Skip to main content

Homocysteine as a Biomarker in Vascular Disease

  • Living reference work entry
  • First Online:
Biomarkers in Cardiovascular Disease

Abstract

Elevated concentrations of homocysteine (Hcy) result from either mutations in the genes encoding Hcy-metabolizing enzymes or from deficiencies of their cofactors. Even a mild increase in the levels of Hcy is considered a risk factor for a number of diseases in humans, such as cardiovascular disease, stroke, neurodegenerative disorders like dementia and Alzheimer’s disease, birth defects, complicated pregnancies, and bone fractures. However, it has not yet been elucidated whether Hcy is a causative agent. Here, we present an overview of recent data on the putative mechanisms of Hcy in hyperhomocysteinemia-related vascular diseases. However, the mechanism by which Hcy can promote atherogenesis remains unclear. Endothelial dysfunction is the central condition on which a number of factors converge. Increased oxidative stress with alterations in nitric oxide, protein thiolation, and homocysteinylation, as well as Hcy-induced epigenetic changes, are involved in the pathogenesis. Although combined folic acid and B-vitamin therapy substantially reduces Hcy levels, the results are mixed from most clinical trials testing the benefit of vitamin supplementation on cardiovascular events, but they have generally failed to show a significant effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

5-MTHF:

5-methyltetrahydrofolate

ADMA:

Asymmetric dimethylarginine

CBS:

Cystathionine β-synthase

CSE:

Cystathionine γ-lyase

eNOS:

Endothelial nitric oxide synthase

ER:

Endoplasmic reticulum

GSH:

Glutathione

Hcy:

Homocysteine

HDL:

High density lipoprotein

HHcy:

Hyperhomocysteinemia

iNOS:

Inducible nitric oxide synthase

MAT:

Methionine adenosyltransferase

MTHFR:

Methylenetetrahydrofolate reductase

MTs:

Methyltransferase

NFκB:

Nuclear factor –kappa B

NO:

Nitric oxide

NOS:

Nitric oxide synthase

ROS:

Reactive oxygen species

SAH:

S-adenosylhomocysteine

SAM:

S-adenosylmethionine

tHcy:

Total homocysteine

References

  • Ansari R, Mahta A, Mallack E, Luo JJ. Hyperhomocysteinemia and neurologic disorders: a review. J Clin Neurol. 2014;10:281–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov. 2012;1:384–400.

    Article  Google Scholar 

  • Baccarelli A, Ghosh S. Environmental exposures, epigenetics and cardiovascular disease. Curr Opin Clin Nutr Metab Care. 2012;15:323–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blattler A, Farnham PJ. Cross-talk between site-specific transcription factors and DNA methylation states. J Biol Chem. 2013;288:34287–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker JS, Adler A, Schneeberger A, et al. Hyperhomocysteinemia, a cardiac metabolic disease: role of nitric oxide and the p22phox subunit of NADPH oxidase. Circulation. 2005;111:2112–8.

    Article  CAS  PubMed  Google Scholar 

  • Blom HJ, Smulders Y. Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects. J Inherit Metab Dis. 2011;34:75–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Candito M, Rivet R, Herbeth B, et al. Nutritional and genetic determinants of vitamin B and homocysteine metabolisms in neural tube defects: a multicenter case–control study. Am J Med Genet A. 2008;146A:1128–33.

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Hu X, Zhang Q, et al. Homocysteine level and risk of abdominal aortic aneurysm: a meta-analysis. PLoS One. 2014;9, e85831.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohoon KP, Heit JA. Inherited and secondary thrombophilia. Circulation. 2014;129(2):254–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Emmanuele diVilla Bianca R, Mitidieri E, Di Minno MN, et al. Hydrogen sulphide pathway contributes to the enhanced human platelet aggregation in hyperhomocysteinemia. Proc Natl Acad Sci USA. 2013;110:15812–7.

    Article  Google Scholar 

  • Di Minno MN, Tremoli E, Coppola A, Lupoli R, Di Minno G. Homocysteine and arterial thrombosis: challenge and opportunity. Thromb Haemost. 2010;103:942–61.

    Article  PubMed  Google Scholar 

  • Dje N’Guessan P, Riediger F, Vardarova K, et al. Statins control oxidized LDL-mediated histone modifications and gene expression in cultured human endothelial cells. Arterioscler Thromb Vasc Biol. 2009;29:380–6.

    Article  PubMed  Google Scholar 

  • Enneman AW, Swart KM, Zillikens MC, et al. The association between plasma homocysteine levels and bone quality and bone mineral density parameters in older persons. Bone. 2014;63:141–6.

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Wang L, Liu W, Wu Y, Yuan Z. The synergistic effect of homocysteine and lipopolysaccharide on the differentiation and conversion of raw264.7 macrophages. J Inflamm (Lond). 2014;11:13.

    Article  PubMed Central  Google Scholar 

  • He L, Zeng H, Li F, et al. Homocysteine impairs coronary artery endothelial function by inhibiting tetrahydrobiopterin in patients with hyperhomocysteinemia. Am J Physiol Endocrinol Metab. 2010;299:E1061–5.

    Article  CAS  PubMed  Google Scholar 

  • He Y, Li Y, Chen Y, Feng L, Nie Z. Homocysteine level and risk of different stroke types: a meta-analysis of prospective observational studies. Nutr Metab Cardiovasc Dis. 2014;24:1158–65.

    Article  CAS  PubMed  Google Scholar 

  • Holmes MV, Newcombe P, Hubacek JA, et al. Effect modification by population dietary folate on the association between MTHFR genotype, homocysteine, and stroke risk: a meta-analysis of genetic studies and randomised trials. Lancet. 2011;378:584–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holven KB, Aukrust P, Retterstøl K, et al. The antiatherogenic function of HDL is impaired in hyperhomocysteinemic subjects. J Nutr. 2008;138:2070–5.

    Article  CAS  PubMed  Google Scholar 

  • Hooshmand B, Polvikoski T, Kivipelto M, et al. Plasma homocysteine, Alzheimer and cerebrovascular pathology: a population-based autopsy study. Brain. 2013;136:2707–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iacobazzi V, Infantino V, Castegna A, Andria G. Hyperhomocysteinemia: related genetic diseases and congenital defects, abnormal DNA methylation and newborns creening issues. Mol Genet Metab. 2014;113:27–33.

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H. The pathophysiological hypothesis of homocysteine thiolactone-mediated vascular disease. J Physiol Pharmacol. 2008;59 Suppl 9:155–67.

    PubMed  Google Scholar 

  • Jakubowski H, Głowacki R. Chemical biology of homocysteine thiolactone and related metabolites. Adv Clin Chem. 2011;55:81–103.

    Article  CAS  PubMed  Google Scholar 

  • Jensen MK, Bertoia ML, Cahill LE, Agarwal I, Rimm EB, Mukamal KJ. Novel metabolic biomarkers of cardiovascular disease. Nat Rev Endocrinol. 2014;10:659–72.

    Article  CAS  PubMed  Google Scholar 

  • Ji R, Cheng Y, Yue J, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res. 2007;100:1579–88.

    Article  CAS  PubMed  Google Scholar 

  • Joseph J, Loscalzo J. Methoxistasis: integrating the roles of homocysteine and folic acid in cardiovascular pathobiology. Nutrients. 2013;5:3235–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung JM, Kwondo Y, Han C, Jo I, Jo SA, Park MH. Increased carotid intima-media thickness and plasma homocysteine levels predict cardiovascular and all-cause death: a population-based cohort study. Eur Neurol. 2013;70:1–5.

    Article  CAS  PubMed  Google Scholar 

  • Kheirandish-Gozal L, Khalyfa A, Gozal D, Bhattacharjee R, Wang Y. Endothelial dysfunction in children with obstructive sleep apnea is associated with epigenetic changes in the eNOS gene. Chest. 2013;143:971–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, Long TI, Arakawa K, Wang R, Yu MC, Laird PW. DNA methylation as a biomarker for cardiovascular disease risk. PLoS One. 2010;5, e9692.

    Article  PubMed  PubMed Central  Google Scholar 

  • La’ulu SL, Rawlins ML, Pfeifer CM, Zhang M, Roberts WL. Performance characteristics of six homocysteine assays. Am J Clin Pathol. 2008;130:969–75.

    Article  PubMed  Google Scholar 

  • Lentz SR. Mechanisms of homocysteine-induced atherothrombosis. J Thromb Haemost. 2005;3:1646–54.

    Article  CAS  PubMed  Google Scholar 

  • Li L, Hu BC, Gong SJ, Yan J. Homocysteine-induced caspase-3 activation by endoplasmic reticulum stress in endothelial progenitor cells from patients with coronary heart disease and healthy donors. Biosci Biotechnol Biochem. 2011;75:1300–5.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang H, Jiang C, et al. Hyperhomocysteinemia promotes insulin resistance by inducing endoplasmicreticulum stress in adipose tissue. J Biol Chem. 2013;288:9583–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Yang X, Ma L, et al. Homocysteine-mediated cholesterol efflux via ABCA1 and ACAT1 DNA methylation in THP-1 monocyte-derived foam cells. Acta Biochim Biophys Sin (Shanghai). 2013;45:220–8.

    Article  CAS  Google Scholar 

  • Lonn E, Yusuf S, Arnold MJ, et al. Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med. 2006;354:1567–77.

    Article  CAS  PubMed  Google Scholar 

  • Lu SC, Mato JM. S-Adenosylmethionine in liver health, injury, and cancer. Physiol Rev. 2012;92:1515–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malinow MR. Plasma concentrations of total homocysteine predict mortality risk. Am J Clin Nutr. 2001;74:3.

    CAS  PubMed  Google Scholar 

  • Martí-Carvajal AJ, Solà I, Lathyris D, Karakitsiou DE, Simancas-Racines D. Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev. 2013;1, CD006612.

    PubMed  Google Scholar 

  • Matouk CC, Marsden PA. Epigenetic regulation of vascular endothelial gene expression. Circ Res. 2008;102:873–87.

    Article  CAS  PubMed  Google Scholar 

  • McCully KS. Homocysteine, vitamins, and vascular disease prevention. Am J Clin Nutr. 2007;86:1563S–8.

    CAS  PubMed  Google Scholar 

  • Mikael LG, Genest Jr J, Rozen R. Elevated homocysteine reduces apolipoprotein A-I expression in hyperhomocysteinemic mice and in males with coronary artery disease. Circ Res. 2006;98:564–71.

    Article  CAS  PubMed  Google Scholar 

  • Mishra PK, Tyagi N, Kundu S, Tyagi SC. MicroRNAs are involved in homocysteine-induced cardiac remodeling. Cell Biochem Biophys. 2009;55:153–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moncada S, Higgs EA. The discovery of nitric oxide and its role in vascular biology. Br J Pharmacol. 2006;147:S193–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang X, Liu J, Zhao J, et al. Homocysteine induces the expression of C-reactive protein via NMDAr-ROS-MAPK-NF-κB signal pathway in rat vascular smooth muscle cells. Atherosclerosis. 2014;236:73–81.

    Article  CAS  PubMed  Google Scholar 

  • Papatheodorou L, Weiss N. Vascular oxidant stress and inflammation inhyperhomocysteinemia. Antioxid Redox Signal. 2007;9:1941–58.

    Article  CAS  PubMed  Google Scholar 

  • Perla-Kaján J, Jakubowski H. Paraoxonase 1 and homocysteine metabolism. Amino Acids. 2012;43:1405–17.

    Article  PubMed  Google Scholar 

  • Poddar R, Sivasubramanian N, DiBello PM, Robinson K, Jacobsen DW. Homocysteine induces expression and secretion of monocyte chemoattractant protein-1 and interleukin-8 in human aortic endothelial cells: implications for vascular disease. Circulation. 2001;103:2717–23.

    Article  CAS  PubMed  Google Scholar 

  • Prontera C, Martelli N, Evangelista V, et al. Homocysteine modulates the CD40/CD40L system. J Am Coll Cardiol. 2007;49:2182–90.

    Article  CAS  PubMed  Google Scholar 

  • Pushpakumar S, Kundu S, Sen U. Endothelial dysfunction: the link between homocysteine and hydrogen sulfide. Curr Med Chem. 2014;21:3662–72.

    Article  CAS  PubMed  Google Scholar 

  • Schaffer A, Verdoia M, Cassetti E, Marino P, Suryapranata H, De Luca G. Novara Atherosclerosis Study Group (NAS). Relationship between homocysteine and coronary artery disease. Results from a large prospective cohort study. Thromb Res. 2014;134:288–93.

    Article  CAS  PubMed  Google Scholar 

  • Ramani K, Mato JM, Lu SC. Role of methionine adenosyltransferase genes in hepatocarcinogénesis. Cancers. 2011;3:1480–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rayner KJ, Suárez Y, Dávalos A, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010;328:1570–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Refsum H, Smith AD, Ueland PM, et al. Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem. 2004;50:3–32.

    Article  CAS  PubMed  Google Scholar 

  • Selhub J. Homocysteine metabolism. Annu Rev Nutr. 1999;19:217–46.

    Article  CAS  PubMed  Google Scholar 

  • Sen U, Mishra PK, Tyagi N, Tyagi SC. Homocysteine to hydrogen sulfide or hypertension. Cell Biochem Biophys. 2010;57:49–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafaati M, O’Driscoll R, Björkhem I, Meaney S. Transcriptional regulation of cholesterol 24-hydroxylase by histone deacetylase inhibitors. Biochem Biophys Res Commun. 2009;378:689–94.

    Article  CAS  PubMed  Google Scholar 

  • Steed MM, Tyagi N, Sen U, Schuschke DA, Joshua IG, Tyagi SC. Functional consequences of the collagen/elastin switch in vascular remodeling in hyperhomocysteinemic wild-type, eNOS−/−, and iNOS−/− mice. Am J Physiol Lung Cell Mol Physiol. 2010;299:L301–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stipanuk MA. Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr. 2004;24:539–77.

    Article  CAS  PubMed  Google Scholar 

  • Stühlinger MC, Tsao PS, Her JH, Kimoto M, Balint RF, Cooke JP. Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine. Circulation. 2001;104:2569–75.

    Article  PubMed  Google Scholar 

  • Toole JF, Malinow MR, Chambless LE, et al. Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the Vitamin Intervention for Stroke Prevention (VISP) randomized controlled trial. JAMA. 2004;291:565–75.

    Article  CAS  PubMed  Google Scholar 

  • Van Campenhout A, Moran CS, Parr A, Clancy P, Rush C, Jakubowski H, Golledge J. Role of homocysteine in aortic calcification and osteogenic cell differentiation. Atherosclerosis. 2009;202:557–66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Veeranna V, Zalawadiya SK, Niraj A, et al. Homocysteine and reclassification of cardiovascular disease risk. J Am Coll Cardiol. 2011;58:1025–33.

    Article  CAS  PubMed  Google Scholar 

  • Wagner C, Koury MJ. S-Adenosylhomocysteine- a better indicator of vascular disease than homocysteine. Am J Clin Nutr. 2007;86:1581–5.

    CAS  PubMed  Google Scholar 

  • Wald DS, Law M, Morris JK. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ. 2002;325:1202.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang G, Woo CW, Sung FL, Siow YL, O K. Increased monocyte adhesion to aortic endothelium in rats with hyperhomocysteinemia: role of chemokine and adhesion molecules. Arterioscler Thromb Vasc Biol. 2002;22:1777–83.

    Article  CAS  PubMed  Google Scholar 

  • Werstuck GH, Lentz SR, Dayal S, et al. Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest. 2001;107:1263–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong ND. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev Cardiol. 2014;1:276–89.

    Article  Google Scholar 

  • Wu G, Fang Y-Z, Yang S, Lupton JR, Tumer ND. Glutathione metabolism and its implications for health. J Nutr. 2004;134:489–92.

    CAS  PubMed  Google Scholar 

  • Wu X, Zou T, Cao N, et al. Plasma homocysteine levels and genetic polymorphisms in folate metablism are associated with breast cancer risk in chinese women. Hered Cancer Clin Pract. 2014;12:2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Zhang Y, Wang M, et al. Plasma S-adenosylhomocysteine is associated with the risk of cardiovascularevents in patients undergoing coronary angiography: a cohort study. Am J Clin Nutr. 2013;98:1162–9.

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz N. Relationship between paraoxonase and homocysteine: crossroads of oxidative diseases. Arch Med Sci. 2012;8:138–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng XK, Remick DG, Wang X. Homocysteine induces production of monocyte chemoattractant protein-1 and interleukin-8 in cultured human whole blood. Acta Pharmacol Sin. 2004;25:1419–25.

    CAS  PubMed  Google Scholar 

  • Zhang C, Cai Y, Adachi MT, et al. Homocysteine induces programmed cell death in human vascular endothelial cells through activation of the unfolded protein response. J Biol Chem. 2001;276:35867–74.

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Chen Y, Xie X, et al. Homocysteine activates vascular smooth muscle cells by DNA demethylation of platelet-derived growth factor in endothelial cells. J Mol Cell Cardiol. 2012;53:487–96.

    Article  PubMed  Google Scholar 

  • Zhou S, Zhang Z, Xu G. Notable epigenetic role of hyperhomocysteinemia in atherogenesis. Lipids Health Dis. 2014;13:134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Xie R, Piao X, et al. Homocysteine enhances clot-promoting activity of endothelial cells via phosphatidylserine externalization and microparticles formation. Amino Acids. 2012;43:1243–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar Codoñer-Franch .

Editor information

Editors and Affiliations

Definitions

Endothelial dysfunction

The earliest manifestation of vascular disease. It is characterized by the incapacity of the endothelium to sustain an adequate vasodilator and antithrombotic response to physiological needs. In other words, a shift of the endothelium towards limited vasodilation, proinflammatory and prothrombotic properties.

Folate cycle

Set of cyclic reactions implicated in the conversion and recycling of folate into methyltetrahydrofolate (5-MTHF), its active form as a methyl donor.

Homocysteine levels in plasma

Refers to the levels of total circulating homocysteine that are conventionally assessed in analytical practice. It includes both free homocysteine and homocysteine bound to other metabolites or molecules through disulfide bonds.

Homocysteine

A sulfur-containing amino acid that is not provided by proteins, but is generated as an intermediary metabolite in the conversion of methionine into cysteine.

Hyperhomocysteinemia

The term is usually used to refer levels of circulating homocysteine exceeding 15 μM. This cut off value must be contextualized according to age, gender and lifestyle factors..

N-Homocysteinylation

A spontaneous non-enzymatic reaction of homocysteine thiolactone with the ε-amino group of lysine residues in proteins to form N-linked Hcy-protein adducts.

Oxidative stress

A metabolic imbalance between pro-oxidant and antioxidant species that favor oxidative damage to biological molecules and over activation of redox-sensitive pathways.

Remethylation pathway

The conversion of homocysteine back to methionine by transfer of a methyl group that, in most of the tissues, is provided by 5-methyltetrahydrofolate (5-MTHF), in a reaction that is folate- and vitamin B12-dependent.

S-Homocysteinylation

A spontaneous non-enzymatic oxidation reaction between the -SH group (thiol group) of homocysteine and the -SH group of cysteine residues in proteins to form S-S (disulfide bond)-linked Hcy-protein adducts.

Transmethylation pathway

A series of enzyme catalyzed reactions implicated in the generation of homocysteine from methionine. An intermediate in this process is S-adenosylmethionine, the main provider for methyl groups in biological reactions, such as those implicated in the epigenetic control of gene expression.

Transsulfuration pathway

A set of vitamin B6-dependent enzyme catalyzed reactions that account for the conversion of homocysteine into cysteine.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Codoñer-Franch, P., Alonso-Iglesias, E. (2015). Homocysteine as a Biomarker in Vascular Disease. In: Patel, V., Preedy, V. (eds) Biomarkers in Cardiovascular Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7741-5_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7741-5_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7741-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics