Skip to main content

Electrophysiology of Islet Cells

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Islets of Langerhans, 2. ed.

Abstract

Stimulus-secretion coupling (SSC) of pancreatic islet cells comprises electrical activity. Changes of the membrane potential (Vm) are regulated by metabolism-dependent alterations in ion channel activity.

This coupling is best explored in beta cells. The effect of glucose is directly linked to mitochondrial metabolism as the ATP/ADP ratio determines the open probability of ATP-sensitive K+ channels (KATP channels). Nucleotide sensitivity and concentration in the direct vicinity of the channels are controlled by several factors including phospholipids, fatty acids, and kinases, e.g., creatine and adenylate kinase. Closure of KATP channels leads to depolarization of beta cells via a yet unknown depolarizing current. Ca2+ influx during action potentials (APs) results in an increase of the cytosolic Ca2+ concentration ([Ca2+]c) that triggers exocytosis. APs are elicited by opening of voltage-dependent Na+ and/or Ca2+ channels and repolarized by voltage- and/or Ca2+-dependent K+ channels. At a constant stimulatory glucose concentration, APs are clustered in bursts that are interrupted by hyperpolarized interburst phases. Bursting electrical activity induces parallel fluctuations in [Ca2+]c and insulin secretion. Bursts are terminated by IksIow consisting of currents through Ca2+-dependent K+ channels and KATP channels. This chapter focuses on structure, characteristics, physiological function, and regulation of ion channels in beta cells. Information about pharmacological drugs acting on KATP channels, KATP channelopathies, and influence of oxidative stress on KATP channel function is provided. One focus is the outstanding significance of L-type Ca2+ channels for insulin secretion. The role of less well-characterized beta cell channels including voltage-dependent Na+ channels, volume-sensitive anion channels (VSACs), transient receptor potential (TRP)-related channels, and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is discussed. A model of beta cell oscillations provides insight in the interplay of the different channels to induce and maintain electrical activity. Regulation of beta cell electrical activity by hormones and the autonomous nervous system is discussed.

Alpha and delta cells are also equipped with KATP channels and voltage-dependent Na+, K+, and Ca2+ channels. Yet the SSC of these cells is less clear and is not necessarily dependent on KATP channel closure. Different ion channels of alpha and delta cells are introduced and SSC in alpha cells is described with special respect to paracrine effects of insulin and GABA secreted from beta cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aguilar-Bryan L, Bryan J (1999) Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr Rev 20:101–135

    CAS  PubMed  Google Scholar 

  • Aguilar-Bryan L, Nichols CG, Wechsler SW, Clement JP, Boyd AE 3rd, Gonzalez G, Herrera-Sosa H, Nguy K, Bryan J, Nelson DA (1995) Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268:423–426

    CAS  PubMed  Google Scholar 

  • Aguilar-Bryan L, Clement JP, Gonzalez G, Kunjilwar K, Babenko A, Bryan J (1998) Toward understanding the assembly and structure of KATP channels. Physiol Rev 78:227–245

    CAS  PubMed  Google Scholar 

  • Ahren B, Arkhammar P, Berggren PO, Nilsson T (1986) Galanin inhibits glucose-stimulated insulin release by a mechanism involving hyperpolarization and lowering of cytoplasmic free Ca2+ concentration. Biochem Biophys Res Commun 140:1059–1063

    CAS  PubMed  Google Scholar 

  • Aicardi G, Pollo A, Sher E, Carbone E (1991) Noradrenergic inhibition and voltage-dependent facilitation of omega-conotoxin-sensitive Ca channels in insulin-secreting RINm5F cells. FEBS Lett 281:201–204

    CAS  PubMed  Google Scholar 

  • Aizawa T, Sato Y, Komatsu M (2002) Importance of nonionic signals for glucose-induced biphasic insulin secretion. Diabetes 51(Suppl 1):S96–S98

    CAS  PubMed  Google Scholar 

  • Akesson B, Lundquist I (1999) Nitric oxide and hydroperoxide affect islet hormone release and Ca(2+) efflux. Endocrine 11:99–107

    CAS  PubMed  Google Scholar 

  • Akiba Y, Kato S, Katsube K, Nakamura M, Takeuchi K, Ishii H, Hibi T (2004) Transient receptor potential vanilloid subfamily 1 expressed in pancreatic islet beta cells modulates insulin secretion in rats. Biochem Biophys Res Commun 321:219–225

    CAS  PubMed  Google Scholar 

  • Ämmälä C, Larsson O, Berggren PO, Bokvist K, Juntti-Berggren L, Kindmark H, Rorsman P (1991) Inositol trisphosphate-dependent periodic activation of a Ca(2+)activated K+ conductance in glucose-stimulated pancreatic beta-cells. Nature 353:849–852

    PubMed  Google Scholar 

  • Andres MA, Baptista NC, Efird JT, Ogata KK, Bellinger FP, Zeyda T (2009) Depletion of SK1 channel subunits leads to constitutive insulin secretion. FEBS Lett 583:369–376

    CAS  PubMed  Google Scholar 

  • Arikkath J, Campbell KP (2003) Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr Opin Neurobiol 13:298–307

    CAS  PubMed  Google Scholar 

  • Arnoux JB, de Lonlay P, Ribeiro MJ, Hussain K, Blankenstein O, Mohnike K, Valayannopoulos V, Robert JJ, Rahier J, Sempoux C, Bellanne C, Verkarre V, Aigrain Y, Jaubert F, Brunelle F, Nihoul-Fekete C (2010) Congenital hyperinsulinism. Early Hum Dev 86:287–294

    CAS  PubMed  Google Scholar 

  • Ashcroft FM (1988) Adenosine 5′-triphosphate-sensitive potassium channels. Annu Rev Neurosci 11:97–118

    CAS  PubMed  Google Scholar 

  • Ashcroft FM, Rorsman P (1989) Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol 54:87–143

    CAS  PubMed  Google Scholar 

  • Ashcroft FM, Rorsman P (1990) ATP-sensitive K+ channels: a link between B-cell metabolism and insulin secretion. Biochem Soc Trans 18:109–111

    CAS  PubMed  Google Scholar 

  • Ashcroft FM, Harrison DE, Ashcroft SJ (1984) Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Nature 312:446–448

    CAS  PubMed  Google Scholar 

  • Ashcroft FM, Rorsman P, Trube G (1989) Single calcium channel activity in mouse pancreatic beta-cells. Ann N Y Acad Sci 560:410–412

    CAS  PubMed  Google Scholar 

  • Atwater I, Ribalet B, Rojas E (1978) Cyclic changes in potential and resistance of the beta-cell membrane induced by glucose in islets of Langerhans from mouse. J Physiol 278:117–139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Atwater I, Ribalet B, Rojas E (1979) Mouse pancreatic beta-cells: tetraethylammonium blockage of the potassium permeability increase induced by depolarization. J Physiol 288:561–574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Atwater I, Dawson CM, Scott A, Eddlestone G, Rojas E (1980) The nature of the oscillatory behaviour in electrical activity from pancreatic beta-cell. Horm Metab Res Suppl Suppl 10:100–107

    CAS  Google Scholar 

  • Babenko AP (2005) K(ATP) channels “vingt ans apres”: ATG to PDB to mechanism. J Mol Cell Cardiol 39:79–98

    CAS  PubMed  Google Scholar 

  • Babenko AP, Bryan J (2002) SUR-dependent modulation of KATP channels by an N-terminal KIR6.2 peptide. Defining intersubunit gating interactions. J Biol Chem 277:43997–44004

    CAS  PubMed  Google Scholar 

  • Babenko AP, Bryan J (2003) Sur domains that associate with and gate KATP pores define a novel gatekeeper. J Biol Chem 278:41577–41580

    CAS  PubMed  Google Scholar 

  • Babenko AP, Aguilar-Bryan L, Bryan J (1998) A view of sur/KIR6.X, KATP channels. Annu Rev Physiol 60:667–687

    CAS  PubMed  Google Scholar 

  • Babenko AP, Gonzalez G, Bryan J (1999a) The N-terminus of KIR6.2 limits spontaneous bursting and modulates the ATP-inhibition of KATP channels. Biochem Biophys Res Commun 255:231–238

    CAS  PubMed  Google Scholar 

  • Babenko AP, Gonzalez G, Aguilar-Bryan L, Bryan J (1999b) Sulfonylurea receptors set the maximal open probability, ATP sensitivity and plasma membrane density of KATP channels. FEBS Lett 445:131–136

    CAS  PubMed  Google Scholar 

  • Babenko AP, Gonzalez G, Bryan J (1999c) The tolbutamide site of SUR1 and a mechanism for its functional coupling to K(ATP) channel closure. FEBS Lett 459:367–376

    CAS  PubMed  Google Scholar 

  • Babenko AP, Gonzalez G, Bryan J (2000) Pharmaco-topology of sulfonylurea receptors. Separate domains of the regulatory subunits of K(ATP) channel isoforms are required for selective interaction with K(+) channel openers. J Biol Chem 275:717–720

    CAS  PubMed  Google Scholar 

  • Bailey SJ, Ravier MA, Rutter GA (2007) Glucose-dependent regulation of gamma-aminobutyric acid (GABA A) receptor expression in mouse pancreatic islet alpha-cells. Diabetes 56:320–327

    CAS  PubMed  Google Scholar 

  • Bao S, Jacobson DA, Wohltmann M, Bohrer A, Jin W, Philipson LH, Turk J (2008) Glucose homeostasis, insulin secretion, and islet phospholipids in mice that overexpress iPLA2beta in pancreatic beta-cells and in iPLA2beta-null mice. Am J Physiol Endocrinol Metab 294:E217–E229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barg S, Galvanovskis J, Gopel SO, Rorsman P, Eliasson L (2000) Tight coupling between electrical activity and exocytosis in mouse glucagon-secreting alpha-cells. Diabetes 49:1500–1510

    CAS  PubMed  Google Scholar 

  • Barg S, Ma X, Eliasson L, Galvanovskis J, Gopel SO, Obermuller S, Platzer J, Renstrom E, Trus M, Atlas D, Striessnig J, Rorsman P (2001) Fast exocytosis with few Ca(2+) channels in insulin-secreting mouse pancreatic B cells. Biophys J 81:3308–3323

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barnett DW, Pressel DM, Misler S (1995) Voltage-dependent Na+ and Ca2+ currents in human pancreatic islet beta-cells: evidence for roles in the generation of action potentials and insulin secretion. Pflugers Arch 431:272–282

    CAS  PubMed  Google Scholar 

  • Baukrowitz T, Fakler B (2000) KATP channels gated by intracellular nucleotides and phospholipids. Eur J Biochem 267:5842–5848

    CAS  PubMed  Google Scholar 

  • Baukrowitz T, Schulte U, Oliver D, Herlitze S, Krauter T, Tucker SJ, Ruppersberg JP, Fakler B (1998) PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science 282:1141–1144

    CAS  PubMed  Google Scholar 

  • Bertram R, Sherman A (2004) A calcium-based phantom bursting model for pancreatic islets. Bull Math Biol 66:1313–1344

    CAS  PubMed  Google Scholar 

  • Berts A, Ball A, Dryselius G, Gylfe E, Hellman B (1996) Glucose stimulation of somatostatin-producing islet cells involves oscillatory Ca2+ signaling. Endocrinology 137:693–697

    CAS  PubMed  Google Scholar 

  • Best L (1999) Cell-attached recordings of the volume-sensitive anion channel in rat pancreatic beta-cells. Biochim Biophys Acta 1419:248–256

    CAS  PubMed  Google Scholar 

  • Best L (2002) Study of a glucose-activated anion-selective channel in rat pancreatic beta-cells. Pflugers Arch 445:97–104

    CAS  PubMed  Google Scholar 

  • Best L, Benington S (1998) Effects of sulphonylureas on the volume-sensitive anion channel in rat pancreatic beta-cells. Br J Pharmacol 125:874–878

    CAS  PubMed Central  PubMed  Google Scholar 

  • Best L, Miley HE, Yates AP (1996a) Activation of an anion conductance and beta-cell depolarization during hypotonically induced insulin release. Exp Physiol 81:927–933

    CAS  PubMed  Google Scholar 

  • Best L, Sheader EA, Brown PD (1996b) A volume-activated anion conductance in insulin-secreting cells. Pflugers Arch 431:363–370

    CAS  PubMed  Google Scholar 

  • Best L, Brown PD, Tomlinson S (1997) Anion fluxes, volume regulation and electrical activity in the mammalian pancreatic beta-cell. Exp Physiol 82:957–966

    CAS  PubMed  Google Scholar 

  • Best L, Miley HE, Brown PD, Cook LJ (1999) Methylglyoxal causes swelling and activation of a volume-sensitive anion conductance in rat pancreatic beta-cells. J Membr Biol 167:65–71

    CAS  PubMed  Google Scholar 

  • Best L, Brown PD, Sheader EA, Yates AP (2000) Selective inhibition of glucose-stimulated beta-cell activity by an anion channel inhibitor. J Membr Biol 177:169–175

    CAS  PubMed  Google Scholar 

  • Best L, Speake T, Brown P (2001) Functional characterisation of the volume-sensitive anion channel in rat pancreatic beta-cells. Exp Physiol 86:145–150

    CAS  PubMed  Google Scholar 

  • Best L, Davies S, Brown PD (2004a) Tolbutamide potentiates the volume-regulated anion channel current in rat pancreatic beta cells. Diabetologia 47:1990–1997

    CAS  PubMed  Google Scholar 

  • Best L, Yates AP, Decher N, Steinmeyer K, Nilius B (2004b) Inhibition of glucose-induced electrical activity in rat pancreatic beta-cells by DCPIB, a selective inhibitor of volume-sensitive anion currents. Eur J Pharmacol 489:13–19

    CAS  PubMed  Google Scholar 

  • Bokvist K, Ammala C, Berggren PO, Rorsman P, Wahlander K (1991) Alpha 2-adrenoreceptor stimulation does not inhibit L-type calcium channels in mouse pancreatic beta-cells. Biosci Rep 11:147–157

    CAS  PubMed  Google Scholar 

  • Bokvist K, Eliasson L, Ammala C, Renstrom E, Rorsman P (1995) Co-localization of L-type Ca2+ channels and insulin-containing secretory granules and its significance for the initiation of exocytosis in mouse pancreatic B-cells. EMBO J 14:50–57

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bokvist K, Olsen HL, Hoy M, Gotfredsen CF, Holmes WF, Buschard K, Rorsman P, Gromada J (1999) Characterisation of sulphonylurea and ATP-regulated K+ channels in rat pancreatic A-cells. Pflugers Arch 438:428–436

    CAS  PubMed  Google Scholar 

  • Branstrom R, Corkey BE, Berggren PO, Larsson O (1997a) Evidence for a unique long chain acyl-CoA ester binding site on the ATP-regulated potassium channel in mouse pancreatic beta cells. J Biol Chem 272:17390–17394

    CAS  PubMed  Google Scholar 

  • Branstrom R, Hoog A, Wahl MA, Berggren PO, Larsson O (1997b) RIN14B: a pancreatic delta-cell line that maintains functional ATP-dependent K+ channels and capability to secrete insulin under conditions where it no longer secretes somatostatin. FEBS Lett 411:301–307

    CAS  PubMed  Google Scholar 

  • Branstrom R, Leibiger IB, Leibiger B, Corkey BE, Berggren PO, Larsson O (1998a) Long chain coenzyme A esters activate the pore-forming subunit (Kir6.2) of the ATP-regulated potassium channel. J Biol Chem 273:31395–31400

    CAS  PubMed  Google Scholar 

  • Branstrom R, Efendic S, Berggren PO, Larsson O (1998b) Direct inhibition of the pancreatic beta-cell ATP-regulated potassium channel by alpha-ketoisocaproate. J Biol Chem 273:14113–14118

    CAS  PubMed  Google Scholar 

  • Branstrom R, Aspinwall CA, Valimaki S, Ostensson CG, Tibell A, Eckhard M, Brandhorst H, Corkey BE, Berggren PO, Larsson O (2004) Long-chain CoA esters activate human pancreatic beta-cell KATP channels: potential role in type 2 diabetes. Diabetologia 47:277–283

    CAS  PubMed  Google Scholar 

  • Braun M, Ramracheya R, Bengtsson M, Zhang Q, Karanauskaite J, Partridge C, Johnson PR, Rorsman P (2008) Voltage-gated ion channels in human pancreatic beta-cells: electrophysiological characterization and role in insulin secretion. Diabetes 57:1618–1628

    CAS  PubMed  Google Scholar 

  • Britsch S, Krippeit-Drews P, Gregor M, Lang F, Drews G (1994) Effects of osmotic changes in extracellular solution on electrical activity of mouse pancreatic B-cells. Biochem Biophys Res Commun 204:641–645

    CAS  PubMed  Google Scholar 

  • Britsch S, Krippeit-Drews P, Lang F, Gregor M, Drews G (1995) Glucagon-like peptide-1 modulates Ca2+ current but not K+ ATP current in intact mouse pancreatic B-cells. Biochem Biophys Res Commun 207:33–39

    CAS  PubMed  Google Scholar 

  • Bryan J, Munoz A, Zhang X, Düfer M, Drews G, Krippeit-Drews P, Aguilar-Bryan L (2007) ABCC8 and ABCC9: ABC transporters that regulate K+ channels. Pflugers Arch 453:703–718

    CAS  PubMed  Google Scholar 

  • Buda P, Reinbothe T, Nagaraj V, Mahdi T, Luan C, Tang Y, Axelsson AS, Li D, Rosengren AH, Renstrom E, Zhang E (2013) Eukaryotic translation initiation factor 3 subunit e controls intracellular calcium homeostasis by regulation of cav1.2 surface expression. PLoS One 8:e64462

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bushman JD, Zhou Q, Shyng SL (2013) A Kir6.2 pore mutation causes inactivation of ATP-sensitive potassium channels by disrupting PIP2-dependent gating. PLoS One 8:e63733

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cabrera O, Jacques-Silva MC, Speier S, Yang SN, Kohler M, Fachado A, Vieira E, Zierath JR, Kibbey R, Berman DM, Kenyon NS, Ricordi C, Caicedo A, Berggren PO (2008) Glutamate is a positive autocrine signal for glucagon release. Cell Metab 7:545–554

    CAS  PubMed  Google Scholar 

  • Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555

    CAS  PubMed  Google Scholar 

  • Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425

    CAS  PubMed  Google Scholar 

  • Chachin M, Yamada M, Fujita A, Matsuoka T, Matsushita K, Kurachi Y (2003) Nateglinide, a d-phenylalanine derivative lacking either a sulfonylurea or benzamido moiety, specifically inhibits pancreatic beta-cell-type K(ATP) channels. J Pharmacol Exp Ther 304:1025–1032

    CAS  PubMed  Google Scholar 

  • Chan KW, Zhang H, Logothetis DE (2003) N-terminal transmembrane domain of the SUR controls trafficking and gating of Kir6 channel subunits. EMBO J 22:3833–3843

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chay TR, Keizer J (1983) Minimal model for membrane oscillations in the pancreatic beta-cell. Biophys J 42:181–190

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng H, Beck A, Launay P, Gross SA, Stokes AJ, Kinet JP, Fleig A, Penner R (2007) TRPM4 controls insulin secretion in pancreatic beta-cells. Cell Calcium 41:51–61

    CAS  PubMed  Google Scholar 

  • Cheng-Xue R, Gomez-Ruiz A, Antoine N, Noel LA, Chae HY, Ravier MA, Chimienti F, Schuit FC, Gilon P (2013) Tolbutamide controls glucagon release from mouse islets differently than glucose: involvement of K(ATP) channels from both alpha-cells and delta-cells. Diabetes 62:1612–1622

    PubMed Central  PubMed  Google Scholar 

  • Chistiakov DA, Potapov VA, Khodirev DC, Shamkhalova MS, Shestakova MV, Nosikov VV (2009) Genetic variations in the pancreatic ATP-sensitive potassium channel, beta-cell dysfunction, and susceptibility to type 2 diabetes. Acta Diabetol 46:43–49

    CAS  PubMed  Google Scholar 

  • Clement JP, Kunjilwar K, Gonzalez G, Schwanstecher M, Panten U, Aguilar-Bryan L, Bryan J (1997) Association and stoichiometry of K(ATP) channel subunits. Neuron 18:827–838

    CAS  PubMed  Google Scholar 

  • Collins SC, Hoppa MB, Walker JN, Amisten S, Abdulkader F, Bengtsson M, Fearnside J, Ramracheya R, Toye AA, Zhang Q, Clark A, Gauguier D, Rorsman P (2010) Progression of diet-induced diabetes in C57BL6J mice involves functional dissociation of Ca2(+) channels from secretory vesicles. Diabetes 59:1192–1201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cook DL, Hales CN (1984) Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 311:271–273

    CAS  PubMed  Google Scholar 

  • Crane A, Aguilar-Bryan L (2004) Assembly, maturation, and turnover of K(ATP) channel subunits. J Biol Chem 279:9080–9090

    CAS  PubMed  Google Scholar 

  • Crawford RM, Ranki HJ, Botting CH, Budas GR, Jovanovic A (2002) Creatine kinase is physically associated with the cardiac ATP-sensitive K+ channel in vivo. FASEB J 16:102–104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dabrowski M, Wahl P, Holmes WE, Ashcroft FM (2001) Effect of repaglinide on cloned beta cell, cardiac and smooth muscle types of ATP-sensitive potassium channels. Diabetologia 44:747–756

    CAS  PubMed  Google Scholar 

  • Davies A, Hendrich J, Van Minh AT, Wratten J, Douglas L, Dolphin AC (2007) Functional biology of the alpha(2)delta subunits of voltage-gated calcium channels. Trends Pharmacol Sci 28:220–228

    CAS  PubMed  Google Scholar 

  • de Wet H, Mikhailov MV, Fotinou C, Dreger M, Craig TJ, Venien-Bryan C, Ashcroft FM (2007a) Studies of the ATPase activity of the ABC protein SUR1. FEBS J 274:3532–3544

    PubMed  Google Scholar 

  • de Wet H, Rees MG, Shimomura K, Aittoniemi J, Patch AM, Flanagan SE, Ellard S, Hattersley AT, Sansom MS, Ashcroft FM (2007b) Increased ATPase activity produced by mutations at arginine-1380 in nucleotide-binding domain 2 of ABCC8 causes neonatal diabetes. Proc Natl Acad Sci USA 104:18988–18992

    PubMed Central  PubMed  Google Scholar 

  • Dean PM, Matthews EK (1968) Electrical activity in pancreatic islet cells. Nature 219:389–390

    CAS  PubMed  Google Scholar 

  • Debuyser A, Drews G, Henquin JC (1991a) Adrenaline inhibition of insulin release: role of the repolarization of the B cell membrane. Pflugers Arch 419:131–137

    CAS  PubMed  Google Scholar 

  • Debuyser A, Drews G, Henquin JC (1991b) Adrenaline inhibition of insulin release: role of cyclic AMP. Mol Cell Endocrinol 78:179–186

    CAS  PubMed  Google Scholar 

  • Detimary P, Dejonghe S, Ling Z, Pipeleers D, Schuit F, Henquin JC (1998a) The changes in adenine nucleotides measured in glucose-stimulated rodent islets occur in beta cells but not in alpha cells and are also observed in human islets. J Biol Chem 273:33905–33908

    CAS  PubMed  Google Scholar 

  • Detimary P, Gilon P, Henquin JC (1998b) Interplay between cytoplasmic Ca2+ and the ATP/ADP ratio: a feedback control mechanism in mouse pancreatic islets. Biochem J 333(Pt 2):269–274

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dorschner H, Brekardin E, Uhde I, Schwanstecher C, Schwanstecher M (1999) Stoichiometry of sulfonylurea-induced ATP-sensitive potassium channel closure. Mol Pharmacol 55:1060–1066

    CAS  PubMed  Google Scholar 

  • Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    CAS  PubMed  Google Scholar 

  • Drews G, Debuyser A, Nenquin M, Henquin JC (1990) Galanin and epinephrine act on distinct receptors to inhibit insulin release by the same mechanisms including an increase in K+ permeability of the B-cell membrane. Endocrinology 126:1646–1653

    CAS  PubMed  Google Scholar 

  • Drews G, Zempel G, Krippeit-Drews P, Britsch S, Busch GL, Kaba NK, Lang F (1998) Ion channels involved in insulin release are activated by osmotic swelling of pancreatic B-cells. Biochim Biophys Acta 1370:8–16

    CAS  PubMed  Google Scholar 

  • Drews G, Krämer C, Düfer M, Krippeit-Drews P (2000a) Contrasting effects of alloxan on islets and single mouse pancreatic beta-cells. Biochem J 352(Pt 2):389–397

    CAS  PubMed Central  PubMed  Google Scholar 

  • Drews G, Krämer C, Krippeit-Drews P (2000b) Dual effect of NO on K(+)(ATP) current of mouse pancreatic B-cells: stimulation by deenergizing mitochondria and inhibition by direct interaction with the channel. Biochim Biophys Acta 1464:62–68

    CAS  PubMed  Google Scholar 

  • Düfer M, Krippeit-Drews P, Buntinas L, Siemen D, Drews G (2002) Methyl pyruvate stimulates pancreatic beta-cells by a direct effect on KATP channels, and not as a mitochondrial substrate. Biochem J 368:817–825

    PubMed Central  PubMed  Google Scholar 

  • Düfer M, Haspel D, Krippeit-Drews P, Aguilar-Bryan L, Bryan J, Drews G (2004) Oscillations of membrane potential and cytosolic Ca(2+) concentration in SUR1(−/−) beta cells. Diabetologia 47:488–498

    PubMed  Google Scholar 

  • Düfer M, Neye Y, Krippeit-Drews P, Drews G (2004) Direct interference of HIV protease inhibitors with pancreatic beta-cell function. Naunyn Schmiedebergs Arch Pharmacol 369:583–590

    CAS  PubMed  Google Scholar 

  • Düfer M, Gier B, Wolpers D, Ruth P, Krippeit Drews P, Drews G (2009) SK4 channels are involved in the regulation of glucose homeostasis and pancreatic beta-cell function. Diabetes 58:1835–1843

    Google Scholar 

  • Düfer M, Haspel D, Krippeit-Drews P, Aguilar-Bryan L, Bryan J, Drews G (2009) Activation of the Na(+)/K(+)-ATPase by insulin and glucose as a putative negative feedback mechanism in pancreatic beta-cells. Pflugers Arch 457:1351–1360

    PubMed  Google Scholar 

  • Düfer M, Neye Y, Hörth K, Krippeit-Drews P, Hennige A, Widmer H, McClafferty H, Shipston MJ, Haring HU, Ruth P, Drews G (2011) BK channels affect glucose homeostasis and cell viability of murine pancreatic beta cells. Diabetologia 54:423–432

    PubMed Central  PubMed  Google Scholar 

  • Düfer M, Hörth K, Wagner R, Schittenhelm B, Prowald S, Wagner TF, Oberwinkler J, Lukowski R, Gonzalez FJ, Krippeit-Drews P, Drews G (2012a) Bile acids acutely stimulate insulin secretion of mouse beta-cells via farnesoid X receptor activation and K(ATP) channel inhibition. Diabetes 61:1479–1489

    PubMed Central  PubMed  Google Scholar 

  • Düfer M, Hörth K, Krippeit-Drews P, Drews G (2012b) The significance of the nuclear farnesoid X receptor (FXR) in beta cell function. Islets 4:333–338

    PubMed Central  PubMed  Google Scholar 

  • Dukes ID, McIntyre MS, Mertz RJ, Philipson LH, Roe MW, Spencer B, Worley JF 3rd (1994) Dependence on NADH produced during glycolysis for beta-cell glucose signaling. J Biol Chem 269:10979–10982

    CAS  PubMed  Google Scholar 

  • Dunne MJ, Illot MC, Peterson OH (1987) Interaction of diazoxide, tolbutamide and ATP4- on nucleotide-dependent K+ channels in an insulin-secreting cell line. J Membr Biol 99:215–224

    CAS  PubMed  Google Scholar 

  • Dunne MJ, Bullett MJ, Li GD, Wollheim CB, Petersen OH (1989) Galanin activates nucleotide-dependent K+ channels in insulin-secreting cells via a pertussis toxin-sensitive G-protein. EMBO J 8:413–420

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dunne MJ, Cosgrove KE, Shepherd RM, Aynsley-Green A, Lindley KJ (2004) Hyperinsulinism in infancy: from basic science to clinical disease. Physiol Rev 84:239–275

    CAS  PubMed  Google Scholar 

  • Dyachok O, Gylfe E (2001) Store-operated influx of Ca(2+) in pancreatic beta-cells exhibits graded dependence on the filling of the endoplasmic reticulum. J Cell Sci 114:2179–2186

    CAS  PubMed  Google Scholar 

  • Dzeja PP, Terzic A (2003) Phosphotransfer networks and cellular energetics. J Exp Biol 206:2039–2047

    CAS  PubMed  Google Scholar 

  • Efendic S, Enzmann F, Nylen A, Uvnas-Wallensten K, Luft R (1979) Effect of glucose/sulfonylurea interaction on release of insulin, glucagon, and somatostatin from isolated perfused rat pancreas. Proc Natl Acad Sci USA 76:5901–5904

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eliasson L, Renstrom E, Ammala C, Berggren PO, Bertorello AM, Bokvist K, Chibalin A, Deeney JT, Flatt PR, Gabel J, Gromada J, Larsson O, Lindstrom P, Rhodes CJ, Rorsman P (1996) PKC-dependent stimulation of exocytosis by sulfonylureas in pancreatic beta cells. Science 271:813–815

    CAS  PubMed  Google Scholar 

  • Eliasson L, Ma X, Renstrom E, Barg S, Berggren PO, Galvanovskis J, Gromada J, Jing X, Lundquist I, Salehi A, Sewing S, Rorsman P (2003) SUR1 regulates PKA-independent cAMP-induced granule priming in mouse pancreatic B-cells. J Gen Physiol 121:181–197

    CAS  PubMed Central  PubMed  Google Scholar 

  • El-Kholy W, MacDonald PE, Fox JM, Bhattacharjee A, Xue T, Gao X, Zhang Y, Stieber J, Li RA, Tsushima RG, Wheeler MB (2007) Hyperpolarization-activated cyclic nucleotide-gated channels in pancreatic beta-cells. Mol Endocrinol 21:753–764

    CAS  PubMed  Google Scholar 

  • Ellard S, Flanagan SE, Girard CA, Patch AM, Harries LW, Parrish A, Edghill EL, Mackay DJ, Proks P, Shimomura K, Haberland H, Carson DJ, Shield JP, Hattersley AT, Ashcroft FM (2007) Permanent neonatal diabetes caused by dominant, recessive, or compound heterozygous SUR1 mutations with opposite functional effects. Am J Hum Genet 81:375–382

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eto K, Tsubamoto Y, Terauchi Y, Sugiyama T, Kishimoto T, Takahashi N, Yamauchi N, Kubota N, Murayama S, Aizawa T, Akanuma Y, Aizawa S, Kasai H, Yazaki Y, Kadowaki T (1999) Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science 283:981–985

    CAS  PubMed  Google Scholar 

  • Flechtner I, de Lonlay P, Polak M (2006) Diabetes and hypoglycaemia in young children and mutations in the Kir6.2 subunit of the potassium channel: therapeutic consequences. Diabetes Metab 32:569–580

    CAS  PubMed  Google Scholar 

  • Franklin I, Gromada J, Gjinovci A, Theander S, Wollheim CB (2005) Beta-cell secretory products activate alpha-cell ATP-dependent potassium channels to inhibit glucagon release. Diabetes 54:1808–1815

    CAS  PubMed  Google Scholar 

  • Fuhlendorff J, Rorsman P, Kofod H, Brand CL, Rolin B, MacKay P, Shymko R, Carr RD (1998) Stimulation of insulin release by repaglinide and glibenclamide involves both common and distinct processes. Diabetes 47:345–351

    CAS  PubMed  Google Scholar 

  • Gaines KL, Hamilton S, Boyd AE 3rd (1988) Characterization of the sulfonylurea receptor on beta cell membranes. J Biol Chem 263:2589–2592

    CAS  PubMed  Google Scholar 

  • Gaskins HR, Baldeon ME, Selassie L, Beverly JL (1995) Glucose modulates gamma-aminobutyric acid release from the pancreatic beta TC6 cell line. J Biol Chem 270:30286–30289

    CAS  PubMed  Google Scholar 

  • Gerbitz KD, Gempel K, Brdiczka D (1996) Mitochondria and diabetes. Genetic, biochemical, and clinical implications of the cellular energy circuit. Diabetes 45:113–126

    CAS  PubMed  Google Scholar 

  • Gier B, Krippeit-Drews P, Sheiko T, Aguilar-Bryan L, Bryan J, Düfer M, Drews G (2009) Suppression of KATP channel activity protects murine pancreatic beta cells against oxidative stress. J Clin Invest 119:3246–3256

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gill GV, Rauf O, MacFarlane IA (1997) Diazoxide treatment for insulinoma: a national UK survey. Postgrad Med J 73:640–641

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gillis KD, Gee WM, Hammoud A, McDaniel ML, Falke LC, Misler S (1989) Effects of sulfonamides on a metabolite-regulated ATPi-sensitive K+ channel in rat pancreatic B-cells. Am J Physiol 257:C1119–C1127

    CAS  PubMed  Google Scholar 

  • Gilon P, Henquin JC (2001) Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr Rev 22:565–604

    CAS  PubMed  Google Scholar 

  • Gilon P, Yakel J, Gromada J, Zhu Y, Henquin JC, Rorsman P (1997) G protein-dependent inhibition of L-type Ca2+ currents by acetylcholine in mouse pancreatic B-cells. J Physiol 499(Pt 1):65–76

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gilon P, Arredouani A, Gailly P, Gromada J, Henquin JC (1999) Uptake and release of Ca2+ by the endoplasmic reticulum contribute to the oscillations of the cytosolic Ca2+ concentration triggered by Ca2+ influx in the electrically excitable pancreatic B-cell. J Biol Chem 274:20197–20205

    CAS  PubMed  Google Scholar 

  • Giurgea I, Sanlaville D, Fournet JC, Sempoux C, Bellanne-Chantelot C, Touati G, Hubert L, Groos MS, Brunelle F, Rahier J, Henquin JC, Dunne MJ, Jaubert F, Robert JJ, Nihoul-Fekete C, Vekemans M, Junien C, de Lonlay P (2006) Congenital hyperinsulinism and mosaic abnormalities of the ploidy. J Med Genet 43:248–254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G, Walker M, Levy JC, Sampson M, Halford S, McCarthy MI, Hattersley AT, Frayling TM (2003) Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 52:568–572

    CAS  PubMed  Google Scholar 

  • Gloyn AL, Pearson ER, Antcliff JF, Proks P, Bruining GJ, Slingerland AS, Howard N, Srinivasan S, Silva JM, Molnes J, Edghill EL, Frayling TM, Temple IK, Mackay D, Shield JP, Sumnik Z, van Rhijn A, Wales JK, Clark P, Gorman S, Aisenberg J, Ellard S, Njolstad PR, Ashcroft FM, Hattersley AT (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350:1838–1849

    CAS  PubMed  Google Scholar 

  • Gloyn AL, Reimann F, Girard C, Edghill EL, Proks P, Pearson ER, Temple IK, Mackay DJ, Shield JP, Freedenberg D, Noyes K, Ellard S, Ashcroft FM, Gribble FM, Hattersley AT (2005) Relapsing diabetes can result from moderately activating mutations in KCNJ11. Hum Mol Genet 14:925–934

    CAS  PubMed  Google Scholar 

  • Goforth PB, Bertram R, Khan FA, Zhang M, Sherman A, Satin LS (2002) Calcium-activated K+ channels of mouse beta-cells are controlled by both store and cytoplasmic Ca2+: experimental and theoretical studies. J Gen Physiol 120:307–322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Göpel SO, Kanno T, Barg S, Eliasson L, Galvanovskis J, Renstrom E, Rorsman P (1999) Activation of Ca(2+)-dependent K(+) channels contributes to rhythmic firing of action potentials in mouse pancreatic beta cells. J Gen Physiol 114:759–770

    PubMed Central  PubMed  Google Scholar 

  • Göpel SO, Kanno T, Barg S, Rorsman P (2000) Patch-clamp characterisation of somatostatin-secreting -cells in intact mouse pancreatic islets. J Physiol 528:497–507

    PubMed Central  PubMed  Google Scholar 

  • Göpel SO, Kanno T, Barg S, Weng XG, Gromada J, Rorsman P (2000a) Regulation of glucagon release in mouse -cells by KATP channels and inactivation of TTX-sensitive Na+ channels. J Physiol 528:509–520

    PubMed Central  PubMed  Google Scholar 

  • Göpel SO, Kanno T, Barg S, Rorsman P (2000b) Patch-clamp characterisation of somatostatin-secreting -cells in intact mouse pancreatic islets. J Physiol 528:497–507

    PubMed Central  PubMed  Google Scholar 

  • Gribble FM, Tucker SJ, Ashcroft FM (1997a) The essential role of the Walker A motifs of SUR1 in K-ATP channel activation by Mg-ADP and diazoxide. EMBO J 16:1145–1152

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gribble FM, Tucker SJ, Ashcroft FM (1997b) The interaction of nucleotides with the tolbutamide block of cloned ATP-sensitive K+ channel currents expressed in Xenopus oocytes: a reinterpretation. J Physiol 504(Pt 1):35–45

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gribble FM, Tucker SJ, Haug T, Ashcroft FM (1998) MgATP activates the beta cell KATP channel by interaction with its SUR1 subunit. Proc Natl Acad Sci USA 95:7185–7190

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gromada J, Dissing S, Bokvist K, Renstrom E, Frokjaer-Jensen J, Wulff BS, Rorsman P (1995) Glucagon-like peptide I increases cytoplasmic calcium in insulin-secreting beta TC3-cells by enhancement of intracellular calcium mobilization. Diabetes 44:767–774

    CAS  PubMed  Google Scholar 

  • Gromada J, Bokvist K, Ding WG, Barg S, Buschard K, Renstrom E, Rorsman P (1997) Adrenaline stimulates glucagon secretion in pancreatic A-cells by increasing the Ca2+ current and the number of granules close to the L-type Ca2+ channels. J Gen Physiol 110:217–228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gromada J, Bokvist K, Ding WG, Holst JJ, Nielsen JH, Rorsman P (1998) Glucagon-like peptide 1 (7-36) amide stimulates exocytosis in human pancreatic beta-cells by both proximal and distal regulatory steps in stimulus-secretion coupling. Diabetes 47:57–65

    CAS  PubMed  Google Scholar 

  • Gromada J, Ma X, Hoy M, Bokvist K, Salehi A, Berggren PO, Rorsman P (2004) ATP-sensitive K+ channel-dependent regulation of glucagon release and electrical activity by glucose in wild-type and SUR1−/− mouse alpha-cells. Diabetes 53(Suppl 3):S181–S189

    CAS  PubMed  Google Scholar 

  • Gromada J, Franklin I, Wollheim CB (2007) Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr Rev 28:84–116

    CAS  PubMed  Google Scholar 

  • Guiot Y, Stevens M, Marhfour I, Stiernet P, Mikhailov M, Ashcroft SJ, Rahier J, Henquin JC, Sempoux C (2007) Morphological localisation of sulfonylurea receptor 1 in endocrine cells of human, mouse and rat pancreas. Diabetologia 50:1889–1899

    CAS  PubMed  Google Scholar 

  • Gustafsson AJ, Ingelman-Sundberg H, Dzabic M, Awasum J, Nguyen KH, Ostenson CG, Pierro C, Tedeschi P, Woolcott O, Chiounan S, Lund PE, Larsson O, Islam MS (2005) Ryanodine receptor-operated activation of TRP-like channels can trigger critical Ca2+ signaling events in pancreatic beta-cells. FASEB J 19:301–303

    CAS  PubMed  Google Scholar 

  • Hansen AM, Christensen IT, Hansen JB, Carr RD, Ashcroft FM, Wahl P (2002) Differential interactions of nateglinide and repaglinide on the human beta-cell sulphonylurea receptor 1. Diabetes 51:2789–2795

    CAS  PubMed  Google Scholar 

  • Hansen AM, Hansen JB, Carr RD, Ashcroft FM, Wahl P (2005) Kir6.2-dependent high-affinity repaglinide binding to beta-cell K(ATP) channels. Br J Pharmacol 144:551–557

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haspel D, Krippeit-Drews P, Aguilar-Bryan L, Bryan J, Drews G, Düfer M (2005) Crosstalk between membrane potential and cytosolic Ca2+ concentration in beta cells from Sur1−/− mice. Diabetologia 48:913–921

    CAS  PubMed  Google Scholar 

  • Hattersley AT, Ashcroft FM (2005) Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy. Diabetes 54:2503–2513

    CAS  PubMed  Google Scholar 

  • Henquin JC (1978) d-glucose inhibits potassium efflux from pancreatic islet cells. Nature 271:271–273

    CAS  PubMed  Google Scholar 

  • Henquin JC (1990) Role of voltage- and Ca2(+)-dependent K+ channels in the control of glucose-induced electrical activity in pancreatic B-cells. Pflugers Arch 416:568–572

    CAS  PubMed  Google Scholar 

  • Henquin JC (1998) A minimum of fuel is necessary for tolbutamide to mimic the effects of glucose on electrical activity in pancreatic beta-cells. Endocrinology 139:993–998

    CAS  PubMed  Google Scholar 

  • Henquin JC (2000) Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49:1751–1760

    CAS  PubMed  Google Scholar 

  • Henquin JC, Meissner HP (1982) Opposite effects of tolbutamide and diazoxide on 86Rb + fluxes and membrane potential in pancreatic B cells. Biochem Pharmacol 31:1407–1415

    CAS  PubMed  Google Scholar 

  • Henquin JC, Sempoux C, Marchandise J, Godecharles S, Guiot Y, Nenquin M, Rahier J (2013) Congenital hyperinsulinism caused by hexokinase I expression or glucokinase-activating mutation in a subset of beta-cells. Diabetes 62:1689–1696

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herrington J (2007) Gating modifier peptides as probes of pancreatic beta-cell physiology. Toxicon 49:231–238

    CAS  PubMed  Google Scholar 

  • Herrington J, Sanchez M, Wunderler D, Yan L, Bugianesi RM, Dick IE, Clark SA, Brochu RM, Priest BT, Kohler MG, McManus OB (2005) Biophysical and pharmacological properties of the voltage-gated potassium current of human pancreatic beta-cells. J Physiol 567:159–175

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herrington J, Zhou YP, Bugianesi RM, Dulski PM, Feng Y, Warren VA, Smith MM, Kohler MG, Garsky VM, Sanchez M, Wagner M, Raphaelli K, Banerjee P, Ahaghotu C, Wunderler D, Priest BT, Mehl JT, Garcia ML, McManus OB, Kaczorowski GJ, Slaughter RS (2006) Blockers of the delayed-rectifier potassium current in pancreatic beta-cells enhance glucose-dependent insulin secretion. Diabetes 55:1034–1042

    CAS  PubMed  Google Scholar 

  • Hiriart M, Matteson DR (1988) Na channels and two types of Ca channels in rat pancreatic B cells identified with the reverse hemolytic plaque assay. J Gen Physiol 91:617–639

    CAS  PubMed  Google Scholar 

  • Hjortoe GM, Hagel GM, Terry BR, Thastrup O, Arkhammar PO (2004) Functional identification and monitoring of individual alpha and beta cells in cultured mouse islets of Langerhans. Acta Diabetol 41:185–193

    CAS  PubMed  Google Scholar 

  • Holz GG, Kuhtreiber WM, Habener JF (1993) Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7-37). Nature 361:362–365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Homaidan FR, Sharp GW, Nowak LM (1991) Galanin inhibits a dihydropyridine-sensitive Ca2+ current in the RINm5f cell line. Proc Natl Acad Sci USA 88:8744–8748

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoppa MB, Collins S, Ramracheya R, Hodson L, Amisten S, Zhang Q, Johnson P, Ashcroft FM, Rorsman P (2009) Chronic palmitate exposure inhibits insulin secretion by dissociation of Ca(2+) channels from secretory granules. Cell Metab 10:455–465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horvath A, Szabadkai G, Varnai P, Aranyi T, Wollheim CB, Spat A, Enyedi P (1998) Voltage dependent calcium channels in adrenal glomerulosa cells and in insulin producing cells. Cell Calcium 23:33–42

    CAS  PubMed  Google Scholar 

  • Houamed KM, Sweet IR, Satin LS (2010) BK channels mediate a novel ionic mechanism that regulates glucose-dependent electrical activity and insulin secretion in mouse pancreatic beta-cells. J Physiol 588:3511–3523

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hsu WH, Xiang HD, Rajan AS, Boyd AE 3rd (1991a) Activation of alpha 2-adrenergic receptors decreases Ca2+ influx to inhibit insulin secretion in a hamster beta-cell line: an action mediated by a guanosine triphosphate-binding protein. Endocrinology 128:958–964

    CAS  PubMed  Google Scholar 

  • Hsu WH, Xiang HD, Rajan AS, Kunze DL, Boyd AE 3rd (1991b) Somatostatin inhibits insulin secretion by a G-protein-mediated decrease in Ca2+ entry through voltage-dependent Ca2+ channels in the beta cell. J Biol Chem 266:837–843

    CAS  PubMed  Google Scholar 

  • Huopio H, Reimann F, Ashfield R, Komulainen J, Lenko HL, Rahier J, Vauhkonen I, Kere J, Laakso M, Ashcroft F, Otonkoski T (2000) Dominantly inherited hyperinsulinism caused by a mutation in the sulfonylurea receptor type 1. J Clin Invest 106:897–906

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inagaki N, Gonoi T, Clement JP, Namba N, Inazawa J, Gonzalez G, Aguilar-Bryan L, Seino S, Bryan J (1995) Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270:1166–1170

    CAS  PubMed  Google Scholar 

  • Inagaki N, Gonoi T, Seino S (1997) Subunit stoichiometry of the pancreatic beta-cell ATP-sensitive K+ channel. FEBS Lett 409:232–236

    CAS  PubMed  Google Scholar 

  • Ishii TM, Silvia C, Hirschberg B, Bond CT, Adelman JP, Maylie J (1997) A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci USA 94:11651–11656

    CAS  PubMed Central  PubMed  Google Scholar 

  • Islam MS (2011) TRP channels of islets. Adv Exp Med Biol 704:811–830

    CAS  PubMed  Google Scholar 

  • Islam MS, Berggren PO, Larsson O (1993) Sulfhydryl oxidation induces rapid and reversible closure of the ATP-regulated K+ channel in the pancreatic beta-cell. FEBS Lett 319:128–132

    CAS  PubMed  Google Scholar 

  • Ismail D, Smith VV, de Lonlay P, Ribeiro MJ, Rahier J, Blankenstein O, Flanagan SE, Bellanne-Chantelot C, Verkarre V, Aigrain Y, Pierro A, Ellard S, Hussain K (2011) Familial focal congenital hyperinsulinism. J Clin Endocrinol Metab 96:24–28

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iwashima Y, Pugh W, Depaoli AM, Takeda J, Seino S, Bell GI, Polonsky KS (1993) Expression of calcium channel mRNAs in rat pancreatic islets and downregulation after glucose infusion. Diabetes 42:948–955

    CAS  PubMed  Google Scholar 

  • Jacobson DA, Philipson LH (2007a) Action potentials and insulin secretion: new insights into the role of Kv channels. Diabetes Obes Metab 9(Suppl 2):89–98

    CAS  PubMed  Google Scholar 

  • Jacobson DA, Philipson LH (2007b) TRP channels of the pancreatic beta cell. Handb Exp Pharmacol 409–424

    Google Scholar 

  • Jacobson DA, Weber CR, Bao S, Turk J, Philipson LH (2007a) Modulation of the pancreatic islet beta-cell-delayed rectifier potassium channel Kv2.1 by the polyunsaturated fatty acid arachidonate. J Biol Chem 282:7442–7449

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobson DA, Kuznetsov A, Lopez JP, Kash S, Ammala CE, Philipson LH (2007b) Kv2.1 ablation alters glucose-induced islet electrical activity, enhancing insulin secretion. Cell Metab 6:229–235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobson DA, Mendez F, Thompson M, Torres J, Cochet O, Philipson LH (2010) Calcium-activated and voltage-gated potassium channels of the pancreatic islet impart distinct and complementary roles during secretagogue induced electrical responses. J Physiol 588:3525–3537

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jakab M, Grundbichler M, Benicky J, Ravasio A, Chwatal S, Schmidt S, Strbak V, Furst J, Paulmichl M, Ritter M (2006) Glucose induces anion conductance and cytosol-to-membrane transposition of ICln in INS-1E rat insulinoma cells. Cell Physiol Biochem 18:21–34

    CAS  PubMed  Google Scholar 

  • Jensen BS, Strobaek D, Christophersen P, Jorgensen TD, Hansen C, Silahtaroglu A, Olesen SP, Ahring PK (1998) Characterization of the cloned human intermediate-conductance Ca2+ -activated K+ channel. Am J Physiol 275:C848–C856

    CAS  PubMed  Google Scholar 

  • Ji J, Yang SN, Huang X, Li X, Sheu L, Diamant N, Berggren PO, Gaisano HY (2002) Modulation of L-type Ca(2+) channels by distinct domains within SNAP-25. Diabetes 51:1425–1436

    CAS  PubMed  Google Scholar 

  • Jing X, Li DQ, Olofsson CS, Salehi A, Surve VV, Caballero J, Ivarsson R, Lundquist I, Pereverzev A, Schneider T, Rorsman P, Renstrom E (2005) CaV2.3 calcium channels control second-phase insulin release. J Clin Invest 115:146–154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson JH, Newgard CB, Milburn JL, Lodish HF, Thorens B (1990) The high Km glucose transporter of islets of Langerhans is functionally similar to the low affinity transporter of liver and has an identical primary sequence. J Biol Chem 265:6548–6551

    CAS  PubMed  Google Scholar 

  • Kang G, Leech CA, Chepurny OG, Coetzee WA, Holz GG (2008) Role of the cAMP sensor Epac as a determinant of KATP channel ATP sensitivity in human pancreatic beta-cells and rat INS-1 cells. J Physiol 586:1307–1319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kanno T, Rorsman P, Gopel SO (2002a) Glucose-dependent regulation of rhythmic action potential firing in pancreatic beta-cells by K(ATP)-channel modulation. J Physiol 545:501–507

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kanno T, Gopel SO, Rorsman P, Wakui M (2002b) Cellular function in multicellular system for hormone-secretion: electrophysiological aspect of studies on alpha-, beta-and delta-cells of the pancreatic islet. Neurosci Res 42:79–90

    CAS  PubMed  Google Scholar 

  • Kato M, Ma HT, Tatemoto K (1996) GLP-1 depolarizes the rat pancreatic beta cell in a Na(+)-dependent manner. Regul Pept 62:23–27

    CAS  PubMed  Google Scholar 

  • Kennedy ED, Wollheim CB (1998) Role of mitochondrial calcium in metabolism-secretion coupling in nutrient-stimulated insulin release. Diabetes Metab 24:15–24

    CAS  PubMed  Google Scholar 

  • Kennedy RT, Kauri LM, Dahlgren GM, Jung SK (2002) Metabolic oscillations in beta-cells. Diabetes 51(Suppl 1):S152–S161

    CAS  PubMed  Google Scholar 

  • Kerschensteiner D, Stocker M (1999) Heteromeric assembly of Kv2.1 with Kv9.3: effect on the state dependence of inactivation. Biophys J 77:248–257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khan FA, Goforth PB, Zhang M, Satin LS (2001) Insulin activates ATP-sensitive K(+) channels in pancreatic beta-cells through a phosphatidylinositol 3-kinase-dependent pathway. Diabetes 50:2192–2198

    CAS  PubMed  Google Scholar 

  • Kim SJ, Choi WS, Han JS, Warnock G, Fedida D, McIntosh CH (2005) A novel mechanism for the suppression of a voltage-gated potassium channel by glucose-dependent insulinotropic polypeptide: protein kinase A-dependent endocytosis. J Biol Chem 280:28692–28700

    CAS  PubMed  Google Scholar 

  • Kim SJ, Widenmaier SB, Choi WS, Nian C, Ao Z, Warnock G, McIntosh CH (2012) Pancreatic beta-cell prosurvival effects of the incretin hormones involve post-translational modification of Kv2.1 delayed rectifier channels. Cell Death Differ 19:333–344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kinard TA, Satin LS (1995) An ATP-sensitive Cl channel current that is activated by cell swelling, cAMP, and glyburide in insulin-secreting cells. Diabetes 44:1461–1466

    CAS  PubMed  Google Scholar 

  • Kindmark H, Kohler M, Brown G, Branstrom R, Larsson O, Berggren PO (2001) Glucose-induced oscillations in cytoplasmic free Ca2+ concentration precede oscillations in mitochondrial membrane potential in the pancreatic beta-cell. J Biol Chem 276:34530–34536

    CAS  PubMed  Google Scholar 

  • Klein A, Lichtenberg J, Stephan D, Quast U (2005) Lipids modulate ligand binding to sulphonylurea receptors. Br J Pharmacol 145:907–915

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klose C, Straub I, Riehle M, Ranta F, Krautwurst D, Ullrich S, Meyerhof W, Harteneck C (2011) Fenamates as TRP channel blockers: mefenamic acid selectively blocks TRPM3. Br J Pharmacol 162:1757–1769

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klupa T, Kowalska I, Wyka K, Skupien J, Patch AM, Flanagan SE, Noczynska A, Arciszewska M, Ellard S, Hattersley AT, Sieradzki J, Mlynarski W, Malecki MT (2008) Mutations in the ABCC8 gene are associated with a variable clinical phenotype. Clin Endocrinol 71:358–362

    Google Scholar 

  • Komatsu M, Sato Y, Aizawa T, Hashizume K (2001) KATP channel-independent glucose action: an elusive pathway in stimulus-secretion coupling of pancreatic beta-cell. Endocr J 48:275–288

    CAS  PubMed  Google Scholar 

  • Koster JC, Sha Q, Nichols CG (1999) Sulfonylurea and K(+)-channel opener sensitivity of K(ATP) channels. Functional coupling of Kir6.2 and SUR1 subunits. J Gen Physiol 114:203–213

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kozak JA, Misler S, Logothetis DE (1998) Characterization of a Ca2+-activated K+ current in insulin-secreting murine betaTC-3 cells. J Physiol 509(Pt 2):355–370

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kozlowski RZ, Hales CN, Ashford ML (1989) Dual effects of diazoxide on ATP-K+ currents recorded from an insulin-secreting cell line. Br J Pharmacol 97:1039–1050

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krauter T, Ruppersberg JP, Baukrowitz T (2001) Phospholipids as modulators of K(ATP) channels: distinct mechanisms for control of sensitivity to sulphonylureas, k(+) channel openers, and ATP. Mol Pharmacol 59:1086–1093

    CAS  PubMed  Google Scholar 

  • Krippeit-Drews P, Lang F, Haussinger D, Drews G (1994) H2O2 induced hyperpolarization of pancreatic B-cells. Pflugers Arch 426:552–554

    CAS  PubMed  Google Scholar 

  • Krippeit-Drews P, Kröncke KD, Welker S, Zempel G, Roenfeldt M, Ammon HP, Lang F, Drews G (1995a) The effects of nitric oxide on the membrane potential and ionic currents of mouse pancreatic B cells. Endocrinology 136:5363–5369

    CAS  PubMed  Google Scholar 

  • Krippeit-Drews P, Zempel G, Ammon HP, Lang F, Drews G (1995b) Effects of membrane-permeant and -impermeant thiol reagents on Ca2+ and K+ channel currents of mouse pancreatic B cells. Endocrinology 136:464–467

    CAS  PubMed  Google Scholar 

  • Krippeit-Drews P, Krämer C, Welker S, Lang F, Ammon HP, Drews G (1999) Interference of H2O2 with stimulus-secretion coupling in mouse pancreatic beta-cells. J Physiol 514(Pt 2):471–481

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krippeit-Drews P, Düfer M, Drews G (2000) Parallel oscillations of intracellular calcium activity and mitochondrial membrane potential in mouse pancreatic B-cells. Biochem Biophys Res Commun 267:179–183

    CAS  PubMed  Google Scholar 

  • Krippeit-Drews P, Bäcker M, Düfer M, Drews G (2003) Phosphocreatine as a determinant of K(ATP) channel activity in pancreatic beta-cells. Pflugers Arch 445:556–562

    CAS  PubMed  Google Scholar 

  • Kukuljan M, Goncalves AA, Atwater I (1991) Charybdotoxin-sensitive K(Ca) channel is not involved in glucose-induced electrical activity in pancreatic beta-cells. J Membr Biol 119:187–195

    CAS  PubMed  Google Scholar 

  • Kullin M, Li Z, Hansen JB, Bjork E, Sandler S, Karlsson FA (2000) K(ATP) channel openers protect rat islets against the toxic effect of streptozotocin. Diabetes 49:1131–1136

    CAS  PubMed  Google Scholar 

  • Larsson O, Ammala C, Bokvist K, Fredholm B, Rorsman P (1993) Stimulation of the KATP channel by ADP and diazoxide requires nucleotide hydrolysis in mouse pancreatic beta-cells. J Physiol 463:349–365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Larsson O, Deeney JT, Branstrom R, Berggren PO, Corkey BE (1996a) Activation of the ATP-sensitive K+ channel by long chain acyl-CoA. A role in modulation of pancreatic beta-cell glucose sensitivity. J Biol Chem 271:10623–10626

    CAS  PubMed  Google Scholar 

  • Larsson O, Kindmark H, Brandstrom R, Fredholm B, Berggren PO (1996b) Oscillations in KATP channel activity promote oscillations in cytoplasmic free Ca2+ concentration in the pancreatic beta cell. Proc Natl Acad Sci USA 93:5161–5165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Larsson O, Barker CJ, Berggren PO (2000) Phosphatidylinositol 4,5-bisphosphate and ATP-sensitive potassium channel regulation: a word of caution. Diabetes 49:1409–1412

    CAS  PubMed  Google Scholar 

  • Laukkanen O, Pihlajamaki J, Lindstrom J, Eriksson J, Valle TT, Hamalainen H, Ilanne-Parikka P, Keinanen-Kiukaanniemi S, Tuomilehto J, Uusitupa M, Laakso M (2004) Polymorphisms of the SUR1 (ABCC8) and Kir6.2 (KCNJ11) genes predict the conversion from impaired glucose tolerance to type 2 diabetes. J Clin Endocrinol Metab 89:6286–6290, The Finnish Diabetes Prevention Study

    CAS  PubMed  Google Scholar 

  • Ledoux J, Werner ME, Brayden JE, Nelson MT (2006) Calcium-activated potassium channels and the regulation of vascular tone. Physiology (Bethesda) 21:69–78

    CAS  Google Scholar 

  • Leech CA, Habener JF (1997) Insulinotropic glucagon-like peptide-1-mediated activation of non-selective cation currents in insulinoma cells is mimicked by maitotoxin. J Biol Chem 272:17987–17993

    CAS  PubMed  Google Scholar 

  • Leech CA, Habener JF (1998) A role for Ca2+-sensitive nonselective cation channels in regulating the membrane potential of pancreatic beta-cells. Diabetes 47:1066–1073

    CAS  PubMed  Google Scholar 

  • Leech CA, Dzhura I, Chepurny OG, Schwede F, Genieser HG, Holz GG (2010) Facilitation of ss-cell K(ATP) channel sulfonylurea sensitivity by a cAMP analog selective for the cAMP-regulated guanine nucleotide exchange factor Epac. Islets 2:72–81

    PubMed Central  PubMed  Google Scholar 

  • Leibiger IB, Berggren PO (2008) Insulin signaling in the pancreatic beta-cell. Annu Rev Nutr 28:233–251

    CAS  PubMed  Google Scholar 

  • Lembert N, Idahl LA (1998) Alpha-ketoisocaproate is not a true substrate for ATP production by pancreatic beta-cell mitochondria. Diabetes 47:339–344

    CAS  PubMed  Google Scholar 

  • Lenzen S (1978) Effects of alpha-ketocarboxylic acids and 4-pentenoic acid on insulin secretion from the perfused rat pancreas. Biochem Pharmacol 27:1321–1324

    CAS  PubMed  Google Scholar 

  • Lenzen S, Lerch M, Peckmann T, Tiedge M (2000) Differential regulation of [Ca2+]i oscillations in mouse pancreatic islets by glucose, alpha-ketoisocaproic acid, glyceraldehyde and glycolytic intermediates. Biochim Biophys Acta 1523:65–72

    CAS  PubMed  Google Scholar 

  • Leung YM, Ahmed I, Sheu L, Tsushima RG, Diamant NE, Hara M, Gaisano HY (2005) Electrophysiological characterization of pancreatic islet cells in the mouse insulin promoter-green fluorescent protein mouse. Endocrinology 146:4766–4775

    CAS  PubMed  Google Scholar 

  • Leung YM, Ahmed I, Sheu L, Gao X, Hara M, Tsushima RG, Diamant NE, Gaisano HY (2006) Insulin regulates islet alpha-cell function by reducing KATP channel sensitivity to adenosine 5′-triphosphate inhibition. Endocrinology 147:2155–2162

    CAS  PubMed  Google Scholar 

  • Leung YM, Kwan EP, Ng B, Kang Y, Gaisano HY (2007) SNAREing voltage-gated K+ and ATP-sensitive K+ channels: tuning beta-cell excitability with syntaxin-1A and other exocytotic proteins. Endocr Rev 28:653–663

    CAS  PubMed  Google Scholar 

  • Light PE, Manning Fox JE, Riedel MJ, Wheeler MB (2002) Glucagon-like peptide-1 inhibits pancreatic ATP-sensitive potassium channels via a protein kinase A- and ADP-dependent mechanism. Mol Endocrinol 16:2135–2144

    CAS  PubMed  Google Scholar 

  • Luciani DS, Misler S, Polonsky KS (2006) Ca2+ controls slow NAD(P)H oscillations in glucose-stimulated mouse pancreatic islets. J Physiol 572:379–392

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ludwig A, Zong X, Jeglitsch M, Hofmann F, Biel M (1998) A family of hyperpolarization-activated mammalian cation channels. Nature 393:587–591

    CAS  PubMed  Google Scholar 

  • MacDonald PE, Wheeler MB (2003) Voltage-dependent K(+) channels in pancreatic beta cells: role, regulation and potential as therapeutic targets. Diabetologia 46:1046–1062

    CAS  PubMed  Google Scholar 

  • MacDonald PE, Ha XF, Wang J, Smukler SR, Sun AM, Gaisano HY, Salapatek AM, Backx PH, Wheeler MB (2001) Members of the Kv1 and Kv2 voltage-dependent K(+) channel families regulate insulin secretion. Mol Endocrinol 15:1423–1435

    CAS  PubMed  Google Scholar 

  • MacDonald PE, Sewing S, Wang J, Joseph JW, Smukler SR, Sakellaropoulos G, Saleh MC, Chan CB, Tsushima RG, Salapatek AM, Wheeler MB (2002a) Inhibition of Kv2.1 voltage-dependent K+ channels in pancreatic beta-cells enhances glucose-dependent insulin secretion. J Biol Chem 277:44938–44945

    CAS  PubMed  Google Scholar 

  • MacDonald PE, Salapatek AM, Wheeler MB (2002b) Glucagon-like peptide-1 receptor activation antagonizes voltage-dependent repolarizing K(+) currents in beta-cells: a possible glucose-dependent insulinotropic mechanism. Diabetes 51(Suppl 3):S443–S447

    CAS  PubMed  Google Scholar 

  • MacDonald PE, De Marinis YZ, Ramracheya R, Salehi A, Ma X, Johnson PR, Cox R, Eliasson L, Rorsman P (2007) A K ATP channel-dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans. PLoS Biol 5:e143

    PubMed Central  PubMed  Google Scholar 

  • Maedler K, Storling J, Sturis J, Zuellig RA, Spinas GA, Arkhammar PO, Mandrup-Poulsen T, Donath MY (2004) Glucose- and interleukin-1beta-induced beta-cell apoptosis requires Ca2+ influx and extracellular signal-regulated kinase (ERK) 1/2 activation and is prevented by a sulfonylurea receptor 1/inwardly rectifying K+ channel 6.2 (SUR/Kir6.2) selective potassium channel opener in human islets. Diabetes 53:1706–1713

    CAS  PubMed  Google Scholar 

  • Magnus G, Keizer J (1998) Model of beta-cell mitochondrial calcium handling and electrical activity. I cytoplasmic variables. Am J Physiol 274:C1158–C1173

    CAS  PubMed  Google Scholar 

  • Manning Fox JE, Gyulkhandanyan AV, Satin LS, Wheeler MB (2006) Oscillatory membrane potential response to glucose in islet beta-cells: a comparison of islet-cell electrical activity in mouse and rat. Endocrinology 147:4655–4663

    CAS  PubMed  Google Scholar 

  • Matsuda Y, Saegusa H, Zong S, Noda T, Tanabe T (2001) Mice lacking Ca(v)2.3 (alpha1E) calcium channel exhibit hyperglycemia. Biochem Biophys Res Commun 289:791–795

    CAS  PubMed  Google Scholar 

  • Matsuo M, Kimura Y, Ueda K (2005) KATP channel interaction with adenine nucleotides. J Mol Cell Cardiol 38:907–916

    CAS  PubMed  Google Scholar 

  • Matsuoka T, Matsushita K, Katayama Y, Fujita A, Inageda K, Tanemoto M, Inanobe A, Yamashita S, Matsuzawa Y, Kurachi Y (2000) C-terminal tails of sulfonylurea receptors control ADP-induced activation and diazoxide modulation of ATP-sensitive K(+) channels. Circ Res 87:873–880

    CAS  PubMed  Google Scholar 

  • Mears D (2004) Regulation of insulin secretion in islets of Langerhans by Ca(2+)channels. J Membr Biol 200:57–66

    CAS  PubMed  Google Scholar 

  • Mears D, Zimliki CL (2004) Muscarinic agonists activate Ca2+ store-operated and -independent ionic currents in insulin-secreting HIT-T15 cells and mouse pancreatic beta-cells. J Membr Biol 197:59–70

    CAS  PubMed  Google Scholar 

  • Meissner HP, Henquin JC, Preissler M (1978) Potassium dependence of the membrane potential of pancreatic B-cells. FEBS Lett 94:87–89

    CAS  PubMed  Google Scholar 

  • Mikhailov MV, Proks P, Ashcroft FM, Ashcroft SJ (1998) Expression of functionally active ATP-sensitive K-channels in insect cells using baculovirus. FEBS Lett 429:390–394

    CAS  PubMed  Google Scholar 

  • Mikhailov MV, Mikhailova EA, Ashcroft SJ (2001) Molecular structure of the glibenclamide binding site of the beta-cell K(ATP) channel. FEBS Lett 499:154–160

    CAS  PubMed  Google Scholar 

  • Mikhailov MV, Campbell JD, de Wet H, Shimomura K, Zadek B, Collins RF, Sansom MS, Ford RC, Ashcroft FM (2005) 3-D structural and functional characterization of the purified KATP channel complex Kir6.2-SUR1. EMBO J 24:4166–4175

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miki T, Nagashima K, Tashiro F, Kotake K, Yoshitomi H, Tamamoto A, Gonoi T, Iwanaga T, Miyazaki J, Seino S (1998) Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc Natl Acad Sci USA 95:10402–10406

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miley HE, Brown PD, Best L (1999) Regulation of a volume-sensitive anion channel in rat pancreatic beta-cells by intracellular adenine nucleotides. J Physiol 515(Pt 2):413–417

    CAS  PubMed Central  PubMed  Google Scholar 

  • Misler S, Falke LC, Gillis K, McDaniel ML (1986) A metabolite-regulated potassium channel in rat pancreatic B cells. Proc Natl Acad Sci USA 83:7119–7123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Misler S, Barnett DW, Gillis KD, Pressel DM (1992) Electrophysiology of stimulus-secretion coupling in human beta-cells. Diabetes 41:1221–1228

    CAS  PubMed  Google Scholar 

  • Miura Y, Matsui H (2003) Glucagon-like peptide-1 induces a cAMP-dependent increase of [Na+]i associated with insulin secretion in pancreatic beta-cells. Am J Physiol Endocrinol Metab 285:E1001–E1009

    CAS  PubMed  Google Scholar 

  • Miura Y, Gilon P, Henquin JC (1996) Muscarinic stimulation increases Na+ entry in pancreatic B-cells by a mechanism other than the emptying of intracellular Ca2+ pools. Biochem Biophys Res Commun 224:67–73

    CAS  PubMed  Google Scholar 

  • Miura Y, Henquin JC, Gilon P (1997) Emptying of intracellular Ca2+ stores stimulates Ca2+ entry in mouse pancreatic beta-cells by both direct and indirect mechanisms. J Physiol 503(Pt 2):387–398

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moreau C, Prost AL, Derand R, Vivaudou M (2005) SUR, ABC proteins targeted by KATP channel openers. J Mol Cell Cardiol 38:951–963

    CAS  PubMed  Google Scholar 

  • Muller YL, Hanson RL, Zimmerman C, Harper I, Sutherland J, Kobes S, International Type 2 Diabetes 1q Consortium, Knowler WC, Bogardus C, Baier LJ (2007) Variants in the Ca V 2.3 (alpha 1E) subunit of voltage-activated Ca2+ channels are associated with insulin resistance and type 2 diabetes in Pima Indians. Diabetes 56:3089–3094

    CAS  PubMed  Google Scholar 

  • Nadal A, Quesada I, Soria B (1999) Homologous and heterologous asynchronicity between identified alpha-, beta- and delta-cells within intact islets of Langerhans in the mouse. J Physiol 517(Pt 1):85–93

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakazaki M, Kakei M, Koriyama N, Tanaka H (1995) Involvement of ATP-sensitive K+ channels in free radical-mediated inhibition of insulin secretion in rat pancreatic beta-cells. Diabetes 44:878–883

    CAS  PubMed  Google Scholar 

  • Nakazaki M, Crane A, Hu M, Seghers V, Ullrich S, Aguilar-Bryan L, Bryan J (2002) cAMP-activated protein kinase-independent potentiation of insulin secretion by cAMP is impaired in SUR1 null islets. Diabetes 51:3440–3449

    CAS  PubMed  Google Scholar 

  • Namkung Y, Skrypnyk N, Jeong MJ, Lee T, Lee MS, Kim HL, Chin H, Suh PG, Kim SS, Shin HS (2001) Requirement for the L-type Ca(2+) channel alpha(1D) subunit in postnatal pancreatic beta cell generation. J Clin Invest 108:1015–1022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nielsen EM, Hansen L, Carstensen B, Echwald SM, Drivsholm T, Glumer C, Thorsteinsson B, Borch-Johnsen K, Hansen T, Pedersen O (2003) The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes 52:573–577

    CAS  PubMed  Google Scholar 

  • Niki I, Ashcroft FM, Ashcroft SJ (1989) The dependence on intracellular ATP concentration of ATP-sensitive K-channels and of Na, K-ATPase in intact HIT-T15 beta-cells. FEBS Lett 257:361–364

    CAS  PubMed  Google Scholar 

  • Nilsson T, Arkhammar P, Rorsman P, Berggren PO (1989) Suppression of insulin release by galanin and somatostatin is mediated by a G-protein. An effect involving repolarization and reduction in cytoplasmic free Ca2+ concentration. J Biol Chem 264:973–980

    CAS  PubMed  Google Scholar 

  • Nitert MD, Nagorny CL, Wendt A, Eliasson L, Mulder H (2008) CaV1.2 rather than CaV1.3 is coupled to glucose-stimulated insulin secretion in INS-1 832/13 cells. J Mol Endocrinol 41:1–11

    CAS  PubMed  Google Scholar 

  • Noma A, Yanagihara K, Irisawa H (1977) Inward current of the rabbit sinoatrial node cell. Pflugers Arch 372:43–51

    CAS  PubMed  Google Scholar 

  • Olsen HL, Theander S, Bokvist K, Buschard K, Wollheim CB, Gromada J (2005) Glucose stimulates glucagon release in single rat alpha-cells by mechanisms that mirror the stimulus-secretion coupling in beta-cells. Endocrinology 146:4861–4870

    CAS  PubMed  Google Scholar 

  • Ortiz D, Voyvodic P, Gossack L, Quast U, Bryan J (2012) Two neonatal diabetes mutations on transmembrane helix 15 of SUR1 increase affinity for ATP and ADP at nucleotide binding domain 2. J Biol Chem 287:17985–17995

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ortiz D, Gossack L, Quast U, Bryan J (2013) Reinterpreting the action of ATP analogs on KATP channels. J Biol Chem 288:18894–18902

    CAS  PubMed  Google Scholar 

  • Ozaki N, Shibasaki T, Kashima Y, Miki T, Takahashi K, Ueno H, Sunaga Y, Yano H, Matsuura Y, Iwanaga T, Takai Y, Seino S (2000) cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol 2:805–811

    CAS  PubMed  Google Scholar 

  • Patch AM, Flanagan SE, Boustred C, Hattersley AT, Ellard S (2007) Mutations in the ABCC8 gene encoding the SUR1 subunit of the KATP channel cause transient neonatal diabetes, permanent neonatal diabetes or permanent diabetes diagnosed outside the neonatal period. Diabetes Obes Metab 9(Suppl 2):28–39

    CAS  PubMed  Google Scholar 

  • Pearson ER, Flechtner I, Njolstad PR, Malecki MT, Flanagan SE, Larkin B, Ashcroft FM, Klimes I, Codner E, Iotova V, Slingerland AS, Shield J, Robert JJ, Holst JJ, Clark PM, Ellard S, Sovik O, Polak M, Hattersley AT (2006) Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med 355:467–477

    CAS  PubMed  Google Scholar 

  • Pereverzev A, Mikhna M, Vajna R, Gissel C, Henry M, Weiergraber M, Hescheler J, Smyth N, Schneider T (2002) Disturbances in glucose-tolerance, insulin release, and stress-induced hyperglycemia upon disruption of the Ca(v)2.3 (alpha 1E) subunit of voltage-gated Ca(2+) channels. Mol Endocrinol 16:884–895

    CAS  PubMed  Google Scholar 

  • Persaud SJ, Asare-Anane H, Jones PM (2002) Insulin receptor activation inhibits insulin secretion from human islets of Langerhans. FEBS Lett 510:225–228

    CAS  PubMed  Google Scholar 

  • Philipson LH, Hice RE, Schaefer K, LaMendola J, Bell GI, Nelson DJ, Steiner DF (1991) Sequence and functional expression in Xenopus oocytes of a human insulinoma and islet potassium channel. Proc Natl Acad Sci USA 88:53–57

    CAS  PubMed Central  PubMed  Google Scholar 

  • Plant TD (1988a) Properties and calcium-dependent inactivation of calcium currents in cultured mouse pancreatic B-cells. J Physiol 404:731–747

    CAS  PubMed Central  PubMed  Google Scholar 

  • Plant TD (1988b) Na+ currents in cultured mouse pancreatic B-cells. Pflugers Arch 411:429–435

    CAS  PubMed  Google Scholar 

  • Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H, Striessnig J (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102:89–97

    CAS  PubMed  Google Scholar 

  • Prawitt D, Monteilh-Zoller MK, Brixel L, Spangenberg C, Zabel B, Fleig A, Penner R (2003) TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i. Proc Natl Acad Sci USA 100:15166–15171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pressel DM, Misler S (1990) Sodium channels contribute to action potential generation in canine and human pancreatic islet B cells. J Membr Biol 116:273–280

    CAS  PubMed  Google Scholar 

  • Pressel DM, Misler S (1991) Role of voltage-dependent ionic currents in coupling glucose stimulation to insulin secretion in canine pancreatic islet B-cells. J Membr Biol 124:239–253

    CAS  PubMed  Google Scholar 

  • Proks P, Antcliff JF, Lippiat J, Gloyn AL, Hattersley AT, Ashcroft FM (2004) Molecular basis of Kir6.2 mutations associated with neonatal diabetes or neonatal diabetes plus neurological features. Proc Natl Acad Sci USA 101:17539–17544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Proks P, de Wet H, Ashcroft FM (2010) Activation of the K(ATP) channel by Mg-nucleotide interaction with SUR1. J Gen Physiol 136:389–405

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qian F, Huang P, Ma L, Kuznetsov A, Tamarina N, Philipson LH (2002) TRP genes: candidates for nonselective cation channels and store-operated channels in insulin-secreting cells. Diabetes 51(Suppl 1):S183–S189

    CAS  PubMed  Google Scholar 

  • Quesada I, Nadal A, Soria B (1999) Different effects of tolbutamide and diazoxide in alpha, beta-, and delta-cells within intact islets of Langerhans. Diabetes 48:2390–2397

    CAS  PubMed  Google Scholar 

  • Quoix N, Cheng-Xue R, Mattart L, Zeinoun Z, Guiot Y, Beauvois MC, Henquin JC, Gilon P (2009) Glucose and pharmacological modulators of ATP-sensitive K+ channels control [Ca2+]c by different mechanisms in isolated mouse alpha-cells. Diabetes 58:412–421

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rafiq M, Flanagan SE, Patch AM, Shields BM, Ellard S, Hattersley AT (2008) Effective treatment with oral sulfonylureas in patients with diabetes due to sulfonylurea receptor 1 (SUR1) mutations. Diabetes Care 31:204–209

    CAS  PubMed  Google Scholar 

  • Rajan AS, Aguilar-Bryan L, Nelson DA, Nichols CG, Wechsler SW, Lechago J, Bryan J (1993) Sulfonylurea receptors and ATP-sensitive K+ channels in clonal pancreatic alpha cells. Evidence for two high affinity sulfonylurea receptors. J Biol Chem 268:15221–15228

    CAS  PubMed  Google Scholar 

  • Rapedius M, Soom M, Shumilina E, Schulze D, Schonherr R, Kirsch C, Lang F, Tucker SJ, Baukrowitz T (2005) Long chain CoA esters as competitive antagonists of phosphatidylinositol 4,5-bisphosphate activation in Kir channels. J Biol Chem 280:30760–30767

    CAS  PubMed  Google Scholar 

  • Ravier MA, Rutter GA (2005) Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic alpha-cells. Diabetes 54:1789–1797

    CAS  PubMed  Google Scholar 

  • Ravier MA, Nenquin M, Miki T, Seino S, Henquin JC (2009) Glucose controls cytosolic Ca2+ and insulin secretion in mouse islets lacking adenosine triphosphate-sensitive K+ channels owing to a knockout of the pore-forming subunit Kir6.2. Endocrinology 150:33–45

    CAS  PubMed  Google Scholar 

  • Reimann F, Ryder TJ, Tucker SJ, Ashcroft FM (1999a) The role of lysine 185 in the kir6.2 subunit of the ATP-sensitive channel in channel inhibition by ATP. J Physiol 520(Pt 3):661–669

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reimann F, Tucker SJ, Proks P, Ashcroft FM (1999b) Involvement of the n-terminus of Kir6.2 in coupling to the sulphonylurea receptor. J Physiol 518(Pt 2):325–336

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reimann F, Huopio H, Dabrowski M, Proks P, Gribble FM, Laakso M, Otonkoski T, Ashcroft FM (2003) Characterisation of new KATP-channel mutations associated with congenital hyperinsulinism in the Finnish population. Diabetologia 46:241–249

    CAS  PubMed  Google Scholar 

  • Reinbothe TM, Alkayyali S, Ahlqvist E, Tuomi T, Isomaa B, Lyssenko V, Renstrom E (2013) The human L-type calcium channel Ca(v)1.3 regulates insulin release and polymorphisms in CACNA1D associate with type 2 diabetes. Diabetologia 56:340–349

    CAS  PubMed  Google Scholar 

  • Ribalet B, Beigelman PM (1980) Calcium action potentials and potassium permeability activation in pancreatic beta-cells. Am J Physiol 239:C124–C133

    CAS  PubMed  Google Scholar 

  • Ribalet B, Eddlestone GT, Ciani S (1988) Metabolic regulation of the K(ATP) and a maxi-K(V) channel in the insulin-secreting RINm5F cell. J Gen Physiol 92:219–237

    CAS  PubMed  Google Scholar 

  • Riedel MJ, Boora P, Steckley D, de Vries G, Light PE (2003) Kir6.2 polymorphisms sensitize beta-cell ATP-sensitive potassium channels to activation by acyl CoAs: a possible cellular mechanism for increased susceptibility to type 2 diabetes? Diabetes 52:2630–2635

    CAS  PubMed  Google Scholar 

  • Riedel MJ, Steckley DC, Light PE (2005) Current status of the E23K Kir6.2 polymorphism: implications for type-2 diabetes. Hum Genet 116:133–145

    CAS  PubMed  Google Scholar 

  • Robinson RB, Siegelbaum SA (2003) Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 65:453–480

    CAS  PubMed  Google Scholar 

  • Roe MW, Worley JF 3rd, Mittal AA, Kuznetsov A, DasGupta S, Mertz RJ, Witherspoon SM 3rd, Blair N, Lancaster ME, Mclntyre MS, Shehee WR, Dukes ID, Philipson LH (1996) Expression and function of pancreatic beta-cell delayed rectifier K+ channels. Role in stimulus-secretion coupling. J Biol Chem 271:32241–32246

    CAS  PubMed  Google Scholar 

  • Roe MW, Worley JF 3rd, Qian F, Tamarina N, Mittal AA, Dralyuk F, Blair NT, Mertz RJ, Philipson LH, Dukes ID (1998) Characterization of a Ca2+ release-activated nonselective cation current regulating membrane potential and [Ca2+]i oscillations in transgenically derived beta-cells. J Biol Chem 273:10402–10410

    CAS  PubMed  Google Scholar 

  • Rolland JF, Henquin JC, Gilon P (2002a) Feedback control of the ATP-sensitive K(+) current by cytosolic Ca(2+) contributes to oscillations of the membrane potential in pancreatic beta-cells. Diabetes 51:376–384

    CAS  PubMed  Google Scholar 

  • Rolland JF, Henquin JC, Gilon P (2002b) G protein-independent activation of an inward Na(+) current by muscarinic receptors in mouse pancreatic beta-cells. J Biol Chem 277:38373–38380

    CAS  PubMed  Google Scholar 

  • Ronner P, Matschinsky FM, Hang TL, Epstein AJ, Buettger C (1993) Sulfonylurea-binding sites and ATP-sensitive K+ channels in alpha-TC glucagonoma and beta-TC insulinoma cells. Diabetes 42:1760–1772

    CAS  PubMed  Google Scholar 

  • Rorsman P, Hellman B (1988) Voltage-activated currents in guinea pig pancreatic alpha 2 cells. Evidence for Ca2+-dependent action potentials. J Gen Physiol 91:223–242

    CAS  PubMed  Google Scholar 

  • Rorsman P, Trube G (1985) Glucose dependent K+-channels in pancreatic beta-cells are regulated by intracellular ATP. Pflugers Arch 405:305–309

    CAS  PubMed  Google Scholar 

  • Rorsman P, Trube G (1986) Calcium and delayed potassium currents in mouse pancreatic beta-cells under voltage-clamp conditions. J Physiol 374:531–550

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rorsman P, Ashcroft FM, Trube G (1988) Single Ca channel currents in mouse pancreatic B-cells. Pflugers Arch 412:597–603

    CAS  PubMed  Google Scholar 

  • Rorsman P, Berggren PO, Bokvist K, Ericson H, Mohler H, Ostenson CG, Smith PA (1989) Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels. Nature 341:233–236

    CAS  PubMed  Google Scholar 

  • Rorsman P, Bokvist K, Ammala C, Arkhammar P, Berggren PO, Larsson O, Wahlander K (1991) Activation by adrenaline of a low-conductance G protein-dependent K+ channel in mouse pancreatic B cells. Nature 349:77–79

    CAS  PubMed  Google Scholar 

  • Rosario LM, Barbosa RM, Antunes CM, Silva AM, Abrunhosa AJ, Santos RM (1993) Bursting electrical activity in pancreatic beta-cells: evidence that the channel underlying the burst is sensitive to Ca2+ influx through L-type Ca2+ channels. Pflugers Arch 424:439–447

    CAS  PubMed  Google Scholar 

  • Rutter GA, Tsuboi T, Ravier MA (2006) Ca2+ microdomains and the control of insulin secretion. Cell Calcium 40:539–551

    CAS  PubMed  Google Scholar 

  • Sakura H, Ashcroft FM (1997) Identification of four trp1 gene variants murine pancreatic beta-cells. Diabetologia 40:528–532

    CAS  PubMed  Google Scholar 

  • Sandler S, Andersson AK, Larsson J, Makeeva N, Olsen T, Arkhammar PO, Hansen JB, Karlsson FA, Welsh N (2008) Possible role of an ischemic preconditioning-like response mechanism in K(ATP) channel opener-mediated protection against streptozotocin-induced suppression of rat pancreatic islet function. Biochem Pharmacol 76:1748–1756

    CAS  PubMed  Google Scholar 

  • Sano Y, Mochizuki S, Miyake A, Kitada C, Inamura K, Yokoi H, Nozawa K, Matsushime H, Furuichi K (2002) Molecular cloning and characterization of Kv6.3, a novel modulatory subunit for voltage-gated K(+) channel Kv2.1. FEBS Lett 512:230–234

    CAS  PubMed  Google Scholar 

  • Santoro B, Liu DT, Yao H, Bartsch D, Kandel ER, Siegelbaum SA, Tibbs GR (1998) Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell 93:717–729

    CAS  PubMed  Google Scholar 

  • Satin LS, Cook DL (1989) Calcium current inactivation in insulin-secreting cells is mediated by calcium influx and membrane depolarization. Pflugers Arch 414:1–10

    CAS  PubMed  Google Scholar 

  • Satin LS, Hopkins WF, Fatherazi S, Cook DL (1989) Expression of a rapid, low-voltage threshold K current in insulin-secreting cells is dependent on intracellular calcium buffering. J Membr Biol 112:213–222

    CAS  PubMed  Google Scholar 

  • Satin LS, Tavalin SJ, Kinard TA, Teague J (1995) Contribution of L- and non-L-type calcium channels to voltage-gated calcium current and glucose-dependent insulin secretion in HIT-T15 cells. Endocrinology 136:4589–4601

    CAS  PubMed  Google Scholar 

  • Sato Y, Anello M, Henquin JC (1999) Glucose regulation of insulin secretion independent of the opening or closure of adenosine triphosphate-sensitive K+ channels in beta cells. Endocrinology 140:2252–2257

    CAS  PubMed  Google Scholar 

  • Schmid-Antomarchi H, de Weille J, Fosset M, Lazdunski M (1987) The antidiabetic sulfonylurea glibenclamide is a potent blocker of the ATP-modulated K+ channel in insulin secreting cells. Biochem Biophys Res Commun 146:21–25

    CAS  PubMed  Google Scholar 

  • Schmidt J, Liebscher K, Merten N, Grundmann M, Mielenz M, Sauerwein H, Christiansen E, Due-Hansen ME, Ulven T, Ullrich S, Gomeza J, Drewke C, Kostenis E (2011) Conjugated linoleic acids mediate insulin release through islet G protein-coupled receptor FFA1/GPR40. J Biol Chem 286:11890–11894

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schuit FC, Derde MP, Pipeleers DG (1989) Sensitivity of rat pancreatic A and B cells to somatostatin. Diabetologia 32:207–212

    CAS  PubMed  Google Scholar 

  • Schulla V, Renstrom E, Feil R, Feil S, Franklin I, Gjinovci A, Jing XJ, Laux D, Lundquist I, Magnuson MA, Obermuller S, Olofsson CS, Salehi A, Wendt A, Klugbauer N, Wollheim CB, Rorsman P, Hofmann F (2003) Impaired insulin secretion and glucose tolerance in beta cell-selective Ca(v)1.2 Ca2+ channel null mice. EMBO J 22:3844–3854

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schulze D, Rapedius M, Krauter T, Baukrowitz T (2003) Long-chain acyl-CoA esters and phosphatidylinositol phosphates modulate ATP inhibition of KATP channels by the same mechanism. J Physiol 552:357–367

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schulze DU, Düfer M, Wieringa B, Krippeit-Drews P, Drews G (2007) An adenylate kinase is involved in KATP channel regulation of mouse pancreatic beta cells. Diabetologia 50:2126–2134

    CAS  PubMed  Google Scholar 

  • Schwanstecher C, Meyer U, Schwanstecher M (2002) K(IR)6.2 polymorphism predisposes to type 2 diabetes by inducing overactivity of pancreatic beta-cell ATP- sensitive K(+) channels. Diabetes 51:875–879

    CAS  PubMed  Google Scholar 

  • Seghers V, Nakazaki M, DeMayo F, Aguilar-Bryan L, Bryan J (2000) Sur1 knockout mice. A model for K(ATP) channel-independent regulation of insulin secretion. J Biol Chem 275:9270–9277

    CAS  PubMed  Google Scholar 

  • Sehlin J, Taljedal IB (1975) Glucose-induced decrease in Rb+ permeability in pancreatic beta cells. Nature 253:635–636

    CAS  PubMed  Google Scholar 

  • Seifert R, Scholten A, Gauss R, Mincheva A, Lichter P, Kaupp UB (1999) Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis. Proc Natl Acad Sci USA 96:9391–9396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seino S (2012) Cell signalling in insulin secretion: the molecular targets of ATP, cAMP and sulfonylurea. Diabetologia 55:2096–2108

    CAS  PubMed  Google Scholar 

  • Seino S, Chen L, Seino M, Blondel O, Takeda J, Johnson JH, Bell GI (1992) Cloning of the alpha 1 subunit of a voltage-dependent calcium channel expressed in pancreatic beta cells. Proc Natl Acad Sci USA 89:584–588

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sener A, Kawazu S, Hutton JC, Boschero AC, Devis G, Somers G, Herchuelz A, Malaisse WJ (1978) The stimulus-secretion coupling of glucose-induced insulin release. Effect of exogenous pyruvate on islet function. Biochem J 176:217–232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sesti G, Laratta E, Cardellini M, Andreozzi F, Del Guerra S, Irace C, Gnasso A, Grupillo M, Lauro R, Hribal ML, Perticone F, Marchetti P (2006) The E23K variant of KCNJ11 encoding the pancreatic beta-cell adenosine 5′-triphosphate-sensitive potassium channel subunit Kir6.2 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes. J Clin Endocrinol Metab 91:2334–2339

    CAS  PubMed  Google Scholar 

  • Sharma N, Crane A, Clement JP, Gonzalez G, Babenko AP, Bryan J, Aguilar-Bryan L (1999) The C terminus of SUR1 is required for trafficking of KATP channels. J Biol Chem 274:20628–20632

    CAS  PubMed  Google Scholar 

  • Shyng S, Nichols CG (1997) Octameric stoichiometry of the KATP channel complex. J Gen Physiol 110:655–664

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shyng SL, Nichols CG (1998) Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science 282:1138–1141

    CAS  PubMed  Google Scholar 

  • Shyng S, Ferrigni T, Nichols CG (1997) Regulation of KATP channel activity by diazoxide and MgADP. Distinct functions of the two nucleotide binding folds of the sulfonylurea receptor. J Gen Physiol 110:643–654

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shyng SL, Cukras CA, Harwood J, Nichols CG (2000) Structural determinants of PIP(2) regulation of inward rectifier K(ATP) channels. J Gen Physiol 116:599–608

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sieg A, Su J, Munoz A, Buchenau M, Nakazaki M, Aguilar-Bryan L, Bryan J, Ullrich S (2004) Epinephrine-induced hyperpolarization of islet cells without KATP channels. Am J Physiol Endocrinol Metab 286:E463–E471

    CAS  PubMed  Google Scholar 

  • Slingerland AS, Hurkx W, Noordam K, Flanagan SE, Jukema JW, Meiners LC, Bruining GJ, Hattersley AT, Hadders-Algra M (2008) Sulphonylurea therapy improves cognition in a patient with the V59M KCNJ11 mutation. Diabet Med 25:277–281

    CAS  PubMed  Google Scholar 

  • Smith PA, Bokvist K, Rorsman P (1989) Demonstration of A-currents in pancreatic islet cells. Pflugers Arch 413:441–443

    CAS  PubMed  Google Scholar 

  • Smith PA, Ashcroft FM, Rorsman P (1990a) Simultaneous recordings of glucose dependent electrical activity and ATP-regulated K(+)-currents in isolated mouse pancreatic beta-cells. FEBS Lett 261:187–190

    CAS  PubMed  Google Scholar 

  • Smith PA, Bokvist K, Arkhammar P, Berggren PO, Rorsman P (1990b) Delayed rectifying and calcium-activated K+ channels and their significance for action potential repolarization in mouse pancreatic beta-cells. J Gen Physiol 95:1041–1059

    CAS  PubMed  Google Scholar 

  • Spigelman AF, Dai X, MacDonald PE (2010) Voltage-dependent K(+) channels are positive regulators of alpha cell action potential generation and glucagon secretion in mice and humans. Diabetologia 53:1917–1926

    CAS  PubMed  Google Scholar 

  • Stanojevic V, Habener JF, Holz GG, Leech CA (2008) Cytosolic adenylate kinases regulate K-ATP channel activity in human beta-cells. Biochem Biophys Res Commun 368:614–619

    CAS  PubMed Central  PubMed  Google Scholar 

  • Straub SG, Cosgrove KE, Ammala C, Shepherd RM, O’Brien RE, Barnes PD, Kuchinski N, Chapman JC, Schaeppi M, Glaser B, Lindley KJ, Sharp GW, Aynsley-Green A, Dunne MJ (2001) Hyperinsulinism of infancy: the regulated release of insulin by KATP channel-independent pathways. Diabetes 50:329–339

    CAS  PubMed  Google Scholar 

  • Su J, Yu H, Lenka N, Hescheler J, Ullrich S (2001) The expression and regulation of depolarization-activated K+ channels in the insulin-secreting cell line INS-1. Pflugers Arch 442:49–56

    CAS  PubMed  Google Scholar 

  • Suga S, Kanno T, Nakano K, Takeo T, Dobashi Y, Wakui M (1997) GLP-I(7-36) amide augments Ba2+ current through L-type Ca2+ channel of rat pancreatic beta-cell in a cAMP-dependent manner. Diabetes 46:1755–1760

    CAS  PubMed  Google Scholar 

  • Sunouchi T, Suzuki K, Nakayama K, Ishikawa T (2008) Dual effect of nitric oxide on ATP-sensitive K+ channels in rat pancreatic beta cells. Pflugers Arch 456:573–579

    CAS  PubMed  Google Scholar 

  • Suzuki M, Fujikura K, Inagaki N, Seino S, Takata K (1997) Localization of the ATP-sensitive K+ channel subunit Kir6.2 in mouse pancreas. Diabetes 46:1440–1444

    CAS  PubMed  Google Scholar 

  • Suzuki M, Fujikura K, Kotake K, Inagaki N, Seino S, Takata K (1999) Immuno-localization of sulphonylurea receptor 1 in rat pancreas. Diabetologia 42:1204–1211

    CAS  PubMed  Google Scholar 

  • Tamarina NA, Wang Y, Mariotto L, Kuznetsov A, Bond C, Adelman J, Philipson LH (2003) Small-conductance calcium-activated K+ channels are expressed in pancreatic islets and regulate glucose responses. Diabetes 52:2000–2006

    CAS  PubMed  Google Scholar 

  • Tanabe K, Tucker SJ, Matsuo M, Proks P, Ashcroft FM, Seino S, Amachi T, Ueda K (1999) Direct photoaffinity labeling of the Kir6.2 subunit of the ATP-sensitive K+ channel by 8-azido-ATP. J Biol Chem 274:3931–3933

    CAS  PubMed  Google Scholar 

  • Tanabe K, Tucker SJ, Ashcroft FM, Proks P, Kioka N, Amachi T, Ueda K (2000) Direct photoaffinity labeling of Kir6.2 by [gamma-(32)P]ATP-[gamma]4-azidoanilide. Biochem Biophys Res Commun 272:316–319

    CAS  PubMed  Google Scholar 

  • Tarasov AI, Girard CA, Ashcroft FM (2006) ATP sensitivity of the ATP-sensitive K+ channel in intact and permeabilized pancreatic beta-cells. Diabetes 55:2446–2454

    CAS  PubMed  Google Scholar 

  • Tarasov AI, Girard CA, Larkin B, Tammaro P, Flanagan SE, Ellard S, Ashcroft FM (2007) Functional analysis of two Kir6.2 (KCNJ11) mutations, K170T and E322K, causing neonatal diabetes. Diabetes Obes Metab 9(Suppl 2):46–55

    CAS  PubMed  Google Scholar 

  • Taschenberger G, Mougey A, Shen S, Lester LB, LaFranchi S, Shyng SL (2002) Identification of a familial hyperinsulinism-causing mutation in the sulfonylurea receptor 1 that prevents normal trafficking and function of KATP channels. J Biol Chem 277:17139–17146

    CAS  PubMed  Google Scholar 

  • Taylor EN, Hu FB, Curhan GC (2006) Antihypertensive medications and the risk of incident type 2 diabetes. Diabetes Care 29:1065–1070

    CAS  PubMed  Google Scholar 

  • Thiel G, Muller I, Rossler OG (2013) Signal transduction via TRPM3 channels in pancreatic beta-cells. J Mol Endocrinol 50:R75–R83

    CAS  PubMed  Google Scholar 

  • Thomas PM, Cote GJ, Wohllk N, Haddad B, Mathew PM, Rabl W, Aguilar-Bryan L, Gagel RF, Bryan J (1995) Mutations in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy. Science 268:426–429

    CAS  PubMed  Google Scholar 

  • Thornton PS, MacMullen C, Ganguly A, Ruchelli E, Steinkrauss L, Crane A, Aguilar-Bryan L, Stanley CA (2003) Clinical and molecular characterization of a dominant form of congenital hyperinsulinism caused by a mutation in the high-affinity sulfonylurea receptor. Diabetes 52:2403–2410

    CAS  PubMed  Google Scholar 

  • Togashi K, Hara Y, Tominaga T, Higashi T, Konishi Y, Mori Y, Tominaga M (2006) TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J 25:1804–1815

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trapp S, Proks P, Tucker SJ, Ashcroft FM (1998) Molecular analysis of ATP-sensitive K channel gating and implications for channel inhibition by ATP. J Gen Physiol 112:333–349

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trombetta M, Bonetti S, Boselli M, Turrini F, Malerba G, Trabetti E, Pignatti P, Bonora E, Bonadonna RC (2012) CACNA1E variants affect beta cell function in patients with newly diagnosed type 2 diabetes. The Verona newly diagnosed type 2 diabetes study (VNDS) 3. PLoS One 7:e32755

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trube G, Rorsman P, Ohno-Shosaku T (1986) Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic beta-cells. Pflugers Arch 407:493–499

    CAS  PubMed  Google Scholar 

  • Tschritter O, Stumvoll M, Machicao F, Holzwarth M, Weisser M, Maerker E, Teigeler A, Haring H, Fritsche A (2002) The prevalent Glu23Lys polymorphism in the potassium inward rectifier 6.2 (KIR6.2) gene is associated with impaired glucagon suppression in response to hyperglycemia. Diabetes 51:2854–2860

    CAS  PubMed  Google Scholar 

  • Tsuura Y, Ishida H, Hayashi S, Sakamoto K, Horie M, Seino Y (1994) Nitric oxide opens ATP-sensitive K+ channels through suppression of phosphofructokinase activity and inhibits glucose-induced insulin release in pancreatic beta cells. J Gen Physiol 104:1079–1098

    CAS  PubMed  Google Scholar 

  • Tucker SJ, Gribble FM, Zhao C, Trapp S, Ashcroft FM (1997) Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature 387:179–183

    CAS  PubMed  Google Scholar 

  • Ueda K, Inagaki N, Seino S (1997) MgADP antagonism to Mg2+-independent ATP binding of the sulfonylurea receptor SUR1. J Biol Chem 272:22983–22986

    CAS  PubMed  Google Scholar 

  • Ullrich S, Wollheim CB (1988) GTP-dependent inhibition of insulin secretion by epinephrine in permeabilized RINm5F cells. Lack of correlation between insulin secretion and cyclic AMP levels. J Biol Chem 263:8615–8620

    CAS  PubMed  Google Scholar 

  • Ullrich S, Wollheim CB (1989) Galanin inhibits insulin secretion by direct interference with exocytosis. FEBS Lett 247:401–404

    CAS  PubMed  Google Scholar 

  • Ullrich S, Prentki M, Wollheim CB (1990) Somatostatin inhibition of Ca2(+)-induced insulin secretion in permeabilized HIT-T15 cells. Biochem J 270:273–276

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vanoye CG, MacGregor GG, Dong K, Tang L, Buschmann AS, Hall AE, Lu M, Giebisch G, Hebert SC (2002) The carboxyl termini of K(ATP) channels bind nucleotides. J Biol Chem 277:23260–23270

    CAS  PubMed  Google Scholar 

  • Vaxillaire M, Dechaume A, Busiah K, Cave H, Pereira S, Scharfmann R, de Nanclares GP, Castano L, Froguel P, Polak M (2007) New ABCC8 mutations in relapsing neonatal diabetes and clinical features. Diabetes 56:1737–1741

    CAS  PubMed  Google Scholar 

  • Vaxillaire M, Veslot J, Dina C, Proenca C, Cauchi S, Charpentier G, Tichet J, Fumeron F, Marre M, Meyre D, Balkau B, Froguel P (2008) Impact of common type 2 diabetes risk polymorphisms in the DESIR prospective study. Diabetes 57:244–254

    CAS  PubMed  Google Scholar 

  • Vignali S, Leiss V, Karl R, Hofmann F, Welling A (2006) Characterization of voltage-dependent sodium and calcium channels in mouse pancreatic A- and B-cells. J Physiol 572:691–706

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vogalis F, Zhang Y, Goyal RK (1998) An intermediate conductance K+ channel in the cell membrane of mouse intestinal smooth muscle. Biochim Biophys Acta 1371:309–316

    CAS  PubMed  Google Scholar 

  • Wagner TF, Loch S, Lambert S, Straub I, Mannebach S, Mathar I, Düfer M, Lis A, Flockerzi V, Philipp SE, Oberwinkler J (2008) Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells. Nat Cell Biol 10:1421–1430

    CAS  PubMed  Google Scholar 

  • Wagner R, Kaiser G, Gerst F, Christiansen E, Due-Hansen ME, Grundmann M, Machicao F, Peter A, Kostenis E, Ulven T, Fritsche A, Haring HU, Ullrich S (2013) Reevaluation of fatty acid receptor 1 as a drug target for the stimulation of insulin secretion in humans. Diabetes 62:2106–2111

    CAS  PubMed  Google Scholar 

  • Wendt A, Birnir B, Buschard K, Gromada J, Salehi A, Sewing S, Rorsman P, Braun M (2004) Glucose inhibition of glucagon secretion from rat alpha-cells is mediated by GABA released from neighboring beta-cells. Diabetes 53:1038–1045

    CAS  PubMed  Google Scholar 

  • Wesslen N, Pipeleers D, Van de Winkel M, Rorsman P, Hellman B (1987) Glucose stimulates the entry of Ca2+ into the insulin-producing beta cells but not into the glucagon-producing alpha 2 cells. Acta Physiol Scand 131:230–234

    CAS  PubMed  Google Scholar 

  • Wiser O, Trus M, Hernandez A, Renstrom E, Barg S, Rorsman P, Atlas D (1999) The voltage sensitive Lc-type Ca2+ channel is functionally coupled to the exocytotic machinery. Proc Natl Acad Sci USA 96:248–253

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woll KH, Lonnendonker U, Neumcke B (1989) ATP-sensitive potassium channels in adult mouse skeletal muscle: different modes of blockage by internal cations, ATP and tolbutamide. Pflugers Arch 414:622–628

    CAS  PubMed  Google Scholar 

  • Wollheim CB, Winiger BP, Ullrich S, Wuarin F, Schlegel W (1990) Somatostatin inhibition of hormone release: effects on cytosolic Ca++ and interference with distal secretory events. Metabolism 39:101–104

    CAS  PubMed  Google Scholar 

  • Worley JF 3rd, McIntyre MS, Spencer B, Dukes ID (1994) Depletion of intracellular Ca2+ stores activates a maitotoxin-sensitive nonselective cationic current in beta-cells. J Biol Chem 269:32055–32058

    CAS  PubMed  Google Scholar 

  • Xia F, Gao X, Kwan E, Lam PP, Chan L, Sy K, Sheu L, Wheeler MB, Gaisano HY, Tsushima RG (2004) Disruption of pancreatic beta-cell lipid rafts modifies Kv2.1 channel gating and insulin exocytosis. J Biol Chem 279:24685–24691

    CAS  PubMed  Google Scholar 

  • Xu E, Kumar M, Zhang Y, Ju W, Obata T, Zhang N, Liu S, Wendt A, Deng S, Ebina Y, Wheeler MB, Braun M, Wang Q (2006) Intra-islet insulin suppresses glucagon release via GABA-GABAA receptor system. Cell Metab 3:47–58

    CAS  PubMed  Google Scholar 

  • Yan L, Figueroa DJ, Austin CP, Liu Y, Bugianesi RM, Slaughter RS, Kaczorowski GJ, Kohler MG (2004) Expression of voltage-gated potassium channels in human and rhesus pancreatic islets. Diabetes 53:597–607

    CAS  PubMed  Google Scholar 

  • Yanagihara K, Irisawa H (1980) Inward current activated during hyperpolarization in the rabbit sinoatrial node cell. Pflugers Arch 385:11–19

    CAS  PubMed  Google Scholar 

  • Yang SN, Berggren PO (2005) Beta-cell CaV channel regulation in physiology and pathophysiology. Am J Physiol Endocrinol Metab 288:E16–E28

    CAS  PubMed  Google Scholar 

  • Yang SN, Berggren PO (2006) The role of voltage-gated calcium channels in pancreatic beta-cell physiology and pathophysiology. Endocr Rev 27:621–676

    CAS  PubMed  Google Scholar 

  • Yang SN, Larsson O, Branstrom R, Bertorello AM, Leibiger B, Leibiger IB, Moede T, Kohler M, Meister B, Berggren PO (1999) Syntaxin 1 interacts with the L(D) subtype of voltage-gated Ca(2+) channels in pancreatic beta cells. Proc Natl Acad Sci USA 96:10164–10169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yorifuji T, Nagashima K, Kurokawa K, Kawai M, Oishi M, Akazawa Y, Hosokawa M, Yamada Y, Inagaki N, Nakahata T (2005) The C42R mutation in the Kir6.2 (KCNJ11) gene as a cause of transient neonatal diabetes, childhood diabetes, or later-onset, apparently type 2 diabetes mellitus. J Clin Endocrinol Metab 90:3174–3178

    CAS  PubMed  Google Scholar 

  • Yoshimoto Y, Fukuyama Y, Horio Y, Inanobe A, Gotoh M, Kurachi Y (1999) Somatostatin induces hyperpolarization in pancreatic islet alpha cells by activating a G protein-gated K+ channel. FEBS Lett 444:265–269

    CAS  PubMed  Google Scholar 

  • Zawalich WS, Zawalich KC (1997) Influence of pyruvic acid methyl ester on rat pancreatic islets. Effects on insulin secretion, phosphoinositide hydrolysis, and sensitization of the beta cell. J Biol Chem 272:3527–3531

    CAS  PubMed  Google Scholar 

  • Zerangue N, Schwappach B, Jan YN, Jan LY (1999) A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron 22:537–548

    CAS  PubMed  Google Scholar 

  • Zhang M, Houamed K, Kupershmidt S, Roden D, Satin LS (2005) Pharmacological properties and functional role of Kslow current in mouse pancreatic beta-cells: SK channels contribute to Kslow tail current and modulate insulin secretion. J Gen Physiol 126:353–363

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Q, Bengtsson M, Partridge C, Salehi A, Braun M, Cox R, Eliasson L, Johnson PR, Renstrom E, Schneider T, Berggren PO, Gopel S, Ashcroft FM, Rorsman P (2007) R-type Ca(2+)-channel-evoked CICR regulates glucose-induced somatostatin secretion. Nat Cell Biol 9:453–460

    CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang N, Gyulkhandanyan AV, Xu E, Gaisano HY, Wheeler MB, Wang Q (2008) Presence of functional hyperpolarisation-activated cyclic nucleotide-gated channels in clonal alpha cell lines and rat islet alpha cells. Diabetologia 51:2290–2298

    CAS  PubMed  Google Scholar 

  • Zhang Y, Liu Y, Qu J, Hardy A, Zhang N, Diao J, Strijbos PJ, Tsushima R, Robinson RB, Gaisano HY, Wang Q, Wheeler MB (2009) Functional characterization of hyperpolarization-activated cyclic nucleotide-gated channels in rat pancreatic beta cells. J Endocrinol 203:45–53

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang HY, Liao P, Wang JJ, de Yu J, Soong TW (2010) Alternative splicing modulates diltiazem sensitivity of cardiac and vascular smooth muscle Ca(v)1.2 calcium channels. Br J Pharmacol 160:1631–1640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Y, Fang Q, Straub SG, Sharp GW (2008) Both G i and G o heterotrimeric G proteins are required to exert the full effect of norepinephrine on the beta-cell K ATP channel. J Biol Chem 283:5306–5316

    CAS  PubMed  Google Scholar 

  • Zhou H, Zhang T, Harmon JS, Bryan J, Robertson RP (2007) Zinc, not insulin, regulates the rat alpha-cell response to hypoglycemia in vivo. Diabetes 56:1107–1112

    CAS  PubMed  Google Scholar 

  • Zünkler BJ, Lins S, Ohno-Shosaku T, Trube G, Panten U (1988) Cytosolic ADP enhances the sensitivity to tolbutamide of ATP-dependent K+ channels from pancreatic B-cells. FEBS Lett 239:241–244

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisela Drews .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Drews, G., Krippeit-Drews, P., Düfer, M. (2014). Electrophysiology of Islet Cells. In: Islam, M. (eds) Islets of Langerhans, 2. ed.. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6884-0_5-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6884-0_5-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6884-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Electrophysiology of Islet Cells
    Published:
    16 April 2014

    DOI: https://doi.org/10.1007/978-94-007-6884-0_5-2

  2. Original

    Electrophysiology of Islet Cells
    Published:
    14 February 2014

    DOI: https://doi.org/10.1007/978-94-007-6884-0_5-1