
F = F(I ) = {X − A : A ∈ I } is a filter on X . A nontrivial ideal I ⊂ 2x is called
admissible if and only if {{x} : x ∈ X} ⊂ I . A non-trivial ideal I is maximal if there
cannot exist any non-trivial J �= I containing I as a subset. Further details on ideals
can be found in Kostyrko et al. [12].
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The space of lacunary strongly convergent sequences was defined by Freedman
et al. [3]. By a lacunary sequence θ = (kr ); r = 0, 1, 2, . . . where k0 = 0, we
shall mean an increasing sequence of non-negative integers with kr − kr−1 → ∞
as r → ∞. The intervals determined by θ will be denoted by Ir = (Kr−1, Kr ] and
hr = kr − kr−1.

The notion of difference sequence spaces was introduced by Kizmaz [11]. It was
further generalized by Et and Colak [1]. Later on Et and Esi [2] defined the sequence
spaces

X (�s
m) = {x = (xk) ∈ w : (�s

mxk) ∈ X}.

for X = l∞, c and c0, where s ∈ N and m = (mk) is any fixed sequence of non-zero
complex numbers and

�0
m = mkxk, �mx = mkxk − mk+1xk+1

are non-negative,

�s
mx = (�s

mxk) = (�s−1
m xk − �s−1

m xk+1)

and so that

�s
mxk =

s∑

ν=0

(−1)ν(sν)mk+νxk+ν .

Takingm = s = 1, we get the spaces of l∞(�), c(�), c0(�), introduced and studied
by Kizmaz [11].

The concept of 2-normed spaces was initially introduced by Gahler [4] in the mid
1960s. Since then this concept has been studied by many authors and generalized
to the notion of n-normed spaces, see for instance [5, 10, 14]. Sahiner et al. [16]
introduced the notion of I -convergence in 2-normed spaces. Later on it was extended
to n-normed spaces by Gurdal and Sahiner [7], Savas [17] and Jalal [8, 9].

A modulus function is a function f : [0,∞) → [0,∞), such that

(i) f (x) = 0 if and only if x = 0.
(ii) f (x + y) ≤ f (x) + f (y),
(iii) f is increasing;
(iv) f is continuous from right at zero.

The following well-known inequality will be used throughout the article. Let p =
(pk) be any sequence of positive real numbers with 0 ≤ pk ≤ supk pk = G,
D = max{1, 2G−1} then

|ak + bk |pk ≤ D(|ak |pk + |bk |pk )

for all k ∈ N and ak, bk ∈ C . Also |a|pk ≤ max{1, |a|G} for all a ∈ C.
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2 Definitions and Preliminaries

Let n be a non-negative integer and X be a real vector space of dimension d ≥ n (d
may be infinite). A real-valued function ||., . . . , .|| on Xn satisfying the following
conditions:

(1) ||(x1, x2, . . . , xn)|| = 0 if and only if x1, x2, . . . , xn are linearly dependent.
(2) ||(x1, x2, . . . , xn)|| is invariant under permutation,
(3) ||α(x1, x2, . . . , xn)|| = |α|||(x1, x2, . . . , xn)||, for any α ∈ R.

(4) ||(x1 + x, x2, . . . , xn)|| ≤ ||(x1, x2, . . . , xn)|| + ||(x, x2, . . . , xn)||.
is called an n-norm on X and the pair (X, ||., . . . , .||) is called an n-normed space
(see [6]).

A trivial example of an n-normed space is X = Rn , equipped with the Euclidean
n-norm ||(x1, x2, . . . , xn)||E = volume of the n-dimensional parallelepiped spanned
by the vectors x1, x2, . . . , xn which may be given explicitly by the formula

||(x1, x2, . . . , xn)||E = |det (xi j )| = abs(det (< xi , x j >))

where xi = (xi1, xi2, . . . , xin) ∈ Rn for each i = 1, 2, . . . , n.

Let (X, ||., . . . , .||) be an n-normed space of dimension d ≥ n ≥ 2 and
{a1, a2, . . . , an} be a linearly independent set in X. Then the function ||., . . . , .||
on Xn−1 is defined by

||(x1, x2, . . . , xn)||∞ = max
1≤i≤n

{||x1, x2, . . . , xn−1, ai ||}

defines as (n − 1)-norm on X with respect to {a1, a2, . . . , an} and this is known as
the derived (n − 1)-norm.

The standard n-norm on a real inner product space of dimension d ≥ n is as
follows:

||(x1, x2, . . . , xn)||s = [det (< xi , x j >)] 1
2 ,

where < .,. > denotes the inner product on X. If we take X = Rn then this n-norm
is exactly the same as the Euclidean n-norm ||(x1, x2, . . . , xn)||E mentioned earlier.
For n= 1, this n-norm is the usual norm ||x1|| = √

< x1, x1 > for further details
(see [5]).

We first introduce the following definitions.

Definition 2.1 A sequence (xk) in an n-normed space (X, ||., . . . , .||) is said to be
convergent to some L ∈ X with respect to the n-norm if for each ε > 0 there exists
a positive integer n0 such that ||xk − L , z1, z2, . . . , zn−1|| < ε, for all k > n0 and for
every z1, z2, . . . , zn−1 ∈ X .

Definition 2.2 A sequence (xk) in an n-normed space (X, ||., . . . , .||) is said to
be I -convergent to some L ∈ X with respect to the n-norm if for each ε > 0
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such that the set {k ∈ N : ||xk − L , z1, z2, . . . , zn−1|| ≥ ε} belongs to I for every
z1, z2, . . . , zn−1 ∈ X .

In this article, we study some new ideal convergent sequence spaces on n-normed
spaces using an infinite matrix A = (ank), modulus functions and generalized dif-
ference operator.

3 Main Results

Before we state our main results, first we shall present some new ideal convergent
sequence spaces by combining an infinite matrix A = (ank), lacunary sequences and
modulus functions and study their linear topological structures. Also we give some
relations related to these sequence spaces.

Let I be an admissible ideal of N , p = (pn) be a bounded sequence of positive
real numbers for all n ∈ N and A = (ank) be an infinite matrix. Let f be a modulus
function and (X, ||., . . . , .||) be an n-normed space.w(n−X) denotes the spaces ofX-
valued sequence spaces defined over (X, ||., . . . , .||). For every z1, z2, . . . , zn−1 ∈ X
and for every ε > 0 we define the following sequence spaces:

[Nθ , A, �s
m , f, p, ||., . . . , .||]I

=
{
x = (xk ) ∈w(n − X) :

{
r ∈ N : 1

hr

∑

n ∈ Ir

f

[ ∞∑

k=1

ank (||�s
m (x) − L , z1, z2, . . . , zn−1||)

]pn

≥ ε

}
∈ I, f or L ∈ X

}
.

[Nθ , A, �s
m , f, p, ||., . . . , .||]I0

=
{
x = (xk ) ∈ w(n − X) :

{
r ∈ N : 1

hr

∑

n∈Ir
f

[ ∞∑

k=1

ank (||�s
m (x), z1, z2, . . . , zn−1||)

]pn

≥ ε

}
∈ I

}
.

Theorem 1 If p = (pn) is bounded then the spaces
[
Nθ , A,�s

m, p, ‖., . . . , .‖]I and
[
Nθ , A,�s

m, p, ‖., . . . , .‖]I0 are linear.

Proof We shall prove the theorem for the space
[
Nθ , A,�s

m, p, ‖., . . . , .‖]I0 only
and the other can be proved in a similar manner. Let x = (xk) and y = (yk) be two
elements in

[
Nθ , A,�s

m, p, ‖., . . . , .‖]I0 and let α, β be scalars in R. Therefore

{

r ∈ N : 1

hr

∑

n∈Ir
f

[ ∞∑

k=1

ank
(‖�s

mxk, z1, z2, . . . , zn−1‖
)
]pn

≥ ε

}

∈ I

and
{

r ∈ N : 1

hr

∑

n∈Ir
f

[ ∞∑

k=1

ank
(‖�s

m yk, z1, z2, . . . , zn−1‖
)
]pn

≥ ε

}

∈ I.
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Since f is a modulus function and �s
m is linear the following inequality holds:

1

hr

∑

n∈Ir
f

[ ∞∑

k=1

ank
(‖�s

m(αxk + βyk), z1, z2, . . . , zn−1‖
)
]pn

≤ D
1

hr
T sup pn

α

∑

n∈Ir
f

[ ∞∑

k=1

ank
(‖�s

mxk, z1, z2, . . . , zn−1‖
)
]pn

+ D
1

hr
T sup pn

β

∑

n∈Ir
f

[ ∞∑

k=1

ank
(‖�s

m yk, z1, z2, . . . , zn−1‖
)
]pn

where Tα and Tβ are positive integers such that |α| ≤ Tα and |β| ≤ Tβ . On the other
hand from the above inequality, we get

{

r ∈ N : 1

hr

∑

n∈Ir
f

[ ∞∑

k=1

ank
(‖�s

m(αxk + βyk), z1, z2, . . . , zn−1‖
)
]pn

≥ ε

}

⊆
{

r ∈ N : D 1

hr
T sup pn

α

∑

n∈Ir
f

[ ∞∑

k=1

ank
(‖�s

mxk, z1, z2, . . . , zn−1‖
)
]pn

≥ ε

}

⋃
{

r ∈ N : D 1

hr
T sup pn

β

∑

n∈Ir
f

[ ∞∑

k=1

ank
(‖�s

m yk, z1, z2, . . . , zn−1‖
)
]pn

≥ ε

}

.

The last two sets on the right hand side belong to I and this completes the proof.

Lemma 1 Let f be the modulus function and let 0 < δ < 1. Then for each x > δ

we have f (x) ≤ 2 f (1)δ−1x (see [15]).

Theorem 2 Let f be a modulus function. Then
[
Nθ , A,�s

m, p, ‖., . . . , .‖]I ⊆
[
Nθ , A,�s

m, f, p, ‖., . . . , .‖]I .

Proof If x ∈ [
Nθ , A,�s

m, p, ‖., . . . , .‖]I then for some L > 0 and each
z1, z2, . . . , zn−1 ∈ X

{

r ∈ N : 1

hr

∑

n∈Ir
f

[ ∞∑

k=1

ank
(‖�s

mxk − L , z1, z2, . . . , zn−1‖
)
]pn

≥ ε

}

∈ I.

Now let ε > 0 be given. We can choose 0 < δ < 1 such that for every t with
0 ≤ t ≤ δ we have f (t) < ε. Now assuming Lemma 1 we get
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1

hr

∑

n∈Ir
f

[ ∞∑

k=1

ank
(‖�s

m xk , z1, z2, . . . , zn−1‖
)
]pn

= 1

hr

∑

n∈Ir ,‖�s
m xk−L ,z1,z2,...,zn−1‖≤δ

f

[ ∞∑

k=1

ank
(‖�s

m , z1, z2, . . . , zn−1‖
)
]pn

+ 1

hr

∑

n∈Ir ,‖�s
m xk−L ,z1,z2,...,zn−1‖>δ

f

[ ∞∑

k=1

ank
(‖�s

m , z1, z2, . . . , zn−1‖
)
]pn

≤ 1

hr

(
hr max

{
εinf pn , εsup pn

}) + 1

hr
max{a1, a2}

∑

n∈Ir
f

[ ∞∑

k=1

ank
(‖�s

m xk , z1, z2, . . . , zn−1‖
)
]pn

where a1 = (2 f (1)δ−1)inf pn and a2 = (2 f (1)δ−1)sup pn .
So

{

r ∈ N : 1

hr

∑

n∈Ir
f

[ ∞∑

k=1

ank
(‖�s

mxk, z1, z2, . . . , zn−1‖
)
]pn

≥ ε

}

=
{
r ∈ N : 1

hr
(hr max{εinf pn , εsup pn }) ≥ ε

}

⋃
{

r ∈ N : 1

hr
max{a1, a2}

∑

n∈Ir

[ ∞∑

k=1

ank
(‖�s

mxk, z1, z2, . . . , zn−1‖
)
]pn

≥ ε

}

and this completes the proof.

Theorem 3 Let f be a modulus function. If limt→∞ sup f (t)
t = A > 0, then

[
Nθ , A,�s

m, f, p, ‖., . . . , .‖]I = [
Nθ , A,�s

m, p, ‖., . . . , .‖]I .

Proof It is sufficient only to show that
[
Nθ , A,�s

m, p, ‖., . . . , .‖]I ⊂ [
Nθ , A,�s

m, f,

p, ‖., . . . , .‖]I . If we have limt→∞ sup f (t)
t = A > 0 then there exists a constant

B > 1 such that f (t) ≥ Bt for all t ≥ 0. Hence

1

hr

∑

n∈Ir
f

[ ∞∑

k=1

ank
(‖�s

mxk − L , z1, z2, . . . , zn−1‖
)
]pn

≥ 1

hr
Bsup pn

∑

n∈Ir
f

[ ∞∑

k=1

ank
(‖�s

mxk − L , z1, z2, . . . , zn−1‖
)
]pn

and this inequality gives the result.
More generally we have the following:

Theorem 4 Let f1 and f2 be a modulus functions. If limt→∞ sup f1(t)
f2(t)

= A > 0,

Then [Nθ , A, f1(t), p, ‖., . . . , .‖]I = [Nθ , A, f2(t), p, ‖., . . . , .‖]I .
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Theorem 5 Let (X, ‖., . . . , .‖S) and (X, ‖., . . . , .‖E ) be standard and Euclid
n-normed spaces respectively, then

[
Nθ , A,�s

m, f, p, ‖., . . . , .‖E
]I ⋂[

Nθ , A,�s
m,

f, p, ‖., . . . , .‖S]I ⊆ [
Nθ , A,�s

m, f, p, (‖., . . . , .‖E + ‖., . . . , .‖S)
]I

Proof The following inequality that gives us the desired inclusion

1

hr

∑

n∈Ir
f

[ ∞∑

k=1

ank(‖., . . . , .‖E + ‖., . . . , .‖S)
(
�s

mxk − L , z1, z2, . . . , zn−1
)
]pn

≤ D
1

hr

∑

n∈Ir
f

[ ∞∑

k=1

ank
(‖�s

mxk − L , z1, z2, . . . , zn−1‖E
)
]pn

+ D
1

hr

∑

n∈Ir
f

[ ∞∑

k=1

ank
(‖�s

mxk − L , z1, z2, . . . , zn−1‖S
)
]pn

Theorem 6 Let (X, ‖., . . . , .‖) be a n-normed space and f1, f2 be modulus func-
tions. Then

(i)
[
Nθ , A,�s

m, f1, p, ‖., . . . , .‖
]I
0

⋂[
Nθ , A,�s

m, f2, p, ‖., . . . , .‖
]I
0 ⊆ [Nθ , A,

�s
m, f1 + f2, p, ‖., . . . , .‖

]I
0

(ii)
[
Nθ , A,�s

m, f1, p, ‖., . . . , .‖
]I ⋂[

Nθ , A,�s
m, f2, p, ‖., . . . , .‖

]I ⊆ [Nθ , A,

�s
m, f1 + f2, p, ‖., . . . , .‖

]I

We will prove (i) only.

Proof Let x ∈ [
Nθ , A,�s

m, f1, p, ‖., . . . , .‖
]I
0

⋂[
Nθ , A,�s

m, f2, p, ‖., . . . , .‖
]I
0.

The fact

1

hr

∑

n∈Ir
( f1 + f2)

[ ∞∑

k=1

ank
(‖�s

mxk, z1, z2, . . . , zn−1‖
)
]pn

≤ D
1

hr

∑

n∈Ir
f1

[ ∞∑

k=1

ank
(‖�s

mxk, z1, z2, v, zn−1‖
)
]pn

+ D
1

hr

∑

n∈Ir
f2

[ ∞∑

k=1

ank
(‖�s

mxk, z1, z2, . . . , zn−1‖
)
]pn

gives the result.

Theorem 7 Let s ≥ 1, Then the following inclusions hold.

(i)
[
Nθ , A,�s−1

m , f, p, ‖., . . . , .‖]I0 ⊆ [
Nθ , A,�s

m, f, p, ‖., . . . , .‖]I0
(ii)

[
Nθ , A,�s−1

m , f, p, ‖., . . . , .‖]I ⊆ [
Nθ , A,�s

m, f, p, ‖., . . . , .‖]I
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Proof (i) If x ∈ [
Nθ , A,�s−1

m , f, p, ‖., . . . , .‖]I0 then we have

{

n ∈ N : 1

hr

∑

n∈Ir
f

[ ∞∑

k=1

ank
(‖�s

mxk, z1, z2, . . . , zn−1‖
)
]pn

≥ ε

}

∈ I.

Hence the following inequalities gives the result

1

hr

∑

n∈Ir
f

[ ∞∑

k=1

ank
(‖�s

mxk, z1, z2, . . . , zn−1‖
)
]pn

≤ D
1

hr

∑

n∈Ir
f

[ ∞∑

k=1

ank
(‖�s−1

m xk, z1, z2, . . . , zn−1‖
)
]pn

+ D
1

hr

∑

n∈Ir
f

[ ∞∑

k=1

ank
(‖�s−1

m xk+1, z1, z2, . . . , zn−1‖
)
]pn

.

(ii) can be proved similarly.

4 Sequence Spaces Defined by Sequences of Modulus
Functions

Let G be the space of sequences of modulus functions F = ( fn) such that
lim
t→0

supn fn(t) = 0 and (X, ||., . . . , .||) is an n-Banach space. We define the fol-

lowing spaces:

Nθ , A, �s
m , F, p, ||., . . . , .||]I

=
{
x = (xk ) ∈ w(n − X) :

{
r ∈ N : 1

hr

∑

n ∈ Ir

fn

[ ∞∑

k=1

ank (||�s
m xk − L , z1, z2, . . . , zn−1||)

]pn
≥ ε

}
∈ I, f or L ∈ X

}

[Nθ , A, �s
m , F, p, ||., . . . , .||]I0

=
{
x = (xk ) ∈ w(n − X) :

{
r ∈ N : 1

hr

∑

n∈Ir
fn

[ ∞∑

k=1

ank (||�s
m xk , z1, z2, . . . , zn−1||)

]pn
≥ ε

}
∈ I

}
.

Theorem 8
[
Nθ , A,�s−1

m , F, p, ‖., . . . , .‖]I and
[
Nθ , A,�s

m, F, p, ‖., . . . , .‖]I0
are linear spaces.

Proof The proof is similar to Theorem 1.

Theorem 9 Let F = ( fn) be a sequence of modulus functions, (X, ‖., . . . , .‖) in an
n-Banach space and (xk) is lacunary strongly convergent to L in

[
Nθ , A,�s

m, p,
‖., . . . , .‖]I then (xk) is lacunary strongly convergent to L in

[
Nθ , A,�s

m, F, p,
‖., . . . , .‖]I .



Some New I-Lacunary Generalized Difference Sequence … 257

Proof Let ε > 0 be given. We can choose 0 < δ < 1, such that for every t with
0 ≤ t ≤ δ we have f (t) < ε. Now using the Lemma 1 we get

1

hr

∑

n∈Ir
fn

[ ∞∑

k=1

ank
(‖�s

m xk − L , z1, z2, . . . , zn−1‖
)
]pn

= 1

hr

∑

n∈Ir ,‖�s
m xk−L ,z1,z2,...,zn−1‖≤δ

fn

[ ∞∑

k=1

ank
(‖�s

m xk − L , z1, z2, . . . , zn−1‖
)
]pn

+ 1

hr

∑

n∈Ir ,‖�s
m xk−L ,z1,z2,...,zn−1‖>δ

fn

[ ∞∑

k=1

ank
(‖�s

m xk − L , z1, z2, . . . , zn−1‖
)
]pn

≤ 1

hr

(
hr max

{
εinf pn , εsup pn

}) + 1

hr
max{a1, a2}

∑

n∈Ir
fn

[ ∞∑

k=1

ank
(‖�s

m xk − L , z1, z2, . . . , zn−1‖
)
]pn

where a1 = (
2 supn pn fn(1)

)inf pn
, a2 = (

2 supn pn fn(1)
)sup pn

Thus we have
⎧
⎨

⎩
r ∈ N : 1

hr

∑

n∈Ir
fn

⎡

⎣
∞∑

k=1

ank
(‖�s

m xk − L , z1, z2, . . . , zn−1‖
)
⎤

⎦

pn⎫⎬

⎭

=
{
r ∈ N : 1

hr

(
hr max

{
εinf pn , εsup pn

})
≥ ε

}

⋃
⎧
⎨

⎩
r ∈ N : 1

hr
max{a1, a2}

∑

n∈Ir
fn

⎡

⎣
∞∑

k=1

ank
(‖�s

m − L , z1, z2, . . . , zn−1‖
)
⎤

⎦

pn

≥ ε

⎫
⎬

⎭

This completes the proof.

Theorem 10 Let (X, ‖., . . . , .‖) in an n-Banach space and F = (Fn) be a
sequence of modulus functions with limt→∞ infn

fn(t)
t > 0, then

[
Nθ , A,�s

m, F,

p, ‖., . . . , .‖]I = [
Nθ , A,�s

m, p, ‖., . . . , .‖]I

Proof The following inequality gives us the required result

{

r ∈ N : 1

hr

∑

n∈Ir
fn

[ ∞∑

k=1

ank
(‖�s

mxk − L , z1, z2, . . . , zn−1‖
)
]pn}

⊇
{

r ∈ N : B

hr

∑

n∈Ir
fn

[ ∞∑

k=1

ank
(‖�s

mxk − L , z1, z2, . . . , zn−1‖
)
]pn}

where B is a positive number such that fn(t)
t > Bu for u > 0 and each n ∈ N .
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GPU-Accelerated Simulation
of Maxwell’s Equations

Tony W.H. Sheu

Abstract In this study an explicit finite difference scheme is developed to solve the
Maxwell’s equations in time domain for a lossless medium. From the physical point
of view, the hyperbolic system of Maxwell equations shall be discretized explicitly.
From the computational point of view, this developed three-dimensional explicit
scheme can bemore effectively implemented in parallel in CPU/GPUwith theNvidia
K-20 card. From the mathematical point of view, symplectic scheme is adopted for
the approximation of temporal derivative terms so that all Hamiltonians inMaxwell’s
equations can be conserved at all times. Moreover, to predict the long-time accurate
solution a phase velocity preserving scheme is developed for the spatial derivative
terms so that the chosen time increment and grid spacing can be excellently paired
following the employed theoretical guideline. Computational performance will be
assessed based on the results obtained from the computed results in one GPU card
and in one I7-4820K CPU card.

Keywords Hamiltonians · Symplecticity · CPU/GPU · Three dimensional
maxwell’s equations · Dispersion relation equation · In parallel

1 Introduction

While approximating the derivative terms in Maxwell’s equations, dissipation error
can more or less smear the solution profiles. Dispersion error can moreover worse
destabilize the discrete system and yield, therefore, an erroneously predicted phase
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speed or group velocity. To reduce dispersion and dissipation errors at the same time
is therefore essential while approximating the first-order spatial derivative terms in
EM wave equations.

After a long calculation of the electromagnetic wave equations, the solution qual-
ity may be deteriorated substantially due to the accumulation of numerical error
resulting from the applied non-symplectic time-stepping scheme. How to numeri-
cally preserve the symplectic property existing in Maxwell’s equations motivates us
to accurately approximate the time derivative terms in the Faraday’s and Ampère’s
equations. When simulating Maxwell’s equations, the quality of the solution pre-
dicted by the finite difference time domain (FDTD) method can be deteriorated as
well by the introduced anisotropy error. Dispersion and anisotropy errors are both
accumulative with time and can seriously contaminate the true propagation char-
acteristics. All the above three types of numerical error will be reduced as much
as possible in this study through different underlying theories in a domain of three
dimensions.

Due to the advance in computer architectures, an important aspect one shall not
ignore is related to the implementation of computer code on vector/parallel CPUs
and GPUs (Graphics Processing Units). In comparison with CPU programming,
hardware-oriented GPU programming executed in machines with much larger num-
ber of processing cores is now known to be able to reach a highly parallelized level.
More importantly, modern GPUs can now offer us a relative low-cost computing
power in different parallel applications. Thanks to the advent of GPU hardwares,
Maxwell’s equations have been effectively solved in parallel more recently in graph-
ics processors. Such a new implementation in GPUs has been evidenced to reduce
a large amount of computing time [1–6]. Owing to the potential of GPU paral-
lelization, in this study the explicit FDTD scheme capable of yielding dispersive
error-minimization will be implemented on GPU.

This paper is organized as follows. In Sect. 2, some of the distinguished physical
and fruitful mathematical features in the ideal (or lossless) Maxwell’s equations that
are related to the scheme development and code verification are presented together
with the two indispensable divergence-free constraint equations. In Sect. 3, the first-
order spatial derivative terms in Faraday’s and Ampère’s equations are discretized in
non-staggered grids rather than in conventional Yee’s staggered grids. In this paper,
the difference between the exact and numerical phase velocities is minimized to
achieve a higher dispersive accuracy. Maxwell’s equations belong to the class of
integrable equations [7]. A symplectic structure-preserving time integrator shall be
applied to conserve symplecticity numerically. For this reason, the explicit symplectic
partitioned Runge–Kutta (SPRK) scheme is applied. Derivation of the corresponding
stability condition for the proposed explicit scheme is also given in Sect. 3. In Sect. 4,
the Nvidia K-20 GPU and the CPU/GPU hybrid architecture are briefly reviewed.
To accelerate the speed of computation in time domain, the method described in
Sect. 3 is further parallelized through a proper arrangement of the global and shared
memories built in GPU. The proposed second-order accurate temporal scheme and
the fourth-order accurate spatial scheme will be verified and validated through the
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respective problems. In addition, the performance of GPU implementation is also
detailed. Finally, we will draw some conclusions in Sect. 5 based on the solutions
computed in parallel in non-staggered grids on a single Nvidia K-20 GPU card.

2 Maxwell’s Equations

Maxwell’s equations in lossless media are represented below in terms of the depen-
dent variables E = (

Ex , Ey, Ez
)T

and H = (
Hx , Hy, Hz

)T

∂H

∂t
= − 1

μ
∇ × E, (1)

∂E

∂t
= 1

ε
∇ × H . (2)

The above set of equations is coupled with the Gauss’s law which consists of the
divergence-free equations∇ · B = 0 and∇ · D = 0. These two divergence-free con-
straint equations can be derived directly from the Faraday’s law and Ampère’s law,
respectively, for a linear, isotropic, lossless material provided that the electric current
density and electric charge density are neglected. Within the differential context, the
Gauss’s law is unconditionally satisfied in case two vectors B and D are initially
divergence-free [8]. The differential set of the Maxwell’s equations becomes how-
ever over-determined. Two divergence-free equations need to be neglected so that
the numbers of unknowns and field equations are equal. Equations (1) and (2) are
derived under the conditions of D = εE and B = μH , where D denotes the electric
flux density and E is the electric field density. In the proportional constants, ε is
known as the electric permittivity and μ is known as the magnetic permeability. The
values of ε and μ determine the light speed c (≡ (ε μ)−1/2).

The first Hamiltonian in the bi-Hamiltonian differential system of Eqs. (1) and (2)
has association with the helicity Hamiltonian H1 given below [9]

H1 = 1

2

∫
1

ε
H · ∇ × H + 1

μ
E · ∇ × E d�. (3)

The second quadratic Hamiltonian (or energy density) is expressed as follows [10].

H2 = 1

2

∫
μH · H + εE · E d�. (4)

Two Hamiltonians given above will be used in this study to indirectly justify the
proposed numerical scheme.

Numerical errors computed solely from the Faraday’s and Ampère’s equations
may make the solutions computed from the magnetic and electric equations no
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longer divergence free. To overcome the difficulty owing to the omission of the
Gauss’s law, two gradient terms for the scalar variables �1 and �2 are introduced
into the Eqs. (1) and (2), respectively. The resulting modified equations to be applied
are expressed as ∂E

∂t − 1
ε
∇ × H + ∇�1 = 0 and ∂H

∂t + 1
μ
∇ × E + ∇�2 = 0. These

equations responsible for the two introduced correction potentials can be seen in [11].

3 Numerical Method

Unlike most of other EM wave solvers, in this study the Maxwell’s equations are
solved in non-staggered grids so that it is comparatively easy for us to execute the
computer code in parallel.

3.1 Explicit Symplectic Partitioned Runge–Kutta
Temporal Scheme

Maxwell’s equations are mathematically separable. The explicit symplectic parti-
tioned Runge–Kutta time-stepping scheme is therefore applied to integrate Fara-
day’s and Ampère’s equations [12]. Calculation of the En+1 and Hn+1 solutions
from the solutions computed at time n�t is split into the following steps by using the
second-order accurate explicit partitioned Runge–Kutta scheme presented in [13]

Hn+ 1
2 = Hn − dt

2μ
∇ × En, (5)

En+1 = En + dt

ε
∇ × Hn+ 1

2 , (6)

Hn+1 = Hn+ 1
2 − dt

2μ
∇ × En+1. (7)

3.2 Numerical Scheme on Spatial Derivative Terms

In addition to the development of above symplecticity-preserving scheme,we are also
aimed to reduce the dispersion error in space. To this end, the difference between the
numerical and exact phase velocities shall beminimized in the space ofwavenumbers
[14]. The spatial derivative terms shown in (5)–(7) are therefore approximated by the
methods of modified equation analysis, dispersion analysis, and the grid-anisotropy
analysis.
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At t = n�t , we can get Hn = Hn− 1
2 − dt

2μ∇ × En and, then, Hn+ 1
2 = Hn− 1

2

− dt
2μ∇ × En according to the following equations

E
n+ 1

2
z = E

n− 1
2

z + �t

ε

(
∂Hn

y

∂x
− ∂Hn

x

∂y

)
, (8)

E
n+ 1

2
x = E

n− 1
2

x + �t

ε

(
∂Hn

z

∂y
− ∂Hn

y

∂z

)
, (9)

E
n+ 1

2
y = E

n− 1
2

y + �t

ε

(
∂Hn

x

∂z
− ∂Hn

z

∂x

)
. (10)

From Eq. (6), we can get En+ 1
2 = En− 1

2 + dt
ε
∇ × Hn .

To get a higher accuracy at a reasonable computational cost, we can apply either a
compact or a combined compact difference scheme to effectively reduce numerical
errors at small wavelengths [15]. We are aimed particularly at reducing not only
the phase error but also the amplitude error [16]. In this study our goal of reducing
dispersive error is tominimize the error of numerical dispersion relation equation [17,
18]. It is therefore necessary to derive the explicit form of the numerical dispersion
relation equation.

The first-order derivative terms
∂Hn

y

∂x and ∂Hn
x

∂y shown in Eq. (8) are approximated in
non-staggered grids so that programming takes becomes simplifiedwithout suffering
checkerboarding oscillations. These derivative terms at an interior node (i, j, k) are
approximated by the scheme given below

∂Hy

∂x
|ni, j,k =1

h

[
a1

(
Hy |ni+3, j,k − Hy |ni−3, j,k

) + a2
(
Hy|ni+2, j,k − Hy|ni−2, j,k

)

+ a3
(
Hy|ni+1, j,k − Hy|ni−1, j,k

) ]
, (11)

∂Hx

∂y
|ni, j,k =1

h

[
a1

(
Hx |ni, j+3,k − Hx |ni, j−3,k

) + a2
(
Hx |ni, j+2,k − Hy|ni, j−2,k

)

+ a3
(
Hx |ni, j+1,k − Hx |ni, j−1,k

) ]
. (12)

After substituting (11) and (12) into (8) and then expanding the resulting terms in
Taylor series with respect to Ez , the following equation at an interior point (i, j, k)
is derived as
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∂Ez

∂t
|ni, j,k + dt2

24

∂3Ez

∂t3
|ni, j,k + dt4

1920

∂5Ez

∂t5
|ni, j,k + dt6

322560

∂7Ez

∂t7
|ni, j,k

+ · · · = 1

ε

{[(
6a1 + 4a2 + 2a3

)
∂Hy

∂x
|ni, j,k +

(
9a1 + 8

3
a2 + 1

3
a3

)
dx2

∂3Hy

∂x3
|ni, j,k

+
(
81

20
a1 + 8

15
a2 + 1

60
a3

)
dx4

∂5Hy

∂x5
|ni, j,k +

(
243

280
a1 + 16

315
a2 + 1

2520
a3

)
dx6

∂7Hy

∂x7
|ni, j,k

+ · · ·
]

−
[(

6a1 + 4a2 + 2a3

)
∂Hy

∂x
|ni, j,k +

(
9a1 + 8

3
a2 + 1

3
a3

)
dx2

∂3Hy

∂x3
|ni, j,k

+
(
81

20
a1 + 8

15
a2 + 1

60
a3

)
dx4

∂5Hy

∂x5
|ni, j,k +

(
243

280
a1 + 16

315
a2 + 1

2520
a3

)
dx6

∂7Hy

∂x7
|ni, j,k

+ · · ·
]}

. (13)

The three introduced weighting coefficients a1, a2 and a3 are determined by perform-
ing the rigorous modified equation analysis and the dispersion analysis described
below.

All the time derivative terms ∂3Ez

∂t3 ,
∂5Ez

∂t5 ,
∂7Ez

∂t7 ...shown in (13) are replaced first by
their equivalent spatial derivative terms through the Ampère’s equations to get the

corresponding equations for ∂ i E j

∂t3 (i = 3 and 5, j = x, y, z). After replacing the high-

order temporal derivative terms ∂3Ez

∂t3 and ∂5Ez

∂t5 with the corresponding spatial deriv-
ative terms, the equation equivalent to (13) is derived. By comparing the resulting

equation with the equation ∂Ez

∂t = 1
ε

(
∂Hy

∂x − ∂Hx
∂y

)
, the equations for a1, a2 and a3 are

derived as 3a1 + 2a2 + a3 = 1
2 and 9a1 + 8

3a2 + 1
3a3 − Cr2

12 (3a1 + 2a2 + a3) = 0.
In the above, Cr = c�t

h denotes the Courant number and h denotes the grid spacing.
Determination of the undetermined coefficients shown above needs to derive the

third algebraic equation. Substitution of the plane wave solution E = E0exp (I (kx i
�x + ky j�y + kzk�z − ωn�t

))
, where I = −11/2, into the equation given by

∂E
∂t |ni, j,k = En+ 1

2 |i, j,k−En− 1
2 |i, j,k

�t and the equations given by
∂E
∂x |ni, j,k = 1

h

[
a1

(
E |ni+3, j,k − E |ni−3, j,k

)
+ a2

(
E |ni+2, j,k − E |ni−2, j,k

)
+ a3

(
E |ni+1, j,k − E |ni−1, j,k

)]
,

∂E
∂y |ni, j,k = 1

h

[
a1

(
E |ni, j+3,k − E |ni, j−3,k

)
+ a2

(
E |ni, j+2,k − E |ni, j−2,k

)
+ a3

(
E |ni, j+1,k − E |ni, j−1,k

)]
and

∂E
∂z |ni, j,k = 1

h

[
a1

(
E |ni, j,k+3 − E |ni, j,k−3

)
+ a2

(
E |ni, j,k+2 − E |ni, j,k−2

)
+ a3

(
E |ni, j,k+1 − E |ni, j,k−1

)]
, we

can get ∂E
∂t ,

∂E
∂x ,

∂E
∂y , and

∂E
∂z and then the equations for

∂2E
∂t2 (= c2(∇2E

∂x2 + ∇2E
∂y2 + ∇2E

∂z2 )),
∂2E
∂x2 ,

∂2E
∂y2 and ∂2E

∂z2 . Numerical dispersion relation equation can be derived as follows
by substituting Eqs. (12) and (13) into the second-order wave equation for E

1

c2
ω2

4

(
sin(ω�t/2)

ω�t

)2

=k2x

(
3a1

sin(3kx�x)

3kx�x
+ 2a2

sin(2kx�x)

2kx�x
+ a3

sin(kx�x)

kx�x

)2

+ k2y

(
3a1

sin(3ky�y)

3ky�y
+ 2a2

sin(2ky�y)

2ky�y
+ a3

sin(ky�y)

ky�y

)2

+ k2z

(
3a1

sin(3kz�z)

3kz�z
+ 2a2

sin(2kz�z)

2kz�z
+ a3

sin(kz�z)

kz�z

)2

. (14)
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The wavenumber vector is defined as k = (
kx , ky, kz

)
. The exact dispersion relation

equation can be similarly derived as
(

ω
c

)2 = k2x + k2y + k2z by substituting the plane

wave solution into the second-order wave equation ∂2E
∂t2 = c2∇2E .

To get a correct propagation characteristics while solving the Maxwell’s equa-
tions in time domain, we need to develop a scheme whose numerical phase velocity
υ p (≡ ωnum

k ) matches perfectly with its exact counterpart. To this end, the error func-

tion defined as
[
|ωnum

k | − |ωexact
k |

]2
shall be minimized in a weak sense. The function

to be minimized within the integral range of −mpπ ≤ hk ≤ mpπ is as follows

Ep =
∫ mpπ

−mpπ

[
|ωnum

k
| − |ωexact

k
(≡ c)|

]2

Wp d(kx�x) d(ky�y) d(kz�z). (15)

In the above, kx�x , ky�y and kz�z denote the scaled (or modified) wavenumbers
along the x , y and z directions, respectively. Application of the above weighting
function Wp enables us to integrate Ep analytically for the value of mp in between
0 and 1

2 . By enforcing the limiting condition given by ∂Ep

∂a3
= 0, the third algebraic

equation for a1, a2 and a3 is derived as

− 0.00946472 a1 − 0.00787899 a2 + 0.224744 a31 + 0.0948775 a32 + 0.367829 a22a1

+ 0.0166091 a33 + 0.107206 a23a1 + 0.261056 a21a3 + 0.156637 a22a3 − 0.00453852 a3

+ 0.492672 a21a2 + 0.395351 a3a2a1 + 0.0875208 a23a2 = 0 (16)

The stability condition of the proposed explicit scheme, which conserves not only
the symplecticity but also preserves the dispersion relation equation, is derived by
considering the equivalent eigenvalue equations. The proposed conditionally stable

explicit scheme is subject to �t ≤ 1
c

(
max(F2

x )
�x2 + max(F2

y )
�y2 + max(F2

z )
�z2

)− 1
2
. By substi-

tuting the previously derived coefficients a1, a2 and a3 into the above inequality
equation, the stability condition for the current scheme developed to solve the three
dimensional Maxwell’s equations is �t ≤ 0.673844 h

c .

4 GPU Calculation of Maxwell’s Equations

The explicit dispersion-relation-equation preserving scheme developed in Sect. 3 for
solving theMaxwell’s equations is suitable for parallel implementation. The reason is
that the update of electric field components requires only the available magnetic field
values, and vice versa. A parallel algorithm is therefore executed on the Nvidia K-20
GPU card aiming at reducing computing time while solving the three-dimensional
Maxwell’s equations.
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Table 1 The predicted L2 errors and the corresponding spatial rates of convergence (sroc) for the
analytical test problem investigated in Sect. 4

Meshes L2− error norm of Ez sroc

10 × 10 × 10 1.8366E-05 –

20 × 20 × 20 1.2339E-06 3.8957

30 × 30 × 30 8.5169E-08 3.8567

40 × 40 × 40 5.3609E-09 3.9897

Fig. 1 The computed and
exact energy densities,
shown in (3) and (4), are
plotted with respect to time
for the analytical problem in
Sect. 4 using the proposed
phase velocity optimized
compact difference scheme.
a Hamiltonian function; b
Energy density
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A parallelized Fortran code is executed mostly in the blocks of streaming mul-
tiprocessors (SMXs). The threads in a block are grouped into several wraps during
the calculation. In Nvidia Tesla K20c, one block has 1024 threads distributed in 32
wraps. One SMX can execute several thread block calculations. Several SMXs con-
stitute a TPC (Texture Processing Cluster). Only one wrap in a block is permitted to
use.

The proposed explicit symplectic PRK scheme developed in non-staggered grids
is verified first by solving the three dimensional Maxwell’s equations amenable
to the exact solution in a cube of −π ≤ x ≤ π , −π ≤ y ≤ π and −π ≤ z ≤ π .
The solution sought at μ = 1 and ε = 1 is subject to the initial solenoidal solutions
Ex (x, y, z, 0)= Ey(x, y, z, 0)= Ez(x, y, z, 0)= 0,Hx (x, y, z, 0)= cos(x + y + z),
Hy(x, y, z, 0) = 1

2 (−1 + √
3) cos(x + y + z) and Hz(x, y, z, 0) = − 1

2 (1 + √
3)

cos(x + y + z). The exact electric and magnetic field solutions to Eqs. (1) and
(2) are givenby Ex (x, y, z, t) = sin(

√
3t) sin(x + y + z), Ex (x, y, z, t) = sin(

√
3t)

sin(x + y + z), Ey(x, y, z, t) = − 1
2 (1 + √

3) sin(
√
3t) sin(x + y + z), Ez(x, y,

z, t)= 1
2 (−1+ √

3) sin(
√
3t) sin(x + y + z),Hx (x, y, z, t)= cos(

√
3t) cos(x + y +

z), Hy(x, y, z, t) = 1
2 (−1 + √

3) cos(
√
3t) cos(x + y + z), Hz(x, y, z, t) =

− 1
2 (1 + √

3) cos(
√
3t) cos(x + y + z).

The spatial rate of convergence is computed first at �t = 10−5, which is much
smaller than the grid sizes chosen as�x = �y = �z = π/5, π/10, π/15 and π/20
in this study. From the predicted L2-error norms tabulated in Table1 one can see that
there is only a very small difference between the predicted spatial rate of convergence
and the theoretically derived fourth-order accuracy.

The Hamiltonian defined in (3) and the energy density given in (4) are computed
from the predicted solutions of E and H for making an additional theoretical justi-
fication of the proposed scheme. One can clearly find from Fig. 1 that the computed

Fig. 2 The computed
L2-norm of ∇ · H is plotted
with respect to time using the
present explicit partitioned
Runge–Kutta symplectic
scheme
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Fig. 3 a Schematic of the 3D Mie scattering problem; The predicted time-varying contours Ez
(z = 0) at the cutting plane containing a cylindrical scatter. b time step = 560 (2.8 f s); c time step
= 760 (3.8 f s); d time step = 1350 (4.25 f s); e time step = 1600 (5.8 f s); f time step = 1900
(9 f s)

Hamiltonian and energy density are not changed too much with time. The predicted
norms of ∇ · H and ∇ · E are also plotted with respect to time to assure that the
Gauss’s law is indeed satisfied discretely. In Fig. 2, the predicted magnetic field pre-
dicted by the proposed scheme is essentially divergence-free.
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The diameter of the dielectric cylinder under current study is 126.56nm. In
Fig. 3a, this isotropic cylinder located at the center of a cube with the volume of
7203 nm3 has εr = 12.1104. The cross-section area is 760 × 760 nm2. The incident
x-polarized plane wave with the amplitude of 0.5 v

m and the angular frequency of
13.263 rad

s propagates rightward according to the one-dimensional Maxwell’s equa-

tions ∂Ez

∂t = 1
ε
∇ × H , ∂H

∂t = − 1
μ
∇ × E .

In the presence of a single dielectric cylinder, the incident wave is scattered so that
the total field/scattered field formulation is adopted. The physical domain is divided
into the regions knownas the total field, scatteredfield, anduniaxial perfectlymatched
layer to absorb waves.

The results are calculated at the same Courant number Cr = 0.2, which corre-
sponds to the specified time increment �t = 0.0026685 f s. The three-dimensional
results of Ez are plotted in Fig. 3b–f at the cutting plane z = 0nm.

5 Conclusions

A high-order FDTD scheme has been developed in three-point grid stencil to solve
the three-dimensional Maxwell’s solutions in non-staggered grids. Our first aim is to
numerically preserve symplecticity and conserve Hamiltonian. To retain these theo-
retical properties at all times, the explicit partitioned Runge–Kutta symplectic time
integrator is applied together with the space-centered scheme. To increase the disper-
sive accuracy that is essential to predict wave propagation correctly, the discrepancy
between the numerical and exact phase velocities is minimized. The numerically
verified temporally second-order and spatially fourth-order accurate compact finite
difference scheme is also shown to satisfy the discrete Gauss’ law. The solutions
computed on a single Nvidia K-20 card for the analytical and benchmark problems
for the verification and validation purposes have been shown to agree very well with
the exact and the benchmark numerical solutions.

Acknowledgments This work was supported by the Ministry of Science and Technology (MOST)
of theRepublic ofChina under theGrantsNSC96-2221-E-002-293-MY2,NSC96-2221-E-002-004,
and CQSE97R0066-69.

References

1. Chi, J., Liu, F., Weber, E., Li, Y., Crozier, S.: GPU-accelerated FDTD modeling of radio-
frequency field-tissue interactions in high-field MRI. IEEE Trans. Biomed. Eng. 58(6), 1789–
96 (2011)

2. Zunoubi, M.R., Payne, J., Roach, W.P.: CUDA implementation of TE-FDTD solution of
Maxwell’s equations in dispersive media. IEEE Antennas and Propagation Society 9, 756–
759 (2010)



270 T.W.H. Sheu

3. Lee, K.H., Ahmed, I., Goh, R.S.M., Khoo, E.H., Li, E.P., Hung, T.G.G.: Implementation of the
FDTDmethod based on Lorentz-Drude dispersive model on GPU for plasmonics applications.
Progr. Electromagn. Res. 116, 441–456 (2011)

4. Zygiridis, T.T.: High-order error-optimized FDTD algorithm with GPU implementation. IEEE
Trans. Magnetics 49(5), 1809–1813 (2013)

5. Micikevicius, P.: 3D Finite Difference Computation on GPUs Using CUDA. ACM New York
79–84, (2009)

6. Zhang, B., Xue, Z.H., Ren, W., Li, W.M.: X, pp. 410–413. Q. Sheng, Accelerating FDTD
algorithm using GPU computing, IEEE (ICMTCE) (2011)

7. Bridges, T.J., Reich, S.: Multi-symplectic integration numerical scheme for Hamiltonian PDEs
that conserves symplecticity. Phys. Lett. A 284, 184–193 (2001)

8. Cockburn, B., Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for
the Maxwell equations. J. Comput. Phys. 194, 588–610 (2004)

9. Anderson, N., Arthurs, A.M.: Helicity and variational principles for Maxwell’s equations. Int.
J. Electron. 54, 861–864 (1983)

10. Marsden, J.E., Weinstein, A.: The Hamiltonian structure of Maxwell-Vlasov equations. Phys-
icalD 4, 394–406 (1982)

11. Sheu, T.W.H., Hung, Y.W., Tsai, M.H., Li, J.H.: On the development of a triple-preserving
Maxwell’s equations solver in non-staggered grids. Int. J. Numer. Methods Fluids. 63, 1328–
1346 (2010)

12. Sanz-Serna, J.M.: Symplectic Runge-Kutta and related methods: recent results. Physica D
293–302, (1992)

13. Jiang, L.L.,Mao, J.F.,Wu,X.L.: Symplectic finite-difference time-domainmethod forMaxwell
equations. IEEE Trans. Magn. 42(8), 1991–1995 (2006)

14. Sha, W., Huang, Z.X., Chen, M.S., Wu, X.L.: Survey on symplectic finite-difference time-
domain schemes for Maxwell’s equations. IEEE T. Antenn. Propag. 56, 493–510 (2008)

15. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys.
17, 328–346 (1996)

16. Zingy, D.W., Lomax, H., Jurgens, H.: High-accuracy finite-difference schemes for linear wave
propagation. SIAM J. Sci. Comput. 17, 328–346 (1996)

17. Spachmann, H., Schuhmann, R., Weiland, T.: High order spatial operators for the finite inte-
gration theory. ACES Journal 17(1), 11–22 (2002)

18. Kashiwa, T., Sendo, Y., Taguchi, K., Ohtani, T., Kanai, Y.: Phase velocity errors of the nonstan-
dard FDTD method and comparison with other high-accuracy FDTD methods. IEEE Transac-
tions on Magnetics 39(4), 2125–2128 (2003)



RETRACTED CHAPTER: A Collocation
Method for Integral Equations in Terms
of Generalized Bernstein Polynomials

Vinai K. Singh and A.K. Singh

Abstract In this study, a collocation method based on generalized Bernstein
polynomials is presented for approximate solution of Fredholm–Volterra integral
equations. While this method is applicable directly to linear integral equations of the
first, second and third kinds, it is applicable iteratively to nonlinear integral equations
using method of quasilinearzation. Error bounds are demonstrated for the Bernstein
collocation method, and the convergence of this method is shown, Moreover, some
numerical examples are given to illustrate the accuracy, efficiency and applicability
of the method.
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1 Introduction

Integral equations are closely related to a number of different areas of mathematics.
For instance, many problems included to ordinary and partial differential equations
can be converted in the integral equations. In addition, these equations are often
used in the engineering, mathematical physics, potential theory, electrostatic and
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radioactive heat transfer. Therefore, many researchers are interested in numerical
methods to get the solution of integral equations.

Quasilinearzation [1, 2] is an effective method that solves the nonlinear equations
recursively by a sequence of linear equations. The main advantage of this method
is that it converges quadratically to the solution of the original equation. Besides,
since many problems in system identification and optimization can be reduced to
this format, quasilinearzation is a useful computational technique in modern control
applications. This method has also been applied the variety of nonlinear equations
such as ordinary differential equations [3–7], functional differential equations [8–10],
integral equations [11, 12], integro-differential equations [13].

Bernstein polynomials have many useful properties, such as the positivity, conti-
nuity, recursion’s relation, symmetry, unity partition of the basis set over the interval
[0, 1], and the polynomials are differentiable and integrable. For this reason, these
polynomials have been used to numerical solution of Volterra [14–17, 25] and Fred-
holm [18, 19] integral equations.

The definitions of the Bernstein polynomials and their basis from that can be
easily generalized on the interval [a, b], are given as follows:

Definition 1.1 Generalized Bernstein basis polynomials can be defined on the inter-
val [a, b] by

pi,n(x) = 1

(b − a)n

(
n

i

)
(x − a)i (b − x)n−i , i = 0, 1, 2, . . . , n.

Definition 1.2 Let y : [a, b] → R be continuous function on the interval [a, b].
Bernstein polynomials of nth-degree are defined by

Bn(y; x) =
n∑

i=0

y

(
a + (b − a)i

n

)
pi,n(x).

Theorem 1.1 If y ∈ Ck[a, b] and m ≥ 0, for some integer then

lim
n→∞ B(k)

n (y; x) = y(k)(x); k = 0, 1, 2, . . . .,m

converges uniformly to y for as n → ∞. For more information about Bernstein
polynomials, see [4, 20, 21].

Definition 1.3 A linear Fredholm–Volterra integral equation of the third kind is
given by:

a(x)y(x) = g(x) + λ1

∫ b

a
f (x, t)y(t)dt + λ2

∫ x

a
k(x, t)y(t)dt (1)

such that a(x) �= 0 and a(x) �= 1. Here a(x), g(x), f (x, t) and k(x, t) are given
functions. λ1 and λ2 are constants, y(x) is unknown function. Privately Eq. (1) is
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called as linear Fredholm–Volterra integral equations of the first or second kind for
a(x) ≡ 0 and a(x) ≡ 1, respectively.

Definition 1.4 A nonlinear Fredholm–Volterra integral equation is defined as
follows:

a(x)y(x) = g(x) + λ1

∫ b

a
f (x, t, y(t))dt + λ2

∫ x

a
k(x, t, y(t))dt (2)

where g(x), f (x, t, y(t)) and k(x, t, y(t)) are continuous functions, λ1 and λ2 are
constants, y(x) is unknown function.

The reminder of this paper is organized as follows: In Sect. 2, a collocationmethod
is developed directly and iteratively to get the solution of the integral equations
by means of the generalized Bernstein polynomials. In Sect. 3, error bounds and
convergence analysis are given for the proposed method. Section4 is devoted to the
applicability of the presentedmethod. In this part, some linear andnonlinear examples
are solved and compared with different methods. Finally, the paper is ended with
conclusions.

2 Method of Solution

In this paper, the purpose is to approximate the solution of the linear Fradholm–
Volterra integral equation (1) directly andnonlinear Fredholm–Volterra integral equa-
tion (2) via the quasilinearization method iteratively with the generalized Bernstein
polynomials:

y(x) ∼= Bn(y; x) =
n∑

i=0

y

(
a + (b − a)i

n

)
pi,n(x). (3)

Theorem 2.1 Let xs ∈ [a, b] be collocation points. LinearFredholm–Volterra equa-
tion (1) has following matrix form:

[AP − λ1F − λ2K]Y = G (4)

Here A= diag[a(xs)],F= [Fs,i ],K= [Ks,i ],P = [pi,n(xs)] are (n + 1) × (n +
1) matrices, and Y = [y(a + (b−a)i

n )], G = [g(xs)] are (n + 1) × 1 matrices for
i, s = 0, 1, . . . , n.

Proof The expression (3) can be written as

y(x) ∼= P(x)Y (5)
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such that

P(x) = [p0,n(x) p1,n(x)....Pn,n(x)],Y = [y(a), y

(
a + (b − a)

n

)
, ...., y(b)]T .

Substituting the collocation points and relation (5) into Eq. (1), we obtain the linear
algebraic equation system

a(xs)P(xs)Y = g(xs) + λ1

∫ b

a
f (xs, t)P(t)dtY + λ2

∫ xs

a
k(xs, t)P(t)dtY (6)

such that y(xs) = Bn(y; xs); s = 0, 1, . . . , n. If the integrals at the sides of λ1 and
λ2 are called respectively F(xs) and K(xs), then for i = 0, 1 . . . , n, the elements of
these matrices can be written as

F(xs) = [Fs,0 Fs,1 . . . . . . Fs,n]; Fs,i = ∫ b
a f (xs, t)pi,n(t)dt,

K(xs) = [Ks,0 Ks,1 . . . . . . Ks,n]; Ks,i = ∫ xs
a k(xs, t)pi,n(t)dt,

Therefore the Eq. (6) becomes

[a(xs)P(xs) − λ1F(xs) − λ2K(xs)]Y = g(xs).

For s = 0, 1, . . . , n. This system is equivalent to matrix equation (4), completed
the proof.

The Eq. (4) can be written in the compact form

WY = F or [W;F],

So thatW = AP − λ1F − λ2K. If rank(W) = rank[W;F] = n + 1, then solution
of this system is uniquely determined

Theorem 2.2 Let xs ∈ [a, b] be collocation points. Nonlinear Fredholm–Volterra
integral equation (2) has the iteration matrix in the form:

[AP − λ1Frλ2Kr]Yr+1 = Hr; r = 0, 1 . . . .. (7)

Here matrices A and P are as given in the Theorem2.1, Fr = [Fr,s,i ] and

Kr = [Kr,s,i ] are (n + 1) × (n + 1) matrices, Yr+1 = [yr+1(a + (b−a)i

n )] and Hr =
[hr (xs)] are (n + 1) × 1 matrices for i, s = 0, 1, . . . , n.

Proof Let y0(x) be arbitrary chosen function for starting iteration. By considering
the quasilinearization method, Eq. (2) is expressed as a sequence of linear equations
for r = 0, 1 . . . ..

a(x)yr+1(x) = g(x) + λ1

∫ b

a
[ f (x, t, yr (t)) + fy(x, t, yr (t))(yr+1(t) − yr (t))]dt

+ λ2

∫ x

a
[k(x, t, yr (t)) + ky(x, t, yr (t))(yr+1(t) − yr (t))]dt, (8)
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and then Bernstein collocation method for solving a sequence of linear equations (8)
is applied. From expression (5), we have

yr+1(x) ∼= P(x)Yr+1; r = 0, 1 . . . .. (9)

Substituting the collocation points and relation (9) into Eq. (8), we obtain linear
algebraic system

a(xs)P(xs)Yr+1 − λ1Fr(xs)Yr+1 − λ2Kr(xs)Yr+1 = hr (xs) (10)

Here Fr(xs),Kr(xs) and hr (xs) are given by

Fr(xs) = [Fr,s,0 Fr,s,1...Fr,s,n],Kr(xs) = [Kr,s,0 Kr,s,1...Kr,s,n].

hr (xs) = g(xs) + λ1

∫ b

a
[ f (xs, t, yr (t)) − fy(xs, t, yr (t))]dt

+ λ2

∫ xs

a
[k(xs, t, yr (t)) + ky(xs, t, yr (t))yr (t))]dt

such that

Fr,s,i =
∫ b

a
f (xs, t, yr (t))pi,n(t)dt, Kr,s,i =

∫ xs

a
k(xs, t, yr (t))pi,n(t)dt

Considering the matrices

Fr =

⎡
⎢⎢⎢⎢⎣

Fr(x0)
Fr(x1)

...

...

Fr(xn)

⎤
⎥⎥⎥⎥⎦

Kr =

⎡
⎢⎢⎢⎢⎣

Kr(x0)
Kr(x1)

...

...

Kr(xn)

⎤
⎥⎥⎥⎥⎦

and

Hr =

⎡
⎢⎢⎢⎢⎣

hr(x0)
hr(x1)

...

...

hr(xn)

⎤
⎥⎥⎥⎥⎦
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the Eq. (10) can be written as matrix form (7). This completed the proof.

The Eq. (7) can be written in the compact form

Wr Yr+1 = Hr or [Wr;Hr]; r = 0, 1, . . .

so that Wr = AP − λ1Fr − λ2Kr.

3 Convergence and Error Analysis

Definition 3.1 Error is denoted by en(x) = y(x) − Bn(y; x) such that y(x) is an
exact solution and Bn(y; x) is a generalized Bernstein approximate solution. Then
the maximum error can be defined as

En(y) =‖ en ‖∞= max
a≤x≤b

|en(x)|,

and on the collocation points; maximum, mean and root of the mean square errors
are defined by

Emax = max
xs∈[a,b] |en(xs)|, Emean = 1

n + 1

n∑
s=0

|en(xs)|, Eroot =
√√√√ 1

n + 1

n∑
s=0

(en(xs))2

Let y(xs) �= 0 and Bn(y; xs)be scalars, then the absolute relative error in Bn(y; xs)
as an approximation to y(xs) is the number

Erel = |en(xs)|
|y(xs)|

Let f be a continuous function on the square [a, b] × [a, b]. Then the maximum
norm of f can be denoted by

‖ f ‖∞= max
x,t∈[a,b] | f (x, t)|

Residual error can be defined for the presented method on the following:

Rn(x) = a(x)Bn(y; x) − λ1

∫ b

a
f (x, t)Bn(y; t)dt − λ2

∫ x

a
k(x, t)Bn(y; t)dt − g(x).

(11)

Definition 3.2 ([1]) Let y0 be initial approximation to root m, with y0 < m and
er (x) = yr+1(x) − yr (x) be rth iteration error. Then the following relation obtained
for error in quasilinearization is called quadratic convergence:

|er (x)| ≤ M |er−1(x)|2
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where

M = max
y0≤θ≤m

[ |y′′(θ)|
|y′(θ)| + |φ′′(θ)|

2

]
;φ(θ) = θ − y(θ)

y′(θ)
, yr−1 ≤ θ ≤ yr .

Definition 3.3 ([22]) Let y(x) be defined on [a, b], the modulus of continuity of
y(x) on [a, b], ω(δ),is defined for δ > 0 by

ω(δ) = sup
x1,x2∈[a,b];|x1−x2|≤δ

|y(x1) − y(x2)|

Lemma 3.1 ([22]) If λ > 0, then ω(λδ) = (1 + λ)(ω(δ) .

Lemma 3.2 ([22]) y(x) is uniformly continuous on [a, b] iff

lim
δ→0

ω(δ) = 0.

Lemma 3.3 The generalized Bernstein basis polynomials have the following
relation:

n∑
i=0

(
x −

(
a + b − a

n
i

))2

pi,n(x) = (x − a)(b − x)

n
.

Proof Consider the following relation given in Ref. [22] for Bernstein basis polyno-
mials defined on the interval [0,1]:

n∑
i=0

(
t − i

n

)2

pi,n(x) = t (1 − t)

n
.

Applying the transformation t = x−a
b−a to this expression andmultiplying both sides

with (b − a)2,, then we obtain the desired relation.

Theorem 3.1 Let Bn y be generalized Bernstein approximate solution on [a, b]. If
exact solution y(x) is continuous on [a, b], then the error is

|en(x)| ≤ ω(n−1/2)(1 + √
(x − a)(b − x))

and

lim
n→∞ ‖ en ‖∞= 0

Proof This theorem is easily proved with similar way in Ref. [22]. However,
Lemma3.3 is used for proof different from [22].
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Theorem 3.2 Consider the linear Fredholm–Volterra integral equation (1). Let
a(x), y(x) be continuous functions on the interval [a, b] and f (x, t), k(x, t) be con-
tinuous functions on the square [a, b] × [a, b]. Then residual error of the generalized
Bernstein polynomials approach holds the following:

‖ Rn ‖∞≤ c ‖ en ‖∞, lim
n→∞ ‖ Rn ‖∞= 0

such that c is a positive constant.

Proof Considering absolute value of residual error (11) and substituting g(x) given
in Eq. (1), the residual error can be written by

|Rn(x)| ≤ |a(x)||Bn(y; x) − y(x)| + |λ1|
∫ b

a
| f (x, t)||Bn(y; t) − y(t)|dt

+ |λ2|
∫ x

a
|k(x, t)| |Bn(y; t) − y(t)|dt. (12)

Moreover, from the definition of the maximum error and properties of the norm,
we further get

‖ Rn ‖∞ ≤‖ a ‖∞‖ en ‖∞ +(b − a)|λ1| ‖ f ‖∞‖ en ‖∞ +(x − a)|λ2| ‖ k ‖∞‖ en ‖∞
≤ (‖ a ‖∞ +(b − a)|λ1| ‖ f ‖∞ +(x − a)|λ2| ‖ k ‖∞) ‖ en ‖∞
≤ (‖ a ‖∞ +(b − a)|λ1| ‖ f ‖∞ + max

x∈[a,b](x − a)|λ2| ‖ k ‖∞) ‖ en ‖∞

≤ (‖ a ‖∞ +(b − a)|λ1| ‖ f ‖∞ +(b − a)|λ2| ‖ k ‖∞) ‖ en ‖∞
≤ c ‖ en ‖∞

such that c =‖ a ‖∞ +(b − a)|λ1| ‖ f ‖∞ +(b − a)|λ2| ‖ k ‖∞ .Since y(x) is con-
tinuous on the interval [a, b] as follows from Theorem3.1 ‖ Rn ‖∞→ 0, as n → ∞.

Theorem 3.3 Let y be a continuous function on the interval [a, b] and xs; s =
0, 1, ., n be collocation points. Then, the residual error bound at the collocation
points for linear Fredholm–Volterra integral equation (1), is

|Rn(xs)| < k(b − a)

(
1 + b − a

2

)
ω(sn−3/2),

and
lim
n→∞ |Rn(xs)| = 0.

Here k is positive constant.
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Proof Substituting the collocation points into the absolute residual error (12), we
have

|Rn(xs)| ≤ |a(xs)||Bn(y; xs) − y(xs)| + |λ1|
∫ b

a
| f (xs, t)||Bn(y; t) − y(t)|dt

+ |λ2|
∫ xs

a
k(xs, t)||Bn(y; t) − y(t)|dt

From Theorem3.1 and considering Bn(y; xs) = y(xs) for the generalized Bernstein
polynomials approach on the collocation points, the residual error becomes

Rn(xs)| ≤ ω(n−1/2)[|λ1|
∫ b

a
| f (xs, t)|[1 + √

(t − a)(b − t)]dt

+ |λ2|
∫ xs

a
|k(xs, t)|[1 + √

(t − a)(b − t)]]dt

Denoting

ε = |λ1|| f (xs , t)|, δ = |λ2| max
t∈[a,b] |k(xs , t)|, max

t∈[a,b][1 + √
(t − a)(b − t)] = 1 + b − a

2
,

and considering the Lemma3.1, desirable inequality is obtained as:

|Rn(xs)| ≤ ((b − a)ε + (xs − a)δ)

(
1 + b − a

2

)
ω(n−1/2)

≤
(
ε + δ

s

n

)
(b − a)

(
1 + b − a

2

)
ω(n−1/2)

< k(b − a)

(
1 + b − a

2

) (
1 + s

n

)
ω(n−1/2)

< k(b − a)

(
1 + b − a

2

)
ω(sn−3/2)

Such that k is bigger than ε and δ. Since y(x) is continuous on the interval [a, b],
in view of Lemma3.2, |Rn(xs)| → 0 is n → ∞. This is completes the proof.

4 Numerical Results

Four linear and two nonlinear numerical examples are given using the presented
method on the collocation points xs = a + (b−a)s

n ; xs = −cos( πs
n )and xs =

− 1−cos( πs
n )

2 ; s = 0, 1, ....., n. Numerical results computed in MATLAB 7.1 with 32
digits are compared with the other methods.
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Table 1 Mean errors of Example1

n xs = a + (b−a))s
n xs = −cos( πs

n ) n xs = a + (b−a)s
n xs = −cos( πs

n )

2 0 3.7e−017 11 2.7e−015 3.3e−016

3 4.9e−017 1.1e−016 12 1.4e−015 3.6e−016

4 2.5e−017 1.8e−016 13 4.4.e−015 2.5e−016

5 3.6e−016 5.4e−017 14 2.6e−015 1.7e−016

6 5.4e−016 9.8e−017 16 1.5e−015 3.5e−016

7 4.2e−016 9.8e−017 17 2.1e−014 2.7e−016

8 2.8e−016 2.4e−016 18 2.5e−014 2.2e−016

9 1.2e−016 2.0e−016 19 8.8e−014 3.2e−016

10 2.4e−016 2.0e−016 20 1.5e−013 4.0e−016

Example 1 Consider the

y(x) = 1 +
∫ 1

−1
(xt + x2t2)y(t)dt; − 1 ≤ x ≤ 1

linear Fredholm integral equation of the second kind that the exact solution is
y(x) = 1 + 10

9 x
2.

The mean errors of proposed method with increasing n are given in Table1. Mean
error obtained for n = 4 by using the numerical method based on the Bernstein basis
polynomials is nearby 10−13.Whereas mean error of the presented method is nearby
10−17 on the collocation points xs = a + (b−a)s

4 ; s = 0, 1, . . . , 4. Therefore, we can
say that ourmethod ismore effective than the othermethod given byAhmad et al. [8].

Example 2 Consider the

y(x) = cos(x) − exsin(x) +
∫ x

0
ex y(t)dt; 0 ≤ x ≤ 1

Linear Volterra integral equation of the second kind that analytic solution is
y(x) = cosx .

The root of the mean square errors are compared with the numerical method
based on the Bersetein polynomials [15] in Table2. If collocation points xs =
(1−cos( πs

n ))

2 ; s = 0, 1, . . . , n are considered, the presented method converges more
rapidly than the other method for n ≥ 4.

Example 3 Consider the linear Fredholm integral equation of the second kind:

y(x) = ex + 2
∫ 1

0
ex+t y(t)dt; 0 ≤ x ≤ 1
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Table 2 Comparison of the root of the mean square errors for Example2

n Presented method K. Maleknejad

2 4.7e−003 2.0e−003

3 3.1e−004 2.3e−004

4 4.7e−006 6.2e−006

5 1.8e−007 5.4e−007

6 2.0e−009 1.1e−008

7 1.0e−010 1.1e−009

8 1.3e−012 3.4e−010

9 5.2e−014 3.3e−010

10 6.6e−016 3.4e−010

Table 3 Mean errors of Example3

n xs = a + (b−a)s
n xs = 1−cos( πs

n )

2 n xs = a + (b−a)s
n xs = 1−cos( πs

n )

2

2 6.0e−004 6.0e−004 12 1.1e−016 1.6e−016

3 5.8e−005 2.5e−005 17 3.4e−016 1.9e−016

4 1.2e−006 4.7e−007 18 8.8e−015 1.9e−016

5 1.1e−007 1.2e−008 19 3.0e−015 3.3e−016

6 2.0e−009 1.3e−010 20 1.6e−014 2.5e−016

7 1.5e−010 3.9e−012 21 1.2e−013 1.8e−016

8 2.2e−012 3.8e−014 22 1.9e−013 3.0e−016

9 1.4e−013 1.4e−015 23 9.0e 015 2.2e−016

10 1.6e−015 1.6e−016 24 6.4e−013 2.0e−016

11 1.7e−016 2.3e−016 25 5.9e−014 2.4e−016

Exact solution of the above equation is y(x) = ex

2−e2 .

Mean errors obtained by using the presentedmethod are given in Table3. Besides,
when the collocation points are not equally spaced,Table3 shows that results obtained
on these points are much better than the other results. The absolute relative errors
can be compared with the Galerkin method based on the Bernstein basis polyno-
mials [19] in Table4. It shows that the results obtained on the collocation points
xs = a + (b−a)s

n ; s = 0, 1, . . . , n are better than the results given by other method.

Example 4 Consider the following linear Fredholm–Volterra integral equation of
the third kind.

3y(x) = 3x2 − sinx(x2sinx + 2xcosx − 2sinx − sin 1 + 2cos1)

+
∫ 1

0
sinxcost y(t)dt +

∫ x

0
sinxcost y(t)dt

Analytic solution of the above equation is y(x) = x2.
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Table 4 Comparison of the absolute relative error for Example3

n = 5 n = 7

x Presented method A. Shirin Presented method A. Shirin

0.1 1.5e−006 1.9e−005 1.4e−009 1.3e−005

0.2 3.4e−007 7.2e−006 1.2e−009 3.8e−006

0.3 8.6e−007 1.0e−005 3.4e−010 6.1e−006

0.4 3.4e−007 1.1e−005 3.1e−010 3.5e−066

0.5 2.1e−008 4.8e−007 6.4e−010 7.6e−006

0.6 3.4e−007 9.2e−006 3.4e−010 1.4e−006

0.7 7.1e−007 7.8e−006 3.7e−010 5.9e−006

0.8 3.4e−007 3.6e−006 8.8e−010 3.3e−006

0.9 6.0e−007 9.3e−006 4.5e−010 5.5e−006

1 3.4e−007 2.1e−005 4.5e−010 1.5e−005

Table 5 Mean errors of Example4

n xs = a + (b−a)s
n xs = 1−cos( πs

n )

2 n xs = a + (b−a)s
n xs = 1−cos( πs

n )

2

2 9.8e−018 9.3e−018 10 3.5e−017 8.1e−017

3 2.3e−017 4.3e−017 14 7.6e−017 7.0e−017

4 0 7.4e−018 15 7.7e−017 6.7e−017

5 3.7e−017 1.1e−016 16 4.7e−016 1.1e−016

6 8.2e−017 1.9e−017 18 5.5e−016 5.4e−017

7 1.3e−016 1.8e−016 20 5.0e−015 9.3e−017

8 2.6e−017 6.2e−017 25 4.8 e−014 7.6e−017

9 5.9e−017 7.0e−017 30 2.0e−012 7.3e−017

Table 6 Comparison of the maximum errors for Example4

n Presented method Taylor expansion
method

Collocation
method

Fixed point
method

14 4.4e−016 2.0e−015 – –

16 9.7e−016 – 7.8e−005 3.8e−004

32 2.8e−012 – 4.7e−005 9.5e−005

The mean errors of the presented method with increasing n are given in Table5.
The maximum errors are compared with the Taylor expansion method [23], collo-
cation method and fixed point method [11] in Table6. It shows that the presented
method on the collocation points xs = a + (b−a)s

n ; s = 0, 1, . . . , n is more effec-
tive than the other methods. Moreover, the results of proposed method obtained
without iteration are better than the results of collocation and fixed point methods
[11] obtained with eigth iteration.
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Example 5 Consider the following nonlinear Volterra integral equation:

y(x) = 2 − ex +
∫ x

0
ex−t y2(t)dt; 0 ≤ t ≤ 1

Exact solution of the above equation is y(x) = 1. Let y0(x) = 2 − ex be the first
iteration function.

Mean errors of the presented method with increasing n and r are given in Table7. The
absolute errors are compared with the results given byMalekeknajad and Najafi [24]
in Table8. They have used the method combining collocation method and iterations
of the quasilinear technique [15]. Table8 shows that presented method gives the
exact solution y(x) = 1 for r = fifth iteration, and the proposed method has better
numerical solutions than the other method.

Example 6 Consider the following nonlinear Fredholm–Volterra integral equation:

y(x) = 2x + 7 − 7x4

3
+

∫ x

−1
(x + t)y2(t)dt +

∫ 1

−1
(x − t)y(t)dt; 0 ≤ x ≤ 1

Table 7 Mean errors of Example5

n r = 1 r = 2 r = 3 r = 4 r = 5

2 2.3e−002 6.8e−004 1.6e−007 3.6e−014 0

4 2.5e−002 1.9e−004 9.6e−009 0 0

8 2.0e−002 1.3e−004 4.1e−009 2.0e−016 5.3e−016

16 1.7e−002 9.2e−005 2.3e−009 1.1e−014 1.3e−015

Table 8 Comparison of the absolute error of Example5

Presented method Presented method Collocation method [15]

y0(x) = 2-ex , n = 3 y0(x) = 2-ex , n = 4 yo(x) = 2-ex , n = 4

x r = 2 r = 5 r = 2 r = 5 r = 2 r = 5

0.1 2.3e−004 0 5.8e−005 0 2.5e−003 1.8e−015

0.2 2.8e−004 0 3.9e−005 0 7.9e−004 6.6e−016

0.3 2.2e−004 0 8.7e−006 0 1.4e−003 1.5e−015

0.4 1.3e−004 0 3.9e−006 0 1.8e−003 2.1e−015

0.5 1.1e−004 0 3.5e−005 0 9.0e−004 1.2e−015

0.6 2.2e−004 0 8.4e−005 0 3.6e−003 1.1e−015

0.7 5.5e−004 0 1.1e−004 0 1.8e−002 2.4e−015

0.8 1.2e−003 0 3.5e−005 0 5.5e−002 1.3e−015

0.9 2.2e−003 0 2.3e−004 0 1.3e−001 1.5e−014
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Table 9 Mean errors of Example6

n r = 2 r = 3 r = 4 r = 5 r = 6

2 1.6e−001 3.7e−002 3.1e−003 2.6e−005 7.1e−008

4 8.2e−002 6.4e−003 4.2e−005 1.7e−007 6.5e−008

8 5.0e−002 1.6e−003 1.5e−006 2.6e−007 1.1e−007

16 4.1e−002 1.1e−003 4.2e−007 3.5e−006 9.5e−007

Exact solution of the above equation is y(x) = 2x .Let y0(x) = 0 be the first iteration
function.

Mean errors of the presented method with lncreasing n are given on the collocation
points xs = a + (b−a)s

n ; s = 0, 1, . . . ., n in Table9. We can say that the numerical
results of proposed method converge more rapidly for increasing iterations r.

5 Conclusions

In this work, a collocation method based on the generalized Bernstein polynomials
has been developed for the numerical solution of linear and nonlinear
Fredholm–Volterra integral equations directly and iteratively using the quasilinear
technique. Since, the generalized Bernstein polynomials approximation is valid for
continuous functions on the interval [a, b],the presented method can be applied to
solve the integral equations. The error bounds and convergence of the presented
method have been presented by considering the generalized Bernstein polynomi-
als approach. Some numerical examples have been given to show the applicabil-
ity and accuracy of the proposed method. This method has much better numerical
results obtained directly on collocation points with equally and not equally spaced
for increasing values n, and it is more effective than the other methods given in
examples (1), (2), (3) and (4). Moreover, the proposed method derived iteratively
converges more rapidly for increasing iterations r as is seen from example (5) and
(6), because of the quadratic convergence of this method. Consequently; all these
positive reasons are encouraging for an application of the more used method to the
other linear and nonlinear equations.
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Convergence Estimates in Simultaneous
Approximation for Certain Generalized
Baskakov Operators

Vijay Gupta and Vinai K. Singh

Abstract In the present article, we consider the Durrmeyer type integral modi-
fication of the generalized Baskakov operators. The special cases of our operators
provides the well-knownBaskakov–Durrmeyer and Szász–Durrmeyer operators.We
estimate convergence estimates in simultaneous approximation.

Keywords Linear positive operators · Baskakov operators · Pointwise estimation ·
Asymptotic formula

1 Introduction

For a ≥ 0, we consider the modified form of linear positive operators due to [16],
depending on certain parameter c ≥ 0 as

Va,c
n (x) =

∞∑

k=0

ba,cn,k(x)f

(
k

n

)
,

where the kernel is given by

ba,cn,k(x) = e−acx/(1+cx)

k!
k∑

i=0

(
k

i

)
(n/c)i · ak−i (cx)k

(1 + cx)n/c+k
.
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It can easily be seen that
∑∞

k=0 b
a,c
n,k(x) = 1. For the special value a = 0, c = 1 the

above operators become Baskakov operators and a = 0, c → 0 the above operators
reduce to the classical Szász–Mirakyan operators. These operators preserve only the
constant functions, but for special value a = 0 these preserve linear functions also.

In order to consider generalization of the operators discussed in [4], Erencin [2]
considered the certain other form of such operators and established some direct
results, we consider the Durrmeyer variant in the following way:

Da,c
n (f , x) = (n − c)

∞∑

k=0

ba,cn,k(x)
∫ ∞

0
b0,cn,k(t)f (t)dt, x ∈ [0,∞) (1)

where the kernel is given by

ba,cn,k(x) = e−acx/(1+cx)

k!
k∑

i=0

(
k

i

)
(n/c)i · ak−i (cx)k

(1 + cx)n/c+k
, b0,cn,k(x) = (n/c)k

k!
(cx)k

(1 + cx)n/c+k
.

Wemay point out here that for the general a > 0 the basis ba,cn,k(t) under integral sign
are not possible to handle due to technical difficulties in finding the moments. In the
past two decades, simultaneous approximation properties have been discussed by
many researchers on different operators, we mention few of them as [1, 3, 4, 6–15,
17, 18]. Recently Agarwal and Gupta presented some of them in the recent book [5].
The operators defined by (1) produce rational functions so for asymptotic formula in
simultaneous approximation, one cannot find the exact form as of those considered
in above mentioned papers.

In the present article, we discuss some direct estimates in simultaneous approxi-
mation for the operators (1), which include point-wise estimation and the asymptotic
formula.We also present the exact expressions of the asymptotic formulae in ordinary
approximation and for first derivatives.

2 Basic Results

Lemma 1 For m ∈ N0, a ≥ 0, if we define

Ta,c
n,m(x) =

∞∑

k=0

ba,cn,k(x)

(
k

n

)m

,

then the following recurrence relation holds:

Ta,c
n,m+1(x) = x(1 + cx)

n
[Ta,c

n,m(x)]′ +
[

acx

n(1 + cx)
+ x

]
Ta,c
n,m(x).
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Proof Using the identity

x(1 + cx)2[ba,cn,k(x)]′ = [(k − nx)(1 + cx) − acx]ba,cn,k(x)

we have

x(1 + cx)2[Ta,c
n,m(x)]′ =

∞∑

k=0

[(k − nx)(1 + cx) − acx]ba,cn,k(x)

(
k

n

)m

= (1 + cx)nTa,c
n,m+1(x) − [acx + nx(1 + cx)]Ta,c

n,m(x).

�
Lemma 2 If the mth order (m ∈ N0) of the operators (1) is defined as

Ua,c
n,m(x) := Da,c

n (tm, x) = (n − c)
∞∑

k=0

ba,cn,k(x)
∫ ∞

0
b0,cn,k(t)t

mdt,

then there holds the following recurrence relation:

[n − c(m + 2)](1 + cx)Ua,c
n,m+1(x) = x(1 + cx)2(Ua,c

n,m(x))′

+ [acx + (m + 1 + nx)(1 + cx)]Ua,c
n,m(x).

Proof Using the identity x(1 + cx)2[ba,cn,k(x)]′ = [(k − nx)(1 + cx) − acx]ba,cn,k(x),
we may write

x(1 + cx)2(Ua,c
n,m(x))′ = (n − c)

∞∑

k=0

[(k − nx)(1 + cx) − acx]ba,cn,k(x)
∫ ∞

0
b0,cn,k(t)t

mdt

= (n − c)(1 + cx)
∞∑

k=0

(k − nx)ba,cn,k(x)
∫ ∞

0
b0,cn,k(t)t

mdt − acxUa,c
n,m(x)

= (n − c)(1 + cx)
∞∑

k=0

ba,cn,k(x)
∫ ∞

0
(k − nt)b0,cn,k t

mdt − acxUa,c
n,m(x).

− nx(1 + cx)Ua,c
n,m(x) + n(1 + cx)Ua,c

n,m+1(x).

Using the identity t(1 + ct)[b0,cn,k(t)]′ = (k − nt)b0,cn,k(t), we have

x(1 + cx)2(Ua,c
n,m(x))′ + [acx + nx(1 + cx)]Ua,c

n,m(x) − n(1 + cx)Ua,c
n,m+1(x)

= (n − c)(1 + cx)
∞∑

k=0

ba,cn,k(x)
∫ ∞

0
t(1 + ct)[b0,cn,k(t)]′tmdt

− (m + 1)(1 + cx)Ua,c
n,m(x) − c(m + 2)(1 + cx)Ua,c

n,m+1(x),
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which is the required recurrence relation. �

Remark 1 By Lemma 2, we have

(i) Ua,c
n,0(x) = 1,

(ii) Ua,c
n,1(x) = x + acx

(n − 2c)(1 + cx)
+ 1 + 2cx

n − 2c
,

(iii) Ua,c
n,2(x) = x2 + 6c(n − c)x2 + 4nx + 2

(n − 2c)(n − 3c)
+ 2acx(2 + nx)

(n − 2c)(n − 3c)(1 + cx)
+ a2c2x2

(n − 2c)(n − 3c)(1 + cx)2
,

(iv) Ua,c
n,3(x) = x3 + 12c(n2 − 2n + 2c2)x3 + 9n(n + c)x2 + 18nx + 6

(n − 2c)(n − 3c)(n − 4c)

+ 3acn(n + c)x3 + 18acnx(1 + x)

(n − 2c)(n − 3c)(n − 4c)(1 + cx)
+ 3a2c2x2(n + nx)

(n − 2c)(n − 3c)(n − 4c)(1 + cx)2

+ a3c3x3

(n − 2c)(n − 3c)(n − 4c)(1 + cx)3
,

(v) for each x ∈ (0,∞) Ua,c
n,m(x) = xm + n−1(qm(x, a, c) + o(1)), where qm(x,

a, c) is a rational function of x depending on a, c and m.

Lemma 3 If the mth order (m ∈ N0) central moment for the operators (1) is
defined as

μa,c
n,m(x) := Da,c

n ((t − x)m, x) = (n − c)
∞∑

k=0

ba,cn,k(x)
∫ ∞

0
b0,cn,k(t)(t − x)mdt,

then there holds the following recurrence relation:

[n − c(m + 2)](1 + cx)μa,c
n,m+1(x) = x(1 + cx)2[(μa,c

n,m(x))′ + 2mμ
a,c
n,m−1(x)]

+ [acx + (m + 1)(1 + cx)(1 + 2cx)]μa,c
n,m(x)

Proof By using the identity x(1 + cx)2[ba,cn,k(x)]′ = [(k − nx)(1 + cx) − acx]
ba,cn,k(x), we may write

x(1 + cx)2(μa,c
n,m(x))′ = (n − c)

∞∑

k=0

[(k − nx)(1 + cx) − acx]ba,cn,k(x)
∫ ∞

0
b0,cn,k(t)(t − x)mdt

− mx(1 + cx)2μa,c
n,m−1(x).

Thus,

x(1 + cx)2
[
(μa,c

n,m(x))′ + mμ
a,c
n,m−1(x)

] + acxμa,c
n,m(x)

= (n − c)(1 + cx)
∞∑

k=0

(k − nx)ba,cn,k(x)
∫ ∞

0
b0,cn,k(t)(t − x)mdt

= (n − c)(1 + cx)
∞∑

k=0

ba,cn,k(x)
∫ ∞

0
[(k − nt) + n(t − x)]b0,cn,k(t − x)mdt
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= (n − c)(1 + cx)
∞∑

k=0

ba,cn,k(x)
∫ ∞

0
(k − nt)b0,cn,k(t − x)mdt + n(1 + cx)μa,c

n,m+1(x)

Using the identity t(1 + ct)[b0,cn,k(t)]′ = (k − nt)b0,cn,k(t), we have

x(1 + cx)2
[
(μa,c

n,m(x))′ + mμ
a,c
n,m−1(x)

] + acxμa,c
n,m(x) − n(1 + cx)μa,c

n,m+1(x)

= (n − c)(1 + cx)
∞∑

k=0

ban,k(x)
∫ ∞

0
t(1 + ct)[b0,cn,k]′(t − x)mdt

Finally using t(1 + ct) = c(t − x)2 + (1 + 2cx)(t − x) + x(1 + cx) and integrating
by parts, we have

x(1 + cx)2
[
(μa,c

n,m(x))′ + mμ
a,c
n,m−1(x)

]
+ acxμa,c

n,m(x) − n(1 + cx)μa,c
n,m+1(x)

= (n − c)(1 + cx)
∞∑

k=0

ba,cn,k(x)
∫ ∞

0
[c(t − x)2 + (1 + 2cx)(t − x) + x(1 + cx)][b0,cn,k(t)]′(t − x)mdt

− (m + 2)c(1 + cx)μa,c
n,m+1(x) − (m + 1)(1 + cx)(1 + 2cx)μa,c

n,m(x) − mx(1 + cx)2μa,c
n,m−1(x),

which is the required recurrence relation. �

Corollary 1 For the function μa,c
n,m(x), from Lemma 3, we have

(i) μ
a,c
n,1(x) = acx

(n − 2c)(1 + cx)
+ 1 + 2cx

n − 2c
,

(ii) μ
a,c
n,2(x) = 2x(1 + cx)

n − 3c
+ 2[5c2x2 + 5cx + 1]

(n − 2c)(n − 3c)
+ a2c2x2

(n − 2c)(n − 3c)(1 + cx)2

+ 2acx(2 + 3cx)

(n − 2c)(n − 3c)(1 + cx)
;

(iii) μa,c
n,m(x) is a rational function of x;

(iv) For every x ∈ (0,∞), μa,c
n,m(x) = O

(
n−[(m+1)/2]

)
,

where [α] denotes the integer part of α.

Corollary 2 Let γ and δ be any two positive real numbers and [c, d] ⊂ (0,∞) be
any bounded interval. Then, for any m > 0 there exists a constant M ′ depending on
m only such that

∥
∥∥∥(n − c)

∞∑

k=0

ba,cn,k(x)
∫

|t−x|≥δ

b0,cn,k(t)t
γ dt

∥
∥∥∥ ≤ M ′n−m,

where ‖.‖ is the sup-norm over [c, d].
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Lemma 4 For each x ∈ (0,∞) and r ∈ N0, there exist polynomials qi,j,r(x) in x
independent of n and k such that

dr

dxr
ba,cn,k(x) = ba,cn,k(x)

∑

2i+j≤r
i,j≥0

ni(k − nx)j
qi,j,r(x)

(p(x))r
,

where p(x) = x(1 + cx)2.

The proof of this lemma follows using the lines of [18].

3 Simultaneous Approximation

We consider the following space of functions defined as

Cγ [0,∞) = {f ∈ C[0,∞) : |f (t)| ≤ Ctγ , for some γ > 0, t ∈ [0,∞)},

it is observed that the operators Da,c
n (f , x) are well defined for a, c ≥ 0.

Theorem 1 Let f ∈ Cγ [0,∞). If f (r) exists at a point x ∈ (0,∞), then we have

lim
n→∞

(
dr

dwr
Da,c

n (f ,w)

)

w=x

= f (r)(x). (2)

Further, if f (r) is continuous on (c − η, d + η), η > 0, then the limit in (2) holds
uniformly in [c, d].
Proof Using Taylor’s formula, we can write

f (t) =
r∑

i=0

f (i)(x)

i! (t − x)i + ψ(t, x)(t − x)r, t ∈ [0,∞), (3)

where ψ(t, x) → 0 as t → x. Applying (3) to the operator, we have

(
dr

dwr D
a,c
n (f (t),w)

)

w=x
=

r∑

i=0

f (i)(x)

i!
(

dr

dwr D
a,c
n ((t − x)i,w)

)

w=x
+

(
dr

dwr D
a,c
n (ψ(t, x)(t − x)r ,w)

)

w=x

:= I1 + I2.

First

I1 =
r∑

i=0

f (i)(x)

i!
{

dr

dwr

( i∑

v=0

(
i

v

)
(−x)i−vDa,c

n (tv,w)

)}

w=x

=
r∑

i=0

f (i)(x)

i!
i∑

v=0

(
i

v

)
(−x)i−v

(
dr

dwr D
a,c
n (tv,w)

)

w=x
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=
r−1∑

i=0

f (i)(x)

i!
i∑

v=0

(
i

v

)
(−x)i−v

(
dr

dwr D
a,c
n (tv,w)

)

w=x
+ f (r)(x)

r!
r∑

v=0

(
r

v

)
(−x)r−v

(
dr

dwr D
a,c
n (tv,w)

)

w=x

:= I3 + I4.

Now, we may write

I4 = f (r)(x)

r!
r−1∑

v=0

(
r

v

)
(−x)r−v

(
dr

dwr D
a,c
n (tv,w)

)

w=x
+ f (r)(x)

r!
(

dr

dwr D
a,c
n (tr ,w)

)

w=x

:= I5 + I6.

Making use of Remark 1 (iii), we obtain

I6 = f (r)(x) + O

(
1

n

)
, I3 = O

(
1

n

)
and I5 = O

(
1

n

)
, as n → ∞.

From the above estimates, for each x ∈ (0,∞) we have I1 → f (r)(x) as n → ∞.
In view of Lemma 4, we have

|I2| ≤ (n − c)
∞∑

k=0

∑

2i+j≤r
i,j≥0

ni|k − nx|j |qi,j,r(x)|
(p(x))r

ba,cn,k(x)
∫ ∞
0

b0,cn,k(t)ψ(t, x)|t − x|rdt (4)

Since ψ(t, x) → 0 as t → x, for a given ε > 0 there exists a δ > 0 such that
|ψ(t, x)| < ε whenever |t − x| < δ. For |t − x| ≥ δ, we have |(t − x)rψ(t, x)| ≤
Mtγ , for someM > 0. Thus, from Eq. (4) we may write

|I2| ≤ (n − c)
∞∑

k=0

∑

2i+j≤r
i,j≥0

ni|k − nx|j |qi,j,r(x)|
(p(x))r

ba,cn,k(x)

(
ε

∫

|t−x|<δ

b0,cn,k(t)|t − x|rdt

+M
∫

|t−x|≥δ

b0,cn,k(t)t
γ dt

)

:= J1 + J2.

Let K = sup
2i+j≤r
i,j≥0

|qi,j,r(x)|
(p(x))r

.

Using Schwarz inequality and Corollary 1, we have

J1 = (n − c)ε K
∞∑

k=0

∑

2i+j≤r
i,j≥0

ni|k − nx|jba,cn,k(x)

( ∫ ∞

0
b0,cn,k(t)dt

)1/2

( ∫ ∞

0
b0,cn,k(t)|t − x|2rdt

)1/2
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≤ ε K
∑

2i+j≤r
i,j≥0

ni+j

( ∞∑

k=0

ba,cn,k(x)

(
k

n
− x

)2j)1/2

(
Da,c

n (t − x)2r, x

)1/2

= ε
∑

2i+j≤r
i,j≥0

ni+j

{
O

(
1

nj

)
+ O

(
1

ns

)}1/2

×
{
O

(
1

nr

)
+ O

(
1

np

)}1/2

for any s, p > 0.

Choosing s and p such that s > j, and p > r

J1 ≤ ε
∑

2i+j≤r
i,j≥0

ni+jO

(
1

nj/2

)
O

(
1

nr/2

)
= ε.O(1).

Since ε > 0 is arbitrary, J1 → 0 as n → ∞.

Again, using Schwarz inequality, Lemma 1 and Corollary 2, we obtain

J2 ≤ (n − c)M1
∑

2i+j≤r
i,j≥0

ni+j
( ∞∑

k=0

(
k

n
− x

)2j
ba,cn,k(x)

)1/2

(
(n − c)

∞∑

k=0

ba,cn,k(x)
∫

|t−x|≥δ
b0,cn,k(t)t

2γ dt

)1/2

≤ M1
∑

2i+j≤r
i,j≥0

ni+j
{
O

(
1

nj

)
+ O

(
1

np

)}1/2{
O

(
1

nm

)}1/2
for any p > 0.

Choosing p such that p > j

J2 ≤ M1

∑

2i+j≤r
i,j≥0

ni+jO

(
1

nj/2

)
O

(
1

nm/2

)

= M1O

(
1

n(m−r)/2

)

which implies that J2 → 0, as n → ∞ choosing m > r.

Thus, from the estimates of I1 and I2, the required result follows.
To prove the uniformity assertion, it is sufficient to remark that δ(ε) in the above
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proof can be chosen to be independent of x ∈ [c, d] and also that the other estimates
hold uniformity in x ∈ [c, d]. This completes the proof.

Next, we establish a Voronovskaja type asymptotic formula in simultaneous
approximation.

Theorem 2 (Voronovskaja type result) Let f ∈ Cγ [0,∞). If f (r) exists at a point
x ∈ (0,∞), then we have

lim
n→∞ n

((
dr

dwr
Da,c

n (f ,w)

)

w=x

− f (r)(x)

)
=

r+2∑

v=1

Q(v, r, a, c, x)f (v)(x), (5)

where Q(v, r, a, c, x) are certain rational functions of x depending on the parameter
a.

Further, if f (r+2) is continuous on (c − η, d + η), η > 0, then the limit in (5) holds
uniformly in [c, d].
Proof From the Taylor’s theorem, we may write

f (t) =
r+2∑

v=0

f (v)(x)

v! (t − x)v + ψ(t, x)(t − x)r+2, t ∈ [0,∞), (6)

where the function ψ(t, x) → 0 as t → x. From equation (6), we obtain

(
dr

dwr
Da,c

n (f (t),w)

)

w=x

=
r+2∑

v=0

f (v)(x)

v!
(

dr

dwr
Da,c

n ((t − x)v,w)

)

w=x

+
(

dr

dwr
Da,c

n (ψ(t, x)(t − x)r+2,w)

)

w=x

=
r+2∑

v=0

f (v)(x)

v!
v∑

j=0

(
v

j

)
(−x)v−j

(
dr

dwr
Da,c

n (tj,w)

)

w=x

+
(

dr

dwr
Da,c

n (ψ(t, x)(t − x)r+2,w)

)

w=x

:= I1 + I2. (7)

Proceeding along the lines of the estimate of I2 of Theorem 1, it follows that for each
x ∈ (0,∞)

lim
n→∞ n

(
d

dw
(Da,c

n (ψ(t, x)(t − x)r+2,w)

)

w=x

= 0.
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Now, we estimate I1.

I1 =
r−1∑

v=0

f (v)(x)

v!
v∑

j=0

(
v

j

)
(−x)v−j

(
dr

dwr
Da,c
n (tj,w)

)

w=x
+ f (r)(x)

r!
r∑

j=0

(
r

j

)
(−x)r−j

(
dr

dwr
Da,c
n (tj,w)

)

w=x

+ f (r+1)(x)

(r + 1)!
r+1∑

j=0

(
r + 1

j

)
(−x)r+1−j

(
dr

dwr
Da,c
n (tj,w)

)

w=x

+ f (r+2)(x)

(r + 2)!
r+2∑

j=0

(
r + 2

j

)
(−x)r+2−j

(
dr

dwr
Da,c
n (tj,w)

)

w=x
.

(8)

In view of Remark 1 (3), we have

I1 =
r−1∑

v=1

f (v)(x)O

(
1

n

)
+ f (r)(x)

(
1 + O

(
1

n

))
+ f (r+1)(x)O

(
1

n

)

+ f (r+2)(x)O

(
1

n

)

= f (r)(x) + n−1
( r+2∑

v=1

Q(v, r, a, c, x)f (v)(x) + o(1)

)
.

Combining the estimates of I1 and I2, we get the required result.
The uniformity assertion follows as in proof of Theorem 1. Hence the proof is com-
pleted. �

Corollary 3 Let f ∈ Cγ [0,∞) for some γ > 0. If f ′′ exists at a point x ∈ [0,∞)

then, we have

lim
n→∞ n(Da,c

n (f , x) − f (x)) =
[

acx

1 + cx
+ (1 + 2cx)

]
f ′(x) + x(1 + cx)f ′′(x).

Proof From the Taylor’s theorem, we may write

f (t) = f (x) + (t − x)f ′(x) + 1

2
f ′′(x)(t − x)2 + ψ(t, x)(t − x)2, t ∈ [0,∞)

(9)

where the function ψ(t, x) → 0 as t → x.
Applying Da,c

n (., x) and taking the limit as n → ∞ on both sides of (9), we have

lim
n→∞ n(Da,c

n (f , x) − f (x)) = lim
n→∞ nDa,c

n ((t − x), x)f ′(x) + f ′′(x)
2

lim
n→∞ nDa,c

n ((t − x)2, x)

+ lim
n→∞ nDa,c

n (ψ(t, x)(t − x)2, x).
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In view of Corollary 1, we get

lim
n→∞ nDa,c

n ((t − x), x) = acx

1 + cx
+ (1 + 2cx) (10)

and

lim
n→∞ nDa,c

n ((t − x)2, x) = 2x(1 + cx). (11)

Now, we prove that nDa,c
n (ψ(t, x)(t − x)2, x) → 0, as n → ∞. From the Cauchy–

Schwarz inequality, we have

Da,c
n (ψ(t, x)(t − x)2, x) ≤

√
Da,c

n (ψ2(t, x), x)
√
Da,c

n ((t − x)4, x). (12)

Sinceψ(t, x) → 0 as t → x, for a given ε > 0 there exists δ > 0 such that |ψ(t, x)| <

ε whenever |t − x| < δ. For |t − x| ≥ δ, there existsM1 such that |ψ(t, x)| ≤ M1tγ .

Let χδ(t) denote the characteristic function of (x − δ, x + δ). Then

Da,c
n (ψ2(t, x), x) ≤ Da,c

n (ψ2(t, x)χδ(t), x, c) + Da,c
n (ψ2(t, x)(1 − χδ(t)), x, c)

≤ ε2Da,c
n (1, x) + M2

1D
a,c
n (t2γ (1 − χδ(t)), x)

≤ ε2 + M2n
−m,

in view of Corollary 2.
Hence, we have

lim
n→∞Da,c

n (ψ2(t, x), x) = 0. (13)

Further from Corollary 1,

Da,c
n ((t − x)4, x) = O(n−2), (14)

which is a finite quantity for each fixed x ∈ [0,∞) thus from (12) to (14), we get

lim
n→∞ nDa,c

n

(
ψ(t, x)(t − x)2, x

)
= 0. (15)

Combining (10), (11) and (15), we obtain the desired result. �

Next, we prove Voronovskaja type asymptotic formula for

(
d
dω
Da,c

n (f , ω, c)

)

ω=x

.

Corollary 4 Let f ∈ Cγ [0,∞) admitting the derivative of third order at a fixed point
x ∈ (0,∞), we have
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lim
n→∞ n

((
d

dw
Da,c
n (f ,w)

)

w=x
− f ′(x)

)
=

(
2c + ac

(1 + cx)2

)
f ′(x)

+
(
4cx + 2 + acx + ac2x2

(1 + cx)2

)
f ′′(x)

+ 1

3!
(
6x(1 + cx) + 15acx2 + 6ac2x3

(1 + cx)2

)
f ′′′(x).

Proof From the Taylor’s theorem, we may write

f (t) =
3∑

k=0

(t − x)k

k! f (k)(x) + ψ(t, x)(t − x)3, t ∈ [0,∞), (16)

where lim
t→x

ψ(t, x) = 0.

From Eq. (16), we obtain

(
d

dω
Da,c
n (f (t), ω)

)

ω=x
= f ′(x)

(
d

dω
(Da,c

n (t, ω) − x)

)

ω=x

+ f ′′(x)
2

(
d

dω
(Da,c

n (t2, ω) − 2xDa,c
n (t, ω) + x2)

)

ω=x

+ f ′′′(x)
3!

(
d

dω
(Da,c

n (t3, ω) − 3xDa,c
n (t2, ω) + 3x2Da,c

n (t, ω) − x3)

)

ω=x

+
(

d

dω
(Da,c

n (ψ(t, x)(t − x)3, ω)

)

ω=x
.

Using Lemma 2, we get
(

d

dω
Da,c
n (f (t), ω, c)

)

ω=x
= f ′(x)

{
1 + ac

(n − 2c)(1 + cx)2
+ 2c

n − 2c

}

+ f ′′(x)
2

{
12c(n − c)x + 4n

(n − 2c)(n − 3c)
+ 4ac + 2acnx + 2ac2nx2 + 6ac2x

(n − 2c)(n − 3c)(1 + cx)2

+ 2(x + cx2)a2c2

(n − 2c)(n − 3c)(1 + cx)4
− 4cx

n − 2c

}

+ f ′′′(x)
3!

{
36c(n2 − 2n + 2c2)x2 + 18n(n + c)x + 18n

(n − 2c)(n − 3c)(n − 4c)

+ 3acn(n + c)(3x2 + 2cx3) + 18acn + 18acn(2x + cx2)

(n − 2c)(n − 3c)(n − 4c)(1 + cx)2

+ 6a2c2n(x + x2) + 3a2c2n(3x2 + c2x4 + 4cx3) + 3a3c3x2

(n − 2c)(n − 3c)(n − 4c)(1 + cx)4

− 36c(n − c)x2 + 12nx

(n − 2c)(n − 3c)
− 12acx + 6acn(2x2 + cx3)

(n − 2c)(n − 3c)(1 + cx)2

− 6(x2 + cx3)a2c2

(n − 2c)(n − 3c)(1 + cx)4
+ 3acx2

(n − 2c)(1 + cx)2
+ 6cx2

n − 2c

}

+
(

d

dω
(Da,c

n (ψ(t, x)(t − x)3, ω, c)

)

ω=x
.
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Taking limit as n → ∞ on both sides of the above equation, we have

lim
n→∞ n

((
d

dω
Da,c
n (f , ω, c)

)

ω=x
− f ′(x)

)
= f ′(x)

(
2c + ac

(1 + cx)2

)

+ f ′′(x)
(
4cx + 2 + acx + ac2x2

(1 + cx)2

)

+ f ′′′(x)
3!

(
6x + 6cx2 + 15acx2 + 6ac2x3

(1 + cx)2

)

+ lim
n→∞ n

(
d

dω
(Da,c

n (ψ(t, x)(t − x)3, ω, c)

)

ω=x
.

Proceeding in the same manner as in Corollary 3, we can easily show that

lim
n→∞ n

(
d

dω
(Da,c

n (ψ(t, x)(t − x)3, ω)

)

ω=x

= 0,

since lim
n→∞ n3(Da,c

n (t − x)6, x) is finite for each x ∈ [0,∞) in view of Lemma 3. Thus,

the proof is completed.
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Mechanochemical Corrosion: Modeling
and Analytical Benchmarks for Initial
Boundary Value Problems with Unknown
Boundaries

Yulia Pronina

Abstract In this paper various corrosion models are considered. Difficulties of the
modeling of stress corrosion of constructional elements and the need for developing
closed-form solutions are highlighted. A new analytical solution is presented for the
plane problem of the mechanochemical corrosion of an elastic plate with an elliptical
hole under uniform remote tension. The rate of corrosion is supposed to be linear
with the maximum principal stress at a corresponding point on the hole surface.
The solution obtained can serve for the study of the mechanochemical effect on the
corrosion damage propagation. It is proved that the stress concentration factor at a
noncircular hole can either increase or decrease, or stay invariant during the corrosion
process, depending on the relationship between the corrosion kinetics constants and
applied stress.

Keywords Mechanochemical corrosion · General corrosion · Corrosion kinetics ·
Pitting · Lifetime · Analytical solution

1 Mechanochemical Corrosion Models

“The problems of corrosion are universal, but the control measures are not,”
N. Sethurathinam, Executive Director, (Refineries Division), Indian Oil Corporation,
said [14]. For example in India, the annual loss due to corrosion has been estimated
at about 4 per cent of the country’s Gross Domestic Product [14]. Corrosion is a
natural phenomenon defined as the deterioration of a material or its properties due
to an interaction with its environment. Corrosion can cause not only expensive but
also extremely dangerous damage of constructions from underground pipelines to
aircraft fuselages.
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Most structures are exploited being subjected to both mechanical loads and oper-
ating environments. The combined action of mechanical loads and chemically active
media has been the subject of study for more than 100 years. It was observed that
such conditions may activate the process of so-called stress corrosion, which is more
severe than the simple superposition of damages induced by stresses and electro-
chemical corrosion acting separately [17, 23, 27]. With regard to general corrosion
facilitated by stress, the term “mechanochemical corrosion” was introduced [8, 9].
According to E.M.Gutman, corrosionmay often be considered as uniform in the case
of elastic deformation. In plastic region, significant electrochemical heterogeneity of
the surface may be developed; therefore, the term “mechanochemical corrosion” is
not always applicable. General wear can occur both under the formation of a closed
protective coating, and in the absence of oxide or biofilms. The formation of a pas-
sive film, shift in solution pH, and the change in concentration of reactants can show
inhibiting effects, when the corrosion rate can be supposed to follow an exponential
decay with time [18, 26].

There exists a number of different approaches to the problems of stress corrosion,
based on physical and chemicalmechanics ofmaterials, thermodynamics, continuum
mechanics, and fracture mechanics. E.M. Gutman proposed an exponential depen-
dence of the rate of the anodic dissolution of deformed metal on the stress value. On
the basis of his theory several elegant mathematical models of the corrosion of pipe
elements were developed [1, 9, 10]. The theory of the mechanochemical effect of
dissolution in terms of the chemical affinitywas formulated byA.I. Rusanov.Accord-
ing to his work [23], dissolution rate is a quadratic function of strain-components.
The case of dissolution/evaporation of a bent plate was examined in details theoret-
ically and experimentally; the effect of the strain sign observed in the experiments
was explained by the existence of surface tension [23]. Interesting discussion of the
mentioned results is available in literature. Based on the concept of chemical affin-
ity tensor, the authors of [5–7] studied the kinetics of the stress-assisted chemical
reaction sustained by the diffusion of gas through an elastic solid. Some spherically
symmetric problemswere solved there. The effect of the sign and value of the reaction
front curvature were also examined.

Note that due to the highly complex structure of metals and alloys [26], devel-
opment of a thermodynamic model that takes into account all the details of their
structure and competing processes, seems to be very difficult to realize. Thus, we
have to rely on experimental results. A lot of experimental data demonstrated a lin-
ear dependence of the metal corrosion rate on the effective stress [18]. Beginning
with the pioneering work by V.M. Dolinskii [3], this dependence is often used for
engineering calculations [10, 11, 16, 19].

When corrosion rates depend on stresses, and stresses, in turn, depend on changing
(due to corrosion) geometry of an element, one has to solve an initial boundary value
problem with unknown boundaries. Such problems are mostly studied by numerical
methods. However, several analytical solutions have been found for the uniform
mechanochemical dissolution of structural elements, e.g., by the authors of [1, 3, 4,
9, 11, 16, 25].
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For example, consider the system of equations for the problem of the double-sided
mechanochemical corrosion of an elastic thick-walled spherical vessel under internal
pr and external pR pressure [25]. The inner r and outer R radii of the sphere change
with time t because of corrosion. The corrosion velocities on the inside and outside,
denoted by vr and vR, respectively, can be approximated by the expressions [18]:

vr = dr

dt
= v0

r exp (−bt) at |σ1(r)| ≤ ∣∣σ th
r

∣∣ , (1)

vR = −dR

dt
= v0

R exp (−bt) at |σ1(R)| ≤ ∣∣σ th
R

∣∣ , (2)

and

vr = dr

dt
= [ar + mrσ1(r)] exp (−bt) at |σ1(r)| ≥ ∣∣σ th

r

∣∣ , (3)

vR = −dR

dt
= [aR + mRσ1(R)] exp (−bt) at |σ1(R)| ≥ ∣∣σ th

R

∣∣ . (4)

Here, b, v0
r , v0

R, mr , mR, σ th
r , and σ th

R are experimentally determined constants;
ar = v0

r − mrσ
th
r ; aR = v0

R − mRσ th
R ; σ th

r and σ th
R are threshold stresses; σ1 is the

maximum principal stress on the relevant surface:

σ1(r) = prr3 − pR R3

R3 − r3
+ (pr − pR)R3

2
(
R3 − r3

) , (5)

σ1(R) = prr3 − pR R3

R3 − r3
+ (pr − pR)r3

2
(
R3 − r3

) . (6)

As one can see, these stress components increase (in absolute value) with time due
to the change in the radii r and R and accelerate corrosion process more and more.
Thus, we have to solve simultaneous equations (1)–(6). Analytical solution to this
problem is presented in [25].

Numerical investigation of the problems with unknown changing boundaries
requires high qualification. Unfortunately, using finite element software even for
static problems not always leads to appropriate results. In such situations, analytical
solutions can serve as benchmarks for numerical analysis and can help to identify
the role of mechanochemical effect in damage propagation observed in specimens
under study.

In practice, structural elements are often designed to have supplementary thick-
ness as a corrosion allowance that can increase to a considerable amount of addi-
tional metal. However, these calculations are not wholly adequate and can lead to
a substantial cost increase [2]. Using the models with reduced thickness for the
strength calculation of solids with nonuniform damages can also lead to significant
errors [24].
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2 Problem of the Mechanochemical Corrosion of a Plate
with an Elliptical Hole

Previously obtained solutions (e.g., [20–22]) for the mechanochemical corrosion of
elastic or elastic–plastic thick-walled cylinders and spheres can be applied to the
problems of corrosion of a large enough solid with a small cylindrical or spheri-
cal cavity under uniform tension or compression. However, those solutions do not
allow to observe the change in the shape of the cavity. In the framework of the the-
ory involved, the hole remains circular during the corrosion process. Nevertheless,
the results presented below demonstrate that even a nearly circular hole can grow
nonuniformly under uniform remote tension.

2.1 Problem Formulation

Consider the first fundamental problem for a linearly elastic, isotropic infinite plane
S bounded by an elliptic contour L with the semi-axes A and B (A ≥ B). The plane
is supposed to be subjected to remote uniform tension p. The cavity surface is stress
free and exposed to mechanochemical corrosion defined as material dissolution. In
this case the hole, associated with the contour L , grows with time t . Let A0 and B0

be the semi-axes of the ellipse L at the initial moment t = 0. According to [18], the
rate of corrosion, v, is linear with the maximum principal stress at corresponding
points on the surface:

v(s) = dδ(s)

dt
= a + m σ(s), s ∈ L(t), (7)

where a and m are empirically determined constants of corrosion kinetics; dδ is an
increment (due to material dissolution) of the hole size in the direction of the normal
to its contour L .

It is required to track the change of the hole geometry with time.

2.2 Problem Solution

Stress distribution on the elliptic contour L in the plane S under remote tension have
been found in [15] by the use of the transformation of the region S on to the infinite
plane with a circular hole, |ζ | > 1. The relevant transformation is

z = R

(
ζ + M

ζ

)
, R > 0, 0 ≤ M < 1, (8)
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where z = x + iy and ζ = ρeiθ . The ellipse L (with the center at the origin of
the coordinate system 0xy) is then mapped on to the circle |ζ | = 1, so that A =
R(1 + M) and B = R(1 − M). Corresponding stress components on the contour
|ζ | = ρ = 1 are

σθθ (θ) = 2p
1 − M2

1 − 2M cos 2θ + M2
, σρθ (θ) = σρρ(θ) = 0. (9)

According to some experimental data, we can assume that the hole remains ellip-
tical during the corrosion process. Then, Eqs. (8) and (9) should hold true at any t
for A and B (and consequently, R and M) growing with time.

Therefore, we have to solve simultaneous equations (7)–(9) at θ = 0 and θ = π/2,
where the values of σ(0), σ(π/2), A, and B change synergetically. Solution of this
problem can be expressed in an implicit form through a new variable η = A/B:

t = − B0

a − 2pm

(
(η0 − 1)a+2pm

η
2pm
0

)1/(a−2pm) η∫

η0

(
η2pm

(η − 1)2a

)1/(a−2pm)

dη, (10)

where η0 = A0/B0.

Equation (10) gives a point-to-point correspondence between t and η. For every
η we can then find

B = B0

(
η2pm (η0 − 1)a+2pm

η
2pm
0 (η − 1)a+2pm

)1/(a−2pm)

(11)

and
A = ηB. (12)

Thus, we obtain a one-to-one relationship between t , A, and B.
If A0 = B0 = R0, then the shape of the hole remains circular for the corrosion

process and its radius R grows with the constant rate

dR

dt
= a + 2pm (13)

for any values R0, a,m, and p. Therefore,

R = R0 + (a + 2pm) t. (14)
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2.3 Calculation Results

The evolution of the hole under corrosion condition can be quite different depending
on the relationship between the corrosion kinetics constants a and m, the traction
value p, and the initial axes ratio A0/B0.

When the mechanochemical effect is weak enough as compared to the constant
rate component a, the hole grows almost uniformly. Limiting case of the constant rate
corrosion—when m = 0 and a = 0.2(lc/tc)—is demonstrated in Fig. 1 for the holes
with the initial semi-axes A0 = 1.25(lc), B0 = 1(lc) (dashed lines) and A0 = 3(lc),
B0 = 1(lc) (solid lines). Gradually increasing contours of both the holes correspond
to the times t = 0; 0.56; 1.25; 2.14; 3.33; and 5(tc), respectively.

Here and below, lc, tc, and pc are appropriate units of length, time, and stress,
respectively.

Another limiting case of the pure mechanochemical corrosion—when m =
0.008(lc/[tc pc]) and a = 0—is shown in Fig. 2 for the holes with the same as above
initial semi-axes A0 = 1.25(lc), B0 = 1(lc) (dashed lines) and A0 = 3(lc), B0 =
1(lc) (solid lines). Gradually increasing contours of the first hole (dashed lines) cor-
respond to the times t = 0; 3.29; 6.27; 8.99; 11.49; and 13.81(tc). Growing con-
tours of the second hole (solid lines) correspond to t = 0; 0.99; 1.88; 2.70; 3.45;
and 4.14(tc). The graph is built for p = 10(pc).

It was proved that when the mechanochemical effect is weak (a > 2mp), the
ratio η = A/B decreases with time, tending to unity. For example, for the cases
demonstrated in Fig. 1, the ratio η is equal to 1.25; 1.225; 1.2; 1.175; 1.15; and
1.125 (for the gradually increasing dashed contours) and 3; 2.8; 2.6; 2.4; 2.2; and
2 (for the gradually increasing solid contours), respectively. Therefore, the stress
concentration factor near the hole decreases as well and approaches 2. In this case
the durability of the plate is not reduced.

Fig. 1 Gradually growing
contours of the holes with
A0 = 1.25, B0 = 1 (dashed
lines) and A0 = 3, B0 = 1
(solid lines) corresponding to
the times t =
0; 0.56; 1.25; 2.14; 3.33;
and 5. The case of constant
rate corrosion
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Fig. 2 Gradually increasing
contours of the hole with
A0 = 1.25, B0 = 1 (dashed
lines) corresponding to the
times t =
0; 3.29; 6.27; 8.99; 11.49;
and 13.81 and of the hole
with A0 = 3, B0 = 1 (solid
lines) corresponding to the
times t =
0; 0.99; 1.88; 2.70; 3.45;
and 4.14. The case of pure
mechanochemical corrosion
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When the mechanochemical effect takes place at a < 2mp, the ratio η grows.
This fact must be borne in mind when using Eq. (10) to plot the dependencies t (η).
For the cases demonstrated in Fig. 2, the ratio η is equal to 1.25; 1.39; 1.53; 1.67;
1.81; and 1.94 (for the gradually increasing dashed contours) and 3; 3.(3); 3.(6);
4; 4.(3); and 4.(6) (for the gradually increasing solid contours), respectively. It is
seen that the greater the initial aspect ratio η0 is, the faster η grows. Moreover, the
corrosion in the direction of A-axis is accelerated with time. Therefore, the stress
concentration factor increases and the durability of the plane decreases. In this case
the lifetime of the plane can be determined by formula (10) with a certain critical
value η∗ (corresponding to a strength limit) for η.

If A0 = B0 = R0, then the stress concentration factor is equal to 2 at any t and
for any values R0, a,m, and p and there is no need to use Eqs. (10)–(12) for life-
time assessment. Despite the mechanochemical effect, the rate of corrosion remains
constant for the corrosion process (see Eqs. (13)–(14)).

3 Conclusion

All the discussed analytical solutions can serve as benchmarks for numerical analysis
implemented by the use of an appropriate corrosion rate model. Moreover, they can
help to identify the role of mechanochemical effect in damage propagation observed
in experiments.

The analytical results proposed here show that the stress concentration factor at a
noncircular hole can either increase or decrease, or stay invariant during the corrosion
process, depending on the relationship between the corrosion kinetics constants and
applied stress.
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I would like to note that in addition to the developing numerical methods and
computational techniques it is reasonable to create a single integrated data bank of
closed-form solutions for various initial/boundary value problems. That would be a
powerful aid for solving applied problems worldwide.
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