Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

1 Introduction

Hyper-Kähler manifolds of type A were first constructed by Anderson, Kronheimer and LeBrun in [1], as the first example of complete Ricci-flat Kähler manifolds with infinite topological type. Here, infinite topological type means that their homology groups are infinitely generated. The construction in [1] is due to Gibbons-Hawking ansatz, and Goto [5] has constructed these manifolds in another way, using hyper-Kähler quotient construction. Some of the topological and geometric properties of hyper-Kähler manifolds of type A were studied well in the above papers. In this article, we focus on the volume growth of the hyper-Kähler metrics, the holomorphic symplectic structures, and the period maps.

The construction of hyper-Kähler manifolds of type A is similar to that of ALE spaces of type A k , where k is a nonnegative integer. Moreover, their topological properties and complex geometric properties are also similar to type A k . For example, both of the ALE spaces of type A k and the hyper-Kähler manifolds of type A have the parameter naturally given by the construction. We review that they correspond to the cohomology classes of three Kähler forms along [8].

On the other hand, one of the essentially different properties between them appears in their asymptotic behaviors. In fact, the volume growth of ALE spaces is Euclidean, but that of hyper-Kähler manifolds of type A are less than Euclidean volume growth, which is a main result of [7].

Moreover, we will review the independence of the volume growth of hyper-Kähler metrics and the complex structures. More precisely, we review the result in [9] to the effect that the volume growth of the hyper-Kähler metric of type A can be deformed preserving the complex structure.

2 Hyper-Kähler Manifolds of Type A

2.1 Hyper-Kähler Quotient Construction

In this section, we review shortly the construction of hyper-Kähler manifolds of type A along [5]. For more details, see [1, 5] or review in Section 2 of [7].

First of all, hyper-Kähler manifolds are defined as follows.

Definition 1.

Let (X, g) be a Riemannian manifold of dimension 4n with three integrable complex structures \(I_{1},I_{2},I_{3}\), and g be a hermitian metric with respect to each I i . Then \((X,g,I_{1},I_{2},I_{3})\) is a hyper-Kähler manifold if \((I_{1},I_{2},I_{3})\) satisfying the relations \(I_{1}^{2} = I_{2}^{2} = I_{3}^{2} = I_{1}I_{2}I_{3} = -1\) and each \(\omega _{i}:= g(I_{i}\cdot,\cdot )\) being closed.

Denote by \(\mathbb{H} = \mathbb{R} \oplus \mathbb{R}i \oplus \mathbb{R}j \oplus \mathbb{R}k = \mathbb{C} \oplus \mathbb{C}j\) the quaternion and denote by \(\mathrm{Im}\mathbb{H} = \mathbb{R}i \oplus \mathbb{R}j \oplus \mathbb{R}k\) its Imaginary part. Then an \(\mathrm{Im}\mathbb{H}\)-valued 2-form \(\omega:= i\omega _{1} + j\omega _{2} + k\omega _{3} \in \varOmega ^{2}(X) \otimes \mathrm{ Im}\mathbb{H}\) characterizes the hyper-Kähler structure \((g,I_{1},I_{2},I_{3})\). Accordingly, we call ω the hyper-Kähler structure on X instead of \((g,I_{1},I_{2},I_{3})\).

Now we construct hyper-Kähler quotient method introduced in [9]. Put

$$\displaystyle\begin{array}{rcl} (\mathrm{Im}\mathbb{H})_{0}^{\mathbb{N}}:=\{\lambda = (\lambda _{ n})_{n\in \mathbb{N}} \in (\mathrm{Im}\mathbb{H})^{\mathbb{N}};\ \sum _{ n\in \mathbb{N}} \frac{1} {1 + \vert \lambda _{n}\vert } < +\infty \},& & {}\\ \end{array}$$

where \(\mathbb{N}\) is the set of positive integers. Here, we denote by \(S^{\mathbb{N}}\) the set of all maps from \(\mathbb{N}\) to a set S.

Let

$$\displaystyle\begin{array}{rcl} M_{\mathbb{N}}:=\{ v \in \mathbb{H}^{\mathbb{N}};\ \|v\|_{ \mathbb{N}}^{2} < +\infty \},& & {}\\ \end{array}$$

where

$$\displaystyle\begin{array}{rcl} \langle u,v\rangle _{\mathbb{N}}:=\sum _{n\in \mathbb{N}}u_{n}\overline{v}_{n},\quad \|v\|_{\mathbb{N}}^{2}:=\langle v,v\rangle _{ \mathbb{N}}& & {}\\ \end{array}$$

for \(u,v \in \mathbb{H}^{\mathbb{N}}\). Here, the quaternionic conjugate of v n is denoted by \(\overline{v}_{n}\).

For each \(\lambda \in (\mathrm{Im}\mathbb{H})_{0}^{\mathbb{N}}\), \(\varLambda \in \mathbb{H}^{\mathbb{N}}\) can be taken so that \(\varLambda _{n}i\overline{\varLambda }_{n} =\lambda _{n}\). Put

$$\displaystyle\begin{array}{rcl} M_{\varLambda }&:=& \varLambda +M_{\mathbb{N}} =\{\varLambda +v;\ v \in M_{\mathbb{N}}\}, {}\\ G_{\lambda }&:=& \{g \in (S^{1})^{\mathbb{N}};\ \sum _{ n\in \mathbb{N}}(1 + \vert \lambda _{n}\vert )\vert 1 - g_{n}\vert ^{2} < +\infty,\ \prod _{ n\in \mathbb{N}}g_{n} = 1\}. {}\\ \end{array}$$

Here, \(\prod _{n\in \mathbb{N}}g_{n}\) always converges by the condition

$$\displaystyle\begin{array}{rcl} \sum _{n\in \mathbb{N}} \frac{1} {1 + \vert \lambda _{n}\vert } < +\infty.& & {}\\ \end{array}$$

Then G λ is an infinite dimensional Lie group, and G λ acts on M Λ by \(xg:= (x_{n}g_{n})_{n\in \mathbb{N}}\) for x ∈ M Λ , g ∈ G λ .

Now G λ acts on

$$\displaystyle\begin{array}{rcl} N_{\varLambda } =\{ x \in M_{\varLambda };\ x_{n}i\overline{x}_{n} -\lambda _{n} = x_{m}i\overline{x}_{m} -\lambda _{m}\ \mathrm{for\ all\ }n,m \in \mathbb{N}\}& & {}\\ \end{array}$$

and we obtain the quotient space \(N_{\varLambda }/G_{\lambda }\) which is called the hyper-Kähler quotient. Here, N Λ corresponds to the level set of the hyper-Kähler moment map.

Definition 2.

\(\lambda \in (\mathrm{Im}\mathbb{H})_{0}^{\mathbb{N}}\) is generic if \(\lambda _{n} -\lambda _{m}\neq 0\) for all distinct \(n,m \in \mathbb{N}\).

Theorem 1 ([5]).

If \(\lambda \in (\mathrm{Im}\mathbb{H})_{0}^{\mathbb{N}}\) is generic, then \(N_{\varLambda }/G_{\lambda }\) is a smooth manifold of real dimension 4, and the hyper-Kähler structure on M Λ induces a hyper-Kähler structure ω λ on \(N_{\varLambda }/G_{\lambda }\).

Although the hyper-Kähler quotient \(N_{\varLambda }/G_{\lambda }\) seems to depend on the choice of \(\varLambda \in \mathbb{H}^{\mathbb{N}}\), the induced hyper-Kähler structure on \(N_{\varLambda }/G_{\lambda }\) depends only on λ by the argument of Section 2 of [7]. Accordingly we may put

$$\displaystyle\begin{array}{rcl} X(\lambda )&:=& N_{\varLambda }/G_{\lambda } {}\\ & =& \{x \in M_{\varLambda };x_{n}i\bar{x}_{n} -\lambda _{n}\ \mathrm{is\ independent\ of}\ n \in \mathbb{N}\}/G_{\lambda }, {}\\ \end{array}$$

and call it a hyper-Kähler manifold of type A

If \(\mathbb{N}\) is replaced by a finite set in the above construction, (X(λ), ω λ ) becomes an ALE hyper-Kähler manifold of type A k [4].

2.2 S 1-actions and Moment Maps

An S 1-action on X(λ) preserving the hyper-Kähler structure is defined as follows. (See also [5].) Let \([x] \in N_{\varLambda }/G_{\lambda }\) be the equivalence class represented by x ∈ N Λ . Take \(m \in \mathbb{N}\) arbitrarily and let

$$\displaystyle\begin{array}{rcl} [x]g:= [x_{m}g,(x_{n})_{n\in \mathbb{N}\setminus \{m\}}]& & {}\\ \end{array}$$

for \(x = (x_{m},(x_{n})_{n\in \mathbb{N}\setminus \{m\}}) \in N_{\varLambda }\) and g ∈ S 1. This definition does not depend on the choice of \(m \in \mathbb{N}\). Then we obtain the hyper-Kähler moment map

$$\displaystyle\begin{array}{rcl} \mu _{\lambda }([x]):= x_{n}i\bar{x}_{n} -\lambda _{n} \in \mathrm{ Im}\mathbb{H}.& & {}\\ \end{array}$$

The right hand side is independent of the choice of \(n \in \mathbb{N}\) since x is an element of N Λ .

We have a principal S 1-bundle \(\mu _{\lambda }\big\vert _{X(\lambda )^{{\ast}}}: X(\lambda )^{{\ast}}\rightarrow Y (\lambda )\), where

$$\displaystyle\begin{array}{rcl} X(\lambda )^{{\ast}}&:=& \{[x] \in X(\lambda );\ x_{ n}\neq 0\ \mathrm{for\ all\ }n \in \mathbb{N}\}, {}\\ Y (\lambda )&:=& \mathrm{Im}\mathbb{H}\setminus \{-\lambda _{n};\ n \in \mathbb{N}\}. {}\\ \end{array}$$

By the Gibbons-Hawking construction [1], we can check easily that X(λ) and X(λ′) are isomorphic as hyper-Kähler manifolds if λ and λ′ satisfy one of the following conditions; (i) \(\lambda '_{n} -\lambda _{n} \in \mathrm{ Im}\mathbb{H}\) is independent of n, (ii) \(\lambda '_{n} =\lambda _{a(n)}\) for some bijective maps \(a: \mathbb{N} \rightarrow \mathbb{N}\), (iii) \(\lambda = -\lambda '\).

3 The Volume Growth

Here we focus on the Riemannian geometric aspects of X(λ), especially their volume growth.

For a Riemannian manifold (X, g), denote by V g (p, r) the volume of the geodesic ball of radius r > 0 centered at p ∈ X. By the volume comparison theorem [2, 6], we can deduce that

$$\displaystyle\begin{array}{rcl} \lim _{r\rightarrow \infty }\frac{V _{g}(p_{0},r)} {V _{g}(p_{1},r)} = 1& & {}\\ \end{array}$$

for any Ricci flat manifold (X, g) and any p 0, p 1 ∈ X. Thus the volume growth of g is the invariant for Ricci flat manifolds.

Theorem 2 ([7]).

For each \(\lambda \in (\mathrm{Im}\mathbb{H})_{0}^{\mathbb{N}}\) and p 0 ∈ X(λ), the function \(V _{g_{\lambda }}(p_{0},r)\) satisfies

$$\displaystyle\begin{array}{rcl} 0 <\liminf _{r\rightarrow +\infty }\frac{V _{g_{\lambda }}(p_{0},r)} {r^{2}\tau _{\lambda }^{-1}(r^{2})} \leq \limsup _{r\rightarrow +\infty }\frac{V _{g_{\lambda }}(p_{0},r)} {r^{2}\tau _{\lambda }^{-1}(r^{2})} < +\infty,& & {}\\ \end{array}$$

where the function \(\tau _{\lambda }: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}\) is defined by

$$\displaystyle\begin{array}{rcl} \tau _{\lambda }(R):=\sum _{n\in \mathbb{N}} \frac{R^{2}} {R + \vert \lambda _{n}\vert }& & {}\\ \end{array}$$

for R ≥ 0. Moreover, we have

$$\displaystyle\begin{array}{rcl} \lim _{r\rightarrow +\infty }\frac{V _{g_{\lambda }}(p_{0},r)} {r^{4}} = 0,\quad \lim _{r\rightarrow +\infty }\frac{V _{g_{\lambda }}(p_{0},r)} {r^{3}} = +\infty.& & {}\\ \end{array}$$

Next we see some examples computed in [7].

Example 1.

Fix γ > 1 and put \(\lambda _{n}^{\gamma }:= i \cdot n^{\gamma } \in \mathrm{ Im}\mathbb{H}\). Then there exist positive constants A, B > 0 such that

$$\displaystyle\begin{array}{rcl} Ar^{4- \frac{2} {^{\gamma }+1} } \leq V _{g_{\lambda ^{\gamma }}}((p_{0},r) \leq Br^{4- \frac{2} {^{\gamma }+1} }.& & {}\\ \end{array}$$

Example 2.

Put \(\lambda _{n}:= i \cdot e^{n} \in \mathrm{ Im}\mathbb{H}\). Then there exist positive constants A, B > 0 such that

$$\displaystyle\begin{array}{rcl} A\frac{r^{4}} {\log r} \leq V _{g_{\lambda }}(p_{0},r) \leq B\frac{r^{4}} {\log r} & & {}\\ \end{array}$$

for any α < 4.

4 Period Maps

4.1 Holomorphic Curves

In this subsection, we see that there are several compact minimal submanifolds in X(λ) following [8].

Definition 3.

(i) Let X be a complex manifold of dimension 2n and \(\omega _{\mathbb{C}}\) be a holomorphic 2-form on X. Then \((X,\omega _{\mathbb{C}})\) is called a holomorphic symplectic manifold if \(d\omega _{\mathbb{C}} = 0\) and \(\omega _{\mathbb{C}}^{n}\) is nowhere vanishing. (ii) An n dimensional complex submanifold L of a holomorphic symplectic manifold \((X,\omega _{\mathbb{C}})\) is holomorphic Lagrangian submanifold if \(\omega _{\mathbb{C}}\vert _{L} = 0\).

Let (X, ω) be a hyper-Kähler manifold of real dimension 4n. For each \(y \in \mathrm{ Im}\mathbb{H}\) with | y |  = 1, \(\mathrm{Im}\mathbb{H}\) is decomposed into y-component and its orthogonal complement. Then we denote by \(\omega _{y} \in \varOmega ^{2}(X)\) the y-component of \(\omega \in \varOmega ^{2}(X) \otimes \mathrm{ Im}\mathbb{H}\). Let I y be the complex structure corresponding to the Kähler form ω y .

Let \(\eta = (\eta _{1}\ \eta _{2}\ \eta _{3}) \in SO(3)\), where \(\langle \eta _{1},\eta _{2},\eta _{3}\rangle\) is an orthonormal basis of \(\mathbb{R}^{3}\). Then η gives the orthogonal decomposition \(\mathrm{Im}\mathbb{H} = \mathbb{R}^{3} = \mathbb{R}\eta _{1} \oplus \mathbb{R}\eta _{2} \oplus \mathbb{R}\eta _{3}\), and the hyper-Kähler structure \(\omega \in \varOmega ^{2}(X) \otimes \mathrm{ Im}\mathbb{H}\) can be written as \(\omega =\eta _{1}\omega _{\eta _{1}} +\eta _{2}\omega _{\eta _{2}} +\eta _{3}\omega _{\eta _{3}}\) for every η ∈ SO(3). Now we regard \((X,I_{\eta _{1}})\) as a complex manifold. Then a holomorphic symplectic structure on X is given by \(\omega _{\eta _{\mathbb{C}}}:=\omega _{\eta _{2}} + i\omega _{\eta _{3}}\).

Proposition 1.

Let (X,ω) be a hyper-Kähler manifold and take η ∈ SO(3). Then each holomorphic Lagrangian submanifold L ⊂ X with respect to \(\omega _{\eta _{\mathbb{C}}}\) gives the minimum volume in their homology class.

Proof.

The pair of a Kähler form \(\omega _{\eta _{3}}\) and a holomorphic volume form \((\omega _{\eta _{1}} + i\omega _{\eta _{2}})^{n}\) gives the Calabi-Yau structure on \((X,I_{\eta _{3}})\). Here, n is the half of the complex dimension of X. Now, assume that L ⊂ X is a holomorphic Lagrangian submanifold with respect to \(\omega _{\eta _{\mathbb{C}}}\). Then \(\omega _{\eta _{2}}\vert _{L} =\omega _{\eta _{3}}\vert _{L} = 0\), hence L is lagrangian with respect to \(\omega _{\eta _{3}}\). Since \(\mathrm{Im}(\omega _{\eta _{1}} + i\omega _{\eta _{2}})^{n}\) is the multiplication of \(\omega _{\eta _{2}}\) and some differential forms, we also have \(\mathrm{Im}(\omega _{\eta _{1}} + i\omega _{\eta _{2}})^{n}\vert _{L} = 0\), which means L is a special Lagrangian submanifold. The volume minimizing property of special Lagrangian submanifolds [11] gives the assertion. □ 

Take a generic \(\lambda \in (\mathrm{Im}\mathbb{H})_{0}^{\mathbb{N}}\) and consider the hyper-Kähler manifold (X(λ), ω λ ) as constructed in Sect. 2. Put

$$\displaystyle\begin{array}{rcl} [a,b]&:=& \{ta + (1 - t)b \in \mathrm{ Im}\mathbb{H};\ 0 \leq t \leq 1\}, {}\\ (a,b]&:=& \{ta + (1 - t)b \in \mathrm{ Im}\mathbb{H};\ 0 \leq t < 1\}, {}\\ \ [a,b)&:=& \{ta + (1 - t)b \in \mathrm{ Im}\mathbb{H};\ 0 < t \leq 1\}, {}\\ (a,b)&:=& \{ta + (1 - t)b \in \mathrm{ Im}\mathbb{H};\ 0 < t < 1\} {}\\ \end{array}$$

for \(a,b \in \mathrm{ Im}\mathbb{H}\).

Proposition 2.

Let \(n,m \in \mathbb{N}\) satisfy n ≠ m and \((-\lambda _{n},-\lambda _{m}) \subset Y (\lambda )\) . The inverse image \(\mu _{\lambda }^{-1}([-\lambda _{n},-\lambda _{m}])\mathop{\cong}\mathbb{C}P^{1}\) is a complex submanifold of X(λ) with respect to I y and gives the minimum volume in its homology class, where \(y:= \frac{\lambda _{n}-\lambda _{m}} {\vert \lambda _{n}-\lambda _{m}\vert }\).

Proof.

Let η ∈ SO(3) satisfies η i = y. If we write \(\mu _{\lambda } = (\mu _{\lambda,1},\mu _{\lambda,2},\mu _{\lambda,3})\) with respect to the decomposition \(\mathrm{Im}\mathbb{H} = \mathbb{R}\eta _{1} \oplus \mathbb{R}\eta _{2} \oplus \mathbb{R}\eta _{3}\), then μ λ, 2 and μ λ, 3 are constant on \(\mu _{\lambda }^{-1}([-\lambda _{n},-\lambda _{m}])\). Hence we have \(d\mu _{\lambda,\alpha }\vert _{\mu _{\lambda }^{-1}([-\lambda _{n},-\lambda _{m}])} = 0\) for α = 2, 3, which gives \(\omega _{\lambda,\eta _{\mathbb{C}}}\vert _{\mu _{\lambda }^{-1}([-\lambda _{n},-\lambda _{m}])} = 0\). □ 

4.2 Topology

In this subsection we review the construction of the deformation retracts of X(λ) following [3, 5]. See also [8]. In the case of toric hyper-Kähler varieties, the deformation retracts are constructed in [3].

For \((-\lambda _{n},-\lambda _{m}) \subset Y (\lambda )\), the orientation of \(\mu _{\lambda }^{-1}([-\lambda _{n},-\lambda _{m}])\) is determined as follows. By taking a smooth section \((-\lambda _{n},-\lambda _{m}) \rightarrow \mu _{\lambda }^{-1}((-\lambda _{n},-\lambda _{m}))\) of μ λ , a coordinate (s, t) on \(\mu _{\lambda }^{-1}((-\lambda _{n},-\lambda _{m}))\) is naturally given where \(t \in \mathbb{R}/2\pi \mathbb{Z}\) is the parameter of S 1-action and a function \(s:\mu _{ \lambda }^{-1}((-\lambda _{n},-\lambda _{m})) \rightarrow \mathbb{R}\) is given by

$$\displaystyle\begin{array}{rcl} s(p):= \frac{\lambda _{n} +\mu _{\lambda }(p)} {\lambda _{n} -\lambda _{m}} & & {}\\ \end{array}$$

for \(p \in \mu _{\lambda }^{-1}((-\lambda _{n},-\lambda _{m}))\). Then the orientation of \(\mu _{\lambda }^{-1}([-\lambda _{n},-\lambda _{m}])\) is given by dsdt. Therefore, \(\mu _{\lambda }^{-1}([-\lambda _{n},-\lambda _{m}])\) and \(\mu _{\lambda }^{-1}([-\lambda _{m},-\lambda _{n}])\) are same as manifolds but have opposite orientations.

For \(n,m,l \in \mathbb{N}\), \(\mu _{\lambda }^{-1}([-\lambda _{n},-\lambda _{m}]) \cup \mu _{\lambda }^{-1}([-\lambda _{m},-\lambda _{l}])\) and \(\mu _{\lambda }^{-1}([-\lambda _{n},-\lambda _{l}])\) determines the same homology class since the boundary of \(\mu _{\lambda }^{-1}(\bigtriangleup _{n,m,l})\) is given by \(\mu _{\lambda }^{-1}([-\lambda _{n},-\lambda _{m}]) \cup \mu _{\lambda }^{-1}([-\lambda _{m},-\lambda _{l}]) \cup \mu _{\lambda }^{-1}([-\lambda _{l},-\lambda _{n}])\), where

$$\displaystyle\begin{array}{rcl} \bigtriangleup _{n,m,l}:=\{ -\alpha \lambda _{n} -\beta \lambda _{m} -\gamma \lambda _{l} \in \mathrm{ Im}\mathbb{H};\ \alpha +\beta +\gamma = 1,\ \alpha,\beta,\gamma \geq 0\}.& & {}\\ \end{array}$$

We denote by C n, m the homology class determined by \(\mu _{\lambda }^{-1}([-\lambda _{n},-\lambda _{m}])\). Then the above observation implies

$$\displaystyle\begin{array}{rcl} C_{n,m} + C_{m,l} + C_{l,n} = C_{n,m} + C_{m,n} = 0& & {}\\ \end{array}$$

for \(n,m,l \in \mathbb{N}\).

If \(n,m,l,h \in \mathbb{N}\) satisfies nh, nm and lh then the intersection number \(C_{n,m} \cdot C_{l,h}\) is given by

$$\displaystyle{C_{n,m}\cdot C_{l,h} = \left \{\begin{array}{ccc} 1&(m = l)\\ 0 & (m\neq l) \end{array} \right.}$$

and \(C_{n,m} \cdot C_{n,m} = -2\).

Since the subset of \((\mathrm{Im}\mathbb{H})_{0}^{\mathbb{N}}\) consisting of generic elements is connected in \((\mathrm{Im}\mathbb{H})_{0}^{\mathbb{N}}\), the topological structure of X(λ) does not depend on λ. Consequently, it suffices to study \(X(\hat{\lambda })\) for investigating the topology of X(λ), where \(\hat{\lambda }\) is the special one defined by \(\hat{\lambda }_{n}:= (n^{2},0,0) \in \mathrm{ Im}\mathbb{H}\).

Proposition 3.

There exists a deformation retract of \(\mu _{\hat{\lambda }}^{-1}(\bigcup _{n\in \mathbb{N}}[-\hat{\lambda }_{n},-\hat{\lambda }_{n+1}]) \subset X(\hat{\lambda })\).

Proof.

There is a deformation retract

$$\displaystyle\begin{array}{rcl} F:\mathrm{ Im}\mathbb{H} \times [0,1] \rightarrow \mathrm{ Im}\mathbb{H}& & {}\\ \end{array}$$

which satisfy \(F(\cdot,0) = id_{\mathrm{Im}\mathbb{H}}\), \(F(\mathrm{Im}\mathbb{H},1) =\bigcup _{n\in \mathbb{N}}[-\hat{\lambda }_{n},-\hat{\lambda }_{n+1}]\) and F(ζ, 1) = ζ for \(\zeta \in \bigcup _{n\in \mathbb{N}}[-\hat{\lambda }_{n},-\hat{\lambda }_{n+1}]\). Then we have the horizontal lift \(\tilde{F}: X(\hat{\lambda }) \times [0,1] \rightarrow X(\hat{\lambda })\) of F by using the S 1-connection on \(X(\hat{\lambda })^{{\ast}}\) naturally induced from the hyper-Kähler metric on \(X(\hat{\lambda })^{{\ast}}\). The map \(\tilde{F}\) is a deformation retract as we expect. □ 

Corollary 1.

The second homology group \(H_{2}(X(\lambda ), \mathbb{Z})\) is generated by \(\{C_{n,m};\ n,m \in \mathbb{N}\}\).

Thus we obtain the followings.

Theorem 3.

Let \(\lambda \in (\mathrm{Im}\mathbb{H})_{0}^{\mathbb{N}}\) be generic. Then \(H_{2}(X(\lambda ), \mathbb{Z})\) is a free \(\mathbb{Z}\) -module generated by \(\{C_{n,m};\ n,m \in \mathbb{N}\}\) with relations

$$\displaystyle\begin{array}{rcl} C_{n,m} + C_{m,l} + C_{l,n} = 0,C_{n,m} + C_{m,n} = 0& & {}\\ \end{array}$$

for all \(n,m,l \in \mathbb{N}\) . Moreover the intersection form on \(H_{2}(X(\lambda ), \mathbb{Z})\) is given by

$$\displaystyle{C_{n,m}\cdot C_{l,h} = \left \{\begin{array}{ccc} 1&(m = l)\\ 0 & (m\neq l) \end{array} \right.}$$

and \(C_{n,m} \cdot C_{n,m} = -2\) for \(n,m,l,h \in \mathbb{N}\) taken to be n ≠ h, n ≠ m and l ≠ h.

4.3 Period Maps

Let \([\omega _{\lambda }] \in H^{2}(X(\lambda ), \mathbb{R}) \otimes \mathrm{ Im}\mathbb{H}\) be the cohomology class of ω λ . In this subsection we compute [ω λ ], that is, compute the value of \(\langle [\omega _{\lambda }],C_{n,m}\rangle:=\int _{C_{n,m}}\omega _{\lambda } \in \mathrm{ Im}\mathbb{H}\) for all \(n,m \in \mathbb{N}\) along [8]. In the case of finite topological type of toric hyper-Kähler varieties, the period maps are computed in [12].

Theorem 4.

Let \(\lambda \in (\mathrm{Im}\mathbb{H})_{0}^{\mathbb{N}}\) be generic. Then

$$\displaystyle\begin{array}{rcl} \langle [\omega _{\lambda }],C_{n,m}\rangle =\lambda _{n} -\lambda _{m}& & {}\\ \end{array}$$

for all \(n,m \in \mathbb{N}\).

Proof.

Take a smooth path \(\gamma: [0,1] \rightarrow \mathrm{ Im}\mathbb{H}\) such that \(\gamma (0) = -\lambda _{n}\), \(\gamma (1) = -\lambda _{m}\) and γ(s) ∈ Y (λ) for s ∈ (0, 1). Since the homology class represented by \(\mu _{\lambda }^{-1}(\gamma ([0,1]))\) is C n, m , we have

$$\displaystyle\begin{array}{rcl} \langle [\omega _{\lambda }],C_{n,m}\rangle =\int _{\mu _{\lambda }^{-1}(\gamma ([0,1]))}\omega _{\lambda }.& & {}\\ \end{array}$$

Take the local coordinate \((t,\mu _{\lambda,1},\mu _{\lambda,2},\mu _{\lambda,3})\) of an open subset of X(λ), where \(\mu _{\lambda } = (\mu _{\lambda,1},\mu _{\lambda,2},\mu _{\lambda,3})\) and t is the coordinate of S 1-action. Then the local coordinate (s, t) on \(\mu _{\lambda }^{-1}(\gamma ([0,1]))\) is given by \((t,\mu _{\lambda,1} \circ \gamma (s),\mu _{\lambda,2} \circ \gamma (s),\mu _{\lambda,3} \circ \gamma (s))\). By using this, we can see that

$$\displaystyle\begin{array}{rcl} \omega _{\lambda,\alpha } =\gamma _{\alpha }'(s)\frac{1} {2\pi }ds \wedge dt& & {}\\ \end{array}$$

for α = 1, 2, 3, where \(\gamma (s) = (\gamma _{1}(s),\gamma _{2}(s),\gamma _{3}(s)) \in \mathrm{ Im}\mathbb{H} = \mathbb{R}^{3}\). Hence we have

$$\displaystyle\begin{array}{rcl} \int _{\mu _{\lambda }^{-1}(\gamma ([0,1]))}\omega _{\lambda,\alpha }& =& \int _{\mu _{\lambda }^{-1}(\gamma ([0,1]))}\gamma _{\alpha }'(s)\frac{1} {2\pi }ds \wedge dt {}\\ & =& \int _{0}^{2\pi }\frac{1} {2\pi }dt\int _{0}^{1}\gamma _{ \alpha }'(s)ds {}\\ & =& \gamma _{\alpha }(1) -\gamma _{\alpha }(0) =\lambda _{n,\alpha } -\lambda _{m,\alpha }. {}\\ \end{array}$$

 □ 

5 Holomorphic Symplectic Structures

In this section we regard a hyper-Kähler manifold \((X,g,I_{1},I_{2},I_{3})\) as a complex manifold by I 1. Then the holomorphic 2-form \(\omega _{\mathbb{C}} =\omega _{2} + \sqrt{-1}\omega _{3}\) is called the holomorphic symplectic structure, and the cohomology class \([\omega _{2} + \sqrt{-1}\omega _{3}]\) is called the holomorphic symplectic class.

Let λ γ as in Example 1 of Sect. 3. Then, we can see that the holomorphic symplectic class \([\omega _{\lambda ^{\gamma },\mathbb{C}}]\) is independent of γ by Theorem 4.

Theorem 5 ([9]).

The holomorphic symplectic structures \(\omega _{\lambda ^{\gamma },\mathbb{C}}\) are independent of γ. In particular, X(λ γ ) and \(X(\lambda ^{\hat{\gamma }})\) are biholomorphic for all \(\gamma,\hat{\gamma }> 1\).

Since the function \(4 - \frac{2} {^{\gamma }+1}\) gives one-to-one correspondence between open intervals (1, ) and (3, 4), we have the following conclusion by combining Theorems 2 with 5.

Theorem 6.

Let α ∈ (3,4). Then there is a complex manifold X and the family of Ricci-flat Kähler metrics \(\{g_{\alpha }\}_{3<\alpha <4}\) whose volume growth satisfies

$$\displaystyle\begin{array}{rcl} Ar^{\alpha } \leq V _{g_{\alpha }}(p_{0},r) \leq Br^{\alpha }& & {}\\ \end{array}$$

for some positive constants A,B.