Skip to main content

Microbial Production of C2-C5 Diols1

Handbook of Biorefinery Research and Technology
  • 37 Accesses

Abstract

Diols are a category of important value-added chemicals, widely used in solvents, cosmetics, pharmaceuticals, and polymer industry. Production of diols via biological processes is highly important for a sustainable chemical industry. The recent development of metabolic engineering and synthetic biology has achieved great success in constructing microbial strains for the production of diols. In this chapter, the recent development of microbial processes for the production of C2-C5 diols was summarized. Especially, the new pathways and metabolic engineering strategies for the production of ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, and 1,3-pentanediol were systematically described. The challenges and prospects for developing biological processes for commercial applications were also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Choi S, Woo C, Ho J, Yup S (2014) Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 28:223–239

    Article  Google Scholar 

  2. Yue H, Zhao Y, Ma X, Gong J (2012) Ethylene glycol: properties, synthesis, and applications. Chem Soc Rev 41(11):4218–4244

    Article  CAS  Google Scholar 

  3. AgileIntel Research (ChemIntel360) (2022) Market volume of monoethylene glycol worldwide from 2015 to 2021, with a forecast for 2022 to 2029 (in million metric tons). Statista. Statista Inc. Accessed: November 29, 2022. https://www.statista.com/statistics/1245248/ethylene-glycol-market-volume-worldwide/

  4. Liu H, Ramos K, Valdehuesa K, Nisola G, Lee W-K, W-J C (2013) Biosynthesis of ethylene glycol in Escherichia coli. Appl Microbiol Biotechnol 97(8):3409–3417

    Article  CAS  Google Scholar 

  5. Lu X, Yao Y, Yang Y, Zhang Z, Gu J, Mojovic L et al (2021) Ethylene glycol and glycolic acid production by wild-type Escherichia coli. Appl Biochem Biotechnol 68(4):744–755

    Article  CAS  Google Scholar 

  6. Jarboe L (2011) YqhD: a broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals. Appl Microbiol Biotechnol 89(2):249–257

    Article  CAS  Google Scholar 

  7. Wang Y, Xian M, Feng X, Liu M, Zhao G (2018) Biosynthesis of ethylene glycol from D-xylose in recombinant Escherichia coli. Bioengineered 9(1):233–241

    Article  CAS  Google Scholar 

  8. Pereira B, Li ZJ, De Mey M, Lim CG, Zhang HR, Hoeltgen C et al (2016) Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate. Metab Eng 34:80–87

    Article  CAS  Google Scholar 

  9. Salusjarvi L, Toivari M, Vehkomäki ML, Koivistoinen O, Mojzita D, Niemelä K et al (2017) Production of ethylene glycol or glycolic acid from D-xylose in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 101(22):8151–8163

    Article  CAS  Google Scholar 

  10. Cabulong RB, Valdehuesa KNG, Ramos KRM, Nisola GM, Lee WK, Lee CR et al (2017) Enhanced yield of ethylene glycol production from D-xylose by pathway optimization in Escherichia coli. Enzym Microb Technol 97:11–20

    Article  CAS  Google Scholar 

  11. Banares AB, Valdehuesa KNG, Ramos KRM, Nisola GM, Lee W-K, Chung W-J (2019) Discovering a novel d-xylonate-responsive promoter: the P-yjhI-driven genetic switch towards better 1,2,4-butanetriol production. Appl Microbiol Biotechnol 103(19):8063–8074

    Article  CAS  Google Scholar 

  12. Chae TU, Choi SY, Ryu JY, Lee SY (2018) Production of ethylene glycol from xylose by metabolically engineered Escherichia coli. AICHE J 64(12):4193–4200

    Article  CAS  Google Scholar 

  13. Alkim C, Cam Y, Trichez D, Auriol C, Spina L, Vax A et al (2015) Optimization of ethylene glycol production from (D)-xylose via a synthetic pathway implemented in Escherichia coli. Microb Cell Factories 14:127

    Article  Google Scholar 

  14. Chomvong K, Bauer S, Benjamin DI, Li X, Nomura DK, Cate JH (2016) Bypassing the pentose phosphate pathway: towards modular utilization of xylose. PLoS One 11(6):e0158111

    Article  Google Scholar 

  15. Uranukul B, Woolston BM, Fink GR, Stephanopoulos G (2018) Biosynthesis of monoethylene glycol in Saccharomyces cerevisiae utilizing native glycolytic enzymes. Metab Eng 51:20–31

    Article  Google Scholar 

  16. Pereira B, Zhang HR, De Mey M, Lim CG, Li ZJ, Stephanopoulos G (2016) Engineering a novel biosynthetic pathway in Escherichia coli for production of renewable ethylene glycol. Biotechnol Bioeng 113(2):376–383

    Article  CAS  Google Scholar 

  17. Chen Z, Huang JH, Wu Y, Liu DH (2016) Metabolic engineering of Corynebacterium glutamicum for the de novo production of ethylene glycol from glucose. Metab Eng 33:12–18

    Article  CAS  Google Scholar 

  18. Zhang Y, Liu D, Chen Z (2017) Production of C2–C4 diols from renewable bioresources: new metabolic pathways and metabolic engineering strategies. Biotechnol Biofuels 10:299

    Article  Google Scholar 

  19. Dugar D, Stephanopoulos G (2011) Relative potential of biosynthetic pathways for biofuels and bio-based products. Nat Biotechnol 29(12):1074–1078

    Article  CAS  Google Scholar 

  20. Chen Z, Huang JH, Wu Y, Wu WJ, Zhang Y, Liu DH (2017) Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose. Metab Eng 39:151–158

    Article  CAS  Google Scholar 

  21. Liu H, Xu Y, Zheng Z, Liu D (2010) 1,3-Propanediol and its copolymers: research, development and industrialization. Biotechnol J 5(11):1137–1148

    Article  CAS  Google Scholar 

  22. Dias A, Maria R, Lewis T, Danilo, Sena L, Luiz A (2021) Catalysts for glycerol hydrogenolysis to 1,3-propanediol: a review of chemical routes and market. Catal Today 381:243–253

    Article  Google Scholar 

  23. Zhong WQ, Zhang Y, Wu WJ, Liu DH, Chen Z (2019) Metabolic engineering of a homoserine-derived non-natural pathway for the de novo production of 1,3-propanediol from glucose. ACS Synth Biol 8(3):587–595

    Article  CAS  Google Scholar 

  24. Maervoet V, De Maeseneire S, Avci F, Beauprez J, Soetaert W (2016) High yield 1,3-propanediol production by rational engineering of the 3-hydroxypropionaldehyde bottleneck in Citrobacter werkmanii. Microb Cell Factories 15:23

    Article  Google Scholar 

  25. Saxena R, Anand P, Saran S, Isar J (2009) Microbial production of 1, 3-propanediol: recent developments and emerging opportunities. Biotechnol Adv 27(6):895–913

    Article  CAS  Google Scholar 

  26. Zhu Y, Wang Y, Gao H, Wang H, Wan Z, Jiang Y et al (2021) Current advances in microbial production of 1,3-propanediol. Biofuels Bioprod Biorefin 15(5):1566–1583

    Article  CAS  Google Scholar 

  27. Zhu FH, Liu DH, Chen Z (2022) Recent advances in biological production of 1,3-propanediol: new routes and engineering strategies. Green Chem 24(4):1390–1403

    Article  CAS  Google Scholar 

  28. Zhang Y, Li ZH, Liu Y, Cen XC, Liu DH, Chen Z (2021) Systems metabolic engineering of Vibrio natriegens for the production of 1,3-propanediol. Metab Eng 65:52–65

    Article  CAS  Google Scholar 

  29. Zhang Y, Sun Q, Liu Y, Cen XC, Liu DH, Chen Z (2021) Development of a plasmid stabilization system in Vibrio natriegens for the high production of 1,3-propanediol and 3-hydroxypropionate. Bioresour Bioprocess 8(1):125

    Article  Google Scholar 

  30. Lama S, Seol E, Park S (2020) Development of Klebsiella pneumoniae J2B as microbial cell factory for the production of 1,3-propanediol from glucose. Metab Eng 62:116–125

    Article  CAS  Google Scholar 

  31. Li ZH, Dong YF, Liu Y, Cen XC, Liu DH, Chen Z (2022) Systems metabolic engineering of Corynebacterium glutamicum for high-level production of 1,3-propanediol from glucose and xylose. Metab Eng 70:79–88

    Article  CAS  Google Scholar 

  32. Zhang YJ, Ma CW, Dischert W, Soucaille P, Zeng AP (2019) Engineering of phosphoserine aminotransferase increases the conversion of L-homoserine to 4-hydroxy-2-ketobutyrate in a glycerol-independent pathway of 1,3-propanediol production from glucose. Biotechnol J 14(9):1900003

    Article  Google Scholar 

  33. Li ZH, Wu ZY, Cen XC, Liu Y, Zhang Y, Liu DH et al (2021) Efficient production of 1,3-propanediol from diverse carbohydrates via a non-natural pathway using 3-hydroxypropionic acid as an intermediate. ACS Synth Biol 10(3):478–486

    Article  CAS  Google Scholar 

  34. Cameron DC, Cooney CL (1986) A novel fermentation: the production of R(−)–1,2–propanediol and acetol by Clostridium thermosaccharolyticum. Bio-Technol 4(7):651–654

    CAS  Google Scholar 

  35. Saxena RK, Anand P, Saran S, Isar J, Agarwal L (2010) Microbial production and applications of 1,2-propanediol. Indian J Microbiol 50(1):2–11

    Article  CAS  Google Scholar 

  36. Sun SQ, Shu L, Lu XY, Wang QH, Tisma M, Zhu CG et al (2021) 1,2-Propanediol production from glycerol via an endogenous pathway of Klebsiella pneumoniae. Appl Microbiol Biotechnol 105(23):9003–9016

    Article  CAS  Google Scholar 

  37. Jain R, Sun XX, Yuan QP, Yan YJ (2015) Systematically engineering Escherichia coil for enhanced production of 1,2-propanediol and 1-propanol. ACS Synth Biol 4(6):746–756

    Article  CAS  Google Scholar 

  38. Nonaka D, Fujiwara R, Hirata Y, Tanaka T, Kondo A (2021) Metabolic engineering of 1,2-propanediol production from cellobiose using beta-glucosidase-expressing E. coli. Bioresour Technol 329:124858

    Article  CAS  Google Scholar 

  39. Li H, Liao JC (2013) Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol. Microb Cell Factories 12:4

    Article  CAS  Google Scholar 

  40. David C, Schmid A, Adrian L, Wilde A, Buhler K (2018) Production of 1,2-propanediol in photoautotrophic Synechocystis is linked to glycogen turn-over. Biotechnol Bioeng 115(2):300–311

    Article  CAS  Google Scholar 

  41. Niu W, Guo J (2015) Stereospecific microbial conversion of lactic acid into 1,2-propanediol. ACS Synth Biol 4(4):378–382

    Article  CAS  Google Scholar 

  42. Grabar TB, Zhou S, Shanmugam KT, Yomano LP, Ingram LO (2006) Methylglyoxal bypass identified as source of chiral contamination in L(+) and D(−)-lactate fermentations by recombinant Escherichia coli. Biotechnol Lett 28(19):1527–1535

    Article  CAS  Google Scholar 

  43. Niu W, Kramer L, Mueller J, Liu K, Guo JT (2019) Metabolic engineering of Escherichia coli for the de novo stereospecific biosynthesis of 1,2-propanediol through lactic acid. Metab Eng Commun 8:e00082

    Article  Google Scholar 

  44. Yoo JI, Sohn YJ, Son J, Jo SY, Pyo J, Park SK et al (2022) Recent advances in the microbial production of C4 alcohols by metabolically engineered microorganisms. Biotechnol J 17(3):e2000451

    Article  Google Scholar 

  45. Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J et al (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7(7):445–452

    Article  CAS  Google Scholar 

  46. Burgard A, Burk MJ, Osterhout R, Dien SV, Yim H (2016) Development of a commercial scale process for production of 1,4-butanediol from sugar. Curr Opin Biotechnol 42:118–125

    Article  CAS  Google Scholar 

  47. Tai YS, Xiong MY, Jambunathan P, Wang JY, Wang JL, Stapleton C et al (2016) Engineering nonphosphorylative metabolism to generate lignocellulose-derived products. Nat Chem Biol 12(4):247–253

    Article  CAS  Google Scholar 

  48. Barton NR, Burgard AP, Burk MJ, Crater JS, Osterhout RE, Pharkya P et al (2015) An integrated biotechnology platform for developing sustainable chemical processes. J Ind Microbiol Biotechnol 42(3):349–360

    Article  CAS  Google Scholar 

  49. Wang J, Jain R, Shen XL, Sun XX, Cheng MY, Liao JC et al (2017) Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose. Metab Eng 40:148–156

    Article  CAS  Google Scholar 

  50. Kataoka N, Vangnai AS, Tajima T, Nakashimada Y, Kato J (2013) Improvement of (R)-1,3-butanediol production by engineered Escherichia coli. J Biosci Bioeng 115(5):475–480

    Article  CAS  Google Scholar 

  51. Kataoka N, Vangnai AS, Ueda H, Tajima T, Nakashimada Y, Kato J (2014) Enhancement of (R)-1,3-butanediol production by engineered Escherichia coli using a bioreactor system with strict regulation of overall oxygen transfer coefficient and pH. Biosci Biotechnol Biochem 78(4):695–700

    Article  CAS  Google Scholar 

  52. Liu Y, Cen XC, Liu DH, Chen Z (2021) Metabolic engineering of Escherichia coli for high-yield production of (R)-1,3-butanediol. ACS Synth Biol 10(8):1946–1955

    Article  CAS  Google Scholar 

  53. Kim T, Flick R, Brunzelle J, Singer A, Evdokimova E, Brown G et al (2017) Novel Aldo-Keto reductases for the biocatalytic conversion of 3-hydroxybutanal to 1,3-butanediol: structural and biochemical studies. Appl Environ Microbiol 83(7):e03172–e03116

    Article  CAS  Google Scholar 

  54. Nemr K, Muller JEN, Joo JC, Gawand P, Choudhary R, Mendonca B et al (2018) Engineering a short, aldolase-based pathway for (R)-1,3-butanediol production in Escherichia coli. Metab Eng 48:13–24

    Article  CAS  Google Scholar 

  55. Cen XC, Liu Y, Chen B, Liu DH, Chen Z (2021) Metabolic engineering of Escherichia coli for de novo production of 1,5-pentanediol from glucose. ACS Synth Biol 10(1):192–203

    Article  CAS  Google Scholar 

  56. Kataoka N, Vangnai AS, Pongtharangkul T, Yakushi T, Matsushita K (2017) Production of 1,3-diols in Escherichia coli. Bioresour Technol 245:1538–1541

    Article  CAS  Google Scholar 

  57. Wang J, Li C, Zou Y, Yan Y (2020) Bacterial synthesis of C3-C5 diols via extending amino acid catabolism. Proc Natl Acad Sci U S A 117(32):19159–19167

    Article  CAS  Google Scholar 

  58. Long MR, Ong WK, Reed JL (2015) Computational methods in metabolic engineering for strain design. Curr Opin Biotechnol 34:135–141

    Article  CAS  Google Scholar 

  59. Lee SY, Kim HU, Chae TU, Cho JS, Kim JW, Shin JH et al (2019) A comprehensive metabolic map for production of bio-based chemicals. Nat Catal 2(1):18–33

    Article  CAS  Google Scholar 

  60. Bommareddy RR, Chen Z, Rappert S, Zeng A-P (2014) A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metab Eng 25:30–37

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Chen .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cen, X., Dong, Y., Liu, D., Chen, Z. (2023). Microbial Production of C2-C5 Diols1. In: Bisaria, V. (eds) Handbook of Biorefinery Research and Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6724-9_16-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6724-9_16-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6724-9

  • Online ISBN: 978-94-007-6724-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Microbial Production of C2-C5 Diols
    Published:
    13 January 2023

    DOI: https://doi.org/10.1007/978-94-007-6724-9_16-2

  2. Original

    Microbial Production of C2-C5 Diols1
    Published:
    08 December 2022

    DOI: https://doi.org/10.1007/978-94-007-6724-9_16-1