Skip to main content

Serum Cholinesterase Activities as Biomarkers of Cardiac Malfunctioning

  • Living reference work entry
  • First Online:
Biomarkers in Cardiovascular Disease

Abstract

Cardiovascular functioning depends on proper autonomous nervous system activities, and cardiovascular pathologies are associated with autonomic imbalance. Acetylcholine is the main parasympathetic neurotransmitter, involved in restoring hemostasis, reducing heart rate, and blocking inflammation and anxiety. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), the acetylcholine-hydrolyzing enzymes, can be detected via reliable, low-cost measurements that are amenable for use in large cohort studies. Recent surveys have suggested that cholinesterase (ChE) activity measurements can serve as biomarkers for cardiovascular diseases, correlating with inflammation, heart rate, and delayed heart rate recovery. Moreover, patients with ChE activities beyond the normal range are at risk for non-survival or poor recovery outcome following stroke or myocardial infarction. In this chapter, we will introduce the ChEs, the detection methods available for measuring their activities, and the relevant studies validating the roles of ChEs as risk factors for cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

AChE:

Acetylcholinesterase

ANS:

Autonomous nervous system

ATCh:

Acetylthiocholine

BChE:

Butyrylcholinesterase

BRS:

Baroreflex sensitivity

BTCh:

Butyrylthiocholine

CAD:

Coronary arterial disease

ChAT:

Choline acetyltransferase

CHD:

Coronary heart disease

ChE:

Cholinesterase

ChOx:

Choline oxidase

CNS:

Central nerve system

ColQ:

Collagen tail

CS:

Cholinergic status

DTNB:

5,5′-Dithiobis-(2-nitrobenzoic acid)

GPI:

Glycosylphosphatidylinositol

Il:

Interleukin

iso-OMPA:

Tetramonoisopropyl pyrophosphortetramide

MACE:

Major adverse cardiac events

mAChR:

Muscarinic ACh receptor

MI:

Myocardial infarction

MiRNA:

MicroRNA

nAChR:

Nicotinic ACh receptor

NMJ:

Neuromuscular junction

NP:

Nanoparticle

PAS:

Peripheral anionic site

PNS:

Peripheral nervous system

PRiMA:

Proline-rich membrane anchor

SNP:

Single nucleotide polymorphism

TNF-α:

Tumor necrosis factor-α

WAT:

Tryptophan-rich amphiphilic tetramerization

References

  • Abernethy MH, George PM, Herron JL, Evans RT. Plasma cholinesterase phenotyping with use of visible-region spectrophotometry. Clin Chem. 1986;32:194–7.

    CAS  PubMed  Google Scholar 

  • Alcantara VM, Chautard-Freire-Maia EA, Scartezini M, Cerci MS, Braun-Prado K, Picheth G. Butyrylcholinesterase activity and risk factors for coronary artery disease. Scand J Clin Lab Invest. 2002;62:399–404.

    Article  CAS  PubMed  Google Scholar 

  • Arbel Y, Shenhar-Tsarfaty S, Waiskopf N, Finkelstein A, Halkin A, Revivo M, Berliner S, Herz I, Shapira I, Keren G, Soreq H, Banai S. Decline in serum cholinesterase activities predicts 2-year major adverse cardiac events. Mol Med. 2014;20:38–45.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ballard C, Morris C, Kalaria R, Mckeith I, Perry R, Perry E. The k variant of the butyrylcholinesterase gene is associated with reduced phosphorylation of tau in dementia patients. Dement Geriatr Cogn Disord. 2005;19:357–60.

    Article  CAS  PubMed  Google Scholar 

  • Ben Assayag E, Shenhar-Tsarfaty S, Ofek K, Soreq L, Bova I, Shopin L, Berg RM, Berliner S, Shapira I, Bornstein NM, Soreq H. Serum cholinesterase activities distinguish between stroke patients and controls and predict 12-month mortality. Mol Med. 2010;16:278–86.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Berson A, Knobloch M, Hanan M, Diamant S, Sharoni M, Schuppli D, Geyer BC, Ravid R, Mor TS, Nitsch RM, Soreq H. Changes in readthrough acetylcholinesterase expression modulate amyloid-beta pathology. Brain. 2008;131:109–19.

    Article  PubMed  Google Scholar 

  • Berson A, Barbash S, Shaltiel G, Goll Y, Hanin G, Greenberg DS, Ketzef M, Becker AJ, Friedman A, Soreq H. Cholinergic-associated loss of hnRNP-A/B in Alzheimer’s disease impairs cortical splicing and cognitive function in mice. EMBO Mol Med. 2012;4:730–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–62.

    Article  CAS  PubMed  Google Scholar 

  • Bourne Y, Taylor P, Radic Z, Marchot P. Structural insights into ligand interactions at the acetylcholinesterase peripheral anionic site. EMBO J. 2003;22:1–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Calderon-Margalit R, Adler B, Abramson JH, Gofin J, Kark JD. Butyrylcholinesterase activity, cardiovascular risk factors, and mortality in middle-aged and elderly men and women in Jerusalem. Clin Chem. 2006;52:845–52.

    Article  CAS  PubMed  Google Scholar 

  • Canaani J, Shenhar-Tsarfaty S, Waiskopf N, Yakobi R, Ben Assayag E, Berliner S, Soreq H. Serum AChE activities predict exercise heart rate parameters of asymptomatic individuals. Neurosci Med. 2010;1:43–9.

    Article  CAS  Google Scholar 

  • Chen Z, Ren X, Meng X, Tan L, Chen D, Tang F. Quantum dots-based fluorescent probes for turn-on and turn-off sensing of butyrylcholinesterase. Biosens Bioelectron. 2013;44:204–9.

    Article  CAS  PubMed  Google Scholar 

  • Darvesh S, Hopkins DA, Geula C. Neurobiology of butyrylcholinesterase. Nat Rev Neurosci. 2003;4:131–8.

    Article  CAS  PubMed  Google Scholar 

  • Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, Thompson JR, Ingelsson E, Saleheen D, Erdmann J, Goldstein BA, Stirrups K, Konig IR, Cazier JB, Johansson A, Hall AS, Lee JY, Willer CJ, Chambers JC, Esko T, Folkersen L, Goel A, Grundberg E, Havulinna AS, Ho WK, Hopewell JC, Eriksson N, Kleber ME, Kristiansson K, Lundmark P, Lyytikainen LP, Rafelt S, Shungin D, Strawbridge RJ, Thorleifsson G, Tikkanen E, Van Zuydam N, Voight BF, Waite LL, Zhang W, Ziegler A, Absher D, Altshuler D, Balmforth AJ, Barroso I, Braund PS, Burgdorf C, Claudi-Boehm S, Cox D, Dimitriou M, Do R, Doney AS, El Mokhtari N, Eriksson P, Fischer K, Fontanillas P, Franco-Cereceda A, Gigante B, Groop L, Gustafsson S, Hager J, Hallmans G, Han BG, Hunt SE, Kang HM, Illig T, Kessler T, Knowles JW, Kolovou G, Kuusisto J, Langenberg C, Langford C, Leander K, Lokki ML, Lundmark A, McCarthy MI, Meisinger C, Melander O, Mihailov E, Maouche S, Morris AD, Muller-Nurasyid M, Nikus K, Peden JF, Rayner NW, Rasheed A, Rosinger S, Rubin D, Rumpf MP, Schafer A, Sivananthan M, Song C, Stewart AF, Tan ST, Thorgeirsson G, Van Der Schoot CE, Wagner PJ, Wells GA, Wild PS, Yang TP, Amouyel P, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45:25–33.

    Article  CAS  PubMed  Google Scholar 

  • Diamant S, Podoly E, Friedler A, Ligumsky H, Livnah O, Soreq H. Butyrylcholinesterase attenuates amyloid fibril formation in vitro. Proc Natl Acad Sci U S A. 2006;103:8628–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dvir H, Silman I, Harel M, Rosenberry TL, Sussman JL. Acetylcholinesterase: from 3D structure to function. Chem Biol Interact. 2010;187:10–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ellman GL, Courtney KD, Andres Jr V, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95.

    Article  CAS  PubMed  Google Scholar 

  • Engel AG. Myasthenia gravis and myasthenic disorders. New York: Oxford University Press; 2012.

    Book  Google Scholar 

  • Gill R, Bahshi L, Freeman R, Willner I. Optical detection of glucose and acetylcholine esterase inhibitors by H2O2-sensitive CdSe/ZnS quantum dots. Angew Chem Int Ed Engl. 2008;47:1676–9.

    Article  CAS  PubMed  Google Scholar 

  • Gnatt A, Loewenstein Y, Yaron A, Schwarz M, Soreq H. Site-directed mutagenesis of active site residues reveals plasticity of human butyrylcholinesterase in substrate and inhibitor interactions. J Neurochem. 1994;62:749–55.

    Article  CAS  PubMed  Google Scholar 

  • Goliasch G, Haschemi A, Marculescu R, Endler G, Maurer G, Wagner O, Huber K, Mannhalter C, Niessner A. Butyrylcholinesterase activity predicts long-term survival in patients with coronary artery disease. Clin Chem. 2012;58:1055–8.

    Article  CAS  PubMed  Google Scholar 

  • Hanin G, Shenhar-Tsarfaty S, Yayon N, Hoe YY, Bennett ER, Sklan EH, Rao DC, Rankinen T, Bouchard C, Geifman-Shochat S, Shifman S, Greenberg DS, Soreq H. Competing targets of microRNA-608 affect anxiety and hypertension. Hum Mol Genet. 2014;23:4569–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hasin Y, Avidan N, Bercovich D, Korczyn AD, Silman I, Beckmann JS, Sussman JL. Analysis of genetic polymorphisms in acetylcholinesterase as reflected in different populations. Curr Alzheimer Res. 2005;2:207–18.

    Article  CAS  PubMed  Google Scholar 

  • Howard TD, Hsu FC, Grzywacz JG, Chen H, Quandt SA, Vallejos QM, Whalley LE, Cui W, Padilla S, Arcury TA. Evaluation of candidate genes for cholinesterase activity in farmworkers exposed to organophosphorus pesticides: association of single nucleotide polymorphisms in BCHE. Environ Health Perspect. 2010;118:1395–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inestrosa NC, Alvarez A, Perez CA, Moreno RD, Vicente M, Linker C, Casanueva OI, Soto C, Garrido J. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron. 1996;16:881–91.

    Article  CAS  PubMed  Google Scholar 

  • Johnson G, Moore SW. Human acetylcholinesterase binds to mouse laminin-1 and human collagen IV by an electrostatic mechanism at the peripheral anionic site. Neurosci Lett. 2003;337:37–40.

    Article  CAS  PubMed  Google Scholar 

  • Jouven X, Empana JP, Schwartz PJ, Desnos M, Courbon D, Ducimetiere P. Heart-rate profile during exercise as a predictor of sudden death. N Engl J Med. 2005;352:1951–8.

    Article  CAS  PubMed  Google Scholar 

  • Kaufer D, Friedman A, Seidman S, Soreq H. Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature. 1998;393:373–7.

    Article  CAS  PubMed  Google Scholar 

  • Koennecke HC, Belz W, Berfelde D, Endres M, Fitzek S, Hamilton F, Kreitsch P, Mackert BM, Nabavi DG, Nolte CH, Pohls W, Schmehl I, Schmitz B, Von Brevern M, Walter G, Heuschmann PU. Factors influencing in-hospital mortality and morbidity in patients treated on a stroke unit. Neurology. 2011;77:965–72.

    Article  PubMed  Google Scholar 

  • LA Rovere MT, Pinna GD, Hohnloser SH, Marcus FI, Mortara A, Nohara R, Bigger Jr JT, Camm AJ, Schwartz PJ. Baroreflex sensitivity and heart rate variability in the identification of patients at risk for life-threatening arrhythmias: implications for clinical trials. Circulation. 2001;103:2072–7.

    Article  PubMed  Google Scholar 

  • Lau P, Bossers K, Janky R, Salta E, Frigerio CS, Barbash S, Rothman R, Sierksma AS, Thathiah A, Greenberg D, Papadopoulou AS, Achsel T, Ayoubi T, Soreq H, Verhaagen J, Swaab DF, Aerts S, De Strooper B. Alteration of the microRNA network during the progression of Alzheimer’s disease. EMBO Mol Med. 2013;5:1613–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leeper NJ, Dewey FE, Ashley EA, Sandri M, Tan SY, Hadley D, Myers J, Froelicher V. Prognostic value of heart rate increase at onset of exercise testing. Circulation. 2007;115:468–74.

    Article  PubMed  Google Scholar 

  • Li H, Schopfer LM, Masson P, Lockridge O. Lamellipodin proline rich peptides associated with native plasma butyrylcholinesterase tetramers. Biochem J. 2008;411:425–32.

    Article  CAS  PubMed  Google Scholar 

  • Maharshak N, Shenhar-Tsarfaty S, Aroyo N, Orpaz N, Guberman I, Canaani J, Halpern Z, Dotan I, Berliner S, Soreq H. MicroRNA-132 modulates cholinergic signaling and inflammation in human inflammatory bowel disease. Inflamm Bowel Dis. 2013;19:1346–53.

    Article  PubMed  Google Scholar 

  • Masson P, Xie W, Froment MT, Lockridge O. Effects of mutations of active site residues and amino acids interacting with the Omega loop on substrate activation of butyrylcholinesterase. Biochim Biophys Acta. 2001;1544:166–76.

    Article  CAS  PubMed  Google Scholar 

  • Meisel C, Meisel A. Suppressing immunosuppression after stroke. N Engl J Med. 2011;365:2134–6.

    Article  CAS  PubMed  Google Scholar 

  • Meshorer E, Soreq H. Virtues and woes of AChE alternative splicing in stress-related neuropathologies. Trends Neurosci. 2006;29:216–24.

    Article  CAS  PubMed  Google Scholar 

  • Meshorer E, Toiber D, Zurel D, Sahly I, Dori A, Cagnano E, Schreiber L, Grisaru D, Tronche F, Soreq H. Combinatorial complexity of 5′ alternative acetylcholinesterase transcripts and protein products. J Biol Chem. 2004;279:29740–51.

    Article  CAS  PubMed  Google Scholar 

  • Meshorer E, Bryk B, Toiber D, Cohen J, Podoly E, Dori A, Soreq H. SC35 promotes sustainable stress-induced alternative splicing of neuronal acetylcholinesterase mRNA. Mol Psychiatry. 2005;10:985–97.

    Article  CAS  PubMed  Google Scholar 

  • Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res. 2008;41:1721–30.

    Article  CAS  PubMed  Google Scholar 

  • Nabel EG, Braunwald E. A tale of coronary artery disease and myocardial infarction. N Engl J Med. 2012;366:54–63.

    Article  CAS  PubMed  Google Scholar 

  • Nadorp B, Soreq H. Predicted overlapping microRNA regulators of acetylcholine packaging and degradation in neuroinflammation-related disorders. Front Mol Neurosci. 2014;7:9.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nicolet Y, Lockridge O, Masson P, Fontecilla-Camps JC, Nachon F. Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J Biol Chem. 2003;278:41141–7.

    Article  CAS  PubMed  Google Scholar 

  • Noureddine H, Carvalho S, Schmitt C, Massoulie J, Bon S. Acetylcholinesterase associates differently with its anchoring proteins ColQ and PRiMA. J Biol Chem. 2008;283:20722–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ofek K, Soreq H. Cholinergic involvement and manipulation approaches in multiple system disorders. Chem Biol Interact. 2013;203:113–9.

    Article  CAS  PubMed  Google Scholar 

  • Ofek K, Krabbe KS, Evron T, Debecco M, Nielsen AR, Brunnsgaad H, Yirmiya R, Soreq H, Pedersen BK. Cholinergic status modulations in human volunteers under acute inflammation. J Mol Med (Berl). 2007;85:1239–51.

    Article  CAS  Google Scholar 

  • Parvari R, Pecht I, Soreq H. A microfluorometric assay for cholinesterases, suitable for multiple kinetic determinations of picomoles of released thiocholine. Anal Biochem. 1983;133:450–6.

    Article  CAS  PubMed  Google Scholar 

  • Pavlov V, Xiao Y, Willner I. Inhibition of the acetylcholinesterase-stimulated growth of Au nanoparticles: nanotechnology-based sensing of nerve gases. Nano Lett. 2005;5:649–53.

    Article  CAS  PubMed  Google Scholar 

  • Pohanka M. Voltammetric assay of butyrylcholinesterase in plasma samples and its comparison to the standard spectrophotometric test. Talanta. 2014;119:412–6.

    Article  CAS  PubMed  Google Scholar 

  • Pollak Y, Gilboa A, Ben-Menachem O, Ben-Hur T, Soreq H, Yirmiya R. Acetylcholinesterase inhibitors reduce brain and blood interleukin-1beta production. Ann Neurol. 2005;57:741–5.

    Article  CAS  PubMed  Google Scholar 

  • Prass K, Meisel C, Hoflich C, Braun J, Halle E, Wolf T, Ruscher K, Victorov IV, Priller J, Dirnagl U, Volk HD, Meisel A. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med. 2003;198:725–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Radic Z, Reiner E, Taylor P. Role of the peripheral anionic site on acetylcholinesterase: inhibition by substrates and coumarin derivatives. Mol Pharmacol. 1991;39:98–104.

    CAS  PubMed  Google Scholar 

  • Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Soliman EZ, Sorlie PD, Sotoodehnia N, Turan TN, Virani SS, Wong ND, Woo D, Turner MB. Heart disease and stroke statistics – 2012 update: a report from the American Heart Association. Circulation. 2012;125:e2–220.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rosas-Ballina M, Olofsson PS, Ochani M, Valdes-Ferrer SI, Levine YA, Reardon C, Tusche MW, Pavlov VA, Andersson U, Chavan S, Mak TW, Tracey KJ. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science. 2011;334:98–101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ross R. The pathogenesis of atherosclerosis – an update. N Engl J Med. 1986;314:488–500.

    Article  CAS  PubMed  Google Scholar 

  • Ryhanen R, Hanninen O. A simple method for the measurement of blood cholinesterase activities under field conditions. Gen Pharmacol. 1987;18:189–91.

    Article  CAS  PubMed  Google Scholar 

  • Saez-Valero J, Fodero LR, Sjogren M, Andreasen N, Amici S, Gallai V, Vanderstichele H, Vanmechelen E, Parnetti L, Blennow K, Small DH. Glycosylation of acetylcholinesterase and butyrylcholinesterase changes as a function of the duration of Alzheimer’s disease. J Neurosci Res. 2003;72:520–6.

    Article  CAS  PubMed  Google Scholar 

  • Sailaja BS, Takizawa T, Meshorer E. Chromatin immunoprecipitation in mouse hippocampal cells and tissues. Methods Mol Biol. 2012;809:353–64.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PJ, LA Rovere MT, Vanoli E. Autonomic nervous system and sudden cardiac death. Experimental basis and clinical observations for post-myocardial infarction risk stratification. Circulation. 1992;85:I77–91.

    CAS  PubMed  Google Scholar 

  • Shaked I, Meerson A, Wolf Y, Avni R, Greenberg D, Gilboa-Geffen A, Soreq H. MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity. 2009;31:965–73.

    Article  CAS  PubMed  Google Scholar 

  • Shaltiel G, Hanan M, Wolf Y, Barbash S, Kovalev E, Shoham S, Soreq H. Hippocampal microRNA-132 mediates stress-inducible cognitive deficits through its acetylcholinesterase target. Brain Struct Funct. 2013;218:59–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shenhar-Tsarfaty S, Ben Assayag E, Bova I, Shopin L, Fried M, Berliner S, Shapira I, Bornstein NM. Interleukin-6 as an early predictor for one-year survival following an ischaemic stroke/transient ischaemic attack. Int J Stroke. 2010;5:16–20.

    Article  CAS  PubMed  Google Scholar 

  • Shenhar-Tsarfaty S, Assayag EB, Bornstein NM, Berliner S, Soreq H. Post-stroke cholinergic biomarkers. Science. 2011a. http://www.sciencemag.org/content/334/6052/101/reply

  • Shenhar-Tsarfaty S, Bruck T, Bennett ER, Bravman T, Aassayag EB, Waiskopf N, Rogowski O, Bornstein N, Berliner S, Soreq H. Butyrylcholinesterase interactions with amylin may protect pancreatic cells in metabolic syndrome. J Cell Mol Med. 2011b;15:1747–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shenhar-Tsarfaty S, Berliner S, Bornstein NM, Soreq H. Cholinesterases as biomarkers for parasympathetic dysfunction and inflammation-related disease. J Mol Neurosci. 2014;53:298–305.

    Article  CAS  PubMed  Google Scholar 

  • Sklan EH, Lowenthal A, Korner M, Ritov Y, Landers DM, Rankinen T, Bouchard C, Leon AS, Rice T, Rao DC, Wilmore JH, Skinner JS, Soreq H. Acetylcholinesterase/paraoxonase genotype and expression predict anxiety scores in Health, Risk Factors, Exercise Training, and Genetics study. Proc Natl Acad Sci U S A. 2004;101:5512–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soreq H, Seidman S. Acetylcholinesterase – new roles for an old actor. Nat Rev Neurosci. 2001;2:294–302.

    Article  CAS  PubMed  Google Scholar 

  • Sykora M, Diedler J, Poli S, Rizos T, Turcani P, Veltkamp R, Steiner T. Autonomic shift and increased susceptibility to infections after acute intracerebral hemorrhage. Stroke. 2011;42:1218–23.

    Article  PubMed  Google Scholar 

  • Talbot RW, Heppell J, Dozois RR, Beart Jr RW. Vascular complications of inflammatory bowel disease. Mayo Clin Proc. 1986;61:140–5.

    Article  CAS  PubMed  Google Scholar 

  • Toiber D, Berson A, Greenberg D, Melamed-Book N, Diamant S, Soreq H. N-acetylcholinesterase-induced apoptosis in Alzheimer’s disease. PLoS One. 2008;3:e3108.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tracey KJ. Understanding immunity requires more than immunology. Nat Immunol. 2010;11:561–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Waiskopf N, Shweky I, Lieberman I, Banin U, Soreq H. Quantum dot labeling of butyrylcholinesterase maintains substrate and inhibitor interactions and cell adherence features. ACS Chem Neurosci. 2011;2:141–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Waiskopf N, Ofek K, Gilboa-Geffen A, Bekenstein U, Bahat A, Bennett ER, Podoly E, Livnah O, Hartmann G, Soreq H. AChE and RACK1 promote the anti-inflammatory properties of fluoxetine. J Mol Neurosci. 2014a;53:306–15.

    Article  CAS  PubMed  Google Scholar 

  • Waiskopf N, Rotem R, Shweky I, Yedidya L, Soreq H, Banin U. Labeling acetyl- and butyrylcholinesterase using semiconductor nanocrystals for biological applications. BioNanoScience. 2014b;3:1–11.

    Article  Google Scholar 

  • Wang M, Gu X, Zhang G, Zhang D, Zhu D. Continuous colorimetric assay for acetylcholinesterase and inhibitor screening with gold nanoparticles. Langmuir. 2009;25:2504–7.

    Article  CAS  PubMed  Google Scholar 

  • Wong CH, Jenne CN, Lee WY, Leger C, Kubes P. Functional innervation of hepatic iNKT cells is immunosuppressive following stroke. Science. 2011;334:101–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermona Soreq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Waiskopf, N., Shenhar-Tsarfaty, S., Soreq, H. (2015). Serum Cholinesterase Activities as Biomarkers of Cardiac Malfunctioning. In: Patel, V., Preedy, V. (eds) Biomarkers in Cardiovascular Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7741-5_10-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7741-5_10-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7741-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics