Skip to main content

Resource Allocation in Spectrum-Sharing Cognitive Heterogeneous Networks

  • Living reference work entry
  • First Online:
Handbook of Cognitive Radio

Abstract

Cognitive radio-enabled heterogeneous networks are an emerging technology to address the exponential increase of mobile traffic demand in the next-generation mobile communications. Recently, many technological issues such as resource allocation and interference mitigation pertaining to cognitive heterogeneous networks have been studied, but most studies focus on maximizing spectral efficiency. This chapter introduces the resource allocation problem in cognitive heterogeneous networks, where the cross-tier interference mitigation, imperfect spectrum sensing, and energy efficiency are considered. The optimization of power allocation is formulated as a non-convex optimization problem, which is then transformed to a convex optimization problem. An iterative power control algorithm is developed by considering imperfect spectrum sensing, cross-tier interference mitigation, and energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang H, Chu X, Guo W, Wang S (2015) Coexistence of Wi-Fi and heterogeneous small cell networks sharing unlicensed spectrum. IEEE Commun Mag 22(3):92–99

    Google Scholar 

  2. Samarakoon S, Bennis M, Saad W, Debbah M, Latva-aho M (2016) Ultra dense small cell networks: turning density into energy efficiency. IEEE J Sel Areas Commun 34(5):1267–1280

    Article  Google Scholar 

  3. Zhang H, Dong Y, Cheng J, Hossain Md J, Leung VCM (2016) Fronthauling for 5G LTE-U ultra dense cloud small cell networks. IEEE Wirel Commun 23(6):48–53

    Article  Google Scholar 

  4. Bennis M, Simsek M, Czylwik A, Saad W, Valentin S, Debbah M (2013) When cellular meets WiFi in wireless small cell networks. IEEE Commun Mag 51(6):44–50

    Article  Google Scholar 

  5. Zhang H, Jiang C, Beaulieu NC, Chu X, Wen X, Tao M (2014) Resource allocation in spectrum-sharing OFDMA femtocells with heterogeneous services. IEEE Trans Commun 62(7):2366–2377

    Article  Google Scholar 

  6. Bennis M, Perlaza SM, Blasco P, Han Z, Poor HV (2013) Self-organization in small cell networks: a reinforcement learning approach. IEEE Trans Commun 12(7):3202–3212

    Google Scholar 

  7. Zhang H, Jiang C, Beaulieu NC, Chu X, Wang X, Quek T (2015) Resource allocation for cognitive small cell networks: a cooperative bargaining game theoretic approach. IEEE Trans Wirel Commun 14(6):3481–3493

    Article  Google Scholar 

  8. Hong X, Wang J, Wang C, Shi J (2014) Cognitive radio in 5G: a perspective on energy-spectral efficiency trade-off. IEEE Commun Mag 52(7):46–53

    Article  Google Scholar 

  9. Huang L, Zhu G, Du X (2013) Cognitive femtocell networks: an opportunistic spectrum access for future indoor wireless coverage. IEEE Wirel Commun 20(2):44–51

    Article  Google Scholar 

  10. Chen X, Zhao Z, Zhang H (2013) Stochastic power adaptation with multiagent reinforcement learning for cognitive wireless mesh networks. IEEE Trans Mob Comput 12(11):2155–2166

    Article  Google Scholar 

  11. Wang W, Yu G, Huang A (2013) Cognitive radio enhanced interference coordination for femtocell networks. IEEE Commun Mag 51(6):37–43

    Article  Google Scholar 

  12. Hu D, Mao S (2012) On medium grain scalable video streaming over femtocell cognitive radio networks. IEEE J Sel Areas Commun 30(3):641–651

    Article  Google Scholar 

  13. Urgaonkar R, Neely MJ (2012) Opportunistic cooperation in cognitive femtocell networks. IEEE J Sel Areas Commun 30(3):607–616

    Article  Google Scholar 

  14. Cheng S, Ao W, Tseng F, Chen K (2012) Design and analysis of downlink spectrum sharing in two-tier cognitive femto networks. IEEE Trans Veh Technol 61(5):2194–2207

    Article  Google Scholar 

  15. Wang X, Ho P, Chen K (2012) Interference analysis and mitigation for cognitive-empowered femtocells through stochastic dual control. IEEE Trans Wirel Commun 11(6):2065–2075

    Article  Google Scholar 

  16. Xie R, Yu FR, Ji H, Li Y (2012) Energy-efficient resource allocation for heterogeneous cognitive radio networks with femtocells. IEEE Trans Wirel Commun 11(11):3910–3920

    Article  Google Scholar 

  17. Le L, Niyato D, Hossain E, Kim DI, Hoang DT (2013) QoS-aware and energy-efficient resource management in OFDMA femtocells. IEEE Trans Wirel Commun 12(1):180–194

    Article  Google Scholar 

  18. Zhang H, Jiang C, Mao X, Chen H (2016) Interference-limit resource allocation in cognitive femtocells with fairness and imperfect spectrum sensing, accepted. IEEE Trans Veh Technol 65(3):1761–1771

    Article  Google Scholar 

  19. Zhang H, Nie Y, Cheng J, Leung VCM, Nallanathan A (2017) Sensing time optimization and power control for energy efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Trans Wirel Commun 16(2):730–743

    Article  Google Scholar 

  20. Liang Y, Zeng Y, Peh ECY, Hoang A (2008) Sensing-throughput tradeoff for cognitive radio networks. IEEE Trans Wirel Commun 7(4):1326–1337

    Article  Google Scholar 

  21. Ng DWK, Lo ES, Schober R (2012) Energy-efficient resource allocation in multi-cell OFDMA systems with limited backhaul capacity. IEEE Trans Wirel Commun 11(10):3618–3631

    Article  Google Scholar 

  22. Xiong C, Li GY, Liu Y, Chen Y, Xu S (2013) Energy-efficient design for downlink OFDMA with delay-sensitive traffic. IEEE Trans Wirel Commun 12(6):3085–3095

    Article  Google Scholar 

  23. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  24. Chen Y, Zhao Q, Swami A (2008) Joint design and separation principle for opportunistic spectrum access in the presence of sensing errors. IEEE Trans Inf Theory 54(5):2053–2071

    Article  MathSciNet  MATH  Google Scholar 

  25. Jiang C, Chen Y, Gao Y, Liu KJR (2013) Joint spectrum sensing and access evolutionary game in cognitive radio networks. IEEE Trans Wirel Commun 12(5):2470–2483

    Article  Google Scholar 

  26. Xie R, Yu FR, Ji H (2012) Dynamic resource allocation for heterogeneous services in cognitive radio networks with imperfect channel sensing. IEEE Trans Veh Technol 61(2):770–780

    Article  Google Scholar 

  27. Almalfouh SM, Stuber GL (2011) Interference-aware radio resource allocation in OFDMA-based cognitive radio networks. IEEE Trans Veh Technol 60(4):1699–1713

    Article  Google Scholar 

  28. Wong CY, Cheng R, Lataief K, Murch R (1999) Multiuser OFDM with adaptive subcarrier, bit, and power allocation. IEEE J Sel Areas Commun 17(10):1747–1758

    Article  Google Scholar 

  29. Kang X, Zhang R, Motani M (2012) Price-based resource allocation for spectrum-sharing femtocell networks: a stackelberg game approach. IEEE J Sel Areas Commun 30(3):538–549

    Article  Google Scholar 

  30. Son K, Lee S, Yi Y, Chong S (2011) Refim: a practical interference management in heterogeneous wireless access networks. IEEE J Sel Areas Commun 29(6):1260–1272

    Article  Google Scholar 

  31. Shen Z, Andrews JG, Evans BL (2005) Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints. IEEE Trans Wirel Commun 4(6):2726–2737

    Article  Google Scholar 

  32. Further advancements for E-UTRA, physical layer aspects, 3GPP Std. TR 36.814 v9.0.0, 2010

    Google Scholar 

  33. Tao M, Liang Y-C, Zhang F (2008) Resource allocation for delay differentiated traffic in multiuser OFDM systems. IEEE Trans Wirel Commun 7(6):2190–2201

    Article  Google Scholar 

Further Reading

  1. Hsiung CY, Mao GY (1998) Linear algebra. Allied Publishers

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Zhang .

Editor information

Editors and Affiliations

Section Editor information

Appendix

Appendix

The proof of Theorem 1.

Proof.

(1) Suppose that \(\eta {_{13,n}}^{{\ast}}\) is the optimal solution of (22), the inequality can be obtained

$$\displaystyle{ \begin{array}{l} \eta _{13,n}^{{\ast}} = \dfrac{P(\mathcal{H}_{n}^{v})(1 - q_{n}^{f}(\varepsilon _{n},\hat{\tau }))R_{1,n}(\hat{\tau },\tilde{P}_{s,n}^{v}) + P(\mathcal{H}_{n}^{o})q_{n}^{m}(\varepsilon _{n},\hat{\tau })R_{3,n}(\hat{\tau },\tilde{P}_{s,n}^{v})} {\tilde{P}_{s,n}^{v} + P_{c}} \\ \geq \dfrac{P(\mathcal{H}_{n}^{v})(1 - q_{n}^{f}(\varepsilon _{n},\hat{\tau }))R_{1,n}(\hat{\tau },P_{s,n}^{v}) + P(\mathcal{H}_{n}^{o})q_{n}^{m}(\varepsilon _{n},\hat{\tau })R_{3,n}(\hat{\tau },P_{s,n}^{v})} {P_{s,n}^{v} + P_{c}}\end{array} }$$
(79)
$$\displaystyle{ \begin{array}{*{20}{l}} \mathop{\max }\limits _{P_{s,n}^{v}}\left \{P(\mathcal{H}_{n}^{v})(1 -q_{n}^{f}(\varepsilon _{n},\hat{\tau }))R_{1,n}(\hat{\tau },P_{s,n}^{v}) + P(\mathcal{H}_{n}^{o})q_{n}^{m}(\varepsilon _{n},\hat{\tau })R_{3,n}(\hat{\tau },P_{s,n}^{v}) -\eta _{13,n}^{{\ast}}(P_{s,n}^{v} + P_{c})\right \} \\ = P(\mathcal{H}_{n}^{v})(1 -q_{n}^{f}(\varepsilon _{n},\hat{\tau }))R_{1,n}(\hat{\tau },P_{s,n}^{v}) + P(\mathcal{H}_{n}^{o})q_{n}^{m}(\varepsilon _{n},\hat{\tau })R_{3,n}(\hat{\tau },P_{s,n}^{v}) -\eta _{13,n}^{{\ast}}(P_{s,n}^{v} + P_{c}) = 0.\end{array} }$$
(80)

Hence, we have (81)

$$\displaystyle{ \left \{\begin{array}{*{20}{l}} P(\mathcal{H}_{n}^{v})(1 -q_{n}^{f}(\varepsilon _{n},\hat{\tau }))R_{1,n}(\hat{\tau },\tilde{P}_{s,n}^{v}) + P(\mathcal{H}_{n}^{o})q_{n}^{m}(\varepsilon _{n},\hat{\tau })R_{3,n}(\hat{\tau },\tilde{P}_{s,n}^{v}) -\eta _{13,n}^{{\ast}}\left (\tilde{P}_{s,n}^{v} + P_{c}\right ) = 0 \\ P(\mathcal{H}_{n}^{v})(1 -q_{n}^{f}(\varepsilon _{n},\hat{\tau }))R_{1,n}(\hat{\tau },P_{s,n}^{v}) + P(\mathcal{H}_{n}^{o})q_{n}^{m}(\varepsilon _{n},\hat{\tau })R_{3,n}(\hat{\tau },P_{s,n}^{v}) -\eta _{13,n}^{{\ast}}\left (P_{s,n}^{v} + P_{c}\right ) \leq 0. \end{array}\right. }$$
(81)

Therefore, \(\mathop{\max }\limits _{P_{s,n}^{v}}\left \{\begin{array}{*{20}{l}} P(\mathcal{H}_{n}^{v})(1 - q_{n}^{f}(\varepsilon _{n},\hat{\tau }))R_{1,n}(\hat{\tau },P_{s,n}^{v}) \\ \begin{array}{l} +\ P(\mathcal{H}_{n}^{o})q_{n}^{m}(\varepsilon _{n},\hat{\tau })R_{3,n}(\hat{\tau },P_{s,n}^{v}) \\ -\ \eta _{13,n}^{{\ast}}(P_{s,n}^{v} + P_{c}) \end{array} \end{array} \right \} = 0\) can be concluded. That is, eq. (80) is achieved.

(2) Suppose that \(\widetilde{P}_{s,n}^{v}\) is a solution to the problem of (80). The definition of (80) implies that (82)

$$\displaystyle{ \begin{array}{l} \begin{array}{*{20}{l}} P(\mathcal{H}_{n}^{v})(1 - q_{n}^{f}(\varepsilon _{n},\hat{\tau }))R_{1,n}(\hat{\tau },P_{s,n}^{v}) + P(\mathcal{H}_{n}^{o})q_{n}^{m}(\varepsilon _{n},\hat{\tau })R_{3,n}(\hat{\tau },P_{s,n}^{v}) \\ -\ \eta _{13,n}^{{\ast}}\left (P_{s,n}^{v} + P_{c}\right )\leq P(\mathcal{H}_{n}^{v})(1 - q_{n}^{f}(\varepsilon _{n},\hat{\tau }))R_{1,n}(\hat{\tau },\tilde{P}_{s,n}^{v}) \\ +\ P(\mathcal{H}_{n}^{o})q_{n}^{m}(\varepsilon _{n},\hat{\tau })R_{3,n}(\hat{\tau },\tilde{P}_{s,n}^{v}) -\eta _{13,n}^{{\ast}}\left (\tilde{P}_{s,n}^{v} + P_{c}\right ) = 0\end{array}\\ or \\ \left \{\begin{array}{*{20}{l}} P(\mathcal{H}_{n}^{v})(1 - q_{n}^{f}(\varepsilon _{n},\hat{\tau }))R_{1,n}(\hat{\tau },P_{s,n}^{v}) + P(\mathcal{H}_{n}^{o})q_{n}^{m}(\varepsilon _{n},\hat{\tau })R_{3,n}(\hat{\tau },P_{s,n}^{v}) \\ -\ \eta _{13,n}^{{\ast}}\left (P_{s,n}^{v} + P_{c}\right ) \leq 0 \\ P(\mathcal{H}_{n}^{v})(1 - q_{n}^{f}(\varepsilon _{n},\hat{\tau }))R_{1,n}(\hat{\tau },\tilde{P}_{s,n}^{v}) + P(\mathcal{H}_{n}^{o})q_{n}^{m}(\varepsilon _{n},\hat{\tau })R_{3,n}(\hat{\tau },\tilde{P}_{s,n}^{v}) \\ -\ \eta _{13,n}^{{\ast}}\left (\tilde{P}_{s,n}^{v} + P_{c}\right ) = 0.\end{array} \right. \end{array} }$$
(82)

Therefore, we obtain

$$\displaystyle{ \frac{\left \{\begin{array}{l} P(\mathcal{H}_{n}^{v})(1 - q_{n}^{f}(\varepsilon _{n},\hat{\tau }))R_{1,n}(\hat{\tau },\tilde{P}_{s,n}^{v}) \\ + P(\mathcal{H}_{n}^{o})q_{n}^{m}(\varepsilon _{n},\hat{\tau })R_{3,n}(\hat{\tau },\tilde{P}_{s,n}^{v}) \end{array} \right \}} {\tilde{P}_{s,n}^{v} + P_{c}} =\eta _{ 13,n}^{{\ast}} }$$
(83)

and

$$\displaystyle{ \frac{\left \{\begin{array}{l} P(\mathcal{H}_{n}^{v})(1 - q_{n}^{f}(\varepsilon _{n},\hat{\tau }))R_{1,n}(\hat{\tau },P_{s,n}^{v}) \\ + P(\mathcal{H}_{n}^{o})q_{n}^{m}(\varepsilon _{n},\hat{\tau })R_{3,n}(\hat{\tau },P_{s,n}^{v}) \end{array} \right \}} {P_{s,n}^{v} + P_{c}} \leq \eta _{13,n}^{{\ast}}. }$$
(84)

Lemma 1.

Let \(\boldsymbol{A}\) be an N × N symmetric matrix, \(\boldsymbol{A}\) is negative semidefinite if and only if all the kth order principal minors of \(\boldsymbol{A}\) are no larger than zero if k is odd, and not less than zero if k is even, where 1 ≤ kN.

The proof of Theorem 2.

Proof.

First, define the element \(\tau _{k,i,n}\widehat{R}_{k,i,n}^{\mathrm{F}}\) in (59) as \(f(\tau _{k,i,n},\widehat{p}_{k,i,n}) = \tau _{k,i,n}\widehat{R}_{k,i,n}^{\mathrm{F}}\). The objective function in (59) is the sum of \(f(\tau _{k,i,n},\widehat{p}_{k,i,n})\) over all possible values of k, i, and n. Substituting \(\widehat{R}_{k,i,n}^{\mathrm{F}} = \log _{2}\left (1 + \frac{\widehat{p}_{k,i,n}\hslash _{k,k,i,n}^{\mathrm{FF}}} {\tau _{k,i,n}I_{k,i,n}} \right )\) into \(f(\tau _{k,i,n},\widehat{p}_{k,i,n})\), so we have

$$\displaystyle{ f(\tau _{k,i,n},\widehat{p}_{k,i,n}) = \tau _{k,i,n}\log _{2}\left (1 + \frac{\widehat{p}_{k,i,n}\hslash _{k,k,i,n}^{\mathrm{FF}}} {\tau _{k,i,n}I_{k,i,n}} \right ). }$$
(85)

Based on (85), one obtains

$$\displaystyle{ \frac{\partial ^{2}f} {\partial \tau _{k,i,n}^{2}} = -\frac{1} {\ln 2} \frac{(\widehat{p}_{k,i,n}\hslash _{k,k,i,n}^{\mathrm{FF}})^{2}} {\tau _{k,i,n}(\tau _{k,i,n}I_{k,i,n} + \widehat{p}_{k,i,n}\hslash _{k,k,i,n}^{\mathrm{FF}})^{2}}, }$$
(86)
$$\displaystyle{ \frac{\partial ^{2}f} {\partial \tau _{k,i,n}\partial \widehat{p}_{k,i,n}} = \frac{\partial ^{2}f} {\partial \widehat{p}_{k,i,n}\partial \tau _{k,i,n}} = \frac{1} {\ln 2} \frac{\widehat{p}_{k,i,n}(\hslash _{k,k,i,n}^{\mathrm{FF}})^{2}} {(\tau _{k,i,n}I_{k,i,n} + \widehat{p}_{k,i,n}\hslash _{k,k,i,n}^{\mathrm{FF}})^{2}}, }$$
(87)
$$\displaystyle{ \frac{\partial ^{2}f} {\partial \widehat{p}_{k,i,n}^{2}} = -\frac{1} {\ln 2} \frac{\tau _{k,i,n}(\hslash _{k,k,i,n}^{\mathrm{FF}})^{2}} {(\tau _{k,i,n}I_{k,i,n} + \widehat{p}_{k,i,n}\hslash _{k,k,i,n}^{\mathrm{FF}})^{2}}. }$$
(88)

Consequently, the Hessian matrix of \(f(\tau _{k,i,n},\widehat{p}_{k,i,n})\) can be written as

$$\displaystyle{ \boldsymbol{H} = \left [\begin{array}{*{20}{c}} \frac{\partial ^{2}f} {\partial \tau _{k,i,n}^{2}} & \frac{\partial ^{2}f} {\partial \tau _{k,i,n}\partial \widehat{p}_{k,i,n}} \\ \frac{\partial ^{2}f} {\partial \widehat{p}_{k,i,n}\partial \tau _{k,i,n}} & \frac{\partial ^{2}f} {\partial \widehat{p}_{k,i,n}^{2}} \end{array} \right ]. }$$
(89)

Substituting (86), (87), (88) to (89), we can show that the first-order principal minors of \(\boldsymbol{H}\) are negative, and the second-order principal minor of \(\boldsymbol{H}\) is zero. Therefore, \(\boldsymbol{H}\) is negative semidefinite according to Lemma 1, and \(f(\tau _{k,i,n},\widehat{p}_{k,i,n})\) is concave. The objective function of (59) is concave because any positive linear combination of concave functions is concave [23, 33]. As the inequality constraints in (59) are convex, the feasible set of the objective function in (59) is convex, and the corresponding optimization problem is a convex problem. This completes the proof . ⊓ ⊔

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Zhang, H., Tsiftsis, T.A., Cheng, J., Leung, V.C.M. (2017). Resource Allocation in Spectrum-Sharing Cognitive Heterogeneous Networks. In: Zhang, W. (eds) Handbook of Cognitive Radio . Springer, Singapore. https://doi.org/10.1007/978-981-10-1389-8_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1389-8_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1389-8

  • Online ISBN: 978-981-10-1389-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics