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Preface

The ICM 2014 Satellite Conference on Real and Complex Submanifolds and the
18th International Workshop on Differential Geometry was held at NIMS, Daejeon
in Korea during the period from August 10 (Sun.) to August 12 (Tue.), 2014.

This conference was mainly organized by National Institute for Mathematical
Sciences (2014 NIMS Hot Topic Workshop) and Grassmann Research Group
supported from National Research Foundation (Proj. No. NRF-2011-220-C00002
and Proj. No. NRF-2012-R1A2A2A-01043023).

Until now our Grassmann Research Group has organized many kinds of interna-
tional workshops on Differential Geometry and Related Fields. About 18 years ago
1996, the 1st international workshop was held at Kyungpook National University
on Dec. 21–22, 1996. Since then, our research group has organized several kinds
of conferences from a mini international workshop to a great national joint meeting
between KMS and AMS held at Ewha Womans Univ. in Seoul on Dec. 16–20,
2009, (SS28, Differential and Integral Geometry) and another joint meeting between
KMS and CMS at Southwest Univ. in Chongqing, China, on May 10–13, 2010.
Here the editors want to say their thanks to great contributions and enthusiasm
of Prof. Jiazu Zhou who was an organizer of such two joint meetings. All these
workshops are supported by NRF, KRF (Korea Research Foundation), NIMS, KNU
and KMS. Recently, for the last 6 years our NIMS has given their best efforts to
make this conference nicely and has given their constant financial supports and
invariant encouragements.

On behalf of the organizing committee (Prof. J. Berndt, Y. Ohnita and B.H. Kim),
the editors would like to express their sincere gratitude to all participants and invited
speakers from all over the world, in particular, to our 6 plenary speakers Prof.
Alfonso Romero (Univ. of Granada, Spain), Prof. Zhizhou Tang (Beijing Normal
University, China), Prof. David E. Blair (Michigan State University, USA), Prof.
Jürgen Berndt (King’s College London, UK), Prof. Katsuei Kenmotsu (Tohoku
University, Japan), and Prof. Yong-Geun Oh (POSTECH & IBS-CGP, Korea). For
the best efforts to edit the manuscripts submitted to Proceedings of Mathematics and
Statistics (Springer), first of all the editors want to say their thanks to the Program
Committee as follows:

v
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Prof. Jürgen Berndt (King’s College London, UK), Prof. Yoshihiro Ohnita (Osaka City
University & OCAMI, Japan), Prof. Juan de Dios Pérez (University of Granada, Spain),
Prof. Jiazu Zhou (Southwest University, China), Prof. Reiko Miyaoka (Tohoku University,
Japan), Prof. Kastuei Kenmotsu (Tohoku University, Japan), Prof. Carlos Enrique Olmos
(Univeridad Nacional de Cordoba, Argentina) and Prof. Masaaki Umehara (Tokyo Institute
of Technology, Japan).

The Program Committee have referred all of manuscripts submitted to our Proceed-
ings and have given a great contribution to publish our proceedings in Springer.

Moreover, the editors also want to say their thanks to the Scientific Committee
who have recommended nice invited speakers from all over the world. Here I want
to mention their names as follows:

Prof. Chuan-Lian Terng (University of California at Irvine, USA), Prof. Gudlaugur
Thorbergsson (University of Cologne, Germany), Prof. Carlos Enrique Olmos (Univeridad
Nacional de Cordoba, Argentina), Prof. Juan de Dios Pérez (University of Granada, Spain),
Prof. Jiazu Zhou (Southwest University, China), Prof. Reiko Miyaoka (Tohoku University,
Japan), Prof. Kastuei Kenmotsu (Tohoku University, Japan) and Prof. Masaaki Umehara
(Tokyo Institute of Technology, Japan).

Hopefully, our ICM 2014 Satellite Conference on Real & Complex Submanifolds
will be a bifurcation point that our GRG, OCAMI and together with many famous
differential geometers from all over the world could take a leap in more outstanding
level in the field of differential geometry and related fields.

The editors would like to say their thanks to Dr. Chang Hwa Woo and the
secretary in chief Miss Ahram Lee for their best efforts to accomplish this book
by using AMS LATEX files.

Finally the editors would be willing to say their hearty gratitude to our National
Research Foundation and all the staff working at the National Institute for Mathe-
matical Science in Korea.

The editors would be really happy if this kind of Proceedings of Mathematics and
Statistics (Springer) will be helpful for graduated students to study their research
more creatively and successfully. Thanks a lot.

Daegu, Korea Young Jin Suh
London, UK Jürgen Berndt
Osaka, Japan Yoshihiro Ohnita
Yongin, Korea Byung Hak Kim
Pohang, Korea Hyunjin Lee
August 15, 2014
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Part I
Plenary Talks



Generalizations of the Catenoid and the Helicoid

David E. Blair

Abstract In this lecture we will discuss various generalizations of the catenoid and
the helicoid as well as related differential geometric notions including minimality,
quasi-umbilicity and conformal flatness.

1 Historical Remarks

In 1744 Euler showed that a catenoid is a minimal surface and in 1766 Meusnier
showed that a right helicoid is a minimal surface. The converse that the catenoid is
the only surface of revolution that is minimal is due to Meusnier in 1785 ([17] or
see [8]). That the helicoid is the only ruled minimal surface aside from the plane
was proved by Catalan in 1842. For more history see Chen [12, esp. pp. 207–208].

A remarkable feature of these surfaces is that they are locally isometric. In fact
one can easily construct an isometric family of minimal surfaces depending on a
parameter � such that � D 0 is a helicoid and � D �

2
is a catenoid:

x1.u; v/ D cos� sin u sinh vC sin� cos u cosh v;

x2.u; v/ D � cos� cos u sinh vC sin� sin u cosh v;

x3.u; v/ D u cos�C v sin�:

2 Quasi-umbilicity

We will begin with a discussion of quasi-umbilicity. For an n-dimensional hyper-
surface of Euclidean space quasi-umbilicity means that the Weingarten map has at
least n�1 eigenvalues equal and we have the following theorem of Cartan [7] dating
from 1917, also attributed to Schouten [19] (1921).

D.E. Blair (�)
Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
e-mail: blair@math.msu.edu

© Springer Japan 2014
Y.J. Suh et al. (eds.), Real and Complex Submanifolds, Springer Proceedings
in Mathematics & Statistics 106, DOI 10.1007/978-4-431-55215-4__1
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4 D.E. Blair

Theorem 1. A conformally flat hypersurface Mn, n � 4, in Euclidean space EnC1
is quasi-umbilical.

Common examples, also due to Cartan, are the canal hypersurfaces, i.e. envelopes
of one-parameter families of hyperspheres. Thus conformal flatness can, at least in
some situations, be viewed as a natural generalization of a surface of revolution.

For submanifolds of general codimension the notion of quasi-umbilicity is more
subtle. Consider an n-dimensional submanifold of an .nCp/-dimensional Rieman-
nian manifold. A unit normal vector field is a quasi-umbilical section of the normal
bundle if the corresponding Weingarten map has at least n � 1 eigenvalues equal.
A submanifold is said to be quasi-umbilical if there exist p mutually orthogonal
quasi-umbilical normal sections (see e.g. Chen [10, pp. 147–148], or [12, p. 308]).

An early result relating quasi-umbilicity and conformal flatness is the following
theorem of Chen and Yano of 1972 [13].

Theorem 2. A quasi-umbilical submanifold of dimension � 4 of a conformally flat
manifold is conformally flat.

In general the converse of this theorem is not true; e.g. we will note below that
the Lagrangian catenoid in C

n of Castro and Urbano [9] is conformally flat but
not quasi-umbilical. Other examples of conformally flat submanifolds of dimension
n > 3 in a Euclidean space which are not quasi-umbilical can be found in the work
of Ü. Lumiste and M. Väljas [16]; the codimensions of their examples are integers
� n � 2. However if the codimension is not too large, we do have a converse of the
Chen-Yano theorem due to Moore and Morvan in 1978 [18].

Theorem 3. If p � minf4; n�3g, a conformally flat submanifoldMn of Euclidean
space EnCp is quasi-umbilical.

To illustrate the theorem of Moore and Morvan we give a simple, though not
complete, example of a conformally flat submanifold of codimension 2 in E7.

Let U .�1/ be a piece of the pseudo-sphere

x.s; �/ D .es cos �; es sin �;
Z s

0

p
1 � e2t dt/I

U .�1/ can be viewed as a piece of the hyperbolic plane with constant curvature
�1, realized as a surface in E3. Let S3.1/ be the unit sphere in E4.

Now consider M5 D U .�1/ � S3.1/ as an incomplete conformally flat
submanifold of E7 which by the Moore-Morvan theorem must be quasi-umbilical.
With respect to the usual normal fields, �1, �2, in the factor spaces, the Weingarten
maps are of the form
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A1 D

0
BBBBB@

� esp
1�e2s p

1�e2s
es

0

0

0

1
CCCCCA
;

A2 D

0
BBBBB@

0

0

1

1

1

1
CCCCCA
:

Thus �1 and �2 are not quasi-umbilical sections of the normal bundle.
Let

�1 D cos� �1 C sin� �2;

�2 D � sin� �1 C cos� �2

where � D tan�1
p
1 � e2s
es

. Then the Weingarten maps with respect to �1, �2 are

B1 D

0
BBBBB@

� es cos�p
1�e2s

sin�
sin�

sin�
sin�

1
CCCCCA
;

B2 D

0
BBBBB@

cos�

�
p
1�e2s sin�

es

cos�
cos�

cos�

1
CCCCCA

both of which have four equal eigenvalues illustrating the quasi-umbilicity.
In the course of their proof, Moore and Morvan show the existence of an

orthonormal basis e1; : : : ; en of the tangent space of Mn with respect to which the
second fundamental form is given by a matrix of the form
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0
BBB@

�ab
f �

: : :

f �

1
CCCA

where .�ab/ is a p � p matrix of normal vectors and � is a unit normal vector.
In particular one can show that a conformally flat submanifold of EnCp with

p � minf4; n� 3g admits a foliation by spaces of constant curvature of dimension
� n � p.

Lumiste and Väljas [16] also defined the notion of a completely quasi-umbilical
submanifold, meaning that every unit normal vector field is a quasi-umbilical section
of the normal bundle. They show that a submanifold Mn of a Euclidean space
EnCp is completely quasi-umbilical if and only if it is a canal submanifold, i.e.
the envelope of a one-parameter family of n-spheres.

3 Generalized Catenoids

In 1975 (see [2]) the author proved the following theorem.

Theorem 4. A conformally flat, minimal hypersurface Mn, n � 4, in Euclidean
space EnC1 is either totally geodesic or a hypersurface of revolution Sn�1 � �.s/
where the profile curve is a plane curve � determined by its curvature 	 as a function

of arc length by 	 D .1 � n/=un and s D
Z

un�1dup
Cu2n�2 � 1 , C being a constant.

If n D 3, replacing conformal flatness by quasi-umbilicity gives the same
result with the same proof. For n D 2, the profile curve is a catenary and hence
these hypersurfaces are called generalized catenoids. In 1991 Jagy [15] gave an
independent study of this question by assuming that the minimal hypersurface is
foliated by spheres from the outset.

Turning to the higher codimension case we have the following 2006 result of the
author [4]. First recall that the Schouten tensorL of a Riemannian manifold .Mn; g/

is defined by

L D � Q

n � 2 C



2.n � 1/.n � 2/I;

Q being the Ricci operator and 
 the scalar curvature. For a survey of ideas
surrounding the Schouten tensor and conformal flatness, see the essay by K. Bang
and the author [1].

Theorem 5. Let Mn, be a conformally flat, minimal submanifold of EnCp with
p � minf4; n � 3g. If the Schouten tensor has at most two eigenvalues, then either
Mn is flat and totally geodesic or a generalized catenoid lying in some .n C 1/-
dimensional Euclidean space.
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4 Lagrangian Catenoids

Let .v1 C iv2; : : : ; v2n�1 C iv2n/ be the coordinates on C
n. An n-dimensional

submanifold Mn of Cn is said to be Lagrangian if the restriction of the canonical
symplectic form ˝ DPn

iD1 dv2i�1 ^ dv2i to Mn vanishes.
In 1999 I. Castro and F. Urbano introduced the Lagrangian catenoid. The

manifold itself, M0, was introduced earlier by Harvey and Lawson in 1982 [14] as
an example of a minimal Lagrangian submanifold. It is defined as the set of points
.x; y/ 2 R

n � R
n � C

n satisfying

jxjy D jyjx; =.jxj C i jyj/n D 1; jyj < jxj tan.�=n/:

TopologicallyM0 is R�Sn�1. To describe it precisely, let Sn�1 be the unit sphere
in R

n and view a point p 2 Sn�1 as an n-tuple in R
n giving its coordinates. Define

a map

�0 W R � Sn�1 �! C
n � R

n � R
n

by

�0.u; p/ D cosh1=n.nu/eiˇ.u/p

where

ˇ.u/ D �

2n
� 2
n

arctan.tanh
nu

2
/ 2 .0; �

n
/

and the multiplication eiˇp multiplies each coordinate of p by eiˇ and lists the real
and imaginary parts as a 2n-tuple in C

n � R
n � R

n.
For example, for n D 2, writing p as .cos �; sin �/,

�0.u; p/ D
p

cosh 2u
�

cosˇ cos �; cosˇ sin �; sinˇ cos �; sinˇ sin �
�

Now ˇ D �
4
� arctan.tanh u/, so with some simplification

�0.u; p/ D
� eu

p
2

cos �;
eu

p
2

sin �;
e�u

p
2

cos �;
e�u

p
2

sin �
�

Let g0 be the standard metric of constant curvature +1 on Sn�1; then the metric
induced on R � Sn�1 by �0 is

ds2 D cosh2=n.nu/.du2 C g0/
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which is clearly conformally flat. This Lagrangian submanifold defined by the
mapping

�0 W R � Sn�1 �! C
n

together with its induced metric is known as the Lagrangian catenoid. A detailed
proof that the Lagrangian catenoid is not quasi-umbilical can be found in [5].

The main result of Castro and Urbano is the following.

Theorem 6. Let � W Mn �! C
n be a minimal (non-flat) Lagrangian immersion.

Then Mn is foliated by pieces of round .n � 1/-spheres in C
n if and only if � is

congruent (up to dilations) to an open subset of the Lagrangian catenoid.

Again considering conformal flatness and minimality, we have the following
result of the author [5].

Theorem 7. Let � WMn �! C
n, n � 4 be a conformally flat, minimal, Lagrangian

submanifold of Cn. If the Schouten tensor has at most two eigenvalues, then either
Mn is flat and totally geodesic or is homothetic to (a piece of) the Lagrangian
catenoid.

It would be natural to ask for a complete classification of the conformally flat,
minimal, Lagrangian submanifolds in C

n. However this seems to be a difficult, but
potentially interesting, question.

5 A Generalized Helicoid

The generalization of the helicoid is quite different as seen from the following
theorem of Vanstone and the author [6].

Theorem 8. Let Mn be a complete, minimal hypersurface of EnC1 and suppose
that Mn admits a codimension 1 foliation by Euclidean .n� 1/-spaces. Then either
Mn is totally geodesic orMn DM2�En�2 whereM2 is a classical helicoid inE3.

This generalized helicoid is not conformally flat and hence contrasts with the
classical case since it is not locally isometric to the generalized catenoid, such an
isometric deformation would preserve the conformal flatness.

6 A Lagrangian Helicoid

We will see below that the only minimal, Lagrangian submanifolds in C
n that are

foliated by pieces of .n � 1/-planes are pieces of n-planes. Thus we will drop the
minimality and study Lagrangian submanifolds in C

n that are foliated by Euclidean
.n � 1/-planes. The four theorems of this section are from the author’s paper [3].
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First, however, we need one additional notion. A Lagrangian submanifold of a
Kähler manifold is said to be Lagrangian H -umbilical if its second fundamental
form � satisfies

�.X; Y / D ˛ hJX;H ihJ Y;H iH
C ˇjH j2fhX; Y iH C hJX;H iJ Y C hJ Y;H iJXg

for some functions ˛ and ˇ, H being the mean curvature vector.

Theorem 9. LetMn be a complete Lagrangian submanifold of Cn which is foliated
by .n� 1/-planes, then Mn is either totally geodesic, Lagrangian H -umbilical and
flat or the product of a ruled Lagrangian surface in C

2 and a Lagrangian .n � 2/-
plane in C

n�2.

Flat, Lagrangian H -umbilical submanifolds of C
n were completely classified

by B.-Y. Chen [11]. The description of these submanifolds is quite technical and
depends on some special curves. The submanifolds are of form

L W I � R
n�1 �! C

n:

If t denotes the coordinate on the interval I and u2; : : : ; un the coordinates on R
n�1,

the induced metric is of the form

g D f 2dt2 C du22 C � � � du2n

where f is a function of all the variables but linear in u2; : : : ; un. The mapping
L is linear in u2; : : : ; un and hence such Lagrangian submanifolds are foliated by
.n � 1/-planes. Thus our main point here is to consider the case n D 2 in detail.

Theorem 10. Let M2 be a non-flat, Lagrangian submanifold in C
2 that is foliated

by lines. Then there exist local coordinates .t; x/ such that the induced metric takes
the form ds2 D f 2dt2 C dx2 where f 2 is a positive function which is quadratic
in x and the Weingarten maps A1, A2 corresponding to the normals �1 D 1

f
J @
@t

,

�2 D J @
@x

are given by A1 D
�
b a

a 0

�
, A2 D

�
a 0

0 0

�
, where a D A.t/=f 2, �4A.t/2

is the discriminant of f 2 and

b D 1

f

h Z A0.t/f 2 � A.t/.f 2/t

f 4
dx C B.t/

i

for some function B.t/. Conversely let M2 be a simply connected domain in the
.tx/-plane and

f 2 D F.t/x2 CG.t/x CH.t/
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a positive function, quadratic in x, on M2. Then there exists an isometric
Lagrangian immersion of M2 into C

2 that is foliated by line segments whose
first and second fundamental forms are given as above.

At the beginning of this section we indicated that the only minimal, Lagrangian
submanifolds in C

n that are foliated by pieces of .n � 1/-planes are pieces of
n-planes, i.e. totally geodesic. We can now see this as a corollary of the above
theorems. The first case of Theorem 9 is the totally geodesic case. The second case is
Lagrangian H -umbilical and hence, by the definition of Lagrangian H -umbilicity,
minimality implies totally geodesic. For the third case in Theorem 9 we turn to
Theorem 10 and observe again that the minimality would imply totally geodesic.

We now suppose there is a one-parameter family of Lagrangian surfaces in C
2

connecting a ruled Lagrangian surface to the Lagrangian catenoid. Let .v1Civ2; v3C
iv4/ denote the coordinates on C

2 and v the mapping v W M2 �! C
2 given by

vi D vi .t; x/.

Theorem 11. If there exists a one-parameter family of Lagrangian surfaces in C
2

connecting a ruled Lagrangian surface M2 to the Lagrangian catenoid, then M2 is
given by

v1 D k.cos t /x C ˇ1.t/; v2 D l.cos t /x C ˇ2.t/;
v3 D k.sin t /x C ˇ3.t/; v4 D l.sin t /x C ˇ4.t/

where k and l are constants satisfying k2 C l2 D 1, the quadratic becomes x2 C
G.t/x CH.t/ and the ˇi ’s are determined by

ˇ0
1 D �

�kG.t/
2
C lA.t/

�
sin t; ˇ0

2 D
�
� lG.t/

2
C kA.t/

�
sin t;

ˇ0
3 D

�kG.t/
2
C lA.t/

�
cos t; ˇ0

4 D
� lG.t/

2
� kA.t/

�
cos t

where 4A.t/2 D 4H.t/ �G.t/2.
In particular we have a continuous family of surfaces whose position vectors are

P.�/
�
k.cos t /x C ˇ1.t/; l.cos t /x C ˇ2.t/; k.sin t /x C ˇ3.t/; l.sin t /x C ˇ4.t/

�

CQ.�/
� exp

2
cos t;

e�x
p
2

cos t;
exp
2

sin t;
e�x
p
2

sin t
�

where for the parameter �we haveP.0/ D 1,P.�/ D 0,Q.0/ D 0 andQ.�/ D 1,
P and Q being continuous functions on an interval Œ0;�.

We call a surface given as in Theorem 11 a Lagrangian helicoid.
The last result that we mention from [3] is that even though the Lagrangian

helicoids can be connected to a Lagrangian catenoid through a family of Lagrangian
surfaces, the Lagrangian submanifolds of Theorem 9, cannot be locally isometric to
a Lagrangian catenoid.
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Theorem 12. Let Mn be a Lagrangian submanifold of Cn which is foliated by
.n � 1/-planes, then Mn is not locally isometric to a Lagrangian catenoid.
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Harmonic Functions and Parallel Mean
Curvature Surfaces

Katsuei Kenmotsu

Abstract Minimal surfaces in a Euclidean three space are closely related to
complex function theory. A constant mean curvature surface is constructed by a
harmonic mapping using the generalized Weierstrass representation formula. In this
paper, I present a surface that is constructed by a harmonic function. It is immersed
in a complex two-dimensional complex space form with parallel mean curvature
vector. We prove that the Kaehler angle function of the surface is obtained by
a functional transformation of a harmonic function. And, then, the 1st and 2nd
fundamental forms of the surface are explicitly expressed by the Kaehler angle
function. As a byproduct, we show that any Riemann surface can be locally
embedded in the complex projective plane and also in the complex hyperbolic plane
as a parallel mean curvature surface.

1 Introduction

Minimal surfaces in a three-dimensional Euclidean space are closely related to
complex function theory. A constant mean curvature surface is constructed by a
harmonic mapping using the generalized Weierstrass representation formula. In this
paper, I will present a surface that is constructed by a harmonic function. This is
immersed in a complex two-dimensional complex space form with parallel mean
curvature vector. To explain how to construct such surfaces, first in Sect. 2, we give
fundamental formulas for the surfaces of parallel mean curvature vector immersed
in a complex two-dimensional complex space form. Then, in Sect. 3, we review
known results for such surfaces. In Sect. 4, we define a surface of general type by
the second fundamental tensor, and prove the main result of this paper: A surface
of general type depends on a real valued harmonic function on the surface and five
real constants. Since the coordinate function of any Riemann surface is harmonic, a
direct application of the above is that any Riemann surface can be locally embedded
in the complex projective plane, and in the complex hyperbolic plane as a parallel
mean curvature surface.
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2 Surfaces in a Complex Space Form

LetM be a real two-dimensional Riemannian manifold with the Riemannian metric
ds2, and MŒ4� be a complex two-dimensional complex space form of constant
holomorphic sectional curvature 4�. Let x W M �! MŒ4� be an isometric
immersion of parallel mean curvature vector, and let ˛ be the Kaehler angle
function of x. ˛ is defined by cos˛ D hJx�e1; x�e2i, where e1; e2 define the local
orthonormal frame on M , J is the complex structure of MŒ4�, and h ; i is the
Kaehler metric on MŒ4�. For the geometric meaning of the Kaehler angle ˛, we
have ˛ D 0 .resp. �/ if and only if x is holomorphic (resp. anti-holomorphic), and
˛ D �=2 if and only if x is totally real.

Let H be the mean curvature vector of x. Suppose that H ¤ 0, and set jH j D
2b > 0. According to Ogata [9], there exist unitary coframes fw1;w2g onMŒ4� and
complex-valued functions a; c on M such that ds2 D � N�. The structure equations
of x are

d˛ D .aC b/� C . NaC b/ N�; (1)

d� D . Na � b/ cot˛ � � ^ N�; (2)

K D �4.jaj2 � b2/C 6� cos2 ˛; (3)

da ^ � D �
�
2a. Na � b/ cot˛ C 3

2
� sin˛ cos˛

�
� ^ N�; (4)

dc ^ N� D 2c.a � b/ cot˛ � � ^ N�; (5)

jaj2 � jcj2 C �

2

��2C 3 sin2 ˛
� D 0; (6)

where � D cos˛=2 �!1C sin˛=2 � N!2, andK denotes the Gaussian curvature ofM .
Formula (3) is the Gauss equation, (4) and (5) are Codazzi equations, and (6) is the
Ricci equation of the immersion.

Let us explain the geometric meaning of the functions a and c. For the adapted
orthonormal frame fe1; e2; e3; e4g with e3 D �H=jH j, the components of the
second fundamental tensor of x are written as h3ij ; h

4
ij ; .1 � i; j � 2/. Then,

we have

h311 C h322
2

D �2b; h
4
11 C h422
2

D 0;

2a D �
�
h311 � h322

2
C h412

�
� i

�
h411 � h422

2
� h312

�
; (7)

2c D �
�
h311 � h322

2
� h412

�
� i

�
h411 � h422

2
C h312

�
: (8)
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We remark that the complex functions a and c are local invariants of x, because if
we fix the orientations of M and MŒ4�, then the adapted frame fe1; e2; e3; e4g is
uniquely determined under the condition e3 D �H=jH j.

3 Known Results

First, we review the result for the immersions in which the Kaehler angle ˛ is
constant on M . Such an immersion is called a slant immersion, and many results
are known. For references, see Sect. 18 of Chap. 3 (by B.Y. Chen) in [3].

Theorem 1 (Chen and Vrancken 1997). Under the above notation, if ˛ is con-
stant, then K 2 f�2b2; 0; 4b2g. Neglecting trivial cases, the only interesting result
occurs on K D �2b2, and there is a parallel mean curvature immersion from
RH2Œ�2b2 into CH2Œ�12b2 with a constant Kaehler angle.

Theorem 1 is included in Theorem 1.1 of Hirakawa [5], because if a parallel mean
curvature surface has a constant Kaehler angle, then it is of constant Gaussian
curvature, which is easily proved by (1) and (3), and Hirakawa has classified such
surfaces in [5].

We now assume d˛ ¤ 0 on M . The immersions with d˛ ¤ 0 were first treated
by Ogata [9] in 1995 and Kenmotsu and Zhou [8] in 2000, but these papers are not
complete. Later, Hirakawa [5] classified surfaces with a D Na, and proved that those
surfaces found in [8, 9] were covered by his classification table.

Theorem 2 (Hirakawa 2006). Let x W M �! MŒ4� be a parallel mean
curvature immersion with a D Na. If � ¤ 0 and the Kaehler angle is not constant,
then � D �3b2 and ˛; a, and c are functions of a single variable, say u. Moreover,
the Kaehler angle ˛ D ˛.u/ satisfies the differential equation

d˛

du
D
p
b

q
8 � 9 sin2 ˛.u/; (9)

and the first fundamental form of x, and the functions a; c can be expressed as

ds2 D 4

b

1

.8 � 9 sin2 ˛.u//
.du2 C dv2/;

a.u/ D b

4

�
4 � 9 sin2 ˛.u/

�
;

c.u/ D b

4

ˇ̌
8 � 9 sin2 ˛.u/

ˇ̌
eit ; .for some t 2 R/:

Conversely, for any b > 0 and a given real-valued function ˛.u/ defined on an
interval I in R satisfying Eq. (9), there exists a parallel mean curvature immersion
from I �R into MŒ�12b2 with jH j D 2b such that the Kaehler angle is ˛.u/.
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In short, in the case where a D Na, non-trivial results occur only in the negative
curvature space, and the surface is isometric to a surface of revolution in R3.

4 The Case Where a ¤ Na

The case a ¤ Na was first studied by Hirakawa [5] under an additional condition
c D 0. He found a global isometric embedding from RH2Œ�2b2 into CH2Œ�12b2
with d˛ ¤ 0. We note that this is not congruent to the surface in Theorem 1.

Definition 1. Let x W M �! MŒ4� be a parallel mean curvature immersion. x is
of general type if and only if a ¤ Na.

Generalizing Hirakawa’s work [5] to the case where c ¤ 0, we obtained [7].

Theorem 3 (Kenmotsu 2013). Let x W M �! MŒ4� be a parallel mean
curvature immersion of general type. Then, if � ¤ 0, H ¤ 0, and ˛ is not
constant, x depends on one real-valued harmonic function on the surface and five
real constants.

We now remark on the above assumptions.

1. When � D 0, the complex Euclidean plane C2 is identified as R4, and parallel
mean curvature surfaces in R4 have been independently studied by Chen [1],
Hoffman [6], and Yau [10].

2. For the case H D 0, we refer readers to Chern-Wolfson [2] and Eschenburg-
Guadalupe-Tribuzy [4].

3. When ˛ D constant, we already have Theorem 1.

The following is important in our proof of Theorem 3.

Lemma 1. If ˛ is not constant and x is of general type, then a is a function of ˛.

The proof of Lemma 1 proceeds by considering all prolongations of the structure
equations of x. We may write a D a.˛/ and proceed with the proof of Theorem 3.
Now, a; c; ˛, and ds2 are explicitly determined as follows. First, we obtain the
ordinary differential equation of a for ˛.

da

d˛
D t1.˛; a.˛//

a.˛/C b ; (10)

where

t1.˛; a/ D cot˛

�2C 3 sin2 ˛
.�4b C 12b sin2 ˛ C 4aC 3a sin2 ˛/:

The complex-valued function a D a.˛/ is a solution of the first-order ordinary
differential equation (10). Hence, a.˛/ is determined by two real constants. Next,
we determine the function c. Set
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c D �jaj2 C �=2.�2C 3 sin2 ˛/
�1=2

ei�: (11)

Then, � satisfies

d� D 1

2i

t2.˛; a; Na/� � t2.˛; a; Na/�
.jaj2 C �=2.�2C 3 sin2 ˛//

;

where

t2.˛; a; Na/ D 2a. Na � b/ cot˛ C 3

2
� sin˛ cos˛:

c is fixed by the integration of the real one-form of d�; hence, it is determined up to
a real constant.

Finally, we study the Kaehler angle function ˛. Set

F.˛/ D .ja.˛/ � bj2 C 3
2
� sin2 ˛/

ja.˛/C bj2 cot˛:

Then, ˛ satisfies

˛zNz � F.˛/˛z˛Nz D 0; (12)

where we write � D �d z, and z D uC iv is an isothermal coordinate on M .

Lemma 2. Any solution ˛ of partial differential equation (12) is written as
˛ D  .f .z; Nz//, where  .t/ is a solution of

 00.t/ � F. .t// 0.t/2 D 0 (13)

and f .z; Nz/ is a harmonic function on M .

Proof. Define a real-valued function K.t/ of one real variable by

K.t/ D
Z
e� R

F.t/dtdt;

and set f .z; Nz/ D K.˛.z; Nz//. From (12), f .z; Nz/ is a harmonic function, i.e., f
satisfies @2f=@z@Nz D 0. We set  .t/ D K�1.t/. Then,  .t/ satisfies the ordinary
differential equation (13), proving Lemma 2.

We remark that  .t/ is fixed up to two real constants. Using these results, the
first fundamental form of x can be written as

ds2 D  0.f /2jfzj2
ja. .f //C bj2 jd zj2:
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We showed that the first and second fundamental forms of the immersion x of
general type are expressed by a harmonic function and five real constants.

Next, we prove that the converse holds. Let � ¤ 0 be real and b > 0. Let D be
a simply connected domain in C with the complex coordinate z, and f .z; Nz/ be a
harmonic function on D with fz ¤ 0. Consider a complex-valued function a.t/ of
one real variable t as a solution of

da

dt
C 2 cot t

a.t/C b
�
ba.t/ � ja.t/j2 � 3�

4
sin2 t

�
D 0:

Let  D  .t/ be a solution of (13). Define ˛ D  .f .z; Nz//; .z 2 D/, and a D a.˛/.
Set � D ˛zd z=.a.˛/C b/ and ds2 D � N�. To find c, we need the following result.

Lemma 3. Set

� D 1

2i

t2.˛; a.˛/; a.˛//� � t2.˛; a.˛/; a.˛//�
.ja.˛/j2 C �=2.�2C 3 sin2 ˛//

:

Then, � is a closed one-form on D.

The proof of Lemma 3 is straightforward. By Lemma 3, there exists � W D !
R such that d� D � . We define c by (11). Then, we can prove that these �; ˛; a,
and c satisfy the Gauss, Codazzi, and Ricci equations (1) � (6). Hence, by the
fundamental theorem of surfaces there exists an isometric immersion of .D; ds2/
intoMŒ4�with a parallel mean curvature vector. This is of general type and satisfies
jH j D 2b, proving Theorem 3.

Since the coordinate function of any Riemann surface is harmonic, we have the
following embedding theorem [7].

Theorem 4 (Kenmotsu 2013). Any Riemann surface can be locally embedded in
the complex projective plane, and in the complex hyperbolic plane, as a parallel
mean curvature surface.
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A New Technique for the Study of Complete
Maximal Hypersurfaces in Certain Open
Generalized Robertson–Walker Spacetimes

Alfonso Romero

Abstract An .n C 1/-dimensional Generalized Robertson–Walker (GRW)
spacetime such that the universal Riemannian covering of the fiber is parabolic
(thus so is the fiber) is said to be spatially parabolic. This class of spacetimes
allows to model open relativistic universes which extend to the spatially closed
GRW spacetimes from the viewpoint of the geometric-analysis of the fiber and
which are not incompatible with certain cosmological principle. We explain here a
new technique for the study of non-compact complete spacelike hypersurfaces
in such spacetimes. Thus, a complete spacelike hypersurface in a spatially
parabolic GRW spacetime inherits the parabolicity, whenever some boundedness
assumptions on the restriction of the warping function to the spacelike hypersurface
and on the hyperbolic angle between the unit normal vector field and a certain
timelike vector field are assumed. Conversely, the existence of a simply connected
parabolic spacelike hypersurface, under the previous assumptions, in a GRW
spacetime also leads to its spatial parabolicity. Then, all the complete maximal
hypersurfaces in a spatially parabolic GRW spacetime are determined in several
cases, extending known uniqueness results. Finally, all the entire solutions of the
maximal hypersurface equation on a parabolic Riemannian manifold are found in
several cases, solving new Calabi–Bernstein problems.

1 Introduction

In the study of complete spacelike surfaces M in certain three-dimensional GRW
spacetimes M , whose mean curvature function H satisfies: H D 0, H D constant

or H2 � f 0.t/2

f .t/2
, one arrives to the parabolicity of the surface as an intermediate

technical step. Normally, it follows from a property of the Gauss curvature of the
surface (obtained via the Gauss equation) and an intrinsic result to get the parabol-
icity on a two-dimensional (non-compact) complete Riemannian manifold (see for
instance [15]). In fact, parabolicity for two-dimensional Riemannian manifolds is
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very close to the classical parabolicity for Riemann surfaces. Moreover, it is strongly
related to the behavior of the Gauss curvature of the surface. For instance, by a
classical result by Ahlfors and Blanc–Fiala–Huber [11], a complete Riemannian
surface .M; g/ with non-negative Gauss curvature K must be parabolic. The same
conclusion is attained if .M; g/ is complete and we have either K � �1=.r2 log r/,
for r , the distance to a fixed point sufficiently large [8] or if the negative part of K
is integrable on M , [12], i.e.,

R
M
K� < 1, where K�.p/ WD maxf�K.p/; 0g, for

any p 2M .
Parabolicity has no clear relation with curvature for bigger dimension and,

therefore, other techniques are normally used in that case. However, the parabolicity
of a complete spacelike hypersurface in a certain spacetime, may be obtained in
another way independent of the dimension and of any curvature assumption [16].
Thus, our main aim here is to explain this new approach and to show, based on
[16, 17], how it can be applied to prove several uniqueness results on complete
maximal hypersurfaces.

2 Parabolicity of Riemannian Manifolds

An n-dimensional non-compact complete Riemannian manifold .M; g/ is said to be
parabolic if it admits no non-constant non-negative superharmonic function, i.e., if
u 2 C1.M/ satisfies �gu � 0 and u � 0, then u D constant.

To be parabolic is clearly a property invariant under (global) isometries. Even
more, a Riemannian manifold .M; g/ is said to be quasi-isometric to another one
.M 0; g0/ if there exists a diffeomorphism � W M ! M 0 and a constant c � 1

such that

c�1jvjg � jd�.v/jg0 � c jvjg ;

for all v 2 TpM , p 2 M (see for instance [12]). Obviously, isometric Riemannian
manifolds are also quasi-isometric and to be quasi-isometric is an equivalence
relation. Moreover, we have [10, 18],

Theorem 1. Let .M; g/ and .M 0; g0/ be quasi-isometric Riemannian manifolds.
Then, .M; g/ is parabolic if and only if .M 0; g0/ is parabolic.

Remark 1. (a) The universal Riemannian covering map R
3 ! S

1 � R
2 is a local

isometry. Note that S1 � R
2 is parabolic and R

3 is not. Therefore, in the notion of
quasi-isometry, the diffeomorphism cannot be relaxed to be a local diffeomorphism,
(however, note that if a Riemannian covering QM of a Riemannian manifold M is
parabolic, thenM is also parabolic). (b) Theorem 1 also holds if the exterior of some
compact subset inM is quasi-isometric to the exterior of a compact subset inM 0 [9,
Cor. 5.3]. (c) There exists a notion much weaker than quasi-isometry: the so-called
rough isometry (roughly isometric manifolds are not homeomorphic, in general).
Under this hypothesis, it is necessary to impose extra geometric assumptions (in
terms of the Ricci curvature and the injectivity radius) to get that parabolicity is
preserved by rough isometries [10].
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3 Set Up

For a Generalized Robertson–Walker (GRW) spacetime we mean a product
manifold I �F , of an open interval I of the real line R and an n.� 2/-dimensional
(connected) Riemannian manifold .F; gF /, endowed with the Lorentzian metric

g D ���
I
.dt2/C f .�I /2 ��

F
.gF / ; (1)

where �I and �F denote the projections onto I and F , respectively, and f is a
positive smooth function on I . We will denote this Lorentzian manifold by .M; g/.
The .n C 1/-dimensional spacetime M is a warped product, with base .I;�dt2/,
fiber .F; gF / and warping function f .

On M , there exists a distinguished vector field � D f .�I / @t , where @t denotes
@=@t , which is timelike and satisfies

rX� D f 0.�I /X; (2)

for any X 2 X.M/, where r is the Levi-Civita connection of g, from the
relationship between the Levi-Civita connections of M and those of the base and
the fiber [14, Cor. 7.35]. Therefore, � is conformal with L� g D 2 f 0.�I / g and its
metrically equivalent 1-form is closed. If the warping function ofM is constant, i.e.,
M is a Lorentzian product, the GRW spacetime is called static. Contrary, if there is
no open subinterval J of I such that fjJ is constant, then M is said to be proper.
Any GRW spacetime has a global time function (in particular, it is time orientable)
and then it is stably causal [3, p. 64].

Given an n-dimensional manifold M , an immersion x W M ! M is said
to be spacelike if the metric g on M , induced from the Lorentzian metric (1),
is Riemannian. In this case, M is called a spacelike hypersurface in M . Let
N 2 X?.M/ be the unitary timelike normal vector field in the same time-orientation
of the vector field �@t , i.e., such that g.N;�@t / < 0.

From the wrong-way Schwarz inequality (see [14, Prop. 5.30], for instance) we
have g.N; @t / � 1, and the equality holds at p 2 M if and only if N D �@t at p.
In fact, g.N; @t / D cosh �; where � is the hyperbolic angle, at any point, between
the unit timelike vectors N and �@t . We will refer to � as the hyperbolic angle
function on M . If we denote by @Tt WD @t C g.N; @t /N the tangential component
of @t along x, then we have the following formula for the gradient on M of the
function 
 WD �I ı x,

r
 D �@Tt ; (3)

and therefore

g.r
;r
/ D sinh2 � : (4)
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If a GRW spacetime admits a compact spacelike hypersurface then its fiber
is compact [2, Prop. 3.2(i)]. A GRW spacetime whose fiber is compact is called
spatially closed. Classically, the family of spatially closed GRW spacetimes has
been very useful to get closed cosmological models. Moreover, from a geometric
point of view, to deal with compact spacelike hypersurfaces in a spatially closed
GRW spacetime is natural, indeed, the a complete spacelike hypersurface in a
spatially closed GRW spacetime must be compact if some natural assumptions
are satisfied [2, Prop. 3.2(ii)]. From a physical point of view, spatially closed
cosmological models have been being criticized, and open cosmological models
have been suggested instead [7]. More recently, it has been argued that the existence
of a compact spacelike hypersurface in a spacetime makes it unsuitable in a possible
quantum theory of gravity [4].

We will consider here an .n C 1/-dimensional GRW spacetime such that the
universal Riemannian covering of the fiber is parabolic (thus so is the fiber) and
call it a spatially parabolic GRW spacetime.1 This class of spacetimes extends to
spatially closed GRW spacetimes from the point of view of geometric analysis of
the fiber, and allows to model open relativistic universes.

4 Parabolicity of Spacelike Hypersurfaces

Let x W M ! M be a spacelike hypersurface in a GRW spacetime .M; g/ and
assume the induced metric g onM is complete. Suppose in addition that there exists
a positive constant c such that f .
/ � c. Then, we have that the projection ofM on
the fiber F , � WD �F ı x, is a covering map [2, Lemma 3.1].

Now, from (1) we have for any v 2 TpM ,

g.v; v/ D �g.r
; v/2 C f .
/2gF .d�.v/; d�.v//
� c2 gF .d�.v/; d�.v//:

Now, the classical Schwarz inequality g.r
; v/2 � g.r
;r
/ g.v; v/; gives,

g.v; v/ � �g.r
;r
/ g.v; v/C f .
/2gF .d�.v/; d�.v//;

which implies

g.v; v/ � f .
/2

cosh2 �
gF .d�.v/; d�.v//:

Thus, we arrive to

1This definition simplifies the one given in [16] where each GRW spacetime considered was
explicitly assumed with parabolic universal Riemannian covering of its fiber.
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Lemma 1. Let M be a spacelike hypersurface in a GRW spacetime M . If

(i) The hyperbolic angle is bounded,
(ii) supf .
/ <1; and

(iii) inff .
/ > 0;

then, there exists a constant c � 1 such that

c�1 jvjg � jd�.v/jgF � c jvjg ;
for all v 2 TpM , p 2M .

Proposition 1. Let M be a GRW spacetime whose warping function f satisfies
supf < 1 and inff > 0. If M admits a simply connected parabolic spacelike
hypersurface M and the hyperbolic angle of M is bounded, then M is spatially
parabolic.

Proof. Let Q� W M ! QF be a lift of the mapping � W M ! F , where QF
is the universal Riemannian covering of F . The map Q� is a diffeomorphism [2,
Lemma 3.1] and Lemma 1 asserts that it is a quasi-isometry.

Theorem 2. Let M be a complete spacelike hypersurface in a spatially parabolic
GRW spacetime M . If

(i) The hyperbolic angle is bounded
(ii) supf .
/ <1; and

(iii) inff .
/ > 0;

then, M is parabolic.

Proof. Let QM be the universal Riemannian covering of M with projection �M WQM ! M . The map � ı �M W QM ! F may be lifted to a diffeomorphism Q� W
QM ! QF , where QF is the universal Riemannian covering of F , which is, in fact, a

quasi-isometry, leading to the parabolicity of QM and, hence, M is also parabolic.

Remark 2. The boundedness assumption on the hyperbolic angle has a physical
interpretation. In fact, along M there exist two families of instantaneous observers
Tp , where T WD �@t , p 2 M , and the normal observers Np . The quantities
cosh �.p/ and v.p/ WD .1= cosh �.p//NF

p , where NF
p is the projection of Np onto

F , are respectively the energy and the velocity that Tp measures for Np [19, pp.
45, 67], and on M we have jvj D tanh � . Therefore the relative speed function jvj is
bounded on M and, hence, it does not approach to speed of light in vacuum.

5 The Restriction of the Warping Function on M

Denote by r the Levi-Civita connection of the induced metric g on M . The Gauss
and Weingarten formulas of M in M are

rXY D rXY � g.AX; Y /N and AX D �rXN ; (5)
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for all X; Y 2 X.M/, where A is the shape operator associated to N . The mean
curvature function relative to N is defined by H WD �.1=n/ trace.A/. The mean
curvature is zero if and only if the spacelike hypersurface is, locally, a critical point
of the n-dimensional area functional for compactly supported normal variations.
A spacelike hypersurface with H D 0 is called a maximal hypersurface.

In any GRW spacetime the level hypersurfaces of the projection �I W M ! I

constitute a distinguished family of spacelike hypersurfaces, the so-called spacelike
slices. We will represent by t D t0 the spacelike slice ft0g � F . For a spacelike
hypersurface x W M ! M , x.M/ is contained in a spacelike slice t D t0 if and
only if 
 D t0 onM . When x.M/ equals to t D t0, for some t0 2 I , we will say that
M is a spacelike slice. The shape operator and the mean curvature of the spacelike
slice t D t0 are respectively A D f 0.t0/=f .t0/ I andH D �f 0.t0/=f .t0/, where I
denotes the identity transformation Thus, a spacelike slice t D t0 is maximal if and
only if f 0.t0/ D 0 (and hence, totally geodesic).

Given a spacelike hypersurface M in M , from (2) and (5) we get

rY �T C f .
/ g.N; @t / AY D f 0.
/ Y ; (6)

for any Y 2 X.M/, where �T D � C g.�;N /N is the tangential component of �
along x, f .
/ D f ı 
 and f 0.
/ D f 0 ı 
 . From (3) and (6) we have

�
 D �f
0.
/

f .
/

˚
nC jr
 j2� � nH g.N; @t / ; (7)

where � denotes the Laplacian on M . Therefore

�f .
/ D �n f
0.
/2

f .
/
C f .
/.logf /00.
/jr
 j2 � nH f 0.
/g.N; @t / : (8)

If we assume .logf /00.
/ � 0 and H f 0.
/ � 0, then the positive function f .
/
on M is superharmonic.

Remark 3. Clearly, the assumption .logf /00.
/ � 0 holds on M if the function
� log f is convex. With respect to this assumption: (a) It was proved that in a
GRW spacetime whose warping function f satisfies that � log f is convex, the
only compact CMC spacelike hypersurfaces are the spacelike slices [1]. This result
was later extended to a wider class of spacetimes in [5]. On the other hand, the
assumption � log f is convex is related to certain natural one on the Ricci tensor
Ric of M , the so called Null Convergence Condition (NCC): Ric.w;w/ � 0 for
any null tangent vector w. (Namely, if M obeys the NCC then � log f is convex).
(b) If � log f is convex, f is not locally constant and it has a critical point, then
the assumption sup f < 1 is automatically satisfied. In fact, if there exists t0 2 I
such that f 0.t0/ D 0, then t0 is the unique critical point of f and supf D f .t0/.
(c) Consider the reference frame T WD �@t (which defines the time orientation we
have considered in M ). We have div.T / D �nf 0

f
. Thus, f 0 < 0 (resp. f 0 > 0)
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may be interpreted saying that the observers in T are on average spreading apart
(resp. coming together). If we assume � log f convex then d

ds

�
div.T / ı ��.s/ � 0,

for any observer � in T . If in addition we assume there is a proper time s0 of � such
that div.T /�.s0/ > 0, then div.T /�.s/ > 0 for any s > s0. Therefore, the assumption
� log f is convex, favors that M models an expanding universe.

6 Uniqueness Results in the Parametric Case

Theorem 3. Let M be a proper spatially parabolic GRW spacetime such that
� log f is convex. The only complete spacelike hypersurface M in M whose mean
curvature function satisfies H f 0.
/ � 0 (in particular, with H D 0), such that

(i) The hyperbolic angle is bounded
(ii) supf .
/ <1; and

(iii) inff .
/ > 0;

is the spacelike slice t D t0 with f 0.t0/ D 0.

If the warping function is allowed to be constant on an open subinterval, we have

Theorem 4. Let M be a spatially parabolic GRW spacetime such that � log f is
convex. The only complete maximal hypersurfaces M in M such that

(i) The hyperbolic angle is bounded, and
(ii) which are bounded between two spacelike slices,

are the spacelike slices t D t0 with f 0.t0/ D 0.

Proof. From the assumption x.M/ 	 Œt0; t1 � F; the function f .
/ is upper
bounded and satisfies inff .
/ > 0. As in the previous result, we arrive to f .
/
constant. Therefore, from (8), we get f 0.
/ D 0 and, hence, the function 
 is
harmonic making use of (7). Since 
.M/ 	 Œt0; t1, the function 
 must be constant.

Remark 4. In order to illustrate the range of application of the two previous results,
note that F may be taken as S

n�1 � R, n � 2, with gF D g C ds2, being g an
arbitrary metric on S

n�1. Assume g has non-negative Ricci curvature. Thus, gF has
the same property. When the fiber .F; gF / has non-negative Ricci curvature, the
convexity of � log f leads that the Ricci tensor of the GRW spacetime satisfies the
NCC (and hence, M , in the case n D 4, could be a candidate to represent a solution
to the Einstein equation).

The previous result may be specialized to the static case (f D 1), i.e., when
the GRW spacetime is fact a Lorentzian product. However, we will see that under
the assumption that the Ricci tensor of the fiber is positive semi-definite the
boundedness assumption of x.M/ can be dropped. In order to do that, recall the
Bochner–Lichnerowicz formula (see [6, p. 83], for instance)

1

2
�jruj2 D jHess.u/j2 C Ric.ru;ru/C g.ru;r�u/
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which holds true for any Riemannian manifold .M; g/ and any u 2 C1.M/.
The idea is to apply it to the function u D 
 on a maximal hypersurface M in
a static GRW spacetime M . Using (6), we have jHess.
/j2 D cosh2 � trace.A2/.
Moreover, from (7), 
 is now harmonic. On the other hand, taking into account (4)
and Ric.r
;r
/ D cosh2 � RicF .NF ;NF /C g.Ar
; Ar
/, which follows from
the Gauss equation of M in M and [14, Props. 7.42, 7.43], we get

Lemma 2. For any maximal hypersurface M in a static GRW spacetime M whose
fiber has non-negative Ricci curvature, we have

� sinh2 � � 2 cosh2 � trace.A2/ ;

and, hence, sinh2 � is subharmonic. Moreover, if it is constant, then M is totally
geodesic.

Theorem 5. Let M be a complete maximal hypersurface in a spatially parabolic
static GRW spacetime M . If the Ricci curvature of the fiber is non-negative and the
hyperbolic angle of M is bounded, then M must be totally geodesic.

Remark 5. It should be recalled that a complete maximal hypersurface in a locally
symmetric Lorentzian manifold M whose Ricci tensor satisfies Ric.w;w/ � 0 for
any timelike tangent vector w (the Timelike Convergence Condition (TCC)) must
be totally geodesic [13]. Note that the spacetime in previous result satisfies the TCC
but is not locally symmetric, in general.

7 Calabi–Bernstein Type Problems

Let .M; gM / be a Riemannian manifold and let f W I ! R be a positive smooth
function. For each u 2 C1.M/ such that u.M/ 	 I we can consider its graph
˙u D

˚
.u.p/; p/ W p 2 M �

in the GRW spacetime M with base .I;�dt2/, fiber
.M; gM / and warping function f . The graph inherits a metric from (1), given by

gu D �du2 C f .u/2gM ; (9)

on M , which is Riemannian (i.e., positive definite) if and only if u satisfies j Du j<
f .u/, everywhere on M , where Du denotes the gradient of u in .M; gM / and j
Du j2D gM .Du;Du/. Note that 
.u.p/; p/ D u.p/ for any p 2M , and so, 
 and u
may be naturally identified on ˙u. When ˙u is spacelike, the unitary normal vector
field on ˙u satisfying g.N; @t / > 0 is

N D � 1

f .u/
p
f .u/2� j Du j2

�
f .u/2@t C .0;Du/

�
; (10)
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and the corresponding mean curvature function

H.u/ D � div

 
Du

nf .u/
p
f .u/2� j Du j2

!
� f 0.u/
n
p
f .u/2� j Du j2

�
n C j Du j2

f .u/2

�
:

The differential equation H.u/ D 0 with the constraint j Du j< f .u/ is called
the maximal hypersurface equation inM , and its solutions give the maximal graphs
inM . This equation is elliptic since the constraint holds. We will apply the previous
uniqueness results in the parametric case to determine all the entire solutions of the
maximal hypersurface equation

div

 
Du

f .u/
p
f .u/2� j Du j2

!
D � f 0.u/p

f .u/2� j Du j2

 
nC j Du j2

f .u/2

!
; (E.1)

j Du j< �f .u/; 0 < � < 1: (E.2)

in several cases.

Remark 6. (a) The constraint (E.2) means that the differential equation (E) is in
fact uniformly elliptic. (b) Note that (E.2) may be written as cosh � < 1=

p
1 � �2,

where � is the hyperbolic angle of ˙u. Conversely, if cosh � < �, with � > 1,
then j Du j< �f .u/, where � D p

1 � .1=�2/. Therefore, (E.2) means that ˙u

has bounded hyperbolic angle. (c) If in addition to (E.2) we have inff .u/ > 0

then Lu.�/ �
p
1 � �2 inff .u/ L.�/; where L.�/ and Lu.�/ are the lengths of a

smooth curve � onM with respect to the metrics gM and gu, respectively. Therefore,
if a divergent curve in M has infinite gM -length then it has also infinite gu-length.
Hence, if .M; gM / is complete, then .M; gu/ is so.

As an application of Theorems 3 and 4, we have

Theorem 6. Let f W I ! R be a non-locally constant positive smooth function
.resp. a positive smooth function/. Assume f satisfies .logf /00 � 0, supf < 1
and inff > 0 .resp. f satisfies .logf /00 � 0/. The only entire solutions .resp.
The only bounded entire solutions/ of the equation (E) on a parabolic Riemannian
manifold M are the constant functions u D c, with f 0.c/ D 0.

Finally, as a consequence of Theorem 5, we obtain

Theorem 7. The only entire solutions of the equation

div

 
Dup

1� j Du j2

!
D 0 (E0.1)

j Du j< �; 0 < � < 1; (E0.2)
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on S
2m � R, endowed with a product Riemannian metric g C ds2, where g is a

Riemannian metric on S
2m with non-negative Ricci curvature, are the functions

u.x; s/ D as C b, with a; b 2 R, jaj < �.
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Totally Geodesic Submanifolds of Riemannian
Symmetric Spaces

Jürgen Berndt

Abstract The index of a Riemannian manifold is defined as the minimal codimen-
sion of a totally geodesic submanifold. In this note we discuss two recent results
by the author and Olmos (Berndt and Olmos, On the index of symmetric spaces,
preprint, arXiv:1401.3585) and some related topics. The first result states that the
index of an irreducible Riemannian symmetric space is bounded from below by the
rank of the symmetric space. The second result is the classification of all irreducible
Riemannian symmetric spaces of noncompact type whose index is less or equal than
three.

1 Introduction

Let M be a connected Riemannian manifold and denote by S the set of all
connected totally geodesic submanifolds ˙ of M with dim.˙/ < dim.M/. The
index i.M/ of M is defined by

i.M/ D minfdim.M/ � dim.˙/ j ˙ 2 S g D minfcodim.˙/ j ˙ 2 S g:

This notion was introduced by Onishchik in [11] who also classified the irreducible
simply connected Riemannian symmetric spacesM with i.M/ � 2. The author and
Olmos developed in [2] a new approach to the index of symmetric spaces. The first
main result in [2] is:

Theorem 1. Let M be an irreducible Riemannian symmetric space. Then

rk.M/ � i.M/:

Thus the index is bounded from below by the rank of the symmetric space.
The second main result in [2] is the classification of all irreducible Riemannian
symmetric spaces M of noncompact type with i.M/ � 3.
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Theorem 2. Let M be an irreducible Riemannian symmetric space of noncompact
type. Then the following statements hold:

1. i.M/ D 1 if and only if M is isometric to

a. the real hyperbolic space RHk D SOo
1;k=SOk , k � 2.

2. i.M/ D 2 if and only if M is isometric to one of the following spaces:

a. the complex hyperbolic space CHk D SU1;k=S.U1Uk/, k � 2;
b. the Grassmannian G�

2 .R
kC2/ D SOo

2;k=SO2SOk , k � 3;
c. the symmetric space SL3.R/=SO3.

3. i.M/ D 3 if and only if M is isometric to one of the following spaces:

a. the Grassmannian G�
3 .R

kC3/ D SOo
3;k=SO3SOk , k � 3;

b. the symmetric space G2
2=SO4;

c. the symmetric space SL3.C/=SU3.

The proofs for both theorems can be found in [2]. In this note we present some
basic theory and relevant results for this context.

2 Totally Geodesic Submanifolds

A submanifold ˙ of a Riemannian manifold M is said to be totally geodesic if
every geodesic in ˙ is also a geodesic in M . The existence and classification of
totally geodesic submanifolds are fundamental problems in submanifold geometry.
The existence problem is closely related to curvature, as the following result by Élie
Cartan [3] shows: Let M be a Riemannian manifold, p 2 M and V be a linear
subspace of TpM . Then there exists a totally geodesic submanifold ˙ of M with
p 2 ˙ and Tp˙ D V if and only if there exists a real number � 2 RC such
that for every geodesic � in M with �.0/ D p and P�.0/ 2 fv 2 V j kvk < �g
the Riemannian curvature tensor of M at �.1/ preserves the parallel translate of V
along � from p to �.1/. A detailed proof can be found in [1].

A connected totally geodesic submanifold ˙ of a connected Riemannian mani-
fold M is said to be maximal if there is no connected totally geodesic submanifold
˙ 0 of M with ˙ ¨ ˙ 0 ¨ M .

A connected submanifold ˙ of a connected Riemannian manifold M is said to
be reflective if the geodesic symmetry of M in ˙ is a well-defined global isometry
of M . Since every connected component of the fixed point set of an isometry is a
totally geodesic submanifold, it follows that every reflective submanifold is totally
geodesic. The reflective submanifolds in irreducible simply connected Riemannian
symmetric spaces of compact type were classified by Leung in [9, 10].
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3 Riemannian Symmetric Spaces

We refer to [4] for details about symmetric spaces and their classification. Let M
be a connected Riemannian manifold. We denote by I.M/ the isometry group
of M and by I o.M/ the connected component of I.M/ containing the identity
transformation of M . Let r be the Levi Civita connection of M and R be the
Riemannian curvature tensor of M . If rR D 0, then M is said to be a Riemannian
locally symmetric space. The terminology is motivated by the following geometric
characterization: The equality rR D 0 holds if and only if for every point p 2 M
there exists an open neighborhood U of p in M and an isometric involution
�p W U ! U such that p is an isolated fixed point of �p . If for every point p 2 M
there exists an involution �p 2 I.M/ such that p is an isolated fixed point of �p ,
then M is said to be a Riemannian symmetric space. The Riemannian universal
covering space of a Riemannian locally symmetric space is a Riemannian symmetric
space. Thus every Riemannian locally symmetric space is locally isometric to a
Riemannian symmetric space. Therefore the existence and classification of totally
geodesic submanifolds in Riemannian locally symmetric spaces can be reduced, via
covering maps, to that of simply connected Riemannian symmetric spaces.

Let M be a simply connected Riemannian symmetric space. Then its de Rham
decomposition is of the form M DM0 �M1 � : : :�Md , where M0 is isometric to
the Euclidean space R

k for some k � 0 and M1; : : : ;Md are irreducible simply
connected Riemannian symmetric spaces. We allow d D 0 here, which means
that M is isometric to R

k , and M is said to be of Euclidean type. The sectional
curvature of an irreducible Riemannian symmetric space of dimension � 2 is either
nonnegative or nonpositive. If it is nonnegative thenM is said to be of compact type,
and if it is nonpositive then M is said to be of noncompact type.

The Riemannian symmetric spaces were classified by Élie Cartan who estab-
lished a beautiful correspondence with semisimple Lie algebras. Let M be a
Riemannian symmetric space without Euclidean factor, that is, k D 0. Then the
Lie algebra g of G D I o.M/ is a semisimple Lie algebra. Let p 2 M and
K D Gp be the isotropy group of G at p. Then G acts transitively on M and M
is isometric to the homogeneous space G=K equipped with a suitable G-invariant
Riemannian metric. Then M is irreducible if and only if the isotropy representation
� W K ! TpM; k 7! dpk is irreducible. Let p be the orthogonal complement of k in
g with respect to the Killing form B of g. The decomposition g D k˚p is known as
a Cartan decomposition of g. There is a natural isomorphism between p and TpM .
The Cartan decomposition is reductive and therefore dpk D Ad.k/ W p! p, that is,
the isotropy representation coincides with the adjoint representation of K on p.

LetM D G=K be a Riemannian symmetric space of noncompact type. Consider
the Cartan decomposition g D k ˚ p and the canonical embedding of g into its
complexification gC. Then g� D k˚ ip is a subalgebra of gC and the corresponding
homogeneous space M � D G�=K with the induced G�-invariant Riemannian
metric is a Riemannian symmetric space of compact type. This process is known as
duality between Riemannian symmetric spaces of compact type and of noncompact
type.
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Table 1 Irreducible Riemannian symmetric spaces M of noncompact
type

(RS) M dim.M/ rk.M/ Comments

(Ar ) SOo
1;k=SOk k 1 k � 2

SLrC1.R/=SOrC1
1
2
r.r C 3/ r r � 2

SLrC1.C/=SUrC1 r.r C 2/ r r � 2

SU �

2rC2=SprC1 r.2r C 3/ r r � 2

E�26
6 =F4 26 2

(Br ) SOo
r;rCk=SOrSOrCk r.r C k/ r r � 2; k � 1

SO2rC1.C/=SO2rC1 r.2r C 1/ r r � 2

(Cr ) Spr.R/=Ur r.r C 1/ r r � 3

Spr.C/=Spr r.2r C 1/ r r � 3

SUr;r =S.UrUr / 2r2 r r � 3

Spr;r =SprSpr 4r2 r r � 2

SO�

4r=U2r 2r.2r � 1/ r r � 3

E�25
7 =E6U1 54 3

(Dr ) SOo
r;r =SOrSOr r2 r r � 4

SO2r .C/=SO2r r.2r � 1/ r r � 4

(BCr ) SUr;rCk=S.UrUrCk/ 2r.r C k/ r r � 1; k � 1

Spr;rCk=SprSprCk 4r.r C k/ r r � 1; k � 1

SO�

4rC2=U2rC1 2r.2r C 1/ r r � 2

F�20
4 =Spin9 16 1

E�14
6 =Spin10U1 32 2

(E6) E6
6=Sp4 42 6

E6.C/=E6 78 6

(E7) E7
7=SU8 70 7

E7.C/=E7 133 7

(E8) E8
8=SO16 128 8

E8.C/=E8 248 8

(F4) F 4
4 =Sp3Sp1 28 4

F4.C/=F4 52 4

E2
6=SU6Sp1 40 4

E�5
7 =SO12Sp1 64 4

E�24
8 =E7Sp1 112 4

(G2) G2
2=SO4 8 2

G2.C/=G2 14 2

The rank rk.M/ of a Riemannian symmetric space M is defined as the maximal
possible dimension of a flat Riemannian manifold which can be embedded in M as
a totally geodesic submanifold. The rank ofM is equal to the maximal dimension of
an abelian subspace of p. In Table 1 we list the irreducible Riemannian symmetric
spaces of noncompact type together with the type of root system (RS), dimension
and rank.
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Table 2 Isometric Riemannian symmetric spaces of noncompact type in low
dimensions

dim rk M1 M2 M3 M4

2 1 SOo
1;2=SO2 SU1;1=S.U1U1/ SL2.R/=SO2 Sp1.R/=U1

3 1 SOo
1;3=SO3 SO3.C/=SO3 SL2.C/=SU2 Sp1.C/=Sp1

4 1 SOo
1;4=SO4 Sp1;1=Sp1Sp1

5 1 SOo
1;5=SO5 SU �

4 =Sp2

6 1 SU1;3=S.U1U3/ SO�

6 =U3

6 2 SOo
2;3=SO2SO3 Sp2.R/=U2

8 2 SOo
2;4=SO2SO4 SU2;2=S.U2U2/

9 3 SOo
3;3=SO3SO3 SL4.R/=SO4

10 2 SO5.C/=SO5 Sp2.C/=Sp2

12 2 SOo
2;6=SO2SO6 SO�

8 =U4

15 3 SO6.C/=SO6 SL4.C/=SU4

In Table 2 we list irreducible Riemannian symmetric spaces Mi of noncompact
type which are isometric to each other.

4 Lie Triple Systems

LetM D G=K be a semisimple Riemannian symmetric space and g D k˚ p be the
corresponding Cartan decomposition. A linear subspace m of p is said to be a Lie
triple system if ŒŒm;m;m 	 m. If ˙ is a connected totally geodesic submanifold
of M with p 2 M , then m D Tp˙ 	 p is a Lie triple system. Conversely, if m is a
Lie triple system in p, then h D Œm;m˚ m 	 k˚ p D g is a subalgebra of g and
the orbit ˙ D H � p of the corresponding connected subgroup H of G through p
is a connected complete totally geodesic submanifold of M . This establishes a one-
to-one correspondence between connected complete totally geodesic submanifolds
of M and Lie triple systems in p.

The geometric problem of classifying totally geodesic submanifolds in a Rieman-
nian symmetric space M D G=K is therefore equivalent to the algebraic problem
of classifying Lie triple systems in p. However, this algebraic reformulation of the
classification problem is still very difficult to handle in practice and, up to now,
could be solved only in special circumstances, for example when rk.M/ � 2.

Let M D G=K be a Riemannian symmetric space of noncompact type and
˙ be a totally geodesic submanifold of M with p 2 M . Then m D Tp˙ is
a Lie triple system in p. Now consider the dual Riemannian symmetric space
M � D G�=K of compact type. The corresponding Cartan decomposition is
g� D k ˚ ip. The subspace im is a Lie triple system in ip and induces a
totally geodesic submanifold ˙� in M �. In a similar way every totally geodesic
submanifold in a Riemannian symmetric space of compact type induces a totally
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geodesic submanifold in a Riemannian symmetric space of noncompact type. Thus
duality between Riemannian symmetric spaces gives a one-to-one correspondence
between connected complete totally geodesic submanifolds of dual Riemannian
symmetric spaces. It is clear that duality also preserves maximality of totally
geodesic submanifolds. For this reason we restrict from now on to Riemannian
symmetric spaces of noncompact type.

A Lie triple system m is said to be reflective if the orthogonal complement m? of
m in p is also a Lie triple system. Let m be a Lie triple system in p and let ˙ be the
corresponding connected complete totally geodesic submanifold of M . Then m is a
reflective Lie triple system in p if and only if ˙ is a reflective submanifold of M .

5 The Index of Riemannian Symmetric Spaces

The Riemannian symmetric spaces of noncompact type whose rank is equal to
one are the hyperbolic spaces over the normed real division algebras: RHk D
SOo

1;k=SOk , CHk D SU1;k=S.U1Uk/, HHk D Sp1;k=Sp1Spk and OH2 D
F �20
4 =Spin9, where k � 2. The totally geodesic submanifolds in these symmetric

spaces were classified by Wolf [12]. From his classification we get Table 3.
We observe from Table 3 that maximal totally geodesic submanifolds of maximal

dimension are not unique (up to conjugacy) in general.
Using the Lie triple system approach, Klein classified in a series of papers [5–8]

the totally geodesic submanifolds of irreducible Riemannian symmetric spaces M
of noncompact type with rk.M/ D 2. From Klein’s classifications we can easily
deduce the classification of maximal totally geodesic submanifolds of maximal
dimension in irreducible Riemannian symmetric spaces of rank 2. We summarize
this classification in Table 4.

Onishchik calculated in [11] many of the indices in Tables 3 and 4.
We observe from Table 4 that there are maximal totally geodesic submanifolds

˙ of maximal dimension in M with rk.˙/ < rk.M/, e.g.

Table 3 Maximal totally geodesic submanifolds ˙ of maximal
dimension in Riemannian symmetric spacesM of noncompact type
with rk.M/ D 1

M dim.M/ ˙ dim.˙/ i.M/ Comments

RHk k RHk�1 k � 1 1 k � 2

CH2 4 CH1;RH2 2 2

CHk 2k CHk�1 2k � 2 2 k � 3

HH2 8 HH1;CH2 4 4

HHk 4k HHk�1 4k � 4 4 k � 3

OH2 16 OH1;HH2 8 8
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Table 4 Maximal totally geodesic submanifolds ˙ of maximal dimension in irreducible
Riemannian symmetric spaces M of noncompact type with rk.M/ D 2

M dim.M/ ˙ dim.˙/ i.M/ Comments

SOo
2;k=SO2SOk 2k SOo

2;k�1=SO2SOk�1 2k � 2 2 k � 3

SU2;k=S.U2Uk/ 4k SU2;k�1=S.U2Uk�1/ 4k � 4 4 k � 3

Sp2;k=Sp2Spk 8k Sp2;k�1=Sp2Spk�1 8k � 8 8 k � 3

SL3.R/=SO3 5 R � SL2.R/=SO2 3 2

G2
2=SO4 8 SL3.R/=SO3 5 3

SL3.C/=SU3 8 SL3.R/=SO3 5 3

SO5.C/=SO5 10 SOo
2;3=SO2SO3, SO4.C/=SO4 6 4

SU �

6 =Sp3 14 Sp1;2=Sp1Sp2, SL3.C/=SU3 8 6

G2.C/=G2 14 G2
2=SO4, SL3.C/=SU3 08 6

Sp2;2=Sp2Sp2 16 Sp2.C/=Sp2 10 6

SO�

10=U5 20 SOo
2;6=SO2SO6, SU2;3=S.U2U3/ 12 8

E�26
6 =F4 26 F�20

4 =Spin9 16 10

E�14
6 =Spin10U1 32 SO�

10=U5 20 12

˙ D OH2 D F �20
4 =Spin9 	 E�26

6 =F4 DM:

As this example shows, the index i.M/ cannot always be realized by a totally
geodesic submanifold ˙ with rk.˙/ D rk.M/.

Let M be a connected Riemannian manifold and denote by OS the set of all
connected reflective submanifolds ˙ of M with dim.˙/ < dim.M/. We define the
positive integer Oi.M/ of M by

Oi.M/ D minfdim.M/ � dim.˙/ j ˙ 2 OS g D minfcodim.˙/ j ˙ 2 OS g:

Using the classification by Leung [9, 10] of reflective submanifolds in irreducible
Riemannian symmetric spaces of compact type, and duality, we can calculate Oi.M/

for each irreducible Riemannian symmetric spaceM of noncompact type. In Table 5
we list Oi.M/ for each irreducible Riemannian symmetric space of noncompact type
and the reflective submanifolds ˙ for which the codimension is equal to Oi.M/.

By comparing Table 3 and Table 5 we see that i.M/ D Oi.M/ if rk.M/ D 1.
However, from Table 4 and Table 5 we see that this equality does not always hold if
rk.M/ D 2. For example, we have

i.G2
2=SO4/ D 3 < 4 D Oi.G2

2=SO4/:

This shows that for higher rank the index i.M/ of a symmetric space M can be
strictly less than Oi.M/. In other words, the index i.M/ cannot always be realized
by a reflective submanifold. Equivalently, this means that there are maximal totally
geodesic submanifolds of maximal dimension which are not reflective.
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Table 5 Maximal reflective submanifolds˙ of maximal dimension in irreducible
Riemannian symmetric spaces M of noncompact type

M ˙ Oi.M/ Comments

SOo
r;rCk=SOrSOrCk SOo

r;rCk�1=SOrSOrCk�1 r r; k � 1

SOo
r;r =SOrSOr SOo

r�1;r =SOr�1SOr r r � 4

SLrC1.R/=SOrC1 R � SLr.R/=SOr r r � 2

SOo
2;3=SO2SO3 r D 3

Spr.R/=Ur Sp1.R/=U1 � Spr�1.R/=Ur�1 2r � 2 r � 3

SO2r .C/=SO2r SO2r�1.C/=SO2r�1 2r � 1 r � 4

SLrC1.C/=SUrC1 R � SLr.C/=SUr 2r r � 4

SUr;rCk=S.UrUrCk/ SUr;rCk�1=S.UrUrCk�1/ 2r r; k � 1

SOo
1;2=SO2 r D k D 1

SUr;r =S.UrUr / SUr�1;r =S.Ur�1Ur / 2r r � 4

SO2rC1.C/=SO2rC1 SO2r .C/=SO2r 2r r � 2

SOo
2;3=SO2SO3 r D 2

Spr.C/=Spr Spr�1.C/=Spr�1 4r � 4 r � 3

SO�

4r=U2r SO�

4r�2=U2r�1 4r � 2 r � 3

SU �

2rC2=SprC1 R � SU �

2r =Spr 4r r � 3

SL4.C/=SU4 r D 3

Spr;rCk=SprSprCk Spr;rCk�1=SprSprCk�1 4r r; k � 1

SU1;2=S.U1U2/ r D k D 1

Spr;r =SprSpr Spr�1;r =Spr�1Spr 4r r � 3

SO�

4rC2=U2rC1 SO�

4r=U2r 4r r � 2

SU2;3=S.U2U3/ r D 2

SL3.C/=SU3 SL3.R/=SO3 3

G2
2=SO4 SOo

1;2=SO2 � SOo
1;2=SO2 4

SL4.C/=SU4 Sp2.C/=Sp2 5

SU �

6 =Sp3 Sp1;2=Sp1Sp2, SL3.C/=SU3 6

SU3;3=S.U3U3/ SU2;3=S.U2U3/, Sp3.R/=U3 6

Sp2;2=Sp2Sp2 Sp2.C/=Sp2 6

G2.C/=G2 G2
2=SO4 6

F�20
4 =Spin9 SOo

1;8=SO8, Sp1;2=Sp1Sp2 8

F 4
4 =Sp3Sp1 SOo

4;5=SO4SO5 8

E�26
6 =F4 F�20

4 =Spin9 10

E�14
6 =Spin10U1 SO�

10=U5 12

E2
6=SU6Sp1 F 4

4 =Sp3Sp1 12

E6
6=Sp4 F 4

4 =Sp3Sp1 14

F4.C/=F4 SO9.C/=SO9 16

E�25
7 =E6U1 E�14

6 =Spin10U1 22

E�5
7 =SO12Sp1 E2

6=SU6Sp1 24

E6.C/=E6 F4.C/=F4 26

E7
7=SU8 R �E6

6=Sp4 27

E�24
8 =E7Sp1 E�5

7 =SO12Sp1 48

E7.C/=E7 R �E6.C/=E6 54

E8
8=SO16 E7

7=SU8 � Sp1.R/=U1 56

E8.C/=E8 E7.C/=E7 � Sp1.C/=Sp1 112
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We always have the inequalities rk.M/ � i.M/ � Oi.M/. Using Table 5 we can
identify two series of symmetric spaces for which rk.M/ D i.M/, namely

i.SOo
r;rCk=SOrSOrCk/ D r D i.SLrC1.R/=SOrC1/ ; r � 1; k � 0:

We finish the paper with two questions:

1. What are the irreducible Riemannian symmetric spaces M of noncompact type
for which i.M/ D rk.M/? As mentioned above, the Riemannian symmetric
spaces SOo

r;rCk=SOrSOrCk (r � 1, k � 0) and SLrC1.R/=SOrC1 (r � 1)
satisfy this equality.1

2. What are the irreducible Riemannian symmetric spaces Mof noncompact type
for which i.M/ < Oi.M/? As mentioned above, the Riemannian symmetric space
G2
2=SO4 satisfies this inequality.

Of course, the general open problem is to determine i.M/ for each irreducible
Riemannian symmetric spaces M of noncompact type.
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Canonical Connection on Contact Manifolds

Yong-Geun Oh and Rui Wang

Abstract We introduce a family of canonical affine connections on the contact
manifold .Q; �/, which is associated to each contact triad .Q; �; J / where � is a
contact form and J W � ! � is an endomorphism with J 2 D �id compatible to d�.
We call a particular one in this family the contact triad connection of .Q; �; J /
and prove its existence and uniqueness. The connection is canonical in that the
pull-back connection ��r of a triad connection r becomes the triad connection of
the pull-back triad .Q; ���; ��J / for any diffeomorphism � W Q ! Q. It also
preserves both the triad metric g WD d�.�; J �/ C � ˝ � and J regarded as an
endomorphism on TQ D RfX�g ˚ � , and is characterized by its torsion properties
and the requirement that the contact form � be holomorphic in the CR-sense.
In particular, the connection restricts to a Hermitian connectionr� on the Hermitian
vector bundle .�; J; g�/ with g� D d�.�; J �/j� , which we call the contact Hermitian
connection of .�; J; g�/. These connections greatly simplify tensorial calculations
in the sequels (Oh and Wang, The Analysis of Contact Cauchy-Riemann maps
I: a priori Ck estimates and asymptotic convergence, preprint. arXiv:1212.5186,
2012; Oh and Wang, Analysis of contact instantons II: exponential convergence for
the Morse-Bott case, preprint. arXiv:1311.6196, 2013) performed in the authors’
analytic study of the map w, called contact instantons, which satisfy the nonlinear
elliptic system of equations

@
�

w D 0; d.w�� ı j / D 0

of the contact triad .Q; �; J /.
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1 Introduction

Let .Q; �/ be a 2nC1 dimensional contact manifold and a contact form � be given,
which means that the contact distribution � is given as ker� and �^ .d�/n nowhere
vanishes. On Q, the Reeb vector field X� associated to the contact form � is the
unique vector field satisfying X�c� D 1 and X�cd� D 0. Therefore the tangent
bundle TQ has the splitting TQ D RfX�g ˚ � . We denote by � W TQ ! � the
corresponding projection.

Now let J be a complex structure on � , i.e., J W � ! � with J 2 D �id j� .
We extend J to TQ by defining J.X�/ D 0. We will use such J W TQ ! TQ

throughout the paper. Then we have J 2 D �˘ where˘ W TQ! TQ is the unique
idempotent with Im˘ D � and ker˘ D R � X�. We note that we have the unique
decomposition h D �.h/X� C �h for any h 2 TQ in terms of the decomposition
TQ D R �X� ˚ � .

Definition 1 (Contact Triad Metric). Let .Q; �; J / be a contact triad. We call the
metric defined by g.h; k/ WD �.h/�.k/ C d�.�h; J�k/ for any h; k 2 TQ the
contact triad metric associated to the triad .Q; �; J /.

The main purpose of the present paper is to introduce the notion of the
contact triad connection of the triad .Q; �; J / which is the contact analog to
the Ehresman-Libermann’s notion of canonical connection on the almost Kähler
manifold .M;!; J /. (See [2, 3, 7, 9, 10] for general exposition on the canonical
connection.)

Theorem 1 (Contact Triad Connection). Let .Q; �; J / be any contact triad of
contact manifold .Q; �/, and g the contact triad connection.Then there exists a
unique affine connection r that has the following properties:

1. r is a Riemannian connection of the triad metric.
2. The torsion tensor of r satisfies T .X�; Y / D 0 for all Y 2 TQ.
3. rX�X� D 0 and rY X� 2 � , for Y 2 � .
4. r� WD �rj� defines a Hermitian connection of the vector bundle � ! Q with

Hermitian structure .d�; J /.
5. The � projection, denoted by T � WD �T , of the torsion T has vanishing .1; 1/-

component in its complexification, i.e., satisfies the following properties: for all
Y tangent to � , T �.J Y; Y / D 0.

6. For Y 2 � , rJ Y X� C JrY X� D 0:
We call r the contact triad connection.

Recall that the leaf space of Reeb foliations of the contact triad .Q; �; J / canon-
ically carries a (non-Hausdorff) almost Kähler structure which we denote by
. OQ;cd�; OJ /:We would like to note that Axioms (4) and (5) are nothing but properties
of the canonical connection on the tangent bundle of the (non-Hausdorff) almost
Kähler manifold . OQ;cd�; OJ�/ lifted to � . (In fact, as in the almost Kähler case,
vanishing of .1; 1/-component also implies vanishing of .2; 0/-component and



Canonical Connection on Contact Manifolds 45

hence the torsion automatically becomes .0; 2/-type.) On the other hand, Axioms
(1)–(3) indicate this connection behaves like the Levi-Civita connection when the
Reeb direction X� get involved. Axiom (6) is an extra requirement to connect
the information in � part and X� part, which is used to dramatically simplify our
calculation in [14, 15].

In fact, the contact triad connection is one of the R-family of affine connections
satisfying Axioms (1)–(5) with (6) replaced by

rJ Y X� C JrY X� D c Y; c 2 R:

Contact triad connection corresponds to c D 0 and the connection rLC C B1 (see
Sect. 6 for the expression of B1) corresponds to c D �1.

The contact triad connection (and also the whole R-family) we construct here
has naturality as stated below.

Corollary 1 (Naturality). Let r be the contact triad connection of the triad
.Q; �; J /. Then for any diffeomorphism � W Q ! Q, the pull-back connection
��r is the contact triad connection associated to the triad .Q; ���; ��J /.

While our introduction of Axiom (6) is motivated by our attempt to simplify
the tensor calculations [14], it has a nice geometric interpretation in terms of
CR-geometry. (We refer to Definition 4 for the definition for CR-holomorphic
k-forms.)

Proposition 1. In the presence of other defining properties of contact triad connec-
tion, Axiom (6) is equivalent to the statement that � is holomorphic in the CR-sense.

Some motivations of the study of the canonical connection are in order. Hofer-
Wysocki-Zehnder [5, 6] derived exponential decay estimates of proper pseudoholo-
morphic curves with respect to the cylindrical almost complex structure associated
to the endomorphism J W � ! � in symplectization by bruit force coordinate
calculations using some special coordinates around the given Reeb orbit which
is rather complicated. Our attempt to improve the presentation of these decay
estimates, using the tensorial language, was the starting point of the research
performed in the present paper.

We do this in [14, 15] by considering a map w W Ṗ ! Q satisfying the equation

@
�

w D 0; d.w�� ı j / D 0 (1)

without involving the function a on the contact manifold Q or the symplectization.
We call such a map a contact instanton. We refer [4] for the origin of this equation
in contact geometry, as well as [14, 15] for the detailed analytic study of priori
W k;2-estimates and asymptotic convergence on punctured Riemann surfaces.

In the course of our studying the geometric analysis of such maps, we need
to simplify the tensorial calculations by choosing a special connection as in the
(almost) complex geometry. It turns out that for the purpose of taking the derivatives
of the map w several times, the contact triad connection on Q is much more
convenient and easier to keep track of various terms arising from switching the
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order of derivatives than the commonly used Levi-Civita connection. The advantage
of the contact triad connection will become even more apparent in [13] where the
Fredholm theory and the corresponding index computations in relation to Eq. (1) are
developed.

There have been several literatures that studied special connections on contact
manifolds, such as [11, 17, 18]. We make some rough comparisons between these
connections and the contact triad connection introduced in this paper.

Although all the connections mentioned above are characterized by the torsion
properties, one big difference between ours and the ones in [11, 17] is that we don’t
require rJ D 0, but only r�J D 0. Notice that rJ D 0 is equivalent to both
r�J D 0 and rX� 2 R � X�. Together with the metric property, rJ D 0 also
impliesrX� D 0, which is the requirement of the contact metric connection studied
in [11, Definition 3.1] as well as the so-called adapted connection considered in [17,
Sect. 4]. Our contact triad connection doesn’t satisfy this requirement in general,
and so is not in these families.

The connections considered in [11, 17] become the canonical connection when
lifted to the symplectization as an almost Kähler manifold, while our connection and
the generalized Tanaka-Webster connection considered by Tanno [18] are canonical
for the (non-Hausdorff) almost Kähler manifold . OQ;cd�; OJ�/ lifted to � . (We remark
that some other people named their connections the generalized Tanaka-Webster
connection with different meanings.)

Difference in our connection and Tanno’s shows up in the torsion property of
T .X�; �/ among others. It would be interesting to provide the classification of
the canonical connections in a bigger family that includes both the contact triad
connection and Tanno’s generalized Tanaka-Webster connection. Since the torsion
of the triad connection is already reduced to the simplest one, we expect that it
satisfies better property on its curvature and get better results on the gauge invariant
studied in [18].

This paper is a simplified version of [16], to which we refer readers for the
complete proofs of various results given in this paper.

2 Review of the Canonical Connection of Almost
Kähler Manifold

We recall this construction of the canonical connection for almost Kähler manifolds
.M;!; J /. A nice and exhaustive discussion on the general almost Hermitian
connection is given by Gauduchon in [3] to which we refer readers for more details.
(See also [7], [12, Sect. 7.1].)

Assume .M; J; g/ an almost Hermitian manifold, which means J is an almost
complex structure J and g the metric satisfying g.J �; J �/ D g.�; �/. An affine
connection r is called J -linear if rJ D 0. There always exists a J -linear
connection for a given almost complex manifold. We denote by T the torsion
tensor of r.
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Definition 2. Let .M; J; g/ be an almost Hermitian manifold. A J -linear
connection is called a (the) canonical connection (or a (the) Chern connection)
if for any for any vector field Y on M there is T .J Y; Y / D 0.

Recall that any J -linear connection extended to the complexification TCM D
TM ˝R C complex linearly preserves the splitting into T .1;0/M and T .0;1/M .
Similarly we can extend the torsion tensor T complex linearly which we denote
by TC. Following the notation of [7], we denote � D ˘ 0TC the T .1;0/M -valued
two-form, where ˘ 0 is the projection to T .1;0/M . We have the decomposition
� D �.2;0/ C �.1;1/ C �.0;2/. We can define the canonical connection in terms of
the induced connection on the complex vector bundle T .1;0/M !M . The following
lemma is easy to check by definition.

Lemma 1. An affine connectionr onM is a (the) canonical connection if and only
if the induced connection r on the complex vector bundle T .1;0/M has its complex
torsion form � D ˘ 0TC satisfy �.1;1/ D 0.

We particularly quote two theorems from Gauduchon [3], Kobayashi [7].

Theorem 2. On any almost Hermitian manifold .M; J; g/, there exists a unique
Hermitian connection r on TM leading to the canonical connection on T .1;0/M .
We call this connection the canonical Hermitian connection of .M; J; g/.

We recall that .M; J; g/ is almost-Kähler if the fundamental two-form ˚ D
g.J �; �/ is closed [8].

Theorem 3. Let .M; J; g/ be almost Kähler and r be the canonical connection of
T .1;0/M . Then �.2;0/ D 0 in addition, and hence � is of type .0; 2/.

Remark 1. It is easy to check by definition (or see [3, 7] for details) that � is of
type .0; 2/ is equivalent to say that for all vector fields Y; Z on W , T .J Y;Z/ D
T .Y; JZ/ and JT .J Y;Z/ D T .Y;Z/.

Now we describe one way of constructing the canonical connection on an almost
complex manifold described in [8, Theorem 3.4] which will be useful for our
purpose of constructing the contact analog thereof later. This connection has its
torsion which satisfies N D 4T , where N is the Nijenhuis tensor of the almost
complex structure J defined as N.X; Y / D ŒJX; J Y  � ŒX; Y  � J ŒX; J Y  �
J ŒJX; Y . In particular, the complexification � D ˘ 0TC is of .0; 2/-type.

We now describe the construction of this canonical connection. Let rLC be
the Levi-Civita connection. Consider the standard averaged connection rav of
multiplication J W TM ! TM ,

rav
X Y WD

rLCX Y C J�1rLCX .J Y /

2
D rLCX Y � 1

2
J.rLCX J /Y:

We then have the following Proposition stating that this connection becomes the
canonical connection. Its proof can be found in [8, Theorem 3.4] or from Sect. 2 [3]
with a little more strengthened argument by using (3) for the metric property.
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Proposition 2. Assume that .M; g; J / is almost Kähler, i.e, the two-form
! D g.J �; �/ is closed. Then the average connection rav defines the canonical
connection of .M; g; J /, i.e., the connection is J -linear, preserves the metric and
its complexified torsion is of .0; 2/-type.

In fact, a more general construction of the canonical connection for almost
Hermitian manifold is given in [8]. We describe it and in later sections, we will
give a contact analog of this construction.

Consider the tensor field Q defined by

4Q.X; Y / D .rLCJ Y J /X C J..rLCY J /X/C 2J..rLCX J /Y / (2)

for vector fields X; Y on M . It turns out that when .M; g; J / is almost Kähler, i.e.,
the two form g.J �; �/ is closed, the sum of the first two terms vanish. In general,
r WD rLC �Q is the canonical connection of the almost Hermitian manifold. In
fact, we have the following lemma which explains the construction above for almost
Kähler case.

Lemma 2 ((2.2.10) [3]). Assume .M; g; J / is almost Kähler. Then

rLCJ Y J C J.rLCY J / D 0 (3)

and so Q.X; Y / D 1
2
J..rLCX J /Y /.

3 Definition of the Contact Triad Connection
and Its Consequences

In this section, we associate a particular type of affine connection on Q to the given
contact triad .Q; �; J / which we call the contact triad connection of the triple.

We recall TQ D RfX�g ˚ � , and denote by � W TQ ! � the projection. Under
this splitting, we may regard a section Y of � ! Q as a vector field Y ˚ 0. We will
just denote the latter by Y with slight abuse of notation. Define r� the connection
of the bundle � ! Q by r�Y D �rY .

Definition 3 (Contact Triad Connection). We call an affine connection r on
Q the contact triad connection of the contact triad .Q; �; J /, if it satisfies the
following properties:

1. r� is a Hermitian connection of the Hermitian bundle � over the contact
manifold Q with Hermitian structure .d�; J /.

2. The � projection, denoted by T � WD �T , of the torsion T satisfies the following
properties: for all Y tangent to � , T �.J Y; Y / D 0.

3. T .X�; Y / D 0 for all Y 2 TQ.
4. rX�X� D 0 and rY X� 2 � , for Y 2 � .
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5. For Y 2 � , rJ Y X� C JrY X� D 0:
6. For any Y; Z 2 � , hrY X�;Zi C hX�;rY Zi D 0:
It follows from the definition that the contact triad connection is a Riemannian
connection of the triad metric. (The statements of this definition are equivalent
to those given in the introduction. We state properties of contact triad connection
here as above which are organized in the way how they are used in the proofs of
uniqueness and existence.)

By the second part of Axiom (4), the covariant derivative rX� restricted to � can

be decomposed into rX� D @rX� C @r
X�, where @rX� (respectively, @

r
X�) is

J -linear (respectively, J -anti-linear part). Axiom (6) then is nothing but requiring
that @rX� D 0, i.e., X� is anti J -holomorphic in the CR-sense. (It appears that
this explains the reason why Axiom (5) gives rise to dramatic simplification in our
tensor calculations performed in [14].)

One can also consider similar decompositions of one-form �. For this, we need
some digression. Define J˛ for a k-form ˛ by the formula J˛.Y1; � � � ; Yk/ D
˛.J Y1; � � � ; J Yk/.
Definition 4. Let .Q; �; J / be a contact triad. We call a k-form isCR-holomorphic
if ˛ satisfies

rX�˛ D 0; (4)

rY ˛ C JrJ Y ˛ D 0 for Y 2 �: (5)

Proposition 3. Axiom (5) is equivalent to the statement that � is holomorphic in the
CR-sense in the presence of other defining properties of contact triad connection.

Proof. We first prove rX�� D 0 by evaluating it against vector fields on Q. For
X�, the first half of Axiom (4) gives rise to rX��.X�/ D ��.rX�X�/ D 0. For the
vector field Y 2 � , we compute

rX��.Y / D ��.rX�Y /
D ��.rY X� C ŒX�; Y C T .X�; Y //
D ��.rY X�/ � �.ŒX�; Y / � �.T .X�; Y //:

Here the third term vanishes by Axiom (3), the first term by the second part of
Axiom (4) and the second term vanishes since

�.ŒX�; Y / D �.LX�Y / D X�Œ�.Y / �LX��.Y / D 0 � 0 D 0:
Here the first vanishes since Y 2 � and the second because LX�� D 0 by the
definition of the Reeb vector field. This proves (4).

We next compute JrY � for Y 2 � . For a vector field Z 2 � ,
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.JrY �/.Z/ D .rY �/.JZ/ D rY .�.JZ// � �.rY .JZ// D ��.rY .JZ//

since �.JZ/ D 0 for the last equality. Then by the definitions of the Reeb vector
field and the triad metric and the skew-symmetry of J , we derive

��.rY .JZ// D �hrY .JZ/;X�i D hJZ;rY X�i D �hZ; JrY X�i:

Finally, applying (6), we obtain

�hZ; JrY X�i D hZ;rJ Y X�i D �hrJ Y Z;X�i D ��.rJ Y Z/ D .rJ Y �/.Z/:

Combining the above, we have derived J.rY �/.Z/ D rJ Y �.Z/ for all Z 2 � . On
the other hand, for X�, we evaluate

J.rY �/.X�/ D rY �.JX�/ D rY �.0/ D 0:

We also compute rJ Y �.X�/ D LJ Y .�.X�//��.rJ Y X�//: The first term vanishes
since �.X�/ � 1 and the second vanishes since rJ Y X� 2 � by the second part of
Axiom (4). Therefore we have derived (5).

Combining (4) and (5), we have proved that Axiom (5) implies � is holomorphic
in the CR-sense. The converse can be proved by reading the above proof backwards.

From now on, when we refer Axioms, we mean the properties in Definition 3. One
very interesting consequence of this uniqueness is the following naturality result of
the contact-triad connection.

Theorem 4 (Naturality). Let r be the contact triad connection of the triad
.Q; �; J /. For any diffeomorphism � W Q ! Q, the pull-back connection ��r
is the contact triad connection associated to the triad .Q; ���; ��J /.

Proof. A straightforward computation shows that the pull-back connection ��r sat-
isfies all Axioms (1)–(6) for the triad .Q; ���; ��J /. Therefore by the uniqueness,
��r is the canonical connection.

Remark 2. An easy examination of the proof of Theorem 4 shows that the naturality
property stated in Theorem 4 also holds for the one-parameter family of connections
for all c 2 R (see Sect. 4) among which the canonical connection corresponds to
c D 0.

4 Proof of the Uniqueness of the Contact Triad Connection

In this section, we give the uniqueness proof by analyzing the first structure equation
and showing how every axiom determines the connection one forms. In the next two
sections, we explicitly construct a connection by carefully examining properties
of the Levi-Civita connection and modifying the constructions in [7, 8] for the
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canonical connection, and then show it satisfies all the requirements and thus the
unique contact triad connection.

We are going to prove the existence and uniqueness for a more general family of
connections. First, we generalize the Axiom (5) to the following Axiom: For Y 2 � ,

rJ Y X� C JrY X� 2 R � Y; (6)

and we denote by Axiom (5; c): For a given c 2 R,

rJ Y X� C JrY X� D c Y; Y 2 �: (7)

In particular, Axiom (5) corresponds to Axiom (5; 0).

Theorem 5. For any c 2 R, there exists a unique connection satisfies Axiom (1)–
(4), (6) and (5; c).

Proof (Uniqueness). Choose a moving frame of TQ D RfX�g ˚ � given by
fX�;E1; � � � ; En; JE1; � � � ; JEng and denote its dual co-frame by f�; ˛1; � � � ; ˛n;
ˇ1; � � � ; ˇng. (We use the Einstein summation convention to denote the sum of upper
indices and lower indices in this paper.) Assume the connection matrix is .˝i

j /,
i; j D 0; 1; : : : ; 2n, and we write the first structure equations as follows

d� D �˝0
0 ^ � �˝0

k ^ ˛k �˝0
nCk ^ ˇk C T 0

d˛j D �˝j
0 ^ � �˝j

k ^ ˛k �˝j

nCk ^ ˇk C T j

dˇj D �˝nCj
0 ^ � �˝nCj

k ^ ˛k �˝nCj
nCk ^ ˇk C T nCj

Throughout the section, if not stated otherwise, we let i , j and k take values from 1

to n. Denote

˝u
v D � u

0;v�C � u
k;v˛

k C � u
nCk;vˇk

where u; v D 0; 1; � � � ; 2n. We will analyze each axiom in Definition 3 and show
how they set down the matrix of connection one forms.

We first state that Axioms (1) and (2) uniquely determine .˝i
j j� /i;jD1;��� ;2n. This

is exactly the same as Kobayashi’s proof for the uniqueness of Hermitian connection
given in [7]. To be more specific, we can restrict the first structure equation to � and
get the following equations for ˛ and ˇ since � is the kernel of �.

d˛j D �˝j

k j� ^ ˛k �˝j

nCkj� ^ ˇk C T j j�
dˇj D �˝nCj

k j� ^ ˛k �˝nCj
nCk j� ^ ˇk C T nCj j�

We can see .˝i
j j� /i;jD1;��� ;2n is skew-Hermitian from Axiom (1). We also notice

that from the Remark 1 that Axiom (2) is equivalent to say that �.1;1/ D 0, where
� D ˘ 0TC. Then one can strictly follow Kobayashi’s proof of Theorem 2 in [7] and
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get .˝i
j j� /i;jD1;��� ;2n are uniquely determined. For this part, we refer readers to the

proofs of [7, Theorems 1.1 and 2.1].
In the rest of the proof, we will clarify how the Axioms (3), (4), (5;c), (6)

uniquely determine ˝0� , ˝ �
0 and .˝i

j .X�//i;jD1;��� ;2n. Compute the first equality in
Axiom (4) and we get

rX�X� D � 0
0;0X� C � k

0;0Ek C � nCk
0;0 JEk D 0:

Hence

� 0
0;0 D 0; � k

0;0 D 0; � nCk
0;0 D 0 (8)

The second claim in Axiom (4) is equal to say

rEkX� 2 �; rJEkX� 2 �: (9)

Similar calculation shows that

� 0
k;0 D 0; � 0

nCk;0 D 0: (10)

Now the first vanishing in (8) together with (10) uniquely settle down

˝0
0 D � 0

0;0�C � 0
k;0˛

k C � 0
nCk;0ˇk D 0:

The vanishing of second and third equality in (8) will be used to determine ˝0 in
the later part. From Axiom (3), we can get

� k
j;0 � � k

0;j D hŒEj ; X�; Eki D �hLX�Ej ;Eki (11)

� k
nCj;0 � � k

0;nCj D hŒJEj ;X�; Eki D �hLX�.JEj /; Eki (12)

and

� nCk
j;0 � � nCk

0;j D hŒEj ; X�; JEki D �hLX�Ej ; JEki (13)

� nCk
nCj;0 � � nCk

0;nCj D hŒEj ; X�; JEki D �hLX�.JEj /; JEki: (14)

From Axiom (5; c), we have

� k
j;0 C � nCk

nCj;0 D 0 (15)

� nCk
j;0 � � k

nCj;0 D �cıj;k: (16)

Now we show how to determine ˝j
0 for j D 1; : : : ; 2n. For this purpose, we

calculate � k
j;0. First, by using (15), we write � k

j;0 D 1
2
� k
j;0 � 1

2
� nCk
nCj;0.
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Furthermore, using (11) and (14), we have

� k
j;0 D

1

2
� k
j;0 �

1

2
� nCk
nCj;0

D 1

2
.� k

0;j � hLX�Ej ;Eki/ �
1

2
.� nCk

0;nCj � hLX�.JEj /; JEki/

D 1

2
.� k

0;j � � nCk
0;nCj / �

1

2
.hLX�Ej ;Eki � hLX�.JEj /; JEki/

D 1

2
.� k

0;j � � nCk
0;nCj / �

1

2
hLX�Ej C JLX�.JEj /; Eki

D 1

2
.� k

0;j � � nCk
0;nCj / �

1

2
hJ.LX�J /Ej ;Eki

D 1

2
.� k

0;j � � nCk
0;nCj /C

1

2
h.LX�J /JEj ;Eki

Notice the first term vanishes by Axiom (2). In particular, that is from rX�J D 0.
Hence we get

� k
j;0 D

1

2
h.LX�J /JEj ;Eki: (17)

Following the same idea, we use (16) and will get

� nCk
j;0 D �1

2
cıjk C 1

2
h.LX�J /JEj ; JEki:

Then substituting this into (15) and (16), we have

� k
nCj;0 D

1

2
cıjk C 1

2
h.LX�J /JEj ; JEki D

1

2
cıjk � 1

2
h.LX�J /Ej ;Eki:

and

� nCk
nCj;0 D �

1

2
h.LX�J /JEj ;Eki D

1

2
h.LX�J /Ej ; JEki:

Together with (8), ˝0 is uniquely determined by this way.
Furthermore (11)–(14), uniquely determine ˝i

j .X�/ for i; j D 1; : : : ; 2n.
Notice that for any Y 2 � , we derive rX�Y 2 � from Axiom (3). This is because

the axiom implies rX�Y D rY X� C LX�Y and the latter is contained in �: the
second part of Axiom (4) implies rY X� 2 � and the Lie derivative along the Reeb
vector field preserves the contact structure � . It then follows that � 0

0;l D 0 for
l D 1; : : : ; 2n. At the same time, Axiom (6) implies � 0

j;k D �� k
j;0: for j;

k D 1; : : : ; 2n. Hence together with (10), ˝0 is uniquely determined. This finishes
the proof.
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We end this section by giving a summary of the procedure we take in the proof of
uniqueness which actually indicates a way how to construct this connection in later
sections.

First, we use the Hermitian connection property, i.e., Axiom (1) and torsion
property Axiom (2), i.e., T � j� has vanishing .1; 1/ part, to uniquely fix the
connection on � projection of r when taking values on � .

Then we use the metric property hX�;rY ZiChrY X�;Zi D 0; for any Y;Z 2 � ,
to determine the X� component of r when taking values in � .

To do this, we need the information of rY X�. As mentioned before the second

part of Axiom (4) enables us to decomposerX� D @rX�C@r
X�. The requirement

rX�J D 0 in Axiom (1) implies rX�.J Y / � JrX�Y D 0: Axiom (3), the torsion
property T .X�; Y / D 0, then interprets this one into

rJ Y X� � JrY X� D �.LX�J /Y

which is also equivalent to saying

J@
r
Y X� D

1

2
.LX�J /Y or @

r
Y X� D

1

2
.LX�J /J Y: (18)

It turns out that we can vary Axiom (5) by replacing it to (5;c)

rJ Y X� C JrY X� D cY; or equivalently @r
Y XY D

c

2
Y (19)

for any given real number c. This way we shall have one-parameter family of affine
connections parameterized by R each of which satisfies Axioms (1)–(4) and (6) with
(5) replaced by (5;c).

When c is fixed, i.e., under Axiom (5; c), we can uniquely determine rY X� to be

rY X� D �1
2
cJ Y C 1

2
.LX�J /J Y:

Therefore, rY ; Y 2 � is uniquely determined in this process by getting the formula
of rY X� when combined with the torsion property. Then the remaining property
rX�X� D 0 now completely determines the connection.

5 Properties of the Levi-Civita Connection
on Contact Manifolds

From the discussion in previous sections, the only thing left to do for the existence
of the contact triad connection is to globally define a connection such that it can
patch the � part of rj� and the X� part of it. In particular, we seek for a connection
that satisfies the following properties:
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1. it satisfies all the algebraic properties of the canonical connection of almost
Kähler manifold [7] when restricted to � .

2. it satisfies metric property and has vanishing torsion in X� direction.

The presence of such a construction is a manifestation of delicate interplay between
the geometric structures � , �, and J in the geometry of contact triads .Q; �; J /.
In this regard, the closeness of d� and the definition of Reeb vector field X� play
important roles. In particular d� plays the role similar to that of the fundamental
two-form ˚ in the case of almost Kähler manifold [8] (in a non-strict sense) in that
it is closed.

This interplay is reflected already in several basic properties of the Levi-Civita
connection of the contact triad metric exposed in this section. We list these
properties but skip most proofs of them in this section since most results are well-
known in Blair’s book [1]. We also refer readers to [16] for the complete proof with
the same convention.

Recall that we have extend J to TQ by defining J.X�/ D 0. Denote by ˘ W
TQ ! TQ the idempotent associated to the projection � W TQ ! � , i.e., the
endomorphism satisfying ˘2 D ˘ , Im˘ D � , and ker˘ D RfX�g.

We have now J 2 D �˘ . Moreover, for any connection r on Q,

.rJ /J D �.r˘/ � J.rJ /: (20)

Notice for Y 2 � , we have

˘.r˘/Y D 0; .r˘/X� D �˘rX�: (21)

Denote the triad metric g as h�; �i. By definition, we have

hX; Y i D d�.X; J Y /C �.X/�.Y /
d�.X; Y / D d�.JX; J Y /

which gives rise to the following identities

Lemma 3. For all X; Y in TQ, hJX; J Y i D d�.X; J Y /, hX; J Y i D
�d�.X; Y /, and hJX; Y i D �hX; J Y i.

However, we remark hJX; J Y i ¤ hX; Y i in general now, and hence there is no
obvious analog of the fundamental 2 form ˚ defined as in [8] for the contact case.
This is the main reason that is responsible for the differences arising in the various
relevant formulae between the contact case and the almost Hermitian case.

The following preparation lemma says that the linear operator LX�J is symmet-
ric with respect to the metric g D h�; �i.
Lemma 4 (Lemma 6.2 [1]). For Y;Z 2 � , h.LX�J /Y;Zi D hY; .LX�J /Zi.
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The following simple but interesting lemma shows that the Reeb foliation is
a geodesic foliation for the Levi-Civita connection (and so for the contact triad
connection) of the contact triad metric.

Lemma 5 ([1]). For any vector field Z on Q,

rLCZ X� 2 �; (22)

and

rLCX� X� D 0: (23)

Next we state the following lemma which is the contact analog to the Prop 4.2
in [8] for the almost Hermitian case. The proof of this lemma can be also extracted
from [1, Corollary 6.1] and so we skip it but refer [16] for details.

Lemma 6. Consider the Nijenhuis tensor N defined by

N.X; Y / D ŒJX; J Y  � ŒX; Y  � J ŒX; J Y  � J ŒJX; Y 

as in the almost complex case. For all X; Y and Z in TQ,

2h.rLCX J /Y;Zi D hN.Y;Z/; JXi
�hJX; J Y i�.Z/C hJX; JZi�.Y /

In particular, we obtain the following corollary.

Corollary 2. For Y;Z 2 � ,

2h.rLCY J /X�;Zi D �h.LX�J /Z; Y i C hY;Zi
2h.rLCY J /Z;X�i D h.LX�J /Z; Y i � hY;Zi
2h.rLCX J /Y;Zi D hN.Y;Z/; JXi:

Proof. This is a direct corollary from Lemma 6 except that we also use

N.X�;Z/ D �J.LX�J /Z (24)

N.Z;X�/ D J.LX�J /Z: (25)

for the first two conclusions.

Straightforward calculations give the following lemma which is the contact
analog of the fact that the Nijenhuis tensor is of .0; 2/-type.
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Lemma 7. For Y;Z 2 � ,

JN.Y; JZ/ �˘N.Y;Z/ D 0
˘N.Y; JZ/C˘N.Z; J Y / D 0:

Together with the last equality in Corollary 2 and Lemma 7, we obtain the
following lemma, which is the contact analog to Lemma 2.
Lemma 8.

˘.rLCJ Y J /X C J.rLCY J /X D 0: (26)

The following result is an immediate but important corollary of Corollary 2 and
the property rX�X� D 0 of X�, which plays an essential role in our construction of
the contact triad connection.

Proposition 4 (Corollary 6.1 [1]). rLCX� J D 0.

The following is equivalent to the second part of Lemma 6.2 [1] after taking into
consideration of different sign convention of the definition of compatibility of J
and d�.

Lemma 9 (Lemma 6.2 [1]). For any Y 2 � , we have rLCY X� D 1
2
J Y C

1
2
.LX�J /J Y .

6 Existence of the Contact Triad Connection

In this section, we establish the existence theorem of the contact triad connection in
two stages.

Before we give the construction, we first remark the relationship between the
connections of two different c’s. Denote by r�Ic the unique connection associated
to the constant c, which we are going to construct. The following proposition shows
that r�Ic and r�Ic0

for two different nonzero constants with the same parity are
essentially the same in that it arises from the scale change of the contact form. We
skip the proof since it is straightforward.

Proposition 5. Let .Q; �; J / be a contact triad and consider the triad .Q; a�; J /
for a constant a > 0. Then ra�I1 D r�Ia.

In regard to this proposition, one could say that for each given contact structure
.Q; �/, there are essentially two inequivalent r0; r1 (respectively three, r0; r1
and r�1, if one fixes the orientation) choice of triad connections for each given
projective equivalence class of the contact triad .Q; �; J /. In this regard, the
connection r0 is essentially different from others in that this argument of scaling
procedure of contact form � does not apply to the case a D 0 since it would lead
to the zero form 0 ��. This proposition also reduces the construction essentially two
connections of r�I0 and r�I1 (or r�I�1).
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In the rest of this section, we will explicitly construct r�I�1 and r�Ic in two
stages, by construct the potential tensor B from the Levi-Civita connection, i.e., by
adding suitable tensors B to get rB D rLC C B WD rLC C B1 C B2.

In the first stage, motivated by the construction of the canonical connection on
almost Kähler manifold and use the properties of the Levi-Civita connection we
extracted in the previous section, we construct the connection r tmpI1 and show that
it satisfies Axioms (1)–(4), (5;�1), (6).

In the second stage, we modify r tmpI1 to get r tmpI2 by deforming the property
(5;�1) thereof to (5;c) leaving other properties of r tmpI1 intact. This r tmpI2 then
satisfies all the axioms in Definition 3.

6.1 Modification 1; r tmpI1

Define an affine connection r tmpI1 by the formula

r tmpI1
Z1

Z2 D rLCZ1 Z2 �˘P.˘Z1;˘Z2/

where the bilinear map P W � .TQ/ � � .TQ/ ! � .TQ/ over C1.Q/ is defined
by

4P.X; Y / D .rLCJ Y J /X C J..rLCY J /X/C 2J..rLCX J /Y / (27)

for vector fieldsX; Y inQ. (To avoid confusion with our notationQ for the contact
manifold and to highlight that P is not the same tensor field as Q but is the contact
analog thereof, we use P instead for its notation.) From (26), we have now

˘P.˘Z1;˘Z2/ D 1

2
J..rLC˘Z1J /˘Z2/:

According to the remark made in the beginning of the section, we choose B1 to be

B1.Z1;Z2/ D �˘P.˘Z1;˘Z2/ D �1
2
J..rLC˘Z1J /˘Z2/: (28)

First we consider the induced vector bundle connection on the Hermitian bundle
� ! Q, which we denote by r tmpI1;� : it is defined by

r tmpI1;�
X Y WD �r tmpI1

X Y (29)

for a vector field Y tangent to � , i.e., a section of � for arbitrary vector field X on
Q. We now prove the J linearity of r tmpI1;� .

Lemma 10. Let � W TQ! � be the projection. Thenr tmpI1;�
X .J Y / D Jr tmpI1;�

X Y

for Y 2 � and all X 2 TQ.
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Proof. For X 2 � ,

r tmpI1
X .J Y / D rLCX .J Y / �˘P.X; J Y /

D .JrLCX Y C .rLCX J /Y / � 1
2
J..rLCX J /J Y /

D JrLCX Y C .rLCX J /Y � 1
2
˘..rLCX J /Y /C 1

2
J..rLCX ˘/Y / (30)

D JrLCX Y C .rLCX J /Y � 1
2
˘..rLCX J /Y /

where we use (20) to get the last two terms in the third equality and use (21) to see
that the last term in (30) vanishes. Hence,

�r tmpI1
X .J Y / D �r tmpI1

X .J Y / D JrLCX Y C 1

2
�..rLCX J /Y /:

On the other hand, we compute

J�r tmpI1
X Y D J

�
rLCX Y � 1

2
J..rLCX J /Y /

�
D JrLCX Y C 1

2
�..rLCX J /Y /:

Hence we have now �r tmpI1
X .J Y / D J�r tmpI1

X Y for X; Y 2 � .
On the other hand, we notice that r tmpI1

X�
Y D rLCX� Y . By using Proposition 4,

the equality �r tmpI1
X .J Y / D J�r tmpI1

X Y also holds for X D X�, and we are done
with the proof.

Next we study the metric property of r tmpI1 by computing hr tmpI1
X Y;Zi C

hY;r tmpI1
X Zi for arbitrary X; Y;Z 2 TQ.

Using the metric property of the Levi-Civita connection, we derive

hr tmpI1
X Y;Zi C hY;r tmpI1

X Zi �XhY;Zi
D hrLCX Y;Zi C hY;rLCX Zi �XhY;Zi � h˘P.˘X;˘Y /;Zi � hY;˘P.˘X;˘Z/i
D �h˘P.˘X;˘Y /;Zi � hY;˘P.˘X;˘Z/i; (31)

The following lemma shows that when X; Y;Z 2 � this last line vanishes. This
is the contact analog to Proposition 2 whose proof is also similar thereto this time
based on Lemma 7. Since we work in the contact case for which we cannot directly
quote its proof here, we give complete proof for readers’ convenience.

Lemma 11. For X; Y;Z 2 � , hP.X; Y /;Zi C hY; P.X;Z/i D 0: In particular,

hr tmpI1
X Y;Zi C hY;r tmpI1

X Zi D XhY;Zi:
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Proof. We compute for X; Y;Z 2 � ,

hP.X; Y /;Zi C hY; P.X;Z/i

D 1

2
hJ..rLCX J /Y /;Zi C 1

2
hY; J..rLCX J /Z/i

D �1
2
h.rLCX J /Y; JZi � 1

2
hJ Y; .rLCX J /Zi

D �1
4
hN.Y; JZ/; JXi � 1

4
hN.Z; J Y /; JXi (32)

D �1
4
h˘N.Y; JZ/C˘N.Z; J Y /; JXi D 0; (33)

where we use the third equality of Corollary 2 for (32) and use the second equality
of Lemma 7 for the vanishing of (33).

Now, we are ready to state the following proposition.

Proposition 6. The vector bundle connection r tmpI1;� WD �r tmpI1 is an Hermitian
connection of the Hermitian bundle � ! Q.

Proof. What is now left to show is that for any Y; Z 2 � ,

hr tmpI1
X�

Y;Zi C hY;r tmpI1
X�

Zi D X�hY;Zi;

which immediately follows from our construction of r tmpI1 since

r tmpI1
X�

Y D rLCX� Y; r tmpI1
X�

Z D rLCX� Z:

With direct calculation, one can check the metric property when the Reeb direction
gets involved.

Lemma 12. For Y; Z 2 � , hr tmpI1
Y X�;Zi C hX�;r tmpI1

Y Zi D 0.

Now we study the torsion property of r tmpI1. Denote the torsion of r tmpI1 by
T tmpI1. Similar as for the almost Hermitian case, define�� D ˘ 0T tmpI1;�

C
. Here we

decompose

T tmpI1j� D �T tmpI1j� C �.T tmpI1;� j� / X�
and denote T tmpI1;� j� WD �T tmpI1;� j� , The proof of the following lemma follows
essentially the same strategy as that of the proof of [8, Theorem 3.4]. We give the
complete proof for readers’ convenience.

Lemma 13. For Y 2 � , T tmpI1.X�; Y / D 0; and

T tmpI1;� j� D 1

4
N� j� ; �.T tmpI1j� / D 0:



Canonical Connection on Contact Manifolds 61

In particular, �� j� is of .0; 2/ form.

Proof. Since r tmpI1 D rLC � ˘P.˘;˘/ and rLC is torsion free, we derive for
Y; Z 2 � ,

T tmpI1.Y;Z/ D T LC .Y;Z/ �˘P.Y;Z/C˘P.Z; Y /

D 1

2
JrLCY JZ � 1

2
JrLCZ J Y:

from the general torsion formula.
Next we calculate �˘P.˘Y;˘Z/C˘P.˘Z;˘Y / using the formula

1

2
JrLCY JZ � 1

2
JrLCZ J Y D 1

4
�.ŒJ Y; JZ � �ŒY;Z � J ŒJ Y;Z � J ŒY; JZ/

D 1

4
�N.Y;Z/:

This follows from the general formula

�P.Y;Z/CP.Z; Y / D 1

4
.ŒJ Y; JZ�˘ŒY;Z�J ŒJ Y;Z�J ŒY; JZ/; (34)

whose derivation we refer [16, Appendix].
On the other hand, since the added terms to rLC only involves �-directions, the

X�-component of the torsion does not change and so

�.T tmpI1j� / D �.T LC j� / D 0:
This finishes the proof.

From the definition of r tmpI1, we have the following lemma from the properties
of the Levi-Civita connection in Proposition 5.

Lemma 14. r tmpI1
X�

X� D 0 and r tmpI1
Y X� 2 � for any Y 2 � .

We also get the following property by using Lemma 9 for Levi-Civita connection.

Lemma 15. For any Y 2 � , we have r tmpI1
Y X� D 1

2
J Y C 1

2
.LX�J /J Y .

We end the construction of r tmpI1 by summarizing that r tmpI1 satisfies Axioms
(1)–(4),(6) and (5;�1), i.e., r tmpI1 D r�I�1.

6.2 Modification 2; r tmpI2

Now we introduce another modification r tmpI2 starting from r tmpI1 to make it
satisfy Axiom (5;c) and preserve other axioms for any given constant c 2 R. We
define r tmpI2 D r tmpI1 C B2 for the tensor B2 given as
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B2.Z1;Z2/ D 1

2
.1C c/ .� hZ2;X�iJZ1 � hZ1;X�iJZ2 C hJZ1;Z2iX�/ :

(35)

Proposition 7. The connection r tmpI2 satisfies all the properties of the canonical
connection with constant c. In particular r WD r tmpI2 with c D 0 is the contact
triad connection.

Proof. The checking of all Axioms are straightforward, and we only do it for Axiom
(5;c) here.

r tmpI2
J Y X� C Jr tmpI2

Y X�

D r tmpI1
J Y X� � 1

2
.1C c/ JJ Y C Jr tmpI1

Y X� � J 1
2
.1C c/ J Y

D �Y C .1C c/Y D cY:

Before ending this section, we restate the following properties which will be use-
ful for calculations involving contact Cauchy-Riemann maps performed in [14, 15].

Proposition 8. Let r be the connection satisfying Axiom (1)–(4),(6) and (5; c),
then rY X� D � 1

2
cJ Y C 1

2
.LX�J /J Y . In particular, for the contact triad

connection, rY X� D 1
2
.LX�J /J Y .

Proof. We already gave its proof in the last part of Sect. 3.

Proposition 9. Decompose the torsion of r into T D �T C �.T /X�. The triad
connection r has its torsion given by T .X�;Z/ D 0 for all Z 2 TQ, and for all
Y; Z 2 � ,

�T .Y;Z/ D 1

4
�N.Y;Z/ D 1

4
..LJ Y J /Z C .LY J /JZ/

�.T .Y;Z// D d�.Y;Z/:

Proof. We have seen �T tmpI2j� D �T tmpI1j� D 1
4
N � j� . On the other hand, a

simple computation shows N�.Y;Z/ D .LJ Y J /Z � J.LY J /Z D .LJ Y J /Z C
.LY J /JZ, which proves the first equality.

For the second, a straightforward computation shows

�.T tmpI2.Y;Z// D �.T tmpI1.Y;Z//C .1C c/ hJ Y;Zi D .1C c/ d�.Y;Z/

for general c. Substituting c D 0, we obtain the second equality. This finishes the
proof.
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Recent Progress in Isoparametric Functions
and Isoparametric Hypersurfaces

Chao Qian and Zizhou Tang

Abstract This paper gives a survey of recent progress in isoparametric functions
and isoparametric hypersurfaces, mainly in two directions.

(1) Isoparametric functions on Riemannian manifolds, including exotic spheres.
The existences and non-existences will be considered.

(2) The Yau conjecture on the first eigenvalues of the embedded minimal hyper-
surfaces in the unit spheres. The history and progress of the Yau conjecture on
minimal isoparametric hypersurfaces will be stated.

1 Introduction

E. Cartan was the pioneer who made a comprehensive study of isoparametric
functions (hypersurfaces) on the unit spheres. In the past decades, the study
of isoparametric functions (hypersurfaces) has became a highly influential field
in differential geometry. For a systematic and complete survey of isoparametric
functions (hypersurfaces) and their generalizations, we recommend [7,43] and [10].
Very recently, Cecil-Chi-Jensen, Immervoll and Chi obtained classification results
for isoparametric hypersurfaces with four distinct principal curvatures in the unit
spheres, except for one case (c.f. [9, 23] and [11]). As for that with six distinct
principal curvatures, Miyaoka showed the homogeneity and hence the classification
(c.f. [29]).

The note is organized as follows. In Sect. 2, we first recall some basic notations
and fundamental theory of isoparametric functions on Riemannian manifolds. Next
we introduce exotic spheres and investigate the existences and non-existences of
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isoparametric functions on exotic spheres. Section 3 will be concerned with the
progress of the well known Yau conjecture on the first eigenvalues of embedded
minimal hypersurfaces in the unit spheres, especially on the minimal isoparametric
case (being isoparametric implies embedding). Moreover, the first eigenvalues of
the focal submanifolds are also taken into account. In the end, related topics and
applications are described in Sect. 4.

2 Exotic Spheres and Isoparametric Functions

We start with definitions. Let N be a connected complete Riemannian manifold.
A non-constant smooth function f W N ! R is called transnormal if there is a
smooth function b W R! R such that

jrf j2 D b.f /; (1)

where rf is the gradient of f . If moreover there is a continuous function
a W R! R such that

4f D a.f /; (2)

where 4f is the Laplacian of f , then f is called isoparametric (cf. [44]).
Each regular level hypersurface is called an isoparametric hypersurface. The two
equations of the function f mean that regular level hypersurfaces are parallel and
have constant mean curvatures. According to Wang [44], a transnormal function f
on a complete Riemannian manifold has no critical value in the interior of Imf .
The preimage of the maximum (resp. minimum), if it exists, of an isoparametric (or
transnormal) function f is called the focal set of f , denoted by MC (resp. M�).

Since the work of Cartan [5, 6] and Münzner [33], the subject of isoparametric
hypersurfaces in the unit spheres is rather fascinating to geometers. We refer to [8]
for the development of this subject. Up to now, the classification has almost been
completed as mentioned in Sect. 1.

In general Riemannian manifolds, the classification problem is far from being
touched. Wang [44] firstly took up a systematic study of isoparametric functions on
general Riemannian manifolds, and similar to the case in a unit sphere, proved or
claimed a series of beautiful results. The structural result for transnormal functions
is stated as follows.

Theorem 1 ([44]). Let N be a connected complete Riemannian manifold and f a
transnormal function on N . Then

• The focal sets of f are smooth submanifolds (may be disconnected) of N ;
• Each regular level set of f is a tube over either of the focal sets (the dimensions

of the fibers may differ on different connected components).
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The above theorem shows that the existence of a transnormal function on a
Riemannian manifold N restricts strongly its topology.

In the first part of [17], Ge and Tang improved the fundamental theory of
isoparametric functions on Riemannian manifolds. Given a transnormal function
f W N ! R, we denote by C1.f / the set where f attains its global maximum
value or global minimum value, by C2.f / the union of singular level sets of
f , i.e., C2.f / D fp 2 N jrf .p/ D 0g, and for any regular value t of f ,
by C t

3 .f / the focal set of the level hypersurface Mt WD f �1.t/, i.e., the set
of singular values of the normal exponential map. From [44], it follows that
C1.f / D C2.f / D M� [MC, and C t1

3 .f / D C
t2
3 .f / for any two regular level

hypersurfaces which will be thus denoted simply by C3.f /. Moreover, one can see
that C3.f / 	 C1.f / D C2.f /. Then Ge and Tang proved

Theorem 2 ([17]). Each component of M˙ has codimension not less than 2 if and
only if C3.f / D C1.f / D C2.f /. Moreover in this case, each level set Mt is
connected. If in addition N is closed and f is isoparametric, then at least one
isoparametric hypersurface is minimal in N .

Indeed, there exists example of an isoparametric function f satisfying C3.f /  
C1.f / D C2.f / (c.f. [17]). For this case, the focal sets of the isoparametric function
are not really focal sets of the level hypersurface. Hence, in [17], a transnormal
(isoparametric) function f is called proper if the focal sets have codimension not
less than 2. It seems that a properly transnormal (isoparametric) function is exactly
what we should concern in geometry. Furthermore, in [17], they observed three
elegant ways to construct examples of isoparametric functions, i.e.,

• For a Riemannian manifold .N; ds2/ with an isoparametric function f , take a

special conformal deformation eds2 D e2u.f /ds2. Then f is also isoparametric

on .N;eds2/;
• For a cohomogeneity one manifold .N;G/with aG-invariant metric, one can get

isoparametric functions on N ;
• For a Riemannian submersion � W E ! B with minimal fibers, if f is an

isoparametric function on B , then so is F WD f ı � on E.

Applying these methods, interesting results and abundant examples are acquired,
especially, isoparametric functions on Brieskorn varieties and on isoparametric
hypersurfaces of spheres are obtained.

As a continuation of [17], they made new contributions in [18]. First, for
a properly isoparametric function, they proved that at least one isoparametric
hypersurface is minimal if the ambient space N is closed in Theorem 2. By using
the Riccati equation, they can further show that such a minimal isoparametric
hypersurface is also unique if N has positive Ricci curvature. Next, by expressing
the shape operator S.t/ of Mt as a power series, they gave a complete proof
to Theorem D of [44] (no proof there; compare with L. Ni, 1997, Notes on
Transnormal Functions on Riemannian Manifolds, unpublished, http://math.ucsd.
edu/~lni/academic/isopara.pdf and [28]).

http://math.ucsd.edu/~lni/academic/isopara.pdf
http://math.ucsd.edu/~lni/academic/isopara.pdf
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Theorem 3 ([18]). The focal sets M˙ of an isoparametric function f on a
complete Riemannian manifold N are minimal submanifolds.

Meanwhile, Ge and Tang also established the following theorem, which is a
generalization of the spherical case to general Riemannian manifolds.

Theorem 4 ([18]). Suppose that each isoparametric hypersurfaceMt has constant
principal curvatures with respect to the unit normal vector field in the direction of
rf . Then each of the focal sets M˙ has common constant principal curvatures in
all normal directions, i.e., the eigenvalues of the shape operator are constant and
independent of the choices of the point and unit normal vector of M˙.

Owning to the rich and beautiful topological and geometric properties of
isoparametric functions on Riemannian manifolds, Ge and Tang initiated the study
of isoparametric functions on exotic spheres in [17].

Recall that an n-dimensional smooth manifold ˙n is called an exotic n-sphere
if it is homeomorphic but not diffeomorphic to Sn. It is J. Milnor [27] who firstly
discovered an exotic 7-sphere which is an S3-bundle over S4. Later, Kervaire and
Milnor [25] computed the group of homotopy spheres in each dimension greater
than four which implies that there exist exotic spheres in infinitely many dimensions
and in each dimension there are at most finitely many exotic spheres. In particular,
ignoring orientation there exist 14 exotic 7-spheres, 10 of which can be exhibited as
S3-bundles over S4, the so-called Milnor spheres. However, in dimension four, the
question of whether an exotic 4-sphere exists remains open, which is the so called
smooth Poincaré conjecture (c.f. [24]).

Since the discovery of exotic spheres by Milnor, a very intriguing problem is to
interpret the geometry of them (c.f. [3,20,21,24]). In [17], using isoparametric (even
transnormal) functions to attack the smooth Poincaré conjecture in dimension four,
Ge and Tang showed the following theorem.

Theorem 5 ([17]). Suppose ˙4 is a homotopy 4-sphere and it admits a transnor-
mal function under some metric. Then ˙4 is diffeomorphic to S4.

Note that a homotopy n-sphere is a smooth manifold with the same homotopy
type as Sn. Freedman [15] showed that any homotopy 4-sphere is homeomorphic
to S4. As a result of this, the above Theorem 5 says equivalently that there exists
no transnormal function on any exotic 4-sphere if it exists. In contrast to the non-
existence result in dimension four, Ge and Tang also constructed many examples
of isoparametric functions on the Milnor spheres. Furthermore, by projecting an
S3-invariant isoparametric function on the symplectic group Sp.2/ with a certain
left invariant metric, they constructed explicitly a properly transnormal but not
an isoparametric function on the Gromoll-Meyer sphere with two points as the
focal sets. Inspired by this example, they posed a question that whether there is
an isoparametric function on the Gromoll-Meyer sphere or on any exotic n-sphere
(n > 4) with two points as the focal sets. More generally, they posed the following:

Problem 1 ([17]). Does there always exist a properly isoparametric function on an
exotic sphere ˙n (n > 4) with the focal sets being those occurring on Sn?
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To answer the Problem 1, Qian and Tang developed a general way to construct
metrics and isoparametric functions on a given manifold in [35], which is based on a
simple and useful observation that a transnormal function on a complete Riemannian
manifold is necessarily a Morse-Bott function (c.f. [44]). As is well known, a
Morse-Bott function is a generalization of a Morse function, and it admits critical
submanifolds satisfying a certain non-degenerate condition on normal bundles. In
[35], the following fundamental construction is given, whose proof depends heavily
on Moser’s volume element theorem.

Theorem 6 ([35]). Let N be a closed connected smooth manifold and f a Morse-
Bott function on N with the critical set C.f / DMCtM�, whereMC andM� are
both closed connected submanifolds of codimensions more than 1. Then there exists
a metric on N so that f is an isoparametric function.

It follows from a theorem of S. Smale that

Corollary 1 ([35]). Every homotopy n-sphere with n > 4 admits a metric and an
isoparametric function with 2 points as the focal sets.

Remark 1. Corollary 1 answers partially the above Problem 1.

Moreover, metrics and isoparametric functions on homotopy spheres and on the
Eells-Kuiper projective planes can also be constructed so that at least one component
of the critical set is not a single point.

In addition to the above existence theorem on homotopy spheres, on the other
side, the following non-existence results was also proved.

Theorem 7 ([35]). Every odd dimensional exotic sphere admits no totally isopara-
metric functions with 2 points as the focal set.

Recall that a totally isoparametric function is an isoparametric function so that
each regular level hypersurface has constant principal curvatures, as defined in [19].
As it is well known, an isoparametric function on a unit sphere must be totally
isoparametric.

Remark 2. According to [22] and [37], there exists at leat one exotic Kervaire
sphere˙4mC1 which has a cohomogeneity one action. Consequently,˙4mC1 admits
a totally isoparametric function f under an invariant metric (c.f. [17]). However,
each component of the focal set of f is not just a point, but a smooth submanifold.
Hence, the assumption on the focal set in Theorem 7 is essential.

In light of the above Theorem 7, it is reasonable to ask

Problem 2. Does there exist an even dimensional exotic sphere ˙2n.n > 2/

admitting a metric and a totally isoparametric function with 2 points as the focal set?

In the last section of [35], both existence and non-existence results of isopara-
metric functions on some homotopy spheres which also have SCp-property were
investigated. A Riemannian manifold has SCp-property if every geodesic issuing
from the point p is closed and has the same length [2]. For some even dimensional
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homotopy spheres, the existence theorem in [35] improves a beautiful result of
Bérard-Bergery [1].

Recently, Tang and Zhang [40] solved a problem of Bérard-Bergery and Besse.
That is, they showed that every Eells-Kuiper quaternionic projective plane carries a
Riemannian metric with SCp-property for a certain point p. Thus, it is interesting
to know whether there is a metric on every Eells-Kuiper quaternionic projective
plane which not only has the SCp-property, but also admits a certain isoparametric
function (c.f. [35]).

3 Yau Conjecture on the First Eigenvalue and Isoparametric
Foliations

The Laplace-Beltrami operator is one of the most important operators acting on
C1 functions on a Riemannian manifold. Over several decades, research on the
spectrum of the Laplace-Beltrami operator has always been a core issue in the study
of geometry. For instance, the geometry of closed minimal submanifolds in the unit
sphere is closely related to the eigenvalue problem.

Let .Mn; g/ be an n-dimensional compact connected Riemannian manifold
without boundary and � be the Laplace-Beltrami operator acting on a C1 function
f on M by �f D � div.rf /, the negative of divergence of the gradient rf . It is
well known that � is an elliptic operator and has a discrete spectrum

f0 D �0.M/ < �1.M/ � �2.M/ � � � � � �k.M/; � � � ;" 1g

with each eigenvalue repeated a number of times equal to its multiplicity. As usual,
we call �1.M/ the first eigenvalue ofM . WhenMn is a minimal hypersurface in the
unit sphere SnC1.1/, it follows from Takahashi Theorem that �1.M/ is not greater
than n. Consequently, S.T. Yau posed in 1982 the following conjecture:

Yau conjecture ([45]). The first eigenvalue of every closed embedded minimal
hypersurface Mn in the unit sphere SnC1.1/ is just n.

In 1983, Choi and Wang made the most significant breakthrough to this
conjecture [12]. To be precise, they showed that the first eigenvalue of every
(embedded) closed minimal hypersurface in SnC1.1/ is not smaller than n

2
. Usually,

the calculation of the spectrum of the Laplace-Beltrami operator, even of the first
eigenvalue, is rather complicated and difficult. Up to now, the Yau conjecture is far
from being solved even in dimension two.

It was proved in [30] that if the Yau conjecture is true for the torus of dimension
two, then the Lawson conjecture holds, that is to say, the only minimally embedded
torus in S3.1/ is the Clifford torus. In fact, the Lawson conjecture has been a
challenging problem for more than 40 years, and recently it was solved by S.
Brendle (c.f. [4]).
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In this note, we pay attention to a little more restricted problem of the Yau
conjecture for closed minimal isoparametric hypersurfaces Mn in SnC1.1/.

Recall that an isoparametric hypersurface Mn in the unit sphere SnC1.1/ must
have constant principal curvatures (c.f. [5, 6, 8]). Let � be a unit normal vector
field along Mn in SnC1.1/, g the number of distinct principal curvatures of M ,
cot �˛ .˛ D 1; : : : ; gI 0 < �1 < � � � < �g < �/ the principal curvatures with
respect to � and m˛ the multiplicity of cot �˛ . Using a brilliant topological method,
Münzner (c.f. [33]) proved the remarkable result that the number g must be 1; 2; 3; 4
or 6; m˛ D m˛C2 (indices mod g); �˛ D �1 C ˛�1

g
� .˛ D 1; : : : ; g/ and when g is

odd, m1 D m2.
In order to attack the Yau conjecture, Muto-Ohnita-Urakawa [32] and Kotani [26]

made a breakthrough for some minimal homogeneous (automatically isoparametric)
hypersurfaces. More precisely, they verified the Yau conjecture for all minimal
homogeneous hypersurfaces with g D 1; 2; 3; 6. However, when it came to the case
g D 4, they were only able to deal with the cases .m1;m2/ D .2; 2/ and .1; k/.

Furthermore, Muto [31] proved that the Yau conjecture is also true for some
families of minimal inhomogeneous isoparametric hypersurfaces with g D 4.
This remarkable result contains many inhomogeneous isoparametric hypersur-
faces. However, there is no result in [31] for isoparametric hypersurfaces with
min.m1;m2/ > 10.

Based on all results mentioned above and the classification of isoparametric
hypersurfaces in SnC1.1/ (c.f. [9, 11, 13, 23, 29]), Tang and Yan [39] completely
solved the Yau conjecture on the minimal isoparametric case by establishing the
following

Theorem 8 ([39]). Let Mn be a closed minimal isoparametric hypersurface in the
unit sphere SnC1.1/ with g D 4 and m1;m2 � 2. Then

�1.M
n/ D n:

Remark 3. Theorem 8 depends only on the values of .m1;m2/. In particular, it
covers the unclassified case g D 4, .m1;m2/ D .7; 8/.
Remark 4. A purported conjecture of Chern states that a closed, minimally
immersed hypersurface in SnC1.1/, whose second fundamental form has constant
length, is isoparametric (c.f. [16]). If this conjecture is proven, Theorem 8 would
have settled the Yau conjecture for the minimal hypersurface whose second
fundamental form has constant length, which gives more confidence in the Yau
conjecture.

Indeed, the more fascinating part of [39] was to determine the first eigenvalues
of the focal submanifolds in SnC1.1/. To state their result clearly, let us recall some
notations. Given an isoparametric hypersurface Mn in SnC1.1/ and a smooth field
� of unit normals to M , for each x 2 M and � 2 R, we can define �� W Mn !
SnC1.1/ by

��.x/ D cos � x C sin � �.x/:
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Clearly, ��.x/ is the point at an oriented distance � toM along the normal geodesic
through x. If � ¤ �˛ for any ˛ D 1; : : : ; g, �� is a parallel hypersurface to M at an
oriented distance � , which we will denote byM� henceforward. If � D �˛ for some
˛ D 1; : : : ; g, it is easy to find that for any vector X in the principal distributions
E˛.x/ D fX 2 TxM j A�X D cot �˛Xg, where A� is the shape operator with
respect to � , .�� /�X D 0. In other words, in case cot � D cot �˛ is a principal
curvature of M , �� is not an immersion, which is actually a focal submanifold of
codimension m˛ C 1 in SnC1.1/.

Münzner asserted that there are only two distinct focal submanifolds in a parallel
family of isoparametric hypersurfaces, regardless of the number of distinct principal
curvatures of M ; and every isoparametric hypersurface is a tube of constant radius
over each focal submanifold. Denote by M1 the focal submanifold in SnC1.1/
at an oriented distance �1 along � from M with codimension m1 C 1, M2 the
focal submanifold in SnC1.1/ at an oriented distance �

g
� �1 along �� from M

with codimension m2 C 1. In virtue of Cartan’s identity, one sees that the focal
submanifolds M1 and M2 are both minimal in SnC1.1/ (c.f. [8]).

Another main result of [39] concerning the first eigenvalues of focal submani-
folds in the non-stable range, is now stated as follows.

Theorem 9 ([39]). Let M1 be the focal submanifold of an isoparametric hypersur-
face with g D 4 in SnC1.1/ with codimension m1 C 1. If dimM1 � 2

3
nC 1, then

�1.M1/ D dimM1

with multiplicity n C 2. A similar conclusion holds for M2 under an analogous
condition.

We emphasize that the assumption dimM1 � 2
3
nC 1 in Theorem 9 is essential.

For instance, Solomon [36] constructed an eigenfunction on the specific focal
submanifolds M2 of OT-FKM-type (we will explain it immediately), which has 4m
as an eigenvalue. In some case, 4m is less than the dimension of M2.

As an example, Theorem 9 implies that each focal submanifold of isoparametric
hypersurfaces with g D 4, .m1;m2/ D .7; 8/ has its dimension as the first
eigenvalue.

We need to recall the construction of the isoparametric hypersurfaces of OT-
FKM-type. For a symmetric Clifford system fP0; � � � ; Pmg on R

2l , i.e., Pi ’s are
symmetric matrices satisfyingPiPjCPjPi D 2ıij I2l , Ferus, Karcher and Münzner
[14] constructed a polynomial F on R

2l :

F W R
2l ! R

F.x/ D jxj4 � 2
mX
iD0
hPix; xi2:

For f D F jS2l�1 , defineM1 D f �1.1/,M2 D f �1.�1/, which have codimensions
mC 1 and l �m in SnC1.1/, respectively.



Recent Progress in Isoparametric Functions and Isoparametric Hypersurfaces 73

For focal submanifold M1 of OT-FKM-type, the only unsettled multiplicities in
[39] are .m1;m2/ D .1; 1/; .4; 3/; .5; 2/. And for the .4; 3/ case, there exist only
one homogeneous and one inhomogeneous examples.

Finally, Tang and Yan [39] proposed the following problem, which could be
regarded as an extension of the Yau conjecture.

Problem 3 ([39]). Let Md be a closed embedded minimal submanifold in the unit
sphere SnC1.1/. If the dimension d of Md satisfies d � 2

3
nC 1, then

�1.M
d/ D d:

Later, Tang, Xie and Yan [42] took chance to solve the unsolved cases in [39] and
considered the case with g=6. First, by applying the similiar method as in [39], they
got the following theorem for the case with g D 6 which contains more information
than that in [32] and does not depend on the classification result of Miyaoka [29].

Theorem 10 ([42]). Let M12 be a closed minimal isoparametric hypersurface in
S13.1/ with g D 6 and .m1;m2/ D .2; 2/. Then

�1.M
12/ D 12

with multiplicity 14. Furthermore, the following inequality holds

�k.M
12/ >

3

7
�k.S

13.1//; k D 1; 2; � � � :

And for focal submanifoldsM1 of OT-FKM-Type, they solved two left cases and
proved

Theorem 11 ([42]). For the focal submanifold M1 of OT-FKM-type in S5.1/ with
.m1;m2/ D .1; 1/,

�1.M1/ D dimM1 D 3

with multiplicity 6; for the focal submanifold M1 of homogeneous OT-FKM-type in
S15.1/ with .m1;m2/ D .4; 3/,

�1.M1/ D dimM1 D 10

with multiplicity 16.

At last, in the case with g D 6, by a deep investigation into the shape operator of
the focal submanifolds, they obtained estimates on the first eigenvalue. Particularly,
for one of the focal submanifolds with g D 6, m1 D m2 D 2, the first eigenvalue is
equal to its dimension. It gives an affirmative answer to Problem 3 in this case.
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4 Related Topics and Applications

The connection between geometry of Riemannian manifolds with positive scalar
curvatures and surgery theory is quite a deep subject which has attracted widely
attention. The most important aspect of this field is the original discovery of
Gromov-Lawson and of Schoen-Yau.

Motivated by the Schoen-Yau-Gromov-Lawson surgery theory on metrics of
positive scalar curvature, Tang, Xie and Yan [41] constructed a double manifold
associated with a minimal isoparametric hypersurface in the unit sphere. The
resulting double manifold carries a metric of positive scalar curvature and an
isoparametric foliation as well. To investigate the topology of the double manifolds,
they used topological K-theory and the representation of the Clifford algebra for
the OT-FKM-type, and determined completely the isotropy subgroups of singular
orbits for homogeneous case. Here we note that, as it is well known, a homogeneous
(isoparametric) hypersurface in the unit sphere can be characterized as a principal
orbit of isotropy representation of some symmetric space of rank two.

In the last part of this section, we describe an application of isoparametric
foliation to Willmore submanifolds. By definition, a Willmore submanifold (in the
unit sphere) is the critical point of the Willmore functional. In particular, every
minimal surface in the unit sphere is automatically Willmore; in other words,
Willmore surfaces are a generalization of minimal surfaces in the unit sphere.
However, examples of Willmore submanifolds in the unit sphere are rare in the
literature.

Qian, Tang and Yan [34,38] proved that each focal submanifold of isoparametric
hypersurface (not only OT-FKM-type) in the unit sphere with g D 4 is a Willmore
submanifold. For g D 1; 2; 3, the conclusion above is clearly valid. As for g D 6,
the conclusion should be also true.

Recall that the focal submanifolds are minimal in unit spheres. It is worth
noting that an Einstein manifold minimally immersed in the unit sphere is a
Willmore submanifold. A natural problem arises: whether the focal submanifolds
are Einstein? To this problem with g D 4, [38] and [34] gave a complete answer,
depending on the classification results. In other words, they dealt with this problem
in two cases–homogeneous type and OT-FKM-type.

References

1. Bérard-Bergery, L.: Quelques exemples de variétés riemanniennes où toutes les géodésiques
issues dun point sont fermées et de même longueur suivis de quelques résultats sur leur
topologie. Ann. Inst. Fourier 27, 231–249 (1977)

2. Besse, A.L.: Manifolds all of whose geodesics are closed, with appendices by D. B. A. Epstein,
J.-P. Bourguignon, L. Bérard-Bergery, M. Berger, and J. L. Kazdan. Ergeb. Math. Grenzgeb.,
vol. 93. Springer, Berlin (1978)

3. Boyer, C.P., Galicki, K., Kollár, J.: Einstein metrics on spheres. Ann. Math. 162, 557–580
(2005)



Recent Progress in Isoparametric Functions and Isoparametric Hypersurfaces 75

4. Brendle, S.: Embedded minimal tori in S3 and the Lawson conjecture. Acta Math. 11, 177–190
(2013)

5. Cartan, E.: Familles de surfaces isoparamétriques dans les espaces à courbure constante. Ann.
Mat. 17, 177–191 (1938)

6. Cartan, E.: Sur des familles remarquables d’hypersurfaces isoparamétriques dans les espaces
sphériques. Math. Z. 45, 335–367 (1939)

7. Cecil, T.E.: Isoparametric and Dupin hypersurfaces. SIGMA 4, Paper 062, 28 pp. (2008)
8. Cecil, T.E., Ryan, P.T.: Tight and Taut Immersions of Manifolds. Research Notes in Mathemat-

ics, vol. 107. Pitman, London (1985)
9. Cecil, T.E., Chi, Q.S., Jensen, G.R.: Isoparametric hypersurfaces with four principal curvatures.

Ann. Math. 166(1), 1–76 (2007)
10. Chi, Q.S.: The isoparametric story. National Taiwan University, 25 June–6 July 2012. http://

www.math.wustl.edu/~chi/SummerCourse.pdf
11. Chi, Q.S.: Isoparametric hypersurfaces with four principal curvatures, III. J. Differ. Geom. 94,

487–504 (2013)
12. Choi, H.I., Wang, A.N.: A first eigenvalue estimate for minimal hypersurfaces. J. Differ. Geom.

18, 559–562 (1983)
13. Dorfmeister, J., Neher, E.: Isoparametric hypersurfaces, case g D 6, m D 1. Commun.

Algebra 13, 2299–2368 (1985)
14. Ferus, D., Karcher, H., Münzner, H.F.: Cliffordalgebren und neue isoparametrische Hyper-

flächen. Math. Z. 177, 479–502 (1981). For an English version, see arXiv: 1112.2780
15. Freedman, M.: The topology of four dimensional manifolds. J. Differ. Geom. 17(3), 357–453

(1982)
16. Ge, J.Q., Tang, Z.Z.: Chern conjecture and isoparametric hypersurfaces. In: Shen, Y.B.,

Shen, Z.M., Yau, S.T. (eds.) Differential Geometry–under the Influence of S.S.Chern. Higher
Education Press and International Press, Beijing, Boston (2012)

17. Ge, J.Q., Tang, Z.Z.: Isoparametric functions and exotic spheres. J. Reine Angew. Math. 683,
161–180 (2013)

18. Ge, J.Q., Tang, Z.Z.: Geometry of isoparametric hypersurfaces in Riemannian manifolds. Asian
J. Math. 18, 117–126 (2014)

19. Ge, J.Q., Tang, Z.Z., Yan, W.J.: A filtration for isoparametric hypersurfaces in Riemannian
manifolds. J. Math. Soc. Jpn. (2013) (to appear)

20. Gromoll, D., Meyer, W.: An exotic sphere with nonnegative sectional curvature. Ann. Math.
100, 401–406 (1974)

21. Grove, K., Ziller, W.: Curvature and symmetry of Milnor spheres. Ann. Math. 152, 331–367
(2000)

22. Hsiang, W.C., Hsiang, W.Y.: On compact subgroups of the diffeomorphism groups of Kervaire
spheres. Ann. Math. 85, 359–369 (1967)

23. Immervoll, S.: On the classification of isoparametric hypersurfaces with four distinct principal
curvatures in spheres. Ann. Math. 168(3), 1011–1024 (2008)

24. Joachim, M., Wraith, D.J.: Exotic spheres and curvature. Bull. Am. Math. Soc. (N.S.) 45(4),
595–616 (2008)

25. Kervaire, M., Milnor, J.: Groups of homotopy spheres. I. Ann. Math. (2) 77, 504–537 (1963)
26. Kotani, M.: The first eigenvalue of homogeneous minimal hypersurfaces in a unit sphere

SnC1.1/. Tôhoku Math. J. 37, 523–532 (1985)
27. Milnor, J.: On manifolds homeomorphic to the 7-sphere. Ann. Math. (2) 64, 399–405 (1956)
28. Miyaoka, R.: Transnormal functions on a Riemannian manifold. Differ. Geom. Appl. 31,

130–139 (2013)
29. Miyaoka, R.: Isoparametric hypersurfaces with .g;m/ D .6; 2/. Ann. Math. 177, 53–110

(2013)
30. Montiel, S., Ros, A.: Minimal immersions of surfaces by the first eigenfunctions and conformal

area. Invent. Math. 83, 153–166 (1986)
31. Muto, H.: The first eigenvalue of the Laplacian of an isoparametric minimal hypersurface in a

unit sphere. Math. Z. 197, 531–549 (1988)

http://www.math.wustl.edu/~chi/SummerCourse.pdf
http://www.math.wustl.edu/~chi/SummerCourse.pdf


76 C. Qian and Z. Tang

32. Muto, H., Ohnita, Y., Urakawa, H.: Homogeneous minimal hypersurfaces in the unit sphere
and the first eigenvalue of the Laplacian. Tôhoku Math. J. 36, 253–267 (1984)

33. Münzner, H.F.: Isoparametric hyperflächen in sphären, I and II. Math. Ann. 251, 57–71 (1980)
and 256, 215–232 (1981)

34. Qian, C., Tang, Z.Z., Yan, W.J.: New examples of Willmore submanifolds in the unit sphere
via isoparametric functions, II. Ann. Glob. Anal. Geom. 43, 47–62 (2013)

35. Qian, C., Tang, Z.Z.: Isoparametric functions on exotic spheres. arXiv:1303.6028
36. Solomon, B.: Quartic isoparametric hypersurfaces and quadratic forms. Math. Ann. 293,

387–398 (1992)
37. Straume, E.: Compact connected Lie transformation groups on spheres with low cohomogene-

ity, I. Mem. Am. Math. Soc. 119(569), 1–93 (1996)
38. Tang, Z.Z., Yan, W.J.: New examples of Willmore submanifolds in the unit sphere via

isoparametric functions. Ann. Glob. Anal. Geom. 42, 403–410 (2012)
39. Tang, Z.Z., Yan, W.J.: Isoparametric foliation and Yau conjecture on the first eigenvalue.

J. Differ. Geom. 94, 521–540 (2013)
40. Tang, Z.Z., Zhang, W.P.: �-invariant and a problem of Berard-Bergery on existence of closed

geodesics. Adv. Math. 254, 41–48 (2014)
41. Tang, Z.Z., Xie, Y.Q., Yan, W.J.: Schoen-Yau-Gromov-Lawson theory and isoparametric

foliations. Commun. Anal. Geom. 20, 989–1018 (2012)
42. Tang, Z.Z., Xie, Y.Q., Yan, W.J.: Isoparametric foliation and Yau conjecture on the first

eigenvalue, II. J. Funct. Anal. 266, 6174–6199 (2014)
43. Thorbergsson, G.: A survey on isoparametric hypersurfaces and their generalizations. In:

Handbook of Differential Geometry, vol. I, pp. 963–995. North-Holland, Amsterdam (2000)
44. Wang, Q.M.: Isoparametric functions on Riemannian manifolds. I. Math. Ann. 277, 639–646

(1987)
45. Yau, S.T.: Problem section. In: Seminar on Differential Geometry. Annals of Mathematics

Studies, vol. 102. Princeton University Press, Princeton (1982)



Part II
Invited Talks



Information Geometry of Barycenter Map

Mitsuhiro Itoh and Hiroyasu Satoh

Dedicated to Professor Young Jin Suh on his sixtieth birthday

Abstract Using barycenter of the Busemann function we define a map, called the
barycenter map from a space PC of probability measures on the ideal boundary
@X to an Hadamard manifold X . We show that the space PC carries a fibre space
structure over X from a viewpoint of information geometry. Following the idea
of [7, 9] and [8] we present moreover a theorem which states that under certain
hypotheses of information geometry a homeomorphism ˚ of @X induces, via the
push-forward for probability measures, an isometry of X whose @X -extension
coincides with ˚ .

1 Introduction

The aim of this article is to present the results relating with a map, called the
barycenter map that associates a point in an Hadamard manifold .X; g/ to any �
in the space PC of probability measures on its ideal boundary @X , the boundary of
X at infinity. This map is, geometrically, equivariant with respect to the isometry
action. One of our main results (see Theorem 3, Sect. 3) asserts that this map,
denoted by bar enjoys the projection of a fibre space PC ! X , under some
adequate assumptions on X . Refer to [15], and also to [9] and [7] for the notion
of barycenter. For related topics see [5] and [3].

The barycenter is defined as follows. Let B�.x/, x 2 X , � 2 @X be the
Busemann function normalized at a point o 2 X , whose level hypersurface, a
horosphere plays an excellently important role in differential geometry, as in [17].
Using a probability measure � 2 PC we define a �-average Busemann function
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B� W X ! R. It is shown in Sect. 2 that the function B� has a unique critical point
in X which is a minimizer.

Following the idea of [7, 9] and also of [8], together by the aid of the fibre space
structure of PC we exhibit another main result as Theorem 4, Sect. 4 in which
under certain assumptions of information geometry a homeomorphism ˚ of @X is
assured to induce, via the push-forward for probability measures, an isometry of X
whose @X -extension coincides with ˚ .

We would like to state motivation to our study, before giving preliminaries and
describing our results.

MOTIVATION. Let .X; g/ be an Hadamard manifold, quasi-isometric with a
Damek-Ricci space .Xo; go/. It is commonly known that any isometry of .Xo; go/
induces a quasi-isometric map of .X; g/ and hence a homeomorphism of @X . Inves-
tigate under which hypotheses does this homeomorphism induce, via the barycenter
map, an isometry of .X; g/. For a Damek-Ricci space, refer to [2, 6] and [13].

The full detailed arguments together with supplementing results will be appeared
elsewhere (see [16]).

2 Barycenter and Barycenter Map

The barycenter of a probability measure is defined as a critical point of the
�-average function with respect to the Busemann function on an Hadamard
manifold X . From the existence and uniqueness of the barycenter we define a map,
called the barycenter map from the space of probability measures to X .

Let .X; g/ be an Hadamard manifold, i.e., a simply connected, complete
Riemannian manifold of non-positive curvature. From Cartan-Hadamard theorem
X is diffeomorphic to Rn, n D dimX .

We introduce the ideal boundary @X of X and the Busemann function which are
machinery for defining the barycenter.

Let RX be the set of all geodesic rays in X . Two rays � , �1 2 RX are
asymptotically equivalent, denoted by � �a �1, if there exists a constant C > 0

such that d.�.t/; �1.t// < C for any t � 0. The quotient space RX= �a is denoted
by @X , called the ideal boundary of .X; g/. We denote by Œ� the equivalence class
represented by a geodesic ray � . For any x 2 X and � 2 @X there exists uniquely
� 2 RX such that �.0/ D x, Œ� D � and we write symbolically �.t/ ! � as
t !1.

For an arbitrary, fixed point o 2 X , @X is identified with UoX D fv 2
ToX j jvj D 1g; v 7! Œ�v, where �v.t/ D expo tv is the geodesic ray; @X Š UoX .
Via this identification we equip @X with a topology from UoX so that the space
X [ @X , the compactification of X , carries a natural topology called the cone
topology.

To define probability measures on @X we denote by d� a measure on @X induced
from the normalized canonical measure on UoX Š Sn�1.1/ so

R
@X
d� D 1.

Let PC D PC.@X; d�/ be the space of probability measures on @X being
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absolutely continuous with respect to d� and having positive continuous density
function. So, � 2 PC.@X; d�/ is written as �.�/ D f .�/d� , f 2 C0,
f .�/ > 0 for any � 2 @X . PC.@X; d�/ is equipped with a topology by embedding
PC.@X; d�/ into L2.@X; d�/. Note the space PC.@X; d�/ is path-connected,
since any measure on a path between �;�1; .1� t /�C t�1, 0 < t < 1, belongs also
to PC.@X; d�/.

To develop geometrical argument we need to define a C1-curve in PC.@X; d�/
and then tangent vectors to PC.@X; d�/. A C1-curve is a one-parameter family
f�t D f .�; t/d� j t 2 I g, where I is an open interval (so we have a map : I !
PC.@X; d�/; t 7! �t ), whose density function f D f .�; t/ is of C0 with respect
to � 2 @X and of C1 with respect to t 2 I . A velocity vector d�

dt
.t/ D @f

@t
.�; t/d� of

the curve at t 2 I suggests a tangent vector space at � to the space PC.@X; d�/ as

T�P
C.@X; d�/ D f� D h.�/d� j h 2 C0.@X/;

Z
@X

d� D 0g: (1)

To define the barycenter map from the space PC.@X; d�/ to X we begin with
definition of the Busemann function as follows.

Definition 1. A function on X

B�.x/ D lim
t!1fd.x; �.t// � tg; x 2 X

is called the Busemann function associated to � 2 @X , normalized at a reference
point o, where �.t/ denotes the geodesic starting o and tending to � .

Example 1. For a real hyperbolic space X D RHn of constant curvature �1
modelled on a unit ball Bn D fy 2 Rn j jyj < 1g with @X Š Sn�1.1/, normalized
at the origin o

B�.x/ D log
jx � � j2
1 � jxj2 ; x 2 X; � 2 @X Š Sn�1.1/:

Note 1. The Busemann cocycle formula

B�.'x/ D B O'�1� .x/C B�.'o/; 8 .x; �/ 2 X � @X

holds with respect to an isometry ' of .X; g/ (see [12, p. 208]). Here, O' denotes the
@X -extension of ', a homeomorphism of @X , defined by O'.Œ�/ WD Œ' ı �.
Definition 2. Let � 2 PC.@X; d�/. Then y 2 X is called a barycenter of �, if y
is a critical point of the function B� W X ! R, defined by

B�.x/ D
Z
@X

B�.x/d�.�/; (2)
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i.e., if the following is satisfied at y

.dB�/y.U / D
Z
@X

.dB�/y.U / d�.�/ D 0; 8U 2 TyX: (3)

Note 2. (i) B�.�/ is normalized at o ; B�.o/ D 0, since B�.o/ D 0. (ii) B�.�/ is
Lipschitz continuous and convex. (iii) Restricted to any geodesic � , B� is of C1

from jrB�.�/j D 1. (iv) Moreover, the second order differentiability of B� along a
geodesic is assured, under a certain uniform boundedness assumption of rdB� and
in such a case one has d2

dt2
B�.�.t// D

R
@X
rdB�.� 0.t/; � 0.t// d�.�/.

Theorem 1 ([B-C-G-1]). Assume that .X; g/ satisfies the axiom of visibility and
the Busemann function B�.�/ is of C0 with respect to any � 2 @X . Then, any � 2
PC.@X; d�/ admits a barycenter.

For a proof see [7, Appendice A] in which the authors showed that B� takes a
minimal point. Here an Hadamard manifold satisfies the axiom of visibility, if any
two distinct points � , � 0 of @X can be joined by a geodesic lying in X (see [10]).

Theorem 2. Assume that for some �o 2PC.@X; d�/ the �o-average of Hessian

Q�o.�; �/ D
Z
�2@X

.rdB�/x.�; �/ d�o.�/ (4)

is strictly positive definite on TxX at any point x. Then, the uniqueness of barycenter
is guaranteed for any � 2PC.@X; d�/.

Theorem 2, a generalization of the uniqueness theorem given in [7, Appendice
A] is shown as follows. Suppose that �o D fo.�/d� admits at least two points
y; y1 2 X as it barycenters. Then, along a geodesic joining them there exists a
point between them at which the value of d2

dt2
B�o.�.t// is non-positive. However,

Q�o.�; �/ > 0 is assumed, so the uniqueness follows.
The positive definiteness of the quadratic form Q� is assured for any

� D f .�/d� and at any point x. In fact, we observe Q�.U;U / � c�
C�o

Q�o.U; U /

for any U 2 TxX , where c� D inf@X f .�/ > 0 and C�o D sup@X fo.�/ > 0.
Under those assumptions of Theorems 1 and 2, we are able to define a map

bar W PC.@X; d�/! X I � 7! y;

called the barycenter map, where a point y is a barycenter of �.

3 Fibre Space Structure of PC.@X; d�/

The barycenter map is regarded as a fibre space projection from the space
PC.@X; d�/ to X , provided .X; g/ carries a Poisson kernel of special type. The
Poisson kernel induces a cross section of this fibre space.
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Definition 3 ([20, §2, II]). A function P.x; �/ of .x; �/ 2 X�@X is called Poisson
kernel, normalized at o, if

(i) P.x; �/ is of C1 with respect to x 2 X and of C0 with respect to � 2 @X ,
and further gives the fundamental solution of the Dirichlet problem at @X ;
�u D 0 on X and uj@X D f for a given f 2 C0.@X/ so the solution u is
described as

u.x/ D
Z
�2@X

P.x; �/f .�/d� (5)

(ii) P.x; �/ > 0 for any .x; �/ and P.o; �/ D 1 for any � , and
(iii) the measure P.x; �/d� 2 PC.@X; d�/ converges to the Dirac measure ı�0 ,

when x tends to �0 of @X in the cone topology; limx!�o

R
@X
P.x; �/h.�/d� D

h.�o/ for any function h on @X .

For later use, we set �x D P.x; �/d� . To get a finer investigation of the map
bar we require .X; g/ to admit a Poisson kernel of special type, namely a Poisson
kernel represented by the Busemann function as

P.x; �/ D expf�Q B�.x/g; (6)

(Q D Q.X/ > 0 is the volume entropy of X ) called Busemann-Poisson kernel,
occasionally.

Example 2. The real hyperbolic space RHn of curvature �1 carries Busemann-
Poisson kernel as the Poisson kernel is represented by

P.x; �/ D
�
1 � jxj2
jx � � j2

�n�1

with Q D n � 1.

Note 3. Damek-Ricci spaces including the real hyperbolic space and other rank one
symmetric spaces of non-compact type carry Busemann-Poisson kernel. See for this
[13] and [7].

Proposition 1. Suppose that an Hadamard manifold .X; g/ is equipped with
Busemann-Poisson kernel. Then, .X; g/ is necessarily asymptotically harmonic (i.e.,
�B� � �Q for any � ) and satisfies the axiom of visibility. Furthermore the
Busemann function B� on X turns out to be of C1 with respect to x 2 X and of C0

with respect to � 2 @X . Therefore, every � 2PC.@X; d�/ admits a barycenter.

In fact, the assumption of Proposition 1 implies from (iii) of Definition 3,
limx!� 0 6D� B� .x/ D 1. So, from [4, Lemma 4.14, Section 4], the axiom
of visibility follows. Further one finds from the harmonicity of P.x; �/ that
�B�.x/ D �Q for any .x; �/ 2 X�@X , which means the asymptotical harmonicity
of .X; g/ (see [19]).
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In what follows, we assume that .X; g/ admits a Busemann-Poisson kernel,
unless otherwise stated.

Proposition 2. (i) bar.�x/ D x for �x D P.x; �/d� , x 2 X , that is, any point
x 2 X is the barycenter of �x D P.x; �/d� .

(ii) Any � 2PC.@X; d�/ admits a unique barycenter point.

(i) is derived directly from
R
@X
d�x D

R
P.x; �/d� D 1 for any x. (ii) is verified

from Theorem 2 by checking that for�y 2PC.@X; d�/, y 2 X , the quadratic form
Q�y .�; �/ D

R
@X
rdB�.�; �/ d�y.�/ is positive definite at any point x 2 X . Indeed,

we have

.Q�y /x.U; U / �
cy

Cx
.Q�x /x.U; U /; U 2 TxX; (7)

where cy D inf� P.y; �/ > 0 and Cx D sup� P.x; �/ > 0 and moreover

.Q�x /x.U; U / D
Z
@X

.rdB�/x.U; U /P.x; �/d� (8)

D Q
Z
@X

h.rB�/x; U i2P.x; �/d� > 0

for U 6D 0. The last equality is shown by taking a geodesic �.t/ and differentiating
twice the following equality

Z
@X

P.�.t/; �/d� D 1:

Associated to the Busemann-Poisson kernel we define a map

� W X ! PC.@X; d�/I x 7! �x D P.x; �/d�; (9)

called Poisson kernel map. From (i), Proposition 2, we see

bar ı� D idX ; (10)

so bar WPC.@X; d�/ ! X is surjective.
The differential map d�x W TxX ! T�xP

C.@X; d�/ is injective and repre-
sented by

d�x.U / D �Q .dB�/x.U / P.x; �/d� D �Q .dB�/x.U / �x; U 2 TxX: (11)

Theorem 3. The space PC.@X; d�/ enjoys a fibre space structure over an
Hadamard manifold .X; g/whose fibre over x 2 X is bar�1.x/Df� j bar.�/Dxg.
Further the map � W X !PC.@X; d�/ yields a cross section of this fibration.

This theorem is a consequence of the following arguments.
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For each path-connected subset bar�1.x/ 	 PC.@X; d�/, x 2 X the tangent
space T�bar�1.x/ to bar�1.x/ can be characterized as follows.

Lemma 1. Let � 2 T�PC.@X; d�/. Then, � belongs to T�bar�1.x/ if and only if
� satisfies

R
�2@X.dB�/x.U / d�.�/ D 0 for any U 2 TxX .

If � D �x , then we have

Proposition 3. Any tangent vector � 2 T�xbar�1.x/ at �x D P.x; �/d� fulfills

G�x . .d�/x.U /; �/ D 0; 8U 2 TxX

with respect to the Fisher information metric G on the space PC.@X; d�/.
Therefore, at �x D P.x; �/d� 2PC.@X; d�/ the tangent space T�xP

C.@X; d�/
enjoys an orthogonal direct sum decomposition as

T�xP
C.@X; d�/ D d�x.TxX/˚ T�xbar�1.x/ (12)

with respect to the metric G (see for definition of G [1, 14, 18] and [11]).

Remark 1. An orthogonal decomposition similar to (12) also holds at any � 2
PC.@X; d�/ with respect to the metric G. Refer to [16] for the detailed argument.

4 Barycentrically Associated Maps

Now we will introduce a map from X into X , barycentrically associated to a
homeomorphism ˚ W @X ! @X , via the barycenter map.

Definition 4. Let ˚ W @X ! @X be a homeomorphism of @X . Then, a map ' W
X ! X is called barycentrically associated to ˚ , when ' satisfies the relation
bar ı ˚] D ' ı bar in the diagram

PC.@X; d�/
˚]�! PC.@X; d�/ (13)

# bar # bar

X
'�! X

Here, the map ˚] W PC.@X; d�/ ! PC.@X; d�/ is the push-forward of a
homeomorphism, more generally, of a measurable map ˚ W @X ! @X , defined by

Z
�2@X

h.�/ d Œ˚]�.�/ D
Z
�2@X

.h ı ˚/.�/ d�.�/ (14)

for any function h D h.�/ on @X (see [21, p. 4]).
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Note 4 (Equivariant action). Let ' be an isometry of .X; g/ and O' the bijective map
(homeomorphism) W @X ! @X induced from '. Then ' is a map barycentrically
associated to O', due to the equivariance formula

bar. O']�/ D '.bar.�//; 8� 2PC.@X; d�/: (15)

Remark 2. In [8] the authors utilize the barycenter to assert the Mostow rigidity of
hyperbolic manifolds. In fact, let f W @X ! @X be a certain map, where X is a
compact smooth quotient of RHn, n � 3. Then, there exists a map F W X ! X ;
F.y/ D bar.f��y/, y 2 X associated to the map f and they assert that F W X !
X is an isometry by using Schwarz’s inequality lemma. Here �y is the Patterson-
Sullivan measure.

Note 5. Barycentrically associated maps obey the composition rule [16].

Theorem 4. Let ' W X ! X be a map barycentrically associated to a homeomor-
phism ˚ W @X ! @X . Assume that ' is of C1 and satisfies

� ı ' D ˚] ı�; (16)

that is, the diagram

PC.@X; d�/
˚]�! PC.@X; d�/ (17)

" � " �

X
'�! X

is commutative. Then ' is an isometry of .X; g/.

In general, the measures ˚]�.x/ and �.'.x// have necessarily the same
barycenter '.x/.

For a proof it suffices to show that the differential map d' is a linear isometry.
By the way, the diagram (17) asserts

�.'x/ D ˚].�.x//; 8x 2 X (18)

and hence

�'x D ˚].�x/; 8x 2 X (19)

which means as probability measures

P.'x; �/d� D ˚].P.x; �/d�/ D P.x;˚�1�/˚]d�: (20)

Here, we notice that for a measure � D f .�/d� its push-forward measure ˚]� has
the form ˚]� D f .˚�1�/ ˚]d� .
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Let � D �.t/ be a geodesic such that �.0/ D x and � 0.0/ D U 2 TxX .
Differentiate (18) along � at t D 0 we obtain

.d�/'x.d'xU / D ˚] ..d�/x.U // ; 8U 2 TxX; 8x 2 X; (21)

and hence

.dB�/'x.d'xU / D .dB˚�1� /x.U /; 8U 2 TxX; 8x 2 X; (22)

so that

hd'�
x .rB�/'x; U ix D h.rB˚�1� /x; U ix;

for any U in a gradient field form, where d'�
x W T'xX ! TxX is the formal adjoint

of d'x . Then, the gradient vector fields rB� and rB˚�1� must satisfy

d'�
x .rB�/'x D .rB˚�1� /x; 8x 2 X; 8� 2 @X: (23)

Now take an arbitrary unit vector V 2 T'xX . Then we have V D .rB�/'x for
some � . Then from the above equation

jd'�
x V j D jd'�

x .rB�/'x j D j.rB˚�1� /xj D 1;

where we used jrB� j D 1 for any � 2 @X . This holds for any unit vector so d'�
x

and hence d'x : TxX ! T'xX is a linear isometry. Since x is arbitrary, ' W X ! X

is an isometry of .X; g/, i.e., '�g D g.

Remark 3. (23) is an infinitesimal version of the Busemann cocycle formula of
note 1.

It is seen that ˚ is the extension to @X of the above isometry ' with respect to
the cone topology; ˚ D O' so that we obtain a homeomorphism ' [˚ W X [ @X !
X [ @X .
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Stability of Complete Minimal Lagrangian
Submanifold and L2 Harmonic 1-Forms

Reiko Miyaoka and Satoshi Ueki

Abstract We show that a non-compact complete stable minimal Lagrangian
submanifold L in a Kähler manifold with positive Ricci curvature has no non-trivial
L2 harmonic 1-forms, which gives a topological and conformal constraint on L.

1 Introduction

In this paper, all manifolds are complete and oriented. It is well-known that there
exist no compact stable minimal hypersurfaces in a Riemannian manifold with
positive Ricci curvature [14]. In general, stable minimal submanifolds hardly exist
in a positively curved manifold. On the stability of minimal Lagrangian submanifold
in a Kähler manifold, we know:

Fact 1 ([5]). A compact or compact with boundary minimal Lagrangian submani-
fold in a Kähler manifold with non-positive Ricci curvature is stable.

Fact 2 ([9]). A compact (Lagrangian-)stable minimal Lagrangian submanifold L
in a Kähler manifold with positive Ricci curvature satisfies H1.L;R/ D 0.

Fact 2 suggests that there is a constraint on the topology of compact stable min-
imal Lagrangian submanifolds (Lagragian-stable is weaker than stable). However,
both facts do not mention the complete non-compact case. The purpose of this paper
is to investigate complete non-compact stable minimal Lagrangian submanifolds in
a Kähler manifold with positive Ricci curvature. We obtain:

Theorem 1. There exist no non-trivial L2 harmonic 1-forms on a non-compact
complete stable minimal Lagrangian submanifold in a Kähler manifold M with
positive Ricci curvature.

By Dodziuk, it is shown:
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Fact 3 ([2]). When there are no non-trivial L2 harmonic 1-forms on a complete
non-compact Riemannian manifold N , any codimension one cycle of N discon-
nects N .

Using this in the surface case, we obtain:

Theorem 2. Let L be a complete stable minimal Lagrangian surface in a Kähler
manifold .M; g/ with positive Ricci curvature. Then L is conformally S2 n
fs pointsg n fl disksg, where one of the following occurs:

(1) L is conformally S2 (s D l D 0).
(2) L is conformally C (s D 1, l D 0), and there is no b > 0 such that Ric � bg.
(3) s � 3 and l D 0.
(4) s � 1 and l D 1.

Remark. We conjecture that the cases (3) and (4) do not occur.

Example 1. (1) Castro and Urbano [1] show that the diagonal S2 in Q2.C/ D
S2 � S2 is the unique stable minimal Lagrangian surface in Q2.C/.

(2) Consider a complete positive metric on C (e.g., the induced metric on the
paraboloid in R

3) and take M D C � C, so that M is a Kähler manifold with
positive Ricci curvature. Then the diagonal set 4M is a complex submanifold,
and hence volume minimizing by Wirtinger’s inequality. Changing the complex
and symplectic structure J and ! in the second term by �J and �!, we see
that 4M is a minimal Lagrangian submanifold which has the same volume as
before, and hence is stable.

(3) In M D CP 1 � C with natural metric (Ric � 0), the standard embedding of
S1 � R is a totally geodesic Lagrangian surface with two parabolic ends. This
is intuitively unstable, since S1 could be shortened.

Here we remark that a non-compact complete Riemann surface N is classified
in two ways; geometrically and function theoretically. In the former sense, if the
universal covering of N is C, we say N is parabolic, and if the universal covering
is a complex disk D, we say N is hyperbolic.

On the other hand, any dimensional non-compact complete Riemannian manifold
N is called parabolic if any non-positive subharmonic function onN is constant, and
nonparabolic (or hyperbolic) otherwise.

We call an unbounded component E of the complement of a sufficiently large
compact subset of N an “end”. Then E is called parabolic if there exists a parabolic
manifold of whose only end is E . Otherwise, E is called nonparabolic.

Theorem 1 is inspired by the following fact and is proved in [15]:

Fact 4 ([8, 10]). Let M be a Riemannian manifold with non-negative sectional
curvature and N be a complete non-compact stable minimal hypersurface in M .
Then there exist no non-trivial L2 harmonic 1-forms on N . When dimM D 3, the
curvature condition is weakened to non-negative scalar curvature.
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Using this, the first author [8] gives a partial proof to the results of
Fischer-Colbrie and Scheon [3] to the effect that a complete orientable stable
minimal surface in a Riemannian manifold M with non-negative scalar curvature
are topologically S2, T 2, C or C n f0g. Each case is realized in certain M .

The unique compact stable minimal submanifolds in CPn are complex subman-
ifolds [4]. Thus minimal Lagrangian submanifolds in CPn are never stable, and the
stability in this space should be argued in a weak sense, namely, the Hamiltonian
stability (H-stability, for short), see [9]. The standard embeddings of T n and RPn in
CPn are H-stable [9]. For more results, see [7]. Concerning this, B. Palmer shows:

Fact 5. (1) [11, Section 3] The Gauss image in Q2.C/ of a minimal surface in S3

is minimal Lagrangian, and the only H-stable one is S2 if L is compact.
(2) [12] If a non-compact complete minimal Lagrangian surface in a Kähler

manifold .M; g/ with Ric � bg, b > 0, is H-stable, then the number of
nonparabolic ends is less than two.

Then Palmer conjectures:

Conjecture ([12]). A non-compact complete minimal Lagrangian surface in a
Kähler manifold .M; g/ with Ric � bg for some b > 0 is not H-stable.

In this paper, we investigate the classical stability, and will discuss the H-stability
in a separate paper.

2 Proof of Theorem 1

Let M be a real 2n-dimensional Kähler manifold, and L be a minimal Lagrangian
submanifold ofM . We denote the Kähler form, the complex structure and the Kähler
metric onM by !, J and h ; i, respectively. We denote the connection, the curvature
tensor and the Ricci tensor of M by Nr, NR and Ric respectively. We denote those of
L without bar and the normal connection on L by r?. We adopt 4 D dı C ıd as
the definition of the Laplacian on L.

There is a natural correspondence between �1.L/ and � .T ?L/ as follows: For
˛ 2 �1.L/, there exists � 2 � .T ?L/ such that ˛.X/ D !.�;X/, X 2 TL, and
for � 2 � .T ?L/, there exists ˛� 2 �1.L/ such that ˛�.X/ D !.�;X/. Note that
k˛�k D k�k holds.

We consider a deformation f�tg of L, namely a smooth family of immersions
which satisfies �0 D �:

�t W L!M; t 2 .�"; "/:
In the following, we assume that the support of the deformation f�tg is compact and
that the variation vector field

Vt WD d

dt
�t
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is normal to L. Let AV .t/ WD Vol.�t .L//. Then L is said to be minimal if the first
variation A 0

V .0/ D .d=dt/jtD0AV .t/ vanishes for any compactly supported normal
deformation f�tg of L. A minimal submanifold L is said to be stable minimal if the
second variation A 00

V .0/ D .d2=dt2/jtD0AV .t/ is non-negative for any compactly
supported normal deformation.

Fact 6 ([9]). Let M be a Kähler manifold and L be a minimal Lagrangian
submanifold in M . Then the second variation formula of L w.r.t. a compactly
supported normal variation V is given by

A 00
V .0/ D

Z
L

fh4˛V ; ˛V i � Ric.V; V /g:

When L is compact, Fact 1 and 2 immediately follows from this second variation
formula and the Hodge theory.

When L is non-compact, we need the following fact on L2 harmonic 1-forms.

Fact 7 ([13]). Let ˛ be an L2 form on a Riemannian manifold L. Then ˛ is
harmonic, i.e.,4˛ D 0, if and only if d˛ D 0 and ı˛ D 0.

Moreover, in order to obtain a variation vector field with compact support, we
need a cut-off function. For any r > 0, we choose a function f D fr W L ! Œ0; 1

with the following properties:

(1) f is continuous on L and smooth almost everywhere on L,
(2) f D 1 on Br=2 , f D 0 outside Br ,

(3) kdf k2 � c

r2
,

where Br is a geodesic ball with radius r in L centered at a fixed point p 2 L,
and c is a constant independent of r . Such function is easily obtained by using the
distance function.

Proof of Theorem 1. Let ˛ be an L2 harmonic 1-form on L, namely a smooth
harmonic 1-form with

Z
L

k˛k2 <1:

We show that ˛ must be trivial. We use � such that ˛ D !.�; /, the cut-off
function f , and a variation vector field V D f � with compact support. Putting
˛V D !.V; / D !.f �; / D f ˛, we obtain from Fact 6

A 00
V .0/ D

Z
L

fh4˛V ; ˛V i � Ric.V; V /g
D
Z
L

fh.dı C ıd/.f ˛/; f ˛i � Ric.V; V /g
D
Z
L

fkd.f ˛/k2 C .ı.f ˛//2 � Ric.V; V /g
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since f has a compact support. For the first term, we have

kd.f ˛/k2 D kdf ^ ˛k2 D kdf k2k˛k2 � hdf; ˛i2

since d˛ D 0 holds by Fact 7. On the other hand, we have

.ı.f ˛// D � 
 d 
 .f ˛/
D � 
 .df ^ 
˛/ � f 
 d 
 ˛
D �hdf; ˛i

since ı˛ D 0 holds by Fact 7. Combining these, we obtain

A 00
V .0/ D

Z
L

fkd.f ˛/k2 C .ı.f ˛//2 � Ric.V; V /g
D
Z
L

fkdf k2k�k2 � f 2Ric.�; �/g:

By the properties of the cut-off function f and the stability of L, we have

0 � A 00
V .0/ �

c

r2

Z
L

k�k2 �
Z
Br=2

Ric.�; �/:

Letting r !1, we obtain

0 � �
Z
L

Ric.�; �/

since � is L2. Thus � D 0, namely, ˛ D 0 follows. ut

3 Surface case

Proof of Theorem 2. When L is a surface, L cannot have positive genus by
Theorem 1 and Fact 3. Hence L is conformally S2 n fs pointsg n fl disksg. By
Example (1) and (2),L Š S2 and C can be stable minimal Lagrangian in certainM .

(2) When L Š C, we have a harmonic 1-form ˛ D dx, where z D x C iy is a
complex coordinate of C. Applying the cut-off function f as before to � such that
˛ D !.�; /, and using that the Dirichlet integral is a conformal invariant, we obtain

0 � A 00
V .0/ �

c

r2

Z
BrnBr=2

k�k2 �
Z
Br=2

Ric.�; �/ D c

r2
3�r2

4
�
Z
Br=2

Ric.�; �/:

If Ric � bg, b > 0, the last term tends to �b
Z
L

k�k2, which diverges since there

are no L2 harmonic 1-form on L Š C. Thus Ric cannot be uniformly positive.
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(3) When the universal covering of L is C, L is either C or C n f0g. We show the
latter is not stable. In fact, consider the holomorphic function

'.z/ D 1

z
D Nz
jzj2

on L. Then

˛ D x

x2 C y2 dx C
y

x2 C y2 dx

is a harmonic 1-form on L. Since the L2 norm depends only on the conformal
structure, we obtain

k˛k22 D lim
r!1

Z r

1=r

Z 2�

0

k˛k2rdrd� D 4� lim
r!1 log r:

The metric on L can be written as ds2 D �.p/jd zj2 where z is the complex
parameter. Let f be the cut-off function as before w.r.t. the geodesic ball BR around
a point other than the origin, where we use the flat metric. Hence R D r � a
for some constant a. Since the Dirichlet integral depends only on the conformal
structure, putting V D f � , ˛ D !.�; / as before, we obtain

A 00
V .0/ �

4�c

R2
log r �

Z
BR=2

Ric.�; �/:

The first term on the right hand side tends to 0 as R ! 1, and the second term
tends to

R
L

Ric.�; �/. Therefore, L Š C n f0g cannot be stable.
(4) When the universal covering of L is the disk, either L Š S2 n fs pointsg

where s � 3, or L has at least one nonparabolic end (l � 1). Since D has many L2

harmonic 1-forms, L Š D does not occur. Thus L has more than one ends.
When L has at least two nonparabolic ends (l � 2), Li-Tam prove that there

exists a non-constant bounded harmonic function h with finite Dirichlet integral
[6, Theorem 2.1]. Thus ˛ D dh is an L2 harmonic 1-form on L, and L cannot be
stable by Theorem 1. ut
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Bonnesen-Style Symmetric Mixed Isoperimetric
Inequality
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Abstract For convex domains Ki .i D 0; 1/ (compact convex sets with non-
empty interiors) in the Euclidean plane R2. Denote by Ai and Pi areas and
circum-perimeters, respectively. The symmetric mixed isoperimetric deficit is
�.K0;K1/ WD P 2

0 P
2
1 � 16�2A0A1. In this paper, we give some Bonnesen-style

symmetric mixed inequalities, that is, inequalities of the form�.K0;K1/ � BK0;K1 ,
where BK0;K1 is a non-negative invariant of geometric significance and vanishes if
and only if both K0 and K1 are discs. We also obtain some reverse Bonnesen-style
symmetric mixed inequalities. Those inequalities are natural generalizations of
known geometric inequalities, such as the known classical isoperimetric inequality.
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1 Introductions and Preliminaries

Let Rn denote the Euclidean space. A set of points K in Rn is said to be convex if
for all x; y 2 K and scalar �.0 � � � 1/, �xC .1��/y 2 K. The convex hullK�
of K is the intersection of all convex sets that contain K. The Minkowski sum of
convex sets K and L is defined by

K C L D fx C y W x 2 K; y 2 Lg;
and for � � 0 the scalar product (dilation) of convex set K is defined by

�K D f�x W x 2 Kg:
A homothety (translation and a dilation) hK.x; �/ of a convex set K is of the form

hK.x; �/ D x C �KI x 2 Rn; � > 0: (1)

A convex domain is a compact convex set with nonempty interiors.
In integral geometry, one may be interested in the strong containment problem:

Given convex domains K0 and K1, is there a translation x so that x C ˛K1 	 K0

or x C ˛K1 � K0 for any rotation ˛. That is, for two domains K0 and K1, is there
a homothety hK1.x; ˛/ such that hK1.x; ˛/ 	 K0 or hK1.x; ˛/ � K0. It should
be noted that this containment problem is much stronger than the traditional
Hadwiger’s one [14, 15, 25]. Therefore the strong containment measure could lead
to more general and fundamental geometric inequalities (cf. [14, 15, 25–41]).

The known isoperimetric problem says that the ball encloses the maximum
volume among all convex domains of fixed surface area in Rn. Especially, Let �
be a simple closed curve of length P that encloses a domain K of area A in the
Euclidean plane R2. Then

P 2 � 4�A � 0; (2)

where the equality holds if and only if � is a circle.
Analytic proofs of (2) root back to centuries ago. For simplified and beautiful

proofs that lead to generalizations of the discrete case, higher dimensions, the
surface of constant curvature and applications to other branches of mathematics,
see [1, 3, 7–14, 16–34, 37–39] for references.

The isoperimetric deficit �.K/ D P 2 � 4�A measures the deficit of the domain
K of area A and perimeter P , and a disc of radius P=2� . During the 1920s,
Bonnesen initiated a series of inequalities of the form

�.K/ D P 2 � 4�A � BK; (3)

where the quantity BK is a non-negative invariant of geometric significance and
vanishes only when K is a disc.
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Many BKs are found during the past. The main interest is still focusing on those
unknown invariants of geometric significance. See references [2, 4–7, 19, 20, 23,
25] for more details. The following known Bonnesen’s isoperimetric inequality is
typical.

Proposition 1. LetK be a domain of area A and bounded by a simple closed curve
of perimeter P in R2. Let r and R be, respectively, the maximum inscribed radius
and minimum circumscribed radius of K. Then

P 2 � 4�A � �2.R � r/2; (4)

where the equality holds if and only if K is a disc.

In this paper, we investigate a stronger containment problem: For two domains
K0 andK1, is there a homothety hK1.x; ˛/ such that hK1.x; ˛/ 	 K0 or hK1.x; ˛/ �
K0? Then we investigate the mixed isoperimetric deficit �.K0;K1/ WD P 2

0 P
2
1 �

16�2A0A1 of domains K0 and K1.
Since the convex hull K� of a set K in R2 decreases the circum perimeter and

increases the area, we have

�.K0;K1/ D P 2
0 P

2
1 � 16�2A0A1 � P �

0
2
P �
1
2 � 16�2A�

0A
�
1 D �.K�

0 ;K
�
1 /:

Therefore we can only consider the convex domains when we estimate the low
bound of the symmetric mixed isoperimetric deficit.

By the kinematic formulas of Poincaré and Blaschke in integral geometry,
we obtain a sufficient condition for convex domain K1 to contain, or to be
contained in, another convex domain K0. Via the sufficient condition we are able to
obtain the symmetric mixed isoperimetric inequality and some Bonnesen style
mixed inequalities. One immediate consequence of our results is the strengthening
Bonnesen isoperimetric inequality. These new Bonnesen style symmetric mixed
inequalities obtained are fundamental and generalize many known Bonnesen style
inequalities. The idea and methods could be applied to the higher dimensional case
and the surface of constant curvature.

2 The Containment Measure

LetKi .i D 0; 1/ be simple connected domains of areas Ai with circum perimeters
Pi in R2. Let dg denote the kinematic density of the groupG2 of rigid motions, that
is, translations and rotations, in R2. Let K1 be convex and tK1 .t 2 .0;C1// be
a dilation of K1, then we have the following known kinematic formula of Poincaré
(cf. [23, 25])

Z
fg2G2W@K0\t@.gK1/¤;g

nf@K0 \ t@.gK1/gdg D 4tP0P1; (5)
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where nf@K0 \ t@.gK1/g denotes the number of points of intersection @K0 \
t@.gK1/.

Let �.K0 \ t .gK1// be the Euler-Poincaré characteristics of the intersection
K0 \ t .gK1/. Then we have the Blaschke’s kinematic formula (cf. [23, 25]):

Z
fg2G2WK0\t.gK1/¤;g

�.K0 \ t .gK1//dg D 2�.t2A1 C A0/C tP0P1: (6)

Since domainsKi .i D 0; 1/ are assumed to be connected and simply connected
and bounded by simple curves, we have �.K0 \ t .gK1// D n.g/ D the number of
connected components of the intersectionK0\ t .gK1/. The fundamental kinematic
formula of Blaschke (6) can be rewritten as

Z
fg2G2WK0\t.gK1/¤;g

n.g/dg D 2�.t2A1 C A0/C tP0P1: (7)

Denote by � the set of all positions of K1 in which either t .gK1/ 	 K0 or
t .gK1/ � K0, then the above formula of Blaschke can be rewritten as

Z
�

dg C
Z

fg2G2W@K0\t@.gK1/¤;g
n.g/dg D 2�.t2A1 C A0/C tP0P1: (8)

When @K0 \ t@.gK1/ ¤ ;, each component of K0 \ t .gK1/ is bounded by at least
an arc of @K0 and an arc of t@.gK1/. Therefore n.g/ � nf@K0\ t@.gK1/g=2. Then
by the formula of Poincaré (5) and the formula of Blaschke (8), we obtain

Z
�

dg � 2�.t2A1 C A0/ � tP0P1: (9)

Therefore this inequality immediately lead to a solution of the containment problem
(cf. [14, 15, 23, 25, 36, 38, 40–46]):

Containment problem: LetKi .i D 0; 1/ be two domains of areasAi with simple
boundaries of perimeters Pi in R2. Let K1 be convex. A sufficient condition for
tK1 to contain, or to be contained in, another domain K0 for a translation and any
rotation, is

2�A1t
2 � P0P1t C 2�A0 > 0: (10)

3 The Symmetric Mixed Isoperimetric Inequality

Let r01 D maxft W t .gK1/ � K0; g 2 G2g, the maximum inscribed radius of K0

with respect to K1, and R01 D minft W t .gK1/  K0; g 2 G2g, the minimum
circum scribed radius of K0 with respect to K1. Note that r01, R01 are, respectively,
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the maximum inscribed radius, the minimum circum radius of K0 when K1 is the
unit disc. It is obvious that r01 � R01. Therefore for t 2 Œr01; R01 neither tK1

contains K0 nor is contained in K0. Then the inequality (10) leads to:

Theorem 1. Let Ki .i D 0; 1/ be two convex domains with areas Ai and circum
perimeters Pi . Then

2�A1t
2 � P0P1t C 2�A0 � 0I r01 � t � R01: (11)

Theorem 2. Let Ki .i D 0; 1/ be two convex domains in the Euclidean plane R2

with areas Ak and perimeters Pk . Then

P 2
0 P

2
1 � 16�2A0A1 � 4�2A21.R01 � r01/2 C Œ2�A1.R01 C r01/� P0P12; (12)

where the equality holds if and only if r01 D R01, that is, K0 and K1 are discs.

Proof. Two special cases of (11) are

2�A1r
2
01 � P0P1r01 C 2�A0 � 0I 2�A1R

2
01 � P0P1R01 C 2�A0 � 0; (13)

that is,

�8�2A0A1 � 8�2A21r201 � 4�A1r01P0P1I �8�2A0A1 � 8�2A21R201 � 4�A1R01P0P1:

Then

P 2
0 P

2
1 � 16�2A0A1 � P 2

0 P
2
1 C 8�2A21r

2
01 C 8�2A21R

2
01 � 4�A1r01P0P1 � 4�A1R01P0P1

D 4�2A21.R01 � r01/
2 C .2�A1r01 C 2�A1R01 � P0P1/

2: ut

If K1 is a disc, then we immediately have the following strengthening Bonnesen
isoperimetric inequality:

Corollary 1. LetK be a domain of areaA and bounded by a simple closed curve of
length P inR2. Let r andR be, respectively, the inscribed radius and circumscribed
radius of K, then

P 2 � 4�A � �2.R � r/2 C Œ�.RC r/ � P 2; (14)

where the equality holds if and only if K is a disc.

Another immediate consequence is the following Kotlyar’s inequality
(cf. [16, 25]):

Corollary 2 (Kotlyar). Let Ki .i D 0; 1/ be two domains in R2 with areas Ai
and perimeters Pi , then

P 2
0 P

2
1 � 16�2A0A1 � 4�2A21.R01 � r01/2; (15)

where the equality holds if and only if both K0 and K1 are discs.
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One immediate outcome of is the following symmetric mixed isoperimetric
inequality:

P 2
0 P

2
1 � 16�2A0A1 � 0;

where the equality holds if and only if K0 and K1 are discs.
We now consider the following Bonnesen style symmetric mixed inequality:

P 2
0 P

2
1 � 16�2A0A1 � BK0;K1 ; (16)

where BK0;K1 is an invariant of significance (of K0 and K1) and hopefully vanishes
when both K0 and K1 are discs.

The inequality (11) can be rewritten as the following several inequalities:

P 2
0 P

2
1 � 16�2A0A1 � .P0P1 � 4�A1t/2I

P 2
0 P

2
1 � 16�2A0A1 �

�
P0P1 � 4�A0

t

�2 I
P 2
0 P

2
1 � 16�2A0A1 � 4�2

�
A0
t
� A1t

�2
:

r01 � t � R01; (17)

The following Bonnesen style symmetric mixed inequalities can be proved by
similar ways as above.

Theorem 3. Let Ki .i D 0; 1/ be two convex domains in the Euclidean plane R2

with areas Ai and perimeters Pi . Then for r01 � t � R01, we have

P 2
0 P

2
1 � 16�2A0A1 � 4�2A21.R01 � t /2 C Œ2�A1.t CR01/ � P0P12I

P 2
0 P

2
1 � 16�2A0A1 � 4�2A21.t � r01/2 C Œ2�A1.r01 C t / � P0P12I

P 2
0 P

2
1 � 16�2A0A1 � .P0P1 � 4�A1r01/2I

P 2
0 P

2
1 � 16�2A0A1 �

�
4�A0
r01
� P0P1

�2 I
P 2
0 P

2
1 � 16�2A0A1 � 4�2

�
A0
r01
� A1r01

�2 I
P 2
0 P

2
1 � 16�2A0A1 � .P0P1 � 4�A1t/2I

P 2
0 P

2
1 � 16�2A0A1 �

�
P0P1 � 4�A0

t

�2 I
P 2
0 P

2
1 � 16�2A0A1 � 4�2

�
A0
t
� A1t

�2 I
P 2
0 P

2
1 � 16�2A0A1 � .4�A1R01 � P0P1/2I

P 2
0 P

2
1 � 16�2A0A1 �

�
P0P1 � 4�A0

R01

�2 I
P 2
0 P

2
1 � 16�2A0A1 � 4�2

�
A1R01 � A0

R01

�2
:

(18)

Each inequality holds as an equality if and only if both K0 and K1 are discs.
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Let K1 be a unit disc. Then immediate consequences of Bonnesen-style
symmetric mixed inequalities (18) are following known Bonnesen-style inequalities
(cf. [7, 12, 19, 20, 23, 25, 40, 44]):

Corollary 3. Let K be a plane domain of area A and bounded by a simple closed
curve of length P . Let r and R be, respectively, the in-radius and out-radius of K.
Then for any disc of radius t , r � t � R, we have the following Bonnesen-type
inequalities:

P 2 � 4�A � .P � 2�t/2I
P 2 � 4�A � �2.t � r/2 C Œ�.t C r/ � P 2I
P 2 � 4�A � �2.R � t /2 C Œ�.RC t / � P 2I

P 2 � 4�A � �P � 2A
t

�2 I P 2 � 4�A � �A
t
� �t�2 I

P 2 � 4�A � A2 � 1
r
� 1

R

�2 I P 2 � 4�A � P 2
�
R�r
RCr

�2 I
P 2 � 4�A � A2 � 1

r
� 1

t

�2 I P 2 � 4�A � P 2
�
t�r
tCr
�2 I

P 2 � 4�A � A2 � 1
t
� 1

R

�2 I P 2 � 4�A � P 2
�
R�t
RCt

�2
:

(19)

Each equality holds if and only if K is a disc.

4 Reverse Bonnesen Style Symmetric Mixed Inequalities

On the other hand, we may be interested in the so called reverse Bonnesen style
symmetric mixed inequalities, that is, inequalities of the form:

P 2
0 P

2
1 � 16�2A0A1 � UK0;K1 ; (20)

and hopefully the inequality holds as an equality if and only if both K0 and K1 are
discs.

This question has interested many mathematicians for a while and we were
not aware of any such reverse Bonnesen style symmetric mixed inequality until
works in [36] and [33]. To obtain the upper limit UK0;K1 of the symmetric mixed
isoperimetric deficit �2.K0;K1/ of two convex domains K0 and K1, we need the
following lemma [44]:

Lemma 1. LetKi .i D 0; 1/ be convex domains of areas Ai and perimeters Pi . Let
R1 and r1 be, respectively, the radius of the minimum circumscribed disc and radius
of the maximum inscribed disc ofK1. Let r01 D maxft W t .gK1/ � K0; g 2 G2g, the
maximum inscribed radius of K0 with respect to K1, and R01 D minft W t .gK1/ 
K0; g 2 G2g, the minimum circumscribed radius ofK0 with respect toK1. Then we
have

r01r
2
1 �

4A0A1

P0P1
�
r
A0A1

�2
� P0P1

4�2
� R01R21: (21)
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The first equality sign holds when bothK0 andK1 are two discs, each other equality
sign holds if and only if both K0 and K1 are two discs.

Proof. By the symmetric mixed isoperimetric inequality

P 2
0 P

2
1 � 16�2A0A1 � 0;

we have

4A0A1

P0P1
�
r
A0A1

�2
� P0P1

4�2
;

and hence

4A0A1

P0P1
D 2A0

P0

2A1

P1
D 1

r01

2r201A0

r01P0

2A1

P1
� r01r21 ;

and

P0P1

4�2
D P0

2�

P1

2�
D 1

R01

R01P0

2�

P1

2�
� R01R21:

ut
Via inequalities

r01r
2
1 �

4A0A1

P0P1
� P0P1

4�2
� R01R21;

we obtain

P 2
0 P

2
1 � 16�2A1A1 � 4�2P0P1.r01R21 � r01r21 /:

Then we obtain the following reverse Bonnesen-style symmetric mixed inequality:

Theorem 4. Let Ki .i D 0; 1/ be convex domains of areas Ai and perimeters Pi .
Let R1 and r1 be, respectively, the radius of the minimum circumscribed disc and
radius of the maximum inscribed disc of K1. Let r01 D maxft W t .gK1/ � K0; g 2
G2g, the maximum inscribed radius of K0 with respect to K1, and R01 D minft W
t .gK1/  K0; g 2 G2g, the minimum circumscribed radius of K0 with respect to
K1. Then

P 2
0 P

2
1 � 16�2A0A1 � 4�2P0P1.R01R21 � r01r21 /; (22)

with equality if and only if K0 and K1 are discs.
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On the other hand, by inequalities

r01r
2
1 �

4A0A1

P0P1
�
r
A0A1

�2
� R01R21;

we obtain

P 2
o P

2
1 � 16�2A0A1 �

�2P 2
0 P

2
1

A0A1
.R201R

4
1 � r201r41 /: (23)

The following inequalities

r01r
2
1 �

r
A0A1

�2
� P0P1

4�2
� R01R21;

lead to

P 2
0 P

2
1 � 16�2A0A1 � 16�4.R201R41 � r201r41 /: (24)

Then we obtain the following reverse Bonnesen-style symmetric mixed
inequalities:

Theorem 5. Let Ki .i D 0; 1/ be convex domains of areas Ai and perimeters
Pi . Let R1 and r1 be, respectively, the radius of the minimum circumscribed disc
and radius of the maximum inscribed disc of K1. Let r01 and R01 be, respectively,
the maximum inscribed radius and the minimum circumscribed radius of K0 with
respect to K1. Then

P 2
0 P

2
1 � 16�2A0A1 �

�2P 2
0 P

2
1

A0A1
.R201R

4
1 � r201r41 /I (25)

P 2
0 P

2
1 � 16�2A0A1 � 16�4.R201R41 � r201r41 /: (26)

Each inequality holds as an equality if and only if K0 and K1 are discs.
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Cho Operators on Real Hypersurfaces
in Complex Projective Space

Juan de Dios Pérez and Young Jin Suh

Abstract Let M be a real hypersurface in complex projective space. On M we
have the Levi-Civita connection and for any nonzero constant k the corresponding
generalized Tanaka-Webster connection. For such a k and any vector fieldX tangent
to M we can define from both connections the kth Cho operator F .k/

X . We study
commutativity properties of these operators with the shape operator and the structure
Jacobi operator on M obtaining some characterizations of either Type .A/ real
hypersurfaces or ruled real hypersurfaces.

1 Introduction

Let CPm, m � 2, be a complex projective space endowed with the metric g of
constant holomorphic sectional curvature 4. LetM be a connected real hypersurface
of CPm without boundary. Let r be the Levi-Civita connection on M and J the
complex structure of CPm. Take a locally defined unit normal vector field N on M
and denote by � D �JN . This is a tangent vector field to M called the structure
vector field on M (or the Reeb vector field or the Hopf vector field). On M there
exists an almost contact metric structure .�; �; �; g/ induced by the Kaehlerian
structure of CPm given in the following way: For any vector field X tangent to
M we write JX D �X C �.X/N , where �X denotes the tangential component of
JX . Then we have

�2X D �X C �.X/�; �.�/ D 1; g.�X; �Y / D g.X; Y / � �.X/�.Y / (1)

for any tangent vectors X; Y to M . From (1) we obtain

�� D 0; �.X/ D g.X; �/: (2)
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From the parallelism of J we get

.rX�/Y D �.Y /AX � g.AX; Y /� (3)

and

rX� D �AX (4)

for any X; Y tangent to M , where A denotes the shape operator with respect to �
of the immersion. As the ambient space has holomorphic sectional curvature 4, the
equations of Gauss and Codazzi are given, respectively, by

R.X; Y /Z D g.Y;Z/X � g.X;Z/Y C g.�Y;Z/�X � g.�X;Z/�Y
�2g.�X; Y /�Z C g.AY;Z/AX � g.AX;Z/AY; (5)

and

.rXA/Y � .rY A/X D �.X/�Y � �.Y /�X � 2g.�X; Y /� (6)

for any tangent vectors X; Y;Z to M , where R is the curvature tensor of M . We
will call the maximal holomorphic distribution D onM to the following one: at any
p 2M , D.p/ D fX 2 TpM jg.X; �/ D 0g.

If X 2 D, we will call DX D fZ 2 TM j�.Z/ D g.X;Z/ D g.�X;Z/ D 0g.
We will say that M is Hopf if � is principal, that is, A� D ˛� for a certain

function ˛ on M . On a Hopf real hypersurface we have the following result due to
Y. Maeda, [8],

Theorem 1.1. If � is a principal curvature vector with corresponding principal
curvature ˛ andX 2 D is principal with principal curvature �, then �X is principal
with principal curvature ˛�C2

2��˛ .

The classification of homogeneous real hypersurfaces in CPm was obtained by
Takagi, see [4, 12–14]. His classification contains six types of real hypersurfaces.
Among them we find type .A1/ real hypersurfaces that are geodesic hyperspheres
of radius r , 0 < r < �

2
and type .A2/ real hypersurfaces that are tubes of radius r ,

0 < r < �
2

, over totally geodesic complex projective spaces CPn, 0 < n < m � 1.
We will call both types of real hypersurfaces type .A/ real hypersurfaces. These
ones are the hypersurfaces with richest geometry. A characterization of type .A/
real hypersurfaces is the following one due to Okumura, [9].

Theorem 1.2. Let M be a real hypersurface of CPm, m � 2. Then the following
are equivalent:

1. M is locally congruent to either a geodesic hypersphere or a tube of radius r ,
0 < r < �

2
over a totally geodesic CPn, 0 < n < m � 1.

2. �A D A�.
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Ruled real hypersurfaces in CPm can be described as follows: Take a regular
curve � in CPm with tangent vector field X . At each point of � there is a unique
CPm�1 cutting � so as to be orthogonal not only to X but also to JX . The union
of these hyperplanes is called a ruled real hypersurface. It will be an embedded
hypersurface locally, although globally it will in general have self-intersections
and singularities. Equivalently, a ruled real hypersurface satisfies that the maximal
holomorphic distribution on M , D, is integrable, or g.AD;D/ D 0. For examples
of ruled real hypersurfaces see [5] or [7].

The Jacobi operator RX with respect to a unit vector field X is defined by RX D
R.:; X/X . RX is a self-adjoint endomorphism of the tangent space. It is related to
Jacobi vector fields which are solutions of the second order differential equation
called the Jacobi equation r P� .r P�Y /CR.Y; P�/ P� D 0 along a geodesic � inM . The
Jacobi operator with respect to the structure vector field � ,R� , is called the structure
Jacobi operator on M . By (5) it is given by

R�.X/ D X � �.X/� C �.A�/AX � g.AX; �/A� (7)

for any X tangent to M .
The Tanaka-Webster connection, [15, 17], is the canonical affine connection

defined on a non-degenerate, pseudo-Hermitian CR-manifold. As a generalization
of this connection, Tanno, [16], defined the generalized Tanaka-Webster connection
for contact metric manifolds by

OrXY D rXY C .rX�/.Y /� � �.Y /rX� � �.X/�Y: (8)

Let k be a nonzero real number. Using the naturally extended affine connection
of Tanno’s generalized Tanaka-Webster connection, Cho defined the kth g-Tanaka-
Webster connection Or.k/ for a real hypersurface M in CPm, see [2, 3], by

Or.k/X Y D rXY C g.�AX; Y /� � �.Y /�AX � k�.X/�Y (9)

for any X,Y tangent to M . Then Or.k/� D 0, Or.k/� D 0, Or.k/g D 0, Or.k/� D 0. In
particular, if the shape operator of a real hypersurface satisfies �ACA� D 2k�, the
kth g-Tanaka-Webster connection coincides with the Tanaka-Webster connection.

Now we can consider the tensor field of type (1,2) given by the difference of
both connections F .k/.X; Y / D g.�AX; Y /� � �.Y /�AX � k�.X/�Y , for any
X; Y tangent to M , see [6, Proposition 7.10, pp. 234–235]. We will call this tensor
the kth Cho tensor on M . Associated to it, for any X tangent to M and any nonnull
real number k we can consider the tensor field of type (1,1) F .k/

X , given by F .k/
X Y D

F .k/.X; Y / for any Y 2 TM . This operator will be called the kth Cho operator
corresponding to X . The torsion of the connection Or.k/ is given by OT .k/.X; Y / D
F
.k/
X Y � F .k/

Y X for any X; Y tangent to M .

Notice that if X 2 D, F .k/
X does not depend on k. In this case we will write

simply FX for F .k/
X .
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Consider any tensor T of type (1,1) on M . We can study when the covariant and
the kth g-Tanaka-Webster derivatives of T coincide, that is, rT D Or.k/T . This is
equivalent to the fact that, for any X tangent to M , TF .k/

X D F
.k/
X T . The meaning

of this condition is that every eigenspace of T is preserved by the kth Cho operator
F
.k/
X , for any X tangent to M .

On the other hand, as TM D Spanf�g ˚D we can weak the above condition to
the cases X D � or X 2 D.

In [11] we have studied such commutativity conditions in the case T D A and
in [10] in the case T D R� . In this paper we will present a survey of the results
obtained in both papers.

2 Case of Shape Operator

Suppose that FXA D AFX for any X 2 D. Then we have

g.�AX;AY /� � �.AY /�AX D g.�AX; Y /A� � �.Y /A�AX (10)

for any Y 2 TM . Suppose first that M is non Hopf. Therefore we can write locally
A� D ˛� C ˇU , where U is a unit vector field in D, ˛ and ˇ are functions on M
and ˇ ¤ 0.

Taking Y D � , respectively Y D U or X 2 DU in (10) we have A�U D 0,
AU D ˇ� , AX D 0 for any X 2 DU . This yields M is locally congruent to a ruled
real hypersurface.

If nowM is Hopf, A� D ˛� , letX 2 D such that AX D �X . From (10) we have
two possibilities

1. � D 0. From Codazzi equation for such an X , Y D � and �X , Y D � we get

1 D g.r�X;A�X/ D �1 (11)

which gives a contradiction.
2. � ¤ 0. Then A�X D ˛�X . In this case Theorem 1.1 and (10) yield M should

be totally umbilical. As this is impossible Hopf real hypersurfaces do not satisfy
our condition.

Moreover it is easy to see that ruled real hypersurfaces satisfy (10) and we have

Theorem 2.1. Let M be a real hypersurface in CPm, m � 3. Then FXA D AFX
for any X 2 D if and only if M is locally congruent to a ruled real hypersurface.

Let us now suppose that F .k/

� A D AF .k/

� and M is non Hopf. Then we get

˛ˇg.�U; Y /� C ˇ2g.�U; Y /U � ˇ�.Y /A�U � kA�Y
D ˇg.A�U; Y /� � ˇ�.AY /�U � k�AY (12)
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for any Y 2 TM . Taking Y D � in (12) we obtain

A�U D .˛ C k/�U (13)

and taking Y D U in (12) we obtain

AU D ˇ� C .˛ C k � ˇ
2

k
/U: (14)

Thus DU is holomorphic and A-invariant. If Y 2 DU satisfies AY D �Y ,
A�Y D ��Y . That is, any eigenspace in DU is holomorphic. Moreover by Codazzi
equation

k.�2 � ˛� � 1/.� � ˛ � k/ D .��2 C .˛ C k/�C 1/ˇ2: (15)

From (15) we can see

grad.˛/ D 3kˇ

k2 C ˇ2 �U (16)

and

grad.ˇ/ D ��U (17)

where � D 3˛ˇ2

k
C k.˛ C k � ˇ2

k
/ C 1 � 3ˇ2. k2Cˇ2C1

k2Cˇ2 /. From the fact that
g.rXgrad.ˇ/; Y / D g.rY grad.ˇ/;X/ for any X; Y 2 TM we obtain

ˇ4 C .3k2 C k˛/ˇ2 C k3˛ C 3k2 C 2k4 D 0: (18)

Taking the derivative of (18) in the direction of �U and bearing in mind (17)
we obtain that ˇ is a solution of an equation with constant coefficients. Thus ˇ is
constant and also ˛ is constant. This and (16) give a contradiction.

Thus we have proved thatM must be Hopf. Then our condition applied toX 2 D

yields �A D A� on D because k ¤ 0. Thus by Theorem 1.2 M must be locally
congruent to a type .A/ real hypersurface. The converse is trivial and we have

Theorem 2.2. LetM be a real hypersurface in CPm,m � 3. Then F .k/

� A D AF .k/

�

for a nonnull constant k if and only if M is locally congruent to a type .A/ real
hypersurface.

From these two theorems we have

Theorem 2.3. There do not exist real hypersurfaces M in CPm, m � 3, such that
for a nonnull constant k F .k/

X A D AF .k/
X for any X 2 TM .
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3 Case of Structure Jacobi Operator

Suppose that FXR� D R�FX for any X 2 D. Then we get

g.Y; �AX/� C �.A�/g.�AX;AY /� � �.AY /g.�AX;A�/�
C�.Y /�AX C �.Y /�.A�/A�AX � �.Y /�.A�AX/A� D 0 (19)

for any X 2 D, Y 2 TM . Let us suppose that M is non Hopf. Thus locally we can
write A� D ˛� C ˇU , as above

By different choices of Y in (19) we obtain

• g.AU; �U / D 0.
• �AU D .1 � ˇ2/A�U .

From these facts we can write A�U D ı�U C !Z1, where Z1 2 DU is a unit
vector field. Then from (19) taking Y D �Z1 we obtain

˛ˇ!.ˇ2 � 1/ D 0: (20)

In the case ˛ D 0 it follows that M must be a minimal ruled real hypersurface.
In the case ˇ2 D 1 we obtain ! D 0. Thus we study the case ! D 0 with two

subcases:

SUBCASE 1. ˇ2 D 1 and AU D ˇ� .
SUBCASE 2. ˇ2 ¤ 1 and AU D ˇ� C �U , where � D .1 � ˇ2/ı.

In both subcases DU is A-invariant and holomorphic and either any eigenvalue
in DU is 0 or there exists a nonnull eigenvalue � in DU . In this case ˛ ¤ 0 and
� D � 1

˛
. Then the eigenspace T� is holomorphic. If for any Y 2 DU AY D 0 we

obtain a ruled real hypersurface.
If A� D ˛� C ˇU , AU D ˇ� C �U , A�U D ı�U and there exists Z 2 DU

such that AZ D � 1
˛
Z, A�Z D � 1

˛
�Z we arrive to a contradiction.

Now if M is Hopf and suppose ˛ D 0, (19) yields M is totally geodesic which
is impossible. If ˛ ¤ 0 the unique principal curvatures in D are either 0 or � 1

˛
and

the corresponding eigenspaces are holomorphic. This is impossible by Theorem 1.1
and we have

Theorem 3.1. LetM be a real hypersurface in CPm,m � 3. Then FXR� D R�FX
for any X 2 D if and only if M is locally congruent to a ruled real hypersurface.

Suppose now that for some k ¤ 0 R�F
.k/

� D F
.k/

� R� . Then for any Y 2 TM
we get

g.Y; �A�/� C g.A�; �/g.�A�;AY /� C �.Y /�A� C �.Y /�.A�/A�A�
��.Y /�.A�A�/A� � k�R�.Y /C kR�.�Y / D 0: (21)
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Let us suppose that M is non Hopf. From (21) we have

• ˛ ¤ 0
• A�U D � 1

˛
�U

• AU D ˇ� C ˇ2�1
˛
U .

Therefore DU is A-invariant and its eigenspaces are �-invariant. Let � be an
eigenvalue in DU . From (21) and the Codazzi equation we obtain

.˛�C 1/.�2 � ˛� � 1/ D ˇ2.�2 � 1/: (22)

Applying several times Codazzi equation and (22) we arrive to

grad.˛/ D 3ˇ
�
1 � ˛2
˛

�
�U (23)

and

grad.ˇ/ D
�
�3ˇ2 C ˇ2 � 1

˛2

�
�U: (24)

From these facts and that g.rY grad.�/; Y / D g.rY grad.�/; X/ for any X; Y
tangent to M and any function � on M we obtain ˛2 D 1, ˇ2 D �3, which yields
that M must be Hopf.

If M is Hopf, from (19) we get �R� D R��. If Y 2 D satisfies AY D �Y ,
˛��Y D ˛A�Y . Then either ˛ D 0 and M is locally congruent to a tube of radius
�
4

around a complex submanifold of CPm (Cecil and Ryan, [1]) or A� D �A and
M is locally congruent to a type .A/ real hypersurface. Thus

Theorem 3.2. Let M be a real hypersurface in CPm, m � 3. Let k be a nonnull
constant. Then F .k/

� R� D R�F
.k/

� if and only if M is locally congruent to either
a tube of radius �

4
over a complex submanifold of CPm or to a type (A) real

hypersurface with radius r ¤ �
4

.

As a direct consequence of these Theorems we have

Theorem 3.3. There do not exist real hypersurfaces M in CPm, m � 3, such that
for a nonnull constant k F .k/

X R� D R�F .k/
X for any X tangent to M.

�
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Geometry of Lagrangian Submanifolds Related
to Isoparametric Hypersurfaces

Yoshihiro Ohnita

Abstract In this article we shall provide a survey of our recent works and their
environs on differential geometry of Lagrangian submanifolds in specific Kähler
manifolds such as complex projective spaces, complex space forms, Hermitian
symmetric spaces and so on. We shall emphasis on the relationship between certain
minimal Lagrangian submanifold in complex hyperquadrics and isoparametric
hypersurfaces in spheres. We shall discuss their properties and related problems
of the Gauss images of isoparametric hypersurfaces. This article is mainly based on
my joint work with Hui Ma (Tsinghua University, Beijing).

1 Introduction

Theory of Submanifolds in Riemannian manifolds is a higher dimensional general-
ization of curves and surfaces in Euclidean space. It is one of the most fundamental
subjects in Differential Geometry. Our main research interests in submanifold
theory are

1. Deformations and Moduli Spaces for Submanifolds
2. Geometric Variational Problems for Submanifolds
3. Lie Group Theoretic Methods in Finite and Infinite Dimensions

In this article we shall give attention to Lagrangian submanifolds in Kähler man-
ifolds and discuss Lagrangian submanifolds and the geometric variational problem
for the volume under Hamiltonian deformations of Lagrangian submanifolds in
Kähler manifolds. Moreover, we shall concentrate on the Lie-theoretic construction
and the properties of nice Lagrangian submanifolds in specific Kähler manifolds
such as complex Euclidean spaces, complex projective spaces, compact Hermitian
symmetric spaces and complex hyperquadrics [24–28].
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Hypersurfaces with constant principal curvatures in the standard sphere
have abundant structures and applications, and they are called isoparametric
hypersurfaces. Isoparametric hypersurface theory is outstanding in submanifold
geometry. A nice class of compact minimal Lagrangian submanifolds embedded
in complex hyperquadrics is provided by isoparametric hypersurfaces in the unit
standard sphere vis the Gauss map construction. The purpose of this article is to
explain our recent results on the study of such Lagrangian submanifolds of complex
hyperquadrics.

This article is mainly based on my joint work with Hui Ma (Tsinghua University,
Beijing).

2 Lagrangian Submanifolds of Symplectic and Kähler
Manifolds

Let .M2n; !/ be a 2n-dimensional symplectic manifold with a symplectic form
!. A smooth immersion ' W L ! M of a smooth manifold L into M is
called a Lagrangian immersion if ' satisfies the two conditions '�! D 0

and dimL D n. If ' is a Lagrangian immersion, then the vector bundle map
˛ W '�1TM='�TL 3 v 7�! ˛v 2 T �L becomes a bundle isomorphism, because of
the non-degeneracy of '.

Let ' W L ! M be a Lagrangian immersion. By definition a Lagrangian
deformation f'tg of ' is a one-parameter smooth family of Lagrangian immersions
't W L �! .M2n; !/ with '0 D '. The variational vector field of f'tg is defined

as Vt WD @'t

@t
2 C1.'�1

t TM/ and let ˛t D !.Vt ; '�.�// be the 1-form on L

corresponding to Vt . It is easy to show that f'tg is a Lagrangian deformation if and
only if ˛t is closed for each t . More strongly, if ˛t is exact for each t , then such a
Lagrangian deformation f'tg of ' is called an Hamiltonian deformation of '.

Assume that .M;!; g; J / is a Kähler manifold. Let ' W L!M be a Lagrangian
immersion. Let B W TL � TL ! T ?L denote the second fundamental form of
'. Then the tensor field S of degree 3 on L corresponding to B is defined by
S.X; Y;Z/ WD !.B.X; Y /;Z/ .8X; Y;Z 2 TL/. It follows from the Kähler
identity that S is a symmetric 3-tensor field on L. The mean curvature vector field
H of ' is a normal vector field to L defined by H WD tr'�g.B/. We call the 1-form
˛H corresponding to H the mean curvature form of '. Note that the usual minimal
submanifold is by definition a submanifold vanishing the mean curvature vector
field H D 0. Then the mean curvature form of ' satisfies the following identity
(Dazard): d˛H D '��M , where �M denoted the Ricci form of the Kähler manifold
.M;!; g; J /.

For simplicity we assume that L is compact without boundary. A Lagrangian
immersion ' W L ! M is called Hamiltonian minimal (shortly, H-minimal) if for
any Hamiltonian deformation f'tg of ' the first variation of the volume vanishes

d

dt
Vol.L; '�

t g/jtD0 D 0: (1)
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Its Euler–Lagrangian equation is the Hamiltonian minimal Lagrangian equation
given by ı˛H D 0, where ı denotes the co-differential operator of d relative to '�g.
Note that it is weaker than the minimality (˛H D 0) for Lagrangian submanifolds
in Kähler manifolds.

A Hamiltonian minimal Lagrangian immersion ' W L ! M is called Hamilto-
nian stable if for any Hamiltonian deformation f'tg of ' the second variation of the
volume is nonnegative

d2

dt2
Vol.L; '�

t g/jtD0 � 0: (2)

The Hamiltonian version of the second variational formula is given as follows [22]:

d2

dt2
Vol.L; '�

t g/jtD0

D
Z
L

�h41L˛; ˛i � hR.˛/; ˛i � 2h˛ ˝ ˛ ˝ ˛H ; Si C h˛H ; ˛i2� dv

(3)

where ˛ WD ˛Vt 2 B1.L/, hR.˛/; ˛i WD Pn
i;jD1 RicM.ei ; ej /˛.ei /˛.ej / for an

orthonormal basis feig of TpL.
We shall notice about the null space of the second variations on Hamiltonian

deformations. Let X be a holomorphic Killing vector field of M . Then ˛X D
!.X; �/ is closed. If M is simply connected, more generally H1.M;R/ D f0g, then
˛X D !.X; �/ is exact and thus X is a Hamiltonian vector field on M . Hence each
holomorphic Killing vector field of M generates a Hamiltonian deformation of '
preserving the metric and thus the volume. We call such a Hamiltonian deformation
of ' trivial. Obviously a trivial Hamiltonian deformation of ' gives an element of
the null space of the second variations.

Assume that ' is an H-minimal Lagrangian immersion. Then ' is called strictly
Hamiltonian stable if

(1) ' is Hamiltonian stable.
(2) The null space of the second variation on Hamiltonian deformations of '

coincides with the vector subspace induced by trivial Hamiltonian deformations
of ', that is, n.'/ D nhk.'/. Here n.'/ WD dimŒ the null space  and nhk.'/ WD
dimf'�˛X j X a holomorphic Killing vector field of M g.

Note that a strictly Hamiltonian stable Hamiltonian minimal Lagrangian
submanifold has local minimum volume under any Hamiltonian deformation. There
are nice results on deformation, bifurcation and existence of Hamiltonian minimal
Lagrangian submanifolds by Joyce–Y. I. Lee–Schoen [14], Bettiol–Piccione–
Siciliano (equivariant case) [7] related to this condition.

Problem 1. What Lagrangian submanifolds are Hamiltonian minimal? What
Hamiltonian minimal Lagrangian submanifolds are Hamiltonian stable? Moreover,
examine their Hamiltonian rigidity or strict Hamiltonian stability.
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Assume thatM is an Einstein–Kähler manifold of Einstein constant 	. Let L ,!
M be a compact minimal Lagrangian submanifold immersed in M . Then it follows
from the second fundamental form that L is Hamiltonian stable if and only if �1 �
	, where �1 denotes the first (positive) eigenvalue of the Laplacian of L acting on
C1.L/ (B. Y. Chen–T. Nagano–P. F. Leung, Y. G. Oh [21]).

Assume that M is compact homogeneous Einstein–Kähler manifold with 	 > 0.
Let L ,!M be a compact minimal Lagrangian submanifold immersed inM . Then
we know that �1 � 	 (A. Ros, N. Ejiri, F. Urbano, Hajime Ono, Amarzaya–Ohnita
cf. [3]). Therefore we can say that �1 attains the upper bound 	 if and only if L is
Hamiltonian stable.

Let Aut.M;!; J; g/ be the automorphism group of the Kähler manifold
.M;!; J; g/. Assume that K 	 Aut.M;!; J; g/ be an analytic Lie subgroup.
A Lagrangian submanifold L D K � x 	M obtained as a Lagrangian orbit of K is
called a homogeneous Lagrangian submanifold of M . We easily observe that

Proposition 1 (cf. [16]). Any compact homogeneous Lagrangian submanifolds of
a Kähler manifold is always Hamiltonian minimal.

Here we shall describe all known examples of compact Hamiltonian stable H-
minimal or minimal Lagrangian submanifolds embedded in C

nC1 and CPn.

Example 1. (1) Circles S1.r/ in C (S ¤ 0; ˛H 6D 0;rS D 0).
(2) Q2;nC1.R/ D .S1 � Sn/=Z2 	 C

nC1, U.p/=O.p/ 	 C
p.pC1/=2, U.p/ 	 C

p2 ,
U.2p/=Sp.p/ 	 C

p.2p�1/, T 1 �E6=F4 	 C
27 (S ¤ 0; ˛H 6D 0;rS D 0).

(3) Their Riemannian products QL D L1 � � � � � Lk (S ¤ 0; ˛H 6D 0;rS D 0).

They all are strictly Hamiltonian stable (Amarzaya–Ohnita [2–4]). Notice that they
all have parallel second fundamental form rS D 0 and are symmetric R-spaces of
U.r/ given by orbits of the isotropy representations of Hermitian symmetric spaces.

Nice examples of Lagrangian submanifolds in CPn can be obtained from
Example 1 via the Hopf fibration. � W CnC1 � S2nC1 �! CPn.

Example 2. (1) Real projective subspaces RPn D �.Q2;nC1.R// 	 CPn

(S D 0).
(2) SU.p/=SO.p/�Zp 	 CP .p�1/.pC2/=2, SU.p/=Zp 	 CPp2�1, SU.2p/=Sp.p/�

Z2p 	 CP .p�1/.2pC1/, E6=F4 � Z3 	 CP 26 [3]. .S ¤ 0;rS D 0; ˛H D 0/;
(3) L D �. QL/, where QL is one of examples in Example 1 except for QL D

Q2;nC1.R/ (S ¤ 0;rS D 0; generically ˛H 6D 0) [2, 4].
(4) �3.SU.2//Œz30 C z31 	 CP 3.rS ¤ 0; ˛H D 0/ (L. Bedulli–A. Gori [5],

independently Ohnita [23]).
(5) .SU.3/ � SU.3//=T 2 � Z4 	 CP 5 rS ¤ 0; ˛H D 0 (Petrecca–Podestá [32]).

They all are also strictly Hamiltonian stable. Notice that Bedulli–Gori [6] classified
all compact homogeous Lagrangian submanifolds of CPn obtained by (necessarily,
minimal) Lagrangian orbits of simple compact Lie subgroups of SU.nC1/, by using
the prehomogeneous vector space theory due to Mikio Sato and Tatsuo Kimura.
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It is known that any compact Hamiltonian stable minimal Lagrangian
submanifold L immersed in CPn must satisfy �1.L/ 6D f1g, more strongly
H1.LIZ/ 6D f1g (cf. [3]). Urbano [34] showed that any Hamiltonian stable minimal
Lagrangian torus L immersed in CP 2 must be the Clliford minimal torus.

At present the author does not know whether there is an example of compact
minimal Lagrangian submanifold embedded in CPn which is not Hamiltonian
stable. However, the case of compact Hermitian symmetric spaces of rank � 2 are
quite different from the complex projective space case.

In general, a real form of a Kähler manifold M is by definition a connected
component of the fixed point subset of an involutive anti-holomorphic isometry of
M , which is a totally geodesic Lagrangian submanifold of M . Masaru Takeuchi
classified all real forns of Hermitian symmetric spaces of compact type and
he showed that any totally geodesic Lagrangian submanifold of an Hermitian
symmetric space M of compact type is a real form of M (see [33]). Let M be
a compact irreducible Hermitian symmetric space of rank � 2 and let L be a
real form of M . The Hamiltonian stability of L is given as follows (see also
[15, p. 755]):

Theorem 1 ([3,33]). .L;M/ D .QpC1;qC1.R/ D .Sp � Sq/=Z2; QpCq.C// .q �
p � 3/; .U.2p/=Sp.p/; SO.4p/=U.p// .p � 3/ or .T �E6=F4;E7=T �E6/ if and
only if L is NOT Hamiltonian stable.

3 Isoparametric Hypersurface Geometry and Lagrangian
Submanifolds of Complex Hyperquadrics

The complex hyperquadric Qn.C/ is a compact embedded smooth complex hyper-
surface of the .n C 1/-dimensional complex projective space CPnC1 defined
by the homogeneous quadratic equation z20 C z21 C � � � C z2nC1 D 0, where
fz0; z1; � � � ; znC1g denotes the homogeneous coordinate system of CPnC1. The
complex hyperquadric Qn.C/ is canonically isometric to the real Grassmann
manifold fGrnC1.RnC2/ consisting of all oriented 2-dimensional vector subspaces
of RnC2. The fGrnC1.RnC2/ has the natural embedding fGrnC1.RnC2/ 	 V2

R
nC2

by ŒW  7! a ^ b, where fa;bgis an orthonormal basis of ŒW  2 fGrnC1.RnC2/
compatible with its orientation. The correspondence between fGrnC1.RnC2/ and
Qn.C/ is given by

fGrnC1.RnC2/ 3 ŒW  D a ^ b ! ŒaCp�1b 2 Qn.C/; (4)

Then one also has a symmetric space expression

Qn.C/ ŠeGr2.RnC2/ Š SO.nC 2/=SO.2/ � SO.n/; (5)

which is a compact Hermitian symmetric space of rank 2.
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The Gauss map construction of Lagrangian submanifolds inQn.C/ is as follows:
Let Nn ,! SnC1.1/ 	 R

nC2 be an oriented hypersurface in the unit standard
sphere. Let x denote the position vector of points ofNn and n denote the unit normal
vector field of Nn in SnC1.1/. The Gauss map of Nn defined by

G W Nn 3 p 7�! Œx.p/Cp�1n.p/ D x.p/ ^ n.p/ 2 Qn.C/ DeGr2.RnC2/

is a Lagrangian immersion of Nn into Qn.C/.
Palmer showed the following formula for the mean curvature form ˛H of the

Gauss map G in terms of principal curvatures 	1; � � � ; 	n of Nn [31]:

Lemma 1.

˛H D d
 

Im

 
log

nY
iD1
.1Cp�1	i /

!!
D �d

 
nX
iD1

arccot	i

!
:

From this formula we note that if N2 is a minimal surface of S3.1/, then there are
excellent results of Castro and Urbano [8] on the classification of compact orientable
or non-orientable Hamiltonian stable minimal Lagrangian surfaces of low genus
immersed in S2 � S2 D Q2.C/.

Suppose that Nn is an oriented hypersurface with constant principal curvatures
in SnC1.1/, so-called isoparametric hypersurface. Then by Lemma 1 we have

Proposition 2. The Gauss map G W Nn ! Qn.C/ is a minimal Lagrangian
immersion.

The fundamental theory of isoparametric hypersurfaces in the standard sphere
was established by E. Cartan and Münzner [19]. LetNn be a hypersurface immersed
in the unit standard hypersphere SnC1.1/ 	 RnC2 with g distinct constant principal
curvatures k1 > k2 > � � � > kg . and corresponding multiplicities m1;m2; � � � ; mg .
Then m˛ D m˛C2 indices modulo g [19]. We may assume that m1 � m2. There is
a homogeneous polynomial function F W RnC2 ! R of degree g, so-called Cartan–
Münzner polynomial, which satisfies the system of partial differential equations

�F D c rg�2; kgradF k2 D g2r2g�2;

where c WD g2 .m2 � m1/=2 and r D kxk .x 2 R
nC2/, such that Nn extends

to a compact embedded level hypersurface SnC1.1/ \ F �1.s/ .9 s 2 .�1; 1//.
Then each level hypersurface is also a hypersurfaces with constant principal
curvatures, which is called an isoparametric hypersurface. The family of such level
hypersurfaces is called the isoparametric family. The Münzner’s famous result [19]
is that g must be 1; 2; 3; 4 or 6 and if g D 6, then m1 D m2. Moreover, Abresch [1]
showed that if g D 6, then m1 D m2 D 1 or 2.

• Construction of isoparametric hypersurfaces:

– Principal orbits of the isotropy representations of Riemannian symmetric
pairs .U;K/ of rank 2 provide all homogeneous isoparametric hypersurfaces
(Hsiang–Lawson, R. Takagi–T. Takahashi)
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– Algebraic construction of Cartan–Münzner polynomials by representations
of Clifford algebras in case g D 4 (Ozeki–Takeuchi [30], Ferus–Karcher–
Münzner [12]) provide so many non-homogeneous isoparametric hypersur-
faces (OT-FKM type).

• Classification of isoparametric hypersurfaces:

– g D 1 W Nn D Sn, a great or small sphere;
– g D 2 W Nn D Sm1 � Sm2 , .n D m1 C m2; 1 � m1 � m2/, Clifford

hypersurfaces;
– g D 3: Nn is homogeous, Nn D SO.3/

Z2CZ2
, SU.3/

T 2
, Sp.3/

Sp.1/3
, F4
Spin.8/

(E. Cartan);
– g D 6: Nn is homogeneous.

� m1 D m2 D 1: homogeneous (Dorfmeister–Neher, R. Miyaoka).
� m1 D m2 D 2: homogeneous (R. Miyaoka [20]).

– g D 4: Nn is either homogeneous or OT-FKM type except for .m1;m2/ D
.7; 8/ (Cecil–Chi–Jensen [9], Immervoll [13], Chi [10, 11]).

The Gauss image G .N n/ of an isoparametric hypersurface has the following
properties. It follows from [15, 17, 26] that

Proposition 3. (1) The Gauss image G .N n/ is a compact smooth minimal
Lagrangian submanifold embedded in Qn.C/.

(2) The Gauss map G gives a covering map G W Nn ! G .N n/ over the Gauss
image with the deck transformation group Zg. Note that the Zg-action does not
preserve the induced metric on Nn from SnC1.1/ if g � 3.

(3) G .N n/ is invariant under the deck transformation group Z2 of the universal
covering Qn.C/ D fGr2.RnC2/! Gr2.R

nC2/.
(4)

2n

g
is even (resp. odd) if and only if G .N n/ is orientable (resp. non-orientable).

(5) G .N n/ is a monotone and cyclic Lagrangian submanifold in Qn.C/ with

minimal Maslov number equal to
2n

g
.

4 Hamiltonian Stability of the Gauss Images
of Isoparametric Hypersurfaces and Further Problems

In the author’s joint work with Hui Ma on the Gauss images of isoparametric
hypersurfaces, we have done

(1) Classification of all compact homogeneous Lagrangian submanifolds in com-
plex hyperquadrics [15].

(2) Determination of the Hamiltonian stability, the Hamiltonian rigidity and the
strict Hamiltonian stability for the Guass images of all homogeneous isopara-
metric hypersurfaces.
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Let Nn ,! SnC1.1/ be a compact isoparametric hypersurface embedded in
SnC1.1/. First Palmer showed the Hamiltonian stability result for the Gauss map
G W N ! Qn.C/:

Theorem 2 ([31]). Its Gauss map G W N ! Qn.C/ is Hamiltonian stable if and
only if Nn D Sn 	 SnC1 .g D 1/.
Problem 2. Determine the Hamiltonian stability of the Gauss images Ln D
G .N n/ 	 Qn.C/.

Note that g D 1 or 2 if and only if L is a real form Qm1C1;m2C1.R/ of Qn.C/.
In these cases we calculate directly their properties or we may use results of
Theorem 1:

If g D 1, then L is strictly Hamiltonian stable.
If g D 2, then it holds

(a) L is not Hamiltonian stable if and only if m2 �m1 � 3.
(b) L is strictly Hamiltonian stable if and only if m2 �m1 < 2.
(c) L is Hamiltonian stable but not strictly Hamiltonian stable if and only if m2 �

m1 D 2.

Theorem 3 ([15]). If g D 3, then L is strictly Hamiltonian stable.

Theorem 4 ([18]). Assume that g D 6, that is, L D SO.4/=.Z2 C Z2/ � Z6 .m1 D
m2 D 1/ orL D G2=T 2 �Z6 .m1 D m2 D 2/. ThenL is strictly Hamiltonian stable.

Theorem 5 ([17]). Suppose that g D 4 and Nn is homogeneous. Then

(1) L D SO.5/=T 2 � Z4 .m1 D m2 D 2/ is strictly Hamiltonian stable.
(2) L D U.5/=.SU.2/ � SU.2/ � U.1// � Z4 .m1 D 4;m2 D 5/ is strictly

Hamiltonian stable.
(3) Assume that L D .SO.2/ � SO.m//=.Z2 � SO.m � 2// � Z4 .m1 D 1;m2 D

m � 2;m � 3/. Then

(a) m2 �m1 � 3 if and only if L is NOT Hamiltonian stable.
(b) m2 � m1 D 2 if and only if L is Hamiltonian stable but not strictly

Hamiltonian stable.
(c) m2 �m1 D 1 or 0 if and only if L is strictly Hamiltonian stable.

(4) Suppose that L D S.U.2/ � U.m//=S.U.1/ � U.1/ � U.m � 2/// � Z4 .m1 D
2;m2 D 2m � 3;m � 2/. Then

(a) m2 �m1 � 3 if and only if L is NOT Hamiltonian stable.
(b) m2 �m1 D 1 or � 1 if and only if L is strictly Hamiltonian stable.

(5) Assume that LD.Sp.2/�Sp.m//=.Sp.1/�Sp.1/�Sp.m�2/// �Z4 .m1D4;
m2D4m�5;m � 2/. Then

(a) m2 �m1 � 3 if and only if L is NOT Hamiltonian stable.
(b) m2 �m1 D �1 if and only if L is strictly Hamiltonian stable.
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Theorem 6 ([18]). Suppose that g D 4 and L D U.1/ �Spin.10/=.S1 �Spin.6// �
Z4 .m1 D 6;m2 D 9; thus m2 �m1 D 3/. Then L is strictly Hamiltonian stable!

Combining all these results, we conclude

Theorem 7 ([15,17,18]). Suppose that .U;K/ is not of type EIII, that is, .U;K/ 6D
.E6; U.1/ � Spin.10//. Then the Gauss image L D G .N / is NOT Hamiltonian
stable if and only if m2 � m1 � 3. Moreover if .U;K/ is of type EIII, that is,
.U;K/ D .E6; U.1/ � Spin.10//, then .m1;m2/ D .6; 9/ but the Gauss image
L D G .N / is strictly Hamiltonian stable.

Problem 3. Study the Hamiltonian stability and related other properties of the
Gauss images of non-homogeneous isoparametric hypersurfaces (necessarily, g D 4
and of OT-FKM type).

Problem 4. LetN0 andN1 be two compact isoparametric hypersurfaces embedded
in the unit standard sphere SnC1.1/. Let L0 D G0.N0/ 	 Qn.C/ and L1 D
G1.N1/ 	 Qn.C/ be their Gauss images. Then it is an interesting problem to study
the intersection theory of the Gauss images L0 and L1 as Lagrangian submanifolds
of Qn.C/ [29]. This is the author’s joint work with Hui Ma and Reiko Miyaoka
which is in progress now.
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Isometric Deformations of Surfaces
with Singularities

Masaaki Umehara

Abstract This is a survey article on isometric deformations of surfaces with
singularities. At the end of this paper, the author introduces a new problem on
isometric deformations of cross cap singularities.

1 Introduction

Let .M2; ds2/ be a Riemannian 2-manifold, and f W M2 ! R3 an isometric
immersion. For each point p 2 M2, two principal curvatures �1; �2 are defined,
and their product

K WD �1�2
is called the Gaussian curvature of the surface f . An invariant I of surfaces is
called extrinsic if there exists a neighborhoodU 2.	M2/ of p and a smooth map g W
U 2 ! R3 such that I.g/ ¤ I.f / holds at p and the induced metric of g coincides
with that of f . On the other hand, an invariant of surfaces is called intrinsic if one
can show the following;

(i) setting up a class of local coordinate systems determined by the induced metrics
(i.e. the first fundamental forms),

(ii) to give a formula of the invariant in terms of the coefficients of first fundamental
form with respect to the above coordinate systems.

By definition, intrinsic invariants are not extrinsic. Intrinsic invariants are usually
thought of as ones written in terms of only first fundamental forms. The relationships
between our definition and this philosophy will be discussed in the paper [2].

We know that the Gaussian curvature K is a typical intrinsic invariant, since it
coincides with the sectional curvature of the first fundamental form ds2. On the
other hand, to prove that a given invariant is extrinsic, it is sufficient to show the
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existence of an isometric deformation of a surface which changes the values of the
invariant.

For example, let �.s/ be a regular curve with arc length parameter on the unit
sphere S2 WD f� 2 R3 I j�j D 1g, and set

f .u; v/ WD �.u/C v�.u/;

�.u/ WD
Z u

0

�
a.u/�.u/C b.u/� 0.u/C c.u/.�.u/ � � 0.u//

�
du;

where ‘�’ denotes the vector product of R3, and a.u/; b.u/; c.u/ are arbitrarily given
smooth functions of u. Then

ds2 D �a2 C .b C v/2 C c2� du2 C 2adudvC dv2

is the first fundamental form of f . It is a crucial point that ds2 does not depend on
the choice of the initial spherical curve �.s/. This construction of f was applied
to show that several invariants of cuspidal edges and cross caps are extrinsic, in [3]
and [7]. Moreover, the following assertions were proved in [3].

(i) If b.0/2 C c.0/2 > 0, then .0; 0/ is a regular point of f .
(ii) If two functions a; b vanish identically, c.0/ D 0 and c0.0/ ¤ 0, then .0; 0/

corresponds to a cross cap (cf. Fig. 1, right).
(iii) If a.0/ > 0 and b; c vanish identically, then .0; 0/ corresponds to a cuspidal

edge singularity (cf. Fig. 1, left).

For example, if we set a.u/ D c.u/ D 0; b.u/ D 1, then by (i),

f .u; v/ WD �.u/C v�.u/; �.u/ WD
Z u

0

� 0.u/du

gives a regular surface which has the first fundamental form

ds2 D .1C v2/du2 C dv2:

Fig. 1 A cuspidal edge and
a cross cap
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The unit normal vector field of f is given by N.u/ WD � 0.u/ � �.u/, and the second
fundamental form of f is given by

h WD 	g.u/du2;

where 	g.u/ is the geodesic curvature of the spherical curve �.u/. The principal
curvatures of f at .u; 0/ are �1 D 0 and �2 D 	g.u/. Since we can deform the curve
� so that 	g moves, we get an isometric deformation of f which moves one of its
principal curvatures. Thus we can conclude that principal curvatures are extrinsic
invariants. In this paper, we will introduce several invariants on cuspidal edges
and cross caps, and discuss the existence of isometric deformations of these two
singularities.

2 Isometric Deformations of Regular Surfaces

In the introduction, we gave an example of an isometric deformation of ruled
surfaces. However, to show that a given invariant is extrinsic, it is better to prepare
more general tool for constructing isometric deformations, which is the following
classical result:

Theorem 1 (Janet-Cartan). Let .Mn; ds2/ be a real analytic n-manifold. For
each p 2 Mn, there exist a neighborhood Un of p 2 Mn and a real analytic
isometric embedding f W Un ! Rn.nC1/=2.

This is a local result. It is well-known that any Riemannian manifold can
be isometrically embedded in a sufficiently high dimensional Euclidean space.
However, we are interested in local properties of surfaces with singularities, and
so the Janet-Cartan theorem rather fits our purposes. We now give an outline of the
proof of it when n D 2 (in this case n.n C 1/=2 D 3) as follows1: We apply the
following classical result:

Fact 1 (Cauchy-Kovalevskaya theorem). Let

xiv.u; v/ D 'i .u; v; x1; : : : ; xk; x1u ; : : : ; xku / .i D 1; : : : ; k/ (1)

be a PDE having xi WD xi .u; v/ .i D 1; : : : ; k/ as unknown functions, where ' WD
.'1; : : : ; 'k/ is a real analytic map and

xiu WD
@xi

@u
; xiv WD

@xi

@v
.i D 1; : : : ; k/:

1The precise proof of this theorem is written in [11].
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This equation has a unique real analytic solution x D .x1; : : : ; xk/ satisfying the
following initial conditions

xi .u; 0/ D wi .u/ .i D 1; : : : ; k/;

where wi .i D 1; : : : ; k/ are given real analytic functions.

(An outline of the proof of the Janet-Cartan theorem for n D 2.)
We fix a point p onM2, and let �.t/ be a geodesic emanating from p D �.0/. Using
the exponential mapping Expq at q 2M2, we define a real analytic map

.u; v/ 7! Exp�.u/.vn.u//;

where n.t/ is the unit normal vector field along the geodesic �.t/ onM2. Then .u; v/
gives a local coordinate system with the origin p. Regarding f D .f 1; f 2; f 3/ as
the unknown R3-valued function, we consider the equation

fu � fu D E; fu � fv D F; fv � fv D G; (2)

where ‘�’ denotes the canonical inner product of R3 and

ds2 D Edu2 C 2FdudvCGdv2:

The PDE (2) is not a normal form (1) as in Fact 1. Differentiating (2) we get the
following three identities

fvv � fv D Gv=2; (3)

fvv � fu D Fv �Gu=2; (4)

fvv � fuu D Fuv �Evv=2 �Guu=2C fuv � fuv: (5)

Take a real analytic regular space curve � .u/ with arc length parameter u having
non-vanishing curvature. We would like to find a solution with the initial condition
f .u; 0/ D � .u/: Since the two vectors

fu.u; 0/ D � 0.u/; fuu.u; 0/ D � 00.u/

are linearly independent, (3)–(5) yield the following identity

fvv D T.fv; fu; fuu/
�1
0
@ Gv=2

Fv �Gu=2

Fuv �Evv=2 �Guu=2C fuv � fuv

1
A :

Since � .u/ D f .u; 0/ is a geodesic, f must satisfy the initial condition

fv.u; 0/ D � 0.u/ � � 00.u/:
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Consequently, we get the following PDE having f .u; v/; r.u; v/; q.u; v/ as unknown
R3-valued functions:

fv D q; (6)

rv D qu; (7)

qv D T.q; r; ru/
�1
0
@ Gv=2

Fv �Gu=2

Fuv �Evv=2 �Guu=2C qu � qu

1
A (8)

with the initial conditions

f .u; 0/ WD � .u/; r.u; 0/ WD � 0.u/; q.u; 0/ WD � 0.u/ � � 00.u/;

where T.q; r; ru/
�1 is the transposed inverse matrix of the 3 � 3-matrix .q; r; ru/. If

the solutions f; q; r exist, r must coincide with fu and (7) corresponds to the identity
fuv D fvu. Since

.q.u; 0/; r.u; 0/; ru.u; 0// D .� 0.u/; � 00.u/; � 0.u/ � � 00.u//

is a regular matrix, we can apply the Cauchy-Kovalevskaya theorem in this situation,
and one can easily check that the resulting function f gives the desired isometric
embedding. As a consequence, we now get the following assertion:

Corollary 1. Let p be an arbitrary fixed point on a real analytic Riemannian 2-
manifold .M2; ds2/. Suppose that � .t/ .jt j � �/ is a real analytic regular space
curve in R3 whose curvature function is positive. Then there exists a real analytic
isometric embedding

f W Œ��; � � .�ı; ı/! R3;

such that f .u; 0/ D � .u/ holds, where ı is a sufficiently small positive number.

We will apply this technique for the existence of isometric deformations of
cuspidal edges in the next section.

3 Isometric Deformations of Cuspidal Edges

A C1-map f W .U 2; p/ ! R3 has a cuspidal edge singularity at p if there exist
local diffeomorphisms ' and ˚ on R2 and R3 respectively such that

˚ ı f ı '.u; v/ D f0.u; v/ .f0 WD .u; v2; v3//:
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The map f0 is called the standard cuspidal edge. Figure 1, left, is the image of the
map f0. Martins–Saji [6] proved that there exists a coordinate system .u; v/ such
that

f .u; v/ D
�

u;
a.u/u2 C v2

2
;
b0.u/u2 C b2.u/uv2

2
C b3.u; v/v3

6

�
:

We set

	s WD a.0/ .called the singular curvature/; (9)

	� WD b0.0/ .called the limiting normal curvature/; (10)

	c WD b3.0; 0/ .called the cuspidal curvature/: (11)

These three values do not depend on the choice of such a coordinate system .u; v/.
The singular set of f is given by

Sf WD f.u; v/ 2 U 2 I v D 0g;

that is, the u-axis is the singular set and

O�.t/ WD f .t; 0/

parametrizes the image of Sf . By the definition of cuspidal edges, the curve O�.t/
must be a regular curve. Let 	.t/ be the curvature function of O�.t/ as a space curve.
As shown in [6], it holds that

	.t/ D
p
	s.t/2 C 	�.t/2; (12)

where 	s is the singular curvature [cf. (9)] and 	� is the limiting normal curvature
[cf. (10)]. Moreover, the singular curvature 	s plays an important role for knowing
the shape of singularities: An example of a cuspidal edge singularity with 	s > 0

(resp. with 	s < 0) is shown in Fig. 2, right and left, respectively.
The following fact is known.

Fig. 2 Cuspidal edges with
	s < 0 and 	s > 0
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Fact 2 ([9]). The singular curvature 	s is an intrinsic invariant. Moreover, if the
Gaussian curvature is non-negative around the singular set, then 	s � 0 holds.

On the other hand, it is well-known that the unit normal vector field N is
smoothly defined across the cuspidal edge singularities. Then the limiting normal
curvature is defined by

	�.t/ WD O�
00.t/ �N.t/
O� 0.t/ � O� 0.t/

;

where �.t/ is the singular curve in M2 and

O� WD f ı �.t/; N.t/ WD N ı �.t/:

Also, the following facts are known ([9] and [7]):

• If 	� > 0, then K is unbounded and goes to C1 on one side of the singular
curve � and goes to �1 on the opposite side of � .

• If the Gaussian curvatureK is bounded in a neighborhood of � , then 	� vanishes2

along � .
• A singular point p of f is also a singular point of the Gauss map of f if and

only if 	�.p/ D 0.

Later, we will show that 	� is not an intrinsic invariant. In (11), we introduced the
cuspidal curvature 	c at a given cuspidal edge singular point p. Let ˘ be the plane
in R3 passing through f .0; 0/.D f .p// perpendicular to the vector d O�.0/=dt . Then
the intersection of the image of the singular set f .Sf / by˘ gives a 3=2-cusp in the
plane ˘ . The value 	c.p/ coincides with the cuspidal curvature of this 3=2-cusp
(cf. [7], and for the definition of cuspidal curvature of planar curves, see [10]). The
following assertion holds:

Theorem 2 ([7]). The value j	c	� j is an intrinsic invariant.

A cuspidal edge satisfying 	� ¤ 0 is called a generic cuspidal edge (cf. Fig. 3).

Fig. 3 A generic cuspidal
edge

2The standard cuspidal edge as in Fig. 1, left, has an identically vanishing limiting normal
curvature. In fact, it is a developable surface.
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We now fix a real analytic map

f W .U 2; p/! R3;

having a generic cuspidal edge singularity at p, where U 2 is a neighborhood of p
in R2. Then we can parametrize the singular set Sf by a regular curve �.t/ such
that �.0/ D p and t is the arc length parameter. Since p is a generic cuspidal edge
singular point, we may assume that 	�.t/ is positively valued. We denote by 	.t/
the curvature function of the regular space curve O�.t/ WD f ı �.t/. The following
assertion is an analogue of Corollary 1 for surfaces with cuspidal edge singularities:

Theorem 3 ([8]). Let � .t/ be a real analytic regular space curve whose curvature
function Q	.t/ satisfies3

j	s.t/j < Q	.t/: (13)

Then there exists a real analytic cuspidal edge g W .V 2; p/ ! R3 .V 2 	 U 2/ such
that

1. the first fundamental form of g coincides with that of f . In particular, the
singular set of Sg is a subset of Sf , and

2. g ı �.t/ D � .t/ holds.

Moreover, the number of such maps g is at most two up to motions in R3.

Remark 1. Kossowski [5] is the first geometer who considered the realizing
problem of given first fundamental forms as cuspidal edge singularities. However,
in [5], the isometric deformations of cuspidal edge singularities are not discussed,
and the above theorem can be considered as a refinement of [5, Theorem 1].

Corollary 2. The limiting normal curvature 	� is an extrinsic invariant.4

Proof. Consider a deformation of � so that its curvature function changes. Then
by Theorem 3, the deformation of � induces the deformation of cuspidal edge
singularities which moves 	�.¤ 0/ [cf. (12)].

Corollary 3. There exists a real analytic map g satisfying the following conditions
up to a motion of R3:

• g admits only cuspidal edge singularities,
• the first fundamental form of g coincides with that of f , and
• g ı �.t/ is a planar curve having the same curvature function as O�.t/.
Moreover, such a map g is uniquely determined up to a motion of R3.

3One cannot replace the condition j	s.t/j < Q	.t/ by j	s.t/j � Q	.t/, see [8].
4Since the product j	�	c j is intrinsic, 	c is an extrinsic invariant.
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4 Isometric Deformations of Cross Caps

A given C1-map f W .U 2; p/ ! R3 is called a germ of a cross cap singularity if
there exist local diffeomorphisms ' and ˚ on R2 and R3 respectively such that

˚ ı f ı '.u; v/ D f0.u; v/ .f0 WD .u; uv; v2//:

The map f0 is called the standard cross cap (cf. Fig. 1, right).
By a rotation, a translation in R3 and a suitable orientation preserving coordinate

change of the domain U 2 	 R2, we have the following Maclaurin expansion of f
at a cross cap singularity .0; 0/ (cf. [1])

f .u; v/ D
0
@u; uvC

nX
iD3

bi

i Š
vi ;

nX
rD2

rX
jD0

aj r�j
j Š.r � j /Šu

j vr�j
1
ACO.u; v/nC1; (14)

where a02 never vanishes and O.u; v/nC1 is a higher order term. By orientation
preserving coordinate changes .u; v/ 7! .�u;�v/ and .x; y; z/ 7! .�x; y;�z/, we
may assume that

a02 > 0; (15)

where .x; y; z/ is the usual Cartesian coordinate system of R3. After this normaliza-
tion (15), one can easily verify that all of the coefficients ajk and bi are uniquely
determined. An oriented local coordinate system .u; v/ giving such a normal form is
called the canonical coordinate system of f at the cross cap singularity. This unique
expansion of a cross cap implies that the coefficients ajk and bi can be considered
as geometric invariants of the cross cap f .

When n D 3, (14) reduces to

f .u; v/ D
�

u; uv;
a20 u2

2
C a11 uvC a02 v2

2

�

C 1

3Š

�
0; b3 v3; a30 u3 C 3a21 u2vC 3a12 uv2 C a03v3

�
CO.u; v/4:

We are interested in the coefficients

a20; a11; a02; b3; a30; a21; a12; a03;

which are all considered as invariants of cross caps. In particular, the invariant a20
plays a similar role as the singular curvature 	s for cuspidal edges (compare Figs. 2
and 4).

As shown in the introduction, we can construct an isometric deformation of a
cross cap as a ruled surface. In fact, the standard cross cap f0 is a ruled surface, and
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Fig. 4 Cross caps with
a20 < 0 and a20 > 0,
respectively

Fig. 5 An isometric deformation of f0 (figures made by Atsufumi Honda)

Fig. 5 gives the isometric deformation of f0. Examining this kind of deformation,
the following assertion was shown:

Proposition 1 ([3]). The three invariants a03, a12; b3 are extrinsic.

On the other hand, the following assertion is proved in [3] to give formulas for
a20; a11 and a02 using only the derivatives of the first fundamental forms:

Theorem 4 ([3]). The three invariants a02, ja11j; a02 are intrinsic.

Using these three invariants a02, a11; a02 and the canonical coordinate system
.u; v/, the Gaussian curvature around the origin is given by

K D a02

r2A4�

�
a20 cos2 � � a02 sin2 � CO.r/� ;

where u D r cos � , v D r sin � and

A� WD
p

cos2 � C .a11 cos � C a02 sin �/2:

We note that the following assertion holds:

Proposition 2. The set of self-intersections of a given cross cap singularity is
contained in a line perpendicular to the tangential direction5 of f if and only if

5dfp.TpU
2/ i a 1-dimensional vector space, which is called the tangential direction of f .
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0 D b3 D b4 D b5 D � � �

holds6.

We pose the following problem which was discussed in the meeting [4]:

Problem. Can an arbitrarily fixed real analytic cross cap f admit an isometric
deformation to a normal cross cap f1?

If f is written as in (14), the corresponding normal cross cap should be written
as

f1.u; v/ D
�

u; uv;
a20 u2

2
C a11 uvC a02 v2

2

�

C 1

3Š

�
0; 0; A30 u3 C 3A21 u2vC 3A12 uv2 C A03v3

�
CO.u; v/4;

where

A03 WD a03 C 3a11b3

2
; A12 WD a12 C .1C a211/b3

2a02
;

A21 WD a21 � a11a20b3
6a02

; A30 WD a30 � .1C a
2
11/a20b3

2a202
:

In [4], it is shown that A03; A12; A21 and A30 are all intrinsic invariants of cross
caps, which is a reason for thinking that the normal form of f1 might be uniquely
determined from f .
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Beyond Generalized Sasakian-Space-Forms!

Alfonso Carriazo

Abstract In this paper we will review some recent advances on the theory of
generalized Sasakian-space-forms, as well as some new directions in which this
theory is being developed now.

1 Introduction

The study of curvature properties is one of the main problems in Differential
Geometry. As S.-S. Chern said in [15], “a fundamental notion is curvature, in
its different forms”. Therefore, the determination of the Riemann curvature tensor
constitutes a very important topic.

In this sense, the author, jointly with P. Alegre and D. E. Blair, introduced
generalized Sasakian-space-forms in [1], providing a new frame in which many
works have been produced since then. In this paper, we will recall some well-known
facts about these spaces (some of them can be found in [10]), as well as some new
directions in which this theory is being developed now.

For more details and the proofs of the results presented in the following sections,
we refer to the corresponding papers included in the references list.

2 Preliminaries

In this section, we recall some definitions and basic formulas which we will use
later. For more background on almost contact metric manifolds, we recommend the
reference [6].
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An odd-dimensional Riemannian manifold .M; g/ is said to be an almost contact
metric manifold if there exist onM a .1; 1/ tensor field �, a vector field � (called the
structure vector field) and a 1-form � such that �.�/ D 1, �2.X/ D �XC�.X/� and
g.�X; �Y / D g.X; Y /��.X/�.Y /, for any vector fields X; Y onM . In particular,
in an almost contact metric manifold we also have �� D 0 and � ı � D 0.

Such a manifold is said to be a contact metric manifold if d� D ˚ , where
˚.X; Y / D g.X; �Y / is called the fundamental 2-form of M . If, in addition, �
is a Killing vector field, then M is said to be a K-contact manifold. It is well-
known that a contact metric manifold is a K-contact manifold if and only if
rX� D ��X , for any vector field X on M . On the other hand, the almost contact
metric structure of M is said to be normal if Œ�; �.X; Y / D �2d�.X; Y /� , for
any X; Y , where Œ�; � denotes the Nijenhuis torsion of �, given by Œ�; �.X; Y / D
�2ŒX; Y C Œ�X; �Y � �Œ�X; Y ��ŒX; �Y . A normal contact metric manifold is
called a Sasakian manifold. It can be proved that an almost contact metric manifold
is Sasakian if and only if

.rX�/Y D g.X; Y /� � �.Y /X;
for any X; Y .

In [23], J. A. Oubiña introduced the notion of a trans-Sasakian manifold. An
almost contact metric manifold M is a trans-Sasakian manifold if there exist two
functions ˛ and ˇ on M such that

.rX�/Y D ˛.g.X; Y /� � �.Y /X/C ˇ.g.�X; Y /� � �.Y /�X/;
for any X; Y on M . If ˇ D 0, M is said to be an ˛-Sasakian manifold. Sasakian
manifolds appear as examples of ˛-Sasakian manifolds, with ˛ D 1. If ˛ D 0, M
is said to be a ˇ-Kenmotsu manifold. Kenmotsu manifolds are particular examples
with ˇ D 1. If both ˛ and ˇ vanish, then M is a cosymplectic manifold. Actually,
in [22], J. C. Marrero showed that a trans-Sasakian manifold of dimension greater
than or equal to 5 is either ˛-Sasakian, ˇ-Kenmotsu or cosymplectic.

3 Generalized Sasakian-Space-Forms

A Sasakian manifold .M; �; �; �; g/ is said to be a Sasakian-space-form if all the
�-sectional curvatures K.X ^ �X/ are equal to a constant c, where K.X ^ �X/
denotes the sectional curvature of the section spanned by the unit vector field X ,
orthogonal to � , and �X . In such a case, the Riemann curvature tensor of M is
given by
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R.X; Y /Z D c C 3
4
fg.Y;Z/X � g.X;Z/Y g

C c � 1
4
fg.X; �Z/�Y � g.Y; �Z/�X C 2g.X; �Y /�Zg

C c � 1
4
f�.X/�.Z/Y � �.Y /�.Z/X

C g.X;Z/�.Y /� � g.Y;Z/�.X/�g:

(1)

These spaces can be modeled, depending on c > �3, c D �3 or c < �3.
As a natural generalization of these manifolds, P. Alegre, D. E. Blair and the

author introduced in [1] the notion of generalized Sasakian-space-forms. They
were defined as almost contact metric manifolds with Riemann curvature tensors
satisfying an equation similar to (1), in which the constant quantities, .cC 3/=4 and
.c � 1/=4 are replaced by differentiable functions, i.e., such that

R.X; Y /Z D f1fg.Y;Z/X � g.X;Z/Y g
C f2fg.X; �Z/�Y � g.Y; �Z/�X C 2g.X; �Y /�Zg
Cf3f�.X/�.Z/Y � �.Y /�.Z/X
C g.X;Z/�.Y /� � g.Y;Z/�.X/�g:

We will denote such a space by M.f1; f2; f3/ and we will write R D f1R1 C
f2R2 C f3R3. Let us notice that, despite its name, a generalized Sasakian-space-
form is not a Sasakian manifold in general; just an almost contact metric one.

Actually, the following theorem by P. Bueken and L. Vanhecke from [8],
which we adapt to our notation, seemed to be an obstruction for the existence of
generalized Sasakian-space-forms with non-constant functions:

Theorem 1 ([8]). Let .M; �; �; �; g/ be a connected generalized Sasakian-space-
form with f2 D f3 not identically zero. If dim.M/ � 5 and g.X;rX�/ D 0 for
any vector field X orthogonal to � , then f1 and f2 are constant functions and
f1 � f2 � 0. Moreover, if f1 � f2 D 0, then .M; �; �; �; g/ is a cosymplectic-
space-form and if f1 � f2 D ˛2 > 0 then .M; �; �; �; g/ or .M;��; �; �; g/ is
an ˛-Sasakian manifold with constant �-sectional curvature c and a generalized
Sasakian-space-form with f1 D .c C 3˛2/=4 and f2 D f3 D .c � ˛2/=4.

But we were able to construct in [1] interesting examples in any dimension. In
fact, if we consider an almost Hermitian manifold .N; J;G/ and we produce the
warped productM D R�f N , for any real warping function f > 0, it is easy to see
that .M; �; �; �; gf / is an almost contact metric manifold, where �X D .J��X/�
for any vector field X in M , � D @=@t , �.X/ D gf .X; �/ and gf is the usual
warped metric on M , given by gf D ��.gR/ C .f ı �/2��.G/. It can be proved
that M is ˇ-Kenmotsu, with ˇ D f 0=f , if and only if N is Kaehler. In particular,
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if we consider a complex-space-form N.c/ of constant holomorphic curvature c,
then M is a generalized Sasakian-space-forms with functions:

f1 D c � 4f 02

4f 2
; f2 D c

4f 2
; f3 D c � 4f 02

4f 2
C f 00

f
:

Concerning the structure of these spaces, it was proved in [1] that in any Sasakian
generalized Sasakian-space-form we have f2 D f3, and in [2] that any contact
metric generalized Sasakian-space-form with dimension greater than or equal to
5 is a Sasakian manifold. Then, it can be deduced from Theorem 1 that the only
connected and contact metric generalized Sasakian-space-forms with dimensions
greater than or equal to 5 are just Sasakian-space-forms (and so they have constant
functions f1; f2; f3). In dimension 3, the situation is different, because the writing
of the Riemann curvature tensor is not unique. If we take two different writings
R D f1R1Cf2R2Cf3R3 and R D f �

1 R1Cf �
2 R2Cf �

3 R3, then the functions are
related by f �

1 D f1 C f , f �
2 D f2 � f=3, f �

3 D f3 C f , where f is an arbitrary
function. We can choose a canonical writing by putting f2 D 0. It was proved
in [2] that in any non-Sasakian, three-dimensional and contact metric generalized
Sasakian-space-form, R D �	R1 � 2	R3, where 	 < 1 is a constant.

With respect to trans-Sasakian generalized Sasakian-space-forms, we can
emphasize the following results from [1, 2]:

Proposition 1 ([2]). Let M.f1; f2; f3/ be an ˛-Sasakian generalized Sasakian-
space-form, with dimension greater than or equal to 5. Then ˛ depends only on
the direction of � and the functions f1, f3 and ˛ satisfy the equation f1 � f3 D ˛2.
Theorem 2 ([2]). Let M.f1; f2; f3/ be a connected ˛-Sasakian generalized
Sasakian-space-form, with dimension greater than or equal to 5. Then, f1 and
f2 are constant functions and, if either ˛ D 0 or ˛ ¤ 0 at every point of M , then
f3 is also a constant function.

Proposition 2 ([2]). Let M.f1; f2; f3/ be a ˇ-Kenmotsu generalized Sasakian-
space-form. Then, ˇ depends only on the direction of � and the functions f1, f3
and ˇ satisfy the equation f1 � f3 C �.ˇ/C ˇ2 D 0.

Theorem 3 ([1]). LetM.f1; f2; f3/ be a ˇ-Kenmotsu generalized Sasakian-space-
form, with dimension greater than or equal to 5. Then, X.fi / D 0 for any X
orthogonal to � , i D 1; 2; 3, and the following equations hold:

�.f1/C 2 f̌3 D 0; �.f2/C 2 f̌2 D 0:

On the other hand, there are examples of three-dimensional, .˛; ˇ/-trans-
Sasakian generalized Sasakian-space-forms. In fact, if M is a three-dimensional,
.˛; ˇ/-trans-Sasakian manifold such that ˛; ˇ depend only on the direction of � , then
it is a generalized Sasakian-space-form with functions f1 D 3
�2˛2C2�.ˇ/C2ˇ2,
f2 D 0 and f3 D 3
 � 3˛2 C 3�.ˇ/C 3ˇ2, where 
 is the scalar curvature of M
(see [2]).
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The study of generalized Sasakian-space-forms was continued by the author,
jointly with P. Alegre, in [3], by analyzing their behavior under generalized
D-conformal deformations. With certain conditions, new examples of generalized
Sasakian-space-forms can be obtained.

In the next sections, we will examine three different directions to extend this
theory. The first idea is to study a similar situation in manifolds with more than
one structure vector field: these spaces are known as metric f -manifolds. This will
lead to the idea of generalized S-space-forms (see Sect. 4). The second direction
is motivated by the writing of the curvature tensor of a .	; �/-space with constant
�-sectional curvature given by T. Koufogiorgos in [19], resulting in the definition
of generalized .	; �/-space-forms presented in Sect. 5. Finally, semi-Riemannian
generalized Sasakian-space-forms are considered as a third possible extension in
Sect. 6.

4 Generalized S-Space-Forms

A tensor field f of type (1,1) and rank 2m on a manifoldM is called an f -structure
if it satisfies f 3Cf D 0, and a .2mCs/-dimensional Riemannian manifold .M; g/
endowed with an f -structure f is said to be a metric f -manifold if, moreover, there
exist s global vector fields �1; : : : ; �s onM (called structure vector fields) such that,
if �1; : : : ; �s are the dual 1-forms of �1; : : : ; �s , then

f �˛ D 0; �˛ ı f D 0; f 2 D �I C
sX

˛D1
�˛ ˝ �˛;

g.X; Y / D g.fX; f Y /C
sX

˛D1
�˛.X/�˛.Y /;

for any vector fields X; Y on M and any ˛ D 1; : : : ; s. Almost contact metric
manifolds are particular cases of metric f -manifolds with s D 1. In this frame,
there are manifolds playing a similar role to that of Sasakian manifolds; they are
called S -manifolds. An S -manifold of constant f -sectional curvature is said to be
an S -space-form, whose curvature tensor is determined.

In [11], the author, jointly with L. M. Fernández and A. M. Fuentes, studied
metric f -manifolds with two structure vector fields �1; �2, and it was said that
.M; f; �1; �2; �1; �2; g/ is a generalized S -space-form if there exists differentiable
functions F1; : : : ; F8 on M such that the curvature tensor field of M satisfies
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R.X; Y /Z DF1 fg.Y;Z/X � g.X;Z/Y g
C F2 fg.X; f Z/f Y � g.Y; f Z/fX C 2g.X; f Y /f Zg
C F3 f�1.X/�1.Z/Y � �1.Y /�1.Z/X C g.X;Z/�1.Y /�1 � g.Y;Z/�1.X/�1g
C F4 f�2.X/�2.Z/Y � �2.Y /�2.Z/X C g.X;Z/�2.Y /�2 � g.Y;Z/�2.X/�2g
C F5 f�1.X/�2.Z/Y � �1.Y /�2.Z/X C g.X;Z/�1.Y /�2 � g.Y;Z/�1.X/�2g
C F6 f�2.X/�1.Z/Y � �2.Y /�1.Z/X C g.X;Z/�2.Y /�1 � g.Y;Z/�2.X/�1g
C F7 f�1.X/�2.Y /�2.Z/�1 � �2.X/�1.Y /�2.Z/�1g
C F8 f�2.X/�1.Y /�1.Z/�2 � �1.X/�2.Y /�1.Z/�2g ;

for any vector fields X; Y;Z on M . Let us notice how the first terms in the above
equation correspond to tensors R1;R2;R3 appearing in the writing of the curvature
tensor of a generalized Sasakian-space-form, while the last ones are new; they
appear now because of the existence of more than one structure vector field. This
definition is justified by the following examples:

Example 1 ([11]). Any S -space-form M.c/ with two structure vector fields is a
generalized S -space-form with functions:

F1 D c C 6
4

; F2 D F7 D F8 D c � 2
4

; F3 D F4 D c C 2
4

; F5 D F6 D �1:

Example 2 ([11]). If M is a pseudo-umbilical hypersurface of a generalized
Sasakian-space-form QM.f1; f2; f3/, with shape operator given by

A D g1 .I � �1 ˝ �1/C g2�2 ˝ �2 � �1 ˝ �2 � �2 ˝ �1;

then M is a generalized S -space-form with functions:

F1 D f1 C g21; F2 D f2; F3 D f2 C g21; F4 D �g1g2;
F5 D F6 D g1; F7 D F8 D �1 � g1g2:

Example 3 ([11]). IfM is the warped product of the real line R times a generalized
Sasakian-space-form QM.f1; f2; f3/, with warping function h, then M is a general-
ized S-space-form with functions:

F1 D .f1 ı �2/ � h02

h2
; F2 D f2 ı �2

h2
; F3 D F7 D F8 D f3 ı �2

h2
;

F4 D .f1 ı �2/ � h02

h2
C h00

h
; F5 D F6 D 0:

In particular, if QM D R �f N.c/, where N.c/ is a complex-space-form, then M D
R �h .R �f N.c// is a generalized S -space-form with functions:
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F1 D c � 4.f 0/2 � 4f 2.h0/2
4f 2h2

; F2 D c

4f 2h2
; F3 D F7 D F8 D c � 4.f 0/2 C 4ff 00

4f 2h2
;

F4 D c � 4.f 0/2 � 4f 2.h0/2 C 4f 2hh00
4f 2h2

; F5 D F6 D 0:

The paper [11] also contains some results about the structure of generalized
S -space-forms with two structure vector fields. M. Falcitelli and A. M. Pastore
defined in [17] generalized globally framed f -space-forms, in the general case of
having s structure vector fields. A different extension has been recently given by L.
M. Fernández, A. M. Fuentes and A. Prieto-Martín in [18].

5 Generalized .�; �/-Space-Forms

Given two functions 	; �, a contact metric manifold is said to be a generalized
.	; �/-space if its curvature tensor satisfies the condition

R.X; Y /� D 	f�.Y /X � �.X/Y g C �f�.Y /hX � �.X/hY g;

for any vector fieldsX; Y , where 2h D L�� andL is the usual Lie derivative. If 	; �
are constant, the manifold is called a .	; �/-space. These spaces were defined by D.
E. Blair, T. Koufogiorgos and B. J. Papantoniou in [7] and it was proved in [19] that
if a .	; �/-space has constant �-sectional curvature c and dimension greater than 3,
then its curvature tensor is given by

R D c C 3
4

R1 C c � 1
4

R2 C
�
c C 3
4
� 	

�
R3 CR4 C 1

2
R5 C .1 � �/ R6;

where R1;R2;R3 are the tensors defined in Sect. 3 and

R4.X; Y /Z D g.Y;Z/hX � g.X;Z/hY C g.hY;Z/X � g.hX;Z/Y;
R5.X; Y /Z D g.hY;Z/hX � g.hX;Z/hYCg.�hX;Z/�hY�g.�hY;Z/�hX;
R6.X; Y /Z D �.X/�.Z/hY��.Y /�.Z/hXCg.hX;Z/�.Y /��g.hY;Z/�.X/�;

for any vector fields X; Y;Z. Therefore, the author, jointly with V. Martín-Molina
and M. M. Tripathi, defined in [14] generalized .	; �/-space-forms as those almost
contact metric manifolds whose curvature tensor can be written as R D f1R1 C
� � �Cf6R6, with functions f1; : : : ; f6. Of course, generalized Sasakian-space-forms
are particular cases of these new spaces, where f4 D f5 D f6 D 0.

It is well-known that h D 0 inK-contact manifolds, and hence in Sasakian ones.
Therefore, generalized .	; �/-space-forms with such a structure are just generalized
Sasakian-space-forms. The case of the non-Sasakian, contact metric, generalized
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.	; �/-space-forms with dimension greater than or equal to 5 is completely studied
in [14]: they are just .	; �/-space-forms with constant �-sectional curvature c D
2f6 � 1 > �3 such that:

f1 D f6 C 1
2

; f2 D f6 � 1
2

; f3 D 3f6 C 1
2

; f4 D 1; f5 D 1

2
; 	 D �f6 < 1; � D 1�f6:

Actually, a nice method to obtain examples for every constant f6 > �1 is
also described in [14]. The three-dimensional case is similar to that of generalized
Sasakian-space-forms: the writing of the curvature tensor is not unique. Therefore,
it has been studied separately. Examples with non-constant functions have also been
given in that case.

An important difference of generalized .	; �/-space-forms with respect to
generalized Sasakian-space-forms is their behavior with respect to deformations.
Actually, the author and V. Martín-Molina introduced in [12] a small change in
the definition when they proved that, in order to preserve the structure of a contact
metric generalized .	; �/-space-form under a Da-homothetic deformation, it was
necessary to split the tensor R5 into two new tensors R5;1; R5;2 given by:

R5;1.X; Y /Z D g.hY;Z/hX � g.hX;Z/hY;
R5;2.X; Y /Z D g.�hY;Z/�hX � g.�hX;Z/�hY:

This gave rise to the notion of generalized .	; �/-space-forms with divided R5,
where the writing of the curvature tensor takes the formR D f1R1C� � �Cf5;1R5;1C
f5;2R5;2C f6R6. Since R5 D R5;1 �R5;2, it is obvious that these spaces include the
previous ones.

Going one step further, the author, jointly with K. Arslan, V. Martín-Molina and
C. Murathan, introduced in [5] generalized .	; �; �/-space-forms as those almost
contact metric manifolds whose curvature tensor can be written as R D f1R1 C
� � � C f8R8, where the new tensors R7 and R8 are given by

R7.X; Y /Z D g.Y;Z/�hX � g.X;Z/�hY C g.�hY;Z/X � g.�hX;Z/Y;
R8.X; Y /Z D �.X/�.Z/�hY � �.Y /�.Z/�hX C g.�hX;Z/�.Y /� � g.�hY;Z/�.X/�:

The contact metric case was completely studied.
Of course, this notion is not arbitrary, but was motivated by several previous

definitions, results and computations. For example, T. Koufogiorgos, M. Markellos
and V. J. Papantoniou introduced in [20] the notion of .	; �; �/-contact metric
manifold, where now the equation to be satisfied is

R.X; Y /� D 	f�.Y /X � �.X/Y g C �f�.Y /hX � �.X/hY g
C �f�.Y /�hX � �.X/�hY g;
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for some smooth functions 	; �; �. Actually, the computation of the curvature tensor
of a .	; �; �/-contact metric manifold of dimension 3 motivated the previous writing
in terms of tensors R1; : : : ; R8.

In [13], the author, jointly with V. Martín-Molina, studied the .	; �; �/-spaces
with almost cosymplectic and almost Kenmotsu structures, giving explicitly the
writing of their curvature tensors. That led to the definition of generalized .	; �; �/-
space-forms with dividedR5, of which they provided examples or obstruction results
in all possible cases.

6 Semi-Riemannian Generalized Sasakian-Space-Forms

The third extension of the notion of generalized Sasakian-space-form that we are
reviewing in this paper rises from a natural question: is it possible to define a similar
space with a semi-Riemannian metric?

To give an answer to this question, we first need to recall that an "-almost
contact metric manifold [16] or almost contact pseudo-metric manifold [9] is an
odd-dimensional semi-Riemannian manifold .M2nC1; g/, with a structure .�; �; �/
such that �.�/ D 1, �2X D �X C �.X/� , g.�X; �Y / D g.X; Y / � "�.X/�.Y /
and �.X/ D "g.X; �/, for any vectors fields X; Y on M , where " D ˙1. It follows
from the above conditions that g.�; �/ D ", i.e., " indicates the causal character of
�: " D 1 (resp. " D �1) if � is a spacelike (resp. timelike) vector field. Given that
X and �X have the same causal character, we get M2nC1

2s and M2nC1
2sC1 for " D 1

and " D �1, respectively. We will use the name indefinite almost contact metric
manifold. For index s D 0 and " D 1 we obtain almost contact metric manifolds,
and for s D 0 and " D �1, almost contact Lorentzian manifolds.

In [21], J. W. Lee considered generalized indefinite Sasakian-space-forms whose
curvature tensors can be written as R D f1R1 C f2R2 C f3R3;", where

R3;".X; Y /Z D �.X/�.Z/Y � �.Y /�.Z/X C "g.X;Z/�.Y /� � "g.Y;Z/�.X/�:

Notice that R3;1 D R3. In [4], the author, jointly with P. Alegre, constructed
examples of these spaces with non-constant functions in any dimension, by using
warped products, and studied their structures.

Another useful notion is that of "-almost para-contact metric manifolds, intro-
duced in [24] as those semi-Riemannian manifolds .M2nC1; g/, endowed with an
almost para-contact structure .�; �; �/ such that �.�/ D �1, �2X D X C �.X/� ,
g.�X; �Y / D g.X; Y /� "�.X/�.Y / and �.X/ D �"g.X; �/, for any vector fields
X; Y on M , where " D ˙1. As above, " indicates the causal character of � . In this
frame, the similar writing for the curvature tensor of what we can call a generalized
indefinite para-Sasakian-space-form seems to beR D f1R1Cf2 QR2Cf3 QR3;", where
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QR2.X; Y /Z D g.X; �Z/�Y � g.Y; �Z/�X;
QR3;".X; Y /ZD� "�.X/�.Z/YC"�.Y /�.Z/XCg.X;Z/�.Y /��g.Y;Z/�.X/�:

Examples and some results about these spaces can also be found in [4].
Finally, let us recall that an odd-dimensional manifold with an indefinite metric

.M; g/ is said to be an hyperbolic almost contact metric manifold if there exits on
M a .1; 1/ tensor field �, a vector field � and a 1-form � such that �.�/ D �1,
�2X D X C �.X/� , g.�X; �Y / D �g.X; Y / � �.X/�.Y / and �.X/ D g.X; �/,
for any vector fields X; Y onM . By using again warped products, P. Alegre and the
author gave in [4] examples of generalized hyperbolic Sasakian-space-forms with
curvature tensorR D f1R1Cf2R2Cf3R3, i.e., the same writing than in the original
case with which we began this paper.
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Some Geometric Aspects of the Hessian
One Equation

Antonio Martínez and Francisco Milán

Abstract The Hessian one equation and its complex resolution provides an impor-
tant tool in the study of improper affine spheres in R

3 with some kind of
singularities. The singular set can be characterized and, in most of the cases, it
determines the surface. Here, we show how to obtain improper affine spheres with
a prescribed singular set and construct some global examples with the desired
singularities. We also classify improper affine spheres admitting a planar singular
set.

1 Introduction

Differential geometry of surfaces and partial differential equations (PDEs) are
related by a productive tie by means of which both theories out mutually benefited.

Many classic partial differential equations (PDEs) are link to interesting geomet-
ric problems, [18, 20, 27]. Sometimes, the geometry allows to establish non trivial
properties of the solutions and to determine new solutions in terms of already known
solutions.

One of the biggest contributions from geometry to the theory of partial differen-
tial equations is the Monge Ampère equation. Among the most outstanding Monge
Ampère equation we can quote the Hessian one equation

�xx�yy � �2xy D "; " 2 f�1; 1g: (1)

This is the easiest Monge Ampère equation and it appears, among others, in
problems of affine differential geometry, flat surfaces or special Kähler manifolds.
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The Eq. (1) has been studied from a global perspective and the situation changes
completely if we take " D 1 (definite case) or " D �1 (indefinite case). When " D 1,
Jörgens, [13, 14], proved that revolution surfaces provide the only entire solutions
with at most an isolated singularity and solutions in R

2 with a finite set of points
removed are classified in [9]. The indefinite case is more complicated and we can not
expect a classification result as in the definite case. Actually, �.x; y/ D xy C g.x/
is an entire solution for any function g.

Another important issue in the theory of geometric PDEs is the study of singu-
larities. Concerning with (1), a geometric theory of smooth maps with singularities
(improper affine maps) has been developed in [21, 25]. In most of the cases the
singular set determines the surface and, generically, the singularities are cuspidal
edges and swallowtails, see [1, 6, 12, 23, 24].

In this paper we show how to obtain easily improper affine maps with a
prescribed singular set and construct some global examples with the desired
singularities. We also classify definite improper affine maps admitting a planar
singular set.

The paper is organized as follows. In Sect. 2 we introduce some notations and
give a complex resolution for the Eq. (1).

In Sect. 3 we discuss a priori conditions on a curve in R
3 to be a singular curve

of an improper affine map with prescribed cuspidal edges and swallowtails. We also
study isolated singularities both from a local and a global view.

In Sect. 4 we describe the global behavior of embedded complete definite
improper affine maps with a planar singular set and those with only a finite number
of isolated singularities.

2 The Conformal Structure

Let � W ˝ � R
2 �! R be a solution to (1) on a planar domain ˝. Then its graph

 D f.x; y; �.x; y// W .x; y/ 2 ˝g

describes an improper affine sphere in the affine 3-space R
3 with constant affine

normal � D .0; 0; 1/, affine metric h,

h WD �xx dx2 C �yy dy2 C 2�xy dxdy; (2)

and affine conormal N ,

N WD .��x;��y; 1/: (3)

From (2) and (3) it is easy to check that the following relations hold,

h D � < dN; d >; < N; � >D 1; < N; d >D 0; (4)
p

det.h/ D detŒ x;  y; � D � detŒNx;Ny;N ; (5)
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see [19, 26] for more details. Conversely, up to unimodular transformations, any
improper affine sphere in R

3 is, locally, the graph over a domain in the x; y-plane
of a solution to (1).

When " D 1 (resp. " D �1) the affine metric h induces a Riemann (Lorentz)
surface structure on ˝ known as the underlying conformal structure of �.x; y/.

It follows from (1) that,

.d�x/
2 C " dy2 D �xxh; .d�y/

2 C " dx2 D �yyh; (6)

and the expression (6) indicates that the two first coordinates of  and N provide
conformal parameters for h. Actually, consider C" the complex (split-complex)
numbers according to " D 1 (or " D �1/, that is

C" D fz D s C j t W s; t 2 R; j 2 D �"; j1 D 1j g; (7)

see [4, 11] for more information, then it is not difficult to prove, see [3, 8, 23], that
˚ W ˝ �! C

3
" ,

˚ WD N C j � �  ; (8)

is a planar holomorphic (split-holomorphic) curve. In fact, ˚ D .�B;A; 1/ where

A WD ��y C j x; B WD �x C j y; (9)

are holomorphic (split-holomorphic) functions on ˝. Moreover, from (1) and (2),

jd˚ j2 D jdAj2 C jdBj2 D .�xx C �yy/h; (10)

and jd˚ j2 and h are in the same conformal class always that �xx C �yy has a sign.
From (2) and (9), the metric h is given by

h WD Im.dAdB/ D jdGj2 � jdF j2 (11)

where 2F D �B � "j A and 2G D B � "j A, and the immersion  may be
recovered as

 WD Im.A;B;
Z
AdB/ D �1

2
Im
Z
.˚ C ˚/ � d˚: (12)

or

 WD .G C F ; jGj
2

2
� jF j

2

2
C 2Re

Z
GdF /; (13)

where in (13) the two first coordinates of  are identified as numbers of C" in the
standard way.
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Remark 1. The complex representation (12) is similar to the introduced in [5]
and (13) was studied in [7, 8, 21, 25].

3 Allowing Singularities

In this section we discuss improper affine spheres admitting some kind of singulari-
ties. First, we study when a prescribed curve of singularities determines the surface
and then we deal with the case of isolated singularities both from a local and a global
view.

Definition 1. Let ˙ be a Riemann (Lorentz) surface and  W ˙ �! R
3 be a

differentiable map,  is called an improper affine map with constant affine normal
� D .0; 0; 1/, if  is given as in (12) for some holomorphic (split-holomorphic)
curve ˚ D .�B;A; 1/ W ˙ �! C

3
" satisfying that Im.dAdB/ does not vanish

identically on ˙ .

Remark 2. Equivalent definitions of improper affine maps (also called improper
affine fronts by other authors) have been introduced in [15, 21, 25].

From (3), (9) and (12) one may write ˚ D N C j � �  ; where N is the affine
conormal of  and we have

h D Im.dAdB/ D �"j
4

detŒ˚ C ˚; d˚; d˚:

The singular set of  is the set of points where h degenerates. A singular point z0 is
called non degenerate if, writing h D �jd zj2 around z0, then

�.z0/ D 0; d�jz0 ¤ 0:

When z0 is a non degenerate singular point,  .z0/ is either an isolated singularity
or the singular set of  around z0 becomes a regular curve � W I 	 R �! ˙ .
Generically, the image of these curves are singular curves with cuspidal edges and
swallowtails, see [6,12,25]. In [17], we have the following criterion for the singular
curve ˛ D  ı � ,

Theorem 1 ([17]). If � is a vector field along � , with �.s/ ¤ 0 in the kernel of
d �.s/ for any s in the interval I , then

1. �.0/ D z0 is a cuspidal edge if and only if detŒ� 0.0/; �.0/ ¤ 0, where det
denotes the usual determinant and prime indicates differentiation with respect
to s.

2. �.0/ D z0 is a swallowtail if and only if detŒ� 0.0/; �.0/ D 0 and

d

ds

ˇ̌
ˇ
sD0 detŒ� 0.s/; �.s/ ¤ 0:
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3.1 Prescribing Singular Curves

The affine Björling problem of finding an improper affine map containing a curve
˛ with a prescribed affine conormal U along it has been discuss in [1, 23] and its
solution is applied to see that a non constant singular curve determines the surface.

Actually, if we assume that ˛ W I �! R
3 is an analytic curve, which is in the

singular set of a definite (indefinite) improper affine map ", then from (4) the affine
conormal U along ˛ satisfies

< ˛0; U >D 0; < U; � >D 1; < ˛00; U >D 0:

Hence, if ˛ is non constant but detŒ˛0; ˛00; � � 0 on I , then ˛0 � ˛00 � 0 and ˛ is
an straight line with a constant tangent vector �. In this case, < N; � >D 0 and the
conormal N of  " satisfies detŒN;Nz; NNz � 0 on a neighborhood of ˛ which is a
contradiction.

But, if detŒ˛0; ˛00; � ¤ 0 on I , then U is uniquely determined by ˛ and it may
be written as

U D ˛0 � ˛00

detŒ˛0; ˛00; �
: (14)

Then,  " is uniquely determined as in (12) by the holomorphic (split-holomorphic)
curve

˚" D ˛z � ˛zz

detŒ˛z; ˛zz; �
C j � � ˛; (15)

which is defined in a neighborhood of I in C" where the holomorphic (split-
holomorphic) extension of ˛ is well defined.

Theorem 2. Let ˛ W I �! R
3 be an analytic curve satisfying detŒ˛0; ˛00; � ¤ 0

on I . Then the following items hold

• there exists a unique definite improper affine map containing ˛.I / in its singular
set.

• if detŒ˛0; ˛00; ˛0002 ¤ detŒ˛0; ˛00; �4 on I , then there exists a unique indefinite
improper affine map containing ˛.I / in its singular set.

Moreover, in both cases ˛.s/ is a cuspidal edge for all s 2 I (Figs. 1 and 2).

Proof. From (12) and (14), we have that along I the improper affine map  " given
by ˚" satisfies

 "
z D

" j

4
..˚ C ˚/ � ˚z/ D " j

2
U � U 0 � 1

2
U � �� � ˛0�

D 1

2
˛0 C " j

2
U � U 0 D 1

2
˛0 C " j

2

detŒ˛0; ˛00; ˛000
detŒ˛0; ˛00; �2

˛0
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Fig. 1 Indefinite improper
affine maps whose singular
set contains
˛.s/ D .cos.s/; sin.s/; as/
with a D 0:2 and a D 0

Fig. 2 Definite improper
affine maps whose singular
set contains
˛.s/ D .cos.s/; sin.s/; as/
with a D 0:5 and a D 0

and  " contains the curve ˛ with

 "
s D ˛0;  "

t D �
detŒ˛0; ˛00; ˛000
detŒ˛0; ˛00; �2

˛0: (16)

Thus, from (4), (5) and (16), we get detŒ "
s ;  

"
t ; �.s; 0/ D 0; 8s 2 I , and

d

dt

ˇ̌
ˇ
.s;0/

detŒ "
s ;  

"
t ; � D detŒ "

ts;  
"
t ; �.s; 0/ � " detŒ "

s ;  
"
ss; �.s; 0/

D detŒ˛0; ˛00; �
�
� " � detŒ˛0; ˛00; ˛0002

detŒ˛0; ˛00; �4
�
¤ 0:

That is, ˛ is a non degenerate singular curve and the kernel of d " at �.s/ D .s; 0/
is spanned by � D .detŒ˛0; ˛00; ˛000; detŒ˛0; ˛00; �2/. We conclude that det.� 0; �/ D
detŒ˛0; ˛00; �2 ¤ 0 and ˛.s/ is a cuspidal edge for all s 2 I from Theorem 1.

Theorem 3. Let ˛ W I �! R
3 be an analytic curve satisfying detŒ˛0; ˛00; � ¤ 0 on

I n f0g and such that 0 2 I is a zero of ˛0, ˛0�˛00, detŒ˛0; ˛00; � and detŒ˛0; ˛00; ˛000
of order 1; 2; 2 and 3 respectively. Then the following items hold

• there exists a unique definite improper affine map containing ˛.I / in its singular
set.

• if detŒ˛0; ˛00; ˛0002 ¤ detŒ˛0; ˛00; �4 on Inf0g, then there exists a unique indefinite
improper affine map containing ˛.I / in its singular set.

Moreover, in both cases ˛.0/ is a swallowtail (Fig. 3).
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Fig. 3 Improper affine maps
with three swallowtails

Fig. 4 Improper affine maps
with isolated singularities

Proof. Following the same arguments as in the proof of Theorem 2, we have that
˛ is a non degenerate singular curve of  " and the kernel of d " at �.s/ D .s; 0/

is spanned by � D .1; detŒ˛0; ˛00; �2= detŒ˛0; ˛00; ˛000/. But from the hypothesis, 0
is a zero of order 1 of det.� 0; �/ D detŒ˛0; ˛00; �2= detŒ˛0; ˛00; ˛000 and ˛.0/ is a
swallowtail from Theorem 1.

3.2 Isolated Singularities

It is well known, see [1], that the conformal structure of the affine metric around any
isolated singularity of a definite improper affine map is that of an annulus. Moreover,
any definite improper affine map must be symmetric with respect to point reflection
in R

3 through any isolated embedded singularity.
In the case of indefinite improper affine maps and when the conformal structure

of the affine metric around an isolated singularity is that of an annulus we have as
application of the affine Björling problem that (see [1, 24]),

Theorem 4 ([1, 24]). Let U W R �! R
2 � f1g be a 2�-periodic regular analytic

parameterization of a convex curve. Then, there exists a unique (definite) indefinite
improper affine map  , with a non removable isolated singularity, where the affine
conormal is tending to U . Moreover, it is embedded if and only if U.R/ is a Jordan
curve (see Fig. 4).
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Fig. 5 Entire solutions on
the puncture plane obtained
by taking H.z/ D z in
Theorem 5

But in the indefinite case, one may construct improper affine maps with non
removable isolated singularities around which the conformal structure of the affine
metric is a punctured disk D�. Actually, from (11) and (12) it is easy to see the
following result,

Theorem 5. Let A W D �! C�1 be a split-holomorphic function satisfying Az D
H2 for some split-holomorphic function H W D �! C�1. If z0 2 D is an isolated
zero of F , then the indefinite improper affine map W D �! R

3 given, as in (12), by
the split-holomorphic curve ˚.z/ D .j z; A.z/; 1/, is well defined on D� D D�fz0g
and it has a non removable isolated singularity at z0 (Fig. 5).

Remark 3. By using the Theorem 5 we can construct indefinite improper affine
map  W C�1 �! R

3 with a finite number of prescribed isolated singularities at
the points fz1; � � � ; zng. For this is enough to consider a split-holomorphic function
H W C�1 �! C�1 with zeros at the points fz1; � � � ; zng.

4 Global Results

The aim of this section is to determine the global behavior of embedded complete
definite improper affine maps such that any connected component of its singular
set is mapped on a plane in R

3 and those with only a finite number of isolated
singularities.

4.1 The Case of Finitely Many Isolated Singularities

In [9] is proved the existence of entire solutions of (1) with any finite number of
isolated singularities. The situation is totally different for an embedded complete
definite improper affine map, where complete means that the affine metric is
complete outside a compact subset.

Actually, from the generalized symmetry principle one has, [1, Theorem 4.2],
any definite improper affine map must be symmetric with respect to point reflection
in R

3 through any isolated embedded singularity. As immediate consequence we
have

Theorem 6. Any embedded complete definite improper affine map whose singular
set is a finite number of isolated singularities must be rotational, see Fig. 4.



Some Geometric Aspects of the Hessian One Equation 163

Proof. An easy application of the Maximum Principle let us to see that any
embedded complete improper affine map with only one isolated singularity must
be rotational. Consequently, it is enough to prove that if a complete improper affine
map  W ˙ �! R

3 has two different isolated singularities p1 and p2, then it has
infinitely many isolated singularities.

In fact, having in mind that  .˙/ is symmetric with respect to the reflections, s1
and s2, in R

3 through the points p1 and p2, respectively, we get that

s1.p2/; s2.p1/; s2 ı s1.p2/; s1 ı s2.p1/; s1 ı s2 ı s1.p2/; � � �
also are isolated singularities of the map.

4.2 Embedded Complete Definite Improper Affine Map
with a Planar Singular Set

We shall prove the following result:

Theorem 7. Let  W ˙ �! R
3 be an embedded complete definite improper affine

map with a non-degenerate analytic singular set S 	 ˙ such that  .S / lies on a
plane ˘ in R

3. Then  is a snowman rotational improper affine map (see Fig. 2)

Proof. Let K 	 ˙ be a compact containing S in its interior. Thanks to a classical
result of Huber, [10], ˙ n int.K / is conformally a compact Riemann surface with
compact boundary and finitely many points removed which are the ends of  .

But  is an embedding and then each end is asymptotic to one of rotational type
(see [8]). Consider ˙C a connected component of  .˙/ n  .S /, if we add to
˙C [ @˙C the planar bounded regions determined by the convex Jordan curves of
its boundary, we get a globally convex surface Q̇ C in R

3.
It is clear than ˙C has at least one end, otherwise adding its reflexion respect to

the plane ˘ we get a compact flat improper affine map without boundary, which is
impossible, see [21].

Consider ˚ D .B;A; 1/ the holomorphic curve associated to ˙C and denote
by ˙C� the corresponding improper affine map associate to the holomorphic curve
˚�.�jA;�jB; 1/, then ˙C� has the following properties:

1. The boundary of ˙C� is a singular point a 2 H
3.

2. Bearing in mind that any embedded complete end is of rotational type, see [8],
any end of ˙C� is also embedded and complete, moreover ˙C� has the same
number of ends as ˙C.

In other words, ˙C� [ fag is a non compact complete definite improper affine map
with only one isolated singularity. An easy application of the Maximum Principle
says it must be rotational and, consequently, ˙C is also rotational and then the
Theorem follows easily

Definite improper affine maps with a planar singular set also are symmetric.
Actually, we have
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Proposition 1. Any improper affine map containing an analytic singular curve
lying on a plane ˘ in R

3 must be symmetric with respect to the plane ˘ .

Proof. Let  W ˙ �! R
3 be the improper affine map having

˛ D .˛1; ˛2; 0/ W I �! R
3

as a singular curve with affine conormal V D .0; 0; 1/ along ˛, then from (15),  is
determined by the holomorphic (split-holomorphic) curve˚�.z/ D .˛1.z/; ˛2.z/; 1/,
z in a neighborhood ˝� of I in C" where the holomorphic (split-holomorphic)
extension of ˛ is well determined. Then, from the Riemann-Schwarz symmetry
principle we have that ˛i .z/ D ˛i z and, we conclude  .˝�/ is symmetric respect to
the plane ˘ in R

3.

Using this fact, we can generalize the Theorem 7 as follows:

Theorem 8. Let W ˙ �! R
3 be an embedded complete improper affine map with

a non-degenerate analytic singular set S 	 ˙ such that any connected component
of  .S / lies on a plane in R

3. Then  is a snowman rotational improper affine
map.

Remark 4. There is a flat metric associated with (1) that connects the equation to
another interesting family of surfaces. Actually, if we consider on˝ the Riemannian
metric

ds2 D dx2 C dy2; (17)

one may check, from (2) and (17), that h satisfies the Codazzi-Mainardi equations
of classical surface theory with respect to the metric ds2. In other words, the pair
.ds2; h/ of real quadratic forms is a Codazzi pair on ˝ (see for instance [2, 16]
for more information about Codazzi pairs). Moreover, from (1), (2) and (17),
.ds2; h/ has constant extrinsic curvature K.ds2; h/ D " and from the existence
and uniqueness theorem of surfaces in a space form we have that, locally, .˝; ds2/
is isometrically immersed in the 3-dimensional space form M

3.�"/ of constant
sectional curvature �". Conversely, any flat surface in M

3.�"/ has around any point
local coordinates .x; y/ such that its second fundamental form may be written as
in (2) where � is a solution to (1).

In [22] you can find similar results to the above mentioned theorems for flat
surfaces in the hyperbolic space.
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Abstract We present some Lp affine isoperimetric inequalities for Lp geominimal
surface area. In particular, we obtain an analogue of Blaschke-Santaló inequality.
We give an integral formula of Lp geominimal surface area by the p-Petty body.
Furthermore, we introduce the concept of Lp mixed geominimal surface area which
is a nature extension of Lp geominimal surface area. We also extend Lutwak’s
results for Lp mixed geominimal surface area.
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1 Introduction

The classical isoperimetric inequality states that: among all the compact domains
of given surface area S in the Euclidean space R

n, the volume V of a domain K is
maximized only at the ball. The isoperimetric inequality is usually written as

S.K/n � nn!nV.K/n�1
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with equality if and only if the compact domain is a Euclidean ball. Where !n is
the volume of the unit ball in R

n. As we know that the surface area of a body may
change while the affine surface area of a body is affine invariant under unimodular
affine transformations of the body. Therefore, the affine surface area is the essential
notion in the affine isoperimetric inequalities.

The classical affine surface area, was first introduced by Blaschke [3], of smooth
convex bodies from affine differential geometry, and was extended to arbitrary
convex bodies. Its Lp version, called Lp affine surface area, was introduced by
Lutwak in his seminal article [14]. The Lp affine surface area has been regarded
as a core of the Lp Brunn-Minkowski theory which is a nature extension of the
classical Brunn-Minkowski theory. Lp affine surface area has been extended to all
�n ¤ p 2 R by its nice integral expression, and further extended to all p 2 R

and to more general convex bodies (see [17, 23, 24]). There are many researches
working on the Lp affine surface area (see e.g., [7, 12, 16, 17, 23–26, 29]). The Lp
affine surface area are related closely to the theory of valuation (see [1,2,9,10]), the
information theory of convex bodies (see [6, 18, 27, 28]) and the approximation of
convex bodies by polytopes (see e.g., [4, 8, 24]). In [14, 29], we can find the affine
isoperimetric inequalities for Lp affine surface area: among all the convex bodies
with centroid at the origin of given volume in the Euclidean space Rn, the Lp affine
surface area is maximized (minimum) only at the ellipsoids.

The classical geominimal surface area was first introduced by Petty [19] in
1974. It is another affine invariant under unimodular affine transformations. The
classical geominimal surface area and its Lp extensions, which are introduced by
Lutwak, serve as bridges connecting affine differential geometry, relative differential
geometry and Minkowski geometry. Affine isoperimetric inequalities related to the
geominimal surface area are not only closely connected to many affine isoperimetric
inequalities involving affine surface area (see e.g., [7,9,12,14,19,20,22]), but clarify
the equality conditions of many of these inequalities. For example, combining
Petty’s theory of geominimal surface area with the information on the affine surface
area, Schneider [21] proved that the affine surface areas of K and L can only be
equal if K D L. In [32], the authors proved some isoperimetric inequalities for Lp
geominimal surface area. The affine isoperimetric inequalities for Lp geominimal
surface area can be stated as: among all the convex bodies with centroid at the origin
of given volume, the Lp geominimal surface area is maximized (minimum) only at
the ellipsoids.

Unlike the Lp affine surface area, Lp geominimal surface area has no nice
integral expression (except for some especial bodies [33]). This will lead to a big
obstacle on extending the Lp geominimal surface area. Fortunately, motivated by
an equivalent formula of the Lp affine surface area, the Lp geominimal surface
area was successfully extended to all �n ¤ p 2 R by Ye [30]. He obtained the
affine isoperimetric inequality and the Santaló style inequality for the generalized
Lp geominimal surface area. Recently, the Lp geominimal surface area has been
extended to Lp mixed geominimal surface area (see [31, 33]). A big effort of this
article will be devoted to the affine isoperimetric inequalities for Lp geominimal
surface area.
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2 Notation and Definitions

We say that K 	 R
n is a convex body if K is a compact, convex subset in R

n with
non-empty interior. The set of all convex bodies is written as K , and its subset K0

denotes the set of convex bodies containing the origin in their interiors. Similarly, we
use Kc for the set of convex bodies with centroid at the origin. We use Bn

2 D fx 2
R
n W kxk � 1g and Sn�1 D fx 2 R

n W kxk D 1g for the unit ball and the unit sphere
in Euclidean R

n, respectively. For a subsetK 	 R
n, its Hausdorff content is denoted

by V.K/. In particular, the volume of Bn
2 is written as !n D �n=2=� .1C n=2/.

For K 2 K0, its support function hK.�/ D h.K; �/ W Sn�1 ! Œ0;1/ is defined
by hK.u/ D maxfhx; ui W x 2 Kg: Where h�; �i is the standard inner product in R

n.
Associated with each K 2 K0, one can uniquely define its polar body Kı 2 K0 by

Kı D fx 2 R
n W hx; yi � 1; 8y 2 Kg:

A set L 	 R
n is star shape about the origin 0 if for each x 2 L, the line segment

from 0 to x is contained in L. The radial function of L, denoted by �L.�/ D �.L; �/ W
Sn�1 ! Œ0;1/, is defined by �L.u/ D maxf� � 0 W �u 2 Lg: If �L is positive
and continuous, we call L is a star body about the origin. The set of all star bodies
about the origin is denoted by S0. Two star bodies L1;L2 2 S0 are dilates of one
another if �L1.u/=�L2.u/ is independent of u 2 Sn�1. The volume of L 2 S0 can
be calculated by

V.L/ D 1

n

Z
Sn�1

�nL.u/d�.u/;

where � is the spherical measure on Sn�1. It is easily verified that .Kı/ı D K for
all K 2 K0. Moreover,

hKı.u/�K.u/ D 1 and �Kı.u/hK.u/ D 1; for all u 2 Sn�1:

For K 2 K , there exists a unique point s.K/ in the interior of K, called the
Santaló point of K, such that

V..�s.K/CK/ı/ D minfV..�x CK/ı/ W x 2 intKg:
Let Ks denote the set of convex bodies having their Santaló point at the origin.
Thus, we have

K 2 Ks if and only if Kı 2 Kc:

For real p � 1, �;� � 0 (not both zero), the Firey linear combination
� �K Cp � � L of K;L 2 K0 is defined by (see [14])

h.� �K Cp � � L; �/p D �h.K; �/p C �h.L; �/p:
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For K;L 2 K0 and p � 1, the p-mixed volume Vp.K;L/ of K and L, was
defined in [13] as

n

p
Vp.K;L/ D lim

"!0

V .K Cp " � L/ � .K/
"

:

It was proved in [13] that for each K 2 K0, there is a positive Borel measure
Sp.K; �/ on Sn�1 such that, for each L 2 K0 and p � 1,

Vp.K;L/ D 1

n

Z
Sn�1

hL.u/
pdSp.K; u/:

The surface area measure Sp.K; �/ of K is a positive Borel measure on Sn�1, it is
absolutely continuous with respect to the classical surface area S.K; �/ of K, and
has Radon–Nikodym derivative

dSp.K; �/ D hK.�/1�pdS.K; �/:
We write K 2 F0 if K 2 K0 has a curvature function, namely, the measure S.K; �/
is absolutely continuous with respect to the spherical measure � . Hence, there is a
function fK W Sn�1 ! R, the curvature function of K, such that,

dS.K; u/ D fK.u/d�.u/: (1)

For K 2 F0 and p � 1, the Lp curvature function fp.K; u/ was defined by
(see [14])

fp.K; u/ D hK.u/1�pfK.u/: (2)

We write Fc D F0\Kc and Fs D F0\Ks for convex bodies in F0 with centroid
and Santaló point at the origin respectively. The set of all convex bodies in F0 with
continuous positive curvature function fK.�/ on Sn�1 is denoted by FC

0 .

3 Lp Geominimal Surface Area

One of the most famous open problems in convex geometric analysis is closely
related to volume V.Kı/ of the polar body of K 2 K0. For example, the Mahler’s
conjecture asks for the most optimal lower bound of V.Kı/ among all bodies
K 2 K0 of volume one. The Mahler’s conjecture is the reverse problem of the
celebrated Blaschke–Santaló inequality, which is an important affine isoperimetric
inequality in convex geometric analysis. The Blaschke–Santaló inequality can be
stated as: if K 2 Ks , then

V.K/V.Kı/ � !2n; (3)

with equality if and only if K is an ellipsoid.
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For each compact star-shaped (about the origin) K in R
n and for real number

p � 1, the polar Lp centroid body � ı
p K of K was defined by (see [15])

�
�p
� ı

p K
.u/ D 1

cn;pV .K/

Z
K

ju � xjpdx;

where the integration is with respect to Lebesgue measure and cn;p D
!nCp=!2!p�1. The normalization above is chosen so that for the unit ball Bn

2 ,
we have � ı

p B
n
2 D Bn

2 : In [15] the authors proved the following Lp centro-affine
inequality.

Theorem 1. If K 2 S0, then for 1 � p � 1,

V.K/V.� ı
p K/ � !2n; (4)

with equality if and only if K is an ellipsoid centered at the origin .

As explained in [15], if K is an origin-symmetric convex body, then � ı
p K is

just the polar body Kı of K. Thus, for p D 1, the Lp centro-affine inequality (4)
reduces to (3). Recently, Haberl and Schuster [5] showed that there is an interesting
asymmetric Lp version of (3).

For K 2 K0 and p � 1, the Lp geominimal surface area, Gp.K/, was defined
in [14] (the case p D 1 defined in [19]) by

!p=nn Gp.K/ D inf
Q2K0

fnVp.K;Q/V.Qı/p=ng:

Let

T D fT 2 K W s.T / D 0; V .T ı/ D !ng:

Lemma 1 (and Definition). (see [14]). For each K 2 K0 and p � 1, there exists
a unique body TpK 2 T with Gp.K/ D nVp.K; TpK/.

The unique body TpK is called the p-Petty body of K. When p D 1, the
subscript will often be suppressed and defined by Petty [19].

Associated with Lp geominimal surface area, Lutwak [14] proved the following
Lp affine isoperimetric inequality.

Theorem 2. If p � 1 and K 2 K0, then

Gp.K/
n � nn!pn V .K/n�p;

with equality if and only if K is an ellipsoid.

In [32], the authors proved the Blaschke-Santaló type inequality for Lp geomin-
imal surface area Gp.K/.



172 B. Zhu et al.

Theorem 3. If K 2 Kc and 1 � p < n, then

Gp.K/Gp.K
ı/ � .n!n/2;

with equality if and only if K is an ellipsoid.

For the case of 1 � p <1 of Theorem 3, one can refer [33]. Theorem 3 strengthens
the following result proved by Lutwak in [14]: If K 2 Kc , then for p � 1

˝p.K/˝p.K
ı/ � .n!n/2;

with equality if and only if K is an ellipsoid. Here, ˝p is the Lp affine surface area
introduced by Lutwak in [14]: For p � 1 and K 2 F0,

˝p.K/ D
Z
Sn�1

fp.K; u/
n

nCp d�.u/:

4 An Affine Isoperimetric Inequality Between Gp and ˝p

Call a body K 2 F0 is of p-elliptic type if the function fp.K; �/
1

nCp is the support
function of a convex body in K0; i.e., K is of p-elliptic type if there exists a body
Q 2 K0 such that

fp.K; �/ D h.Q; �/�.nCp/:

Then, Lutwak defined (see [14])

Vp D fK 2 F0 W there exists a Q 2 K0 with fp.K; �/ D h.Q; �/�.nCp/g:

We say Theorem 3 strengthens Lutwak’s result in Sect. 3 is due to the following
Petty’s theory of Lp geominimal surface area with the information on the general
Lp affine surface area proved by Lutwak in [14].

Theorem 4. If p � 1 and K 2 F0, then

˝p.K/
nCp � .n!n/pGp.K/n; (5)

with equality if and only if K is Vp .

The case p D 1 of inequality (5) was proved by Petty [19] forK 2 F0 and extended
by Lutwak [14] to K 2 K0 without equality condition. The equality condition of
Lutwak’s extension for K 2 K0 and for p D 1 was proved by Schneider recently
in [21].
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The equality condition for Theorem 4 was only known under the additional
assumption that K 2 F0. Lutwak proved the inequality (5) for K 2 K0 and p � 1
without the equality condition. Here, we extend Theorem 4 for K 2 F0 to the
following result for K 2 K0.

Theorem 5. If p � 1 and K 2 K0, then

˝p.K/
nCp � .n!n/pGp.K/n; (6)

with equality if and only if K is Vp .

Proof. Let K 2 K0. By the definition of p-Petty body (Lemma 1), there exists a
unique convex body TpK 2 T with

Gp.K/ D
Z
Sn�1

h
p
TpK

.u/dSp.K; u/: (7)

With respect to spherical Lebesgue measure, the measure Sp.K; �/ has a
Lebesgue decomposition into the sum of an absolutely continuous measure Sap.K; �/
and a singular measure Ssp.K; �/. By (1) and (2), it is known that

Sap.K; !/ D
Z
!

dSap.K; u/ D
Z
!

fp.K; u/d�.u/; for Borel sets ! 	 Sn�1.
(8)

With (7) this gives

Gp.K/ D
Z
Sn�1

h
p
TpK

.u/dSap.K; u/C
Z
Sn�1

h
p
TpK

.u/dSsp.K; u/

�
Z
Sn�1

h
p
TpK

.u/fp.K; u/d�.u/: (9)

By Hölder’s inequality, we obtain
Z
Sn�1

h
p
TpK

.u/fp.K; u/d�.u/ �
� Z

Sn�1

hTpK.u/
�nd�.u/

�� p
n

�
� Z

Sn�1

fp.K; u/
n

nCp d�.u/
� nCp

n

D ŒnV .T ı/�
p
n ˝p.K/

nCp
n

D Œn!n�
p
n ˝p.K/

nCp
n :

The inequality (6) follows. Suppose that equality holds here. Then equality holds
in Hölder’s inequality. This implies there is a positive constant c with

ch
�.nCp/
TpK

.u/ D fp.K; u/: (10)
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But since equality holds also in (9), and hTpK > 0 everywhere on Sn�1, the
singular part Ssp.K; �/ is the zero measure. Now it follows from (8) and (10)

that ch�.nCp/
TpK

.u/ is a density for Sp.K; �/. Thus, K has the curvature function

fp.K; u/ D ch
�.nCp/
TpK

.u/, and fp.K; u/
� 1
nCp is a support function. Therefore,

K 2 Vp , that is, K is of p-elliptic type, which completes the proof. ut

5 Lp Mixed Geominimal Surface Area

In [33], we provided an integral formula of Lp geominimal surface area by the
p-Petty body as follows.

Definition 1. For eachK 2 F0, there exists a unique convex body T D TpK 2 T
with

Gp.K/ D
Z
Sn�1

h
p
T .u/fp.K; u/d�.u/: (11)

Furthermore, we defined the Lp mixed geominimal surface area, Gp.K1; : : : ; Kn/,
of K1; : : : ; Kn 2 F0, for all p � 1.

Definition 2. For each Ki 2 F0, there exists a unique convex body (Petty of Ki )
Ti D TpKi 2 T (i D 1; : : : ; n) with

Gp.K1; : : : ; Kn/ D
Z
Sn�1

Œh
p
T1
.u/fp.K1; u/ � � � hpTn.u/fp.Kn; u/

1
n d�.u/: (12)

Let GL.n/ and SL.n/ denote the group of nonsingular linear transformations
and special linear transformations, respectively. We proved that the Lp mixed
geominimal surface area is affine invariant.

Theorem 6. If p � 1 and K1; : : : ; Kn 2 F0, then for � 2 GL.n/,

Gp.�K1; : : : ; �Kn/ D jdet.�/j
n�p
n Gp.K1; : : : ; Kn/:

In particular, if � 2 SL.n/, then Gp.K1; : : : ; Kn/ is affine invariant, that is,

Gp.�K1; : : : ; �Kn/ D Gp.K1; : : : ; Kn/:

Let V.K1; : : : ; Kn/ be the mixed volume of K1; : : : ; Kn 2 K . Then the
Minkowski inequality for mixed volume is

V.K1; : : : ; Kn/
n � V.K1/ � � �V.Kn/;

with equality if and only if Ki (1 � i � n) are homothetic.
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The analogous Minkowski inequality for dual mixed volume QV .K1; : : : ; Kn/,
introduced by Lutwak in [11], is

QV .K1; : : : ; Kn/
n � V.K1/ � � �V.Kn/;

with equality if and only if Ki (1 � i � n/ are dilates of one another.
We also proved some affine isoperimetric inequalities for Lp mixed geominimal

surface areas, such as the following isoperimetric inequality.

Theorem 7. Let Ki 2 F0, 1 � i � n.

(i). For p � 1,

�
Gp.K1; : : : ; Kn/

Gp.B
n
2 ; : : : ; B

n
2 /

�n
�
�
V.K1/

V .Bn
2 /
� � � V.Kn/

V .Bn
2 /

� n�p
n

;

with equality if the Ki are ellipsoids that are dilates of each other.
(ii). For 1 � p � n,

Gp.K1; : : : ; Kn/

Gp.B
n
2 ; : : : ; B

n
2 /
�
�
V.K1; : : : ; Kn/

V .Bn
2 ; : : : ; B

n
2 /

� n�p
n

;

with equality if the Ki are ellipsoids that are dilates of each other.
(iii). For p � n,

Gp.K1; : : : ; Kn/

Gp.B
n
2 ; : : : ; B

n
2 /
�
 QV .K1; : : : ; Kn/

QV .Bn
2 ; : : : ; B

n
2 /

! n�p
n

;

with equality if the Ki are ellipsoids that are dilates of each other.
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Real Hypersurfaces in Complex Two-Plane
Grassmannians with Commuting Jacobi
Operators

Eunmi Pak, Young Jin Suh, and Changhwa Woo

Abstract In this paper, we have considered new commuting conditions, that is,
.R��/S D S.R��/ (resp. . NRN�/S D S. NRN�/) between the Jacobi operators R�
(resp. NRN ), the structure tensor field � and the Ricci tensor S for real hypersurfaces
M in G2.CmC2/. With such a condition we give a complete classification of Hopf
hypersurfaces M in G2.CmC2/.

1 Introduction

The geometry of real hypersurfaces in Hermitian symmetry spaces is one of the
interesting parts in the field of differential geometry. The complex two-plane
Grassmannians G2.CmC2/ is a kind of Hermitian symmetry spaces of compact
irreducible type with rank 2. It consists of all complex two-dimensional linear
subspaces in C

mC2. Remarkably, it is equipped with both a Kähler structure J and a
quaternionic Kähler structure J (not containing J ) satisfying JJ� D J�J .� D
1; 2; 3/ where fJ�g�D1;2;3 is an orthonormal basis of J. When m D 1, G2.C3/
is isometric to the two-dimensional complex projective space CP 2 with constant
holomorphic sectional curvature eight. When m D 2, we note that the isomorphism
Spin.6/ ' SU.4/ yields an isometry between G2.C4/ and the real Grassmann
manifoldGC

2 .R
6/ of oriented two-dimensional linear subspaces in R

6. In this paper,
we assume m � 3, (see Berndt and Suh [2] and [3]).

Let us consider a hypersurface M in G2.CmC2/ and denoted by N a local unit
normal vector field toM . Hereafter unless otherwise stated, we consider that X and
Y are any tangent vector field onM . By using the Kähler structure J of G2.CmC2/,
we can define a structure vector field by � D �JN , which is said to be a Reeb
vector field. If � is invariant under the shape operator A, it is said to be Hopf. The
one-dimensional foliation of M by the integral manifolds of the Reeb vector field �
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is said to be a Hopf foliation of M . We say that M is the Hopf hypersurface in
G2.C

mC2/ if and only if the Hopf foliation ofM is totally geodesic. IfX is a tangent
vector on M , we may put

JX D �X C �.X/N; J�X D ��X C ��.X/N

where �X (resp. ��X ) is the tangential part of JX (resp. J�X ) and �.X/ D g.X; �/
(resp. ��.X/ D g.X; ��/) is the coefficient of normal part of JX (resp. J�X ). In this
case, we call � the structure tensor field of M . Using the Gauss and Weingarten
formulas in [5, Sects. 1 and 2], the Kähler condition NrJ D 0 gives rX� D �AX for
any tangent vector fieldX onM , where r (resp. Nr) denotes the covariant derivative
on M (resp. G2.CmC2/). From this, it can be easily checked that M is Hopf if and
only if the Reeb vector field � is Hopf.

From the quaternionic Kähler structure J of G2.CmC2/, there naturally exist
almost contact three-structure vector fields {�1; �2; �3} defined by �� D �J�N ,
� D 1; 2; 3. Now let us denote by Q? D Spanf �1; �2; �3g a three-dimensional
distribution in a tangent vector space TpM at p 2 M . In addition, Q stands for the
orthogonal complement of Q? in TpM . Then it becomes a quaternionic maximal
subbundle of TpM . Thus the tangent space of M consists of the direct sum of Q
and Q? as follows: TpM D Q ˚Q?.

For these two distributions Œ� D Spanf �g and Q? D Spanf �1; �2; �3g, we
may consider two natural invariant geometric properties under the shape operator A
of M , that is, AŒ� 	 Œ� and AQ? 	 Q?. By using the result of Alekseevskii [1],
Berndt and Suh [2] have classified all real hypersurfaces with the invariant properties
in G2.CmC2/ as follows:

Theorem 1. Let M be a connected real hypersurface in G2.CmC2/, m � 3. Then
both Œ� and Q? are invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic G2.C
mC1/ in

G2.C
mC2/, or

(B) m is even, say m D 2n, and M is an open part of a tube around a totally
geodesic HPn in G2.CmC2/.

In the case of .A/, we will sayM of Type .A/. Similarly in the case of .B/, we will
say M of Type .B/.

Until now, by using Theorem 1, many geometers have investigated some
chracterization of Hopf hypersurfaces in G2.CmC2/ with geometric quantities like
shape operator, structure (or normal) Jacobi operator, Ricci tensor, and so on.
Commuting Ricci tensor means that the Ricci tensor S and the structure tensor
field � commute, that is, S� D �S . From such a point of view, Suh [8] has given
characterizations of real hypersurfaces of Type .A/ with commuting Ricci tensor as
follows:

Theorem 2. LetM be a connected orientable Hopf hypersurface inG2.CmC2/with
commuting Ricci tensor, m � 3. Then M is locally congruent to an open part of a
tube around a totally geodesic G2.CmC1/ in G2.CmC2/.
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Lee and Suh [5] gave a characterization of real hypersurfaces of Type .B/ in
Theorem 1 as follows:

Theorem 3. Let M be a Hopf hypersurface in G2.CmC2/, m � 3. Then the Reeb
vector field � belongs to the distribution Q if and only if M is locally congruent to
an open part of a tube around a totally geodesic HPn inG2.CmC2/,m D 2n, where
the distribution Q denotes the orthogonal complement of Q? in TxM , x 2 M . In
other words, M is locally congruent to of a real hypersurface of Type .B/.

On the other hand, a Jacobi field along geodesics of a given Riemannian manifold
. NM; Ng/ is an important role in the study of differential geometry. It satisfies a
well-known differential equation which inspires Jacobi operators. It is defined by
. NRX.Y //.p/ D . NR.Y;X/X/.p/, where NR denotes the curvature tensor of NM and
X , Y denote any vector fields on NM . It is known to be a self-adjoint endomorphism
on the tangent space Tp NM , p 2 NM . Clearly, each tangent vector field X to
NM provides a Jacobi operator with respect to X . Thus the Jacobi operator on a

real hypersurface M of G2.CmC2/ with respect to � (resp. N ) is said to be a
structure Jacobi operator (resp. normal Jacobi operator) and will be denoted by
R� (resp. NRN ).

For a commuting problem concerned with structure Jacobi operator R� and
structure tensor � of M in G2.CmC2/, that is, R�� D �R� , Suh and Yang [9] gave
a characterization of a real hypersurface of Type .A/ in G2.CmC2/. Also, related
to a commuting problem for the normal Jacobi operator NRN , Pérez, Jeong and
Suh [7] gave a characterization of a real hypersurface of Type .A/ in G2.CmC2/.
Motivated by these results, we consider in this paper a new commuting condition
for three operators; the restricted structure Jacobi operator R�� and the Ricci tensor
S given by

.R��/S D S.R��/; (C-1)

and give a classification of Hopf hypersurfaces in G2.CmC2/ satisfying (C-1) as
follows:

Theorem 4. Let M be a Hopf hypersurface in complex two-plane Grassmannian
G2.C

mC2/, m � 3 with R��S D SR��. If the smooth function ˛ D g.A�; �/ is
constant along the direction of � , thenM is locally congruent with an open part of a
tube of some radius r 2 .0; �

2
p
2
/ around a totally geodesicG2.CmC1/ inG2.CmC2/.

Respectively, we may consider a commuting condition between the restricted
normal Jacobi operator NRN� and the Ricci tensor S given by

. NRN�/S D S. NRN�/; (C-2)

and give a classification of Hopf hypersurfaces in G2.CmC2/ satisfying (C-2) as
follows:
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Theorem 5. Let M be a Hopf hypersurface in complex two-plane Grassmannians
G2.C

mC2/, m � 3 satisfying (C-2). If the smooth function ˛ D g.A�; �/ is constant
along the direction of � , then M is locally congruent to an open part of a tube of
some radius r 2 .0; �

2
p
2
/ around a totally geodesic G2.CmC1/ in G2.CmC2/.

Actually, according to the geometric meaning of the condition (C-1)(resp. (C-2)),
any eigenspaces of the Ricci tensor S on M in G2.CmC2/ are invariant under
R�� (resp. NRN�). In Sects. 2 and 3, we will give a complete proof of Theorems 4
and 5, respectively. We refer to [1–3] and [5] for Riemannian geometric structures
of G2.CmC2/, m � 3.

2 Proof of Theorem 4

In this section, by using geometric quantities in [8] and [9], we will give a complete
proof of our Theorem 4. To prove it, we assume that M is a Hopf hypersurface in
G2.C

mC2/ satisfying (C-1), that is,

.R��/SX D S.R��/X: (1)

From now on, X ,Y and Z always stand for any tangent vector fields on M .
Let us introduce the Ricci tensor S and structure Jacobi operator R� , briefly. The

curvature tensor R.X; Y /Z of M in G2.CmC2/ can be derived from the curvature
tensor NR.X; Y /Z of G2.CmC2/. Then by contraction and using the geometric
structure JJ� D J�J .� D 1; 2; 3/, connecting the Kähler structure J and the
quaternionic Kähler structure J� ,.� D 1; 2; 3/, we can obtain the Ricci tensor S
given by

g.SX; Y / D
X4m�1

iD1 g.R.ei ; X/Y; ei /;

where fe1; � � �; e4m�1g denotes a orthonormal basis of the tangent space TxM of M ,
x2M , in G2.CmC2/ (see [8]).

From the definition of the Ricci tensor S and by fundamental formulas in
[8, Sect. 2], we have

SX D
4m�1X
iD1

R.X; ei /ei

D .4mC 7/X � 3�.X/� C hAX � A2X

C
3X

�D1
f�3��.X/�� C ��.�/���X � �.��X/��� � �.X/��.�/��g;

(2)
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where h denotes the trace of A, that is, h D TrA (see [6, (1.4)]). By inserting
Y D Z D � into the curvature tensor R.X; Y /Z, using the condition of being Hopf
and fundamental formulas in [9, Sect. 2], the structure Jacobi operator R� becomes

R�.X/ D R.X; �/�

D X � �.X/� �
3X

�D1

n
��.X/�� � �.X/��.�/��

C 3g.��X; �/��� C ��.�/���X
o
C ˛AX � ˛2�.X/�

(3)

(see [4, Sect. 4]).
Using these Eqs. (1), (2) and (3), we can prove that � of M belongs to either Q

or Q?.

Lemma 1. Let M be a Hopf hypersurface in G2.CmC2/, m � 3, satisfying (C-1).
If the principal curvature ˛ D g.A�; �/ is constant along the direction of � , then �
belongs to either the distribution Q or the distribution Q?.

Now, we shall divide our consideration into two cases that � belongs to either
Q? or Q, respectively. Next we further study the case � 2 Q?. We may put
� D �1 2 Q? for convenience.

Lemma 2. Let M be a Hopf hypersurface in G2.CmC2/, m � 3. If the Reeb vector
field � belongs to Q?, then the Ricci tensor S commutes the shape operator A, that
is, SA D AS .

Lemma 3. Let M be a Hopf hypersurface in G2.CmC2/, m � 3. If the Reeb vector
field � belongs to Q?, we have the following formulas

(i) �SX D 2�3.SX/�2 � 2�2.SX/�3 C �1SX C Rem.X/ and
(ii) S�X D 2�3.X/S�2 � 2�2.X/S�3 C S�1X C Rem.X/,

where Rem.X/ denotes 4.mC 2/f2�2.X/�3 � 2�3.X/�2 C �X � �1Xg.
By virtue of Lemmas 2 and 3, we assert the following:

Lemma 4. Let M be a Hopf hypersurface in G2.CmC2/, m � 3 satisfying (1).
If � 2 Q?, we have A.�S � S�/ D .�S � S�/A.

Lemma 5. LetM be a Hopf real hypersurface in G2.CmC2/,m � 3. IfM satisfies
A.�S � S�/ D .�S � S�/A and � 2 Q?, then we have S� D �S .

Summing up Lemmas 2, 3, 4, 5 and Theorem 2, we conclude that ifM is a Hopf
hypersurface in complex two-plane Grassmannians G2.CmC2/ satisfying (1), then
M must be of Type .A/.

Hereafter, let us check whether the Ricci tensor of a model space of Type .A/
satisfies the commuting condition (C-1).
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From [2, Proposition 3], we obtain the following

SX D

8̂
<̂
ˆ̂:

.4mC h˛ � ˛2/� if X D � 2 T˛

.4mC 6C hˇ � ˇ2/�� if X D �� 2 Tˇ

.4mC 6C h� � �2/X if X 2 T�

.4mC 8/X if X 2 T�;

R�.X/ D

8̂
<̂
ˆ̂:

0 if X D � 2 T˛
.˛ˇ C 2/�� if X D �� 2 Tˇ
.˛�C 2/�X if X 2 T�
0 if X 2 T�; and

.R��/X D

8̂
<̂
ˆ̂:

0 if X D � 2 T˛
.˛ˇ C 2/��� if X D �` 2 Tˇ
.˛�C 2/�X if X 2 T�
0 if X 2 T�:

S.R��/X D

8̂
<̂
ˆ̂:

0 if X D � 2 T˛
.˛ˇ C 2/.4mC 6C hˇ � ˇ2/��� if X D �` 2 Tˇ
.˛�C 2/.4mC 6C h� � �2/�X if X 2 T�
0 if X 2 T�:

Combining these three formulas, it follows that

.R��/SX � SR��X D

8̂
<̂
ˆ̂:

0 if X D � 2 T˛
0 if X D �` 2 Tˇ
0 if X 2 T�
0 if X 2 T�:

When � 2 Q?, a Hopf hypersurface M in G2.CmC2/ satisfying (C-1) is locally
congruent to of Type .A/ by virtue of Theorem 2.

Now let us consider our problem for a model space of Type .B/ which will be
denoted by MB . In order to do this, let us prove that .R��/S D SR�� related to
the MB . On TxMB , x 2 MB , the Eqs. (2) and (3) are reduced to the following
equations, respectively:

SX D .4mC 7/X � 3�.X/�ChAX�A2X �
3X

�D1
f3��.X/�� C �.��X/���g and

(4)

R�.X/ D X � �.X/� C ˛AX � ˛2�.X/� �
3X

�D1

n
��.X/�� C 3��.�X/���

o
:

(5)
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From (4) and (5) and [2, Proposition 2], we obtain the following

SX D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

.4mC 4C h˛ � ˛2/� if X D � 2 T˛

.4mC 4C hˇ � ˇ2/�` if X D �` 2 Tˇ

.4mC 8/��` if X D ��` 2 T�

.4mC 7C h� � �2/X if X 2 T�

.4mC 7C h� � �2/X if X 2 T�;

(6)

R�.X/ D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

0 if X D � 2 T˛
˛ˇ�` if X D �` 2 Tˇ
4��` if X D ��` 2 T�
.1C ˛�/�X if X 2 T�
.1C ˛�/�X if X 2 T�; and

(7)

.R��/X D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

0 if X D � 2 T˛
4��` if X D �` 2 Tˇ
�˛ˇ�` if X D ��` 2 T�
.1C ˛�/�X if X 2 T�
.1C ˛�/�X if X 2 T�:

(8)

S.R��/X D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

0 if X D � 2 T˛
4.4mC 8/��` if X D �` 2 Tˇ
�˛ˇ.4mC 4C hˇ � ˇ2/�` if X D ��` 2 T�
.1C ˛�/.4mC 7C h� � �2/�X if X 2 T�
.1C ˛�/.4mC 7C h� � �2/�X if X 2 T�:

(9)

From (6), (7),(8) and (9), it follows that

.R��/SX � SR��X D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

0 if X D � 2 T˛
4.hˇ � ˇ2 � 4/��` if X D �` 2 Tˇ
˛ˇ.hˇ � ˇ2 � 4/�` if X D ��` 2 T�
.1C ˛�/.� � �/.h � � � �/�X if X 2 T�
.1C ˛�/.� � �/.h � � � �/�X if X 2 T�:

(10)

By calculation, we have � C � D ˇ on MB . From (10), we see that MB

satisfies (C-1), only when h D ˇ and hˇ � ˇ2 � 4 D 0. This gives rise to
contradiction.

Hence summing up these considerations, we give a complete proof of our
Theorem 1 in the introduction.
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3 Proof of Theorem 5

In this section, by using the notion of normal Jacobi operator NR.X;N /N 2 TxM ,
x 2 M for real hypersurfaces M in G2.CmC2/ and geometric quantities in [7] and
[8], we give a complete proof of Theorem 5.

From now on, let M be a Hopf hypersurface in G2.CmC2/ satisfying

. NRN�/SX D S. NRN�/X (11)

for any tangent vector field X on M . The normal Jacobi operator NRN of M is
defined by NRN .X/ D NR.X;N /N for any tangent vector X 2 TxM , x 2 M . In
[7, Introduction], we have the following equation

NRN .X/ DX C 3�.X/� C 3
3X

�D1
��.X/��

�
3X

�D1
f��.�/���X � ��.�/�.X/�� � ��.�X/���g:

(12)

Lemma 6. Let M be a Hopf hypersurface in G2.CmC2/, m � 3, satisfying (C-2).
If the principal curvature ˛ D g.A�; �/ is constant along the direction of � , then �
belongs to either the distribution Q or the distribution Q?.

Lemma 7. LetM be a Hopf hypersurface in G2.CmC2/ satisfying (11). If � 2 Q?,
we have S� D �S .

In the case of � 2 Q?, by using (i) and (ii) in Lemmas 3, and 7, we can easily
check that the commuting condition S� D �S is equivalent condition to . NRN�/S D
S. NRN�/.

Therefore by Lemma 7 and Theorem 2, we can assert that:

Remark 1. Real hypersurfaces of Type .A/ inG2.CmC2/ satisfy the condition (C-2).

When � 2 Q, a Hopf hypersurface M in G2.CmC2/ satisfying (C-2) is locally
congruent to one of Type .B/ by virtue of Theorem 3 given in the introduction.

Let us consider our problem for a model space of Type .B/which will be denoted
by MB . In order to do this, let us calculate . NRN�/S D S NRN� of MB . From
[2, Proposition 2], we obtain

NRN .X/ D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

4� if X D � 2 T˛
4�` if X D �` 2 Tˇ
0 if X D ��` 2 T�
X if X 2 T�
X if X 2 T�; and

(13)
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. NRN�/X D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

0 if X D � 2 T˛
0 if X D �` 2 Tˇ
�4�` if X D ��` 2 T�
�X if X 2 T�
�X if X 2 T�:

(14)

From (13) and (14), it follows that

. NRN�/SX � S NRN�X D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

0 if X D � 2 T˛
0 if X D �` 2 Tˇ
4.hˇ � ˇ2 � 4/�` if X D ��` 2 T�
.� � �/.h � � � �/�X if X 2 T�
.� � �/.h � � � �/�X if X 2 T�:

So we see that MB satisfies (C-2), only when h D ˇ and hˇ � ˇ2 � 4 D 0. This
gives rise to contradiction.

Hence summing up these considerations, we give a complete proof of our
Theorem 5 in the introduction.
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Parallelism on Jacobi Operators for Hopf
Hypersurfaces in Complex Two-Plane
Grassmannians

Eunmi Pak and Young Jin Suh

Abstract In relation to the generalized Tanaka-Webster connection, we consider a
new notion of parallel Jacobi operator for real hypersurfaces in complex two-plane
Grassmannians G2.CmC2/ and show results about real hypersurfaces in G2.CmC2/
with generalized Tanaka-Webster parallel structure Jacobi operator and normal
Jacobi operator.

1 Introduction

Respect to real hypersurfaces with parallel curvature tensor, many differential
geometers studied in complex projective spaces or in quaternionic projective
spaces [7, 10, 11, 13] and [16]. From another perspective, it is interesting to classify
real hypersurfaces in complex two-plane Grassmannians with parallel shape opera-
tor, structure Jacobi operator and Ricci tensor (see [3, 4, 12, 14, 17–20] and [21]).

A complex two-plane Grassmannian G2.CmC2/ consists of all complex two-
dimensional linear subspaces in C

mC2. This Riemannian symmetric space is the
unique compact irreducible Riemannian manifold being equipped with both a
Kähler structure J and a quaternionic Kähler structure J not containing J . Then,
we could naturally consider two geometric conditions for hypersurfaces M in
G2.C

mC2/, namely, that the one-dimensional distribution Œ� D Spanf�g and the
three-dimensional distribution D? D Spanf�1; �2; �3g are both invariant under the
shape operator A of M [2], where the Reeb vector field � is defined by � D �JN ,
N denotes a local unit normal vector field ofM inG2.CmC2/ and the almost contact
three-structure vector fields �� are defined by �� D �J�N .� D 1; 2; 3).

By using the result in Alekseevskii [1], Berndt and Suh [2] proved the following :

Theorem 1. Let M be a connected orientable real hypersurface in G2.CmC2/,
m � 3. Then both Œ� and D? are invariant under the shape operator of M if and
only if

E. Pak (�) • Y.J. Suh
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(A) M is an open part of a tube around a totally geodesic G2.C
mC1/ in

G2.C
mC2/, or

(B) m is even, say m D 2n, and M is an open part of a tube around a totally
geodesic HPn in G2.CmC2/.

When we consider the Reeb vector field � in the expression of the curvature
tensor R for a real hypersurface M in G2.CmC2/, the structure Jacobi operator R�
can be defined as

R�.X/ D R.X; �/�;

for any tangent vector field X on M .
By using the structure Jacobi operator R� , Jeong, Pérez and Suh considered the

notion of parallel structure Jacobi operator, that is, rXR� D 0 for any vector field
X on M and gave a non-existence theorem (see [4]).

On the other hand, the Reeb vector field � is said to be Hopf if it is invariant
under the shape operator A. The one dimensional foliation of M by the integral
manifolds of the Reeb vector field � is said to be the Hopf foliation of M . We say
that M is a Hopf hypersurface in G2.CmC2/ if and only if the Hopf foliation of M
is totally geodesic. By the formulas in [5, Sects. 2, 3] it can be easily checked that
M is Hopf if and only if the Reeb vector field � is Hopf.

Moreover, the authors [6] considered the general notion of D?-parallel structure
Jacobi operator defined byr��R� D 0; � D 1; 2; 3;which is weaker than the notion
of parallel structure Jacobi operator mentioned above. They gave a non-existence
theorem (see [6]).

Now, we consider another one instead of Levi-Civita connection for real
hypersurfaces in Kähler manifolds, namely, the generalized Tanaka-Webster con-
nection (in short, the g-Tanaka-Webster connection) Or.k/ for a non-zero real number
k [8]. This new connection Or.k/ is defined by the naturally extended one of
Tanno’s generalized Tanaka-Webster connection Or for contact metric manifolds.
Actually, Tanno [23] introduced the generalized Tanaka-Webster connection Or for
contact Riemannian manifolds by the canonical connection which coincides with
the Tanaka-Webster connection if the associated CR-structure is integrable. On the
other hand, the original Tanaka-Webster connection [22, 24] is given as a unique
affine connection on a non-degenerate, pseudo-Hermitian CR manifolds associated
with the almost contact structure. In particular, if a real hypersurface in Kähler
manifolds satisfies �ACA� D 2k�.k ¤ 0/, then the g-Tanaka-Webster connection
Or.k/ coincides with the Tanaka-Webster connection.

Using this g-Tanaka-Webster connection Or.k/, we consider the new notion
of Reeb-parallel structure Jacobi operator in the generalized Tanaka-Webster
connection, that is, Or.k/� R� D 0. We can give a non-existence theorem as follows :

Theorem 2. There do not exist any Hopf hypersurfaces in a complex two-plane
Grassmannian G2.CmC2/, m � 3, with Reeb-parallel structure Jacobi operator in
the generalized Tanaka-Webster connection.
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In addition, we consider other new notion for g-Tanaka-Webster parallelism
of the structure Jacobi operator on a real hypersurface M in G2.CmC2/. If the
structure Jacobi operator R� of M satisfies . Or.k/X R�/Y D 0 for any tangent vector
fields X and Y in M , then the structure Jacobi operator is said to be parallel in
the generalized Tanaka-Webster connection. Naturally, we see that this notion of
parallel structure Jacobi operator in the g-Tanaka-Webster connection is stronger
than Reeb-parallel structure Jacobi operator in the g-Tanaka-Webster connection.
Related to this notion, we have the following :

Corollary 1. There do not exist any Hopf hypersurfaces in a complex two-plane
Grassmannian G2.CmC2/, m � 3, with parallel structure Jacobi operator in the
generalized Tanaka-Webster connection.

Next, motivated by Jeong et al. [6] and Theorem 2, we consider another new
notion for g-Tanaka-Webster parallelism of the structure Jacobi operator on a real
hypersurfaceM in G2.CmC2/, when the structure Jacobi operator R� ofM satisfies

. Or.k/X R�/Y D 0 for any X 2 D? and any Y in M . In this case, the structure Jacobi
operator is said to be D?-parallel in the generalized Tanaka-Webster connection.
Naturally, such a notion of parallelism is a generalized condition that is weaker
than usual parallelism of the structure Jacobi operator in the g-Tanaka-Webster
connection.

Theorem 3. LetM be a connected orientable Hopf hypersurface in a complex two-
plane Grassmannian G2.CmC2/, m � 3. If the structure Jacobi operator R� is
D?-parallel in the generalized Tanaka-Webster connection, M is an open part of a
tube around a totally geodesic HPn in G2.CmC2/, where m D 2n.

As a prevailing notion, in a Riemannian manifold . NM; Ng/, a vector field X along
a geodesic � of NM is called a Jacobi field if it satisfies the following second order
Jacobi equation

Nr2P�X C NR.X; P�/ P� D 0;

where P� is the vector tangent to � .
For any tangent vector field X at x 2 NM , the Jacobi operator NRX is defined by

. NRXY /.x/ D . NR.Y;X/X/.x/;

for any vector field Y 2 Tx NM .
Now, let us put a unit normal vector field N to a hypersurface M into the

curvature tensor NR of the ambient space NM . Then for any tangent vector field X
on M , the normal Jacobi operator NRN is defined by

NRN .X/ D NR.X;N /N:



190 E. Pak and Y.J. Suh

Also, using this g-Tanaka-Webster connection Or.k/, we consider the new notion
of parallel normal Jacobi operator in the generalized Tanaka-Webster connection,
that is, Or.k/X NRN D 0 for any vector field X 2 TM . We can give a non-existence
theorem as follows :

Theorem 4. There do not exist any Hopf hypersurfaces in a complex two-plane
Grassmannian G2.CmC2/, m � 3, with parallel normal Jacobi operator in the
generalized Tanaka-Webster connection.

2 Proof of Theorem 2

Let us denote by R.X; Y /Z the curvature tensor of M in G2.CmC2/. Then the
structure Jacobi operatorR� ofM inG2.CmC2/ can be defined byR�X D R.X; �/�
for any vector field X 2 TxM D D˚D?, x 2M .

In [4] and [6], by using the structure Jacobi operator R� , the authors obtained

.rXR�/Y
D �g.�AX; Y /� � �.Y /�AX

�
3X

�D1

h
g.��AX; Y /�� � 2�.Y /��.�AX/�� C ��.Y /��AX

C 3
n
g.��AX; �Y /��� C �.Y /��.AX/���

C ��.�Y /
�
���AX � ˛�.X/��

�o

C 4��.�/
n
��.�Y /AX � g.AX; Y /���

o
C 2��.�AX/���Y

i

C ��.rXA/��AY C ˛.rXA/Y � ��.rXA/Y �A�
� g.AY; �AX/A� � �.AY /.rXA/� � �.AY /A�AX:

(1)

On the other hand, by using the g-Tanaka-Webster connection, we have

. Or.k/X R�/Y D Or.k/X .R�Y / �R�. Or.k/X Y /

D rX.R�Y /C g.�AX;R�Y /� � �.R�Y /�AX � k�.X/�R�Y
�R�.rXY C g.�AX; Y /� � �.Y /�AX � k�.X/�Y /:

(2)
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From this, together with the fact that M is Hopf, it becomes

. Or.k/X R�/Y

D �
3X

�D1

h
g.��AX; Y /�� � �.Y /��.�AX/�� C ��.Y /��AX

C 3
n
g.��AX; �Y /��� C �.Y /��.AX/���

C ��.�Y /
�
���AX � ˛�.X/��

�o

C 4��.�/
n
��.�Y /AX � g.AX; Y /���

o
C 2��.�AX/���Y

C ��.Y /��.�AX/� � ��.�/�.Y /��.�AX/�
C 3�.��Y /g.�AX; ���/� C ��.�/g.�AX; ���Y /�
� ��.Y /��.�/�AX C �2�.�/�.Y /�AX � ��.�/�.���Y /�AX
� k�.X/��.Y /��� � 4k�.X/�.��Y /��.�/� � 4k�.X/�.��Y /��
C 3�.Y /�.���AX/��� � �.Y /��.�/��AX C ˛�.X/�.Y /��.�/���
C 3k�.X/�.���Y /��� C k�.X/�.Y /��.�/���

i

C �..rXA/�/AY C ˛.rXA/Y � ˛�..rXA/Y /�
� ˛�.Y /.rXA/� � ˛k�.X/�AY C ˛k�.X/A�Y

(3)

for any tangent vector fields X and Y on M .
Let us assume that the structure Jacobi operator R� on a Hopf hypersurface M

in a complex two-plane Grassmann manifold G2.CmC2/ is Reeb-parallel in the
g-Tanaka-Webster connection, that is,

. Or.k/� R�/Y D 0 (4)

for any tangent vector field Y on M .
Here, it is a main goal to show that the Reeb vector field � belongs to either

the distribution D or orthogonal complement D? such that TM D D ˚ D? in
G2.C

mC2/ when the structure Jacobi operator is Reeb-parallel in the generalized
Tanaka-Webster connection.

From now on, unless otherwise stated in the present section, we may put the Reeb
vector field � as follows :

� D �.X0/X0 C �.�1/�1 (*)

for some unit vector fields X0 2 D and �1 2 D?.
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Putting X D � in (3) and using the condition (4), we have

0 D. Or.k/� R�/Y

D�
3X

�D1

h
˛g.���; Y /�� C ˛��.Y /���

(5)

C 3
n
˛g.���; �Y /��� C ˛�.Y /��.�/��� � ˛��.�Y /��

o

C 4��.�/
n
˛��.�Y /� � ˛g.�; Y /���

o

� k��.Y /��� � 4k�.��Y /��.�/� � 4k�.��Y /��
� ˛�.Y /��.�/��� C ˛�.Y /��.�/���
C 3k�.���Y /��� C k�.Y /��.�/���

i

C �..r�A/�/AY C ˛.r�A/Y � ˛�..r�A/Y /�
� ˛�.Y /.r�A/� � ˛k�AY C ˛kA�Y

for any tangent vector field Y on M .
Now, using these facts, we prove the following:

Lemma 1. Let M be a Hopf hypersurface in a complex two-plane Grassmannian
G2.C

mC2/, m � 3, with Reeb-parallel structure Jacobi operator in the generalized
Tanaka-Webster connection. Then the Reeb vector field � belongs to either the
distribution D or the distribution D?.

Then by Lemma 1 we shall divide our consideration in two cases depending on
the Reeb vector field � belongs to either the distribution D? or the distribution D.

First of all, we consider the case � 2 D?. Without loss of generality, we may
put � D �1.
Lemma 2. If the Reeb vector field � belongs to the distribution D?, then there
does not exist any Hopf hypersurface M in a complex two-plane Grassmannian
G2.C

mC2/, m � 3, with Reeb-parallel structure Jacobi operator in the generalized
Tanaka-Webster connection.

Next we consider the case � 2 D. Using Theorem 1, Lee and Suh [9, Main
Theorem] gave a characterization of real hypersurfaces of Type (B) in G2.CmC2/ in
terms of the Reeb vector field � as follows :

Lemma 3. Let M be a Hopf hypersurface in G2.CmC2/ with Reeb-parallel struc-
ture Jacobi operator in the generalized Tanaka-Webster connection. If the Reeb
vector field � belongs to the distribution D, then M is locally congruent to an open
part of a tube around a totally geodesic HPn in G2.CmC2/, m D 2n.
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From the above two Lemmas 2, 3 and the classification theorem given by
Theorem 1 in this paper, we see that M is locally congruent to a model space
of Type (B) in Theorem 1 under the assumption of our Theorem 2 given in the
introduction.

Hence it remains to check if the structure Jacobi operator R� of real hypersur-
faces of Type (B) satisfies the condition (4) for any tangent vector field Y on M or
not. To check this, we suppose thatM has Reeb-parallel structure Jacobi operator in
the g-Tanaka-Webster connection. Using [2, Proposition 2], we know that this gives
a contradiction. So we give a complete proof of our Theorem 2 in the introduction.

On the other hand, we consider a new notion which is different from Reeb-
parallel structure Jacobi operator in the g-Tanaka-Webster connection. The parallel
structure Jacobi operator in the generalized Tanaka-Webster connection can be
defined in such a way that

. Or.k/X R�/Y D 0 (6)

for any tangent vector fields X and Y on M . From this notion, together with
Lemmas 1, 2, 3 and the classification theorem given by Theorem 1 in the
introduction, we see that M is locally congruent to a model space of Type (B)
in Theorem 1. Hence we can check if the structure Jacobi operator R� of real
hypersurfaces of Type (B) satisfies the condition (4) for any tangent vector fields
X and Y in M or not. Similarly, we can give a complete proof of our Corollary 1 in
the introduction.

3 Proof of Theorem 3

Let us assume that the structure Jacobi operator R� of a Hopf hypersurface M in a
complex two-plane Grassmann manifoldG2.CmC2/ is D?-parallel in the g-Tanaka-
Webster connection, that is,

. Or.k/X R�/Y D 0 (7)

for any X 2 D? and any tangent vector field Y on M .
Before getting our result, it is an important step to show that the Reeb vector

field � belongs to either the distribution D or the distribution D? such that TM D
D ˚ D? in G2.CmC2/ when the structure Jacobi operator is D?-parallel in the
g-Tanaka-Webster connection.

Now using the condition (7) and (*), we prove the following :

Lemma 4. Let M be a Hopf hypersurface in a complex two-plane Grassmannian
G2.C

mC2/, m � 3, with D?-parallel structure Jacobi operator in the generalized
Tanaka-Webster connection. Then the Reeb vector field � belongs to either the
distribution D or the distribution D?.
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Then by Lemma 4 we shall divide our consideration in two cases depending on
whether the Reeb vector field � belongs to the distribution D? or the distribution D.

First of all, we consider the case � 2 D?. Without loss of generality, we may put
� D �1. Using this notion of D?-parallel structure Jacobi operator in the g-Tanaka-
Webster connection, we get the following :

Lemma 5. If the Reeb vector field � belongs to the distribution D?, then there
does not exist any Hopf hypersurface M in a complex two-plane Grassmannian
G2.C

mC2/, m � 3, with D?-parallel structure Jacobi operator in the generalized
Tanaka-Webster connection.

Next we consider the other case � 2 D. Using Theorem 1, Lee and Suh [9] gave
a characterization of real hypersurfaces of Type (B) in G2.CmC2/ in terms of the
Reeb vector field � as follows :

Theorem 5. Let M be a connected orientable Hopf hypersurface in G2.CmC2/,
m � 3. Then the Reeb vector field � belongs to the distribution D if and only if
M is locally congruent to an open part of a tube around a totally geodesic HPn in
G2.C

mC2/, m D 2n.

From Lemma 4, we see thatM is locally congruent to a model space of Type (B)
in Theorem 1 under the assumption of our Theorem 3 given in the introduction.

Hence it remains to check whether the structure Jacobi operator R� of a real
hypersurface of Type (B) satisfies the condition (7) or not. To check this problem,
we can use [2, Proposition 2].

Hence, we have given a complete proof of our Theorem 3 in the introduction.

4 Proof of Theorem 4

Let us denote by NR.X; Y /Z the curvature tensor in G2.CmC2/. Then for M in
G2.C

mC2/ the normal Jacobi operator NRN as an endomorphism of TxM can be
defined by NRNX D NR.X;N /N for any vector field X 2 TxM D D ˚ D?,
x 2M (see [5]).

In [3] and [5], the derivative of the normal Jacobi operator is written as

.rX NRN /Y D 3g.�AX; Y /� C 3�.Y /�AX

C 3
3X

�D1

n
g.��AX; Y /�� C ��.Y /��AX

o

�
3X

�D1

h
2��.�AX/.���Y � �.Y /��/ � g.��AX; �Y /���

� �.Y /��.AX/��� � ��.�Y /.���AX � g.AX; �/��/
i

(8)

for any tangent vector fields X and Y on M .
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By using the g-Tanaka-Webster connection, we have

. Or.k/X NRN /Y D Or.k/X . NRNY / � NRN . Or.k/X Y /

D rX. NRNY /C g.�AX; NRNY /� � �. NRNY /�AX � k�.X/� NRNY
� NRN .rXY C g.�AX; Y /� � �.Y /�AX � k�.X/�Y /:

From this, together with the fact that M is Hopf, it becomes

. Or.k/X NRN /Y

D
3X

�D1

n
3g.��AX; Y /�� C 3��.Y /��AX � 2��.�AX/���Y

C 5��.�AX/�.Y /�� C g.��AX; �Y /��� C ��.�Y /���AX
� ˛�.X/��.�Y /�� C 3��.�AX/��.Y /� � ��.�/g.�AX; ���Y /�
C ��.�/��.�AX/�.Y /� � ˛��.�/�.X/��.�Y /� C ��.AX/��.�Y /�
� 4��.�/��.Y /�AX � 4k�.X/��.Y /��� C k��.�/�.X/����Y
� k��.�/�.X/�.Y /��� � k��.�/�.X/��.�Y /� C 4k�.X/��.�Y /��
� 4��.�/g.�AX; Y /�� C ��.�/�.Y /��AX C k��.�/�.X/��Y

o

(9)

for any tangent vector fields X and Y on M .
Let us assume that the normal Jacobi operator NRN on a Hopf hypersurface M in

a complex two-plane Grassmann manifold G2.CmC2/ is parallel in the g-Tanaka-
Webster connection, that is,

. Or.k/X NRN /Y D 0 (10)

for any tangent vector fields X and Y on M .
Here, it is a main goal to show that the Reeb vector field � belongs to either

the distribution D or its orthogonal complement D? such that TM D D ˚ D?
in G2.CmC2/ when the normal Jacobi operator is parallel in the g-Tanaka-Webster
connection.

After some progress, we just have proved that the Reeb vector field � belongs to
either the distribution D or the distribution D?.

First of all, we consider the case � 2 D?. Without loss of generality, we may put
� D �1.
Lemma 6. Let M be a Hopf hypersurface of G2.CmC2/ with parallel normal
Jacobi operator in the generalized Tanaka-Webster connection. If the Reeb vector
field � belongs to the distribution D?, then g.AD;D?/ D 0
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In the case of � 2 D, from [9, Main Theorem] we know that M must be locally
congruent to a real hypersurface of Type (B) under our assumptions. So, we see that
M is locally congruent to a model space of either Type (A) or Type (B) in Theorem 1
under the assumption of our Theorem 4 given in the introduction.

Hence it remains to check whether the normal Jacobi operator NRN of real
hypersurfaces of Type (A) or Type (B) satisfies the condition (10) for any tangent
vector field Y on M or not. Using [2, Propositions 2, 3], we know that this case can
not occur.

Hence, we can assert our Theorem 4 in the introduction.
Now, we consider a new notion which is different from parallel normal Jacobi

operator in the g-Tanaka-Webster connection.
Let us assume that the normal Jacobi operator NRN on Hopf hypersurfaces M

in complex two-plane Grassmann manifolds G2.CmC2/ is Reeb-parallel in the
g-Tanaka-Webster connection defined in such a way that

. Or.k/� NRN /Y D 0 (11)

for any tangent vector field Y on M . From this notion, together with the proof of
Theorem 4 we see that the Reeb vector field � belongs to either the distribution D
or the distribution D?. From such a point of view, we will show that the assumption
of being Reeb-parallel normal Jacobi operator in the g-Tanaka-Webster connection
has no meaning for �2D?.

Proposition 1. Let M be a Hopf hypersurface in G2.CmC2/, m � 3, such that
� 2 D?. Then the normal Jacobi operator NRN is Reeb-parallel in the generalized
Tanaka-Webster connection.
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The *-Ricci Tensor of Real Hypersurfaces
in Symmetric Spaces of Rank One or Two

George Kaimakamis and Konstantina Panagiotidou

Abstract Complex projective and hyperbolic spaces, i.e. non-flat complex space
forms, are symmetric spaces of rank one. Complex two-plane Grassmannians
are symmetric spaces of rank two. Let M be a real hypersurface in a symmetric
space of rank one or two. Many geometers, such as Berndt, Jeong, Kim,
Ortega, Pérez, Santos, Suh, Takagi and others have studied real hypersurfaces
in above spaces in terms of their operators and tensor fields. This paper will
be divided into two parts. Firstly, results concerning real hypersurfaces in non-
flat complex space forms in terms of their �-Ricci tensor, S�, which in case of
real hypersurfaces was first studied by Hamada (Real hypersurfaces of complex
space forms in terms of Ricci *-tensor. Tokyo J. Math. 25, 473–483 (2002)),
will be presented. More precisely, it will be answered if there exist or not real
hypersurfaces, whose �-Ricci tensor is parallel, semi-parallel, i.e. R � S� D 0,
or pseudo-parallel, i.e. R.X; Y / � S� D Lf.X ^ Y / � S�g with L ¤ 0

(Kaimakamis and Panagiotidou, Parallel �-Ricci tensor of real hypersurfaces in
CP 2 and CH2. Taiwan. J. Math., to appear, DOI 10.11650/tjm.18.2014.4271;
Kaimakamis and Panagiotidou, Conditions of parallelism of �-Ricci tensor
of real hypersurfaces in CP 2 and CH2. Preprint). Secondly, the formula of
�-Ricci tensor of real hypersurfaces in complex two-plane Grassmannians will
be provided (Panagiotidou, The �-Ricci tensor of real hypersurfaces in complex
two-plane Grassmannians, work in progress).

1 Introduction

A complex space form is a Kaehler manifold with constant holomorphic sectional
curvature c for all the J -invariant planes ˘ in TPM at every point P 2 M .
A complete and simply connected complex space form is complex analytically
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isometric to complex projective space CPn , complex Euclidean space C
n or

complex hyperbolic space CHn, if c > 0, c D 0, or c < 0 respectively. The notion
of non-flat complex space form, denoted by Mn.c/ with c ¤ 0 refers to complex
projective or hyperbolic space, when it is not necessary to distinguish them.

Let M be a connected real hypersurface in Mn.c/ , i.e. a submanifold of Mn.c/

with real codimension equal to one. Furthermore, let N be a locally defined unit
normal vector field on M and A the shape operator of M with respect to N . The
complex structure J of Mn.c/ induces on M an almost contact metric structure
.'; �; �; g/. The eigenvalues of the shape operator A are called principal curvatures
and the eigenvectors are called principal curvature vectors. Furthermore, if � is
principal, i.e. A� D ˛� , then the real hypersurface M is called Hopf hypersurface.

The study of real hypersurfaces in non-flat complex space forms was initi-
ated by Takagi. In [22, 23], he provided the classification of homogeneous real
hypersurfaces in complex projective space and divided them into six categories,
namely .A1/; .A2/; .B/; .C /; .D/ and .E/. All these real hypersurfaces are Hopf
hypersurfaces with constant principal curvatures. In case of complex hyperbolic
space the problem of studying real hypersurfaces with constant principal curvatures
was initiated by Montiel in [10] and completed by Berndt in [1]. In this case
real hypersurfaces are divided into two categories, namely .A/ and .B/, and they
are homogeneous. In contrast to the case of complex projective space in complex
hyperbolic space, there are homogeneous real hypersurfaces which are non-Hopf.
A complete classification of homogeneous real hypersurfaces in complex hyperbolic
space was given recently by Berndt and Tamaru in [3]. More information on the
problem of real hypersurfaces with constant principal curvatures in non-flat complex
space forms can be found in [5].

Many geometers have characterized real hypersurfaces in non-flat complex space
forms, when the Ricci tensor, S , of them satisfies certain geometric conditions.
Generally, the Ricci tensor S is given by the relation

S.X; Y / D tracefZ ! R.Z;X/Y g;

where X , Y 2 TM . A Riemannian manifold is called Einstein, if the Ricci tensor
satisfies the relation S D �I , where � is constant.

In case of non-flat complex space forms Cecil and Ryan in [4], Montiel in [10]
and Niebergall and Ryan in [13] proved that there are no Einstein real hypersurfaces
in CPn , n � 3, in CHn , n � 3 and in M2.c/ respectively. There are several
results concerning real hypesurfaces in non-flat complex space forms, when the
Ricci tensor of them satisfy conditions of parallelness. For a review on this results
one can look at [12].

Hamada in [6], motivated by Tachibana, who in [21] studied the *-Ricci tensor
of almost Hermitian manifolds, introduced the notion of *-Ricci tensor, S� , for real
hypersurfaces in non-flat complex space forms. The *-Ricci tensor is given by

S�.X; Y / D 1

2
trace.Z ! R.X; 'Y /'Z/; (1)
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where X , Y 2 TM . Moreover, in [6] the notion of *-Einstein real hypersurfaces in
non-flat complex space forms is included and a characterization of them is given.

Definition 1. A real hypersurface in Mn.c/ is called *-Einstein, if the *-Ricci
tensor satisfies the relation

S�.X; Y / D ��

2.n � 1/g.X; Y /;

where X ,Y are orthogonal to � , i.e. belong to the holomorphic distribution.

Recently, Ivey and Ryan in [7] extended the previous classification of *-Einstein
real hypersurfaces in Mn.c/ and proved equivalent relations between *-Einstein,
pseudo-Einstein and pseudo-Ryan for three-dimensional real hypersurfaces.

A complex two-plane GrassmannianG2.CmC2/ is the set of all two-dimensional
linear subspaces in C

mC2. It is equipped with both a Kaehler structure J and a
quaternionic Kaehler structure J, with a canonical local basis fJ1; J2; J3g, which
does not contain J .

Let M be a connected real hypersurface in G2.CmC2/ , N a locally defined
unit normal vector field and A the shape operator of M with respect to N .
The Kaehler structure J of G2.CmC2/ induces on M an almost contact metric
structure .'; �; �; g/, with � D �JN . Furthermore, each of J� , � D 1; 2; 3

of the quaternionic structure induces on M an almost contact metric structure
.'�; ��; ��; g/, with �� D �J�N , � D 1; 2; 3.

In [2] the study of real hypersurfaces in G2.CmC2/ was initiated by Berndt and
Suh. More precisely, they proved that the distributions Œ� and D?, where D? D
Spanf�1; �2; �3g of a real hypersurface M in G2.CmC2/ are invariant under the
shape operator if and only if M

• (A) is an open part of a tube around a totally geodesic G2.CmC1/ in G2.CmC2/,
• (B) or is an open part of a tube around a totally geodesic QPn in G2

�
C
2mC2�

and m is even, say m D 2n.

In case of complex two-plane Grassmannians Pérez and Suh in [17] proved that
there are no Hopf Einstein real hypersurfaces in G2.CmC2/ . There are several
results concerning real hypersurfaces in G2.CmC2/ , whose Ricci tensor satisfy
conditions of parallelness, i.e. the covariant derivative of the Ricci tensor with
respect to a vector field vanishes, or conditions of invariance, i.e. the Lie derivative
of the Ricci tensor with respect to a vector field vanishes or commuting conditions
(see [18–20]).

Motivated by the work that so far has been done the following questions raised
naturally

1. Are there real hypersurfaces in Mn.c/ whose *-Ricci tensor is parallel or semi-
parallel or pseudo-parallel?

2. Which is the formula of *-Ricci tensor for real hypersurfaces in G2.CmC2/ ?
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The aim of this paper is to answer the above questions. More precisely, sketches
of proof of the following Theorems will be provided

Theorem 1. There do not exist real hypersurfaces in CP 2 with parallel *-Ricci
tensor.

Theorem 2. There do not exist real hypersurfaces M in CP 2 , whose *-Ricci
tensor is semi-parallel.

Theorem 3. Every real hypersurface M in CP 2 , whose *-Ricci tensor is pseudo-
parallel is a Hopf hypersurface. More precisely, M is locally congruent

• either to a geodesic hypersphere of radius r, where 0 < r < �
2

, and L D cot2.r/
• or to a non-homogeneous real hypersurface, which is considered as a tube of

radius �
4

over a holomorphic curve and L D 1.

Furthermore, in Sect. 4 of this paper the formula of *-Ricci tensor for real
hypersurfaces in G2.CmC2/ will be given.

Remark 1. Throughout this paper all manifolds and vector fields are assumed to be
of class C1 and all manifolds are assumed to be connected.

2 Real Hypersurfaces in Complex Space Forms

In this section basic information about real hypersurfaces is given.
Let M be a real hypersurface without boundary immersed in a non-flat complex

space form (Mn.c/ ,G) with complex structure J , N a locally defined unit normal
vector field onM . The Riemannian connectionsr inMn.c/ andr inM are related
for any vector fields X , Y on M by rXY D rXY C g.AX; Y /N , where g is the
Riemannian metric induced from the metric G. The shape operator A of the real
hypersurface M with respect to N is given by rXN D �AX .

As mentioned in the introduction the complex structure J induces on M an
almost contact metric structure .'; �; �; g/ which is defined in the following way

• the structure vector field � is defined by � D �JN ,
• the structure tensor ' is defined to be the tangential component of J , i.e. JX D
'X C �.X/N and it is a tensor field of type (1,1),

• the 1-form � is given by �.X/ D g.X; �/ D G.JX;N /
• and g is the metric induced by G.

Moreover, the following relations are satisfied

'2X D �X C �.X/�; � ı ' D 0; '� D 0; �.�/ D 1;
g.'X; 'Y / D g.X; Y / � �.X/�.Y /; g.X; 'Y / D �g.'X; Y /;

rX� D 'AX; .rX'/Y D �.Y /AX � g.AX; Y /�: (2)
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The Gauss and the Codazzi equations of a real hypersurface in Mn.c/ are given
respectively by

R.X; Y /Z D c

4
Œg.Y;Z/X � g.X;Z/Y C g.'Y;Z/'X
�g.'X;Z/'Y � 2g.'X; Y /'ZC g.AY;Z/AX � g.AX;Z/AY; (3)

.rXA/Y � .rY A/X D c

4
Œ�.X/'Y � �.Y /'X � 2g.'X; Y /�; (4)

where R is the Riemannian curvature tensor on M and X , Y , Z are any tangent
vector fields on M .

The tangent space TPM , at every point P 2M , can be decomposed as TPM D
spanf�g ˚ D, where D D ker � D fX 2 TPM W �.X/ D 0g and is called
holomorphic distribution. Due to the previous decomposition, the vector field A�
can be written

A� D ˛� C ˇU; (5)

where ˇ D j'r��j and U D � 1
ˇ
'r�� 2 ker �, provided that ˇ ¤ 0.

In the study of real hypersurfaces in Mn.c/ , the following Theorem plays an
important role. In case of CPn it was proved by Okumura (see [14]) and in case of
CHn by Montiel and Romero (see [11]).

Theorem 4. Let M be a real hypersurface of Mn.c/ , n � 2. Then A' D 'A, if
and only if M is locally congruent to a homogeneous real hypersurface of type (A).
More precisely:

• In case of CPn

.A1/ a geodesic hypersphere of radius r , where 0 < r < �
2

,
.A2/ a tube of radius r over a totally geodesic CP k ,1 � k � n� 2, where 0 < r <

�
2
:

• In case of CHn

.A0/ a horosphere,

.A1/ a geodesic hypersphere or a tube over a totally geodesic complex hyperbolic
hyperplane CHn�1,

.A2/ a tube over a totally geodesic CHk , 1 � k � n � 2.

2.1 Three Dimensional Real Hypersurfaces in CP2 or CH 2

In this section basic relations about three-dimensional real hypersurfaces in M2.c/

are included.
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Lemma 1. Let M be a real hypersurface in M2.c/ . Then the following relations
hold on M

AU D �U C ı'U C ˇ�; A'U D ıU C �'U; (6)

rU � D �ıU C �'U; r'U � D ��U C ı'U; r�� D ˇ'U; (7)

rUU D 	1'U C ı�; r'UU D 	2'U C ��; r�U D 	3'U; (8)

rU 'U D �	1U � ��; r'U 'U D �	2U � ı�; r�'U D �	3U � ˇ�; (9)

where �; ı; �, 	1, 	2, 	3 are smooth functions on M and fU; 'U; �g is an orthonor-
mal basis of M .

The proof of Lemma 1 is included in [16].

3 Conditions of Parallelness of *-Ricci Tensor of Real
Hypesurfaces in Complex Space Forms

The constant holomorphic sectional curvature of CPn is c D 4 and of CHn is
c D �4 n � 2. Similar calculations to those of Theorem 2 in [7] imply that the
*-Ricci tensor of M is given by

S�X D �Œ cn
2
'2X C .'A/2X; for X 2 TM: (10)

Let M be a three-dimensional real hypersurface in M2.c/ , then relation (10)
becomes

S�X D �Œc'2X C .'A/2X; for X 2 TM: (11)

If M is a non-Hopf hypersurface and fU; 'U; �g is a local orthonormal basis of it,
the *-Ricci tensor for X 2 fU; 'U; �g due to (6) takes the form

S�� D ˇ�U �ˇı'U; S�U D .cC ��� ı2/U and S�'U D .cC ��� ı2/'U:
(12)

If M is a Hopf hypersurface relation A� D ˛� holds with ˛ being constant
(Theorem 2.1 in [12]). Let fW;'W; �g be a local orthonormal basis in a neigh-
borhood of a point P 2 M , such that AW D �W and A'W D �'W . Then the
*-Ricci tensor for X 2 fW;'W; �g becomes

S�� D 0; S�W D .c C ��/W and S�'W D .c C ��/'W: (13)

Theorem 5. There do not exist real hypersurfaces in CP 2 with vanishing *-Ricci
tensor.
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Proof. Let M be a real hypersurface in CP 2 with vanishing *-Ricci tensor, i.e.
S�X D 0, X 2 TM . We consider N the open subset of M such that

N D fP 2 M W ˇ ¤ 0; in a neighborhood of P g:

On N relation (5) holds. The inner product of S�X D 0 for X D � with U and
'U due to the first of (12) implies � D ı D 0. The second relation of (12) becomes
S�U D 4U and since S�U D 0 leads to a contradiction. Therefore, N is empty
and M is a Hopf hypersurface.

Let fW;'W; �g be a local orthonormal basis in a neighborhood of a point
P 2 M , such that AW D �W and A'W D �'W . The following relation holds
(Corollary 2.3 [12])

�� D ˛

2
.�C �/C 1: (14)

Relation S�X D 0 for X D W because of the second relation of (13) results in

4C �� D 0: (15)

Substitution of the above relation in (14) implies that ˛.�C �/ D �10. The last
one yields that �, � are constant. Therefore, the real hypersurface has either two
(type .A/) or three distinct eigenvalues (type .B/).

Case I: the real hypersurface has two constant principal curvature. In this case
� D � and relation (15) becomes 4 C �2 D 0, which is impossible. Therefore,
the *-Ricci tensor of real hypersurface of type (A) in CP 2 can not vanish.

Case II: the real hypersurface has three constant principal curvature. In this case
� ¤ � and M is locally congruent to a type (B), i.e. a tube of radius r over
complex quadric, where 0 < r < �

4
. The eigenvalues are

˛ D 2 cot.2r/; � D cot.r/ and � D � tan.r/:

Substitution of the eigenvalues in 4 C �� D 0 leads to a contradiction and this
completes the proof of the present Theorem. ut

3.1 Real Hypersurfaces in M2.c/ with Parallel *-Ricci Tensor

In this subsection the results concern real hypersurfaces M in M2.c/ , whose
*-Ricci tensor is parallel, i.e. rXS� D 0, for any X 2 TM . More analytically,
the previous relation is written

rX.S�Y / D S�.rXY /; X; Y 2 TM: (16)
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Proposition 1. Every real hypersurface inM2.c/ , whose �-Ricci tensor is parallel,
is a Hopf hypersurface.

Sketch of proof of Proposition 1: Let N be an open subset of M such that

N D fP 2 M W ˇ ¤ 0; in a neighborhood of P g:

Relation (16) for X D Y D � , for X D 'U and Y D � and for X D � and
Y D 'U using relations of Lemma 1 and (12) leads to a contradiction. So N is
empty.

Next we are focused on Hopf real hypersurfaces M in CP 2 equipped with par-
allel *-Ricci tensor. Let fW;'W; �g be a local orthonormal basis in a neighborhood
of a point P 2 M , such that AW D �W and A'W D �'W and relation (14) is
satisfied.

Relation (16) for X D W and Y D � and for X D 'W and Y D � due to (13)
implies respectively

�.4C ��/ D 0 and �.4C ��/ D 0:

Suppose that 4 C �� ¤ 0. Then the above relations imply � D � D 0 and
substitution of the last ones in (14) implies c D 0, which is a contradiction. So
4 C �� D 0 and relation (13) implies that the *-Ricci tensor vanishes. Therefore,
due to Theorem 5 the proof of Theorem 1 is completed.

3.2 Real Hypersurfaces in M2.c/ with Semi-Parallel
*-Ricci Tensor

In this subsection the results concern real hypersurfaces M in M2.c/ , whose
*-Ricci tensor is semi-parallel, i.e. R.X; Y / � S� D 0. The previous relation due to
the fact that R acts as a derivation on the tensor field implies

R.X; Y /S�Z D S�ŒR.X; Y /Z X; Y;Z 2 TM: (17)

Proposition 2. Every real hypersurface in M2.c/ , whose �-Ricci tensor is semi-
parallel, is a Hopf hypersurface.

Sketch of proof of Proposition 2: Let N be an opensubset of M such that

N D fP 2 M W ˇ ¤ 0; in a neighborhood of P g:

Relation (17) for X D Z D U and Y D 'U , for X D Z D U and Y D � and for
X D Z D 'U and Y D � , using the Gauss equation (3) for the above combinations
and relations of Lemma 1 leads to a contradiction. So N is empty.
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Next we are focused on Hopf real hypersurfaces M in CP 2 equipped with
semi-parallel *-Ricci tensor. Let fW;'W; �g be a local orthonormal basis in a
neighborhood of a point P 2 M , such that AW D �W and A'W D �'W and
relation (14) is satisfied.

Relation (17) for X D Z D W and Y D � and for X D Z D 'W and Y D �

implies respectively

.4C ��/.1C ˛�/ D 0 and .4C ��/.1C ˛�/ D 0: (18)

Combining the above two relations leads to

˛.� � �/.4C ��/ D 0:

Suppose 4 C �� ¤ 0; then ˛.� � �/ D 0. If ˛ ¤ 0 then � D � and M is
locally congruent to a geodesic hypersphere (type (A)), with principal curvatures
˛ D 2 cot.2r/ and � D cot.r/. Moreover, the first of (18) yields ˛� C 1 D 0.
Substitution in the last relation the eigenvalues of ˛ and � yields cot2.r/ D 0,
which is impossible. So, ˛ D 0 and the first of (18) since 4 C �� ¤ 0; leads to
a contradiction. Therefore, 4 C �� D 0 and relation (13) implies that the *-Ricci
tensor vanishes. So, because of Theorem 5 the proof of Theorem 2 is finished.

3.3 Real Hypersurfaces in M2.c/ with Pseudo-Parallel
*-Ricci Tensor

In this subsection the results concern real hypersurfaces M in M2.c/ , whose
*-Ricci tensor is pseudo-parallel, i.e. R.X; Y / � S� D Lf.X ^ Y / � S�g. Since
R acts as a derivation on the tensor field and the wedge product of vectors is given
by .X ^ Y /Z D g.Y;Z/X � g.X;Z/Y the latter yields

R.X; Y /S�Z � S�ŒR.X; Y /Z D Lf.X ^ Y /S�Z � S�Œ.X ^ Y /Zg
R.X; Y /S�Z � S�ŒR.X; Y /Z D Lfg.Y; S�Z/X � g.X; S�Z/Y

�S�Œg.Y;Z/X � g.X;Z/Y g; (19)

where X , Y , Z 2 TM and L ¤ 0 and is a function.

Proposition 3. Every real hypersurface inM2.c/ , whose �-Ricci tensor is pseudo-
parallel, is a Hopf hypersurface.

The proof of Proposition 3 follows the same procedure as the proof of
Proposition 2.



208 G. Kaimakamis and K. Panagiotidou

Next we are focused on Hopf real hypersurfaces M in CP 2 equipped with
pseudo-parallel *-Ricci tensor. Let fW;'W; �g be a local orthonormal basis in a
neighborhood of a point P 2 M , such that AW D �W and A'W D �'W and
relation (14) is satisfied.

Relation (19) for X D Z D W and Y D � implies .4C ��/.1C ˛� � L/ D 0.
Let M1 be the open subset of M such that

M1 D fP 2 M W L ¤ 1C ˛�; in a neighborhood of P g:

Then on M1 we have 4 C �� D 0, which due to (13) results in S�X D 0 for
X 2 TM . Because of Theorem 5 we conclude that M1 is empty and on M relation
L D 1C ˛� holds.

Relation (19) for X D Z D 'W and Y D � implies .4C��/.1C ˛� �L/ D 0.
Since 4 C �� ¤ 0 for the same reason as above, we conclude that on M relation
L D 1C ˛� holds. Combination of the last one with L D 1C ˛� results in

˛.� � �/ D 0:
The last relation because of Theorem 4 implies that a real hypersurface in CP 2

equipped with pseudo-parallel *-Ricci tensor is locally congruent to a geodesic
hypersphere of radius 0 < r < n=2 or to a non-homogeneous real hypesurface
with ˛ D 0, which is considered as a tube of radius r D �

4
over a holomorphic

curve.
Conversely, it can be proved that the *-Ricci tensor of the above real hyper-

surfaces is pseudo-parallel. Moreover, L is constant and this completes proof of
Theorem 3.

Remark 2. More details on the above issues are included in [8] and [9].

4 *-Ricci Tensor of Real Hypersurfaces in G2.C
mC2/

In this section we introduce the formula of *-Ricci tensor for real hypersurfaces
in G2.CmC2/ . It is known that the Gauss equation of a real hypersurface M in
G2.C

mC2/ satisfies the relation

R.X; Y /Z D g.Y;Z/X � g.X;Z/Y C g.'Y;Z/'X � g.'X;Z/'Y � 2g.'X; Y /'Z

C
3X

�D1

fg.'�Y;Z/'�X � g.'�X;Z/'�Y � 2g.'�X; Y /'�Zg

C
3X

�D1

fg .'�'Y;Z/ '�'X � g .'�'X;Z/ '�'Y g

�
3X

�D1

f�.Y /��.Z/'�'X � �.X/��.Z/'�'Y g
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�
3X

�D1

f�.X/g .'�'Y;Z/ � �.Y /g .'�'X;Z/g ��

C g .AY;Z/AX � g .AX;Z/AY: (20)

The *-Ricci tensor ofM inG2.CmC2/ is defined as in the case of real hypersurfaces
in Mn.c/ , i.e. it satisfies relation (1). Let fEig4m�1

iD1 be an orthonormal basis of M .
Then following similar calculations to those of Theorem 2 in [7] and taking into
account the relation (20)

g.S�X; Y / D 1

2
Œ�g.'2Y;X/C g.'X; 'Y / � g.'3Y; 'X/C g.'2X; '2Y /

C2g.'2X; Y /T r'2 � 2g.'A'AX; Y /

C
3X

�D1
f2g.''�X; '�'Y /C2g.''�X; Y /T r'�'C2g.''�'X; '�'2Y /

�2�.X/g.'��; '�'2Y /g:

The above relation taking into account the following relations

T r'2 D �2.2m � 1/;
T r'�' D 2��.�/;
''�X D '�'X C ��.X/� � �.X/��;

results in

S�X D �.4m'2X C .'A/2X/C
3X

�D1
Œ.''�/

2X C 2��.�/''�X C .'2'2� /2Xg:

Remark 3. In [15], which is work in progress more details about the *-Ricci tensor
of real hypersurfaces in G2.CmC2/ are included.
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On Totally Geodesic Surfaces in Symmetric
Spaces of Type AI

Takuya Fujimaru, Akira Kubo, and Hiroshi Tamaru

Abstract We develop an approach to the classification of nonflat totally geodesic
surfaces in Riemannian symmetric spaces of noncompact type. In this paper, we
concentrate on the case of symmetric spaces of type AI, and show that such
surfaces correspond to certain nilpotent matrices. As applications, we obtain explicit
classifications in the cases of rank two and three.

1 Introduction

Totally geodesic submanifolds would be one of the most fundamental objects in
submanifold theory. Let .M; g/ be a Riemannian manifold. A submanifold M of
M is said to be totally geodesic if the second fundamental form of M vanishes at
every point, or equivalently, every geodesic in M is also an geodesic in M . In this
paper, we only consider connected and complete totally geodesic submanifolds.

Studies on totally geodesic submanifolds in Riemannian symmetric spaces have
a long history. Among others, Chen and Nagano [4, 5] have made substantial
contributions. On the other hand, Klein [8–12] recently showed that some of the
classifications in [4, 5] are incomplete. It then turns out that a general classification
problem of totally geodesic submanifolds is more complicated than it looks. Until
now, the full classifications of totally geodesic submanifolds have been known
only for irreducible Riemannian symmetric spaces of rank one and two, and a
general classification problem remains widely open. For further information, we
refer to a survey paper [9] and references therein. We also refer to the recent work
by Mashimo [14], who studies totally geodesic surfaces in symmetric spaces of
classical type. In fact, his study leads us to the topic of this paper.
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In the study on totally geodesic submanifolds in Riemannian symmetric spaces,
Lie triple systems play fundamental roles. In fact, it is well-known that there is a
one-to-one correspondence between totally geodesic submanifolds in Riemannian
symmetric spaces and Lie triple systems (see Sect. 2 for details). It then follows that
there is a one-to-one correspondence between totally geodesic submanifolds in a
Riemannian symmetric space of compact type and those in its noncompact dual
space. One of the key points of our study is that we focus on the noncompact setting.
In the noncompact case, one can use the theory of Iwasawa decompositions, solvable
Lie groups, and parabolic subgroups, which do not appear in the compact setting.
These tools have played important roles in studying geometry of symmetric spaces
of noncompact type, for examples, see [1, 3, 16].

As a first step of the studies on totally geodesic submanifolds in symmetric spaces
in the noncompact setting, in this paper, we study totally geodesic surfaces (that is,
of dimension two) in the symmetric space

M D SLn.R/=SO.n/: (1)

This symmetric space is of type AI, and has rank n � 1. Among symmetric spaces
of higher rank, the symmetric spaces of type AI would be the most simplest ones.
In particular, the Iwasawa decomposition

sln.R/ D so.n/˚ a˚ n (2)

has a very simple matrix expression. Recall that n coincides with the set of upper-
triangular matrices with all diagonal entries 0.

In the main theorem of this paper, we show that there is a correspondence
between nonflat totally geodesic surfaces in SLn.R/=SO.n/ and matrices X 2 n
satisfying certain conditions. As applications, we obtain explicit classifications of
nonflat totally geodesic surfaces in the cases of n D 3 and 4. When n D 3, totally
geodesic submanifolds have already been classified by Klein [11], but our argument
gives a very elementary proof, based on direct matrix calculations. When n D 4,
our classification of nonflat totally geodesic surfaces seems to be a new result.

We here would like to note that the main theorem of this paper seems to
be generalizable to nonflat totally geodesic surfaces in an arbitrary Riemannian
symmetric space of noncompact type. This kind of generalization and further
applications will be discussed in the forthcoming papers.

2 Preliminaries

In this section, we describe some basic notions and facts on Riemannian symmetric
spaces and their totally geodesic submanifolds. We mention some general notions
in the first subsection. In the second subsection, we give descriptions for the case of
type AI in an explicit way.
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2.1 General Preliminaries

In this subsection, we recall basic notions on Riemannian symmetric spaces and
their totally geodesic submanifolds. We refer to the textbooks [2, 7, 13].

Let .M; g/ be a Riemannian symmetric space. We denote by G the identity
component of the isometry group of M , and by K the isotropy subgroup at some
o 2M , called the origin. One knows that

M D G=K: (3)

Let us denote by g and k the Lie algebras of G and K, respectively. Then one has a
canonical decomposition

g D k˚ p: (4)

Note that the symmetry at o, denoted by so, defines the involution � W g! g whose
.˙1/-eigenspace decomposition coincides with (4).

Definition 1. A linear subspace V in p is called a Lie triple system if it satisfies
ŒŒX; Y ; Z 2 V for every X; Y;Z 2 V .

It is well-known that Lie triple systems correspond to totally geodesic submani-
folds. We identify p with the tangent space ToM in a natural way.

Theorem 1. Let V be a linear subspace in p. Then, V is a Lie triple system if and
only if there exists a totally geodesic submanifold M in M satisfying o 2 M and
ToM D V .

Therefore, the classification problem of totally geodesic submanifolds in M can
be reduced to the classification problem of Lie triple systems in p. Nevertheless
to say, we are only interested in the classification problem of totally geodesic
submanifolds up to isometric congruence.

We also note that we have only to study nonflat totally geodesic submanifolds.
This is because, every flat totally geodesic submanifold is contained in a maximal
flat, and every maximal flat are isometrically congruent to each other. Recall that a
Lie triple system V is abelian (that is, ŒV; V  D 0) if and only if the corresponding
totally geodesic submanifold is flat.

2.2 Preliminaries for Type AI

In this subsection, we recall some of the basic facts on SLn.R/=SO.n/. We are not
going into a general theory of symmetric spaces of noncompact type, but describe it
explicitly in this symmetric space. We refer to [6].
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First of all, we describe the Cartan decomposition associated to the above
symmetric space. Let us define

Sym0
n.R/ WD fX 2 sln.R/ j X D tXg: (5)

Proposition 1. The decomposition sln.R/ D so.n/˚ Sym0
n.R/ is a direct sum as

vector spaces.

The proof is an easy exercise of linear algebra. Note that the above decompo-
sition is nothing but the Cartan decomposition. In fact, it is the .˙1/-eigenspace
decomposition with respect to the involution � W sln.R/ ! sln.R/ W X 7! � tX .
Note that � is a Lie algebra automorphism, in other words, it satisfies

tŒY; Z D �Œ tY; tZ .8Y;Z 2 sln.R//: (6)

Proposition 2. Let a be the set of all diagonal matrices with trace 0, and n be the
set of all upper-triangular matrices with all diagonal entries 0. Then, one has the
following direct sum decomposition as vector spacesW

sln.R/ D so.n/˚ a˚ n: (7)

The above decomposition is known as the Iwasawa decomposition. It is easy to
see that a is an abelian subalgebra, n is a nilpotent subalgebra, and a˚n is a solvable
subalgebra.

We next recall an O.n/-invariant inner product on Sym0
n.R/. Note that the

orthogonal group O.n/ acts on Sym0
n.R/ by conjugation, that is, for each g 2 O.n/

and X 2 Sym0
n.R/,

g:X WD gXg�1 2 Sym0
n.R/: (8)

Proposition 3. LetX; Y 2 Sym0
n.R/. Then, the following defines an O.n/-invariant

inner product on Sym0
n.R/ W

hX; Y i WD tr.XY /: (9)

This inner product gives rise to an SLn.R/-invariant Riemannian metric on the
reductive space SLn.R/=SO.n/, and makes this space symmetric. In this paper, we
always assume that this Riemannian metric is equipped.

We have to study Lie triple systems in Sym0
n.R/ up to congruence. We here define

this terminology explicitly.

Definition 2. Two subsets V; V 0 	 Sym0
n.R/ are said to be congruent if there exists

g 2 O.n/ such that gVg�1 D V 0.

If two Lie triple systems are congruent, then the corresponding totally geodesic
submanifolds are isometrically congruent. This follows from the fact that O.n/ acts
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isometrically on SLn.R/=SO.n/. For the structure of the full isometry group of a
symmetric space, we refer to Takeuchi [15] and Loos ([13], Chap. VII).

Finally in this subsection, we recall the sectional curvatures. Note that, by the
definition of our inner product, one has

hŒY;Z;W i D hZ; ŒY;W i .8Y;Z;W 2 Sym0
n.R//: (10)

Proposition 4. Let ˙ be a nonabelian two-dimensional Lie triple system in
Sym0

n.R/, and fY1; Y2g be an orthonormal basis of ˙ . Then one has

(1) there exists a > 0 such that ŒŒY1; Y2; Y2 D aY1,
(2) the (constant) sectional curvature of the totally geodesic surface corresponding

to ˙ coincides with �a.

Proof. We show (1). Since ˙ is a Lie triple system, there exist a; b 2 R such that

ŒŒY1; Y2; Y2 D aY1 C bY2: (11)

By taking the inner product with Y2, one has from (10) that

b D haY1 C bY2; Y2i D hŒŒY1; Y2; Y2; Y2i D hŒY1; Y2; ŒY2; Y2i D 0: (12)

By taking the inner product with Y1, one also has

a D haY1 C bY2; Y1i D hŒŒY1; Y2; Y2; Y1i D jjŒY1; Y2jj2 > 0; (13)

since ˙ is nonabelian. This completes the proof of the first assertion.
We show (2). It is well-known that the Riemannian curvature tensor R at o is

given by

Ro.Y;Z/W D �ŒŒY;Z;W  .8Y;Z;W 2 Sym0
n.R//: (14)

LetK be the sectional curvature of the totally geodesic surface corresponding to˙ .
It then follows from the first assertion that

K D hRo.Y1; Y2/Y2; Y1i D �hŒŒY1; Y2; Y2; Y1i D �haY1; Y1i D �a: (15)

This completes the proof of the second assertion. ut

3 Main Theorem

In this section, we show that every nonabelian two-dimensional Lie triple system in
Sym0

n.R/ corresponds to a certain nilpotent matrix.
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Recall that n denotes the set of all upper-triangular matrices with all diagonal
entries zero. One also needs

W WD

8̂
<
:̂

0
B@
a1
: : :

an

1
CA 2 sln.R/ j a1 � � � � � an

9>=
>; : (16)

Theorem 2. Assume that X 2 n n f0g satisfies

.C1/ ŒX; tX 2 W ,

.C2/ there exists u > 0 such that ŒŒX; tX; X D uX .

Then, LX WD SpanRfŒ tX;X; X C tXg is a nonabelian two-dimensional Lie triple
system in Sym0

n.R/. Conversely, every such Lie triple system can be constructed in
this way up to congruence.

Proof (Proof of the First Assertion). Assume that X 2 n n f0g satisfies .C1/ and
.C2/. By .C2/, there exists u > 0 such that

ŒŒX; tX; X D uX: (17)

It then follows from (6) that

ŒŒX; tX; tX D � tŒ tŒX; tX; X D � tŒŒX; tX; X D �u tX: (18)

This shows that

ŒLX;LX D SpanRfX � tXg: (19)

One can also see that

ŒŒ tX;X; X � tX D �u.X C tX/ 2 LX; (20)

ŒX C tX;X � tX D �2uŒX; tX 2 LX; (21)

which show that LX is a Lie triple system. This completes the proof of the first
assertion of Theorem 2. ut

Proof of the second assertion will be divided into several lemmas. Let ˙ be a
nonabelian two-dimensional Lie triple system in Sym0

n.R/.
Let fV1; V2g be an orthonormal basis of ˙ . Since V1 is a symmetric matrix, an

elementary linear algebra shows that there exists g 2 O.n/ such that gV1g�1 2 W .
We will show that g˙g�1 D LX for some X . Let us denote by

H WD gV1g�1; Y WD gV2g�1: (22)
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Lemma 1. There exist b; c > 0 such that

ŒH; ŒH; Y  D bY; ŒY; ŒY;H D cH: (23)

Proof. Note that fH;Y g is an orthonormal basis of the Lie triple system g˙g�1.
Hence, the lemma directly follows from Proposition 4 (1). ut

In the next step, we use ŒH; ŒH; Y  D bY , and show that Y is an off-diagonal
matrix. This determines X 2 n.

Lemma 2. We use the above notations. Then, there exists X 2 n such that

Y D X C tX; ŒH; ŒH;X D bX: (24)

Proof. Since Y is symmetric, one can decompose Y D D C X C tX , where D is
diagonal and X 2 n. Since H and D are diagonal, we have

ŒH; Y  D ŒH;D CX C tX D ŒH;XC ŒH; tX D ŒH;X � tŒH;X: (25)

Hence, Lemma 1 yields that

b.D CX C tX/ D bY D ŒH; ŒH; Y  D ŒH; ŒH;XC tŒH; ŒH;X: (26)

By comparing the diagonal components and the n-components of the both sides,
one has D D 0 and bX D ŒH; ŒH;X. This completes the proof. ut

In order to show that X satisfies (C1) and (C2), we need the following lemma.
It is crucial that H 2 W .

Lemma 3. The above X satisfies ŒH;X D b1=2X .

Proof. Let us denote by H D diag.a1; : : : ; an/ and X D .xij / in terms of matrix
elements. Then, a direct calculation shows that

ŒH;X D ..ai � aj /xij /: (27)

Thus, we have only to show that

.ak � al /xkl D b1=2xkl .8k; l/: (28)

Take any k and l . The case when xkl D 0 is obvious. Let us consider the case when
xkl ¤ 0. Lemma 2 yields that

..ai � aj /2xij / D ŒH; ŒH;X D bX D .bxij /: (29)
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This yields .ak � al /2 D b. Note that, since X 2 n, one knows k < l . One then has
ak � al � 0, since H 2 W . We thus have ak � al D b1=2. This shows (28), which
completes the proof. ut

We now use cH D ŒY; ŒY;H of Lemma 1, and complete the proof of the second
assertion of Theorem 2. Namely, we have g˙g�1 D LX .

Proposition 5. The above X satisfies (C1), (C2), and g˙g�1 D LX .

Proof. It follows from Lemma 3 that

ŒY;H D ŒX C tX;H D ŒX;H � tŒX;H D b1=2.�X C tX/: (30)

Hence, Lemma 1 yields that

cH D ŒY; ŒY;H D b1=2ŒX C tX;�X C tX D 2b1=2ŒX; tX: (31)

Since b; c > 0 and H 2 W , this shows that X satisfies (C1). Furthermore, by the
above calculation, one can directly see that

ŒŒX; tX; X D c.2b1=2/�1ŒH;X D .1=2/cX; (32)

which shows (C2). Now it is easy to see that

LX D SpanRfŒX; tX; X C tXg D SpanRfH;Y g D g˙g�1; (33)

which completes the proof. ut

4 Some Explicit Classifications

We have seen in Theorem 2 that every nonabelian two-dimensional Lie triple system
in Sym0

n.R/ can be constructed from a nilpotent matrix X 2 n satisfying Condi-
tions (C1) and (C2). In this section, we apply this result to explicit classifications of
nonabelian two-dimensional Lie triple systems.

4.1 The Case of n D 3

In this subsection, we classify nonabelian two-dimensional Lie triple systems
in Sym0

3.R/. This gives another proof of the classification by Klein [11].
First of all, we study X 2 n satisfying (C1) and (C2). We denote by Eij the

matrix whose .i; j /-component is 1 and others are 0.
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Lemma 4. Let X WD x12E12C x13E13C x23E23 ¤ 0. If X satisfies (C1) and (C2),
then it satisfies one of the following conditionsW
(1) x12 D x23 D 0,
(2) x13 D 0, x12 D ˙x23.
Proof. Assume that X satisfies (C1) and (C2). A direct calculation yields that

ŒX; tX D
0
@x

2
12 C x213 x13x23 0

x13x23 �x212 C x223 �x12x13
0 �x12x13 �.x213 C x223/

1
A : (34)

Case 1: x13 ¤ 0. Since ŒX; tX is diagonal by (C1), one has

x13x23 D x12x13 D 0: (35)

We thus have x12 D x23 D 0, and hence X satisfies (1).
Case 2: x13 D 0. In this case, one knows

W 3 ŒX; tX D
0
@x

2
12 0 0

0 �x212 C x223 0

0 0 �x223

1
A : (36)

Then, (C1) yields that x212 � �x212 C x223 � �x223. Since X ¤ 0, we have

x12 ¤ 0; x23 ¤ 0: (37)

A direct calculation shows that

ŒŒX; tX; X D
0
@0 .2x

2
12 � x223/x12 0

0 0 .2x223 � x212/x23
0 0 0

1
A : (38)

Therefore, (C2) yields that 2x212 � x223 D 2x223 � x212. We thus have x212 D x223, and
hence X satisfies (2). ut

By studying the congruency of LX for each X listed in Lemma 4, we obtain a
classification of nonabelian two-dimensional Lie triple systems in Sym0

3.R/.

Proposition 6. Every nonabelian two-dimensional Lie triple system in Sym0
3.R/ is

congruent to one of the following:

˙3;1 WD SpanR

8<
:
0
@ 1 0 0

0 0 0

0 0 �1

1
A ;
0
@ 0 0 10 0 0

1 0 0

1
A
9=
; ;
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˙3;2 WD SpanR

8<
:
0
@1 0 0

0 0 0

0 0 �1

1
A ;
0
@ 0 1 01 0 1

0 1 0

1
A
9=
; :

Proof. Let˙ be a nonabelian two-dimensional Lie triple system in Sym0
3.R/. Then,

Theorem 2 yields that ˙ is congruent to

LX WD SpanRfŒX; tX; X C tXg (39)

for someX satisfying (C1) and (C2). Furthermore,X satisfies one of two conditions
mentioned in Lemma 4.

Case 1: x12 D x23 D 0. In this case, it is easy to see that LX D ˙3;1.
Case 2: x13 D 0, x12 D ˙x23. In this case, LX coincides with ˙3;2 or

˙3;3 WD SpanR

8<
:
0
@1 0 0

0 0 0

0 0 �1

1
A ;
0
@0 1 0

1 0 �1
0 �1 0

1
A
9=
; : (40)

One can easily check that g WD diag.1; 1;�1/ satisfies g˙3;2g
�1 D ˙3;3. Therefore,

LX is congruent to ˙3;2. ut
Finally in this subsection, we show that the above two Lie triple systems are not

congruent. This can be seen by the sectional curvatures.

Proposition 7. The totally geodesic submanifolds corresponding to ˙3;1 and ˙3;2

have the sectional curvatures �2 and �1=2, respectively. In particular, they are not
isometrically congruent to each other.

Proof. This follows from direct calculations in terms of Proposition 4. ut

4.2 The Case of n D 4

In this subsection, we classify nonabelian two-dimensional Lie triple systems in
Sym0

4.R/. Note that SL4.R/=SO.4/ has rank three, and a classification of totally
geodesic surfaces in this space would be a new result.

As in the case of n D 3, first of all, we classify X 2 n satisfying Conditions (C1)
and (C2). In this subsection, the double-signs ˙ correspond.

Lemma 5. Let X D P
1�i<j�4 xijEij ¤ 0. If X satisfies (C1) and (C2), then it

satisfies one of the following conditionsW
(1) x14 ¤ 0, and others are 0,
(2) x13 D ˙x24, x14 D �x23, and others are 0,
(3) 4x212 D 4x234 D 3x223, and others are 0,
(4) x12 D ˙x24, x13 D ˙x34, and others are 0.
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Proof. Assume that X satisfies (C1) and (C2). A direct calculation yields that the
diagonal component of ŒX; tX is

0
BB@
x212 C x213 C x214

x223 C x224 � x212
x234 � x213 � x223

�x214 � x224 � x234

1
CCA : (41)

It follows from (C1) that the upper-triangular component (n-component) of ŒX; tX
is zero. This means

0
BB@
0 x13x23 C x14x24 x14x34 0

0 x24x34 � x12x13 �x12x14
0 �x13x14 � x23x24

0

1
CCA D 0: (42)

We divide the proof into several cases and subcases.

Case 1: x14 ¤ 0. It follows from (42) that

x34 D x12 D 0; x13x23 C x14x24 D 0; x13x14 C x23x24 D 0: (43)

Subcase 1-(i): x14 ¤ 0, x13 D 0. In this case, the second equation of (43)
yields that x24 D 0. If x23 D 0, then X obviously satisfies (1). Hence, let us
assume x23 ¤ 0. One knows from (41) that

ŒX; tX D

0
BB@
x214

x223
�x223

�x214

1
CCA : (44)

Thus, a direct calculation shows that

ŒŒX; tX; X D

0
BB@
0 0 0 2x214x14
0 2x223x23 0

0 0

0

1
CCA : (45)

It follows from (C2) that x214 D x223, and hence X satisfies (2).
Subcase 1-(ii): x14 ¤ 0, x13 ¤ 0. One knows from (41) that

ŒX; tX D

0
BB@
x213 C x214

x223 C x224
�x213 � x223

�x214 � x224

1
CCA : (46)
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Note that the third equation of (43) yields x23x24 ¤ 0. A direct calculation
shows that

ŒŒX; tX; X D

0
BB@
0 0 .2x213 C x214 C x223/x13 .x213 C 2x214 C x224/x14
0 .x213 C 2x223 C x224/x23 .x214 C x223 C 2x224/x24

0 0

0

1
CCA :

(47)

Thus, it follows from (C2) that

2x213Cx214Cx223 D x214Cx223C2x224; x213C2x214Cx224 D x213C2x223Cx224:
(48)

They show x213 D x224 and x214 D x223. On the other hand, one knows x13x23 C
x14x24 D 0 from (43). Thus X satisfies (2).

Case 2: x14 D 0. It follows from (42) that

x13x23 D 0; x24x34 � x12x13 D 0; x23x24 D 0: (49)

Subcase 2-(i): x14 D 0, x23 ¤ 0. In this case, (49) yields that x13 D x24 D 0.
Hence, one knows

W 3 ŒX; tX D

0
BB@
x212

x223 � x212
x234 � x223

�x234

1
CCA : (50)

This means x212 � x223 � x212 � x234 � x223 � �x234. Since X ¤ 0, one can see
that x12 ¤ 0 and x34 ¤ 0. A direct calculation shows that

ŒŒX; tX; XD

0
BB@
0 .2x212 � x223/x12 0 0

0 .2x223 � x212 � x234/x23 0

0 .2x234 � x223/x34
0

1
CCA :

(51)

Then, it follows from (C2) that

2x212 � x223 D 2x223 � x212 � x234 D 2x234 � x223: (52)

We thus have x212 D x234 and 4x212 D 3x223, and hence X satisfies (3).
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Subcase 2-(ii): x14 D 0, x23 D 0, x12 D 0, x34 D 0. In this case, one knows

W 3 ŒX; tX D

0
BB@
x213

x224
�x213

�x224

1
CCA : (53)

Since x213 � x224 � �x213 � �x224, one has x213 D x224. Therefore, X
satisfies (2).

Subcase 2-(iii): x14 D 0, x23 D 0, x12 D 0, x34 ¤ 0. The second equation
of (49) yields that x24 D 0. Then one has

ŒX; tX D

0
BB@
x213

0

x234 � x213
�x234

1
CCA : (54)

Since X ¤ 0, one has x13 ¤ 0. A direct calculation shows that

ŒŒX; tX; X D

0
BB@
0 0 .2x213 � x234/x13 0

0 0 0

0 .2x234 � x213/x34
0

1
CCA : (55)

It follows from (C2) that 2x213 � x234 D 2x234 � x213. This shows x213 D x234, and
hence X satisfies (4).

Subcase 2-(iv): x14 D 0, x23 D 0, x12 ¤ 0, x13 D 0. One knows

W 3 ŒX; tX D

0
BB@
x212

x224 � x212
x234
�x224 � x234

1
CCA : (56)

Since x224�x212 � x234 andX ¤ 0, one has x24 ¤ 0. Thus, the second equation
of (49) yields x34 D 0. A direct calculation shows that

ŒŒX; tX; X D

0
BB@
0 .2x212 � x224/x12 0 0

0 0 .2x224 � x212/x24
0 0

0

1
CCA : (57)

It follows from (C2) that x212 D x224, and hence X satisfies (4).
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Subcase 2-(v): x14 D 0, x23 D 0, x12 ¤ 0, x13 ¤ 0. One knows from (41) that

ŒX; tX D

0
BB@
x212 C x213

x224 � x212
x234 � x213

�x224 � x234

1
CCA : (58)

Note that the second equation of (49) yields x24x34 ¤ 0. A direct calculation
shows that

ŒŒX; tX; X D

0
BBB@
0 .2x212 C x213 � x224/x12 .2x

2
13 C x212 � x234/x13 0

0 0 .2x224 C x234 � x212/x24

0 .2x234 C x224 � x213/x34

0

1
CCCA :

(59)

It follows from (C2) that x212 D x224 and x213 D x234. On the other hand, one
knows x24x34 � x12x13 D 0 from (49). Therefore, X satisfies (4). ut

Similarly to the case of n D 3, we can classify nonabelian two-dimensional Lie
triple systems in Sym0

4.R/.

Proposition 8. Every nonabelian two-dimensional Lie triple system in Sym0
4.R/ is

congruent to one of the following Lie triple systemsW

˙4;1 WD SpanR

8̂
<̂
ˆ̂:

0
BB@
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 �1

1
CCA ;
0
BB@
0 0 1 0

0 0 0 0

1 0 0 1

0 0 1 0

1
CCA

9>>=
>>;
;

˙4;2 WD SpanR

8̂
<̂
ˆ̂:

0
BB@
1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

1
CCA ;
0
BB@
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1
CCA

9>>=
>>;
;

˙4;3 WD SpanR

8̂
<̂
ˆ̂:

0
BB@
3 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �3

1
CCA ;
0
BB@

0 31=2 0 0

31=2 0 2 0

0 2 0 31=2

0 0 31=2 0

1
CCA

9>>=
>>;
;

˙4;4 WD SpanR

8̂
<̂
ˆ̂:

0
BB@
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 �1

1
CCA ;
0
BB@
0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

1
CCA

9>>=
>>;
:
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Proof. Let˙ be a nonabelian two-dimensional Lie triple system in Sym0
4.R/. Then,

˙ is congruent to LX for someX satisfying (C1) and (C2). Furthermore,X satisfies
one of four conditions mentioned in Lemma 5. We study them individually.

Case 1: x14 ¤ 0, and others are 0. In this case, it is easy to see that LX D ˙4;4.
Case 2: x13 D ˙x24, x14 D �x23, and others are 0. In this case, one has

LX D SpanRfdiag.1; 1;�1;�1/;X C tXg: (60)

By applying a conjugation by diag.1;�1; 1; 1/ 2 O.4/ if necessary, we may
assume x13 D x24 and x14 D �x23 without loss of generality. Denote by

X D

0
BB@
0 0 a b

0 0 �b a
0 0 0 0

0 0 0 0

1
CCA : (61)

Let us put

g WD

0
BB@
a=.a2 C b2/1=2 �b=.a2 C b2/1=2 0 0
b=.a2 C b2/1=2 a=.a2 C b2/1=2 0 0

0 0 1 0

0 0 0 1

1
CCA 2 O.4/: (62)

Then, a direct calculation shows that gLXg�1 D ˙4;2.
Case 3: 4x212 D 4x234 D 3x223, and others are 0. In this case, one can write

X D

0
BB@
0 ˙31=2 0 0

0 0 ˙2 0

0 0 0 ˙31=2
0 0 0 0

1
CCA : (63)

A direct calculation shows that

LX D SpanRfdiag.3; 1;�1;�3/;X C tXg: (64)

Thus, by applying a conjugation by suitable diag.˙1;˙1;˙1;˙1/ 2 O.4/, one
can see that LX is congruent to ˙4;3.

Case 4: x12 D ˙x24, x13 D ˙x34, and others are 0. In this case, one has

LX D SpanRfdiag.1; 0; 0;�1/;X C tXg: (65)

As before, we may assume x12 D x24 and x13 D x34 without loss of generality.
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Denote by

X D

0
BB@
0 a b 0

0 0 0 a

0 0 0 b

0 0 0 0

1
CCA : (66)

Let us put

g WD

0
BB@
1 0 0 0

0 b=.a2 C b2/1=2 �a=.a2 C b2/1=2 0
0 a=.a2 C b2/1=2 b=.a2 C b2/1=2 0

0 0 0 1

1
CCA 2 O.4/: (67)

Then, a direct calculation shows that gLXg�1 D ˙4;1.

We finally see that the totally geodesic surfaces corresponding to the above four
Lie triple systems have the different sectional curvatures. The proof follows from
direct calculations in terms of Proposition 4.

Proposition 9. The totally geodesic submanifolds corresponding to ˙4;1, ˙4;2,
˙4;3, and˙4;4 have the sectional curvatures �1=2, �1, �1=5, and �2, respectively.
In particular, they are not isometrically congruent to each other.
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Examples of Non-Kähler Solvmanifolds
Admitting Hodge Decomposition

Hisashi Kasuya

Abstract We consider some Hodge theoretical properties (formality, hard-
Lefschetz property, E1-degeneration of Frölicher spectral sequence, @N@-Lemma
and their twisted versions) on non-Kähler symplectic and complex manifolds. It is
known that if nilmanifolds satisfy formality, hard-Lefschetz property, or @N@-Lemma,
then they are only tori. Hodge theory on solvmanifolds are more complicated.
We give non-Kähler solvmanifolds satisfying these properties.

1 Introduction

In [23], studying certain complex parallelizable manifolds, Nakamura gave
some remarks on Kodaira-Spencer deformation of non-Kähler compact complex
manifolds. Particularly, Nakamura studied compact complex homogeneous
space of three-dimensional complex solvable Lie groups. Recently the complex
parallelizable manifolds of three-dimensional complex non-nilpotent solvable Lie
groups are called Nakamura manifolds. Nakamura manifolds have been giving
many important notes on geometry of non-Kähler manifolds. In this report, we
focus the Hodge theoretical properties of Nakamura manifolds and Nakamura-like
manifolds.

1.1 Nakamura Manifolds

Let G1 D C Ë� C2 such that

�.z/ D
�
ez 0

0 e�z

�
:

Then we have
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Theorem 1. The following statements hold.

1. For any lattice � in G1, � nG1 does not admit a Kähler structure. (Note that for
some lattice � , � nG1 admits a pseudo-Kähler structure. [30])

2. For any lattice � in G1, � nG1 is formal (Definition 3) and hyper-formal
(Definition 4).

3. G1 admits a left-invariant symplectic structure !. For any lattice � in G1, the
symplectic solvmanifold .� nG1; !/ is hard-Lefschetz (Definition 5) and hyper-
hard-Lefschetz (Definition 6).

4. Consider the standard complex structure J on the complex Lie group G1. For
any lattice � in G, the Frölicher spectral sequence of the complex parallelizable
solvmanifold � nG1 does not degenerate at the E1-term but degenerates at the
E2-term. Hence � nG1 does not satisfy the @N@-Lemma (Definition 7).

5. For some lattice � , there exists a holomorphic deformation Jt of J such that the
deformed complex solvmanifold .� nG1; Jt / satisfy the @N@-Lemma.

1.2 Nakamura-Like Manifolds

Let G2 D C Ë� C2 such that

�.z/ D
 
e

zCNz
2 0

0 e� zCNz
2

!
:

Then we have

Theorem 2. The following statements hold.

1. For any lattice � in G2, � nG2 does not admit a Kähler structure.
2. For any lattice � in G2, � nG2 is formal and hyper-formal.
3. G2 admits a left-invariant symplectic structure !. For any lattice � in G2, the

symplectic solvmanifold .� nG2; !/ satisfies the hard Lefschetz property and
hyper hard Lefschetz property.

4. G2 admits a left-invariant complex structure J . For some lattice � , complex
solvmanifold .� nG2; J / satisfy the @N@-Lemma.

5. For any lattice � in G2, .� nG2; J / does not admit the hyper-strong-Hodge-
decomposition (Definition 8).
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2 Kähler Geometry

2.1 Formality

Definition 1. A differential graded algebra (called DGA) is a graded R-algebra A�
with the following properties:

(1) A� is graded commutative, i.e.

y ^ x D .�1/p�qx ^ y x 2 Ap y 2 Aq:

(2) There is a differential operator d W A ! A of degree one such that d ı d D 0

and

d.x ^ y/ D dx ^ y C .�1/px ^ dy x 2 Ap:

Let A and B be DGAs. If a morphism of graded algebra ' W A ! B satisfies
d ı ' D ' ı d , we call ' a morphism of DGAs. If a morphism of DGAs induces a
cohomology isomorphism, we call it a quasi-isomorphism.

Definition 2. A and B are weakly equivalent if there is a finite diagram of DGAs

A C1 ! C2  � � �  Cn ! B

such that all the morphisms are quasi-isomorphisms.

Let M be a smooth manifold. The de Rham complex A�.M/ of M is a DGA. The
cohomology algebra H�.M;R/ is a DGA with d D 0.

Definition 3. A smooth manifoldM is formal ifA�.M/ andH�.M;R/ are weakly
equivalent.

We denote by C .�1.M// the space of characters of �1.M/ which can be
factored as

�1.M/! H1.�1.M/;Z/=.torsion/! C
�:

For ˛ 2 C .�1.M// we consider the flat bundle E˛ which corresponds to ˛,
the cochain complex A�.M;E˛/ of the differential forms with values in E˛ and
the local system cohomology H�.M;E˛/. The cochain complex A�.M;E˛/ is
isomorphic to the space A�.M/ ˝ C with the differential operator d C � such
that � is closed one-form and satisfies ˛.�/ D e

R
� � for � 2 �1.M/. Let

A
�
.M/ D

M
˛2C .�1.M//

A�.M;E˛/
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Then by isomorphism E˛1 ˝ E˛2 Š E˛1˛2 , the A
�
.M/ is a differential graded

algebra.

Definition 4. M is hyper-formal if the differential graded algebraA
�
.M/ is formal.

2.2 Hard Lefschetz Property

Definition 5. Let .M;!/ be a 2n-dimensional symplectic manifold. We say that
.M;!/ is hard-Lefschetz if the linear map

Œ!n�i ^ W Hi.M;R/! H2n�i .M;R/

is an isomorphism for any 0 � i � n.

Definition 6. Let .M;!/ be a 2n-dimensional symplectic manifold. We say that
.M;!/ is hyper-hard-Lefschetz if for each ˛ 2 C .�1.M// the linear map

Œ!n�i^ W Hi.M;E˛/! H2n�i .M;E˛/

is an isomorphic for any i � n where dimM D 2n.

2.3 Hodge Decomposition

Let .M; J / be a compact complex manifold. Consider the double complex
.A�;�.M/; @; N@/ and the Dolbeault cohomology H�;�

N@ .M/.

Definition 7. We say that .M; J / satisfies @N@-Lemma if

ker @ \ ker N@ \ im d D im @N@:

We define the Bott-Chern cohomology

H
�;�
BC D

ker @ \ ker N@
im @N@ :

Then .M; J / satisfies @N@-Lemma if and only if .M; J / admits the strong-Hodge-
decomposition i. e. the canonical maps

Tot�H�;�
BC .M/! H�.M/;

H
�;�
BC .M/! H

�;�
N@ .M/

are isomorphisms.



Examples of Non-Kähler Solvmanifolds Admitting Hodge Decomposition 233

Theorem 3 ([3]). Let .M; J / be a n-dimensional compact complex manifold. Then
for every k 2 Z the following inequality holds

X
pCqDk

.dimH
p;q
BC .M/C dimH

n�p;n�q
BC .M// � 2 dimHk.M/:

Moreover if for every k 2 Z the equality
X

pCqDk
.dimH

p;q
BC .M/C dimH

n�p;n�q
BC .M// D 2 dimHk.M/

holds, then .M; J / satisfies @N@-Lemma.

Suppose .M; J / satisfies the @N@-Lemma. Then for each ˛ 2 C .�1.M//, by
H1.M/ D H1;0

BC .M/˚H0;1
BC .M/ we have holomorphic 1-forms �1, �2 such that:

• Denoting

@.�1;�2/ D @C �2 C N�1
and

N@.�1;�2/ D @ � N�2 C �1
.A�.M/; @.�1;�2/;

N@.�1;�2 // is bi-differential cochain complex.
• The cochain complex A�.M;E˛/ is isomorphic to the space A�.M/ ˝ C with

the differential operator d C � where � D �1 C N�1 C �2 � N�2.
Define the cohomologies as

H�
@.�1;�2/

.M/ D ker @.�1;�2/
im @.�1;�2/

;

H�N@.�1;�2/ .M/ D ker N@.�1;�2/
im N@.�1;�2/

;

H�
BC.�1;�2/

.M/ D ker @.�1;�2/ \ ker N@.�1;�2/
im ker @.�1;�2/ N@.�1;�2/

:

Definition 8. Let .M; J / be a compact complex manifold satisfying the @N@-
Lemma. We say that .M; J / admits the hyper-strong-Hodge-decomposition if for
each ˛ 2 C .�1.M// the canonical maps

H�
BC.�1;�2/

.M/! H�.M;E˛/;

H�
BC.�1;�2/

.M/! H�
@.�1;�2/

.M/;

H�
BC.�1;�2/

.M/! H�N@.�1;�2/ .M/

are isomorphisms.
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Theorem 4. Let .M; J; !/ be a compact Kähler manifold. Then we have:

1. .M; J / satisfies the @N@-Lemma and the hyper-strong-Hodge-decomposition.
[9, 28]

2. @N@-Lemma implies the formality and hyper-strong-Hodge-decomposition implies
the hyper-formal. [9, 17, 22, 28] Hence M is formal and hyper-formal.

3. .M;!/ is hard-Lefschetz and hyper-hard-Lefschetz. [11, 28]

3 Cohomologies of Solvmanifolds

Let G be a simply connected solvable Lie group. A discrete cocompact subgroup of
G is called a lattice. In generalG does not admits a lattice. We suppose thatG admits
a lattice � . Then a compact homogeneous space � nG is called a solvmanifold. IfG
is nilpotent, then � nG is called a nilmanifold.

3.1 Cohomology of Nilmanifolds

Theorem 5 ([24]). Let N be a simply connected real nilpotent Lie group and n the
Lie algebra of N . Suppose N has a lattice � . Consider the cochain complex

V
n�

of Lie algebra and the canonical inclusion

^
n� ! A�.� nN/:

Then the inclusion induces a cohomology isomorphism

H�.n/ Š H�.� nN/:

Theorem 6 (cf. [26, Theorem 2.4]). Let N be a simply connected nilpotent Lie
group with a lattice � . We suppose N admits a left-invariant complex structure J .
We consider the DBA

V�;� n� of the complex valued left-invariant differential forms
with the operator N@ and the canonical inclusion

�;�̂
n� ! A�;�.� nN/:

Then the inclusion induces a cohomology isomorphism

H
�;�
N@ .n/ Š H�;�

N@ .� nN/

if .G; J; � / meet one of the following conditions
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• The complex manifold .� nG; J / has the structure of an iterated principal
holomorphic torus bundle [7].

• J is a small deformation of a rational complex structure i.e. for the rational
structure gQ 	 g of the Lie algebra g induced by a lattice � (see [25, Sect. 2])
we have J.gQ/ 	 gQ [6].

• .G; J / is a complex Lie group [27].

3.2 de Rham Cohomology of Solvmanifolds

Let G be a simply connected solvable Lie group and g the Lie algebra of G with
the nilradical n. Take a subvector space (not necessarily Lie algebra) V of g so
that g D V ˚ n as the direct sum of vector spaces and for any A;B 2 V.adA/s
.B/ D 0 where .adA/s is the semi-simple part of adA (see [10, Proposition III.1.1]).
We define the diagonalizable representation ads W g ! D.g/ as adsACX D .adA/s
for A 2 V and X 2 n. We denote by Ads W G ! Aut.g/ the extension of ads . Take
a basis X1; � � � ; Xn of g˝ C such that Ads is represented by diagonal matrices. We
have AdsgXi D ˛i .g/Xi for characters ˛i of G. Let x1; : : : ; xn be the dual basis of
X1; : : : ; Xn.

We suppose G has a lattice � . Let

A
�
.� nG/ D

M
˛

A�.� nG;E˛/:

For a character ˛I of G, take a global frame v˛I of the flat bundle E˛I such that
dv˛I D ˛�1

I d˛I v˛I .

Theorem 7 ([17, 21, 22]). The inclusion

^
hx1 ˝ v˛1 ; : : : ; xn ˝ v˛ni ,! A

�
.� nG/

induces a cohomology isomorphism.

Theorem 8. We consider the sub-DGA A�
� of the de Rham complex A�.� nG/˝C

which is defined by

A
p
� D

	
˛IxI

ˇ̌
ˇ I 	 f1; : : : ; ng;
.˛I /j� D 1



:

where for a multi-index I D fi1; : : : ; ipg we write xI D xi1 ^ � � � ^ xip , and
˛I D ˛i1 � � �˛ip .

Then the inclusion A�
� 	 A�.� nG/˝ C induces a cohomology isomorphism

H�.A� / Š H�.� nG;C/:
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Let Ng D Im ads Ë g and

u D fX � adsX 2 NgjX 2 gg:

Then we have Œg; g 	 n 	 u and u is the nilradical of Ng (see [10]). Hence we have
Ng D Im ads Ë u. It is known that the structure of the Lie algebra u is independent of
a choice of a subvector space V (see [10, Corollary III.3.6] ).

Proposition 1 ([16, 17]). u is Ableian if and only if g D R
m Ë Rn such that � is a

semi-simple action.

We have a differential graded algebra isomorphism

^
hx1 ˝ v˛1 ; : : : ; xn ˝ v˛ni Š

^
u� ˝ C:

Theorem 9. We have a quasi-isomorphism

^
u� ! A

�
.� nG/

and hence
V

u� is the Sullivan minimal model ([29]) of A
�
.� nG/.

3.3 Dolbeault and Bott-Chern cohomologies
of Splitting Solvmanifolds

Let G be a semi-direct product Cn Ë� N with a left-invariant complex structure
J D JC ˚ JN so that:

1. N is a simply connected nilpotent Lie group with a left-invariant complex
structure JN .
Let a and n be the Lie algebras of Cn and N respectively.

2. For any t 2 C
n, �.t/ is a holomorphic automorphism of .N; JN /.

3. � induces a semi-simple action on the Lie algebra n of N .
4. G has a lattice � . (Then � can be written by � D � 0 Ë� � 00 such that � 0 and
� 00 are lattices of C

n and N respectively and for any t 2 � 0 the action �.t/
preserves � 00.)

5. The inclusion
V�;� n�

C
	 A�;�.� 00nN/ induces an isomorphism

H
�;�
N@ .n/ Š H�;�

N@ .� 00nN/

where
V�;� n�

C
is the differential bigraded algebra of the complex valued left-

invariant differential forms on the nilmanifold N=� 00.

Consider the decomposition n ˝ C D n1;0 ˚ n0;1 associated with JN . By the
condition (2), this decomposition is a direct sum of Cn-modules. By the condition
(3) we have a basis Y1; : : : ; Ym of n1;0 such that the action � on n1;0 is represented
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by �.t/ D diag.˛1.t/; : : : ; ˛m.t//. Since Yj is a left-invariant vector field on
N , the vector field ˛j Yj on C

n Ë� N is left-invariant. Hence we have a basis
X1; : : : ; Xn; ˛1Y1; : : : ; ˛mYm of g1;0. Let x1; : : : ; xn; ˛�1

1 y1; : : : ; ˛
�1
m ym be the basis

of g�
1;0 which is dual to X1; : : : ; Xn; ˛1Y1; : : : ; ˛mYm. Then we have

p;q^
g�
C
D

p^
hx1; : : : ; xn; ˛�1

1 y1; : : : ; ˛
�1
m ymi˝

q^
h Nx1; : : : ; Nxn; N̨�11 Ny1; : : : ; N̨�1m Nymi:

Let ˛ W Cn ! C
� be a character (i.e. a representation on one-dimensional

vector space C˛) of C
n . By the projection C

n Ë� N ! C
n, we regard ˛ as a

character of G. We consider the holomorphic line bundle L˛ D .G � C˛/=� and
the Dolbeault complex .A�;�.� nG;L˛/; N@/ with values in the line bundle L˛ . Let
L be the set of isomorphism classes of line bundles over � nG given by characters
of Cn. We consider the direct sum

M
Lˇ2L

A�;�.� nG;Lˇ/

of Dolbeault complexes. Then by the wedge products and the tensor products, the
direct sum

L
Lˇ2L A�;�.� nG;Lˇ/ is a DBA.

Lemma 1 ([18, Lemma 2.2]). Let ˛ W Cn ! C
� be a C1-character of Cn. There

exists a unique unitary character ˇ such that ˛ˇ�1 is holomorphic.

By this lemma, take the unique unitary characters ˇi and �i on C
n such that

˛iˇ
�1
i and N̨��1

i are holomorphic.
Let A�;� be the subDBA of

L
L˛2L A�;�.� nG;L˛/ defined by

Ap;q D
p^
hx1; : : : ; xn; ˛�1

1 y1 ˝ vˇ1 ; : : : ; ˛
�1
m ym ˝ vˇmi

O q^
h Nx1; : : : ; Nxn; N̨�11 Ny1 ˝ v�1/; : : : ; N̨�1m Nym ˝ v�mi:

Theorem 10 ([18]). We have a DBA isomorphism � W V�;�
.a ˚ n/� Š A�;� and

the inclusion

A�;� !
M
Lˇ2L

A�;�.� nG;Lˇ/

induces a cohomology isomorphism.

Theorem 11 ([18, Corollary 4.2]). Let B�;�
� 	 A�;�.� nG/ be the differential

bigraded subalgebra of A�;�.� nG/ given by

B
p;q
� D

	
xI ^ ˛�1

J ˇJ yJ ^ NxK ^ N̨�1L �L NyL
ˇ̌
ˇ jI j C jJ j D p; jKj C jLj D q

.ˇJ �L/j� D 1


:
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Then the inclusion B�;�
� 	 A�;�.� nG/ induces a cohomology isomorphism

H
�;�
N@ .B

�;�
� / Š H�;�

N@ .� nG/:

Let

C �;� D B�;�
� C B�;�

� :

Then the inclusion

C �;� 	 A�;�.� nG/
induces an isomorphism

H
�;�
BC .C

�;�/ Š H�;�
BC .� nG/:

3.4 Dolbeault and Bott-Chern Cohomologies of Complex
Parallelizable Solvmanifolds

Let G be a simply connected n-dimensional complex solvable Lie group. Consider
the Lie algebra g1;0 (resp. g0;1) of the left-invariant holomorphic (resp. anti-
holomorphic) vector fields on G. Let N be the nilradical of G.We can take a simply
connected complex nilpotent subgroup C 	 G such that G D C �N (see [8]).Since
C is nilpotent, the map

C 3 c 7! .Adc/s 2 Aut.g1;0/

is a homomorphism where .Adc/s is the semi-simple part of Ads .
We have a basis X1; : : : ; Xn of g1;0 such that

.Adc/s D diag.˛1.c/; : : : ; ˛n.c//

for c 2 C . Let x1; : : : ; xn be the basis of g�
1;0 which is dual to X1; : : : ; Xn.

Theorem 12 ([21, Corollary 6.2 and Its Proof]). Let B�
� be the subcomplex of

.A0;�.� nG/; N@/ defined as

B�
� D

*
N̨I
˛I
NxI
ˇ̌
ˇ
� N̨I
˛I

�
j�
D 1

+
:

Then the inclusion B�
� 	 A0;�.� nG/ induces an isomorphism

H�.B�
� / Š H0;�.� nG/:
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Let

C
�;�
� D

^
g�
1;0 ˝ B�

� C B�
� ˝ g�

0;1:

Then the inclusion

C �;� 	 A�;�.� nG/

induces an isomorphism

H
�;�
BS .C

�;�/ Š H�;�
BC .� nG/:

By this theorem we can prove the following theorem.

Theorem 13 ([19]). Let G be a simply connected complex solvable Lie-group with
a lattice � . Then the Frölicher spectral sequence of the complex parallelizable
solvmanifold G=� degenerates at the E2-term.

4 Hodge Theory on Solvmanifolds

Theorem 14 ([12]). Consider a DGA
V

n� which is the dual of a nilpotent Lie
algebra n. Then

V
n� is formal if and only if n is abelian.

Hence a nilmanifold � nN is formal if and only if � nN is a torus.

Theorem 15 ([5]). Consider a DGA
V

n� which is the cochain complex of the dual
of a nilpotent Lie algebra n. Suppose we have Œ! 2 H2.

V
n�/ such that Œ!n 6D 0

where 2n D dim n. Then for any 0 � i � n the linear operator

Œ!n�i^ W Hi.
^

n�/! H2n�i .
^

n�/

is an isomorphism if and only if n is Abelian.
Hence a symplectic nilmanifold � nN is hard Lefschetz if and only if � nN is a

torus.

By Theorem 9 and Proposition 1 we have following theorems.

Theorem 16 ([16]). A solvmanifold � nG is formal if G D R
m Ë� Rn such that �

is a semi-simple action.

Theorem 17 ([16]). A symplectic solvmanifold .� nG;!/ is hard-Lefschetz if
G D R

m Ë� Rn such that � is a semi-simple action.

Theorem 18 ([17, 22]). A solvmanifold � nG is Hyper-formal if and only if
G D R

m Ë� Rn such that � is a semi-simple action.
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Theorem 19 ([17, 22]). A symplectic solvmanifold .� nG;!/ is hyper-hard-
Lefschetz if and only if G D R

m Ë� Rn such that � is a semi-simple action.

By using Theorem 11, we have the following theorem.

Theorem 20 ([20]). Let G D C
n Ë� C

m with a semi-simple action � W Cn !
GLm.C/ (not necessarily holomorphic). Suppose G has a lattice � . Then we show
that under some conditions on G and � , � nG admits a Hermitian metric such that
the space of harmonic forms satisfies the Hodge symmetry and decomposition.

We notice that Kähler solvmanifolds are completely characterized by hyper-
strong-Hodge-decomposition.

Theorem 21 ([22]). Let � nG be a 2n-dimensional solvmanifold. Then the follow-
ing conditions are equivalent

1. � nG admits a complex structure J and .M; J / satisfies @N@-Lemma and hyper-
strong-Hodge-decomposition.

2. G D R
2k Ë' R2l such that the action ' W R2k ! Aut.R2l / is semi-simple and for

any x 2 R
2k the all eigenvalues of �.x/ are unitary.

3. M admits a Kähler structure.

Remark 1. Equivalence of (2) and (3) in Theorem 21 were already proved by
Hasegawa in [13] by using Arapura-Nori ’ s results in [4].

5 Computations on Nakamura Manifolds
and Nakamura-Like Manifolds

5.1 Nakamura Manifolds

Let G1 D C Ë� C2 such that

�.x Cp�1y/ D
 
exCp�1y 0

0 e�x�p�1y

!
:

For a coordinate .z1; z2; z3/ 2 C Ë C
2, we have

p;q^
g� D

p;q^
hd z1; e

�z1d z2; e
z1d z3i ˝ hd Nz1; e�Nz1d Nz2; eNz1d Nz3i:

We study a lattice � D .Z.aCp�1b/CZ.cCp�1d//Ë� � 00 such that � 00 is
a lattice of C2, Z.aCp�1b/C Z.c Cp�1d/ is a lattice in C and �.aCp�1b/
and �.c Cp�1d/ are conjugate to elements of SL.4;Z/.
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We consider the following two cases

(1-A) b 62 �Z or c 62 �Z (See [14, Example 2.]),
(1-B) b; d 2 �Z (See [14, Example 3.]).

We consider the complex parallelizable solvmanifold .� nG1; J / for each case.
Moreover, in the case (1-B) we consider the deformation fJtgt2B over a ball B 	 C

given by

t
@

@z1
˝ d Nz1 2 H0;1.� nG1; T 1;0� nG1/:

We write the results of computation of cohomologies (see [1,2]). We summarize
in Table 1 the results of the computations of the de Rham, Dolbeault and Bott-Chern
cohomologies. The table says for example, dimH

2;0
BC .� nG1/ D 0 in case (1-B) with

the original complex structure J0.

5.2 Nakamura-Like Manifolds

Let G2 D C Ë� C2 such that

�.z/ D
 
e

zCNz
2 0

0 e� zCNz
2

!
:

Table 1 Summary of the
dimensions of the
cohomologies of the
Nakamura manifold and its
deformation

Case (1-A) Case (1-B) J0 Jt

dR N@ BC dR N@ BC N@ BC

(0,0) 1 1 1 1 1 1 1 1

(1,0) 2 3 1 2 3 1 1 1
(0,1) 1 1 3 1 1 1

(2,0) 3 3 3 5 3 3 1 1
(1,1) 3 1 9 7 3 3
(0,2) 1 3 3 3 1 1

(3,0) 4 1 1 8 1 1 1 1
(2,1) 3 3 9 9 3 3
(1,2) 3 3 9 9 3 3
(0,3) 1 1 1 1 1 1

(3,1) 3 3 3 5 1 1 1 1
(2,2) 3 5 9 11 3 3
(1,3) 3 1 3 3 1 1

(3,2) 2 1 3 2 3 5 1 1
(2,3) 3 3 3 5 1 1

(3,3) 1 1 1 1 1 1 1 1
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Then for a coordinate .z1 D x C
p�1y; z2; z3/ 2 C Ë� C2 we have

p;q^
g� D

p;q^
hd z1; e

�xd z2; e
xd z3i ˝ hd z1; e

�xd Nz2; exd Nz3i:

For some a 2 R the matrix

�
ea 0

0 e�a
�

is conjugate to an element of SL.2;Z/.

Hence for any 0 6D b 2 R we have a lattice � D .aZC bp�1Z/ Ë � 00 such that
� 00 is a lattice of C2.

Since G2 is completely solvable, for any lattice � the de Rham cohomology
H�.� nG2/ is isomorphic to the cohomology of Lie algebra of G2 (see [15]).

We consider the following cases:

(2-A) b D 2n� for n 2 Z,
(2-B) b D .2n � 1/� for n 2 Z,
(2-C) b 6D n� for any n 2 Z.

We write the results of computation of cohomologies (see [1]). We summarize in
Table 2 the results of the computations of the de Rham, Dolbeault and Bott-Chern
cohomologies.

Table 2 The dimensions of
the de Rham, Dolbeault, and
Bott-Chern cohomologies of
the Nakamura-like manifold

Case (2-A) Case (2-B) Case (2-C)
dR N@ BC N@ BC N@ BC

(0,0) 1 1 1 1 1 1 1

(1,0) 2 3 1 1 1 1 1
(0,1) 3 1 1 1 1 1

(2,0) 5 3 3 1 1 1 1
(1,1) 9 7 5 3 3 3
(0,2) 3 3 1 1 1 1

(3,0) 8 1 1 1 1 1 1
(2,1) 9 9 5 5 3 3
(1,2) 9 9 5 5 3 3
(0,3) 1 1 1 1 1 1

(3,1) 5 3 3 1 1 1 1
(2,2) 9 11 5 7 3 3
(1,3) 3 3 1 1 1 1

(3,2) 2 3 5 1 1 1 1
(2,3) 3 5 1 1 1 1

(3,3) 1 1 1 1 1 1 1
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Some Characterizations of Real Hypersurfaces
in Complex Hyperbolic Two-Plane
Grassmannians

Hyunjin Lee and Young Jin Suh

Abstract A main objective in submanifold geometry is the classification of
homogeneous hypersurfaces. Homogeneous hypersurfaces arise as principal orbits
of cohomogeneity one actions, and so their classification is equivalent to the
classification of cohomogeneity one actions up to orbit equivalence. Actually, the
classification of cohomogeneity one actions in irreducible simply connected Rie-
mannian symmetric spaces of rank 2 of noncompact type was obtained by J. Berndt
and Y.J. Suh (for complex hyperbolic two-plane Grassmannian SU2;m=S.U2�Um),
(Berndt and Suh, Int. J. Math. 23, 1250103 (35pages), 2012)). From this classifica-
tion, in (Suh, Adv. Appl. Math. 50, 645–659, 2013) Suh classified real hypersurfaces
with isometric Reeb flow in SU2;m=S.U2�Um/, m � 2. Each one can be described
as a tube over a totally geodesic SU2;m�1=S.U2�Um�1/ in SU2;m=S.U2�Um/ or a
horosphere whose center at infinity is singular. By using this result, we want to
give another characterization for these model spaces by the Reeb invariant shape
operator, that is, L�A D 0.

1 Introduction

Let us consider our motivation for this paper as follows: For a given almost
Hermitian manifold NM , classify all orientable real hypersurfacesM in NM for which
the Reeb flow is isometric. The almost Hermitian structure on NM induces an almost
contact metric structure on M . The corresponding unit tangent vector field on M is
the Reeb vector field, and its flow is said to be the Reeb flow on M .

A classical example is the anti-de Sitter sphere H2m�1
1 in C

m, where the orbits
of the Reeb flow induce the Hopf foliation on H2m�1
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time-like totally geodesic fibers. It is well known that H2m�1
1 is a principal S1-

bundle over a complex hyperbolic space CHm with projection � W H2mC1
1 !CHm.

Moreover, in a paper due to Montiel and Romero [7] it was proved that the second
fundamental tensor A0 of a Lorentzian hypersurface inH2m�1

1 is parallel if and only
if the hypersurface M in CHm has isometric Reeb flow, that is, �A D A�, where
��A D A0, ��A is called a pullback of the shape operator A for a hypersurface
in CHm by the projection � and � denotes the structure tensor induced from the
Kähler structure J of CHm.

The classification of all real hypersurfaces in complex projective space CPm

with isometric Reeb flow has been obtained by Okumura [8]. The corresponding
classification in complex hyperbolic space CHm is due to Montiel and Romero
[7] and in quaternionic projective space HPm is due to Martinez and Pérez [6]
respectively.

Let us denote by SU2;m=S.U2�Um/ the complex hyperbolic two-plane Grassman-
nian which consists of all complex two-dimensional linear subspaces in indefinite
complex Euclidean space C

mC2
2 , where SU2;m denotes the set of .mC 2/�.mC 2/

indefinite special unitary matrices, U2 and Um the set of 2�2 and m�m-unitary
matrices respectively. Then it is known that SU2;m=S.U2�Um/ has both a Kähler
structure J and a quaternionic Kähler structure fJ1; J2; J3g.

Now let us introduce a paper due to Suh [9] for the classification of all
real hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane
Grassmann manifolds SU2;m=S.U2�Um/ as follows:

Theorem 1. Let M be a connected orientable real hypersurface in complex
hyperbolic two-plane Grassmannians SU2;m=S.U2�Um/, m � 3. Then the Reeb
flow on M is isometric if and only if M is an open part of a tube around some
totally geodesic SU2;m�1=S.U2�Um�1/ in SU2;m=S.U2�Um/ or a horosphere whose
center at infinity is singular.

A tube around SU2;m�1=S.U2�Um�1/ in SU2;m=S.U2�Um/ is a principal orbit
of the isometric action of the maximal compact subgroup SU1;mC1 of SUmC2,
and the orbits of the Reeb flow corresponding to the orbits of the action of U1.
The action of SU1;mC1 has two kinds of singular orbits. One is a totally geodesic
SU2;m�1=S.U2�Um�1/ in SU2;m=S.U2�Um/ and the other is a totally geodesic CHm

in SU2;m=S.U2�Um/.
When the shape operator A of M in SU2;m=S.U2�Um/ is Lie-parallel along the

direction of Reeb vector field � , that is, L�A D 0, we say that the shape operator A
is Reeb invariant. In this article, we introduce a classification of real hypersurfaces
in SU2;m=S.U2�Um/ with Reeb invariant shape operator as follows (see Lee, Kim
and Suh [5]):

Theorem 2. Let M be a connected orientable real hypersurface in complex
hyperbolic two-plane Grassmannians SU2;m=S.U2�Um/, m � 3. Then the shape
operator on M is Reeb invariant if and only if M is an open part of a tube around
some totally geodesic SU2;m�1=S.U2�Um�1/ in SU2;m=S.U2�Um/ or a horosphere
whose center at infinity is singular.
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A remarkable consequence of Theorem 2 is that a connected complete real hyper-
surface in SU2;m=S.U2�Um/, m � 3 with isometric Reeb flow is homogeneous.
This was also true in compact complex two-plane GrassmanniansG2.CmC2/, which
could be identified with symmetric space of compact type SUmC2=S.U2�Um/ (see
Berndt and Suh [1]).

Using the result of Theorem 2, we have the following two corollaries related to
the invariancy of shape operator.

Corollary 1. There does not exist any connected orientable real hypersurface in
complex hyperbolic two-plane Grassmannians SU2;m=S.U2�Um/, m � 3, with F -
invariant shape operator.

Corollary 2. There does not exist any connected orientable real hypersurface in
complex hyperbolic two-plane Grassmannians SU2;m=S.U2�Um/, m � 3, with
invariant shape operator.

In previous corollary, if the shape operator A ofM in SU2;m=S.U2�Um/ satisfies the
property of LXA D 0 on a distribution F defined by F D C? [Q? (or for all
tangent vector fields X onM , resp.), then it is said to be F -invariant (or invariant,
resp.).

This paper is organized as follows. In Sect. 2 we summarize some basic facts
about the Riemannian geometry of SU2;m=S.U2�Um/. In Sect. 3 we get some basic
geometric equations for real hypersurfaces in SU2;m=S.U2�Um/. In Sect. 4 we study
real hypersurfaces in SU2;m=S.U2�Um/ with Reeb invariant shape operator and
prove Theorem 2. Lastly, we give some proof for Corollary 1 and Corollary 2 using
the proof of Theorem 2 given in Sect. 4.

2 Complex Hyperbolic Two-Plane Grassmannians

In this section we summarize basic material about the complex hyperbolic two-plane
Grassmann manifold SU2;m=S.U2�Um/, for details we refer to [1–4] and [9].

The Riemannian symmetric space SU2;m=S.U2�Um/, which consists of all
complex two-dimensional linear subspaces in indefinite complex Euclidean space
C
mC2
2 , becomes a connected, simply connected, irreducible Riemannian symmetric

space of noncompact type and with rank two. Let G D SU2;m and K D S.U2�Um/,
and denote by g and k the corresponding Lie algebra of the Lie group G and
K respectively. Let B be the Killing form of g and denote by p the orthogonal
complement of k in g with respect to B . The resulting decomposition g D k˚ p is a
Cartan decomposition of g. The Cartan involution � 2 Aut.g/ on su2;m is given by
�.A/ D I2;mAI2;m, where

I2;m D
��I2 02;m
0m;2 Im

�



248 H. Lee and Y.J. Suh

I2 and Im denotes the identity .2 � 2/-matrix and .m � m/-matrix respectively.
Then < X; Y >D �B.X; �Y / becomes a positive definite Ad.K/-invariant inner
product on g. Its restriction to p induces a metric g on SU2;m=S.U2�Um/, which is
also known as the Killing metric on SU2;m=S.U2�Um/. Throughout this paper we
consider SU2;m=S.U2�Um/ together with this particular Riemannian metric g.

The Lie algebra k decomposes orthogonally into k D su2 ˚ sum ˚ u1, where
u1 is the one-dimensional center of k. The adjoint action of su2 on p induces the
quaternionic Kähler structure J on SU2;m=S.U2�Um/, and the adjoint action of

Z D
 

mi
mC2I2 02;m

0m;2
�2i
mC2Im

!
2 u1

induces the Kähler structure J on SU2;m=S.U2 �Um/. By construction, J commutes
with each almost Hermitian structure J� in J for � D 1; 2; 3. Recall that a canonical
local basis J1; J2; J3 of a quaternionic Kähler structure J consists of three almost
Hermitian structures J1; J2; J3 in J such that J�J�C1 D J�C2 D �J�C1J� , where
the index � is to be taken modulo 3. The tensor field JJ� , which is locally defined
on SU2;m=S.U2�Um/, is selfadjoint and satisfies .JJ�/2 D I and tr.JJ�/ D 0,
where I is the identity transformation. For a nonzero tangent vector X we define
RX D f�X j� 2 Rg, CX D RX ˚ RJX , and HX D RX ˚ JX .

We identify the tangent space ToSU2;m=S.U2�Um/ of SU2;m=S.U2�Um/ at o
with p in the usual way. Let a be a maximal abelian subspace of p. Since
SU2;m=S.U2�Um/ has rank two, the dimension of any such subspace is two. Every
nonzero tangent vectorX 2 ToSU2;m=S.U2�Um/ Š p is contained in some maximal
abelian subspace of p. Generically this subspace is uniquely determined by X ,
in which case X is called regular. If there exists more than one maximal abelian
subspace of p containing X , then X is called singular. There is a simple and useful
characterization of the singular tangent vectors: A nonzero tangent vector X 2 p is
singular if and only if JX 2 JX or JX ? JX .

Up to scaling there exists a unique S.U2�Um/-invariant Riemannian metric g
on SU2;m=S.U2�Um/. Equipped with this metric SU2;m=S.U2�Um/ is a Riemannian
symmetric space of rank two which is both Kähler and quaternionic Kähler. For
computational reasons we normalize g such that the minimal sectional curvature
of .SU2;m=S.U2�Um/; g/ is �4. The sectional curvature K of the noncompact
symmetric space SU2;m=S.U2�Um/ equipped with the Killing metric g is bounded
by �4 � K � 0. The sectional curvature �4 is obtained for all 2-planes CX when
X is a non-zero vector with JX 2 JX .

When m D 1, G�
2 .C

3/ D SU1;2=S.U1�U2/ is isometric to the two-dimensional
complex hyperbolic space CH2 with constant holomorphic sectional curvature �4.
When m D 2, we note that the isomorphism SO.4; 2/ ' SU.2; 2/ yields an
isometry between G�

2 .C
4/ D SU2;2=S.U2�U2/ and the indefinite real Grassmann

manifold G�
2 .R

6
2/ of oriented two-dimensional linear subspaces of an indefinite

Euclidean space R
6
2. For this reason we assume m � 3 from now on, although

many of the subsequent results also hold for m D 1; 2.



Real Hypersurfaces in Complex Hyperbolic Two-Plane Grassmannians 249

The Riemannian curvature tensor NR of SU2;m=S.U2�Um/ is locally given by

NR.X; Y /Z D �1
2

h
g.Y;Z/X � g.X;Z/Y C g.J Y;Z/JX

� g.JX;Z/J Y � 2g.JX; Y /JZ

C
3X

�D1
fg.J�Y;Z/J�X � g.J�X;Z/J�Y � 2g.J�X; Y /J�Zg

C
3X

�D1
fg.J�J Y;Z/J�JX � g.J�JX;Z/J�J Y g

i
;

(1)
where J1; J2; J3 is any canonical local basis of J.

Recall that a maximal flat in a Riemannian symmetric space NM is a connected
complete flat totally geodesic submanifold of maximal dimension. A non-zero
tangent vector X of NM is singular if X is tangent to more than one maximal flat
in NM , otherwise X is regular. The singular tangent vectors of SU2;m=S.U2�Um/
are precisely the eigenvectors and the asymptotic vectors of the self-adjoint
endomorphisms JJ1, where J1 is any almost Hermitian structure in J. In other
words, a tangent vector X to SU2;m=S.U2�Um/ is singular if and only if JX 2 JX
or JX?JX .

Now we want to focus on a singular vectorX of type JX 2 JX . In this paper, we
will have to compute explicitly Jacobi vector fields along geodesics whose tangent
vectors are all singular of type JX 2 JX . For this we need the eigenvalues and
eigenspaces of the Jacobi operator NRX WD NR.:; X/X . Let X be a singular unit
vector tangent to SU2;m=S.U2�Um/ of type JX 2 JX . Then there exists an almost
Hermitian structure J1 in J such that JX D J1X and the eigenvalues, eigenspaces
and multiplicities of NRX are respectively given by Table 1 where RX , CX and HX

denotes the real, complex and quaternionic span of X , respectively, and C
?X the

orthogonal complement of CX in HX .

Table 1 The Case: JX 2 JX—Eigenvalues, eigenspaces and multiplicities
of NRX
Eigenvalues Eigenspace Multiplicity

0 RX ˚ fY jY ? HX; J Y D �J1Y g 2m� 1

�1 .HX � CX/˚ fY jY ? HX; J Y D J1Y g 2m

�4 RJX 1



250 H. Lee and Y.J. Suh

The maximal totally geodesic submanifolds of SU2;m=S.U2�Um/ are

SU2;m�1=S.U2�Um�1/; CHm; CHk � CHm�k .1 � k � Œm=2/; G�
2 .R

mC2/

and HHn (if m D 2n). The first three are complex submanifolds and the other two
are real submanifolds with respect to the Kähler structure J . The tangent spaces of
the totally geodesic CHm are precisely the maximal linear subspaces of the form
fX jJX D J1Xg for some fixed almost Hermitian structure J1 2 J.

3 Real Hypersurfaces in SU2;m=S.U2�Um/

LetM be a real hypersurface in SU2;m=S.U2�Um/. The induced Riemannian metric
on M will also be denoted by g, and r denotes the Levi-Civita covariant derivative
of .M; g/. We denote by C and Q the maximal complex and quaternionic subbundle
of the tangent bundle TM of M , respectively. Now let us put

JX D �X C �.X/N; J�X D ��X C ��.X/N (2)

for any tangent vector field X of a real hypersurfaceM in SU2;m=S.U2�Um/, where
�X denotes the tangential component of JX and N a unit normal vector field ofM
in SU2;m=S.U2�Um/. From the Kähler structure J of SU2;m=S.U2�Um/ there exists
an almost contact metric structure .�; �; �; g/ induced on M such that

�2X D �X C �.X/�; �.�/ D 1; �� D 0; �.X/ D g.X; �/ (3)

for any vector field X on M and � D �JN .
If M is orientable, then the vector field � is globally defined and said to be

the induced Reeb vector field on M . Furthermore, let J1; J2; J3 be a canonical
local basis of J. Then each J� induces a local almost contact metric structure
.��; ��; ��; g/, � D 1; 2; 3, on M . Locally, C is the orthogonal complement in TM
of the real span of � , and Q the orthogonal complement in TM of the real span of
f�1; �2; �3g.

Furthermore, let fJ1; J2; J3g be a canonical local basis of J. Then the quater-
nionic Kähler structure J of SU2;m=S.U2�Um/, together with the condition

J�J�C1 D J�C2 D �J�C1J�

in Sect. 2, induces the almost contact metric 3-structure .��; ��; ��; g/, � D 1; 2; 3,
on M as follows:

8̂
<̂
ˆ̂:

�2�X D �X C ��.X/��; ���� D 0; ��.��/ D 1
��C1�� D ���C2; ����C1 D ��C2;
����C1X D ��C2X C ��C1.X/��;
��C1��X D ���C2X C ��.X/��C1

(4)
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for any vector field X tangent to M . The tangential and normal components of the
commuting identity JJ�X D J�JX give

���X � ���X D ��.X/� � �.X/�� and ��.�X/ D �.��X/: (5)

The last equation implies ��� D ��� . The tangential and normal components of
J�J�C1X D J�C2X D �J�C1J�X give

����C1X � ��C1.X/�� D ��C2X D ���C1��X C ��.X/��C1 (6)

and

��.��C1X/ D ��C2.X/ D ���C1.��X/; (7)

respectively.
Moreover, putting X D �� and X D ��C1 into the first of these two equations

yields ��C2�� D ��C1 and ��C2��C1 D ��� respectively. From the Kähler condition
. NrXJ / D 0 and the quaternionic Kähler condition . NrXJ�/ D q�C2.X/J�C1 �
q�C1.X/J�C2, � D 1; 2; 3, together with Gauss and Weingarten formulas, we obtain
respectively

.rX�/Y D �.Y /AX � g.AX; Y /�; rX� D �AX; (8)

and

�
.rX��/Y D �q�C1.X/��C2Y C q�C2.X/��C1Y C ��.Y /AX � g.AX; Y /��;
rX�� D q�C2.X/��C1 � q�C1.X/��C2 C ��AX

(9)
for all tangent vector field X on M .

Finally, using the explicit expression for the Riemannian curvature tensor NR of
SU2;m=S.U2�Um/ in (1) the Codazzi equation takes the form

.rXA/Y � .rY A/X D �1
2

h
�.X/�Y � �.Y /�X � 2g.�X; Y /�

C
3X

�D1

˚
��.X/��Y � ��.Y /��X � 2g.��X; Y /��

�

C
3X

�D1

˚
��.�X/���Y � ��.�Y /���X

�

C
3X

�D1

˚
�.X/��.�Y / � �.Y /��.�X/

�
��

i
:

(10)
Hereafter, unless otherwise stated, we want to use these basic equations mentioned
above frequently without referring to them explicitly.
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4 Proof of Theorem 2

In order to give a complete proof of Theorem 2 in the introduction, we need the
following Key Proposition. Here we omit the proofs. For more detail proofs see [5].

Proposition 1. Let M be a real hypersurface in complex hyperbolic two-plane
Grassmannians SU2;m=S.U2�Um/, m � 3. If the shape operator A of M satisfies
L�A D 0, then it commutes with the structure tensor �.

Therefore, by virtue of Proposition 4.1 in [9] and Theorem 1 we assert that if
a real hypersurface M in SU2;m=S.U2�Um/, m � 3, satisfies the assumption in
Proposition 1, then M is locally congruent to an open part of a tube around some
totally geodesic SU2;m�1=S.U2�Um�1/ in SU2;m=S.U2�Um/ or a horosphere whose
center at infinity is singular.

From now on, let us check whether the tube Mr of radius r 2 RC around the
totally geodesic SU2;m�1=S.U2�Um�1/ in SU2;m=S.U2�Um/ and a horosphere H
in SU2;m=S.U2�Um/ whose center at infinity is a singular point of type JX 2
JX satisfy the condition of Reeb invariant shape operator. In fact, the principal
curvatures, their eigenspaces and multiplicities of the tubeMr and a horosphere H
are given by Table 2, respectively.

By the property of Lie derivative we obtain

.LXA/Y D LX.AY / � A.LXY / D .rXA/Y � rAY X C A.rY X/

for all tangent vector field X and Y .
On the other hand, from Table 2 all principal curvatures on Mr (reps. H ) are

constant. So, we may put AY D �Y on TpMr (resp. TpH ). From this, the Lie
derivative of the shape operator A along any direction X becomes

Table 2 Principal
curvatures, eigenspaces and
multiplicities of Mr and H

Type Eigenvalues Eigenspace Multiplicity

Mr 2 coth.2r/ T˛ D C? 1

coth.r/ Tˇ D C � Q 2

tanh.r/ T�1 D E�1 2m� 2

0 T�2 D EC1 2m� 2

H 2 T˛ D C? 1

1 Tˇ D .C � Q/˚E�1 2m

0 T� D EC1 2m� 2

where C (resp. Q) is the maximal complex (resp. quaternionic)
subbundle of TM . For the case JN 2 JN , on Q we have
.��1/

2 D I and tr.��1/ D 0. Let EC1 and E�1 be the
eigenbundles of ��1jQ with respect to the eigenvalues C1 and
�1, respectively
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.LXA/Y D .rXA/Y � rAY X C A.rY X/
D �.rXY / � A.rXY / � �.rY X/C A.rY X/
D .�I � A/ŒX; Y 

(11)

for all tangent vector fields X and Y with AY D �Y on Mr (or H ).
In order to check our problem mentioned above, we fix X D � in (11), that is,

.L�A/Y D .�I � A/Œ�; Y : (12)

Moreover, from the covariant derivative of JN D J1N with respect to a tangent
vector fieldX we see that one form q� becomes q�.X/ D 2g.AX; ��/ for � D 2; 3.
Using these facts, we assert the following proposition.

Proposition 2. The tubeMr of radius r 2 RC around the totally geodesic complex
hyperbolic Grassmannian SU2;m�1=S.U2�Um�1/ in SU2;m=S.U2�Um/ has Reeb
invariant shape operator.

Proof. As shown in Table 2 above, the tube Mr has four distinct constant principal
curvatures. So, to prove this proposition let us check whether the Eq. (12) vanishes
with respect to each eigenspace of Mr .

Case 1. Y 2 T˛ , � D ˛
Since Œ�; Y  D Œ�; � D 0, it is clear.

Case 2. Y 2 Tˇ , � D ˇ
Because Tˇ D Spanf�2; �3g, we first consider the subcase Y D �2. From (9),
since JN D J1N and q3.�/ D 2g.A�; �3/ D 0, we get Œ�; �2 D q1.�/�3�˛�3C
ˇ�3. It implies that .L�A/�2 vanishes.
On the other hand, since Œ�; �3 D �q1.�/�2 C ˛�2 � ˇ�2 for Y D �3, we obtain
the same result by similar calculations.
It implies that the Lie derivative of the shape operator along the direction of Reeb
vector field � is vanishing on Tˇ .

Case 3. Y 2 T�1 ˚ T�2 D Q
Since Œ�; Y  D r�Y � ��Y for Y 2 Q, the Eq. (12) can be written as

.L�A/Y D �.r�Y / � �2�Y � A.r�Y /C �A�Y (13)

for all Y 2 Q. Moreover, since Y 2 Q, the tangent vector fieldr�Y also belongs
to Q. In fact, we get g.r�Y; ��/ D 0 for each � D 1; 2; 3, from g.Y; ��/ D 0

and (9).

Subcase 3-(1). Y 2 T�1 , � D �1
Since T�1 D fY 2 Q j�Y D �1Y g, �T�1 	 T�1 . In addition, we have
�.r�Y / D �1.r�Y /, which implies r�Y 2 T�1 . Thus, we can assert that the
Lie derivative of the shape operator along the direction of Reeb vector field �
is vanishing on T�1 .

Subcase 3-(2). Y 2 T�2 , � D �2
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Since T�2 D fY 2 Q j�Y D ��1Y g, we see that �T�2 	 T�2 and r�Y 2 T�2 .
Actually, the property �Y D ��1Y gives us �.r�Y / D ��1.r�Y / together
with the Eqs. (8) and (9).

Summing up these cases, we can assert that the shape operator A ofMr becomes
Reeb invariant. ut

Moreover, we have also the following proposition by virtue of Table 2.

Proposition 3. A horosphere H in SU2;m=S.U2�Um/ whose center at infinity is
a singular point of type JX 2 JX satisfies the property of Reeb invariant shape
operator.

5 Proof of Corollaries

From the definitions of three kinds of the invariancy for the shape operator on M
given in Sect. 1, namely invariant, F -invariant and Reeb invariant shape operator,
we see that the property of Reeb invariant shape operator is the weakest condition
among them. Thus from Theorem 2, we assert that if a real hypersurface M in
SU2;m=S.U2�Um/, m � 3, has F -invariant (or invariant) shape operator, then
M is locally congruent to an open part of a tube around some totally geodesic
SU2;m�1=S.U2�Um�1/ in SU2;m=S.U2�Um/ or a horosphere whose center at infinity
is singular.

Now, let us consider whether a tube Mr of radius r around the totally
geodesic SU2;m�1=S.U2�Um�1/ in SU2;m=S.U2�Um/ and a horosphere H in
SU2;m=S.U2�Um/whose center at infinity is singular have F -invariant (or invariant)
shape operator. In order to investigate this problem, we suppose that Mr and H
have F -invariant (or invariant) shape operator. From this assumption we obtain
.L�2A/�3 D 0. On the other hand, as Œ�2; �3 D 2ˇ�1�q1.�2/�2�q1.�3/�3 from (9),
the Eq. (11) with respect to X D �2 2 Tˇ and Y D �3 2 Tˇ can be written as

.L�2A/�3 D 2ˇ.ˇ � ˛/�1: (14)

Since a tube Mr has F -invariant (or invariant) shape operator and � D �1 is unit,
from (14) we get ˇ.ˇ � ˛/ D 0. But from the facts ˛ D 2 coth.2r/ and ˇ D coth r
given in Table 2 we have a contradiction.

Moreover, on H since ˛ D 2 and ˇ D 1, we assert that the shape operator A
of H does not satisfy not only the property of F -invariant but also the property of
invariant shape operator.
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Heat Content Asymptotics on a Compact
Riemannian Manifold with Boundary

Hyunsuk Kang

Abstract We review the heat content asymptotics on a compact Riemannian
manifold with boundary and with specific heat and initial temperature distributions.
Some computation of first a few terms in the asymptotic series are shown given the
existence of a complete asymptotic series. This follows from a joint work with M.
van den Berg and P. Gilkey.

1 Introduction

The heat conduction and diffusion have been studied for centuries (see [12]), and the
heat trace of an operator of Laplace type has been explicitly computed since the
mid twentieth century (see [3, 14] and the references within and [10] for recent
development). For the heat content, computations with various conditions have been
extensively carried out by van den Berg and Gilkey (see [1, 2, 4, 13, 15] for earlier
works and [5–8,11] for the settings with singular data). In this article, we summarise
the main theorems in [9] without proofs and review some of the recent results on
the heat content on a compact Reimannian manifold with singular data. At the centre
of the discussion of these works, the existence of the complete asymptotic series of
the heat content for # 0 stands as a fundamental issue, and with this established,
the computation of the coefficients which appear in the series relies on the specific
examples in which analysis can be done explicitly. To generalise the statements in
the cases with doubly singular data, this existence was conjectured in [9], and we
shall do so in the first part of the this paper. In the second part, we introduce the
results on the existence of the complete asymptotic series on a compact subdomain
of a closed manifold.
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1.1 Definitions and Notation

We give basic definitions and notation as in [9]. Let .M; g/ be a compact
Riemannian manifold of dimension m with or without smooth boundary @M . Let
V be a smooth vector bundle over M and let D W C1.V / ! C1.V / be a second
order partial differential operator on the space of smooth sections to V . Throughout
this article, we adopt the Einstein convention and sum over repeated indices. Now
we introduce a type of differential operators which we consider here.

Definition 1. We say that D is of Laplace type if the leading symbol of D is given
by the metric tensor, i.e. locally D has the form:

D D � ˚g��@x�@x� C A�@x� C B� :
Recall the Bochner formalism from [14] that there exists a unique connection
r on V and a unique endomorphism E of V so that D D D.g;r; E/ D
�.g��r@x�r@x� CE/.

Now we impose suitable boundary conditions. Let em be the inward unit normal
vector field on the boundary. Let SR be an auxiliary endomorphism of V j@M and
let r be the connection on V given above. Let BD and BR be the Dirichlet and the
Robin boundary operators which are defined, respectively, by setting:

BDf D f j@M and BRf D .remf C SRf /j@M for f 2 C1.V / :

The Neumann boundary operator is defined by taking SR D 0. We let DB denote
either the Dirichlet or the Robin realisation ofD depending on whether B D BD or
B D BR.

1.2 The Heat Equation and the Heat Content

Let r be the geodesic distance to the boundary, and let y D .y1; : : : ; ym�1/ be a
system of local coordinates near p 2 @M . Then x D .y; r/ for r 2 Œ0; � is an
adapted system of local coordinates near p 2 M for some � > 0. Let � and �
denote the initial temperature and the specific heat of M , respectively. For singular
behavior of these, assume that they are smooth on the interior of M and that r˛1�
and r˛2� are smooth sections in V and V �, respectively, near @M for ˛1; ˛2 2 C

satisfying

<.˛1/ < 1; <.˛2/ < 1; and ˛1 C ˛2 … Z : (1)

The parameter ˛i , i D 1; 2, controls the blow up (resp. decay) near the boundary if
<.˛i / > 0 (resp. <.˛i / < 0). Now the temperature T WD e�tDB� is characterised
by the following parabolic equation with initial condition:
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.@t CD/T D 0;
limt#0 T .�I t / D �;
BT .�I t / D 0 for t > 0:

(2)

Let h�; �i be the natural pairing between V and the dual bundle V �, let dx be the
Riemannian measure on M , let dy be the Riemannian measure on @M , and let � be
the specific heat of M as given above.

Definition 2. The total heat content of the manifold is defined by

ˇ.�; �;D;B/.t/ WD
Z
M

he�tDB�; �idx :

There is a smooth heat kernel K D KD;B so that T .xI t / D R
M
K.x; QxI t /�. Qx/d Qx,

and

ˇ.�; �;D;B/.t/ D
Z
M�M

hK.x; QxI t /�. Qx/; �.x/id Qxdx ;

which is well defined for � 2 L1.V / and � 2 L1.V �/ due to (1).

2 Asymptotic Series of Heat Content

In order to consider integrals which may be divergent, we introduce the regu-
larisation of those integrals. Note that the integral

R
M
h�; �idx is divergent if

1 < <.˛1 C ˛2/ < 2. Though the Riemannian measure is not in general a product
near the boundary, one may write dx D dydr on the boundary of M , one can
decompose

h�; �idx D h�0; �0ir�˛1�˛2dydr CO.r1�˛1�˛2/ :
For <.˛1 C ˛2/ < 2 and ˛1 C ˛2 ¤ 1, define

I
g
Reg.�; �/ WD

Z
M�C�

h�; �idx C
Z
C�

˚h�; �idx � h�0; �0ir�˛1�˛2dydr
�

C
Z
@M

h�0; �0idy � "1�˛1�˛2.1 � ˛1 � ˛2/�1 ;

where C" WD fx 2 M W r.x/ � "g is a small collared neighbourhood of the
boundary. This is clearly independent of " and agrees with

R
M
h�; �idx if <.˛1 C

˛2/ < 1. The regularisation IReg.�; �/ is a meromorphic function of ˛1 C ˛2 with
a simple pole at ˛1 C ˛2 D 1. We set

ˇMn .�; �;D/ WD .�1/n=nŠ �I g
RegfhDn�; �ig :
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If M is a closed manifold, these are the invariants which would appear in the heat
content expansion. In this section, we assume that the following conjecture (which
extends the discussion of [5, 6]) holds. We refer to [11] where a related result was
established when the specific heat � is smooth.

Conjecture 1. If .˛1; ˛2/ satisfy (1), then there is a complete asymptotic series as
t # 0 of the form:

ˇ.�; �;D;BD=R/.t/ �
1X
nD0

tnˇMn .�; �;D/

C
1X
jD0

t .1Cj�˛1�˛2/=2ˇ@Mj;˛1;˛2.�; �;D;BD=R/ :

The coefficients ˇ@Mj;˛1;˛2.�; �;D;BD=R/ are given by integrals of local invariants
over the boundary.

This conjecture has been established in [11] using the calculus of pseudo-differential
operators in the special case that ˛2 2 N or that ˛1 2 N.

To look at closely how these coefficients ˇ@Mj;˛1;˛2.�; �;D;BD=R/ can be written
in terms of geometric datum and the singular data, we give the lemma below. Let
Rijkl denote the Riemann curvature tensor; with our sign convention, we have that
R1221 D C1 on the unit sphere S2 in R

3. Let Ric denote the Ricci tensor, let 

denote the scalar curvature, and let Lab denote the second fundamental form. We let
indices fi; j; k; lg range from 1 to m and index a local orthonormal frame for TM ;
we let indices fa; b; cg range from 1 to m � 1 and index a local orthonormal frame
for T @M . On the boundary, em will always denote the inward unit geodesic normal
and ‘;’ will denote the components of the covariant derivative.

Lemma 1. There exist universal constants "�D=R;˛1;˛2 so that:

ˇ@M0;˛1;˛2.�; �;D;BD=R/ D
Z
@M

"D=R;˛1;˛2h�0; �0idy:

ˇ@M1;˛1;˛2.�; �;D;BD=R/ D
Z
@M

n
"1D=R;˛1;˛2h�1; �0i C "2D=R;˛1;˛2hLaa�0; �0i

C"3D=R;˛1;˛2h�0; �1i C "15R;˛1;˛2hSR�0; �0i
o
dy:

ˇ@M2;˛1;˛2.�; �;D;BD=R/ D
Z
@M

n
"4D=R;˛1;˛2h�2; �0i C "5D=R;˛1;˛2hLaa�1; �0i

C "6D=R;˛1;˛2hE�0; �0i
C "7D=R;˛1;˛2h�0; �2i C "8D=R;˛1;˛2hLaa�0; �1i
C "9D=R;˛1;˛2hRicmm �

0; �0i C "10D=R;˛1;˛2hLaaLbb�0; �0i
C "11D=R;˛1;˛2hLabLab�0; �0i C "12D=R;˛1;˛2h�0Ia; �0Iai C "13D=R;˛1;˛2h
�0; �0i
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C "14D=R;˛1;˛2h�1; �1i C "16R;˛1;˛2hS2R�0; �0i C "17R;˛1;˛2hSR�1; �0i

C "18R;˛1;˛2hSR�0; �1i C "19R;˛1;˛2hSRLaa�0; �0i
o
dy:

We omit the terms involving SR for Dirichlet boundary conditions.

A computation on the half-line as a special case leads to identify the constants
"D=R;˛1;˛2 above. Let

"D=R WD
� �1 if B D BD

C1 if B D BR

�
:

Lemma 2. Suppose that .˛1; ˛2/ satisfy (1), then

"D=R;˛1;˛2 WD "D=R � 2�˛1�˛2��1=2�
�
2 � ˛1 � ˛2

2

�
� � .1 � ˛1/� .1 � ˛2/

� .2 � ˛1 � ˛2/

C2�˛1�˛2��1=2�
�
2 � ˛1 � ˛2

2

�
� .˛1C˛2�1/ �

�
� .1 � ˛1/
� .˛2/

C � .1 � ˛2/
� .˛1/

�
:

Using the functional equations of the � function, this leads to

Lemma 3. We have the recursion relations:

1. "D=R;˛1�2;˛2 D
2.˛1 � 2/.˛1 � 1/
3 � ˛1 � ˛2 "D=R;˛1;˛2 .

2. "D=R;˛1;˛2�2 D
2.˛2 � 2/.˛2 � 1/
3 � ˛1 � ˛2 "D=R;˛1;˛2 .

3. "D=R;˛1�1;˛2�1 D �
2.˛1 � 1/.˛2 � 1/
3 � ˛1 � ˛2 "R=D;˛1;˛2 .

These recursion relations are important ingredients along with functorial properties
of the heat content asymptotics to obtain the following theorems.

2.1 Heat Content Asymptotics for Dirichlet Boundary
Conditions

In [5, 11], the computation for the Dirichlet boundary conditions have been done as
follows:

Theorem 1. Suppose that .˛1; ˛2/ satisfy (1), then:

ˇ@M0;˛1;˛2.�; �;D;BD/ D
Z
@M

"D;˛1;˛2h�0; �0idy;

ˇ@M1;˛1;˛2.�; �;D;BD/ D
Z
@M

f�1
2
."D;˛1�1;˛2 C "D;˛1;˛2�1/Laah�0; �0i
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C "D;˛1�1;˛2h�1; �0i C "D;˛1;˛2�1h�0; �1igdy;

ˇ@M2;˛1;˛2.�; �;D;BD/ D
Z
@M

f�1
2
."D;˛1�2;˛2 C "D;˛1�1;˛2�1/Laah�1; �0i

C "D;˛1;˛2hE�0; �0i C "D;˛1�2;˛2h�2; �0i C "D;˛1;˛2�2h�0; �2i

� 1
2
."D;˛1�1;˛2�1 C "D;˛1;˛2�2/Laah�0; �1i

C .�1
4
"D;˛1�2;˛2 �

1

4
"D;˛1;˛2�2 C

1

2
"D;˛1;˛2/.LabLab C Ricmm/h�0; �0i

� "D;˛1;˛2h�0Ia; �0Iai C 0
�0�0 C "D;˛1�1;˛2�1h�1; �1i

C.1
8
"D;˛1�2;˛2C

1

8
"D;˛1;˛2�2C

1

4
"D;˛1�1;˛2�1 �

1

4
"D;˛1;˛2 /LaaLbbh�0; �0igdy:

2.2 Heat Content Asymptotics for Robin Boundary Conditions

Using various functorial properties of the invariants involved, the following theorem
was shown in [9]. Note the dependence of .˛1; ˛2/ in the coefficients of ".

Theorem 2. Suppose that .˛1; ˛2/ satisfy (1), then:

ˇ@M0;˛1;˛2.�; �;D;BR/ D
Z
@M

"R;˛1;˛2h�0; �0idy:

ˇ@M1;˛1;˛2.�; �;D;BR/ D
Z
@M

�
"R;˛1�1;˛2h�1; �0i C "R;˛1;˛2�1h�0; �1i

� 1
2
f ˛1

˛1 � 1"R;˛1�1;˛2 C
˛2

˛2 � 1"R;˛1;˛2�1ghLaa�
0; �0i

C f� 1

˛1 � 1"R;˛1�1;˛2 �
1

˛2 � 1"R;˛1;˛2�1ghSR�
0; �0i

�
dy:

ˇ@M2;˛1;˛2.�; �;D;BR/ D
Z
@M

�
"R;˛1�2;˛2h�2; �0i C "R;˛1;˛2�2h�0; �2i

� 1
2
f˛1 � 1
˛1 � 2"R;˛1�2;˛2 C

˛2

˛2 � 1"R;˛1�1;˛2�1ghLaa�
1; �0i

� 1
2
f ˛1

˛1 � 1"R;˛1�1;˛2�1 C
˛2 � 1
˛2 � 2"R;˛1;˛2�2ghLaa�

0; �1i

� 1
2

˛21 � 2˛1 C ˛22 � 2˛2 C 1
3 � ˛1 � ˛2 "R;˛1;˛2h.RicmmCLabLab/�0; �0i

C f ˛21 C ˛22�1
4.3 � ˛1 � ˛2/"R;˛1;˛2 C

1

4

˛1˛2

.˛1 � 1/.˛2 � 1/"R;˛1�1;˛2�1ghLaaLbb�
0; �0i
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� "R;˛1;˛2h�0Ia; �0Iai C 0 � h
�0; �0i
C "R;˛1;˛2hE�0; �0i C "R;˛1�1;˛2�1h�1; �1i

C f 1

.˛1 � 1/.˛2 � 1/"R;˛1�1;˛2�1 C
2

3 � ˛1 � ˛2 "R;˛1;˛2ghS
2
R�

0; �0i

C f� 1

˛1 � 2"R;˛1�2;˛2 �
1

˛2 � 1"R;˛1�1;˛2�1ghSR�
1; �0i

C f� 1

˛1 � 1"R;˛1�1;˛2�1 �
1

˛2 � 2"R;˛1;˛2�2ghSR�
0; �1i

C
�

˛1 C ˛2
3 � ˛1 � ˛2 "R;˛1;˛2C

1

2

˛1 C ˛2
.˛1 � 1/.˛2 � 1/"R;˛1�1;˛2�1

�
hSRLaa�0; �0i

�
dy:

3 Existence of Heat Content Asymptotic Series

So far the existence of the heat content asymptotics with doubly singular data has
been assumed to hold and we have been focused on computing the coefficients of
the asymptotic series. However, the recent work [7] by van den Berg and Gilkey
showed that this indeed holds for the heat flow of a compact submanifold in a closed
manifold which we will describe in this section. Let˝ be a compact subdomain of a
closed manifold M with smooth boundary @˝, and let �˝ and �˝ be the extension
of � and � to M to be zero on the complement of ˝. Let DM be an operator of
Laplace type on a smooth vector bundle V over M . Then the heat content of ˝ in
M is given for t > 0 by:

ˇ˝.�; �;DM/.t/ WD
Z
M

he�tDM �˝; �˝idx

Consider the following subset of C which gives a weaker assumption on .˛1; ˛2/
than in Sect. 2:

O WD f.˛1; ˛2/ 2 C W <.˛1/ < 1; <.˛2/ < 1; ˛1 C ˛2 ¤ 1;�1;�3; : : : g : (3)

In [7], the existence theorem was obtained for doubly singular data:

Theorem 3. Let DM be an operator of Laplace type on a smooth vector bundle
V over a compact Riemannian manifold .M; g/ without boundary. Let ˝ be a
compact subdomain of M with smooth boundary. Let � 2 C1.V jint.˝// and let
� 2 C1.V �jint.˝//. Let .˛1; ˛2/ 2 O . We assume that r˛1� and r˛2� are smooth
near the boundary of ˝. Let ˇ˝.�; �;DM/.t/ be the heat content of ˝ in M . Then
there is a complete asymptotic expansion of ˇ˝.�; �;DM/.t/ for small time such
that for any positive integer N as t # 0 we have:
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ˇ˝.�; �;DM /.t/D
NX
nD0

tnˇ˝n;˛1;˛2 .�; �;DM /C
NX
jD0

t .1Cj�˛1�˛2/=2ˇ@˝j;˛1;˛2 .�; �;DM/

CO.t.N�1/=2/ :

The coefficient ˇ@˝0;˛1;˛2.�; �;DM/ of t .1Cj�˛1�˛2/=2 is given by

ˇ@˝0;˛1;˛2.�; �;DM/ D c.˛1; ˛2/
Z
@˝

h�0; �0idy;

where c.˛1; ˛2/ WD 2�˛1�˛2 1p
�
�

�
2 � ˛1 � ˛2

2

�
� .˛1 C ˛2 � 1/

�
�
� .1 � ˛1/
� .˛2/

C � .1 � ˛2/
� .˛1/

�
:

More generally, the coefficients ˇ˝n;˛1;˛2.�/ are given as regularized integrals of local
invariants over the interior of ˝ that are bilinear in the derivatives of f�; �g up to
order 2n with coefficients that depend holomorphically on the parameters .˛1; ˛2/,
that depend smoothly on the 0-jets of the metric, and that are polynomial in the
derivatives of the total symbol of DM up to order 2n. The coefficients ˇ@˝j .�/
are given similarly as integrals of local invariants over the boundary @˝ where
the derivatives of f�; �g and of the total symbol of DM are up to order j .

Furthermore, in [7], it was finally shown that for ˛1 C ˛2 D 1;�1;�3; : : :
(as expected in [9]), log terms appear in the asymptotic expansion. The following
theorem demonstrates this for the heat kernel of DR WD �@2x on R:

Theorem 4. Let .a; b/ 2 R
2 with ˛1 < 1 and ˛2 < 1. Assume that ˛1 C ˛2 D 1.

Let �i be smooth monotonically decreasing cut-off functions which are identically
1 near x D 0 and identically 0 in an open neighborhood of the interval Œ1=2; 1.
Then for t # 0

ˇŒ0;1.x
�˛1�1; x�˛2�2;DR/.t/ D ˇ0.˛1; ˛2; �1;�2/ � 1

2
log.t/CO.t 12 log.t//

where for any � > 0 sufficiently small,

ˇ0.˛1; ˛2; �1;�2/D1
2

log.�2/C1
2
�C log 4.21=2 � 1/C

Z
Œ�; 12 

�1.x/�2.x/x
�1dx

C1
2

Z
Œ0;1

dqq�1
�
.1C q/˛1�1
.1 � q/˛1 C

.1 � q/˛1�1
.1C q/˛1 �

2

.1C q2/1=2
�
;

where � is the Euler’s constant.

Note that the parameter � serves to regularise the integral and does not contribute to
the value of ˇ0.
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Real Hypersurfaces in Complex Two-Plane
Grassmannians with Recurrent Structure Jacobi
Operator

Imsoon Jeong, Young Jin Suh, and Changhwa Woo

Abstract In this paper, we introduce a new notion of recurrent structure Jacobi
operator, that is, .rXR�/Y D !.X/R�Y for any tangent vector fields X and Y on a
real hypersurface M in a complex two-plane Grassmannian, where R� denotes the
structure Jacobi operator and ! a certain 1-form on M . Next, we prove that there
does not exist any Hopf hypersurfaceM in a complex two-plane Grassmannian with
recurrent structure Jacobi operator.

1 Introduction

In this paper, we will discuss about a complex two-plane Grassmannian G2.CmC2/
which is a kind of Hermitian symmetric space with rank 2 of compact type and
consists of all complex two-dimensional linear subspaces in C

mC2. G2.CmC2/ is
known to be the unique compact irreducible Riemannian symmetric space equipped
with both a Kähler structure J and a quaternionic Kähler structure J not containing
J (see Berndt and Suh [2] and [3]).

The almost contact structure vector field � defined by � D �JN is said to
be a Reeb vector field, where J denotes an almost Hermitian structure and N
denotes a local unit normal vector field of M in G2.CmC2/. Since G2.CmC2/ is
a Kähler manifold, the structure J becomes a Kähler structure. The almost contact
3-structure vector fields f�1; �2; �3g for the three-dimensional distribution D? of M
in G2.CmC2/ are defined by �� D �J�N .� D 1; 2; 3), where fJ�g�D1;2;3 gives a
canonical local basis of a quaternionic Kähler structure J and TxM D D ˚ D?,
x 2M , where D denotes the orthogonal complement of D?.

In G2.CmC2/, we consider two natural geometric conditions for real hypersur-
faces that Œ� D Spanf�g and D? D Spanf�1; �2; �3g are invariant under the shape
operator. By using such notions and the results in Alekseevskii [1], Berndt and
Suh [2] have proved the following:
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Theorem 1. LetM be a real hypersurface in G2.CmC2/,m � 3. Then both Œ� and
D? are invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic G2.CmC1/ in G2.CmC2/,
or

(B) m is even, say m D 2n, and M is an open part of a tube around a totally
geodesic quaternionic projective space HPn in G2.CmC2/.

In the case (A) in Theorem A, a real hypersurface M in G2.CmC2/ is said to be of
Type (A). Similarly in the case (B) of Theorem A, we call M a real hypersurface of
Type (B). Furthermore, the Reeb vector field � is said to be Hopf if it is invariant
under the shape operator A. The one-dimensional foliation of M by the integral
manifolds of the Reeb vector field � is said to be a Hopf foliation of M . In this case
we say thatM is a Hopf hypersurface in G2.CmC2/ if and only if the Hopf foliation
of M is totally geodesic. By the formulae in Sect. 3 it can be easily checked that M
is Hopf if and only if the Reeb vector field � is Hopf (see Berndt and Suh [3]).

Now let us introduce a theorem due to Lee and Suh [7] as follows:

Theorem 2. Let M be a connected orientable Hopf hypersurface in G2.CmC2/,
m � 3. Then the Reeb vector field � belongs to the distribution D if and only if
M is locally congruent to an open part of a tube around a totally geodesic HPn in
G2.C

mC2/, m D 2n, where the distribution D denotes the orthogonal complement
of D? in TxM , x 2M .

On the other hand, we know that Jacobi fields along geodesics of a given
Riemannian manifold . NM;g/ satisfy a well-known differential equation. This
classical differential equation naturally inspires the so-called Jacobi equation. If NR
denotes the curvature operator of NM and X any tangent vector field to NM , then the
Jacobi operator with respect to X at x 2 NM , NRX 2 End.Tx NM/ can be defined in
such a way that

. NRXY /.x/ D . NR.Y;X/X/.x/

for any Y 2 Tx NM , x 2 M . It becomes a self-adjoint endomorphism of the tangent
bundle T NM .

Let us denote by R.X; Y /Z the curvature tensor of a real hypersurface M in
G2.C

mC2/: Then the structure Jacobi operatorR� ofM inG2.CmC2/ can be defined
by R� = R.X; �/� for any tangent vector field X to M .

In the paper due to Jeong, Pérez and Suh [6] they proved that there does not exist
any connected Hopf real hypersurface in G2.CmC2/, m� 3, with parallel structure
Jacobi operator if the distribution D or D?-component of the Reeb vector field
is invariant under the shape operator. Moreover, also in [5], they have proved that
there does not exist any connected Hopf hypersurface in G2.CmC2/, m� 3, with
D?-parallel structure Jacobi operator if the principal curvature ˛ D g.A�; �/

is constant along the direction of the Reeb vector field � . As a generalization
of this fact, we considered some conditions weaker than parallel structure Jacobi
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operator and proved that there does not exist any connected Hopf hypersurface in
G2.C

mC2/, m� 3, satisfying such conditions. As an example, in a paper due to
Jeong, Lee and Suh [4], the authors proved that there does not exist any connected
Hopf hypersurface in G2.C

mC2/, m� 3, whose structure Jacobi operator is of
Codazzi type.

In this paper, we want to introduce the new notion of recurrent structure
Jacobi operator which is weaker than parallel structure Jacobi operator. Actually, a
non-zero tensor fieldK of type (r,s) on a manifoldM is said to be recurrent if there
exists a 1-form ˛ such that rK D K ˝ ˛. Specifically, recurrent tensor fields can
be applied to classify for submanifolds in a complex projective space CPn which
has constant positive sectional curvature.

From such a view point, Pérez and Santos [8] have defined the notion of recurrent
structure Jacobi operator in CPn defined in such a way that .rXR�/Y D !.X/R�Y
for a certain 1-form ! on a real hypersurface M in complex projective space CPn.
Using such a notion, they [8] proved that there does not exist any hypersurface in
CPn with recurrent structure Jacobi operator.

Now, let us consider the notion of D-recurrent structure Jacobi operator R� for
a real hypersurface M in G2.CmC2/ defined by .rXR�/Y D !.X/R�Y for any
X 2 D and Y 2 TM , where ! denotes an 1-form defined on M . Usually, this
notion is weaker than recurrent structure Jacobi operator. Then in this paper we
want to give a non-existence theorem for Hopf hypersurfaces in G2.CmC2/ with
D-recurrent structure Jacobi operator as follows:

Main Theorem. There does not exist any connected Hopf hypersurface in
G2.C

mC2/, m� 3, with D-recurrent structure Jacobi operator if the distribution
D or D?-component of the Reeb vector field is invariant under the shape operator.

As a consequence, we also obtain the following:

Corollary 1. There does not exist any Hopf hypersurface inG2.CmC2/,m� 3, with
recurrent structure Jacobi operator if the distribution D or D?-component of the
Reeb vector field is invariant under the shape operator.

In [6], Jeong, Pérez and Suh proved the following:

Corollary 2. There does not exist any Hopf hypersurface inG2.CmC2/,m� 3, with
parallel structure Jacobi operator if the distribution D or D?-component of the
Reeb vector field is invariant under the shape operator.

2 Riemannian Geometry of G2.C
mC2/

In this section we summarize basic material about G2.CmC2/, for details we refer
to [2] and [3]. By G2.CmC2/ we denote the set of all complex two-dimensional
linear subspaces in C

mC2. The special unitary group G D SU.m C 2/ acts
transitively onG2.CmC2/ with stabilizer isomorphic toK D S.U.2/�U.m// 	 G.
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Then G2.CmC2/ can be identified with the homogeneous space G=K. We get many
properties of G2.CmC2/ by investigating the homogeneous space G=K. The real
dimension of G=K is 4m and it is a compact irreducible manifold. Moreover, we
equip it with the unique analytic structure for which the natural action of G on
G2.C

mC2/ becomes analytic. In this paper, we will assume m�3.
Denote by g and k the Lie algebra of G and K, respectively, and by m the

orthogonal complement of k in g with respect to the Cartan-Killing form B of g.
Then g D k˚m is an Ad.K/-invariant reductive decomposition of g which induces
Riemannian metric. We put o D eK and identify ToG2.CmC2/ with m in the
usual manner. Since B is negative definite on g, its negative restricted to m � m
yields a positive definite inner product on m. By Ad.K/-invariance of B this inner
product can be extended to a G-invariant Riemannian metric g on G2.CmC2/. In
this wayG2.CmC2/ becomes a Riemannian homogeneous space, even a Riemannian
symmetric space. For computational reasons we normalize g such that the maximal
sectional curvature of .G2.CmC2/; g/ is eight.

As G2.CmC2/ is irreducible, the Lie algebra k has the unique direct sum
decomposition k D su.m/˚su.2/˚R, where R denotes the center of k. Viewing k as
the holonomy algebra of G2.CmC2/, the center R induces a Kähler structure J and
the su.2/-part a quaternionic Kähler structure J on G2.CmC2/. If J� is any almost
Hermitian structure in J, then JJ� D J�J , and JJ� is a symmetric endomorphism
with .JJ�/2 D I and tr.JJ�/ D 0 for � D 1; 2; 3.

A canonical local basis fJ1; J2; J3g of J consists of three local almost Hermitian
structures J� in J such that J�J�C1 D J�C2 D �J�C1J� , where the index � is taken
modulo three. Since J is parallel with respect to the Riemannian connection Nr of
.G2.C

mC2/; g/, there exist for any canonical local basis fJ1; J2; J3g of J three local
one-forms q1; q2; q3 such that

NrXJ� D q�C2.X/J�C1 � q�C1.X/J�C2 (1)

for all vector fields X on G2.CmC2/.
The Riemannian curvature tensor NR of G2.CmC2/ is locally given by

NR.X; Y /Z D g.Y;Z/X � g.X;Z/Y C g.J Y;Z/JX

� g.JX;Z/J Y � 2g.JX; Y /JZ

C
3X

�D1

n
g.J�Y;Z/J�X � g.J�X;Z/J�Y � 2g.J�X; Y /J�Z

o

C
3X

�D1

n
g.J�J Y;Z/J�JX � g.J�JX;Z/J�J Y

o
;

(2)
where fJ1; J2; J3g denotes a canonical local basis of J.
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3 Some Fundamental Formulas for Real Hypersurfaces
in G2.C

mC2/

Now in this section we want to derive the structure Jacobi operator from the
curvature tensor of a complex two-plane Grassmannian G2.CmC2/ given in (2) and
the equation of Gauss. Moreover, in this section we give some basic formulae for a
real hypersurface in G2.CmC2/.

Let M be a real hypersurface in G2.CmC2/, that is, a submanifold of G2.CmC2/
with real codimension one. The induced Riemannian metric on M will also be
denoted by g, and r denotes the Riemannian connection of .M; g/. Let N be a
local unit normal vector field of M and A the shape operator of M with respect
to N . The Kähler structure J of G2.CmC2/ induces on M an almost contact metric
structure .�; �; �; g/. Furthermore, let J1, J2, J3 be a canonical local basis of J.
Then each J� induces an almost contact metric structure .��; ��; ��; g/ on M .

Now let us put

JX D �X C �.X/N; J�X D ��X C ��.X/N (3)

for any tangent vector field X of a real hypersurface M in G2.CmC2/. Then the
following identities can be proved in a straightforward method and will be used
frequently in subsequent calculations:

��C1�� D ���C2; ����C1 D ��C2;

��� D ���; ��.�X/ D �.��X/;
����C1X D ��C2X C ��C1.X/��;

��C1��X D ���C2X C ��.X/��C1:

(4)

From this and the formulas (1) and (4) we have that

.rX�/Y D �.Y /AX � g.AX; Y /�; rX� D �AX; (5)

rX�� D q�C2.X/��C1 � q�C1.X/��C2 C ��AX; (6)

.rX��/Y D �q�C1.X/��C2Y C q�C2.X/��C1Y C ��.Y /AX
� g.AX; Y /��:

(7)

Moreover, from JJ� D J�J , � D 1; 2; 3; it follows that

���X D ���X C ��.X/� � �.X/��: (8)
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Then from (2) and the above formulas, the equation of Gauss is given by

R.X; Y /Z D g.Y;Z/X � g.X;Z/Y
C g.�Y;Z/�X � g.�X;Z/�Y � 2g.�X; Y /�Z

C
3X

�D1

n
g.��Y;Z/��X � g.��X;Z/��Y � 2g.��X; Y /��Z

o

C
3X

�D1

n
g.���Y;Z/���X � g.���X;Z/���Y

o

�
3X

�D1

n
�.Y /��.Z/���X � �.X/��.Z/���Y

o

�
3X

�D1

n
�.X/g.���Y;Z/ � �.Y /g.���X;Z/

o
��

C g.AY;Z/AX � g.AX;Z/AY:

(9)

On the other hand, we introduce a lemma due to Berndt and Suh [3] as follows:

Lemma 1. If M is a connected orientable real hypersurface in G2.CmC2/ with
geodesic Reeb flow, then

˛g..A� C �A/X; Y / � 2g.A�AX; Y /C 2g.�X; Y /

D 2
3X

�D1

n
��.X/��.�Y / � ��.Y /��.�X/ � g.��X; Y /��.�/

� 2�.X/��.�Y /��.�/C 2�.Y /��.�X/��.�/
o

for any tangent vector fields X and Y on M in G2.CmC2/.

4 The D-recurrent Structure Jacobi Operator

Let us assume that the structure Jacobi operator of a Hopf hypersurface M in
G2.C

mC2/ is D-recurrent. It is given by .rXR�/Y D !.X/R�Y for any X 2 D,
Y 2 TM and an 1-form ! on M .

In this section, by using above assumption let us show that the Reeb vector field �
belongs to either the distribution D or the distribution D? such that TxM D D˚D?
for any point x 2M .



The Recurrent Structure Jacobi Operator 273

If !.X/ D 0, then we get .rXR�/Y D 0. In [6], they gave some non-
existence theorems for Hopf hypersurfaces in G2.CmC2/ with parallel structure
Jacobi operator, that is, .rXR�/Y D 0 for any tangent vector fields X and Y on
M inG2.CmC2/. In this paper, let us assume that !.X/ ¤ 0 for any X 2 D. Then it
can be easily checked that any Hopf hypersurfaceM inG2.CmC2/with D-recurrent
structure Jacobi operator satisfies the following equation (see [6])

�g.�AX; Y /� � �.Y /�AX

�
3X

�D1

h
g.��AX; Y /�� � 2�.Y /��.�AX/�� C ��.Y /��AX

C 3˚g.��AX; �Y /��� C �.Y /��.AX/��� C ��.�Y /.���AX � ˛�.X/��/�

C 4��.�/.��.�Y /AX � g.AX; Y /���/C 2��.�AX/���Y
i

C �..rXA/�/AY C ˛.rXA/Y � ˛�..rXA/Y /� � ˛g.AY; �AX/�
� ˛�.Y /.rXA/� � ˛�.Y /A�AX
D !.X/

h
Y � �.Y /� C ˛AY � ˛2�.Y /�

�
3X

�D1

˚
��.Y /�� � �.Y /��.�/�� C 3��.�Y /��� C ��.�/���Y

�i

(10)
for any X 2 D, Y 2 TM .

Let us check whether or not the structure Jacobi operator of real hypersurfaces of
Type (A) in Theorem 1 is D-recurrent. In order to do this, we apply Proposition 3
in Berndt and Suh [2].

By putting Y D � and applying � D �1 into (10), we obtain

�AX C ˛A�AX C �1AX C
3X

�D1
f���.�AX/�� C 3��.AX/���g D 0

for any X 2 D. From this, let us consider a unit eigenvector X 2 T� 	 D. Then we
have

��X C ˛�A�X C ��1X C
3X

�D1
f����.�X/�� C 3���.X/���g D 0:

Since �X D �1X , we get

2��X C ˛�A�X D 0:
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Since �T� 	 T� and AX D �X , we have A�X D ��X . Thus we get �.2 C
˛�/�X D 0. As � D �p2 tan.

p
2r/ with some r 2 .0; �=p8/, � is not zero.

Accordingly, we know that

˛�C 2 D .p8 cot.
p
8r/.�p2 tan.

p
2r//C 2

D 2 tan2.
p
2r/ > 0:

Thus we have �X D 0. It gives us a contradiction.
Thus we know that the structure Jacobi operator R� of real hypersurface of

Type (A) in G2.CmC2/ is not D-recurrent if � belongs to the distribution D?.
If the Reeb vector field � belongs to the distribution D?, then there exist no real
hypersurfaces of Type (A) in G2.CmC2/ with D-recurrent structure Jacobi operator.

Next, we check for the case � 2 D that the structure Jacobi operator of real
hypersurfaces of Type (B) is D-recurrent. In order to do this we use Proposition 2
in Berndt and Suh [2].

By putting Y D � and applying � 2 D into (10), we have

�AX C ˛A�AX C
3X

�D1
f���.�AX/�� C 3��.AX/���g D 0:

From this, we consider a unit eigenvector X 2 T� 	 D. Then it follows that

��X C ˛�A�X C
3X

�D1
f����.�X/�� C 3���.X/���g D ��X C ˛�A�X D 0:

Since JT� D T� and X 2 T�, we know that �X 2 T�. This means that A�X D
��X . Naturally we also have

��X C ˛���X D 0:

Since � D cot.r/ with some r 2 .0; �=4/, � is non-zero,

1C ˛� D 1C .�2 tan.2r//.� tan.r// D 1C 4 sin2.r/

cos2.r/
> 1:

This implies that �X D 0, which gives us a contradiction. Accordingly, the
structure Jacobi operator R� of real hypersurfaces of Type (B) in G2.CmC2/ can not
be D-recurrent if the Reeb vector field � belongs to the distribution D.



The Recurrent Structure Jacobi Operator 275

5 Proof of the Main Theorem

In this section, in order to give our complete proof of Main Theorem in the
introduction, we need the following lemmas:

Lemma 2. LetM be a Hopf hypersurface inG2.CmC2/. If � D �.X0/X0C�.�1/�1
for some unit X0 2 D, �.X0/�.�1/ ¤ 0 and the distribution D or D?-component
of the Reeb vector � is invariant under the shape operator A of M , then it becomes
AX0 D ˛X0, A�1 D ˛�1, where the smooth function ˛ denotes �.A�/.

Proof. Since M is Hopf, that is A� D ˛� , we have

A.�.X0/X0 C �.�1/�1/ D ˛.�.X0/X0 C �.�1/�1/: (11)

From this, taking the inner product with X0, we have

�.X0/g.AX0;X0/C �.�1/g.A�1; X0/ D ˛�.X0/:

Since AX0 D g.AX0;X0/X0, we have g.A�1;X0/ D 0. So we obtain

�.X0/g.AX0;X0/ D ˛�.X0/:

Since �.X0/ ¤ 0, we get ˛ D g.AX0;X0/: By applying the equation above to (11),
we have A�1 D ˛�1. ut
Lemma 3. LetM be a Hopf hypersurface inG2.CmC2/ with D-recurrent structure
Jacobi operator. If the distribution D or D?-component of the Reeb vector field � is
invariant under the shape operator A of M , then the Reeb vector field � belongs to
either the distribution D or the distribution D?.

Proof. When the function ˛ D g.A�; �/ identically vanishes, it can be seen directly
from Pérez and Suh [9]. So we consider the case that the function ˛ is non-vanishing.
Putting Y D � in (10), we have

�AX C ˛A�AX

C
3X

�D1
f���.�AX/�� C ��.�/��AX C 3��.AX/��� � 4˛��.�/�.X/���g D 0:

(12)
We assume that

� D �.X0/X0 C �.�1/�1 (13)

for some unit X0 2 D and �.X0/�.�1/ ¤ 0. Then it suffices to show that �.X0/ D 0
or �.�1/ D 0. By applying (13) to (12), we get
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�AX C ˛A�AX C �1.�/�1AX � 4˛�1.�/�.X/�1�

C
3X

�D1
f���.�AX/�� C 3��.AX/���g D 0:

From this, by putting X D X0 and �1� D �.X0/�1X0, we have

�AX0 C ˛A�AX0 C �1.�/�1AX0 � 4˛�1.�/�2.X0/�1X0

C
3X

�D1
f���.�AX0/�� C 3��.AX0/���g D 0:

(14)

By assumption and Lemma 2, we know that

AX0 D ˛X0: (15)

By applying (15) to (14) and using ��.�X0/ D 0, we have

˛�X0 C ˛2A�X0 C ˛�1.�/�1X0 � 4˛�1.�/�2.X0/�1X0 D 0: (16)

We know the fact

�X0 D ��.�1/�1X0; (17)

which is induced by �� D 0. By applying (17) into (16), we obtain

�˛�.�1/�1X0�˛2�.�1/A�1X0C˛�.�1/�1X0�4˛�1.�/�2.X0/�1X0 D 0: (18)

On the other hand, by Lemma 1, we have

˛A�X C ˛�AX � 2A�AX C 2�X (19)

D 2
3X

�D1
f���.X/��� � ��.�X/�� � ��.�/��X

C 2�.X/��.�/��� C 2��.�X/��.�/�g:

Substituting (18) into above formula and replacing X by X0, we have

˛A�X0 C ˛�AX0 � 2A�AX0 D �4�2.X0/�X0:
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From this, by using AX0 D ˛X0, we have

A�X0 D ˛2 C 4�2.X0/
˛

�X0:

Apply (17) to above equation, we have

A�1X0 D ˛2 C 4�2.X0/
˛

�1X0: (20)

From (18) and (20), we get

� ˛2�.�1/˛
2 C 4�2.X0/

˛
�1X0 � 4˛�1.�/�2.X0/�1X0

D �˛�.�1/.˛2 C 8�2.X0//�1X0 D 0:

Since ˛ ¤ 0, �.�1/ ¤ 0 and ˛2 C 8�2.X0/ ¤ 0, we get �1X0 D 0 which makes a
contradiction. Accordingly, we get a complete proof of our lemma. ut

Let M be a Hopf hypersurface in G2.CmC2/ with D-recurrent structure Jacobi
operator, that is, .rXR�/Y D !.X/R�Y for any X 2 D, Y 2 TM and an 1-form
! to TM . By virtue of Lemma 3, we consider the following cases. First we consider
the Reeb vector field � belongs to the distribution D?.

Lemma 4. LetM be a Hopf hypersurface ofG2.CmC2/ with D-recurrent structure
Jacobi operator. If the Reeb vector field � belongs to the distribution D?, then
g.AD;D?/ D 0.

Proof. We may put � D �1, because � 2 D?. By putting Y D � into (3.1), we have
.rXR�/� D 0: So we obtain

�AX C ˛A�AX

C
3X

�D1
f���.�AX/�� C ��.�/��AX C 3��.AX/��� � 4˛��.�/�.X/���g D 0:

On the other hand, in a paper due to Jeong, Pérez and Suh [6], the authors
have classified all real hypersurfaces in G2.CmC2/ with parallel structure Jacobi
operator. Thus by using a similar method given in [6, p.182–183], we can prove that
g.AX; ��/ D 0 for � D 1; 2; 3 and any X 2 D, that is, g.AD;D?/ D 0. This gives
a complete proof of our lemma. ut

Summing up Lemmas 2, 3, 4 and using Theorems 1 and 2 in the introduction,
we know that any connected Hopf hypersurface in G2.CmC2/ with D-recurrent
structure Jacobi operator is locally congruent to one either of Type (A) or of
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Type (B). But, by using Propositions in [2], it can be easily checked that the structure
Jacobi operator R� of any real hypersurfaces of Type (A) or of Type (B) is not
D-recurrent. So we complete the proof of our Main Theorem in the introduction.
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The Warped Product Approach to GMGHS
Spacetime

Jaedong Choi

Abstract In the framework of Lorentzian multiply warped products we study
the Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) spacetime and the
nonsmooth geodesic motion near hypersurfaces in the interior of the event horizon.
We also investigate the geodesics of the GMGHS spacetime with C0-warping
functions.

1 Introduction

The concept of a warped product manifold was introduced to provide a class of
complete Riemannian manifolds with negative curvature everywhere [1], and was
developed to point out that several of the well-known exact solutions to Einstein
field equations are pseudo-Riemannian warped products [2]. Furthermore, certain
causal and completeness properties of a spacetime can be determined by the
presence of a warped product structure [3], and a general theory Lorentzian multiply
warped were applied to discuss the Schwarzschild spacetime in the interior of the
event horizon [4–7]. The role of warped products in the study of exact solutions to
Einstein’s equations are now firmly established to generate interest in other areas of
geometry.

On the other hand, there were enormous interests in the spherically symmetric
static charged black holes in the four-dimensional heterotic string theory. Gad [8]
also studied geodesic and geodesic deviation of the magnetically charged GMGHS
black hole solution. By turning antisymmetric tensor gauge fields off, the static
charged black hole solution was found by Gibbons, Maeda [9], and by Garfinkle [10]
independently. Recently, null geodesics and hidden symmetries in the Sen black
hole was investigated by Hioki and Miyamoto [11], which is reduced to the
magnetically charged GMGHS black hole in the nonrotating limit. Very recently,
Fernando [12] fully investigated null geodesic motions of the same solution both in
the Einstein and string frame. However, the studies of these null geodesics solutions
are mainly based on the exterior region of the event horizon.
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Moreover, the Lorentzian manifolds with non-smooth metric tensors have been
extensively discussed from various view points [4,13–16]. In a spacetime where the
metric tensor is continuous but has a jump in its first and second derivatives across
a submanifold in an admissible coordinate system, one can have a curvature tensor
containing a Dirac delta function [17]. The support of this distribution may be of
three, two, or one dimension or may even consist of a single event. Lichnerowicz’s
formalism [14] for dealing with such tensors is modified so that one can obtain
the Riemannian curvature tensor and Ricci curvature tensor defined in the sense of
distributions.

Donald Marolf and Amos Ori [18] argued that late infall-time observers
encounter a null shock wave at the location of the would-be outgoing inner horizon.
In particular, for spherically symmetric black hole spacetimes we demonstrate that
freely-falling observers experience a metric discontinuity across this shock, that is,
a gravitational shock-wave. In a Lorentzian multiply warped product spacetime,
by exchanging timelike and spacelike coordinates, we are interested in geodesic
motion inside of the event horizon.

In this paper we study the magnetically charged GMGHS interior spacetime of
the framework of Lorentzian multiply warped products and investigate the geodesic
motion near hypersurfaces of this spacetime with C0-warping functions. We shall
use geometrized units, i.e., G D c D 1, for notational convenience.

2 Magnetically Charged GMGHS Black Hole
in the Framework of Warped Products

Let us now consider the magnetically charged GMGHS black hole in terms of
the string metric. The Einstein metric does not change when we go from electric
to magnetic charged black hole, but since � changes sign, the string metric does
change. We get the GMGHS solution of the Einstein field equations represents the
geometry exterior to a spherically symmetric static charged black hole.

In the Schwarzschild coordinates, the line element for the magnetically charged
GMGHS black hole metric in the exterior region r > 2m has the following form

ds2 D �
�
1 � 2m

r

�
�
1 � Q

2

mr

�dt2 C dr2�
1 � 2m

r

��
1 � Q

2

mr

� C r2.d�2 C sin2 �d�2/; (1)

where

Q2

m
< r < 2m (2)

Here, the parametersm andQ are mass and charge respectively. Note that the metric
in the t -r plane is identical to the Schwarzschild case. As in the Schwarzschild
spacetime, the magnetically charged GMGHS has an event horizon at r D 2m.
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On the other hand, the line element for the magnetically charged GMGHS metric
for the interior region r < 2m can be described by

ds2 D � dr2�2m
r
� 1

��
1 � Q

2

mr

� C
�2m
r
� 1

�
�
1 � Q

2

mr

�dt2 C r2.d�2 C sin2 �d�2/; (3)

where r and t are now new temporal and spacial variables, respectively. A multiply
warped product manifold, denoted by M D .B � F1 � : : : � Fn; g/, consists of
the Riemannian base manifold .B; gB/ and fibers .Fi ; gi / (i D 1; : : : ; n) associated
with the Lorentzian metric [4].

In particular, for the specific case of .B D R; gB D �d�2/, the magnetically
charged GMGHS metric (3) can be rewritten as a multiply warped product .a; b/�f1
R �f2 S2 by making use of a function

d�2 D dr2�
2m
r
� 1

��
1 � Q2

mr

� (4)

� D �
p
.2m � r/.mr �Q2/

�
�
mC Q2

2m

�
tan�1

 
2m2 CQ2 � 2mr

2
p
m.2m � r/.mr �Q2/

!

D F.r/ (5)

Since � ! �.2m2CQ2/

4m
as r ! Q2

m
, choose integration constant C � �.2m2CQ2/

4m
.

Therefore we have �! �.2m2CQ2/

4m
as r ! Q2

m
and

� D �
p
.2m � r/.mr �Q2/

�
�
mC Q2

2m

�
tan�1

 
2m2 CQ2 � 2mr

2
p
m.2m � r/.mr �Q2/

!
C �.2m2 CQ2/

4m

D F.r/ (6)

Notice dF
dr

> 0 implies F �1 is a well-defined function as well as warping
functions given by f1 and f2 as follows

f1.�/ D

0
BB@

2m

F �1.�/
� 1

1 � Q2

F �1.�/m

1
CCA

1=2

; f2.�/ D F �1.�/ (7)
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By using (7) we rewrite (1) as

ds2 D
�
2m
r
� 1

�
�
1 � Q2

mr

�dt2 C dr2�
1 � 2m

r

��
1 � Q2

mr

� C r2.d�2 C sin2 �d�2/

D �d�2 C f 2
1 .�/dt

2 C f 2
2 .�/.d�

2 C sin2 �d�2/ (8)

The lapse function (4) is well defined in the region r < rH .D 2m/ to rewrite it
as a multiply warped product spacetime by defining a new coordinate � as follows

� D
Z r

0

dx x1=2

.rH � x/1=2 D F.r/: (9)

Setting the integration constant zero as r ! 0, we have

� D 2m cos�1
�
rH � r
rH

�
� Œ.rH � r/r1=2; (10)

which has boundary conditions as follows

lim
r!rH

F.r/ D .2n � 1/m�; lim
r!0

F.r/ D 0; (11)

for a positive integer n, and dr=d� > 0 implies that F �1.�/ is a well-defined
function. We can thus rewrite the GMGHS metric (3) with the lapse function (4)

ds2 D �d�2 C
� 2m

F �1.�/
� 1

�
dr2 C

�
F �1.�/2 � ˛F �1.�/

�
d˝2

D �d�2 C f1.�/2dr2 C f2.�/2d˝2 (12)

by using the warping functions (7).
Thus, in the case of the interior region r < 2m, the GMGHS metric has been

rewritten as a multiply warped product spacetime having the warping functions in
terms of f1 and f2. Moreover, we can write down the Ricci curvature on the multiply
warped product as
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R�� D �f
00
1

f1
� 2f

00
2

f2
;

Rtt D f1f 00
1 C

2f1f
0
1 f

0
2

f2
;

R�� D f 0
1 f2f

0
2

f1
C f 02

2 C f2f 00
2 C 1;

R�� D
�
f 0
1 f2f

0
2

f1
C f 02

2 C f2f 00
2 C 1

�
sin2 �;

Rmn D 0; for m ¤ n;

(13)

which have the same form as the Ricci curvature of the multiply warped interior
Schwarzschild metric [4]. The only difference with the Schwarzschild metric is the
˛ term in the warping function f2 in (7).

3 Geodesic Motion Near a Hypersurface with C 0-warping
Function

A full understanding of the GMGHS spacetime having an event horizon with an
essential singularity at the center and a surface singularity at r D ˛, etc, was
recently achieved only comparatively. Also, since the geodesics in the GMGHS
spacetime illuminate some basic aspects of universe within the event horizon, we
shall include an account of them. In this section, we briefly revisit the GMGHS
interior spacetime with two warping functions at a singular point r D ˛ in the
hypersurfaces, and we are interested in investigating the geodesic curves of a static
spherically symmetric GMGHS spacetime near hypersurfaces.

In local coordinates fxig the line element corresponding to this metric (3) will be
denoted by

dS2 D gij dxidxj : (14)

Consider the equations of geodesics in the GMGHS spacetime with affine parameter
� given by

dxi

d�2
C � i

jk

dxj

d�

dxk

d�
D 0: (15)

Let a geodesic � be given by �.
/ D
�
�.
/; r.
/; �.
/; �.
/

�
of the interior

GMGHS spacetime in the case of r < 2m from (3), then the orbits of the geodesics
equation are given as follows
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d2�

d
2
C f1 df1

d�

�
dr

d


�2
C f2 df2

d�

�
d�

d


�2
C f2 df2

d�
sin2 �

�
d�

d


�2
D 0; (16)

d2r

d
2
C 2

f1

df1

d


dr

d

D 0; (17)

d2�

d
2
C 2

f2

df2

d


d�

d

� sin � cos �

�
d�

d


�2
D 0; (18)

d2�

d
2
C 2

f2

df2

d


d�

d

C 2 cot �

d�

d


d�

d

D 0 (19)

with a following constraint along the geodesic

�
�
d�

d


�2
C f 2

1

�
dr

d


�2
C f 2

2

�
d�

d


�2
C f 2

2 sin2 �

�
d�

d


�2
D ": (20)

Note that a timelike (nulllike) geodesic is taken as " D �1 ." D 0/.
Hereafter, without loss of generality, suppose the geodesic

�.
0/ D
�
�.
0/; r.
0/; �.
0/; �.
0/

�
(21)

for some 
0 and the equatorial plane of � D �
2

, thus d�
d

D 0. Then, the geodesic

equations are reduced to

d2�

d
2
C f1 df1

d�

�
dr

d


�2
C f2 df2

d�

�
d�

d


�2
D 0; (22)

d2r

d
2
C 2

f1

df1

d


dr

d

D 0; (23)

d2�

d
2
D 0; (24)

d2�

d
2
C 2

f2

df2

d


d�

d

D 0 (25)

with a constraint

�
�
d�

d


�2
C f 2

1

�
dr

d


�2
C f 2

2

�
d�

d


�2
D ": (26)

These geodesic equations can be simplified as follows

dr

d

D c1

f 2
1

; (27)
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d�

d

D c2

f 2
2

; (28)

d2�

d
2
D 0 (29)

with a constraint

�
�
d�

d


�2
C c21
f 2
1

C c22
f 2
2

D ": (30)

The constant c1 represents the total energy per unit rest mass of a particle as
measured by a static observer [8,19,20], and c2 represents the angular momentum in
the GMGHS spacetimes. The equations for r and � are obtained from (23) and (25),
respectively. Making use of these r , � equations, we can show that (22) is exactly
the same as (26) when we take the integration constant as �"=2.

First of all, we consider the null geodesics in the r-direction, which is defined
by the hypersurface ˙r by taking d� D d� D 0. Then, we have c2 D 0 in (28).
Equations (27) and (30) are now reduced to give

d�

dr
D f1.�/; (31)

Let us consider the geodesic in the �-direction, which lies on the hypersurface
˙� at � D �

2
with dr D 0. Then, we have c1 D 0 in (27). Equations (28) and (30)

are reduced to give

d�

d�
D f2.�/; (32)

where f2.�/ is given by (7).
Finally, let us find the geodesic in the �-direction, which is defined by the

hypersurface ˙�, eliminating � in (31) and (32), leading to

d�

dr
D 1

r

r
2m � r
r � ˛ : (33)

This has a solution as

�.r/ D
r
2m

˛
cot�1

 
2
p
2m˛.2m � r/.r � ˛/
2mr � 4m˛ C r˛

!
Ctan�1

 
2.m � r/C ˛

2
p
.2m � r/.r � ˛/

!
:

(34)

Now, we reconsider the GMGHS spacetime M D .a; b/ �f1 R �f2 S2 in the
framework of the Lorentzian multiply warped products. Let subspace ˙xi of the
GMGHS spacetime M be a regularly embedded xi -directed hypersurface having
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coordinate neighborhood U.p/ with local coordinates .x1; x2; x3; x4/ such that
˙xi \ U D f.x1; x2; x3; x4/ 2 U j xi D pg for all p 2 ˙xi . For convenience,
we say that such a neighborhood U is partitioned by ˙xi .

A C0-Lorentzian metric on M is a nondegenerate (0,2) tensor of Lorentzian
signature such that:

(1) g 2 C0 on ˙xi \ U
(2) g 2 C1 on ˙xi \ U c

(3) For all p 2 ˙xi \U , and U.p/ partitioned by ˙xi , gjUC

p
and gjU�

p
has smooth

extensions to U . We call ˙xi a C0-singular hypersurface of .M; g/.

Clearly f is continuous at p in the usual sense if and only if it is both continuous
from the right and continuous from left at p:

lim
�!0

f .p C �/ D lim
�!0

f .p � �/ D f .p/ (35)

and

f .pC/ D lim
�!0

f .p C �/; � > 0 (36)

If, in addition, this limit is equal to the value f .p/, which the function f actually
assumes at the point p, then f is said to be continuous from the right at p. Similarly
any point to the left of p can be expressed as t D p � � where � is positive. The
limit, if it exists, of f .p � �/ as � tend to 0 through positive value f .p�/ is called
the left-hand limit of f as t tend to p� and usually written as f .p�/. If this limit
does exist and is equal to the value f .p/ then f is said to be continuous from the
left at p.

If f is continuous at a point p, then it must certainly be the case that f .p/ is
defined. In general a function f is said to have a removable discontinuity at p if
both the right-hand and left-hand limits of f at p exist and are equal but f .p/ is
undefined or else has a value different from f .pC/ and f .p�/. The discontinuity
disappears on suitably defining (or re-defining) f .p/. If the one-sided limits f .pC/
and f .p�/ both exist but are unequal in value, then f is said to have a jump
discontinuity at p. The number f .pC/ � f .p�/ is then called the jump of the
function at p.

We consider the geodesic in the �-direction which is C0 on a hypersurface
˙xi \ U . If we only have fi 2 C0.˙x1 \ U/, then f 0

i is discontinuous at p, In
this case we rewrite f 0

i .t / by using the unit function U .

dfi

d�
D f 0

i .�.
// D f 0
i

C
U.�.
/ � p/C f 0

i
�
U.p � �.
// (37)
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Then we define one sided limits

f C
i .�.
// D lim

xm!�.
/
fi .xm/ (38)

for fi W ˙x1 \ U c ! RC at �.
/ 2 ˙x1 and xm 2 UC, similarly

f �
i .�.
// D lim

xm!�.
/
fi .xm/ (39)

for xm 2 U�,
Now assume U to be a local coordinate neighborhood partitioned by ˙x1

with coordinates .�.
0/; r.
0/; �.
0/; �.
0//. Then the orbits of the geodesics
equations (22), (23), (25) are reduced to

d2�

d
2
C f1

h
f 0
1

C
U.�.
/ � p/C f 0

1
�
U.p � �.
//

i�dr
d


�2

C f2
h
f 0
2

Cu.�.
/ � p/C f 0
2

�
U.p � �.
//

i�d�
d


�2
D 0; (40)

d2r

d
2
C 2

f1

h
f 0
1

C
U.�.
/ � p/C f 0

1
�
U.p � �.
//

id�
d


dr

d

D 0; (41)

d2�

d
2
D 0; (42)

d2�

d
2
C 2

f2

h
f 0
2

C
U.�.
/ � p/C f 0

2
�
U.p � �.
//

id�
d


d�

d

D 0 (43)

Conclusions
In this paper, we have studied the GMGHS interior spacetime associated
with a multiply warped product manifold. In the multiply warped product
manifold, the GMGHS spacetime has been characterized by two warping
functions f1.�/ and f2.�/, compared with the Schwarzschild spacetime
which has the only warping function f1.�/.We have also investigated the
nonsmooth geodesic motion near hypersurfaces in the interior of the event
horizon. We also investigated the geodesic of the GMGHS spacetime with
C0-warping functions.
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Reeb Flow Invariant Ricci Tensors

Jong Taek Cho

Abstract We study symmetries along the Reeb flow on almost contact three-
manifolds.

1 Introduction

Let M be a smooth manifold of odd dimension m D 2nC 1. Then M is said to be
an almost contact manifold if its structure group GLmR of the linear frame bundle
is reducible to U.n/ � f1g. This is equivalent to the existence of an endomorphism
field ', a vector field � and a 1-form � satisfying

'2 D �I C �˝ �; �.�/ D 1;

where I denotes the identity transformation. We remark that a compact orientable
manifold of odd dimension has a non-vanishing vector field. Moreover, since U.n/�
f1g 	 SO.2nC 1/, M admits a Riemannian metric g satisfying

g.'X; 'Y / D g.X; Y / � �.X/�.Y /

for any vector fields X; Y on M . g is called a compatible Riemannian metric to a
given almost contact manifold. Such .�; '; �; g/ is called an almost contact metric
structure. The fundamental 2-form ˚ is defined by ˚.X; Y / D g.X; 'Y /. If M
satisfies in addition d� D ˚ , then M is called a contact metric manifold, where d
is the exterior differential operator.

In case that their automorphism groups have the maximum dimension .nC 1/2,
they are classified by the following three classes [19]: (1) Sasakian space forms, that
is, complete, simply connected, normal contact Riemannian manifolds of constant
holomorphic sectional curvature; (2) R � F.k/ or S � F.k/, the product spaces
of a line R or a circle S and a complex space form F.k/; (3) warped product
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spaces R �� CEn of a real line and a complex Euclidean space with a warping
function �. Each class has been intensively developed. For the class (1), the contact
metric structure including Sasakian structure has been investigated by many authors
(cf. [1]). The geometric property of (2) is represented as the so-called cosymplectic
structure. The trivial products of a real line or a circle and a Kählerian manifold
admit such a structure. Extending the model (3), K. Kenmotsu [11] introduced
another class, which is expressed (locally) by a warped product space of an open
interval and a Kählerian manifold. We call such a manifoldM a Kenmotsu manifold
and its almost contact metric structure is called a Kenmotsu structure. It is worth
noting that every orientable 2-surfaceN admits a Kählerian metric. Taking a product
metric or a warped product metric with a warping function � D c exp t (c a positive
constant) on the product space R �N , then we have a cosymplectic or a Kenmotsu
3-manifold, respectively. A Sasakian, a cosymplectic, or a Kenmotsu manifold holds
the CR-integrability, and moreover the normality. Without normality we have much
broader classes. An almost contact metric manifold .M I �; '; �; g/ is said to be
almost cosymplectic if d� D 0 and d˚ D 0. Such a class was introduced by S.
I. Goldberg and K. Yano [9]. The trivial products of an almost Kählerian manifold
and a real line or a circle are the simplest examples of such manifolds. Recently,
D. Perrone [17] classified all homogeneous almost cosymplectic three manifolds.
An almost contact metric manifold M is said to be almost Kenmotsu if d� D 0 and
d˚ D 2�^˚ . The warped products of an almost Kählerian manifold and a real line
give examples of almost Kenmotsu manifolds. For further properties and examples
of almost Kenmotsu manifolds, we refer to [8].

The class of almost contact manifolds with which we concerned holds the
properties £�� D £�� D 0, that is, the Reeb vector field and its associated 1-form
are invariant along the Reeb flow. In former works, we studied such a class of almost
contact metric three-manifolds whose Ricci operator S is invariant along the Reeb
flow � . That is, we proved the following theorems.

Theorem A ([3]). The Ricci operator S of a contact metric three-manifold M is
invariant along the Reeb flow � , that is, M satisfies £�S D 0 if and only if M is
Sasakian or locally isometric to a Lie group SU.2/, SL.2;R/, E.2/ .the group of
rigid motions of Euclid 2-plane/ with a left invariant contact Riemannian metric
respectively.

Theorem B ([4]). An almost cosymplectic three-manifold M satisfies £�S D 0 if
and only if M is cosymplectic or locally isometric to the group E.1; 1/ of rigid
motions of Minkowski 2-space with a left invariant almost cosymplectic structure.

It should be remarkable that E.1; 1/ admits also a left invariant contact metric
structure. But, for such a contact metric structure £�S ¤ 0 (see also [7]).

Theorem C ([7]). An almost Kenmotsu three-manifold M satisfies £�S D 0 if
and only if M is locally isometric to either a hyperbolic space H

3.�1/ or a non-
unimodular Lie group with a left invariant almost Kenmotsu structure.
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The non-unimodular Lie groups in Theorem C are given explicitly by some solvable
Lie groups (cf. [5, 10]). Especially, the product space R � H

2.�4/ appears among
them. For contact metric three-manifolds or almost cosymplectic three-manifolds,
we can find that the commutativity condition S' D 'S is equivalent to £�S D 0

(cf. [3, 4]). But, for almost Kenmotsu three-manifolds this equivalency does not
hold any more. Indeed, only a non-unimodular Lie group with left invariant almost
Kenmotsu structure which satisfies S' D 'S is H

3.�1/ [5]. Moreover, even for
Kenmotsu three-manifolds, the commutativity condition S' D 'S is not equivalent
to £�S D 0 ([7]).

In the present paper, we again concentrate on a contact three-manifold .M I �/.
For an associated Riemannian metric g, if the Reeb vector field � generates an
isometric flow, that is, M satisfies £�g D 0, then M is said to be K-contact. We
note that a K-contact manifold is already Sasakian in dimension three. There is an
interesting intermediate class, the so-called H -contact manifolds, which includes
K-contact manifolds. It means that the Reeb vector field is a harmonic vector field.
(For the detail, see Sect. 2). Other than the Ricci operator S , we have fundamental
tensors in contact metric geometry: ` D R.�; �/� , which is called the characteristic
Jacobi operator, h D 1

2
£�', and 
 D £�g. Then, we study several equivalent

conditions to £�S D 0. Namely, we prove

Theorem D. Let M be an H -contact three-manifold. Then M satisfies £�` D 0,
r�` D 0, r�S D 0, `' D '`, r�h D 0, or r�
 D 0, respectively if and only if M
is Sasakian or locally isometric to SU.2/ .or SO.3//, SL.2;R/ .or O.1; 2//, E.2/
with a left invariant contact Riemannian metric respectively.

In Theorem D, we cannot omit the H -contact condition. In fact, we have a non-
unimodular Lie group with contact left invariant Riemannian metric which satisfies
£�` D 0, r�` D 0, r�S D 0, `' D '`, r�h D 0, or r�
 D 0, respectively, but
S� ¤ �� (see Remark 2). A non-homogeneous example of such a contact metric
three-manifold is given in Example 1.

2 Preliminaries

All manifolds in the present paper are assumed to be connected and of class C1.
A .2nC1/-dimensional manifoldM2nC1 is said to be a contact manifold if it admits
a global 1-form � such that � ^ .d�/n ¤ 0 everywhere. Given a contact form �,
we have a unique vector field � , which is called the Reeb vector field, satisfying
�.�/ D 1 and d�.�;X/ D 0 for any vector fieldX . It is well-known that there exists
a Riemannian metric g and a .1; 1/-tensor field ' such that

�.X/ D g.X; �/; d�.X; Y / D g.X; 'Y /; '2X D �X C �.X/�; (1)

where X and Y are vector fields on M . From (1) it follows that

'� D 0; � ı ' D 0; g.'X; 'Y / D g.X; Y / � �.X/�.Y /: (2)
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A Riemannian manifold M equipped with structure tensors .�; g/ satisfying (1) is
said to be a contact Riemannian manifold and is denoted by M D .M I �; g/. Given
a contact Riemannian manifold M , we define a .1; 1/-tensor field h by h D 1

2
£�',

where £ denotes Lie differentiation. Then we may observe that h is self-adjoint and
satisfies

h� D 0 and h' D �'h; (3)

rX� D �'X � 'hX; (4)

where r is Levi-Civita connection. From (3) and (4) we see that each trajectory of
� is a geodesic. We denote by R the Riemannian curvature tensor defined by

R.X; Y /Z D rX.rY Z/ � rY .rXZ/ � rŒX;Y Z

for all vector fields X; Y;Z. Along a trajectory of � , the Jacobi operator `X D
R.X; �/� is another symmetric (1,1)-tensor field, that is, g.`X; Y / D g.X; `Y /.
We have

.trace `/ D �.�; �/ D 2n � .trace h2/; (5)

r�h D ' � '` � 'h2; (6)

where � is the Ricci curvature tensor defined by �.X; Y / D g.SX; Y /.
A contact Riemannian manifold for which � is Killing is called a K-contact

Riemannian manifold. It is easy to see that a contact Riemannian manifold is
K-contact if and only if h D 0. Moreover, we compute

.£�h/X D£�hX � h£�X

DŒ�; hX � hŒ�; X
D.r�h/X � rhX� C hrX�:

Then we find that £�h D 0,r�h D �2'h and 'h2 D 0. Thus, we have

Proposition 1. A contact Riemannian manifold isK-contact if and only if £�h D 0.

We put 
 D £�g. Then D. Perrone obtained the following result.

Proposition 2 ([14]). For a contact Riemannian manifold M , the following four
conditions are mutually equivalent.

• r�h D 0,
• r�
 D 0,
• r�` D 0,
• `' D '`.
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Let .M; g/ be a Riemannian manifold with unit tangent sphere bundle T1M .
We equip the Riemannian metric Og=4 on T1M . Here is Og the Sasaki-lift metric
on T1M . Denote by X1.M/ the space of all smooth unit vector fields on M . A unit
vector field V 2 X1.M/ is said to be harmonic if it is a critical point of the energy
functional restricted to X1.M/. In particular, a contact Riemannian manifold M is
said to be an H -contact manifold if its Reeb vector field is harmonic in the above
sense. In [16] it was proved that a contact Riemannian manifold M is H -contact if
and only if � is an eigenvector field of S , that is, S� D �� for some function � .

For a contact Riemannian manifold M one may define naturally an almost
complex structure J on M � R;

J.X; f
d

dt
/ D .'X � f �; �.X/ d

dt
/;

where X is a vector field tangent to M , t the coordinate of R and f a function on
M � R. If the almost complex structure J is integrable, M is said to be normal or
Sasakian. It is known that M is normal if and only if M satisfies

Œ'; 'C 2d�˝ � D 0;

where Œ'; ' is the Nijenhuis torsion of '. A Sasakian manifold is characterized by
a condition .rX'/Y D g.X; Y /� � �.Y /X for all vector fields X and Y on the
manifold. For more details about contact Riemannian manifolds, we refer to [1].

3 Reeb Flow Symmetries on Contact Three-Manifolds

First, using (5) and (6) we easily obtain

Lemma 1. A contact Riemannian manifold is Sasakian if and only if ` D I ��˝� .

In dimension three, we have

Lemma 2 (cf. [3]). A Sasakian three-manifold is �-Einstein, that is, S D . r
2
� 1/

I C .3 � r
2
/�˝ � , where r is the scalar curvature with dr.�/ D 0.

LetM D .M3I �; g/ be a three-dimensional contact Riemannian manifold. Then,
the curvature tensor R is expressed by

R.X; Y /Z D�.Y;Z/X � �.X;Z/Y C g.Y;Z/SX � g.X;Z/SY
� r
2
fg.Y;Z/X � g.X;Z/Y g

(7)

for all vector fields X; Y;Z. Now we prove
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Proposition 3. Under the assumption S� D �� , the following conditions are
mutually equivalent:

(i) £�` D 0,
(ii) r�` D 0,

(iii) r�S D 0.

Proof. If h D 0 on M , then from Lemmas 1 and 2 we see at once that the above
three conditions always hold. So, we consider on M the maximal open subset U1
on which h ¤ 0 and the maximal open subset U2 on which h is identically zero.
(U2 is the union of all points p in M such that h D 0 in a neighborhood of p).
U1 [U2 is open and dense in M . Suppose that M is non-Sasakian. Then U1 is non-
empty and there is a local orthonormal frame field fe1 D e; e2 D 'e; e3 D �g on
U1 such that h.e1/ D �e1, h.e2/ D ��e2 for some positive function �. We denote
�ijk D g.rei ej ; ek/, �ij D �.ei ; ej /, for h; i; j; k; l D 1; 2; 3. Also, from (6) and
taking account of (5) and (7), we have

�� D �12 (8)

and

4��312 D �22 � �11: (9)

Assume that S� D �� . Then, from (7) we have

`.X/ D SX C .� � r
2
/X � .2� � r

2
/�.X/�: (10)

We first prove (i)” (ii). Suppose thatM satisfies £�` D 0. Then, we compute

0 D£� .`X/ � `.£�X/
DŒ�; `X � `Œ�; X:

From this, using (4) we get an equivalent equation to £�` D 0:

.r�`/X D .`' � '`/X C .`'h � 'h`/X: (11)

Since r�` is a self-adjoint operator, we get

`'h � 'h` D `h' � h'`:

Since h' D �'h, it follows that

`'h D 'h`: (12)
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Applying e1 to (12) and taking an inner product with e2 (with respect to g), then
we get

`11 D `22 (13)

on U1. And we get from (11) and (12)

r�` D `' � '`: (14)

Differentiating (12) covariantly along � , then we get

.r�`/'hC `'.r�h/ D '.r�h/`C 'h.r�`/: (15)

Use (6) and (14) to obtain

h2`C 'h`' � h` D �`h � '`'hC `h2; (16)

and then use (12) again to have

h2` � `h2 D 2.h` � `h/: (17)

Applying e1 to (17) and taking an inner product with e2 (with respect to g), then
we get

`12 D `21 D 0 (18)

on U1. From (13) and (18), we find that `' D '`, and consequently from (14) we
get r�` D 0. Conversely, we assume that S� D �� and r�` D 0. From (5) we have
�� D 0, and hence �12 D �21 D 0, where we have used (8). So, from (10) we get
`12 D `21 D 0. Since r�` D 0, we have

�312.`11 � `22/ D 0: (19)

From (9) and (19) we have

`11 D `22;

because �11 D �22 implies that `11 D `22. Thus, together with (18) we find that
`' D '`. Moreover, we see that `'h D 'h` on U1. After all, we have £�` D 0.

In the middle of above proof we find that S� D �� and £�` D 0 implies
S' D 'S . The converse also holds (cf. [6]). In [3] it was proved that S� D �� and
r�S D 0 if and only if £�S D 0. And it is equivalent to the condition S' D 'S .
This completes the proof. ut

From Propositions 2, 3 and Theorem A, we have
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Theorem 1. Let M be an H -contact three-manifold. Then M satisfies £�` D 0,
r�` D 0, r�S D 0, `' D '`, r�h D 0, or r�
 D 0, respectively if and only if M
is Sasakian or locally isometric to SU.2/ .or SO.3//, SL.2;R/ .or O.1; 2//, E.2/
with a left invariant contact Riemannian metric respectively.

4 Lie Groups and Examples

By a theorem due to K. Sekigawa [18] and the classification due to J. Milnor [13] of
three-dimensional Lie groups with a left invariant metric, D. Perrone [15] classified
all simply connected homogeneous contact Riemannian 3-manifolds. Recall thatM
is called unimodular if its left invariant Haar measure is also right invariant. In terms
of the Lie algebra m,M is unimodular if and only if the adjoint transformation adX
has trace zero for every X 2 m. Then we have

Proposition 4 ([13]). Let M be a three-dimensional unimodular Lie group with a
left invariant contact Riemannian structure, then there exists an orthonormal basis
fe1; e2 D 'e1; e3 D �g 2 m such that

Œe1; e2 D 2e3; Œe2; e3 D c2e1; Œe3; e1 D c3e2: (20)

Remark 1 (cf. [2]). In fact, every three-dimensional unimodular Lie group, with
only exception of the commutative Lie group R

3, admits a left-invariant contact
metric structure. Also, M is K-contact (or Sasakian) if and only if c2 D c3.

Since c1 D 2 > 0, the possible combinations of the signs of c1; c2 and c3 and
the associated Lie groups are indicated in the following table (see [13]);

Signs of c1, c2, c3 Associated Lie group
+, +, + SU.2/ or SO.3/
+, +, � SL.2;R/ or O.1; 2/
+, +, 0 E.2/

+, �, � SL.2;R/ or O.1; 2/
+, �, 0 E.1; 1/

+, 0, 0 Heisenberg group

SU.2/ : group of 2 � 2 unitary matrices of determinant 1 ; homeomorphic to the
unit 3-sphere.

SO.3/ : rotation group of 3-space, isomorphic to SU.2/=f˙I g.
SL.2;R/ : group of 2 � 2 real matrices of determinant 1.
O.1; 2/ : Lorentz group consisting of linear transformations preserving the

quadratic form t 2 � x2 � y2. Its identity component is isomorphic to
SL.2;R/=f˙I g, or to the group of rigid motions of hyperbolic 2-space.

E.2/ : group of rigid motions of Euclidean 2-space.
E.1; 1/ : group of rigid motions of Minkowski 2-space.
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Finally, the Heisenberg group can be described as the group of all 3 � 3 real
matrices of the form

0
@1 
 
0 1 

0 0 1

1
A :

From (20), we obtain

S� D
�
�1
2
.c3 � c2/2 C 2

�
�:

Moreover, we have (cf. [3])

Proposition 5. Let M be a three-dimensional unimodular Lie group with left
invariant contact Riemannian structure. Suppose that M satisfies r�S D 0,
£�` D 0, `' D '`, r�` D 0, r�h D 0, or r�
 D 0, respectively. Then M is
isometric to one of the following Lie groups:

• SU.2/ .or SO.3// with Sasakian metric or contact Riemannian metric,
• SL.2;R/ .or O.1; 2// with Sasakian metric or contact Riemannian metric,
• Heisenberg group with Sasakian metric,
• E.2/ with contact Riemannian metric.

Now, letM be a three-dimensional non-unimodular Lie group with left invariant
Riemannian metric. Then we have

Proposition 6 ([13]). Let M be a three-dimensional non-unimodular Lie group
with left invariant contact Riemannian structure. Then there exists an orthonormal
basis fe1; e2 D 'e1; e3 D �g 2 m such that

Œe1; e2 D ˛e2 C 2e3; Œe2; e3 D 0; Œe3; e1 D �e2; (21)

where ˛ ¤ 0. Moreover, M is Sasakian if and only if � D 0.

From (21), by a direct computation we find that

S� D ˛�e2 C
�
2 � �

2

2

�
� (22)

Also, we have

`.e1/ D
��3�2 C 4� C 4

4

�
e1

`.e2/ D .� � 2/2
4

e2:

(23)
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For example, we compute

.£�`/.e1/ D £� .`e1/ � `.£�`e1/
D Œ�; `e1 � `Œ�; e1

D
��3�2 C 4� C 4

4

�
�e2 � .� � 2/

2

4
�e2 .* (21) and (23)/

D �2.�� C 2/e2
and

.£�`/.e2/ D £� .`e2/ � `.£�e2/
D Œ�; `e2 � `Œ�; e2
D 0:

Then, since .£�`/.�/ D 0, from the above two items, we have that M satisfies
£�` D 0 if and only if either � D 0 (Sasakian) or � D 2. By similar computations,
we have

Proposition 7. Let M be a three-dimensional non-unimodular Lie group with left
invariant contact Riemannian structure. Then M satisfies £�` D 0, `' D '`,
r�` D 0, r�S D 0, r�h D 0, or r�
 D 0, respectively if and only if either
� D 0 .Sasakian/ or � D 2.

Remark 2. From Proposition 7, we see that the a non-unimodular Lie group whose
Lie algebra structure is given by (21) with � D 2 satisfies £�` D 0, `' D '`,
r�` D 0, r�S D 0, r�h D 0 and r�
 D 0, but not S� D �� . In fact, S� D 2˛e2
.˛ ¤ 0/.

The following example gives a non-homogeneous contact Riemannian manifold
satisfying £�` D 0, `' D '`, r�` D 0, r�S D 0, r�h D 0, and r�
 D 0, but not
S� D �� .

Example 1 ([12]). On the Cartesian 3-space R3.x; y; z/, we define a contact 1-form
� by

� D dx C 2ye�zd z:

Next we define a frame field fe1; e2; e3g by

e1 D �2y @
@x
C .2x � yez/

@

@y
C ez @

@z
; e2 D @

@y
; e3 D @

@x
:

Then we define a Riemannian metric g by the condition fe1; e2; e3g is orthonormal
with respect to it. One can see that g is an associated metric to �. The Reeb vector
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field is � D e3. As usual, the endomorphism field ' is defined by 'e1 D e2,
'e2 D �e1 and 'e3 D 0. Direct computations show that he1 D e1, he2 D �e2,
and ` D 0. Moreover, we obtain that £�` D 0, `' D '`, r�` D 0, r�h D 0, and
r�
 D 0. The Ricci operator has components �23 D �32 D yez=2. All the other
components are zero. And then we have r�S D 0. But, S�.D yez=2 e2/ is not
parallel to � . Note thatM is neither homogeneous nor flat. We may also refer to [6].
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Totally Geodesic Surfaces of Riemannian
Symmetric Spaces

Katsuya Mashimo

Abstract A submanidfold S of a Riemannian manifold is called a totally geodesic
submanifold if every geodesic of S is also a geodesic of M . Totally geodesic
submanifolds of Riemannian symmetric spaces have long been studied by many
mathematicians. We give a classification of non-flat totally geodesic surfaces of the
Riemannian symmetric space of type AI , AIII and BDI .

1 Introduction

Let G be a compact simple Lie group and � be an involutive automorphism of G.
We denote by g the Lie algebra of G and denote also by � the differential of � . Let
k be the set of all � -invariant elements of g and K be a Lie subgroup of G of which
Lie algebra coincides with k.

Let h; i be an Ad.G/-invariant inner product on g and p be the orthogonal com-
plement of k. We extend the restriction of h; i on p to the G-invariant Riemannian
metric on G=K and denote it also by h; i.

A subspace s of p is called a Lie triple system if it satisfies ŒŒs; ss 	 s. There
exits a one-to-one correspondence between the set of totally geodesic submanifold
of M through the origin o D eK and the set of Lie triple systems in p [1].

Important constructions and classification results of totally geodesic subman-
ifolds in Riemannian symmetric spaces are summarized in an expository article
by S. Klein [2].

In [3] the author classified non-flat totally geodesic surfaces in irreducible
Riemannian symmetric spaces where G is SU.n/, Sp.n/ or SO.n/. The main
tool used in [3] is the representation theory of SU.2/. The aim of this article is
to introduce the outline of the contents of [3].
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2 Irreducible Representation of SU.2/

In this section, we review real and complex irreducible representations of SU.2/.
LetH ,X , Y be a basis of the complexification of the Lie algebra su.2/ of SU.2/

satisfying

ŒH;X D 2X; ŒH; Y  D �2Y; ŒX; Y  D H: (1)

2.1 Complex Irreducible Representations

If we denote by Vd the set of polynomial functions on C
2 and by �d the

contragradient action of SU.2/ on Vd , then .Vd ; �d / is a complex irreducible
representation of SU.2/. On the other hand, every finite dimensional complex
irreducible representation of SU.2/ is equivalent to .Vd ; �d / for some positive
integer d .

The next proposition plays an important role in our classification.

Proposition 1. Let .V; �/ be a .d C 1/-dimensional complex irreducible
representation of SU.2/ and h ; i be an SU.2/-invariant Hermitian inner product
on V . If we put � the largest eigenvalue of �.H/ and v0 2 V be a corresponding
eigen vector, then we have � D d and �.Y /i .v0/ is an eigen vector of �.H/
corresponding to the eigenvalue .� � 2i/.

Let "i .0 � i � d/ be arbitrary complex numbers with j"i j D 1, and put

vi D "i

j�.Y /iv0j �.Y /
iv0 .0 � i � d/ . Then v0, v1, � � � , vd is an orthonormal basis

of Vd and the matrix representations of �.H/, �.X/, �.Y / with respect to v0; � � � ; vd
are as follows

�.H/ D

2
6664

d 0 � � � 0
0 d � 2 � � � 0
:::

:::
: : :

:::

0 0 � � � �d

3
7775 ; �.X/ D

2
666664

0 0 � � � 0 0
c1 0 � � � 0 0
0 c2 � � � 0 0
:::
:::
: : :

:::
:::

0 0 � � � cd 0

3
777775
;

�.Y / D

2
666664

0 c0
1 0 � � � 0

0 0 c0
2 � � � 0

:::
:::
:::
: : :

:::

0 0 0 � � � c0
d

0 0 0 � � � 0

3
777775
;

where c0
i D ci

jci j D
p
i.d � i C 1/:
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2.2 Real Irreducible Representations

Let .V; �/ be a complex representation of SU.2/ and v1, � � � , vN be a basis of V .
We denote by V the complex vector space, which is V itself as an additive group
and the scalar multiplication is defined by c 
 x D c x .c 2 C; x 2 V /. Define the
action � of SU.2/ on V so that

�
�X

zi 
 vi
�
D
X

zi 
 �.vi /:

The representation .V ; �/ is called the conjugate representation of .V; �/:
A complex irreducible representation .V; �/ of G is said to be a self-conjugate

representation if there exists a conjugate-linear automorphism Oj W V ! V

which commute with �.g/ for any g 2 SU.2/. A conjugate-linear automorphism
commuting with � is called a structure map of .V; �/.

Let .V; �/ be a self-conjugate representation and Oj be a structure map. By Schur’s
lemma, Oj 2 D c for some constant. It is known that the constant c is a real number
and .V; �/ is said to be of index 1 (resp. �1) if c > 0 (resp. c < 0).

Each complex irreducible representation .Vd ; �d / of SU.2/ is a self-conjugate
representation and its index is equal to .�1/d . If d is an even integer, the subspace
of Vd invariant under the structure map Oj is a real irreducible representation of
SU.2/. If d is an odd integer, Vd (viewed as a real representation by restricting the
coefficient field from C to R) is also a Real irreducible representation and Vd admits
a structure of vector space over the field of quaternions.

3 Classification

The standard orthonormal basis of RN or CN will be denote by e1,� � � ,eN . We denote
by Gij .i ¤ j / the skew-symmetric endomorphism satisfying

Gij .ej / D ei ; Gij .ei / D �ej ; Gij .ek/ D 0 .k ¤ i; j /;

and by Sij the symmetric endomorphism

Sij .ej / D ei ; Sij .ei / D ej ; Sij .ek/ D 0 .k ¤ i; j /:

3.1 AI W SU.n/=SO.n/

We denote by 
 the conjugation on C
N with respect to R

N and denote by � the
involutive automorphism on SU.N/ defined by �.g/ D 
 ı g ı 
 .g 2 SU.n//.
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Theorem 1. Let M be a non-flat totally geodesic surface of SU.n/=SO.n/ and U
be the set of all elements in SU.n/ leaving M invariant.

(i) There exists an orthogonal direct sum decomposition of Cn by 
 -invariant and
U -invariant subspaces.

(ii) Let X2, X3 be a basis of the Lie triple system corresponding to M with

ŒŒX2;X3; X2 D 4X3; ŒŒX2;X3; X3 D �4X2:

Assume that Cn is U -invariant. There exists an element g D Œu1; � � � ; un 2
SO.n/ such that

Ad.g/X2 D
p�1

nX
iD1

.n � 2 i/Ei;i (2)

Ad.g/X3 D �
p�1

"
n�2X
iD1

p
i.n � i/Si;iC1 C "

p
n � 1Sn�1;n

#
(3)

where

" D
(
1 if n � 1 .mod2/;

˙1 if n � 0 .mod2/:

Proof. We omit the proof of .i/ and assume that the action ofU on C
n is irreducible.

Note that k D fX W �.X/ D Xg D Skew.nIR/ and p DfX W �.X/ D �Xg Dp�1Sym.nIR/.
If we put a1 � a2 � � � � � an the set of eigenvalues of H D �p�1X2 2

Sym.nIR/, then by the action of Ad.SO.n// we may assume that H D
Diag.a1; a2; � � � ; an/.

If we put

H D ŒX2;X3; X D 1

2
.
p�1X3 CX1/; Y D 1

2
.
p�1X3 �X1/;

we have

ŒH;X D 2X; ŒH; Y  D �2Y; ŒX; Y  D H:

Since ai are weights of the complex irreducible representation of U we have

a1 � a2 D a2 � a3 D � � � D an�1 � an D 2:
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Put n D d C 1 and v0 D e1. Since each eigenspace (the weight space) of H is

one-dimensional there exists "i .1 � i � d/ such that ei D "i

jHiv0jH
iv0. Thus the

matrix H , X and Y are of the form given in the Proposition 1. We can choose unit
complex numbers "0

i .0 � i � d/ such that by a change of basis feig ! f"0
i eig all

the components of X , Y in the Proposition 1 are changed to real numbers. We omit
further detail. ut

3.2 AIII W SU.p C q/=S.U.p/ � U.q//

We denote by In the unit matrix of order n and put Ip;q D
2
4 Ip O

O �Iq

3
5 :

Theorem 2. LetM be a non-flat totally geodesic surface of SU.pCq/=S.U.p/�
U.q// and U be the set of all elements of SU.p C q/ which leave M invariant.

(i) There exists an orthogonal direct sum decomposition of C
pCq by Ip;q-

invariant, U -irreducible subspaces.
(ii) If V is an Ip;q-invariant, U -irreducible subspace of CpCq , then we have

ˇ̌
dimfv 2 V W Ip;q.v/ D vg � dimfv 2 V W Ip;q.v/ D �vgˇ̌ � 1:

(iii) Assume that the action of SU.2/ on C
pCq is irreducible. Let X2, X3 be a basis

of the Lie triple system corresponding to M with

ŒŒX2;X3; X2 D 4X3; ŒŒX2;X3; X3 D �4X2:

There exists an element g D Œu1; � � � ; upCq 2 S.U.p/ � U.q// such that

Ad.g/X2 D
qX
iD1

p
.2i � 1/.p C q C 1 � 2i/Gi;pCi

C
p�1X
iD1

p
2i.p C q � 2i/GpCi;iC1 (4)

Ad.g/X3 D
p�1

"
qX
iD1

p
.2i � 1/.p C q C 1 � 2i/ SpCi;i

C
p�1X
iD1

p
2i.p C q � 2i/ SiC1;pCi

#
(5)
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Proof. We omit the proof of .i/.
Assume that the action of U on C

pCq is irreducible.
Take a basis X1, X2, X3 of the Lie algebra u of U which satisfy

Ip;q ıX1 D X1 ı Ip;q; Ip;q ıXi D �Xi ı Ip;q .i D 2; 3/;
ŒX1;X2 D 2X3; ŒX2;X3 D 2X1; ŒX3;X1 D 2X2;

and put

H D �p�1X1; X D 1

2
.X2 �

p�1X3/; Y D �1
2
.X2 C

p�1X3/ D tX:

Since H is a Hermitian matrix, there exists an element g 2 S.U.p/ � U.q//
such that

Ad.g/H D diag.a1; � � � ; apI b1; � � � ; bq/

where a1 > � � � > ap and b1 > � � � > bq holds. We denote by �i the i -th column
vector of g. The set of eigenvalues of H coincides with the set of weights of the
.pCq/-dimensional complex irreducible representation of SU.pCq//, namely we
have

fa1; � � � ; ap; b1; � � � ; bqg D fp C q � 1; p C q � 2; � � � ; 1 � p � qg:

We assume that a1 > b1 holds.

• We have a1 D p C q � 1 and Ip;q�1 D �1, H � �1 D .p C q � 1/ �1 hold.
• From Ip;qıY D �Y ıIp;q , we have Ip;q.Y ��1/ D �Y ��1 and from ŒH; Y  D �2Y

we haveH.Y � �1/ D .pC q� 3/ Y � �1. Thus we have b1 D pC q� 3 and there
exists a complex number �i with

Y � �1 D �1 �pC1; j�1j D
p
p C q � 1:

• Similarly we have

Y � �pC1 D �2 �2; j�2j D
p
2.p C q � 2/

etc.

Finally we have p � q D 0; 1 and the matrix representation of Y with respect to the
basis �1, � � � , �p , �pC1, � � � , �pCq is

Ad.g/Y D
qX
iD1

�2i�1 EpCi;i C
p�1X
iD1

�2i EiC1;pCi :



Totally Geodesic Surfaces 307

Let "i .1 � i � p C q/ be unit complex numbers and put g D
."1 �1; � � � ; "pCq �pCq/. We can choose "i so that the all of the coefficients �2i
and �2i�1 in the representation of Ad.g/Y above are positive real numbers. From

X2 D t Y � Y; X3 D
p�1 �t Y C Y �

we obtain (4) and (5). ut

3.3 BDI W SO.p C q/=S.O.p/ � O.q//

Let � be the involutive automorphism on G D SO.p C q/ defined by

�.g/ D Ip;q ı g ı Ip;q
and put

K D fg 2 SO.p C q/ W �.g/ D gg D S.O.p/ �O.q//:

We can classify totally geodesic surfaces of SO.p C q/=S.O.p/ � O.q// by
similar argument to that on SU.p C q/=S.U.p/ � U.q//. But, since there are two
types of real irreducible representations of SU.2/, the classification result is divided
into two cases; .i i i/ and .iv/ in the following theorem. Since it is troublesome to
give the representation matrix of the action of su.2/ on the odd-dimensional real
irreducible representation (.i i i/ in the following theorem), we give only the result
without proof.

Theorem 3. LetM be a non-flat totally geodesic surface of SO.pCq/=S.O.p/�
O.q// and U be the set of all elements in SO.p C q/ leaving M invariant.

(i) There exists an orthogonal direct sum decomposition of RpCq by Ip;q-invariant
and U -irreducible subspaces.

(ii) For each Ip;q-invariant, U -irreducible subspace V of RpCq , we have

ˇ̌
dimfv 2 V W Ip;q.v/ D vg � dimfv 2 V W Ip;q.v/ D �vgˇ̌ � 1:

(iii) Assume that the action of U on R
pCq is irreducible and p D q C 1 � 3.

We denote by p0 the integer part of p=2 and by q0 the integer part of q=2.
There exists an element g 2 S.O.p/ �O.q// such that

Ad.g/X2 D �
q0X
iD1

p
.2i � 1/.p C q C 1 � 2i/ �GpC2i�1;2i�1 CGpC2i;2i

�
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C
p0�1X
iD1

p
2i.p C q � 2i/ �GpC2i�1;2iC1 CGpC2i;2iC2

�

C
(
.�p2/pp qGpCq;q .if p D 0 mod 2/p
2
p
p qGpCq�1;p .if p D 1 mod 2/

(6)

Ad.g/X3 D
q0X
iD1

p
.2i � 1/.p C q C 1 � 2i/ �GpC2i;2i�1 �GpC2i�1;2i

�

C
p0�1X
iD1

p
2i.p C q � 2i/ �GpC2i;2iC1 �GpC2i�1;2iC2

�

C
(
.�p2/pp qGpCq;p .if p D 0 mod 2/p
2
p
p qGpCq;p .if p D 1 mod 2/

(7)

(iv) Assume that the action of U on R
pCq is irreducible and p D q. Then p is an

even integer, say p D 2p0, and there exists an element g 2 S.O.p/ � O.q//
such that

Ad.g/X2 D
p0�1X
iD1

p
2i.p � 2i/ �GpCi;iC1 CGpCp0Ci;p0CiC1

�

�
p0X
iD1

p
.2i � 1/.p C 1 � 2i/ �GpCi;i CGpCp0Ci;p0Ci

�
(8)

Ad.g/X3 D
p0�1X
iD1

p
2i.p � 2i/ �GpCp0Ci;iC1 �GpCi;p0CiC1

�

C
p0X
iD1

p
.2i � 1/.p C 1 � 2i/ �GpCp0Ci;i �GpCi;p0Ci

�
(9)
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The Geometry on Hyper-Kähler Manifolds
of Type A1

Kota Hattori

Abstract Hyper-Kähler manifolds of type A1 are noncompact complete Ricci-flat
Kähler manifolds of complex dimension 2, constructed by Anderson, Kronheimer,
LeBrun (Commun. Math. Phys., 125, 637–642, 1989) and Goto (Geom. Funct.
Anal., 4(4), 424–454, 1994). We review the asymptotic behavior, the holomorphic
symplectic structures and period maps on these manifolds.

1 Introduction

Hyper-Kähler manifolds of type A1 were first constructed by Anderson,
Kronheimer and LeBrun in [1], as the first example of complete Ricci-flat Kähler
manifolds with infinite topological type. Here, infinite topological type means
that their homology groups are infinitely generated. The construction in [1] is
due to Gibbons-Hawking ansatz, and Goto [5] has constructed these manifolds in
another way, using hyper-Kähler quotient construction. Some of the topological and
geometric properties of hyper-Kähler manifolds of type A1 were studied well in
the above papers. In this article, we focus on the volume growth of the hyper-Kähler
metrics, the holomorphic symplectic structures, and the period maps.

The construction of hyper-Kähler manifolds of type A1 is similar to that of ALE
spaces of type Ak , where k is a nonnegative integer. Moreover, their topological
properties and complex geometric properties are also similar to type Ak . For
example, both of the ALE spaces of type Ak and the hyper-Kähler manifolds of
type A1 have the parameter naturally given by the construction. We review that
they correspond to the cohomology classes of three Kähler forms along [8].

On the other hand, one of the essentially different properties between them
appears in their asymptotic behaviors. In fact, the volume growth of ALE spaces
is Euclidean, but that of hyper-Kähler manifolds of type A1 are less than Euclidean
volume growth, which is a main result of [7].
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Moreover, we will review the independence of the volume growth of hyper-
Kähler metrics and the complex structures. More precisely, we review the result
in [9] to the effect that the volume growth of the hyper-Kähler metric of type A1
can be deformed preserving the complex structure.

2 Hyper-Kähler Manifolds of Type A1

2.1 Hyper-Kähler Quotient Construction

In this section, we review shortly the construction of hyper-Kähler manifolds of type
A1 along [5]. For more details, see [1, 5] or review in Section 2 of [7].

First of all, hyper-Kähler manifolds are defined as follows.

Definition 1. Let .X; g/ be a Riemannian manifold of dimension 4n with three
integrable complex structures I1; I2; I3, and g be a hermitian metric with respect to
each Ii . Then .X; g; I1; I2; I3/ is a hyper-Kähler manifold if .I1; I2; I3/ satisfying
the relations I 21 D I 22 D I 23 D I1I2I3 D �1 and each !i WD g.Ii �; �/ being closed.

Denote by H D R ˚ Ri ˚ Rj ˚ Rk D C ˚ Cj the quaternion and denote by
ImH D Ri˚Rj ˚Rk its Imaginary part. Then an ImH-valued 2-form ! WD i!1C
j!2Ck!3 2 ˝2.X/˝ ImH characterizes the hyper-Kähler structure .g; I1; I2; I3/.
Accordingly, we call ! the hyper-Kähler structure on X instead of .g; I1; I2; I3/.

Now we construct hyper-Kähler quotient method introduced in [9]. Put

.ImH/N0 WD f� D .�n/n2N 2 .ImH/NI
X
n2N

1

1C j�nj < C1g;

where N is the set of positive integers. Here, we denote by SN the set of all maps
from N to a set S .

Let

MN WD fv 2 H
NI kvk2

N
< C1g;

where

hu; viN WD
X
n2N

unvn; kvk2N WD hv; viN

for u; v 2 H
N. Here, the quaternionic conjugate of vn is denoted by vn.

For each � 2 .ImH/N0 , � 2 H
N can be taken so that �ni�n D �n. Put

M� WD �CMN D f�C vI v 2MNg;
G� WD fg 2 .S1/NI

X
n2N
.1C j�nj/j1 � gnj2 < C1;

Y
n2N

gn D 1g:
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Here,
Q
n2N gn always converges by the condition

X
n2N

1

1C j�nj < C1:

Then G� is an infinite dimensional Lie group, and G� acts on M� by xg WD
.xngn/n2N for x 2M�, g 2 G�.

Now G� acts on

N� D fx 2M�I xnixn � �n D xmixm � �m for all n;m 2 Ng
and we obtain the quotient space N�=G� which is called the hyper-Kähler quotient.
Here, N� corresponds to the level set of the hyper-Kähler moment map.

Definition 2. � 2 .ImH/N0 is generic if �n � �m ¤ 0 for all distinct n;m 2 N.

Theorem 1 ([5]). If � 2 .ImH/N0 is generic, then N�=G� is a smooth manifold of
real dimension 4, and the hyper-Kähler structure on M� induces a hyper-Kähler
structure !� on N�=G�.

Although the hyper-Kähler quotient N�=G� seems to depend on the choice of
� 2 H

N, the induced hyper-Kähler structure on N�=G� depends only on � by
the argument of Section 2 of [7]. Accordingly we may put

X.�/ WD N�=G�
D fx 2M�I xni Nxn � �n is independent of n 2 Ng=G�;

and call it a hyper-Kähler manifold of type A1
If N is replaced by a finite set in the above construction, .X.�/; !�/ becomes an

ALE hyper-Kähler manifold of type Ak [4].

2.2 S 1-actions and Moment Maps

An S1-action on X.�/ preserving the hyper-Kähler structure is defined as follows.
(See also [5].) Let Œx 2 N�=G� be the equivalence class represented by x 2 N�.
Take m 2 N arbitrarily and let

Œxg WD Œxmg; .xn/n2Nnfmg

for x D .xm; .xn/n2Nnfmg/ 2 N� and g 2 S1. This definition does not depend on
the choice of m 2 N. Then we obtain the hyper-Kähler moment map

��.Œx/ WD xni Nxn � �n 2 ImH:

The right hand side is independent of the choice of n 2 N since x is an element
of N�.
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We have a principal S1-bundle ��
ˇ̌
X.�/�

W X.�/� ! Y.�/, where

X.�/� WD fŒx 2 X.�/I xn ¤ 0 for all n 2 Ng;
Y.�/ WD ImHnf��nI n 2 Ng:

By the Gibbons-Hawking construction [1], we can check easily thatX.�/ andX.�0/
are isomorphic as hyper-Kähler manifolds if � and �0 satisfy one of the following
conditions; .i/ �0

n � �n 2 ImH is independent of n, .i i/ �0
n D �a.n/ for some

bijective maps a W N! N, .i i i/ � D ��0.

3 The Volume Growth

Here we focus on the Riemannian geometric aspects of X.�/, especially their
volume growth.

For a Riemannian manifold .X; g/, denote by Vg.p; r/ the volume of the
geodesic ball of radius r > 0 centered at p 2 X . By the volume comparison theorem
[2, 6], we can deduce that

lim
r!1

Vg.p0; r/

Vg.p1; r/
D 1

for any Ricci flat manifold .X; g/ and any p0; p1 2 X . Thus the volume growth of
g is the invariant for Ricci flat manifolds.

Theorem 2 ([7]). For each � 2 .ImH/N0 and p0 2 X.�/, the function Vg�.p0; r/
satisfies

0 < lim inf
r!C1

Vg�.p0; r/

r2
�1
� .r2/

� lim sup
r!C1

Vg�.p0; r/

r2
�1
� .r2/

< C1;

where the function 
� W R�0 ! R�0 is defined by


�.R/ WD
X
n2N

R2

RC j�nj

for R � 0. Moreover, we have

lim
r!C1

Vg�.p0; r/

r4
D 0; lim

r!C1
Vg�.p0; r/

r3
D C1:

Next we see some examples computed in [7].
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Example 1. Fix � > 1 and put ��n WD i � n� 2 ImH. Then there exist positive
constants A;B > 0 such that

Ar
4� 2

�
C1 � Vg�� ..p0; r/ � Br4�

2
�

C1 :

Example 2. Put �n WD i � en 2 ImH. Then there exist positive constants A;B > 0

such that

A
r4

log r
� Vg�.p0; r/ � B

r4

log r

for any ˛ < 4.

4 Period Maps

4.1 Holomorphic Curves

In this subsection, we see that there are several compact minimal submanifolds in
X.�/ following [8].

Definition 3. (i) Let X be a complex manifold of dimension 2n and !C be a
holomorphic 2-form on X . Then .X; !C/ is called a holomorphic symplectic
manifold if d!C D 0 and !n

C
is nowhere vanishing. (ii) An n dimensional complex

submanifold L of a holomorphic symplectic manifold .X; !C/ is holomorphic
Lagrangian submanifold if !CjL D 0.

Let .X; !/ be a hyper-Kähler manifold of real dimension 4n. For each y 2
ImH with jyj D 1, ImH is decomposed into y-component and its orthogonal
complement. Then we denote by !y 2 ˝2.X/ the y-component of ! 2 ˝2.X/˝
ImH. Let Iy be the complex structure corresponding to the Kähler form !y .

Let � D .�1 �2 �3/ 2 SO.3/, where h�1; �2; �3i is an orthonormal basis of R3.
Then � gives the orthogonal decomposition ImH D R

3 D R�1˚R�2˚R�3, and the
hyper-Kähler structure ! 2 ˝2.X/˝ ImH can be written as ! D �1!�1 C �2!�2 C
�3!�3 for every � 2 SO.3/. Now we regard .X; I�1/ as a complex manifold. Then a
holomorphic symplectic structure on X is given by !�C WD !�2 C i!�3 .
Proposition 1. Let .X; !/ be a hyper-Kähler manifold and take � 2 SO.3/. Then
each holomorphic Lagrangian submanifold L 	 X with respect to !�C gives the
minimum volume in their homology class.

Proof. The pair of a Kähler form !�3 and a holomorphic volume form .!�1 C
i!�2/

n gives the Calabi-Yau structure on .X; I�3/. Here, n is the half of the
complex dimension of X . Now, assume that L 	 X is a holomorphic Lagrangian
submanifold with respect to !�C . Then !�2 jL D !�3 jL D 0, hence L is lagrangian
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with respect to !�3 . Since Im.!�1 C i!�2/n is the multiplication of !�2 and some
differential forms, we also have Im.!�1C i!�2/njL D 0, which means L is a special
Lagrangian submanifold. The volume minimizing property of special Lagrangian
submanifolds [11] gives the assertion. ut

Take a generic � 2 .ImH/N0 and consider the hyper-Kähler manifold .X.�/; !�/
as constructed in Sect. 2. Put

Œa; b WD ftaC .1 � t /b 2 ImHI 0 � t � 1g;
.a; b WD ftaC .1 � t /b 2 ImHI 0 � t < 1g;
Œa; b/ WD ftaC .1 � t /b 2 ImHI 0 < t � 1g;
.a; b/ WD ftaC .1 � t /b 2 ImHI 0 < t < 1g

for a; b 2 ImH.

Proposition 2. Let n;m 2 N satisfy n ¤ m and .��n;��m/ 	 Y.�/. The inverse
image ��1

� .Œ��n;��m/ Š CP 1 is a complex submanifold of X.�/ with respect to
Iy and gives the minimum volume in its homology class, where y WD �n��mj�n��mj .

Proof. Let � 2 SO.3/ satisfies �i D y. If we write �� D .��;1; ��;2; ��;3/

with respect to the decomposition ImH D R�1 ˚ R�2 ˚ R�3, then ��;2 and ��;3
are constant on ��1

� .Œ��n;��m/. Hence we have d��;˛j��1
� .Œ��n;��m/ D 0 for

˛ D 2; 3, which gives !�;�C j��1
� .Œ��n;��m/ D 0. ut

4.2 Topology

In this subsection we review the construction of the deformation retracts of X.�/
following [3, 5]. See also [8]. In the case of toric hyper-Kähler varieties, the
deformation retracts are constructed in [3].

For .��n;��m/ 	 Y.�/, the orientation of ��1
� .Œ��n;��m/ is determined as

follows. By taking a smooth section .��n;��m/ ! ��1
� ..��n;��m// of ��, a

coordinate .s; t/ on ��1
� ..��n;��m// is naturally given where t 2 R=2�Z is the

parameter of S1-action and a function s W ��1
� ..��n;��m//! R is given by

s.p/ WD �n C ��.p/
�n � �m

for p 2 ��1
� ..��n;��m//. Then the orientation of ��1

� .Œ��n;��m/ is given by
ds ^ dt . Therefore, ��1

� .Œ��n;��m/ and ��1
� .Œ��m;��n/ are same as manifolds

but have opposite orientations.
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For n;m; l 2 N, ��1
� .Œ��n;��m/ [ ��1

� .Œ��m;��l / and ��1
� .Œ��n;��l /

determines the same homology class since the boundary of ��1
� .4n;m;l / is given

by ��1
� .Œ��n;��m/ [ ��1

� .Œ��m;��l / [ ��1
� .Œ��l ;��n/, where

4n;m;l WD f�˛�n � ˇ�m � ��l 2 ImHI ˛ C ˇ C � D 1; ˛; ˇ; � � 0g:

We denote by Cn;m the homology class determined by ��1
� .Œ��n;��m/. Then

the above observation implies

Cn;m C Cm;l C Cl;n D Cn;m C Cm;n D 0

for n;m; l 2 N.
If n;m; l; h 2 N satisfies n ¤ h, n ¤ m and l ¤ h then the intersection number

Cn;m � Cl;h is given by

Cn;m � Cl;h D
�
1 .m D l/
0 .m ¤ l/

and Cn;m � Cn;m D �2.
Since the subset of .ImH/N0 consisting of generic elements is connected in

.ImH/N0 , the topological structure of X.�/ does not depend on �. Consequently, it
suffices to study X. O�/ for investigating the topology of X.�/, where O� is the special
one defined by O�n WD .n2; 0; 0/ 2 ImH.

Proposition 3. There exists a deformation retract of ��1
O� .
S
n2NŒ�O�n;�O�nC1/ 	

X. O�/.
Proof. There is a deformation retract

F W ImH � Œ0; 1! ImH

which satisfy F.�; 0/ D idImH, F.ImH; 1/ D S
n2NŒ�O�n;�O�nC1 and F.�; 1/ D �

for � 2 Sn2NŒ�O�n;�O�nC1. Then we have the horizontal lift QF W X. O�/ � Œ0; 1 !
X. O�/ of F by using the S1-connection on X. O�/� naturally induced from the hyper-
Kähler metric on X. O�/�. The map QF is a deformation retract as we expect. ut
Corollary 1. The second homology group H2.X.�/;Z/ is generated by
fCn;mI n;m 2 Ng.
Thus we obtain the followings.

Theorem 3. Let � 2 .ImH/N0 be generic. Then H2.X.�/;Z/ is a free Z-module
generated by fCn;mI n;m 2 Ng with relations

Cn;m C Cm;l C Cl;n D 0; Cn;m C Cm;n D 0
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for all n;m; l 2 N. Moreover the intersection form on H2.X.�/;Z/ is given by

Cn;m � Cl;h D
�
1 .m D l/
0 .m ¤ l/

and Cn;m � Cn;m D �2 for n;m; l; h 2 N taken to be n ¤ h, n ¤ m and l ¤ h.

4.3 Period Maps

Let Œ!� 2 H2.X.�/;R/˝ ImH be the cohomology class of !�. In this subsection
we compute Œ!�, that is, compute the value of hŒ!�; Cn;mi WD

R
Cn;m

!� 2 ImH for
all n;m 2 N along [8]. In the case of finite topological type of toric hyper-Kähler
varieties, the period maps are computed in [12].

Theorem 4. Let � 2 .ImH/N0 be generic. Then

hŒ!�; Cn;mi D �n � �m
for all n;m 2 N.

Proof. Take a smooth path � W Œ0; 1 ! ImH such that �.0/ D ��n, �.1/ D ��m
and �.s/ 2 Y.�/ for s 2 .0; 1/. Since the homology class represented by
��1
� .�.Œ0; 1// is Cn;m, we have

hŒ!�; Cn;mi D
Z
��1
� .�.Œ0;1//

!�:

Take the local coordinate .t; ��;1; ��;2; ��;3/ of an open subset of X.�/�, where
�� D .��;1; ��;2; ��;3/ and t is the coordinate of S1-action. Then the local
coordinate .s; t/ on��1

� .�.Œ0; 1// is given by .t; ��;1ı�.s/; ��;2ı�.s/; ��;3ı�.s//.
By using this, we can see that

!�;˛ D � 0̨ .s/
1

2�
ds ^ dt

for ˛ D 1; 2; 3, where �.s/ D .�1.s/; �2.s/; �3.s// 2 ImH D R
3. Hence we have

Z
��1
� .�.Œ0;1//

!�;˛ D
Z
��1
� .�.Œ0;1//

� 0̨ .s/
1

2�
ds ^ dt

D
Z 2�

0

1

2�
dt

Z 1

0

� 0̨ .s/ds

D �˛.1/ � �˛.0/ D �n;˛ � �m;˛: ut
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5 Holomorphic Symplectic Structures

In this section we regard a hyper-Kähler manifold .X; g; I1; I2; I3/ as a complex
manifold by I1. Then the holomorphic 2-form !C D !2 C

p�1!3 is called the
holomorphic symplectic structure, and the cohomology class Œ!2C

p�1!3 is called
the holomorphic symplectic class.

Let �� as in Example 1 of Sect. 3. Then, we can see that the holomorphic
symplectic class Œ!�� ;C is independent of � by Theorem 4.

Theorem 5 ([9]). The holomorphic symplectic structures !�� ;C are independent of
� . In particular, X.��/ and X.� O� / are biholomorphic for all �; O� > 1.

Since the function 4� 2
�C1 gives one-to-one correspondence between open intervals

.1;1/ and .3; 4/, we have the following conclusion by combining Theorems 2
with 5.

Theorem 6. Let ˛ 2 .3; 4/. Then there is a complex manifold X and the family of
Ricci-flat Kähler metrics fg˛g3<˛<4 whose volume growth satisfies

Ar˛ � Vg˛ .p0; r/ � Br˛

for some positive constants A;B .
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The Fixed Point Set of a Holomorphic Isometry
and the Intersection of Two Real Forms
in the Complex Grassmann Manifold

Osamu Ikawa, Makiko Sumi Tanaka, and Hiroyuki Tasaki

Abstract We study the fixed point set of a holomorphic isometry of the complex
Grassmann manifold and the intersection of two real forms which are congruent
to the real Grassmann manifold. Furthermore, we investigate the relation between
them.

1 Introduction

Let M be a compact Riemannian symmetric space. A subset A 	 M is called
an antipodal set if sx.y/ D y for any x; y 2 A, where sx denotes the geodesic
symmetry at x. The maximal cardinality of antipodal sets of M is called the
2-number of M denoted by #2M . An antipodal set A 	 M with #A D #2M is
called great, where #A denotes the cardinality of A. These notions were introduced
by Chen-Nagano [1].

LetM be a Hermitian symmetric space of compact type and let � be an involutive
anti-holomorphic isometry of M . Then the fixed point set of � is called a real form
of M .

In the previous papers [6, 7] and [8] the second and the third authors proved that
the intersection of two real forms L1 and L2 in a Hermitian symmetric space M
of compact type is an antipodal set if L1 \ L2 is discrete by making use of Chen-
Nagano theory. They also proved that the intersection is a great antipodal set if L1
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and L2 are congruent. Here L1 and L2 are congruent if there is an element g in
the identity component of the group of all holomorphic isometries of M such that
gL1 D L2.

Let F.g;X/ denote the fixed point set F.g;X/ D fx 2 X j g.x/ D xg for a set
X and a bijection g W X ! X . The following lemma is easily seen.

Lemma 1. Let g1; g2 W X ! X be bijections of a set X . Then we have

F.g1;X/ \ F.g2;X/ D F.g�1
2 g1; X/ \ F.gi ; X/ .i D 1; 2/:

In particular, we have

F.g1;X/ \ F.g2;X/ 	 F.g�1
2 g1; X/:

Let L1 D F.�1;M/ and L2 D F.�2;M/ be real forms defined by involutive
anti-holomorphic isometries �1 and �2 of M respectively. Since �1 and �2 are anti-
holomorphic, ��1

2 �1 is holomorphic. According to Lemma 1, if F.��1
2 �1; X/ is

discrete, L1 \ L2 is discrete and if F.��1
2 �1; X/ is an antipodal set, L1 \ L2 is

an antipodal set. From this viewpoint we investigate the necessary and sufficient
condition that the fixed point set of a holomorphic isometry ofM is discrete and the
relation between the intersection L1 \ L2 and F.��1

2 �1; X/ in [4].
In this article, we consider the case where a Hermitian symmetric space of

compact type is the complex Grassmann manifold. We firstly investigate the fixed
point set of a holomorphic isometry of the complex Grassmann manifold which
belongs to the identity component of the group of all holomorphic isometries
in Sect. 2. In Sect. 3 we investigate the intersection of two real forms which
are congruent to the real Grassmann manifold which is naturally embedded in
the complex Grassmann manifold which is treated in [5]. In Sect. 4 we refer to
the relation between the intersection of such real forms and the fixed point set of
a holomorphic isometry. We showed these results in more general situation in [4].
We investigated the relation between the fixed point set of a holomorphic isometry in
a Hermitian symmetric space of compact type and the intersection of two real forms
in a Hermitian symmetric space of compact type where we made use of symmetric
triads introduced by the first author in [3], which gives an alternative proof of the
fact that the intersection of two real forms is an antipodal set. These are referred in
Sect. 5.

2 The Fixed Point Set of a Holomorphic Isometry
of the Complex Grassmann Manifold

Let K D R;C and let Gk.Kn/ be the Grassmann manifold which is the set
of k-dimensional K-subspaces in K

n. It is known that the complex Grassmann
manifold Gk.Cn/ is a Hermitian symmetric space of compact type. The natural
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action of U.n/ on C
n induces an action of U.n/ on Gk.C

n/, which coincides
with that of SU.n/. Let A.Gk.Cn// denote the group of holomorphic isometries
of Gk.Cn/ and let A0.Gk.Cn// denote the identity component of A.Gk.Cn//. Then
A0.Gk.C

n// coincides with the action of U.n/ on Gk.Cn/.
We show the necessary and sufficient condition that F.g;Gk.Cn// is discrete for

g 2 U.n/ in two ways. In one way we use linear algebra and in another way we use
a root system.

Let W1; : : : ;Ws be K-subspaces of Kn which satisfy K
n D W1 ˚ � � � ˚ Ws for

K D R;C. For positive integers k; k1; : : : ; ks satisfying k D k1 C � � � C ks we have

Gk1.W1/�� � ��Gks .Ws/ D fU1˚� � �˚Us 2 Gk.Kn/ j Ua 2 Gka.Wa/ .1 � a � s/g:

Lemma 2. For g 2 U.n/, let Va .1 � a � s/ be the eigenspace of g with
eigenvalue ˛a, where ˛a ¤ ˛b if a ¤ b .1 � a; b � s/. Then,

F.g;Gk.C
n// D

[
k1 C � � � C ks D k

0 � ka � dimVa .1 � a � s/

Gk1.V1/ � � � � �Gks .Vs/:

Proof. Let V 2 Gk1.V1/ � � � � �Gks .Vs/, then V can be represented as

V D U1 ˚ � � � ˚ Us; Ua 2 Gka.Va/ .1 � a � s/:

Then we have

gV D gU1 ˚ � � � ˚ gUs
D U1 ˚ � � � ˚ Us D V;

hence V 2 F.g;Gk.Cn//. Conversely, let V 2 F.g;Gk.Cn//. Then, gV D V and
we have

V D V \ V1 ˚ � � � ˚ V \ Vs:

If we set ka D dim.V \ Va/ .1 � a � s/, then

V 2 Gk1.V1/ � � � � �Gks .Vs/: ut
The former part of the following theorem follows from Lemma 2 immediately

and the latter part of it follows from Lemma 2 and the proof of Proposition 6.1
in [1].
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Theorem 1. For g 2 U.n/, F.g;Gk.Cn// is discrete if and only if the multiplicity
of each eigenvalue of g is equal to 1. In this case

F.g;Gk.C
n// D fhvi1 ; : : : ; vik iC j 1 � i1 < � � � < ik � ng

is a great antipodal set of Gk.Cn/, where vi .1 � i � n/ is a unit vector of each
eigenspace of g.

We set G D SU.n/, then G is a connected compact semisimple Lie group and
its Lie algebra g is identified with

su.n/ D fX 2M.n;C/ j X D �t NX; tr.X/ D 0g;

where M.n;C/ denotes the set of n � n complex matrices and tr.X/ denotes the
trace ofX . We take an Ad.G/-invariant inner product hX; Y i D �tr.XY / on su.n/.
We take J 2 su.n/ as

J D p�1

.1 � k

n
/1k 0

0 � k
n
1n�k

�
;

where 1k (resp. 1n�k) denotes the identity matrix of degree k (resp. n�k). J satisfies
.adJ /3 D �adJ . Then the adjoint orbitM WD Ad.G/J 	 g through J is described
as SU.n/=S.U.k/ � U.n � k// which is Gk.Cn/. We set k D Ker.adJ / and m D
Im.adJ /. Then

k D
�
X 0

0 Y

� ˇ̌
ˇ X D �t NX; Y D �t NY ; tr.X/C tr.Y / D 0

�
;

m D
�

0 Z

�t NZ 0

� ˇ̌
ˇ Z 2M.k; n � k;C/

�
;

where M.k; n � k;C/ denotes the set of k � .n � k/ complex matrices. Then we
have an orthogonal direct sum decomposition g D k˚m. The automorphism e�adJ

of g is involutive and k (resp. m) is the .C1/ (resp. .�1/)–eigenspace of e�adJ . The
action of adJ on m defines a complex structure on m which can be identified with
the tangent space ofM at J , hence it defines a complex structure onM . The natural
action of SU.n/ on M gives holomorphic isometries of M .

We take a maximal abelian subspace t 	 k as

t D
(p�1diag.t1; : : : ; tn/

ˇ̌
ˇ ti 2 R;

nX
iD1

ti D 0
)
;
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where diag.t1; : : : ; tn/ denotes a diagonal matrix

diag.t1; : : : ; tn/ D

2
64
t1
: : :

tn

3
75 :

We denote by Eij the n � n matrix whose .p; q/-element is 1 if .p; q/ D .i; j /

and is 0 otherwise. We define ˛ij 2 t .1 � i; j � n; i ¤ j / as

˛ij WD
p�1.Eii �Ejj / 2 t

and we set

g˛ij WD CEij :

Then ˛ij is a root of g with respect to t and g˛ij is the root space corresponding
to ˛ij .

We define

Fij WD Eij �Eji ;
Gij WD

p�1.Eij CEji /:

for 1 � i < j � n. Then we have

g D tC
X

1�i<j�n
.RFij C RGij /:

We set

T D exp t D
(

diag.e
p�1t1 ; : : : ; e

p�1tn /
ˇ̌
ˇ ti 2 R;

nX
iD1

ti D 0
)
;

which is a maximal torus of SU.n/.
Since SU.n/ is a normal subgroup of U.n/, Ad.U.n// acts on su.n/ which

induces holomorphic isometries of M D Ad.SU.n//J . The identity component
of the group of all holomorphic isometries of M is isomorphic to Ad.U.n//.

Lemma 3. For a D expH 2 T with H D p�1diag.t1; : : : ; tn/ 2 t we have

F.Ad.a/; g/ D tC
X

1 � i < j � n
ti � tj 2 2�Z

.RFij C RGij /:
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Theorem 2. Let M D Ad.SU.n//J 	 su.n/ be an expression of Gk.Cn/ as an
adjoint orbit. The fixed point set F.g;M/ for g 2 SU.n/ is discrete if and only if
there is g1 2 SU.n/ and a 2 T such that g D g1ag�1

1 and

a D exp
p�1diag.t1; : : : ; tn/; ti � tj … 2�Z .1 � i < j � n/:

In the case F.g;Gk.Cn// is a great antipodal set of Gk.Cn/.

3 The Intersection of Two Real Grassmann Manifolds
in the Complex Grassmann Manifold

Let 
 W Cn ! C
n be an involutive transformation defined by 
.z/ D Nz .z 2 C

n/.
We also denote by 
 the involutive isometry of Gk.Cn/ induced by the map. Then
the fixed point set F.
/ WD F.
;Gk.Cn// isGk.Rn/ naturally embedded inGk.Cn/.

Let u 2 U.n/ and we have

uGk.R
n/ D Gk.uRn/ D uF.
/ D F.u
u�1/:

Lemma 4 ([5]). For any u 2 U.n/ there exists zi 2 U.1/ .1 � i � n/ and
positively oriented orthogonal basis v1; : : : ; vn and w1; : : : ;wn of Rn which satisfy

uwi D zivi .1 � i � n/; detu D z1 � � � zn:

We define an equivalent relation � on f1; : : : ; ng such that i � j if zi D ˙zj and

f1; : : : ; ng D N1 [ � � � [Ns
is the decomposition to the equivalent classes with respect to �. If unit vectors
v;w 2 R

n and z 2 C satisfy uw D zv, then there exists 1 � a � s which satisfy

v 2
M
i2Na
hvi iR; w 2

M
i2Na
hwi iR; z D ˙zi .i 2 Na/:

Theorem 3 ([5]). Under the situation of Lemma 4 and for 0 � k � n we have

Gk.R
n/ \Gk.uRn/

D
[

k1 C � � � C ks D k
0 � ka � #Na .1 � a � s/

Gk1

0
@M
i12N1
hvi1iR

1
A � � � � �Gks

0
@M
is2Ns
hvis iR

1
A
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in Gk.C
n/. The intersection of Gk.Rn/ and Gk.uRn/ is discrete if and only if

#Na D 1 for all a. In this case these intersect transversally and

Gk.R
n/ \Gk.uRn/ D fhvi1 ; : : : ; vik iC j 1 � i1 < � � � < ik � ng;

which is a great antipodal set of Gk.Cn/.

4 The Intersection and the Fixed Point Set

Lemma 5. Let .G;K/ be a compact symmetric pair and let g D k ˚ m be the
canonical decomposition of the Lie algebra g of G associated to .G;K/. Let a 	 m
be a maximal abelian subspace and set A D exp a 	 G. Then we have G D KAK.

Proof. Let o be the base point of G=K. Then Ao is a maximal torus inG=K and we
have

G=K D
[
k2K

kAo:

Thus for any go 2 G=K there exist k 2 K and a 2 A such that go D kao, which
implies .ka/�1g 2 K. So we have g 2 KAK. ut
Theorem 4. When u 2 U.n/, F.
/\ uF.
/ is discrete if and only if F.u
u�1
�1/
is discrete. In this case they are equal and great antipodal sets of Gk.Cn/.

Proof. When we apply Lemma 5 to the compact symmetric pair .U.n/; SO.n//, we
obtain the decomposition of u as

u D k1diag.z1; : : : ; zn/k2;

where k1; k2 2 SO.n/ and z1; : : : ; zn 2 U.1/. We define a equivalent relation �
on f1; : : : ; ng such that i � j if zi D ˙zj .i; j 2 f1; : : : ; ng/. We decompose
f1; : : : ; ng into a disjoint union of equivalent classes Na .1 � a � s/ with respect
to �:

f1; : : : ; ng D N1 [ � � � [Ns:

Then F.
/ \ uF.
/ is discrete if and only if #Na D 1 for every a .1 � a � s/ by
Theorem 3. Moreover, it is equivalent to that z1; : : : ; zn are different to each other
under multiplying ˙1. It is also equivalent to that z21; : : : ; z

2
n are different to each

other. When we set a D diag.z1; : : : ; zn/, a�1 D Na. Since 
kj D kj 
 for j D 1; 2,
we have
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u
u�1
�1 D k1ak2
k�1
2 a�1k�1

1 
�1

D k1ak2
k�1
2 Nak�1

1 
�1

D k1a
 Na
�1k�1
1

D k1a2k�1
1 :

Hence F.u
u�1
�1/ is discrete if and only if z21; : : : ; z
2
n are different to each other.

When F.u
u�1
�1/ is discrete, it is a great antipodal set by Theorem 1. ut

5 Further Results

Let G be a connected compact semisimple Lie group and g its Lie algebra. We take
an Ad.G/-invariant inner product h; i on g. We take a nonzero element J 2 g
satisfying .adJ /3 D �adJ . The adjoint orbit M D Ad.G/J 	 g is a Hermitian
symmetric space of compact type with respect to the induced metric from h; i. For
g 2 G, the action of Ad.g/ on M is holomorphic and isometric. Conversely, every
Hermitian symmetric space of compact type is constructed in this manner.

Theorem 5 ([4]). Under the situation above, the fixed point set F.Ad.g/;M/ is
discrete if and only if g is a regular element of G. In the case F.Ad.g/;M/ is a
great antipodal set of M .

Here we call g 2 G a regular element if dimF.Ad.g/; g/ D rank.G/.
Let A.M/ denote the group of all holomorphic isometries of a Hermitian

symmetric space M of compact type and let A0.M/ denote its identity component.
If M D Ad.G/J 	 g for a connected compact semisimple Lie group G with
Lie algebra g, A0.M/ coincides with fAd.g/jM j g 2 Gg. Hence Theorem 5
says that if g 2 A0.M/, F.Ad.g/;M/ is discrete if and only if g is a regular
element. For g 2 A.M/ � A0.M/, we obtain a necessary and sufficient condition
that F.Ad.g/;M/ is discrete when M is irreducible in [4].

Let M D Ad.G/J 	 g be a Hermitian symmetric space of compact type and
let L D F.
;M/ be a real form of M . Let I
 be an involutive automorphism of
G defined by I
 .x/ D 
x
�1 for x 2 G. Then .G; F.I
 // is a compact symmetric
pair, where F.I
 / WD F.I
 ; G/. By Lemma 5 we have G D F.I
 /AF.I
 / for a
suitable torus A of G. Hence when we consider L \ gL for g 2 G, it suffices to
consider L \ aL for a 2 A.

Theorem 6 ([4]). L \ aL is discrete if and only if a is a regular element of G. In
this case L \ aL D M \ a D W.R/J , where A D exp a, R denotes the restricted
root system with respect to a and W.R/ denotes the Weyl group of R.

Let L1 D F.
1;M/ and L2 D F.
2;M/ be real forms of M . We assume that
there is no element g 2 G with gL1 D L2. Then there is no element g 2 G

with g
1g�1 D 
2. In this case we may assume that I
1 and I
2 are commutative.
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due to the classification of real forms. Then we have two compact symmetric pairs
.G; F.I
1// and .G; F.I
2// and their canonical decompositions g D f1 ˚ p1 D
f2 ˚ p2. Since I
1 and I
2 are commutative, we have

g D .f1 \ f2/˚ .p1 \ p2/˚ .f1 \ p2/˚ .f2 \ p1/:

We take a maximal abelian subspace a 	 p1 \ p2 so that J 2 a. We have G D
F.I
1/.exp a/F.I
2/ by [2]. We consider L1\gL2 for g 2 G, it suffices to consider
L1 \ aL2 for a D expH 2 exp a.

A compact symmetric triad .G; F.I
1/; F .I
2// induces the symmetric triad
. Q̇ ; ˙;W / [3]. We call H 2 a a regular point if h�;H i … �Z for each � 2 ˙
and h˛;H i … �

2
C �Z for each ˛ 2 W .

Theorem 7 ([4]). L1 \ aL2 is discrete if and only if H is a regular point of
. Q̇ ; ˙;W /. In this case L1\aL2 D W. Q̇ /J D W.R1/J \a D W.R2/J \a. Here
W. Q̇ / is the Weyl group of a root system Q̇ , Ri denotes the restricted root system
of .G; F.I
i // with respect to ai , a maximal abelian subspace in pi including a and
W.Ri/ denotes the Weyl group of Ri for i D 1; 2.
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Canonical Forms Under Certain Actions
on the Classical Compact Simple Lie Groups

Osamu Ikawa

Abstract A maximal torus of a compact connected Lie group can be seen as a
canonical form of adjoint action since any two maximal tori can be transformed each
other by an inner automorphism. A. Kollross defined a � -action on a compact Lie
group which is a generalization of the adjoint action. Since a � -action is hyperpolar,
it has a canonical form called a section. In this paper we study the structure of the
orbit space of a � -action and properties of each orbit, such as minimal, austere and
totally geodesic, using symmetric triads introduced by the author, when � is an
involution of outer type on the compact simple Lie groups of classical type. As
an application, we investigate the fixed point set of a holomorphic isometry of an
irreducible Hermitian symmetric space of compact type which does not belong to
the identity component of the group of holomorphic isometries.

1 � -actions

Let G be a compact connected Lie group and � an automorphism of G. Kollross
defined a � -action of G on itself by g � x D gx�.x/�1 for g; x 2 G. Clearly
.g1g2/ � x D g1 � .g2 � x/ for g1; g2; x 2 G. If � is identity, then � -action is nothing
but the adjoint action. We define two involutions �1 and �2 on G �G by

�1.g; h/ D .��1.h/; �.g//; �2.g; h/ D .h; g/:

The fixed point set F.�1;G � G/ of G is given by F.�1;G � G/ D f.g; �.g// j
g 2 Gg. Here for a set X and a map � W X ! X we define F.�;X/ D fx 2 X j
�.x/ D xg. We use the notation throughout of the paper. Two involutions �1 and
�2 commute each other if and only if �2 D 1. If we set �G D F.�2;G � G/ then
.G �G;F.�1; G �G// and .G �G;�G/ are compact symmetric pairs. Hence we
can define a Hermann action of F.�1;G �G/ on .G �G/=�G as follows:

O. Ikawa (�)
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of Technology, Matsugasaki, Sakyoku, Kyoto 606-8585, Japan
e-mail: ikawa@kit.ac.jp

© Springer Japan 2014
Y.J. Suh et al. (eds.), Real and Complex Submanifolds, Springer Proceedings
in Mathematics & Statistics 106, DOI 10.1007/978-4-431-55215-4__29

329

mailto:ikawa@kit.ac.jp


330 O. Ikawa

.g; �.g//..a; b/�G/ D .ga; �.g/b/�G:

If we identify G with .G �G/=�G in a natural manner then

.g; �.g// � x D gx�.g/�1:

Hence � -action is a kind of Hermann action. Since Hermann action is hyperpolar, so
is � -action. In order to study a section of the � -action, denote by g the Lie algebra
of G. We define a closed subgroupK� of G byK� D F.�;G/, then the Lie algebra
k� is given by k� D F.�; g/. Set mi D F.��i ; g� g/. Then m1 \m2 D f.X;�X/ j
X 2 k�g. Take a maximal torus A ofK� and denote by a the Lie algebra of A. If we
set Oa D f.H;�H/ j H 2 ag then Oa is a maximal abelian subspace of m1\m2. Thus
exp Oa D f.a; a�1/ j a 2 Ag is a section of the � -action [2]:

.G �G/=� D
[
g2G

.g; �.g// exp Oa:

If we identify G with .G �G/=�G then

G D
[
g2G

gA�.g/�1:

Hence A can be considered as a canonical form for the � -action. We call dimA D
rank.K�/ the cohomogeneity of the � -action. The following equivalent relation was
introduced by T. Matsuki.

Definition 1 ([6]). Let .�1; �2/ and .� 0
1; �

0
2/ be two pairs of involutions on G � G.

Then .�1; �2/ and .� 0
1; �

0
2/ are equivalent if there exist an automorphism � 2 Aut

.G �G/ of G �G and .a; b/ 2 G �G such that

� 0
1 D 
.a;b/��1��1
�1

.a;b/; � 0
2 D ��2��1;

where 
.a;b/ denote the inner automorphism of G �G defined by .a; b/. In this case
we write .�1; �2/ � .� 0

1; �
0
2/.

The relation .�1; �2/ � .� 0
1; �

0
2/ means that the action of F.�1;G � G/ on G �

G=F.�2;G�G/ is essentially the same as that of F.� 0
1; G�G/ onG�G=F.� 0

2; G�
G/. Since the theory of adjoint action on a compact connected Lie group is well-
known, we are interested in a � -action which is essentially different from the adjoint
action. In order to investigate such a � -action we prepare the following lemma.

Lemma 1 (cf. [5]). Let G be a compact connected Lie group and � an auto-
morphism of G. Set �1.g; h/ D .��1.h/; �.g// and �2.g; h/ D .h; g/. Then
.�1; �2/ � .�2; �2/ holds if and only if � is an inner automorphism.
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Proof. Assume that .�1; �2/ � .�2; �2/. Then there exist .a; b/ 2 G and � 2
Aut.G �G/ such that

�1 D 
.a;b/��2��1
�1
.a;b/; �2 D ��2��1:

Hence �1 D 
.a;b/�2
�1
.a;b/. Applying .g; h/ to the both sides of the equation we have

.��1.h/; �.g// D .ab�1hba�1; ba�1gab�1/:

Hence �.g/ D ba�1gab�1, which is of inner type.
Conversely we assume that � is of inner type. Then there exists x 2 G such

that � D 
x . Set � D 1. Then �2 D ��2�
�1 and 
.x;1/��1��1
�1

.x;1/ D �2. Hence
.�1; �2/ � .�2; �2/. ut

By the lemma above we are interested in � -actions in the case where � is of outer
type. The following lemma means that � -action is essentially the same as 
a�
�1

a -
action for a 2 G.

Lemma 2. Let G be a compact connected Lie group. For � 2 Aut.G/ and a 2 G
we define � 0 2 Aut.G/ by � 0 D 
a�
�1

a . Set �1.g; h/ D .��1.h/; �.g//; � 0
1.g; h/ D

.� 0�1.h/; � 0.g// and �2.g; h/ D .h; g/. Then .�1; �2/ � .� 0
1; �2/.

Proof. It is clear from � 0
1 D 
.a;a/�1
�1

.a;a/. ut
When � is an involution of a compact connected simple Lie group, we can

determine which � is of outer type by the following proposition.

Proposition 1. Let G be a compact connected simple Lie group and � be an
involution of G. Then � is of outer type if and only if rank.G/ > rank.K�/.

Proof. In general rank.G/ � rank.K�/ holds. If � is of inner type then rank.G/ D
rank.K�/. Hence if rank.G/ > rank.K�/ then � is of outer type. The converse
follows from the list below. ut

In the table below we can directly verify the type of � when G is a classical
group. When G D E6 and � is an outer automorphism, then the cohomogeneity of
� -action is equal to 4 [5]. Hence when .G;K�/ D .E6; SU.6/ � SU.2//, then � is
of inner type. When .G;K�/ D .E6; SO.10/ � S1/; .E7;E6 � S1/, then � is of inner
type since the coset manifold G=K� is an irreducible Hermitian symmetric space
of compact type. When G D E7;E8; F4 and G2, then � is of inner type since the
Dynkin diagram of G has no nontrivial symmetry.

When � is an outer automorphism whose order is finite and greater than two on
a compact connected simple Lie group G, then g D so.8/; ord.�/ D 3 and k� D g2
by the classification of automorphisms on a compact simple Lie algebra (Table 1).
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Table 1 The type of � for .G;K�/

.G;K�/ rank.G/ rank.K�/ �

.SU.n/; SO.n//.n � 3/ n� 1 Œn=2 Outer

.SU.2n/; Sp.n// 2n� 1 n Outer

.E6; Sp.4// 6 4 Outer

.E6; F4/ 6 4 Outer

.SO.p C q/; SO.p/� SO.q// Œ.p C q/=2 Œp=2C Œq=2 Outer, p; q:odd

.SU.p C q/; SU.p/� U.q// p C q � 1 p C q � 1 Inner

.SO.2n/; U.n// n n Inner

.Sp.n/; U.n// n n Inner

.Sp.p C q/; Sp.p/� Sp.q// p C q p C q Inner

.E6; SU.6/ � SU.2// 6 6 Inner

.E6; SO.10/ � S1/ 6 6 Inner

.E7; SU.8// 7 7 Inner

.E7; SO.12/ � SU.2// 7 7 Inner

.E7;E6 � S1/ 7 7 Inner

.E8; SO.16// 8 8 Inner

.E8;E7 � SU.2// 8 8 Inner

.F4; Sp.3/ � SU.2// 4 4 Inner

.F4; SO.9// 4 4 Inner

.G2; SU.2/ � SU.2// 2 2 Inner

2 � -actions and Symmetric Triads

In this section we denote by G a compact connected Lie group with Lie algebra g
and by � an automorphism of G. Take an invariant metric h ; i on G. Denote by a
a maximal abelian subalgebra of k� .

2.1 General Case

For ˛ 2 a we define a subspace g.a; ˛/ of gC, the complexification of g, by

g.a; ˛/ D fX 2 gC j ŒH;X D p�1h˛;H iX .H 2 a/g:

and set Q̇ D f˛ 2 a � f0g j g.a; ˛/ 6D f0gg. Then we have a direct sum
decomposition of gC:

gC D g.a; 0/˚
X
˛2 Q̇

g.a; ˛/: (1)
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Denote by N the conjugation of gC with respect to g. If ˛ 2 Q̇ then �˛ 2 Q̇ since
g.a; ˛/ D g.a;�˛/. The following lemma is clear from the definition of g.a; ˛/.

Lemma 3. (1) Œg.a; ˛/; g.a; ˇ/ 	 g.a; ˛ C ˇ/.
(2) g.a; ˛/ is � -invariant.

Lemma 4. If we denote by z the center of g then span. Q̇ / D z? \ a.

Proof. For H 2 a we have

H 2 z, ŒH; gCD0, ŒH; g.g; ˛/D0 .˛ 2 Q̇ /, h Q̇ ;H iD0, H 2 Q̇ ?:

Here we used (1). ut
Denote by ˙ the root system of k� with respect to a. Then ˙ is a reduced root

system. Denote by m.�/ the multiplicity of � 2 ˙ . Then m.�/ D 2.

2.2 In the Case When � Is of Finite Order

In the sequel we assume that the order s of � is finite. We define a subgroup of U.1/
by f�1 D 1; �2; � � � ; �sg D f� 2 U.1/ j �s D 1g. We define a subspace g.a; ˛; �j / of
g.a; ˛/ by

g.a; ˛; �j / D fX 2 g.a; ˛/ j �X D �jXg:

In particular g.a; 0; 1/ D aC. By Lemma 3(2) we have

g.a; ˛/ D
sX

jD1
g.a; ˛; �j /:

The following lemma is clear from the definition of g.a; ˛; �j /.

Lemma 5. (1) g.a; ˛; �j / is � -invariant.
(2) g.a; ˛; �j / D g.a;�˛; ��1

j /.
(3) Œg.a; ˛; �i /; g.a; ˇ; �j / 	 g.a; ˛ C ˇ; �i �j /.
Lemma 6. Q̇ is a root system of z? \ a.

Proof. By Lemma 4 Q̇ spans z? \ a. For any ˛ 2 Q̇ there exists �j such
that g.a; ˛; �j / 6D f0g. By Lemma 5(2) if X is in g.a; ˛; �j / � f0g then X 2
g.a;�˛; ��1

j /. By Lemma 5(3) we have ŒX;X 2 g.a; 0; 1/ D aC. Since ŒX;X D
�ŒX;X, we have ŒX;X 2 p�1a. Since for any H 2 a,

hH; ŒX;Xi D hŒH;X;Xi D p�1h˛;H ihX;Xi;
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we have ŒX;X D p�1hX;Xi˛. Hence we have the following isomorphism:

sl.2;C/ D C˛ ˚ CX ˚ CX:

Let ˇ be in Q̇ . Then sl.2;C/ acts on

X
n2Z

g.ˇ C n˛/ D
sX

nDr
g.a; ˇ C n˛/:

Since ŒX;X D p�1hX;Xi˛ we have tr.˛/ D 0. Thus

0 D tr.˛/ D p�1
sX

nDr
h˛; ˇ C n˛i D p�1.s � r C 1/.h˛; ˇi C 1

2
.s C r/k˛k2/;

which implies that

�2h˛; ˇik˛k2 D s C r 2 Z:

Hence ˛-series containing ˇ is of the form ˇ C n˛ .p � n � q/, and

p � p C q D �2h˛; ˇik˛k2 � q:

Hence s˛ˇ WD ˇ � 2h˛;ˇi
k˛k2 ˛ 2 Q̇ . ut

We decompose the root system Q̇ into some irreducible root systems Q̇ i and
write Q̇ D Q̇

1 [ � � � [ Q̇ r . Denote by gCi the subalgebra of gC generated byP
˛2 Q̇i g.a; ˛/. Then

gCi 	 g.a; 0/˚
X
˛2 Q̇i

g.a; ˛/:

Lemma 7. gCi is an ideal of gC, which is not equal to f0g. When i 6D j , then
ŒgCi ; g

C

j  D f0g. In particular if g is simple then Q̇ is an irreducible root system of a.

Proof. It is clear that gCi 6D f0g by the definition of gCi . By (1) we have

ŒgC;
X
ˇ2 Q̇i

g.a; ˛/ D Œg.a; 0/˚
X
˛2 Q̇

g.a; ˛/;
X
˛2 Q̇i

g.a; ˛/

	
X
ˇ2 Q̇i

g.a; ˇ/˚
X
˛;ˇ2 Q̇i

Œg.a; ˛/; g.a; ˇ// 	 gCi :
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By Jacobi identity gCi is an ideal of gC. When i 6D j then

Œ
X
˛2 Q̇i

g.a; ˛/;
X
ˇ2 Q̇j

g.a; ˇ/ D f0g:

By Jacobi identity ŒgCi ;
P

ˇ2 Q̇j g.a; ˇ/ D f0g. Using Jacobi identity again we have

ŒgCi ; g
C

j  D f0g. ut

2.3 In the Case When � 2 D 1

In this subsection we assume that �2 D 1. If we set m� D F.��; g/, then g D
k�˚m� . Since a 	 k� , we have Œa;m�  	 m� . Define subspaces V.m� / and V ?.m� /

of m� by

V.m� / D fX 2 m� j Œa; X D f0gg; V ?.m� / D fX 2 m� j X ? V.m� /g:
For ˛ 2 a define a subspace V ?̨.m� / of V ?.m� / by

V ?̨.m� / D fX 2 V ?.m� / j .adH/2X D �h˛;H i2Xg;
and set W D f˛ 2 a j V ?̨.m� / 6D f0gg. Then W is invariant under the
multiplication by �1 since V ?�˛.m� / D V ?̨.m� /. For ˛ 2 W set n.˛/ D
dimV ?̨.m� /, which we call the multiplicity of ˛. Clearly we have Q̇ D ˙ [W .

Lemma 8. For ˛ 2 W , V ?̨.m� / is an a-invariant subspace, and n.˛/ is even. W
is invariant under the action of the Weyl group W.˙/ of ˙ . For s 2 W.˙/ and
˛ 2 W , we have s.V ?̨.m� // D V ?

s˛ .m� / and n.s˛/ D n.˛/.
Proof. Since Œk� ;m�  	 m� we have Œa; V ?̨.m� / 	 Œk� ;m�  	 m� . Since h ; i is
an invariant metric we have

hV.m� /; Œa; V
?̨.m� /i D hŒV .m� /; a; V

?̨.m� /i D f0g:
Thus Œa; V ?̨.m� / 	 V ?.m� /. For H 2 a and X 2 V ?̨.m� /,

.adH/2ŒH;X D ŒH; .adH/2X D �h˛;H i2ŒH;X:

Hence V ?̨.m� / is a-invariant.
For X 2 V ?̨.m� / � f0g take H 2 a such that ŒH;X 6D 0. We show that

fX; ŒH;Xg is linearly independent. Assume that aXCbŒH;X D 0. Clearly a D 0
if and only if b D 0. Applying adH to aX C bŒH;X D 0 we have aŒH;X �
h˛;H i2bX D 0. If a were not equal to 0, set c D b=a. Then we would have

X C cŒH;X D 0; �h˛;H i2cX C ŒH;X D 0:
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The equations would imply .1Ch˛;H i2c2/X D 0, which would be a contradiction.
Hence a D b D 0. Thus fX; ŒH;Xg is linearly independent. Since RH ˚RŒH;X

is a two-dimensional a-invariant subspace of V ?̨.m� /, the orthogonal complement
of RH ˚ RŒH;X in V ?̨.m� / is also a-invariant. Hence n.˛/ is even.

For s 2 W.˙/ there exists k 2 NK� .a/, the normalizer of a in K, such that s D
Ad.k/ on a. Hence m� is invariant under the action of W.˙/. For X 2 V.m� / we
have Œa; sX D Ad.k/Œa; X D f0g. Hence V.m� / is alsoW.˙/-invariant. Since the
action of W.˙/ is orthogonal, V ?.m� / is also W.˙/-invariant. For X 2 V ?̨.m� /

and H 2 a we have

ŒH; ŒH; sX D sŒs�1H; Œs�1H;X D �sh˛; s�1H i2X D �hs˛;H i2sX:

Hence s.V ?̨.m� // D V ?
s˛ .m� /. Thus we get n.s˛/ D n.˛/. ut

The type of . Q̇ ; ˙;W / and their multiplicities does not depend on the choice
of a maximal torus A in K� . The involutions � and 
g�
�1

g for g 2 G determine

. Q̇ ; ˙;W / of the same type and the same multiplicities (Table 2).

Theorem 1. Let G be a compact connected simple Lie group of classical type
and � an involution of outer type. Then . Q̇ ; ˙;W / is given by the table below.
In particular . Q̇ ; ˙;W / satisfies the condition of symmetric triad of a and ˙ is a
reduced root system of a. The multiplicities are given by m.�/ D n.˛/ D 2 for any
� 2 ˙ and ˛ 2 W .

Here we used the following notations (Table 3).
The proof is given by a direct computation as follows. In the examples below we

use the following notations unless otherwise stated.

Table 2 The type of . Q̇ ; ˙;W / for .G;K�/

.G;K�/ . Q̇ ; ˙;W /
(1) .SU.2m/; SO.2m// .m � 2/ .I’-Cm/

(2) .SU.2mC 1/; SO.2mC 1// .m � 1/ .II-BCm/

(3) .SU.2m/; Sp.m// .I-Cm/

(4) .SO.2mC 2nC 2/; S.O.2mC 1/�O.2nC 1/// .I’-BmCn/

Table 3 The type of
symmetric triad . Q̇ ; ˙;W / . Q̇ ; ˙;W / Q̇ ˙ W

.I’-Cm/ Cm Dm Cm

.II-BCm/ BCm Bm BCm

.I-Cm/ Cm Cm Cm

.I’-BmCn/ BmCn Bm [ Bn . Q̇ �˙/[ f˙eig
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H.x1; � � � ; xm/ D diag.H.x1/; � � � ;H.xm// D

0
BB@
H.x1/

: : :

H.xm/

1
CCA ; H.x/D

 
0 �x
x 0

!
:

Example 1. In the case when .G;K�/ D .SU.2m/; SO.2m//:
Define an involution � on G by �.g/ D Ng. Then a maximal abelian subalgebra

a of k� is given by a D fH.x1; � � � ; xm/ j x1; � � � ; xm 2 Rg. Define ei 2 a by
hH.x1; � � � ; xm/; ei i D xi . Then we can verify (1) in Theorem 1. �

Example 2. In the case when .G;K�/ D .SU.2mC 1/; SO.2mC 1//:
Define an involution � on G by �.g/ D Ng. Then a maximal abelian subalgebra

a of k� is given by a D fH.x1; � � � ; xm/ j x1; � � � ; xm 2 Rg, where

H.x1; � � � ; xm/ D diag.H.x1/; � � � ;H.xm/; 0/:

Define ei 2 a by hH.x1; � � � ; xm/; ei i D xi . Then we can verify (2) in
Theorem 1. �

Example 3. In the case when .G;K�/ D .SU.2m/; Sp.m// we have already
verified (3) in Theorem 1 [4].

Example 4. In the case when .G;K�/ D .SO.2m C 2n C 2/; S.O.2m C 1/ �
O.2nC 1///:

Define an involution � on G by

�.g/ D I2mC1;2nC1gI�1
2mC1;2nC1 where I2mC1;2nC1 D diag.�12mC1; 12nC1/:

Then a maximal abelian subalgebra a of k� is given by

a D fH.x1; � � � ; xmIy1; � � � ; yn/ j x1; � � � ; xm; y1; � � � ; yn 2 Rg;

where H D H.x1; � � � ; xmIy1; � � � ; yn/ D diag.H.x1; � � � ; xm/; 0;H.y1; � � � ; yn/;
0/. Define feig1�i�mCn by hei ;H i D xi .1 � i � m/ and hemCj ;H i D yj .1 �
j � n/. Then we can verify (4) in Theorem 1. �

This completes the proof of Theorem 1.
Combining the theorem above and the results in [3] we can describe the orbit

space of a � -action in the theorem above. We can stratify the orbit space and see
that each strata has a unique minimal orbit. The notion of austere submanifold
was introduced by Harvey-Lawson [1], which is a minimal submanifold whose
second fundamental form has a certain symmetry. We also see which orbit of such
a � -action is austere or totally geodesic. We explain another application, which is a
joint work with M. S. Tanaka and H. Tasaki [4]. Let M D Gm.C

2m/ be a complex
Grassmann manifold consisting of all complex m-dimensional subspaces in C

2m.
Denote by A.M/ the group of all holomorphic isometries of M and by A0.M/ its
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identity component. For ' 2 A.M/�A0.M/we can see the necessary and sufficient
condition for F.';M/ to be discrete, and we can describe F.';M/ when it is
discrete using the theorem above in the case where .G;K�/ D .SU.2m/; Sp.m//.

Acknowledgements The author was partly supported by the Grant-in-Aid for Science Research
(C) 2013 (No. 25400070), Japan Society for the Promotion of Science.
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Elementary Deformations
and the HyperKähler-Quaternionic
Kähler Correspondence

Oscar Macia and Andrew Swann

Abstract The hyperKähler-quaternionic Kähler correspondence constructs quater-
nionic Kähler metrics from hyperKähler metrics with a rotating circle symmetry. We
discuss how this may be interpreted as a combination of the twist construction with
the concept of elementary deformation, surveying results of our forthcoming paper.
We outline how this leads to a uniqueness statement for the above correspondence
and indicate how basic examples of c-map constructions may be realised in this
context.

1 Introduction

The twist construction was introduced in [16, 17] as a geometric construction that
reproduces T-duality arguments in the physicists literature for geometries with tor-
sion. It has proved successful in constructing compact simply connected examples
of a number of classes of non-Kähler geometries. However, elsewhere in the physics
literature string theory dualities are used to construct metrics of special holonomy.
In particular, the c-map construction of Cecotti et al. [6] produces quaternionic
Kähler metrics from projective special Kähler manifolds. An intermediate stage in
this construction is a passage from hyperKähler manifolds of a given dimension to
quaternionic Kähler manifolds of the same dimension.

HyperKähler and quaternionic Kähler metrics are two of the infinite families of
geometries in the holonomy classification of Berger [4, 5]. They are both Einstein
geometries and there are many open questions about their structure and classifi-
cation. In 2008, Haydys [9] showed how to each quaternionic Kähler manifold
with circle action one may associate hyperKähler manifolds with a symmetry that
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fixes only one of the complex structures. He also provided a description of how
to invert that construction. Later Hitchin [11] gave a twister interpretation of this
construction along the lines of [12], and [2, 3] provided expressions in arbitrary
signature. The metric constructions here all have the flavour of making a conformal
change, but with two different factors along and orthogonal to directions determined
by a symmetry.

The purpose of this note is to describe the results of [13], where we show that the
twist construction can be used to interpret this so-called hyperKähler-quaternionic
Kähler correspondence and to prove that there is only one degree of freedom
this construction. We then indicate how the computational framework of the twist
construction may be applied to understand some of the basic examples of the c-map.

2 Twist Constructions

The twist construction [16, 17] associates to a manifold with a circle action a new
space of the same dimension with a distinguished vector field.

Suppose M is manifold of dimension n. Let X be a vector field on M that
generates a circle action. A twistW ofM is specified as a quotientW D P=hX 0i of
a principal S1-bundle P !M by a lift X 0 of X . It thus fits in to a double fibration

If H2.M;Z/ has no torsion, the bundle P is specified by the curvature form F of a
connection one-form � 2 ˝1.P /, given by ��

MF D d� . We let H D ker � be the
corresponding horizontal distribution on P . Lifts X 0 of X that preserve � and the
principal vector field Y are given by

X 0 D X� C .��
Ma/Y;

where X� 2 H is the horizontal lift of X with respect to � and a 2 C1.M/ is a
Hamiltonian function satisfying

da D �XyF: (1)

This requires that F is preserved byX . The twistW WD P=hX 0i then admits a circle
action generated by .�W /�Y .

This essentials of this set-up are specified by the twist data .M;X; F; a/ with
X 2 X.M/ generating a circle action, F 2 ˝2

Z
.M/X an X -invariant closed two-

form with integral periods and a satisfying (1).
Provided a is non-zero, invariant tensors on M may be transferred to W as

follows. Note that at p 2 P , the projections �M and �W induce isomorphisms
T�M .p/M Š Hp Š T�W .p/W . Thus given p 2 ��1

M .q/, a tensor ˛q at q 2 M
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induces a tensor .˛W /q0 at q0 D �W .p/ 2 W . The tensor ˛W is well-defined if ˛ is
preserved by X . We then say that ˛ and ˛W are H -related and write

˛ �H ˛W :

The two most important computational facts for H -related tensors are:

Property 1. for ˛ 2 ˝p.M/X an invariant p-form, the exterior differential of ˛W
is given by

d˛W �H dW ˛ WD d˛ � 1
a
F ^Xy˛: (2)

Property 2. for an invariant complex structure I on M that is H -related to an
almost complex structure IW on W , we have

IW is integrable if and only if F is of type .1; 1/ for I .

Recall that F 2 ˝2.M/ is of type .1; 1/ if F.IA; IB/ D F.A;B/ for all
A;B 2 TM .

These facts show that geometric properties of the twist are determined by the
twist data.

Example 1. A basic example of the twist construction is provided by M D
CP.n/ � T 2. This is a Kähler manifold as a product. Suppose X generates one
of the circle factors of T 2 D S1�S1. Taking F to be the Fubini-Study two-form on
CP.n/, we have XyF D 0, so can take a � 1. Then P D S2nC1�T 2 and the twist
is W D S2nC1 � S1. As F is type .1; 1/ we have that W is a complex manifold.
However W is compact and b2.W / D 0, so W can not be Kähler.

3 Elementary Deformations of HyperKähler Metrics

As formula (2) indicates, the twist of a closed differential form is rarely closed.
In a given geometric situation it is therefore interesting to adjust the geometric data
before performing a twist.

We wish to work with hyperKähler manifolds. These are (pseudo-)Riemannian
manifolds .M; g/ with almost complex structures I , J and K such that

1. IJ D K D �JI ,
2. g is Hermitian with respect to I , J and K,
3. the two-forms !I D g.I �; �/, !J and !K are closed:

d!I D 0 D d!J D d!K:



342 O. Macia and A. Swann

By Hitchin [10] the last condition implies that I , J and K are integrable. The
restricted holonomy is then a subgroup of Sp.n/, where dimM D 4n, and the
metric is Ricci-flat. The triples .g; I; !I /, etc., are then Kähler structures on M .

Let X be a symmetry of a hyperKähler structure .M; g; I; J;K/, but which we
mean that X is an isometry that preserves the linear span hI; J;Ki of I; J;K 2
End.TM/. The vector field X induces four one-forms on M given by

˛0 D g.X; �/; ˛I D I˛0 D �˛.I �/; ˛J D J˛0; ˛K D K˛0:

We then define

g˛ D ˛20 C ˛2I C ˛2J C ˛2K:
When X is not null, g˛ is positive semi-definite proportional to the restriction of g
to HX D hX; IX; JX;KXi.
Definition 1. An elementary deformation of a hyperKähler metric g with respect
to a symmetry X is a metric of the form

gN D fg C hg˛
with f and h smooth functions on M .

This is thus more general than a conformal change of g.
As I , J and K are parallel, we have that X acts as a linear transformation on

R
3 D hI; J;Ki. It preserves the algebraic relations, so acts as an element of so.3/.

As so.3/ has rank one, it follows that the action is either trivial or conjugate a circle
action fixing I and mapping J to K. By relabelling the complex structures and
normalising X we may thus assume in this latter case that

LXI D 0 and LXJ D K: (3)

An isometry X satisfying (3) will be called rotating.
For a rotating symmetry, we have d˛I D 0, d˛J D !K and d˛0 D G�!I , where

G 2 ˝2.M/ is a two-form that is of type .1; 1/ for I , J and K. As ˛I is closed, we
may pass to a cover of M and write ˛I D d� for a smooth map �WM ! R. The
function � is a Kähler moment map for X with respect to .g; !I /.

4 The HyperKähler-Quaternionic Kähler Correspondence

Suppose .M; g; I; J;K/ is hyperKähler with rotating symmetry X with Kähler
moment map �. Then X does not preserve !J or !K , but the four-form

˝ D !2I C !2J C !2K (4)

is invariant and closed.
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If W is manifold of dimension at least 8 with a four-form ˝W pointwise
linearly equivalent to (4), then W has an almost quaternion-Hermitian structure
.gW ;G /, where G 	 End.T W / is a three-dimensional subbundle with a local
basis .IW ; JW ;KW / of almost complex structures for which gW is Hermitian and
with IW JW D KW D �JW IW . Such a structure is quaternionic Kähler if ˝W

is parallel with respect to the Levi-Civita connection of gW . It follows that gW is
Einstein [5, 14]. If dimW > 12, then to obtain quaternionic Kähler it is sufficient
that d˝W D 0 [15]. For dimW D 8, one can work with the local two-forms
!W D .!WI ; !

W
J ; !

W
K / and quarternionic Kähler is then equivalent to the existence

of a local connection form A 2 ˝1.so.3// such that d!W D A ^ !W .
The behaviour of the exterior derivative under the twist is given by (2), so from

the above remarks we may determine whether a twist is quaternionic Kähler by
working on M .

Theorem 1 ([13]). Let .M; g; I; J;K/ be a hyperKähler manifold with non-null
rotating symmetry X and Kähler moment map �. If dimM > 8 then, up to
homothety, the only twists of elementary deformations gN D fg C hg˛ of g that
are quaternionic Kähler have

gN D 1

.� � c/2 g˛ �
1

� � c g (5)

for some constant c. Furthermore the corresponding twist data is given by

F D kG D k.d˛0 C !I /; a D k.g.X;X/ � �C c/;

for some constant k.

The method of proof is first to impose the quaternionic Kähler condition on
as arbitrary twist of ˝N , the four-form associated to gN via I , J and K, and to
decompose these equations in type components relative to HX and its orthogonal
complement. From this one deduces that f and h are functions of � and that
h D f 0. Then we consider the equation da D �XyF and determine the twist
function a. Finally, we investigate the condition dF D 0, which provides an
ordinary differential equation for f .

From the theorem, it follows that the constructions provided in [2, 9, 11] of
quaternionic Kähler metrics from hyperKähler metrics with rotating circle symme-
try agree.

Example 2. We consider Hp;q D R
4p;4q , n D pCq, with its flat hyperKähler metric

g D
nX
iD1

"i .dx
2
i C dy2i C du2i C dv2i /
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with "i D C1, for i 6 p, and "i D �1, for i > p, and Kähler two-forms

!I D
nX
iD1

"i .dxi ^ dyi � dui ^ dvi /; !J D
nX
iD1

"i .dui ^ dxi C dvi ^ dyi /;

!K D
nX
iD1

"i .dui ^ dyi � dvi ^ dxi /:

If X is a rotating circle symmetry then it is an element of sp.p; q/C u.1/, but lies
in a maximal compact subgroup, so is conjugate to

X D
nX
iD1

�1
2
� �i

��
yi

@

@xi
� xi @

@yi

� � �1
2
C �i

��
vi
@

@ui
� ui

@

@vi

�

for some �1; : : : ; �n 2 R. For X to be non-null, we must have
Pn

iD1 "i�2i ¤ 0. This
vector field has d˛0 D d.g.X; �// D G � !I with

G D 2
nX
iD1

"i�i .dxi ^ dyi C dui ^ dvi /

so G D dˇ, where ˇ DPn
iD1 "i�i .�yidxi C xidyi � vi dui C ui dvi /.

The twisting form F is equal to a multiple of G D dˇ, so is exact and the twist
bundle is trivial P D H

n � S1. Let us take F D G. The connection one-form
may be written as � D ˇ C d
 , where @=@
 generates the principal S1-action. The
horizontal lift X� of X to P is then

X� D X � ˇ.X/ @
@

:

Direct calculation shows that d.ˇ.X// D �XyF , so the twist function is
a D ˇ.X/ C c and the twist is the quotient of P by X 0 D X C c @

@

. Thus the

twist is

W D .H � S1/=˝X C c @
@


˛
:

This will be an orbifold if �i and c are integers. It is smooth when they are pairwise
co-prime.

The theorem says that W is equipped with a quaternionic Kähler metric
H -related to gN in Eq. (5), whenever this is non-degenerate. The function � is
given by

� D 1

2

nX
iD1

�1
2
� �i

�
.x2i C y2i /C

�1
2
C �i

�
.u2i C v2i /:
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The metric gN has two contributions to its signature. On the quaternionic span HX

ofX , the sign is that of .kXk2��Cc/kXk2=.��c/2, orthogonal to HX the original
metric is multiplied by�kXk2=.��c/. Thus up to overall sign gN has quaternionic
signature that is either .p C 1; q � 1/, .p; q/ or .p � 1; q C 1/. It is degenerate on
the sets .kXk2 D 0/, i.e., where X is null, and on .kXk2��C c D 0/, which is the
set where the twist function a vanishes. The metric may also blow-up on .� D c/.

5 Application to the c-map

The c-map is a construction introduced by Cecotti et al. [6]. It starts with a so-called
projective special Kähler manifold of dimension 2n and produces a quaternionic
Kähler manifold of dimension 4n C 4. Explicit local expressions for the result-
ing metrics were provided by Ferrara and Sabharwal [7]. Recently Alekseevsky
et al. [1, 3] have shown that the hyperKähler-quaterionic Kähler correspondence
reproduces the quaternionic Kähler metrics of the c-map. In particular, this means
that one may obtain all the known examples homogeneous (positive definite)
quaternionic Kähler of negative scalar curvature, and their work is also beginning to
produce new examples of complete quaternionic Kähler metrics.

Given the wide generality of the twist construction, it is useful to understand
how such homogeneous examples may arise. To be concrete let us consider the real
hyperbolic space RH.2/ as a solvable Lie group with Kähler metric of constant
curvature. This has a global basis fa; bg of one forms, such that da D 0 and db D
��a ^ b, for some constant � depending on the scalar curvature. For this to be a
projective special Kähler manifold, we need to consider a certain cone metric and
show that it admits a flat symplectic connection of special Kähler type, as described
by Freed [8].

Let C0 be a circle bundle over RH.2/ with connection one-form ' whose
curvature is 2a ^ b. Pulling a and b back to C D R>0 � C0, the cone geometry is

gC D t 2.a2 C b2 � '2/ � dt2; !C D t 2a ^ b � t' ^ dt;

a Kähler metric of signature .2; 2/. It has a symmetry X generated by the principal
action on C0.

Locally, one can show that this admits a special Kähler connection if and only if
�2 is 4 or 4=3. In case �2 D 4, the special connection agrees with the Levi-Civita
connection of gc . In both cases, using the cotangent trivialisation . Oa; Ob; O'; O / D
.ta; tb; t'; dt/, one may construct a hyperKäher metric of signature .4; 4/ on H D
T �C of the form gH D Oa2 C Ob2 � O'2 � O 2 C OA2 C OB2 � O̊ 2 � O�2. Indeed the
flat connection gives TH D V � ˚ V , with V Š TM . This is the rigid c-map, see
Freed [8]. The Kähler forms !J and !K are just the real and imaginary parts of the
standard complex symplectic two-form on H D T �C .
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Horizontally lifting the symmetry of X of C to H D T �C using the flat
connection, one obtains a rotating symmetry QX of the hyperKähler structure. Note
that the symmetry X does not preserve the flat connection, and it rotates the
quadruple Qı D . OA; OB; O̊ ; O�/. The twist data for this lifted action is given by
the curvature form

F D �Oa ^ Ob C O' ^ O � OA ^ OB C O̊ ^ O�

and twist function �t 2=2C c. The curvature form is exact, and so we may proceed
much as in Example 2.

In particular, we have a coordinate 
 on S1 in P D H �S1. With c D 0 the twist
is then diffeomorphic to .H=h QXi/ � S1. We may use 
 to define a new quadruple
ı D Qı exp.i
/, where i D diag.i2; i2/ with i2 D

�
0 �1
1 0

�
. Now using (2)

one may show that the structure functions of the coframe H -related to
. Oa; Ob; O'; O ; ı1; ı2; ı3; ı4/ are constants, so these define a dual basis for a Lie algebra.
The metric gN is seen to be positive definite, complete and has constant coefficients
in this coframe, so the resulting quaternionic Kähler metric on W is complete.
It follows that the universal cover of W is a Lie group G and that the metric
on W pulls back to a left-invariant metric. We have W D G=Z and knowing the
structure constants we may identifyG as the solvable Lie groups that act transitively
on the non-compact symmetric spaces Gr2.C2;2/ for �2 D 4 or G�

2 =SO.4/ for
�2 D 4=3. This provides a global verification of the main example of Ferrara and
Sabharwal [7].

Acknowledgements This work is partially supported by the Danish Council for Independent
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A Classification of Ricci Solitons as
(k; �)-Contact Metrics

Amalendu Ghosh and Ramesh Sharma

Abstract If a non-Sasakian (k; �)-contact metric g is a non-trivial Ricci soliton
on a (2n C 1)-dimensional smooth manifold M , then (M;g) is locally a three-
dimensional Gaussian soliton, or a gradient shrinking rigid Ricci soliton on the
trivial sphere bundle Sn.4/ �EnC1, or a non-gradient expanding Ricci soliton with
k D 0; � D 4. The last case occurs on a Lie group with a left invariant metric,
especially for dimension 3, on Sol3 regarded also as the group E.1; 1/ of rigid
motions of the Minkowski 2-space.

1 Introduction

A Ricci soliton is a generalization of the Einstein metric, defined on a Riemannian
manifold M with metric g satisfying the equation

£V g C 2Ric C 2�g D 0 (1)

where V is a vector field on M , Ric is the Ricci tensor of g, � is a constant and
£V denotes the Lie-derivative operator along V . The Ricci soliton is said to be
shrinking, steady, and expanding according as � < 0, � D 0, and � > 0 respectively.
Actually, Ricci solitons represent generalized fixed point of the Hamilton’s Ricci
flow [12]: @

@t
gij D �2Rij , viewed as a dynamical system on the space of

Riemannian metrics modulo diffeomorphisms and scalings. A Ricci soliton is said to
be a gradient Ricci soliton, if it is the sum of a Killing vector field and the gradient
of a smooth function f on M . A compact Ricci soliton is known to be gradient
(Perelman [13]).
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A Ricci soliton is said to be trivial if V is either zero or Killing onM . Non-trivial
compact Ricci solitons may exist only in dimensions � 4 and must have non-
constant positive scalar curvature. Ricci solitons are also of interest to physicists
who refer to them as quasi-Einstein metrics (for example, see Friedan [8]). For
details on Ricci soliton we refer to Chow et al. [6].

Generalizing the trivial Ricci solitons, Petersen and Wylie [14] introduced the
notion of rigidity of gradient Ricci solitons as follows.

Definition 1. A gradient Ricci soliton is said to be rigid if it is isometric to a
quotient of N � Ek where N is an Einstein manifold and the potential function
f D ��

2
jxj2 on the Euclidean factor Ek . That is, (M;g) is isometric to N �� Ek ,

where � acts freely on N and by orthogonal transformations on Ek . For k D n, i.e.
M D En, it is just the Gaussian soliton f D ��

2
jxj2.

Let us recall the recent studies of Ricci solitons within the frame-work of contact
geometry. Gradient Ricci solitons were studied by Sharma [15] as a K-contact
metric, by Ghosh et al. [11] as a .k; �/-contact metric and by Cho and Sharma [7] for
homogeneous H -contact manifold. For the non-gradient case, Sharma and Ghosh
[16] proved that a three-dimensional Sasakian metric which is a non-trivial Ricci
soliton, is homothetic to the standard Sasakian metric on nil3. Subsequently, this
result was generalized by Ghosh and Sharma [9] for �-EinsteinK-contact manifold.
Recently, the aforementioned result in [16] on three-dimensional Sasakian manifold
has been extended by Ghosh and Sharma [10] for all dimensions. It is proved that “If
a (2nC 1)-dimensional Sasakian metric is a non-trivial Ricci soliton, then it is null
�-Einstein (transverse Calabi-Yau) and expanding”. We now recall the following
result from [11]: “if a non-Sasakian .k; �/-contact metric is a gradient Ricci soliton,
then in dimension 3 it is flat and in higher dimensions it is locally isometric to the
trivial sphere bundle Sn.4/�EnC1”. The goal of this paper is to generalize this result
by waiving the gradient condition and obtain the following classification result.

Theorem 1. If a non-Sasakian (k; �)-contact metric g is a non-trivial Ricci soliton
on a (2n C 1)-dimensional smooth manifold M , then (M;g) is locally a three-
dimensional Gaussian soliton, or a gradient shrinking rigid Ricci soliton on the
trivial sphere bundle Sn.4/�EnC1, or a non-gradient expanding Ricci soliton with
k D 0; � D 4. The last case occurs on a Lie group with a left invariant metric,
especially for dimension 3, on Sol3 regarded also as the group E.1; 1/ of rigid
motions of the Minkowski 2-space.

As the standard contact metric g on the unit tangent bundle T1M.c/ over a space
of constant curvature c is a (k; �)-contact metric with k D c.2� c/; � D �2c, with
c D 1 corresponding to Sasakian case (see [3]), Theorem 1 shows that (T1M.c/; g)
would be a non-Sasakian Ricci soliton if and only if c D 0. Hence, we have the
following corollary to the above theorem.

Corollary 1. The standard contact metric g on the unit tangent bundle T1M.c/
over a space of constant curvature c is a non-Sasakian Ricci soliton if and only if
(T1M.c/; g) is the trivial sphere bundle Sn.4/ �EnC1.
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2 Preliminaries

A (2n C 1)-dimensional smooth manifold is said to be contact if it has a global
1-form � such that � ^ .d�/n ¤ 0 on M . Given a contact 1-form � there always
exists a unique vector field � such that .d�/.�; X )D 0 and �.�/ D 1. Polarization
of d� on the contact subbundle D (defined by � D 0), yields a Riemannian metric
g and a (1,1)-tensor field ' such that

.d�/.X; Y / D g.X; 'Y /; (2)

�.X/ D g.X; �/; (3)

'2 D �I C �˝ �: (4)

The metric g is called an associated metric of � and ('; �; �; g) a contact metric
structure. We now recall [2] the self-adjoint operators h D 1

2
£�' and l D R.:; �/�

which annihilate � . The tensors h, h' are trace-free and h' D �'h. The following
formulas hold on a contact metric manifold (see [2]).

rX� D �'X � 'hX; (5)

T rl D Ric.�; �/ D 2n � jhj2; (6)

where r, R, Ric and Q denote respectively, the Riemannian connection, curvature
tensor, Ricci tensor and Ricci operator of g. A contact metric manifold is said to
be K-contact if � is Killing with respect to g, equivalently, h D 0. Moreover, the
contact metric structure on M is said to be Sasakian if the almost Kaehler structure
on the cone manifold (M � RC; r2g C dr2) over M , is Kaehler (see Boyer and
Galicki [5]). For details about contact metric manifolds we also refer to Blair [2].

By a .k; �/-contact manifold we mean a contact metric manifold satisfying the
nullity condition (see Blair et al. [3])

R.X; Y /� D kŒ�.Y /X � �.X/Y C �Œ�.Y /hX � �.X/hY ; (7)

for some real numbers k and �. This can be equivalently expressed as

R.X; �/Y D k Œ�.Y /X � g.X; Y /�C � Œ�.Y /hX � g.hX; Y /� : (8)

This class of manifolds is preserved under a D-homothetic deformation (Tanno
[17]): N� D a�; N� D 1

a
�; N' D '; Ng D ag C a.a � 1/� ˝ � for a positive constant

a, and includes Sasakian manifolds (for which k D 1 and h D 0) and the trivial
sphere bundle Sn.4/ � EnC1 (for which k D � D 0, a result of Blair [1]). For
.k; �)-contact manifolds, we know [3] that
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Ric.X; �/ D 2nkg.X; �/; (9)

h2 D .1 � k/.I � �˝ �/; jhj2 D 2n.1 � k/: (10)

This shows that k � 1, and equality holds when k D 1; h D 0, i.e. M is Sasakian.
For the non-Sasakian case, i.e. k < 1, the (k; �)-nullity condition determines
the curvature of M completely. Using this fact Boeckx [4] proved that a non-
Sasakian (k; �)-contact manifold is locally homogeneous and hence analytic. For
non-Sasakian (k; �)-contact manifolds, the following formulas hold [3]:

QX D Œ2.n � 1/ � n�X C Œ2.n � 1/C �hX
CŒ2.1 � n/C n.2k C �/�.X/�; (11)

.rXh/Y D ..1 � k/g.X; 'Y / � g.X; 'hY //�
� �.Y /..1 � k/'X C 'hX/ � ��.X/'hY; (12)

.rX'/Y D g.X C hX; Y /� � �.Y /.X C hX/: (13)

where X; Y denote arbitrary vector fields on M . Moreover, the scalar curvature is
constant and given by

r D 2nŒ2.n � 1/C k � n�: (14)

3 Proof of Theorem 1

By hypothesis, we have k < 1. Using (1) in the commutation formula (see Yano
[18], p.23)

.£VrXg � rX£V g � rŒV;Xg/.Y;Z/ D �g..£Vr/.X; Y /;Z/
� g..£Vr/.X;Z/; Y /;

and by a straightforward combinatorial computation we have

g..£Vr/.X; Y /;Z/ D .rZRic/.X; Y / � .rXRic/.Y;Z/ � .rY Ric/.X;Z/:

The use of equations (11), (12) and (5) in the above equation provides

.£Vr/.X; Y / D .4nk C 4� � �2/g.'hX; Y /�
C �Œ2.n � 1/C �f�.X/'hY C �.Y /'hXg
C 2Œ�C 2k � �k C n�f�.X/'Y C �.Y /'Xg:
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Using this equation in the formula (see Eq. (5.16) on p. 23 of Yano [18]):

.£V R/.X; Y;Z/ D .rX.£Vr//.Y;Z/ � .rY .£Vr//.X;Z/

and subsequently, substituting � for Z, we get

.£V R/.X; Y /� D �Œ2.n � 1/C �Œ.rY h'/X � .rXh'/Y 
C4Œ�C 2k � �k C n�Œ�.X/.Y C hY / � �.Y /.X C hX/
C�Œ2.n � 1/C �Œ�.Y /.hX C h2X/ � �.X/.hY C h2Y /: (15)

Now, using (12) and (13) we find

.rY h'/X � .rXh'/Y D .k � 1/f�.X/Y � �.Y /Xg
C .� � 1/f�.X/hY � �.Y /hXg:

Using this equation and (10) in (15) yields

.£V R/.X; Y /� D �Œ2.n � 1/C �Œ2.k � 1/f�.X/Y � �.Y /Xg
C.� � 2/f�.X/hY � �.Y /hXg

C4Œ�C 2k � �k C n�Œ�.X/.Y C hY / � �.Y /.X C hX/: (16)

Substituting � for Y in the foregoing equation we have

.£V R/.X; �/� D �Œ2.n � 1/C �Œ2.k � 1/f�.X/� �Xg
�.� � 2/hXC 4Œ�C 2k � �k C n�Œ�.X/� � .X C hX/: (17)

Contracting it at X gives

.£V Ric/.�; �/ D �4n�.k � 1/Œ2.n � 1/C � � 8nŒ�C 2k � �k C n�: (18)

On the other hand, equations (1) (6) and (10) imply

�.£V �/ D g.£V �; �/ D �C 2nk: (19)

Lie-differentiating the property Ric.�; �/ D 2nk [which follows from (9) by
substituting X D �] along V , and using equations (9) and (19) we get

.£V Ric/.�; �/ D �2Ric.£V �; �/ D �4nk.�C 2nk/:

Using this in (18) implies that

�.k � 1/Œ2.n � 1/C �C 2Œ�C 2k � �k C n� D k.�C 2nk/: (20)
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Next, substituting � for Y in (7) we have

R.X; �/� D k.X � �.X/�/C �hX:

Its Lie derivative along V gives

.£V R/.X; �/� CR.X; £V �/� CR.X; �/£V � D �kf.£V �/.X/g�
�k�.X/£V � C �.£V h/X: (21)

Now, taking the Lie derivative of the relation �.X/ D g.�;X/ along V , using
equations (1) and (9) gives

.£V �/.X/ D g.£V �; X/ � 2.2nk C �/�.X/: (22)

Using this equation, (7) and (8) in (21) and then comparing with (17) we obtain

A.hX/ � ��.X/h£V � � �g.h£V �; X/� D �.£V h/X (23)

where we set

A D 2�.2nk C �/ � �.2n � 2C �/.� � 2/ � 4.�C 2k � �k C n�/:
Now, on one hand we substitute hX for X in (23) getting one equation, and on
the other hand we apply h on (23) getting another equation. Adding the resulting
equations we find

2Ah2X � �Œ�.X/h£V � C g.h£V �; X/� D �Œ.£V h/hX C h.£V h/X: (24)

Also, the Lie derivative of the first equation of (10) along V gives

.£V h/hX C h.£V h/X D .k � 1/Œ.£V �/.X/� C �.X/£V �:

Using this in (24), contracting the resulting equation at X , and using the second
equation of (10), we obtain A D 0, i.e.

�.2n � 2C �/.� � 2/C 4.�C 2k � �k C n�/ D 2�.2nk C �/:

The use of (20) changes the above equation to the following form

�.�C 2n � 2/.� � 2k/ D 2.2nk C �/.� � k/: (25)

We now recall the following equation of evolution for scalar curvature of a Ricci
soliton [15]

£V r D �r C 2�r C 2 jQj2
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where � denotes div.grad/. As per equation (14), r is constant, and hence the
above equation reduces to

�r C jRicj2 D 0:

Computing jRicj2 from (11), using it and (14) in the above equation gives

.n2 C 1 � k/�2 C Œ4.1 � n/.nC k � 1/ � n��
D 4.n � 1/2.k � 2/ � 2nk2 C �.2 � 2n � k/: (26)

Let us go back to equation (16), contract it at X and use (20) to get

.£V Ric/.Y; �/ D �4nk.2nk C �/:

Taking the Lie derivative of equation (9) and using the above equation we find
Ric.X; £V �/ D 2nk£V � , i.e. Q£V � D 2nk£V � . The use of this in (11) shows

.�C 2n � 2/h£V � D .n� � 2nC 2C 2nk/Œ£V � � .2nk C �/�: (27)

First we consider the case (I) when V is a contact vector field, i.e. £V � D �� for a
smooth function � on M . In view of equation (19), this is equivalent to

£V � D .2nk C �/�: (28)

The Lie derivative of the relation �.X/ D g.�;X/ along V and the use of
equations (1) and (9) provides

£V � D �.2nk C �/�: (29)

Using this in the contact metric property (2) and equation (1), and noting the
commutativity of Lie derivation and exterior derivation we get

£V ' D .� � 2nk/' C 2Q': (30)

Lie differentiating the almost contact structure (4) along V and using (28) and (29)
we get £V '2 D 0. Using this and (30) gives

0 D .£V '/' C '.£V '/ D 2.� � 2nk/'2 C 2Q'2 C 2'Q':

Applying ' to this equation we obtain Q' C 'Q D .2nk � �/'. The use of (11)
in the preceding equation yields the relation:

2.2n � 2 � n�/ D 2nk � �: (31)
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The other remaining case (II) is that £V ��.2nkC�/� ¤ 0 on an open neighborhood
U of some point p 2M . This case has two sub-cases:

(a) � D 2� 2n. For this sub-case, equation (27) implies n�� 2nC 2C 2nk D 0.
Hence we get nk C 1 � n2 D 0 which gives k D n � 1

n
which is possible only

if n D 1, because k < 1. Thus, in this sub-case, k D � D 0 and � is free.
(b) � ¤ 2 � 2n. In this sub-case, we have

h.£V � � .2nk C �/�/ D f .£V � � .2nk C �/�/

where f D n��2nC2C2nk
�C2n�2 . This implies that

h2.£V � � .2nk C �/�/ D f 2.£V � � .2nk C �/�/:

Using the first equation of (10) in the above equation and noting that £V � �
.2nk C �/� is orthogonal to � , we conclude that f 2 D 1 � k. Hence this
subcase ends up with

.n� � 2nC 2C 2nk/2 D .1 � k/.�C 2n � 2/2: (32)

For cases (I) and (II), we ran equations (31) and (32) respectively, along
with equations (20), (25) and (26) on the software MATLAB and found the
following solutions: (i) k D � D 0 and (ii) k D 0; � D 4. Locally,
solution (i) represents the flat Gaussian gradient soliton in dimension 3, and
the shrinking gradient rigid soliton Sn.4/ � EnC1 with � D 4.1 � n/ in higher
dimensions. Solution (ii) represents an expanding non-gradient Ricci soliton
with � D 4.n C 1/ and occurs on a Lie group with a left invariant metric,
especially for dimension 3, on Sol3 also regarded as the group E.1; 1/ of
rigid motions of the Minkowski 2-space, as explained in the next section. This
completes the proof.

4 An Example of the Last Case of Theorem 1

Following Boeckx [4], we begin with a (2nC1)-dimensional Lie algebra with basis
(�; X1; : : : ; Xn; Y1; : : : ; Yn) and Lie bracket defined by

Œ�; Xi  D 0; Œ�; Yi  D 2Xi ; ŒXi ; Xj  D 0; ŒY2; Yi  D 2Yi .i ¤ 2/;
ŒYi ; Yj  D 0.i; j ¤ 2/; ŒX1; Y1 D 2.� �X2/; ŒX1; Yi  D 0.i � 2/;
ŒX2; Y1 D 2X1; ŒX2; Y2 D 2�;
ŒX2; Yi  D 2Xi ; ŒXi ; Y1 D ŒXi ; Y2 D 0.i � 3/;
ŒXi ; Yj  D 2ıij .� �X2/.i; j � 3/:
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Let us define a left-invariant contact metric structure with metric g on the associated
Lie group G as follows: (�; X1; : : : ; Xn; Y1; : : : Yn) is g-orthogonal, � is the charac-
teristic vector field, the contact 1-form � is the metric dual of � and the (1,1)-tensor
field ' is determined by '.�/ D 0; '.Xi / D Yi ; '.Yi / D �Xi . Upon a lengthy
computation, it turns out that (G; �; �; '; g) is a (k; �)-contact metric manifold with
k D 0; � D 4.

For dimension 3 (n D 1), we provide an explicit example of a Ricci soliton
satisfying the last case of Theorem 1. Setting X D e; Y D 'e we obtain the Lie
algebra: Œ�; e D 0; Œ�; 'e D 2e; Œe; 'e D 2� which corresponds to the unimodular
Lie group E.1; 1/ of rigid motions of the Minkowski 2-space, and which is also
regarded as the three-dimensional solvable Lie group Sol3 D R Ì R2 such that
the action of u 2 R sends .v;w/ 2 R2 to (euv; e�uw). As sol3 is diffeomorphic to
R3, following the construction procedure given on p. 37 of [6], we define the frame
field F1 D 2@1; F2 D 2.e�x1@2 C ex1@3/; F3 D 2.e�x1@2 � ex1@3/, where @i D @

@xi

and xi are standard coordinates on R3. A direct calculation shows that ŒF1; F2 D
�2F3; ŒF2; F3 D 0; ŒF3; F1 D 2F2 which are identical to the Lie algebra equations
for ('e; e; �). So, we can take 'e D F1; e D 1p

2
F2; � D 1p

2
F3. The dual frame

of ('e; e; �) is (�1 D 1
2
dx1; �

2 D 1

2
p
2
.ex1dx2 C e�x1dx3/; �3 D 1

2
p
2
.ex1dx2 �

e�x1dx3/. Using this, we define the left invariant metric g D �1 ˝ �1 C �2 ˝ �2 C
�3˝�3. Its Ricci tensor turns out to beRic D �8�1˝�1. For t 2 R, we consider the
vector field V D 4tŒ�F1�e�x1x3F2Ce�x1x3F3C4.1�t /ŒF1�ex1x2F2�ex1x2F3,
and compute the Lie derivative of g along V . This provides £V g D �16.�2˝ �2C
�3˝ �3/. Hence we obtain the Ricci soliton equation £V gC 2RicC 16g D 0 with
� D 8. Thus, it is expanding and is non-gradient. Also, as indicated before, g is a
(k; �)-contact metric with k D 0; � D 4.

Remarks. 1. The above example presents the known non-gradient expanding
Ricci soliton on Sol3 (given on p. 37 of [6]) as a (k; �)-contact metric with
k D 0; � D 4.

2. If we assume the Ricci soliton complete, then as a local isometry between
complete manifolds must be a covering map, the first and second cases in the
conclusion of Theorem 1 would have the Ricci soliton isometric to the quotients
of the three-dimensional Gaussian soliton and Sn.4/ �EnC1, respectively.
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Real Hypersurfaces in Kähler Manifolds

Yong Seung Cho

Abstract We consider real hypersurfaces of compact Kähler manifolds and show
that real hypersurfaces of Kähler manifolds induced by Morse functions have
contact structures. As examples we consider preimages of regular values of Morse
functions on complex projective spaces, and cosymplectic real hypersurfaces of
the products of Kähler manifolds and torus.

1 Introduction

Let .M; h; J / be a Hermitian complex manifold with a complex structure J and a
Hermitian metric h. The Hermitian metric h D g C i˝ on the tangent bundle TM
of the M is a Kähler metric if the fundamental 2-form ˝ is closed. In this case, ˝
is called the Kähler form of h, and the complex manifold .M; h;˝; J / is called a
Kähler manifold. Suppose that r is the Levi-Civita connection of the metric g D
Re.h/ of the real part of h on a Hermitian complex manifold .M; h;˝; J /. Then
d˝ D 0 if and only if r˝ D 0 if and only if rJ D 0 if and only if .M; h;˝; J /
is Kähler [14]. By Hodge, all the even dimensional Betti numbers of a compact
Kähler manifold .M;˝/ are nonzero and the odd dimensional Betti numbers are
even. By Calabi and Eckmann [3], the product S2nC1 � S2mC1, n;m > 0, is a
complex manifold but not a Kähler manifold.

Let N be a real .2n � 1/-dimensional smooth manifold. We will follow the
notations and definitions of references [1,2,7,10,15]. Consider an almost cocomplex
structure on N defined by a smooth .1; 1/-type tensor field ', a smooth 1-form �,
and a smooth vector field � on N such that for each point x 2 N ,

'x
2 D �I C �x ˝ �x; �x.�x/ D 1;

where I W TxN ! TxN is the identity map.
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A Riemannian manifold N with a metric g and an almost cocomplex structure
.'; �; �/ such that

g.'X; 'Y / D g.X; Y / � �.X/�.Y /; X; Y 2 TN;

is called an almost contact metric manifold.
The fundamental 2-form ˚ of an almost contact metric manifold .N; g; '; �; �/

is defined by

˚.X; Y / D g.'X; Y /; X; Y 2 � .TN/:

The Nijenhuis tensor of the tensor ' is the .1; 2/-type tensor field N' defined by

N'.X; Y / D Œ'X; 'Y  � ŒX; Y  � 'Œ'X; Y  � 'ŒX; 'Y ; X; Y 2 � .TN/;

where ŒX; Y  is the Lie bracket of X and Y .
An almost cocomplex structure ' on N is said to be integrable if the tensor field

N' D 0, and is said to be normal if N' C 2d�˝ � D 0.

Definition 1. An almost contact metric manifold .N; g;˚; '; �; �/ is said to be

1. cosymplectic if d˚ D 0 D d�,
2. contact if ˚ D d�,
3. coKähler if N is integrable and cosymplectic,
4. Sasakian if N is normal and contact.

Let .M; h;˝; J / be a compact Kähler manifold of complex dimension n. Let
f W M ! R be a Morse function. Its Hamiltonian vector field X W M ! TM

is given by ˝.X; �/ D df .�/ and the gradient vector field rf of f is given by
g.rf; Y / D df .Y /; Y 2 TM , where g D Re.h/ is the real part of h.

Lemma 1. Let f W M ! R be a Morse function on a Kähler manifold
.M; h;˝; J /.

1. If r 2 R is a regular value of f , then the preimage M1 D f �1.r/ is an almost
contact manifold.

2. The Hamiltonian vector fieldX of f is tangent to the real hypersurfaceM1 ofM .
3. The gradient vector field rf of f is orthogonal to the Hamiltonian vector

field X .
4. JX D rf .

We investigate the contact structure on the real hypersurface M1 of M , and the
Gromov-Witten type invariants and the quantum type cohomologies of M1.

Let .N; h1;˝1; J1/ be a compact Kähler manifold of complex dimensional
.n � 1/, and .S1�S1; h2;˝2; J2/ be the torus of complex dimension 1. The product
M D N � S1 � S1 has a natural Kähler structure h D h1 ˚ h2; ˝ D ˝1 ˚ ˝2

and J D J1 ˚ J2 with complex dimension n. Then the real hypersurface M1 D
N �S1 has a natural cosymplectic structure .g; ˚; '; �; �/ induced from the Kähler
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structure of the product .M; h;˝; J /. In some other paper we will investigate the
Gromov-Witten invariants and the quantum cohomologies of the Kähler manifold
M D N � S1 � S1, and the ones on the cosymplectic manifold M1 D N � S1, and
the relations between them.

2 Real Hypersurfaces of Kähler Manifolds

Let .M; h;˝; J / be a Kähler manifold of complex dimension n. Let f W M ! R

be a Morse function. Denote byX WM ! TM the Hamiltonian vector field defined
by ˝.X; �/ D df .�/.

The solution x.t/ of the Hamiltonian differential equation: Px.t/ D X.x.t//

defines a Kählerian diffeomorphism

� WM !M with ��˝ D ˝:

We split the Kähler metric h into

h D g C i˝; and ˝.�; �/ D g.J �; �/:

Locally the gradient vector field rf of f with respect to the metric g is given by

rf D
X
�

� @f
@x�

@

@x�
C @f

@y�

@

@y�

�
;

where the local coordinates z D .z1; � � � ; zn/ D .x1; y1; � � � ; xn; yn/.
The Hamiltonian vector field X is given by

X D �Jrf D
X
�

�
� @f

@x�

@

@y�
C @f

@y�

@

@x�

�
:

Suppose that a value t 2 Im.f / of the Morse function f W M ! R is a regular
value. Then the preimage

f �1.t/ WDM1 	M

is a .2n � 1/-dimensional real hypersurface of M . For each point x 2 M1 	 M ,
the tangent space TxM is decomposed into an .n � 1/-dimensional complex space
Dx and a one-dimensional complex line hX.x/; J.x/X.x/i, i.e., TxM D Dx ˚
hX.x/; J.x/X.x/i.

Since dfx W TxM ! R is surjective, TxM1 D Ker.dfx/, and dfx.X.x// D
˝.X.x/;X.x// D 0, and the vector X.x/ is a tangent vector ofM1 at x. The vector
J.x/X.x/ D rf .x/ is the gradient vector.
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Lemma 2. Under the above notations

1. The tangent bundle TM1 D D ˚ hXi ! M1 is decomposed by an .n � 1/-
dimensional complex vector bundle on M1, D ! M1, and a trivial real line
bundle hXi ! M1, where hXi is the real line bundle generated by the vector
field X on M1.

2. The total Chern class i�.c:.TM// D c:.i�D/ 2 H�.M1/, where i W M1 ! M

is the inclusion.

Proof. By definition D.x/ D fV 2 TxM j g.V;X.x// D 0 D g.V; J.x/X.x//g.
For each V 2 D.x/, g.J.x/V;X.x// D g.�V; J.x/X.x// D �g.V; J.x/X.x//

D 0 and g.J.x/V; J.x/X.x// D g.V;X.x// D 0. Thus J.x/V 2 D.x/, and

J.x/ W D.x/ �! D.x/ and J.x/2 D �I:

and

dfx.V / D ˚.X.x/; V / D g.X.x/; J.x/V /
D g.J.x/X.x/;�V /
D �g.J.x/X.x/; V / D 0;

for each element V 2 D.x/.
Thus D.x/ 	 TxM1, and TxM1 D D.x/ ˚ hX.x/i. Since t is a regular value,

for each x 2 M1 D f �1.t/ dfx ¤ 0, rf .x/ ¤ 0, and X.x/ D �J.x/rf .x/ ¤ 0,
the vector field X on M1 generates a real line bundle hXi !M1.

Therefore we have the required decomposition of the tangent bundle TM1 D
D ˚ hXi.

(2) i�.c:.TM// D c:.i�TM/ D c:.i�D/ � c:.i�hX; JXi/ D c:.i�D/, since the
complex line bundle generated by X and JX hX; JXi !M1 is trivial.

Note that in general the distribution bundle D !M1 is not involutive.
For the .2n � 1/-dimensional hypersurface M1 	 M , we consider the tangent

bundle TM1 D D ˚ hXi !M1. Define a unit vector field � on M1 by � D X
jX j and

its dual 1-form � on M1. Locally the Hamiltonian vector field is of the form

X D
X
�

�
� @f

@x�

@

@y�
C @f

@y�

@

@x�

�
;

the dual 1-form of � is of the form

� D 1

jX j
X
�

�
� @f

@x�
dy� C @f

@y�
dx�

�
:

Then �.�/ D �� XjX j
� D jX j2

jX j2 D 1.
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We define a .1; 1/-type tensor field on ' by

' W TM1 �! TM1; ' D
�
J on D

0 on hXi :

Then for each V D V1 C �X 2 D ˚ hXi, V1 2 D ,

'2.V1 C �X/ D J 2.V1/ D �V1
.�I C �˝ �/.V1 C �X/ D �V1 � �X C �.�X/�

D �V1 � �X C �jX j�
D �V1 � �X C �X
D �V1:

Thus '2 D �I C �˝ � on M1.
For every element V1 C �1�; V2 C �2� 2 TM1 D D ˚ hXi,

g.V1 C �1�; V2 C �2�/ D g.V1; V2/C g.V1; �2�/C g.�1�; V2/C g.�1�; �2�/
D g.V1; V2/C �1�2
D g.'.V1C�1�/; '.V2C�2�//C�.V1 C �1�/�.V2 C �2�/:

Thus g.�; �/ D g.' �; ' �/C �˝ �.

Lemma 3. Under the above definitions on � , �, and ' on M1, the .M1; g; '; �; �/

is an almost contact metric manifold of dimension .2n � 1/.
Suppose that M is a compact Kähler manifold. Let f W M ! R be a

Morse function, Ma WD f �1..�1; a/ and t 2 R be a regular value of f ,
M1 D f �1.t/ ¤ ;. Suppose that the set f �1Œt � "; t C " is compact and contains
no critical points of f . Then Mt�" is diffeomorphic to MtC". Moreover Mt�" is a
deformation retract of MtC", and there is a diffeomorphism
F W N �M1 � Œt � "; t C "! f �1Œt � "; t C " 	M .

Let N 0 WD M1�Œt�";tC"
M1�ft�";tC"g , g W N 0 ! Œt � "; t C " be the map induced by f and

� W N ! N 0 be the quotient map. Then g ı � D f ı F .

Lemma 4. 1. The map g W N 0 ! R is a Morse function with only 2 critical points.
2. The N 0 is homeomorphic to the suspension of M1.

3. Hk.N
0/ D

�
Z if k D 0;
Hk�1.M1/ if k > 0: �

Suppose that our Morse function f WM ! R has a restriction f W f �1Œt�"; tC
" ' M1 � Œt � "; t C "! Œt � "; t C " 	 R of the form f .x1; y1; � � � ; xn; yn/ D
x1
2 C y12 C � � � C xn2 C yn2. Then the gradient vector field rf with respect to the

metric g DPn
iD1.dxi ˝ dxi C dyi ˝ dyi / is
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rf D
X
i

�
2xi

@

@xi
C 2yi @

@yi

�
;

and its Hamiltonian vector field X is

X D �Jrf D
X
i

�
� 2xi @

@yi
C 2yi @

@xi

�
:

On a neighbourhood of M1, the vector field � is chosen to be

� D � XjX j D
2

jX j
X
i

�
xi

@

@yi
� yi @

@xi

�
;

and its dual 1-form is

� D 2

jX j
X
i

.xidyi � yidxi /:

Indeed,

�.�/ D 2

jX j
X
i

.xidyi � yidxi / � 2jX j
X
i

�
xi

@

@yi
� yi @

@xi

�

D 4

jX j2
X
i

.x2i C y2i / D
jX j2
jX j2 D 1:

While on M1, f .M1/ D f .f �1.t// D t DPn
iD1.x2i C y2i / and

jX j D

4

nX
iD1
.x2i C y2i /

� 1
2

D 2 �
� nX
iD1
.x2i C y2i /

� 1
2

D 2pt :

The exterior derivative of � is

d� D d
�
2

jX j
X
iD1
.xidyi � yidxi / D 2

2
p
t

nX
iD1

dxi ^ dyi � dyi ^ dxi /
�

D 2p
t

n�1X
iD1
.dxi ^ dyi /

D 2p
t
˚;
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since dyn D 0 by choosing yn coordinate on the trajectory of the gradient vec-
tor field rf , where ˚ is the fundamental 2-form on M1.

Theorem 1. Let .M; h; J;˝/ be a K Rahler manifold of complex dimension n. If
f WM ! R is a Morse function, and t 2 R is a regular value of f , then .f �1.t/ WD
M1; '; g; �; �; ˚/ is a contact real hypersurface of dimension .2n� 1/ ofM , where
'; g; �; � , and ˚ are defined as above. �

3 Contact Manifolds as Real Hypersurfaces in Complex
Projective Spaces

Let .CPn; h; J; !/ be the complex projective space of dimension n, where CP
n D

S2nC1=S1. Let c0 < c1 < � � � < cn be distinct real numbers [13].
Define f W CPn ! R by

f .Œz0; � � � ; zn/ D c0jz0j2 C � � � C cnjznj:

Let Ui WD fŒz0; � � � ; zn j zi ¤ 0g; i D 0; � � � ; n. Then the Ui are open in CP
n and

Ui ' C
n; CPn D [niD0Ui ' Ui [ CP

n�1.
On U0 D fŒz0; � � � ; zn 2 CP

n j z0 ¤ 0g, since jz0j
z0
2 S1, Œz0; � � � ; zn D

Œjz0j; jz0j
z0

z1; � � � ; jz0j
z0

zn.

Let jz0j
z0

zj D xj C iyj ; j D 1; � � � ; n. Then .x1; y1; � � � ; xn; yn/ is a coordinate

system on U0, and f .x1; y1; � � � ; xn; yn/ D c0 CPn
jD1.cj � c0/.x2j C y2j /.

Since df D 2Pn
jD1.cj � c0/.xj dxj C yj dyj /,

df D 0 on U0 if and only if x1 D y1 D � � � D xn D yn D 0:

Thus the point P0 D Œ1; 0; � � � ; 0 2 U0 is the critical point of f on U0.
Similarly, the points P0; � � � ; Pn are critical points of f on CP

n, where Pi D
Œ0; � � � ; 0; 1; 0; � � � ; 0, and the indices indf .Pi / D 2i; i D 0; � � � ; n.
The gradient vector field rf is given by

rf D 2
nX

jD1
.cj � c0/

�
xj

@

@xj
C yj @

@yj

�
:

The Hamiltonian vector field Xf is given by

Xf D �Jrf D 2
nX

jD1
.cj � c0/

�
�xj @

@yj
C yj @

@xj

�
:
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In fact, our map f W CPn ! Œc0; cn has the minimum cn, and c0; � � � ; cn are the
critical values of f .

For a regular value t 2 Œc0; cn � fc0; � � � ; cng, the preimage f �1.t/ WD Mt is a
.2n � 1/-dimensional real hypersurface of CPn.

Around the critical point Pi , the image of f is

f .Œz0; � � � ; zn/ D c0jz0j2 C � � � C cnjznj2

DciC.c0 � ci /jz0j2C � � � C .ci�1 � ci /jzi�1j2 C .ciC1 � ci /jziC1j2 C � � �C.cn � ci /jznj2:

The inverse image of the critical value ci is

f �1.ci / D fŒz0; � � � ; zn 2 CP
nj .c0 � ci /jz0j2 C � � � C .ci�1 � ci /jzi�1j2

C.ciC1 � ci /jziC1j2 C � � � C .cn � ci /jznj2 D 0g:

Thus Œz0; � � � ; zn 2 f �1.ci / if and only if
.ci � c0/jz0j2C � � � C .ci � ci�1/jzi�1j2 D .ciC1 � ci /jziC1j2C � � � C .cn � ci /jznj2.

The dual 1-form of the Hamiltonian vector field is locally at near Pi ,

� D
nX

jD1

1

2.cj � ci / .�xj dyj C yj dxj / and �.Xf / D 1:

And the derivative of � is

d� D
nX

jD1

1

2.cj � ci / .�dxj ^ dyj C dyj ^ dxj /

D �
nX

jD1

1

cj � ci dxj ^ dyj :

By scaling and changing coordinates, we have the standard 2-form

fd� D
nX

jD1
d Qxj ^ d Qyj :

Lemma 5. Let f W CPn ! R be f .Œz0; � � � ; zn/ D c0jz0j2 C � � � C cnjznj2, c0 <
c1 < � � � < cn, jz0j2 C � � � C jznj2 D 1.

1. If f .Pi / D ci , then fP0; � � � ; Png are the critical points and fc0; � � � ; cng are the
critical values of f .
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2. f �1.t/ D Mt , t 2 Œc0; cn � fc0; � � � ; cng, is a .2n � 1/-dimensional contact
hypersurface which is diffeomorphic to the standard .2n � 1/-sphere S2n�1.

3. f �1.c0/ and f �1.cn/ are points and f �1.ci / is diffeomorphic to the wedge of
two S2n�1, i.e., S2n�1 _ S2n�1.

Let Mt D f �1.t/ be the .2n� 1/-dimensional real hypersurface of the complex
n-dimensional projective space .CPn; h; J; !/, where t is a regular value of f in
Œc0; cn. Since df ¤ 0 on Mt , the gradient vector field rf of f does not vanish
on Mt and the Hamiltonian vector field Xt D �Jrf does not vanish on Mt . The
restriction of the tangent bundle TCPnjMt D TMt ˚ hrf i D Dt ˚ hXt ;rf i, and
TMt D Dt ˚ hXt i !Mt .

Define a .1; 1/-type tensor ' W TMt ! TMt by ' D J on D and '.Xt / D 0.
Then the metric gt on Mt is gt .X; Y / D g.'X; 'Y / C �.X/�.Y /, where g is the
metric on CP

n given by g.X; Y / D !.X; J Y /. The fundamental 2-form on Mt is
given by ˚.X; Y / D gt .'X; Y /. Then d˚ D 0.

Theorem 2. If t 2 Œc0; cn is a regular value of f W CPn ! R,

1. .Mt ; gt ; '; �;Xt ; ˚/ is a contact .2n � 1/-dimensional hypersurface of CPn.
2. D !Mt is a complex .n � 1/-dimensional vector bundle.

Lemma 6. Under above definitions and notations,

1. �.Xt / D 1, '.Xt / D 0,
2. '2 D �I C �˝ � ,
3. d˚ D 0,
4. gt .'X; 'Y / D gt .X; Y / on D ,
5. on D , ˚.X; Y / D ˚.'X; 'Y /,
6. ˚.'X;X/ D gt .X;X/ on D .

Proof. (3) Since on D , ˚ D ! and d! D 0, d˚ D 0.

Theorem 3. Let Mt D f �1.t/.

1. If t D c0 or cn, then Mt is a point and Hk.Mt IR/ D
�
R k D 0;
0 k ¤ 0 .

2. If t 2 fc1; c2; � � � ; cn�1g, then Mt ' S2n�1 _ S2n�1, and

Hk.Mt IR/ D
8<
:
R k D 0;
R
2 k D 2n � 1;

0 k ¤ 0; 2n � 1
.

3. If t 2 Œc0; cn � fc0; � � � ; cng, then Mt ' S2n�1, and

Hk.Mt/ D
�
R k D 0 or k D 2n � 1
0 otherwise

.
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4 Cosymplectic Manifolds as Real Hypersurfaces
in Kähler Manifolds

Let .M1; !1; J1/ be a 2.n � 1/-dimensional compact Kähler manifold, and .S1 �
S1 D M2;!2; J2/ be the standard torus. Let .M D M1 �M2;! D !1 C !2; J D
J1CJ2/ be the product of theM1 andM2. Then .M;!; J / is a Kähler manifold and
.N D M1 � S1; ' WD ��

1 !1; � D ��
1 d�; � D ��

2 .
d
dt
// is a .2n � 1/-dimensional

compact cosymplectic manifold in the 2n-dimensional compact Kähler manifold
.M;!; J /.

Theorem 4. Under the above construction,

1. The .N D M1 � S1; '; �; �/ is a cosymplectic real hypersurface of the Kähler
manifold .M;!; J /.

2. The distribution bundle D D ��
1 TM1 ! N is the pullback of the tangent bundle

TM1 !M1 by the projection �1 W N !M1.

As in Theorem 1 if f1 W M1 ! R is a Morse function on a Kähler manifold M1

of real dimension 2n� 2, and t 2 R is a regular value of f1, then the inverse image
f �1.t/ D N is a contact real hypersurface of M1.

Corollary 1. In this case the product N �M1 is a contact real hypersurface of the
Kähler manifold M D M1 �M2 of real dimension 2n � 1, where M2 is an elliptic
curve.

Note that many authors in [4, 5, 9, 11, 12, 16] worked Gromov-Witten invari-
ants and quantum cohomologies on symplectic manifolds. In [6–8] we studied
Gromov-Witten type invariants and quantum cohomologies on almost contact
metric manifolds.
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Lp-Spectral Gap and Gromov-Hausdorff
Convergence

Shouhei Honda

Abstract This paper is an announcement of recent results given by the author
which gives the continuity of Lp-spectral gaps with respect to the Gromov-
Hausdorff topology and applications.

1 Introduction

We say that a pair .X; #/ is a compact metric measure space ifX is a compact metric
space and # is a Borel probability measure on X . A compact metric measure space
.X; #/ is said to be an n-dimensional compact smooth metric measure space if X is
an n-dimensional closed Riemannian manifold and # is the canonical Riemannian
probability measure on X .

Let n 2 N; K 2 R; d > 0 and let M.n;K; d/ be the set of n-dimensional
compact smooth metric measure spaces .X; #/with RicX � K.n�1/ and diamX �
d , where RicX is the Ricci curvature of X , and diamX is the diameter of X . let
M.n;K; d/ be the Gromov-Hausdorff compactification of M.n;K; d/, i.e., every
.X; #/ 2 M.n;K; d/ is the measured Gromov-Hausdorff limit of a sequence of
.Xi ; #i / 2M.n;K; d/.

In [8, 9], Gromov and Fukaya proved that M.n;K; d/ is compact with respect
to the measured Gromov-Hausdorff topology. Fukaya also conjectured in [8] the
following:

Conjecture 1 (Fukaya [8]). There exists the ‘canonical’ Laplacian on every
.X; #/ 2 M.n;K; d/ such that the k-th eigenvalues is continuous on M.n;K; d/
for every k.

In [7], Cheeger and Colding proved the conjecture via the structure theory of
Gromov-Hausdorff limit spaces given by themselves [4–7], i.e.,
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Theorem 1 (Cheeger and Colding[7]). Conjecture 1 is true.

In this paper, we introduce a generalization of Theorem 1 for the first eigenvalues to
the nonlinear case given in [13].

We discuss the first eigenvalues only. It is known that the first eigenvalue �1;2.X/
of the Laplacian on .X; #/ 2 M.n;K; d/ has the following expression as the
L2-spectral gap:

�1;2.X/ D inf
f

jjjrf jjj2
L2.X/

infc2R jjf � cjj2L2.X/
;

where the infimum runs over nonconstant Lipschitz functions f on X and

jrf j.x/ WD lim
r!0

 
sup

y2Br .x/
jf .x/ � f .y/j
dX.x; y/

!
:

The main target of this paper is the following Lp-spectral gap:

�1;p.X/ WD inf
f

jjjrf jjjpLp.X/
infc2R jjf � cjjpLp.X/

for 1 � p <1. If X is a single point, then we put �1;p.X/ WD 1. It is known that
if .X; #/ is an n-dimensional compact smooth metric measure space, then �1;p.X/
is equal to the first positive eigenvalue of the following p-Laplacian on X :

�div
�jrf jp�2rf � D �jf jp�2f

if p > 1, and �1;1.X/ is equal to Cheeger’s (isoperimetric) constant h.X/ of X
defined in [2], i.e.,

h.X/ D inf
˝

Hn�1.@˝/
Hn.˝/

;

where the infimum runs over open subset ˝ of X having the smooth boundary @˝
with Hn.˝/ � Hn.X/=2, and Hn is the n-dimensional Hausdorff measure.

Let F be the function from M.n;K; d/ � Œ1;1 to .0;1 defined by

F ..X; #/; p/ D 2.diamX/�1 if p D 1, and F ..X; #/; p/ D �
�1;p.X/

�1=p
if

1 < p <1.
The main result of [14] is the following:

Theorem 2 ([14]). We have the following:

1. F is upper semicontinuous on M.n;K; d/ � Œ1;1.
2. F is continuous on M.n;K; d/ � .1;1.
3. F is continuous on f.X; #/g � Œ1;1 for every .X; #/ 2M.n;K; d/.
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Theorem 2 for p D 2 corresponds to Theorem 1 for the first eigenvalues.
The organization of this paper is as follows. In Sect. 2, we will introduce key

steps of the proof of Theorem 2. In Sect. 3, we will discuss applications.

2 Key Steps

We introduce here two key steps in order to prove .2/ of Theorem 2. The first
key step is the following Rellich type compactness with respect to the Gromov-
Hausdorff topology given in [13] by the author. Note that Theorem 3 corresponds to
the classical Rellich compactness if pi � p and .Xi ; #i / � .X; #/.
Theorem 3 ([13]). Let .Xi ; #i / ! .X1; #1/ in M.n;K; d/ with diamX1 > 0,
and let pi ! p1 in .1;1/. Then for every sequence ffigi<1 of Sobolev functions
fi 2 H1;pi .Xi / with supi<1 jjfi jjH1;pi <1, there exist a subsequence ffi.j /gj and
a Sobolev function f1 2 H1;p1

.X1/ such that fi.j / fLpi.j /gj -converges strongly
to f1 on X1 and that rfi.j / fLpi.j /gj -converges weakly to rf1 on X1. In
particular, we have

lim inf
j!1 jjrfi.j /jjLpi.j / � jjrf1jjLp1 :

See [3, 11, 19] for the definitions and the fundamental properties of the Sobolev
spaceH1;p.X/. See also [13] for fLpi.j /gj -convergence. It is useful that we mention
that if pi � p, then the notion of fLpi.j /gj -convergence coincides with that of
Lp-convergence.

Since we can reprove Conjecture 1 easily via Theorem 3, we introduce it:

Proof of Theorem 1 via Theorem 3. Let .Xi ; #i / ! .X1; #1/ in M.n;K; d/ and
let k 2 N. We now only prove

lim
i!1�k;2.Xi / D �k;2.X1/

under the assumption diamX1 > 0, where �k;2 is the k-th eigenvalue of the
Laplacian.

First we assume k D 1. Let f1 2 H1;2.X1/ be a �1;2.X1/-eigenfunction with
jjf1jjL2 D 1, i.e.,

�1;2.X1/ D jjrf1jj2L2 and
Z
X1

f1d#1 D 0:

Then there exists a sequence ffigi<1 of Sobolev functions fi 2 H1;2.Xi /

such that fi ;rfi L2-converge strongly to f1;rf1 on X1, respectively (see [12,
Theorem 4:2]). Thus we have
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lim sup
i!1

�1;2.Xi / � lim sup
i!1

jjjrfi jjj2L2
infc2R jjfi � cjj2L2

D jjrf1jj2L2 D �1;2.X1/:

On the other hand, let ffi gi<1 be a sequence of �1;2.Xi /-eigenfunction fi 2
H1;2.Xi / with jjfi jjL2 � 1. Then Theorem 3 yields that there exist a sub-
sequence ffi.j /gj and a Sobolev function f1 2 H1;2.X1/ such that fi.j /
L2-converges strongly to f1 on X1 and that rfi.j / L2-converges weakly to
rf1 on X1. Without loss of generality, we can assume lim infj!1 �1;2.Xi.j // D
lim infi!1 �1;2.Xi /. Thus we have

lim inf
i!1 �1;2.Xi / D lim inf

j!1
jjjrfi.j /jjj2L2

infc2R jjfi.j / � cjj2L2
� jjjrf1jjj2L2

infc2R jjf1 � cjj2L2
� �1;2.X1/:

Therefore we have the assertion for k D 1. Similarly, we have the assertion for
k � 2 by using min-max principle.

An argument similar to that above gives a part of Theorem 2: F is continuous on
M.n;K; d/ � .1;1/.

The second key step is Grosjean’s argument in the proof of the following:

Theorem 4 (Grosjean [10]). We have

lim
p!1

�
�1;p.M/

�1=p D 2

diamM

for every closed Riemannian manifold M .

Grosjean proved Theorem 4 by using the classical Rellich compactness. We can
finish the proof of .2/ of Theorem 2 by Grosjean’s argument with Theorem 3. See
[14] for the proof of the remained part of Theorem 2.

3 Applications

We introduce here applications of Theorem 2 without the proofs. The first applica-
tion is the following isoperimetric inequality for �1;p:

Theorem 5 ([14]). Let M be an n-dimensional closed Riemannian manifold with

.diamM/2 RicM � K.n � 1/:

Then, we have

�
�1;p.M/

�1=p n;K� h.M/
n;K� .diamM/�1



Lp-Spectral Gap and Gromov-Hausdorff Convergence 375

for every 1 < p < 1, where for positive numbers a; b 2 R>0, a
n;K� b means that

there exists a positive number C WD C.n;K/ > 1 depending only on n and K such
that C�1b � a � Cb holds.

Note that Theorem 5 for p D 2 yields a Cheeger and Buser type inequality [1, 2]:

0 < C1.n;K/ � .�1;2.M//1=2

h.M/
� C2.n;K/ <1:

There are many important works on lower bounds of �1;p . See for instance [15–18,
20–22]. It is important that Theorem 5 gives a two-sided bound which is independent
of the exponent p.

The following is a direct consequence of Theorem 5.

Corollary 1 ([14]). Let M be as in Theorem 5. Then we have

0 < C1.n;K/ �
�
�1;p.M/

�1=p
�
�1;q.M/

�1=q � C2.n;K/ <1

for any p; q 2 .1;1/.
Corollary 1 implies that if .�1;p.M//1=p is small (or big) for some p, then
.�1;q.M//1=q is also small (or big) for every q, quantitatively. Note that Corollary 1
holds on Gromov-Hausdorff limit spaces. See [14] for the detail.

The second application is a quantitative version of Grosjean’s result. It follows
from a standard compactness argument with Theorem 2.

Theorem 6 ([14]). Let n 2 N; K 2 R and let � > 0. Then there exists p WD
p.n;K; �/ > 1 such that

ˇ̌
ˇdiamM

�
�1;q.M/

�1=q � 2
ˇ̌
ˇ < �

holds for every p � q < 1 and every n-dimensional closed Riemannian manifold
M with .diamM/2RicM � K.n � 1/.
The third application is the following. Note that this is a generalization of Lévy-
Gromov’s isoperimetric inequality (p D 1), Lichnerowictz-Obata’s theorem
(p D 2), and Meyers’s diameter theorem (p D 1) to the case of limit spaces
and general p. We use the following notation for simplicity:

.�1;1.X//1=1 WD 2

diamX
:

Theorem 7 ([14]). Let .X; #/ be the Gromov-Hausdorff limit space of a sequence
of .Xi ; #i / 2M.n; 1; �/. Then we have
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�
�1;p.X/

�1=p � ��1;p.Sn/�1=p

for every 1 � p � 1. Moreover, the following three conditions are equivalent:

1.
�
�1;p.X/

�1=p D ��1;p.Sn/�1=p holds for some 1 < p � 1.

2.
�
�1;p.X/

�1=p D ��1;p.Sn/�1=p holds for every 1 < p � 1.
3. diamX D � .

Note that Matei proved Theorem 7 for .X; #/ 2 M.n; 1; �/ in [16] and that
Cheeger-Colding proved that in Theorem 7, if diamX D � , then X is isometric
to the spherical suspension S0 
 Y of a compact metric space Y with diamY � � ,
where

S0 
 Y WD .Œ0; � � Y / = .f0; �g � Y /

and the distance dS0�Y is defined by

dS0�Y ..t1; y1/; .t2; y2// WD arccos .cos t1 cos t2 C sin t1 sin t2 cos dY .y1; y2// :

See [4].
A standard compactness argument with Theorem 7 yields the following

corollary:

Corollary 2. Let n 2 N; K 2 R; 1 < p � 1 and let � > 0. Then there exists
ı WD ı.n;K; p; �/ > 0 such that if an n-dimensional compact Riemannian manifold
M with RicM � n � 1 and

ˇ̌
ˇ��1;q.X/�1=q � ��1;q.Sn/�1=q

ˇ̌
ˇ < ı

for some q 2 Œp;1, then
ˇ̌
ˇ.�1;r .X//1=r � .�1;r .Sn//1=r

ˇ̌
ˇ < �

for every r 2 Œp;1. In particular,

dGH.M;S0 
X/ < �
for some compact metric space X with diamX � � , where dGH is the Gromov-
Hausdorff distance.

We now recall Cheeger’s inequality on a closed Riemannian manifold M :

h.M/2

4
� �1;2.M/:

See [2].
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Since we can prove that Cheeger’s inequality holds on limit spaces by using
Theorem 2, we end this section by introducing it:

Matei proved in [17] that

p
�
�1;p.M/

�1=p � q ��1;q.M/
�1=q

holds for every closed Riemannian manifold M and any 1 < p � q <1. Thus by
taking Gromov-Hausdorff limits, .2/ of Theorem 2 yields that

p
�
�1;p.X/

�1=p � 2 .�1;2.X//1=2

holds for every .X; #/ 2 M.n;K; d/ and every 1 < p < 2. By letting p ! 1, .3/
of Theorem 2 gives Cheeger’s inequality on limit spaces:

h.X/ � 2 .�1;2.X//1=2

for every .X; #/ 2M.n;K; d/.
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Riemannian Questions with a Fundamental
Differential System

Rui Albuquerque

Abstract We introduce the reader to a fundamental exterior differential system
of Riemannian geometry which arises naturally with every oriented Riemannian
nC 1-manifold M . Such system is related to the well-known metric almost contact
structure on the unit tangent sphere bundle SM , so we endeavor to include the
theory in the field of contact systems. Our EDS is already known in dimensions 2
and 3, where it was used by Griffiths in applications to mechanical problems and
Lagrangian systems. It is also known in any dimension but just for flat Euclidean
space. Having found the Lagrangian forms ˛i 2 ˝n, 0 � i � n, we are led to the
associated functionals Fi .N / D

R
N
˛i , on the set of hypersurfaces N 	M , and to

their Poincaré-Cartan forms. A particular functional relates to scalar curvature and
thus we are confronted with an interesting new equation.

1 Geometric Structures and the Fundamental
Differential System

1.1 The Manifold SM

Let M be any smooth oriented nC 1-dimensional Riemannian manifold. Our study
is centred on the geometry of the tangent bundle TM as an oriented Riemannian
2nC2-manifold, endowed with the well-known Sasaki metric. Let � W TM �!M

denote the canonical projection. The vector bundle V WD ker d� ' �?TM �!
TM agrees fibrewise with the tangent bundle to the fibres of TM . Moreover the
tangent bundle of TM splits as T TM D H ˚ V , where H is a sub-vector bundle
depending on r, the Levi-Civita connection. Clearly the horizontal sub-bundle H
is also isomorphic to ��TM through the map d� . We thus define an endomorphism
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B W T TM �! T TM (1)

transforming H in V and vanishing on the vertical sub-bundle V . This is used by
many authors perhaps not giving it so much importance. Partly because one simply
recurs to lifts of the same vector on M to either horizontal or vertical parts.

There also exists a connection independent vector field � over TM defined by
�u D u, or maybe more precisely �u D �?u; 8u 2 TM , turning explicit the
vertical lift. Henceforth, there exists a unique horizontal r-dependent vector field,
formally, Bad� 2 H , such that B.Bad�/ D � . That field is the geodesic spray of the
connection, cf. [17]. One can see easily that �?rw� D wv, one reason being that
H D ker.�?r��/.

The manifold TM also inherits a linear connection, denoted r�, which is just

��r ˚ �?r

preserving the canonical splitting T TM D H˚V ' ��TM˚�?TM . We observe
then that the connecting endomorphism B is parallel for such r�. The torsion of
r� is given by ��T r.v;w/˚R� .v;w/, 8v;w 2 T TM , where the vertical part is
R� .v;w/ D R�?r.v;w/� D �?Rr.v;w/� .

Now we come forward with the metric tensor of M . The Sasaki metric h ; i
on TM is given naturally by the pull-back of the metric on M both to H and V ,
cf. [18]. The parallel mirror morphism Bj W H ! V is then metric-preserving. Now
Bad really denotes the adjoint endomorphism of B and the map J D B �Bad is the
Sasaki almost complex structure on TM .

Any frame in H extended with its mirror in V clearly determines an orientation
on the manifold TM . We convention to adopt the order ‘first H , then V ’, which is
a relevant issue when dimM is odd.

Let us suppose r is the Levi-Civita connection and consider the radius 1 tangent
sphere bundle

SM D fu 2 TM W kuk D 1g: (2)

r� is a metric connection and so, differentiating h�; �i D 1, we deduce
T SM D �?. Since the manifold TM is orientable, SM is also always orientable—
the restriction of � being a unit outward normal. By the Gram-Schmidt process
and the orthogonal group action, for any u 2 SM we may find a local horizontal
orthonormal frame e0; e1; : : : ; en on a neighbourhood of u in SM and such that
e0 D Bad� or, equivalently, e0 D u 2 H .

With the dual horizontal coframing, clearly the identity ��volM D e0 ^ e1 ^
� � � ^ en is satisfied. Adding the mirror subset f�[; enC1; : : : ; e2ng, with enCi D
ei ı Bad; 8i � 1 (equivalently enCi .ej / D ei .ejCn/ D 0, enCi .ejCn/ D ei .ej / D
ıij ; 8i; j ), we find the volume form of TM :

VolTM D e0^ e1^ � � � ^ en^ �[^ enC1^ � � � ^ e.2n/ D .�1/nC1 �[^vol^˛: (3)
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We use vol D ��volM ; whereas ˛ denotes the n-form on TM which is defined as
the interior product of � with the vertical pull-back of the volume form ofM . Hence,
choosing appropriately˙� as unit normal direction, the canonical orientation of the
Riemannian submanifold SM , given by˙�yVolTM , agrees with vol^˛ D e01���.2n/.
A direct orthonormal frame as the one introduced previously is said to be adapted.

1.2 Further Metric Properties

The submanifold SM admits a metric linear connection rF. For any vector
fields y; z on SM , the covariant derivative r�

y z is well-defined and, admitting y; z
perpendicular to � , we just have to add a correction term:

rFy z D r�
y z � hr�

y z; �i� D r�
y zC hyv; zvi�: (4)

Since hR� .y; z/; �i D 0, then a torsion-free connection D is easy to find as Dyz D
rFy z� 1

2
R� .y; z/. This connection is most useful for some computations, but ceases

to be metric. For the Levi-Civita connection we must add to D another term, A,
given by:

hAyz;wi D 1

2
.hR� .y;w/; zi C hR� .z;w/; yi/: (5)

Details on metric connections on SM are described in [2, 3].
We have found in [6] the conditions for natural maps to become isometries

between tangent sphere bundles of different radius, including weighted Sasaki
metric and conformal variation of the metric on the base manifold M when
dimM � 3. Notice the induced horizontal subspaces on SM are not fixed on the
same conformal class on M . We do not explore here these results with the weights
and radius, which are all aloud to be pullbacks of functions on M .

Just with the Sasaki metric we have a particular, new result which may catch
the readers’ attention to those theorems. Consider the constant norm s > 0 sphere
bundle SsM D sSM and let M D MṘ denote the space-form with metric g of
constant sectional curvature˙1=R2, where R > 0.

Proposition 1. Let gS denote the Sasaki metric on the tangent bundle induced from
the metric g on MṘ . Then .SsMṘ ; g

S/ is isometric to .SsM1̇ ; .R
2g/S/.

Proof. We use the map F defined in [6, Section 2.6] and then apply twice
corollary 2.2 from the same article, so the notation now is also from there:

.SsMṘ ; g
S/ ' .S s

R
M1̇ ; g

R2;R2/ ' .S1M1̇ ; .R
2g/1;s

2

/ ' .SsM1̇ ; .R
2g/S/ :

We recall the notation, gf1;f2 D f1��g ˚ f2�?g; gS D g1;1. ut
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We have also computed in [2] the scalar curvature of the metrics above. For the
weighted metric with f1; f2 constant, we have

Scal.SsMR;g
f1;f2 / D ˙

n.nC 1/
f1R2

� f2

4f 2
1

s2

R4
2nC .n � 1/n

f2s2
; (6)

which is a positive (negative) constant for small (large) s, although we do not have
an Einstein metric. The value of these results from [2, 6] has only recently been
understood. Of course it is fun to verify the isometric invariance of our formulas.

1.3 The Contact Structure

We denote by � the 1-form on SM defined by

� D .Bad�/[ D h�; B � i D e0: (7)

Tashiro discovered in the 1960s that � defines a metric contact structure, cf. [10].
In our adapted frame we find d� D e.1Cn/1 C � � � C e.2n/n. In other words, 8v;w 2
T SM , d�.v;w/ D hv; Bwi � hw; Bvi.

Now we present the set of natural n-forms ˛0; ˛1; : : : ; ˛n existing always on
SM . Together with � they consist of the fundamental differential system we have
announced. But we begin with the low dimension cases before a general definition.

In case n D 1 we have a global coframing of SM with � and two 1-forms
˛0 D e2 and ˛1 D e1, which are global forms. The following formulas were
probably already known (to Cartan?), where k denotes the Gauss curvature of M :

d� D ˛0 ^ ˛1 d˛0 D k ˛1 ^ � d˛1 D � ^ ˛0: (8)

For the case n D 2, ˛0 D e34; ˛1 D e14 C e32; ˛2 D e12, or the case n D 3,
˛0 D e456; ˛1 D e156 C e264 C e345; ˛2 D e126 C e234 C e315; ˛3 D e123, we do
not have any special example or easier way of computing the exterior derivatives
other than that which we use in [7] with the connections r�;D above—except in
case n D 3 and flat metric coordinates, as shown in [1], because the 3-sphere is
parallelizable and so we may explicit an adapted frame (just as with n D 1).

Finally we define the nC 1 natural n-forms on SM . First, for 0 � i � n, let

ni D 1

iŠ.n � i/Š : (9)

Continuing with the adapted frame introduced earlier, we then define:

˛0 D ˛ D �y.�?volM / D e.nC1/ ^ � � � ^ e.2n/ (10)
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where �?volM is the vertical pull-back of the volume form of M . Now for each i
we write, 8v1; : : : ; vn 2 T SM ,

˛i .v1; : : : ; vn/ D ni
X
�2Sn

sg.�/ ˛.Bv�1 ; : : : ; Bv�i ; v�iC1
; : : : ; v�n/: (11)

We remark that ˛n D e1:::n, which justifies the introduction of the weight ni . For
convenience we define ˛�1 D ˛nC1 D 0.

Only a scarce number of references have used the exterior differential system
of � and the ˛i , yet not rising them to the level of a field of study. It seems the
n-forms have only been considered as an auxiliary tool in the solution of very few
mechanical systems problems. First for 2 or 3 dimensional base space in Griffiths’
book [13]. Then in [11, p. 152] with emphasis on a three-dimensional metric and an
algebraic problem. The same being true regarding later articles in [14], as well as
in [15].

Regarding the n-dimensional case, we suppose to be correct in saying it appears
for the first time, though only for the Euclidean base space, in [12, p. 32]. To the
best of our knowledge, the definition in full generality (11) is introduced first by the
author in [7].

Our differential system is original for we do not have any other reference for the
following formulas deduced in [7]. On a manifold with constant sectional curvature
k we have

d˛0 D � ^ . �k ˛1/
d˛1 D � ^ . n ˛0 � 2k ˛2/
d˛2 D � ^ ..n � 1/ ˛1 � 3k ˛3/
:::

d˛n�1 D � ^ .2 ˛n�2 � nk ˛n/
d˛n D � ^ ˛n�1 (12)

or simply d˛i D � ^ ..n � i C 1/ ˛i�1 � k.i C 1/ ˛iC1/; 8i D 0; : : : ; n. The
particular case of formula (12) with sectional curvature k D 0 is already known, as
we referred.

1.4 Some Structural Relations

The proofs of the following are quite easy, cf. [7]. For any 0 � i � n we have:


 .d�/i D .�1/ n.nC1/
2

i Š

.n � i/Š � ^ .d�/
n�i


˛i D .�1/i � ^ ˛n�i : (13)
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Also ˛i ^ d� D 0 and ˛i ^ ˛j D 0; 8j ¤ n � i . Of course 
 denotes the Hodge
star-operator on SM , which satisfies 

 D 1 on ��

SM . In our notation,

Rijkl D hreirej ek � rejrei ek � rŒei ;ej ek; eli : (14)

Theorem 1 (1st-order structure equations, [7]). We have

d˛i D .n � i C 1/ � ^ ˛i�1 CR�˛i (15)

where

R�˛i D
X

0�j<q�n

nX
pD1

Rjq0p e
jq ^ epCny˛i : (16)

This theorem is proved with the tools of connection theory introduced in the first
section. We do not have any other method which could ease the computations.

Defining r D Ric .�; �/ DPn
jD1 Rj00j as a smooth function on SM determined

by the Ricci curvature of M , we have after computations [7]

d˛n D � ^ ˛n�1 d˛n�1 D 2� ^ ˛n�2 � r vol; (17)

i.e. R�˛n D 0 and R�˛n�1 D �r� ^ ˛n. Then clearly

d.R�˛i / D .n � i C 1/� ^R�˛i�1 d� ^R�˛i D 0: (18)

Proposition 2. The differential forms � , ˛0 and ˛1 are always coclosed. Moreover,
for all 0 � i � n,

d.i 
 ˛i C .�1/iR�˛n�iC1/ D 0: (19)

Proof. One just applies (13) and (18):

di 
 ˛i D i.�1/iC1� ^ d˛n�i D i.�1/iC1� ^R�˛n�i D .�1/iC1d.R�˛n�iC1/

Clearly, R�˛nC1 D 0 and it is true d 
 ˛n D dvol D 0. ut
No further assumptions on M are required, so we believe there are good reasons

to refer to the d-closed differential ideal I D spanf�; ˛0; : : : ; ˛ng as a fundamental
object of any oriented Riemannian nC 1-manifold.

It is quite interesting to consider the case of constant sectional curvature k in any
dimension. The Riemann curvature tensor isRijpq D k.ıiqıjp�ıipıjq/, so one may
prove that R�˛i D �k.i C 1/ � ^ ˛iC1, cf. (12).
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1.5 Gwistor Space and Problems for Calibrated Geometries

The author’s discovery of the exterior differential system I came after and with
that of a natural G2 structure on SM for M of dimension 4.

In [8, 9] it is proved that the total space of the radius 1 tangent sphere bundle
SM �! M of any given oriented Riemannian 4-manifold M carries a natural
G2-structure. The space is now called G2-twistor or gwistor space. Its fundamental
structure 3-form is

�1 D � ^ d� C ˛2 � ˛0 : (20)

Gwistor space is being studied as a subject of its own importance. It has had several
developments in [1, 4, 5, 8, 9] in relation with G2 geometry. We know that �1 is
never closed and it is coclosed if and only if M is Einstein. The G2 structure
�2 D � ^ d� C ˛3 � ˛1 is more restrictive. There is a circle of G2 structures on
SM within �1 and �2 compatible with the Sasaki metric.

An important open problem in linear algebra is to find the conditions for which
a linear combination ' DPn

iD0 bi˛i C c�" ^ .d�/Œ
n
2 , with bi ; c 2 C1

SM , " D 0; 1,
becomes a calibration. Recall a calibration is a closed p-form ' such that 'jV �
volV for every oriented tangent p-plane V , cf. [16]. One expects all bi ; c to be
constant, yet we are unable to eliminate other possibility.

For even n D dimM � 1 we have an obvious ' of degree n. For n D 1 the
question may be solved easily recurring to (8). For n D 2 and 3 we have a complete
linear algebra classification of the calibrations in [16, Theorems 4.3.2 and 4.3.4]. In
case n D 3, we recover gwistor space.

The following result is quite interesting. Let � D �y�?Ric , the vertical lift of the
Ricci tensor. With an adapted frame, we deduce

� D
nX

a;bD1
Rab0a e

bCn: (21)

We have the following theorem giving a reduction of the degree of a differential
equation.

Theorem 2 ([7]). In any dimension we have d 
 ˛2 D � ^ vol. Henceforth, the
metric on M is Einstein if and only if ı˛2 D 0.
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2 Geometric Applications

2.1 Recalling Euler-Lagrange Systems

We wish to study the Euler-Lagrange system .SM; �; '/, where ' is a calibration,
in applications to Riemannian geometry. We start further above recalling the theory
of contact systems from [12]. In this section we assume .S; �/ is any given contact
manifold, not necessarily metric, of dimension 2nC 1.

The contact differential ideal I is defined as the d-closed ideal generated by
� 2 ˝1

S . A generalisation of the famous Darboux Theorem assures that locally
S is the 1-jet manifold J 1.Rn/ of Euclidean flat space, with (Pfaff) coordinates
.z; xi ; pi / and contact form � D dz � Pn

iD1 pi dxi . The submanifold N given
by z D 0; pi D 0 satisfies �jN D 0. That is also the case with any submanifold
f.z.x/; xi ; @i z/g where z is a C1 function on the xi .

An integral submanifold of S consists of a submanifold N together with an
immersion f W N ! S such that f �� D 0. Then of course f �I D 0.
A Legendre submanifold is a C1-differentiable integral n-dimensional submanifold
N . The Legendre submanifolds which appear as the graph of a function on N in the
Pfaff coordinates are called transverse. Equivalently, N is transverse if and only if
f �.dx1 ^ � � � ^ dxn/ ¤ 0.

Any form � 2 ˝n
S is called a Lagrangian. An equivalence relation is immedi-

ately associated with equivalence class�CI nCd˝n�1, where� is a representative
and I n D I \˝n.

An algebraic identity relation deduced in [12] carries over to the whole contact
manifold as:

I k D ˝k; 8 k > n: (22)

Hence there exist two forms ˛; ˇ on S such that d� D � ^ ˛C d� ^ ˇ D � ^ .˛C
dˇ/ C d.� ^ ˇ/. By [12, Theorem 1.1] there exists a unique global exact form ˘

such that ˘ ^ � D 0 and ˘ � d� in NHnC1.˝�=I ; d/. The Poincaré-Cartan form
is ˘ D d.� � � ^ ˇ/ D � ^ .˛ C dˇ/. The form � D ˛ C dˇ turns out to be of
great importance.

Now one wishes to find the critical points of a functional on the set of smooth,
compact Legendre submanifolds N ,! S , possibly with boundary, defined by:

F�.N / D
Z
N

f ��: (23)

Note that � clearly induces the same functional on its class for Legendre submani-
folds without boundary.

Suppose we have a variation of Legendre submanifolds with fixed boundary, i.e.
suppose there is a curve of smooth maps ft W N ! S which defines a Legendre
submanifold Nt for each t and @.Nt / D @.N0/. Differentiating F�.Nt /, cf. [12],
leads to the conclusion that
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d

dt jtD0
F�.Nt / D 0 if and only if f �� D 0: (24)

A Legendre submanifold satisfying (24) is called a stationary Legendre submani-
fold. The exterior differential system algebraically generated by �; d�; � is called
the Euler-Lagrange system of .S; �;�/; its Poincaré-Cartan form ˘ is said to be
non-degenerate if it has no other degree 1 factors besides the multiples of � .

In order to determine conditions on the stationary submanifolds of F� one
proceeds as follows: find the Poincaré-Cartan n-form, transform it into the product
� ^� and then do the analysis of f �� D 0, i.e. study the Euler-Lagrange equation.

2.2 On the Unit Tangent Sphere Bundle

Let us admit again an oriented nC1-dimensional Riemannian manifoldM together

with its unit tangent sphere bundle SM
��! M . Now we let f W N ! M be a

compact oriented isometric immersed hypersurface.
Then we have also a smooth lift Of W N ! SM of f , the unique unit normal

� 2 Tf .x/M chosen according to the orientations of N and M . Note that Of is also
defined on @N . It is easy to see that we have the decomposition into horizontal plus
vertical:

d Of .w/ D .df .w//h C .f �r/wf �� ; 8w 2 TxN: (25)

Indeed, at each point x 2 N the vertical part is r�
d Of .w/� D . Of �r�/w Of �� , where �

is the canonical vertical vector field on SM . Clearly, . Of ��/x D Of .x/ D �f .x/ D
.f ��/x and Of ��� D f �. By definition of Of we clearly have that Of W N �! SM

defines a Legendre submanifold of the natural contact structure, Of �� D 0, and that
it is a transverse submanifold.

A smooth Legendre submanifold Y is locally the lift N ! Y 	 SM of an
oriented smooth n-submanifold N ,! M if and only if e1���njY ¤ 0, i.e. precisely
when Y is transverse. We are thus going to assume throughout such open condition
on submanifolds, defined by the top differential form: ˛njY ¤ 0.

Let us consider an adapted direct orthonormal coframe e0; e1; : : : ; en; enC1;
: : : ; e2n locally defined on SM . Then it may not be tangent to N 	 SM . Yet we
have also a direct orthonormal coframe e1; : : : ; en for N (we use the same letters
for the pull-back). Now, from (25), for any 1 � j � n we have

Of �ej D ej and Of �ejCn D �
nX

kD1
A
j

ke
k (26)
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with A the second fundamental form of N . We recall, A D �r� W TN ! TN

is a symmetric endomorphism; the associated tensor H D 1
n
.TrA/� is the mean

curvature vector field.
We now consider the n-forms ˛i , which give in their own right interesting

Lagrangian systems on the contact manifold SM . We wish to study the functionals
Fi D F˛i on the set of compact immersed hypersurfaces ofM with fixed boundary.

Let �i .A/ denote the elementary symmetric polynomial of degree i in the
eigenvalues �1; : : : ; �n of A. Then we have that

Of �˛n�i D .�1/i�i .A/ volN : (27)

We do not know a more simple proof for the following result (only for Euclidean
base space it is in [12] with the same method), than by using (24) on Fn and the
Poincaré-Cartan form given by d˛n D � ^ ˛n�1.

Theorem 3 (Classical theorem, [7]). Let N be a compact isometrically immersed
hypersurface in the Riemannian manifold M . Then, 8v 2 �0.N; f �TM/,

ıvol.N /.v/ D �
Z
N

nhv;H i volN : (28)

In particular, N is minimal for the volume functional within all compact hypersur-
faces with fixed boundary @N if and only if H D 0.

As used previously, one deduces Of �˛n�1 D �nhH; �i volN D �nkHk volN ,
hence the functional Fn�1 corresponds with

Fn�1.N / D �n
Z
N

kHk volN ; (29)

i.e. the integral of the mean curvature on immersed submanifolds N 	M .

Theorem 4 ([7]). Suppose the Riemannian manifold M has dimension nC 1 > 2.
Then a compact isometric immersed hypersurface f W N !M with fixed boundary
is stationary for the mean curvature functional Fn�1 if and only if

ScalN D ScalM � r� (30)

where r� D Ric .�; �/ is induced from the Ricci tensor ofM and Scal denotes scalar
curvature functions.

In particular, if M is an Einstein manifold, say where Ric D cg with c a
constant, then N has stationary mean curvature volume if and only if N has
constant scalar curvature ScalN D nc.

For an Einstein metric on the ambient manifold M , a formula in the last proof
shows that Fn�2 leads to an Euler-Lagrange equation essentially on the scalar
curvature of N .
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Theorem 5 ([7]). Let M be a Riemannian manifold of dimension n C 1 > 2 and
constant sectional curvature k. Then a compact hypersurface N is a critical point
of the scalar curvature functional

R
N

ScalN volN with fixed boundary if and only if
the eigenvalues �1; : : : ; �n of A satisfy (assume �3 D 0 for n D 2)

6
X

j1<j2<j3

�j1�j2�j3 C k.n � 1/.n � 2/.�1 C � � � C �n/ D 0: (31)

In other words, 6�3.A/C kn.n � 1/.n � 2/kHk D 0.

The case n D 2 is always satisfied and invariant of the ambient manifold—that
is partly the theorem of Gauss-Bonnet.
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Lagrangian Intersection Theory
and Hamiltonian Volume Minimizing Problem

Hiroshi Iriyeh, Takashi Sakai, and Hiroyuki Tasaki

Abstract In this article, we first describe antipodal sets and the structure of
intersections of two real forms in complex flag manifolds. In particular, in the
complex flag manifold consisting of sequences of complex subspaces in a complex
vector space we investigate the real form consisting of sequences of quaternionic
subspaces. Moreover, we discuss applications to the Hamiltonian volume minimiz-
ing problem.

1 Introduction

The intersection of two real forms in a Hermitian symmetric space of compact type
is an antipodal set by the results of Tasaki [11] and Tanaka and Tasaki [8–10]. An
orbit of the adjoint action of a connected compact semisimple Lie group is called
a complex flag manifold, which admits an invariant Kähler structure. Furthermore,
any simply-connected compact homogeneous Kähler manifold is a complex flag
manifold. Therefore a complex flag manifold is a generalization of a Hermitian
symmetric space of compact type. An antipodal set in a compact Riemannian
symmetric space was introduced by Chen and Nagano [2]. Sánchez [7] extended this
notion in complex flag manifolds and Berndt et al. [1] investigated some properties
of antipodal sets of complex flag manifolds and their cardinalities.
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In Sect. 2, we briefly review the definition of k-symmetric structures on a
complex flag manifold for k � k0, where k0 is an integer greater than 1 which
is determined dependently on the complex flag manifold and show that the fixed
point set of the k-symmetry is independent of k. In Sect. 3, we completely describe,
in the complex flag manifold consisting of sequences of complex subspaces in
a complex vector space, the intersection of real forms consisting of sequences
of quaternionic subspaces. In Sect. 4, we discuss applications to the Hamiltonian
volume minimizing problem.

2 Antipodal Sets of Complex Flag Manifolds

In this section we recall antipodal sets of complex flag manifolds (see [4] for details).
LetG be a connected compact semisimple Lie group and g be its Lie algebra. We

take a nonzero elementH in g and consider its orbit Ad.G/H 	 g under the adjoint
action of G. We denote the stabilizer at H of G by GH , and its Lie algebra by gH .
Then the orbit Ad.G/H is diffeomorphic toG=GH . It is known that Ad.G/H has an
invariant Kähler structure under the action of G. Ad.G/H is called a (generalized)
complex flag manifold.

We take a maximal abelian subalgebra t of g containing H . For ˛ in the dual
space t� of t we define g˛ by

g˛ D fX 2 gC j ŒT; X D p�1˛.T /X for T 2 tg;

where gC denotes the complexification of g, and the root system� of gC with respect
to t by � D f˛ 2 t� � f0g j g˛ ¤ f0gg. Then we have the root space decomposition
of gC with respect to t:

gC D tC C
X
˛2�

g˛:

The Lie subalgebra gH is given by

gH D tC g \
X
˛2�

˛.H/D0

g˛:

We can decompose g to a direct sum of simple ideals, which implies a disjoint
union � D �1 [ � � � [ �r , where each �i is an irreducible root system. For each
i .1 � i � r/, we can take fundamental roots ˛i;j .1 � j � pi / which satisfy
˛i;j .H/ � 0. Their union

f˛i;j j 1 � i � r; 1 � j � pig
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is a fundamental root system of �. By reordering ˛i;j

f˛i;j j 1 � i � r; qi C 1 � j � pig

is a fundamental root system of f˛ 2 � j ˛.H/ D 0g. Let ıi is the highest root of
�i with respect to f˛i;j g. We can describe ıi by

ıi D
piX
jD1

mi;j ˛i;j ;

where each mi;j is a positive integer. We define

k0 D max
1�i�r

8<
:1C

qiX
jD1

mi;j

9=
; :

Since

f˛i;j j 1 � i � r; 1 � j � pig

is a basis of t�, we can take its dual basis

fHi;j j 1 � i � r; 1 � j � pig

of t. We define

Z D
rX
iD1

qiX
jD1

Hi;j 2 t:

By the definitions ofHi;j and Z we have ŒZ; gH  D f0g. For any integer k � k0 we
define

gk D exp
2�

k
Z 2 exp t 	 GH:

We define a diffeomorphism �k of Ad.G/H by

�k.x/ D Ad.gk/x .x 2 Ad.G/H/:

It follows from the definition of gk that .�k/k D 1. Hence �k defines a structure of
generalized symmetric space on Ad.G/H and �k is the k-symmetry at H . We note
that Ad.G/H can be a Hermitian symmetric space if and only if k0 D 2.

We can verify that the eigenspace of Ad.gk/ corresponding to 1 is equal to gH .
Thus the fixed point set F.�k;Ad.G/H/ of �k is equal to Ad.G/H \ gH , which is
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independent of the choice of k � k0. For x 2 Ad.G/H we have that �k.x/ D x

if and only if ŒH; x D 0. We denote by sH the symmetry �k at H and by sx the
symmetry of Ad.G/H at x. Then we have the following theorem.

Theorem 1 ([4]). The fixed point set F.sx;Ad.G/H/ of sx is independent of the
choice of k � k0 and is equal to

fy 2 Ad.G/H j Œx; y D 0g

for any x in Ad.G/H . Any maximal antipodal set of Ad.G/H is equal to
Ad.G/H \ t0 for a maximal abelian subalgebra t0 of g, which is an orbit of the
Weyl group of g with respect to t0, and maximal antipodal sets of Ad.G/H are
conjugate to each other under the adjoint action of G.

Let V be an n-dimensional vector space over K.D R;C or H/. For positive
integers n1; : : : ; nr which satisfy n1 C � � � C nr < n we define

F K

n1;:::;nr
.V / D

8<
:.V1; : : : ; Vr /

ˇ̌
ˇ̌
ˇ
Vj is a K-subspace of V ;
dimVj D n1 C � � � C nj ;
V1 	 V2 	 � � � 	 Vr 	 V

9=
; ;

which was originally called a flag manifold. Let v1; : : : ; vn be a unitary basis of Cn.
The set

f.hvi1 ; : : : ; vin1 iC; hvi1 ; : : : ; vin1Cn2
iC; : : : ; hvi1 ; : : : ; vin1C���Cnr

iC/
j 1 � i1 < � � � < in1 � n; 1 � in1C1 < � � � < in1Cn2 � n; : : : ;
1 � in1C���Cnr�1C1 < � � � < in1C���Cnr � n;
#fi1; : : : ; in1C���Cnr g D n1 C � � � C nrg;

is a maximal antipodal set of F C
n1;:::;nr

.Cn/ (see [4]). Its cardinality is equal to

nŠ

n1Šn2Š � � �nrC1Š D
 

n

n1; n2; : : : ; nrC1

!
:

3 The Intersection of Real Flag Manifolds
in a Complex Flag Manifold

In [4] we completely described the intersection of two real flag manifolds which
are congruent to F R

n1;:::;nr
.Rn/ in the complex flag manifold F C

n1;:::;nr
.Cn/, and gave a

necessary and sufficient condition that the intersection is discrete. And we showed



Lagrangian Intersection Theory and Hamiltonian Volume Minimizing Problem 395

that if the intersection is discrete it is a maximal antipodal set of F C
n1;:::;nr

.Cn/. In this
section we investigate the intersection of two real forms which are congruent to
F H
n1;:::;nr

.Hn/ in the complex flag manifold F C

2n1;:::;2nr
.C2n/.

In C
2n we define i; j; k by

iv D p�1v; j v D J Nv; kv D ij v .v 2 C
2n/;

where

J D

O 1n
�1n O

�
:

Then C
2n can be identified with the quaternionic vector space H

n. The real linear
map j W C2n ! C

2n induces an antiholomorphic involution of F C

2n1;:::;2nr
.C2n/,

and its fixed point set is F H
n1;:::;nr

.Hn/. Hence F H
n1;:::;nr

.Hn/ is a real form of
F C

2n1;:::;2nr
.C2n/.

According to the conjugacy of maximal tori of the compact symmetric pair
.U.2n/; Sp.n// we have

U.2n/ D Sp.n/ASp.n/;

where

A D

8̂
<
:̂

X O

O X

� ˇ̌ˇ̌
ˇ X D

2
64

z1
: : :

zn

3
75 ; z1; : : : ; zn 2 U.1/

9>=
>; :

For u 2 U.2n/ we can express u D k1ak2 where k1; k2 2 Sp.n/ and a 2 A. Then
we have

F H

n1;:::;nr
.Hn/ \ uF H

n1;:::;nr
.Hn/ D k1.F H

n1;:::;nr
.Hn/ \ aF H

n1;:::;nr
.Hn//:

Therefore it suffices to study F H
n1;:::;nr

.Hn/ \ aF H
n1;:::;nr

.Hn/.
For a 2 A we have the eigenspace decomposition

C
2n D W1 ˚ � � � ˚Ws (1)

of a2. We note that each eigenspace Wi is a quaternionic subspace of Hn Š C
2n.

For positive integers k; k1; : : : ; ks satisfying k D k1 C � � � C ks , we denote

F H

k1
.W1/� � � � �F H

ks
.Ws/ D fx1˚ � � � ˚ xs 2 F H

k .H
n/ j xi 2 F H

ki
.Wi / .1 � i � s/g:
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We also regard this as a subset of F C

2k.C
2n/. The following theorem is a refinement

of Theorem 6.3 in Tanaka and Tasaki [8]. The actions of U.2n/ on F C

2k.C
2n/ and

F C

2n1;:::;2nr
.C2n/ coincide with those of SU.2n/, so we useU.2n/ instead of SU.2n/.

Theorem 2. For 0 < k � n we have

F H

k .H
n/ \ aF H

k .H
n/ D

[
k1C���CksDk

0�ki�dimH.Wi /.1�i�s/

F H

k1
.W1/ � � � � � F H

ks
.Ws/

in F C

2k.C
2n/. The intersection of F H

k .H
n/ and aF H

k .H
n/ is discrete if and only if

dimHWi D 1 for all i . In this case these intersect transversally and

F H

k .H
n/ \ aF H

k .H
n/ D fWi1 ˚ � � � ˚Wik j 1 � i1 < � � � < ik � ng;

which is an antipodal set of F C

2k.C
2n/, and a maximal antipodal set of F H

k .H
n/.

Proof.

F H

k .H
n/ \ aF H

k .H
n/ D fV 2 F C

2k.C
2n/ j V 2 F H

k .H
n/; a�1V 2 F H

k .H
n/g

The first condition is equivalent to JV D V . From this the second condition is

J.a�1V / D a�1V ” aJaV D V ” a2JV D V ” a2V D V:

Therefore

F H

k .H
n/ \ aF H

k .H
n/ D fV 2 F C

2k.C
2n/ j JV D V; a2V D V g:

To describe this intersection, we use the following lemma.

Lemma 1. Let U be a finite dimensional complex vector space and f W U ! U a
complex linear map which has eigenspace decomposition U D U1˚� � �˚Us . Then
a complex vector subspace V 	 U satisfies f .V / D V if and only if

V D V \ U1 ˚ � � � ˚ V \ Us:

This follows from elementary linear algebra. We apply this lemma to a2 and its
eigenspace decomposition C

2n D W1 ˚ � � � ˚Ws . Then we have

F H

k .H
n/ \ aF H

k .H
n/ D fV 2 F H

k .H
n/ j V D V \W1 ˚ � � � ˚ V \Wsg:

Here V \Wi is a quaternionic vector subspace of Wi for each i . Consequently

F H

k .H
n/ \ aF H

k .H
n/ D

[
k1C���CksDk

0�ki�dimH.Wi /.1�i�s/

F H

k1
.W1/ � � � � � F H

ks
.Ws/:
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The latter half of the statement of the theorem follows from this description
immediately.

Theorem 3. For n1; : : : ; nr which satisfy n1 C � � � C nr < n we have

F H

n1;:::;nr
.Hn/ \ aF H

n1;:::;nr
.Hn/

D f.V1; : : : ; Vr / 2 F C

2n1;:::;2nr
.C2n/ j

Vj 2 F H

n1C���Cnj .H
n/ \ aF H

n1C���Cnj .H
n/ .1 � j � r/g

in F C

2n1;:::;2nr
.C2n/. The intersection of F H

n1;:::;nr
.Hn/ and aF H

n1;:::;nr
.Hn/ is discrete if

and only if dimHWi D 1 for all i . In this case these intersect transversally and

F H

n1;:::;nr
.Hn/ \ aF H

n1;:::;nr
.Hn/

D f.Wi1 ˚ � � � ˚Win1
;Wi1 ˚ � � � ˚Win1Cn2

; : : : ; Wi1 ˚ � � � ˚Win1C���Cnr
/

j 1 � i1 < � � � < in1 � n; 1 � in1C1 < � � � < in1Cn2 � n; : : : ;
1 � in1C���Cnr�1C1 < � � � < in1C���Cnr � n;
#fi1; : : : ; in1C���Cnr g D n1 C � � � C nrg;

which is an antipodal set of F C

2n1;:::;2nr
.C2n/.

Proof. Since

F H

n1;:::;nr
.Hn/

D f.V1; : : : ; Vr / 2 F C

2n1;:::;2nr
.C2n/ j Vj 2 F H

n1C���Cnj .H
n/ .1 � j � r/g;

aF H

n1;:::;nr
.Hn/

D f.V1; : : : ; Vr / 2 F C

2n1;:::;2nr
.C2n/ j Vj 2 aF H

n1C���Cnj .H
n/ .1 � j � r/g;

we have

F H

n1;:::;nr
.Hn/ \ aF H

n1;:::;nr
.Hn/

D f.V1; : : : ; Vr / 2 F C

2n1;:::;2nr
.C2n/ j

Vj 2 F H

n1C���Cnj .H
n/ \ aF H

n1C���Cnj .H
n/ .1 � j � r/g:

If dimHWi D 1 for all i , then

F H

k .H
n/ \ aF H

k .H
n/ D fWi1 ˚ � � � ˚Wik j 1 � i1 < � � � < ik � ng;

F H

n1C���Cnj .H
n/ \ aF H

n1C���Cnj .H
n/

D fWi1 ˚ � � � ˚Win1C���Cnj
j 1 � i1 < � � � < in1C���Cnj � ng
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for each j . Hence we have

F H

n1;:::;nr
.Hn/ \ aF H

n1;:::;nr
.Hn/

D f.Wi1 ˚ � � � ˚Win1
;Wi1 ˚ � � � ˚Win1Cn2

; : : : ; Wi1 ˚ � � � ˚Win1C���Cnr
/

j 1 � i1 < � � � < in1 � n; 1 � in1C1 < � � � < in1Cn2 � n; : : : ;
1 � in1C���Cnr�1C1 < � � � < in1C���Cnr � n;
#fi1; : : : ; in1C���Cnr g D n1 C � � � C nrg;

which is discrete.
Finally we shall show that the intersection of F H

n1;:::;nr
.Hn/ and aF H

n1;:::;nr
.Hn/ is

not discrete if dimHWi � 2 for some i . Without loss of generality we can suppose
dimHW1 � 2. We take a quaternionic unitary basis v1; : : : ; vn of C2n Š H

n which
is compatible with the decomposition (1). We suppose v1; v2 2 W1. Hence we have

fhl; v3; : : : ; vn1C���CnjC1iH j 0 ¤ l 2 hv1; v2iHg
	 F H

n1C���Cnj .H
n/ \ aF H

n1C���Cnj .H
n/

for each j , and by the description of F H
n1;:::;nr

.Hn/ \ aF H
n1;:::;nr

.Hn/

f.hl; v3; : : : ; vn1C1iH; hl; v3; : : : ; vn1Cn2C1iH; : : : ;
hl; v3; : : : ; vn1C���CnrC1iH/ j 0 ¤ l 2 hv1; v2iHg

	 F H

n1;:::;nr
.Hn/ \ aF H

n1;:::;nr
.Hn/;

which means that F H
n1;:::;nr

.Hn/ \ aF H
n1;:::;nr

.Hn/ is not discrete.

4 Application to the Hamiltonian Volume
Minimizing Problem

In 1990, Oh [6] posed a variational problem concerning volumes of compact
Lagrangian submanifolds in Kähler manifolds under Hamiltonian deformations.
Kleiner and Oh gave the first non-trivial example, namely, they showed that the real
form RPn in CPn has the least volume under Hamiltonian deformations. Using
the structure of the intersection L1 \ L2 of two real forms L1;L2 of a Hermitian
symmetric space of compact type we can calculate Lagrangian Floer homology
HF.L1;L2/ and obtain a generalization of the Arnold-Givental inequality. We
apply it and a Crofton type formula due to Lê [5] to real forms in the complex
hyperquadric Qn.C/.
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The complex hyperquadric is defined as

Qn.C/ D fŒz 2 CPnC1 j z20 C z21 C � � � C z2nC1 D 0g

equipped with the Kähler structure induced by the Fubini-Study Kähler form !FS

on CPnC1. A real form of Qn.C/ is congruent to

Sk;n�k D fŒx 2 RPnC1 j x20 C x21 C � � � C x2k � x2kC1 � � � � � x2nC1 D 0g
Š .Sk � Sn�k/=Z2 .0 � k � Œn=2/:

Theorem 4 ([3]). InQn.C/, we have vol.�Sk;n�k/ � vol.Sn/ for any Hamiltonian
diffeomorphism � 2 Ham.Qn.C//. In particular, the real form S0;n Š Sn ofQn.C/

is Hamiltonian volume minimizing.
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An SL2.C/ Topological Invariant of Knots

Weiping Li

Abstract In this note, we show that the SL2.C/ algebro-geometric invariant
defined in Li and Wang (Int. J. Math. 22(9):1209–1230, 2011) for knots is indeed an
SL2.C/ topological invariant. The main ingredient is our short geometric proof of
the coincidence of the algebro-geometric multiplicity and topological multiplicity
of the intersection of curves on a smooth surface.

1 Introduction

It is natural to extend the SU.2/ Casson invariant of knots and 3-manifolds to other
compact or noncompact groups, after many successful applications (see [1]). One
would like to have the SL2.C/ Casson type invariant for hyperbolic knots and
hyperbolic 3-manifolds. There are some attempts in this direction, see [5, 6, 9].
The difficulties lie in the fact that the character variety of a knot group is lack of
understanding. By using algebro-geometric method, the first author and Q. Wang
defined in [10] an SL2.C/ algebro-geometric invariant of hyperbolic knots.

Let us briefly recall the SL2.C/ algebro-geometric invariant �.p; q/ for the
manifolds obtained by the .p; q/-Dehn surgery along the knot complement. Let
X0 be the irreducible component of the character variety of a hyperbolic knot K
in S3 which contains the character of the discrete faithful representation associated
to the hyperbolic structure ofK. Roughly speaking, the invariant �.p; q/ counts the
algebraic intersection multiplicity of X0 with another affine curve in the character
variety of the boundary from the .p; q/-Dehn surgery. It does not require the non-
sufficiently large condition in [5] and the number �.Kp=q/ in [5] is defined over all
the components of X.M/ and the intersection is taken in a different space (see also
[10, Remark 3.4]).
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In [7, Section 4], Fulton and MacPherson showed that the algebraic intersec-
tion multiplicity agrees with the topological intersection multiplicity using the
machinery of deformation to normal cone. For the intersection of two curves in
a smooth surface, we give a simple proof of the coincidence of these multiplicities,
without using deformation or perturbation. Applying this into the construction in
[10, Definition 3.2], we show that the invariant �.p; q/ defined by the algebro-
geometric method is indeed a topological invariant of the hyperbolic knot and the
resulting 3-manifold from Dehn surgery.

The paper is organized as follows. In Sect. 2 we recall the algebro-geometric
invariant �.p; q/. In Sect. 3 we show that the algebraic intersection multiplicity
agrees with the topological intersection multiplicity for the curve case, and our main
result Theorem 1 follows.

2 SL2.C/ Algebro-Geometric Invariant of Knots

In this section, we recall the SL2.C/ algebro-geometric invariant of knots defined
in [10] and use same notations therein.

Let K be a hyperbolic knot in S3. Then its complement MK D S3 � NK
is a hyperbolic 3-manifold with finite volume, where NK is the open tubular
neighborhood ofK in S3. There is a discrete faithful representation �0 2 R.MK/ D
Hom.�1.MK/; SL2.C// corresponding to its hyperbolic structure. Let R0 be an
irreducible component of R.MK/ containing �0. Let X0 D t .R0/, where t W
R.MK/ �! X.MK/ (similar for t W R.@MK/ �! X.@MK/) is the canonical
surjective morphism which sends a representation to its character. The natural
homomorphism i W �1.@MK/ �! �1.MK/ induces the restriction maps r W
R.MK/ �! R.@MK/ and r W X.MK/ �! X.@MK/. They are affine algebraic sets
over the complex numbers C. By Culler et al. [4, Proposition 1.1.1], X0 	 X.MK/

is an irreducible affine curve.
Since �1.@MK/ D Z˚Z with the fixed meridian � and longitude � as its gener-

ators, we can identify R.@MK/ with the set f.A;B/jA;B 2 SL2.C/; AB D BAg.
LetRD be the subvariety ofR.@MK/ consisting of the diagonal representations. For
� 2 RD , we have an isomorphism p W RD ! C

� � C
� defined by p.�/ D .m; l/

with

�.�/ D

m 0

0 m�1
�
; �.�/ D


l 0

0 l�1
�
:

Define a morphism t W R.@MK/ �! C
3 by t .�/D.�.�.�//; �.�.�//; �.�.��///

with � the trace. By the proof of [3, Proposition 1.4.1], � 2 X.@MK/ is determined
by its values on �, � and ��. Then X.@MK/ D t .R.@MK// is a surface in C

3 given
by Li and Wang [10, Proposition 3.1],

x2 C y2 C z2 � xyz � 4 D 0: (1)
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Let tD be the restriction of t W R.@MK/ �! X.@MK/ to RD . Then tD W RD D
C

� � C
� ! X.@MK/ is a finite morphism by Li and Wang [10, Proposition 3.2]

which is given explicitly by, for .m; l/ 2 C
� � C

�,

tD.m; l/ D .mCm�1; l C l�1;ml Cm�1l�1/:

It is easy to check tD is 2 W 1 branching over four points .˙1;˙1/.
Let I� W X.MK/ ! C be defined by I� .�/ D �.�/. The set of functions

I� with � 2 �1.MK/ generates the affine coordinate ring of X.MK/. By Culler
et al. [4, Proposition 1.1.1], for every nonzero � 2 �1.@MK/, the function I� is
non-constant on X0. Hence r.X0/ 	 X.@MK/ has dimension 1. Set Y0 D r.X0/,
the Zariski closure of r.X0/ in X.@MK/. Then Y0 is an irreducible affine curve.
Denote by D0 the inverse image t�1D .Y0/. Now we have the following diagram:

By Li and Wang [10, Proposition 3.3], the inverse image D0 	 C
� � C

� is
an equi-dimensional affine algebraic set with at most two irreducible components
of dimension 1, the image of each irreducible component of D0 under tD is the
whole Y0.

Let A0.m; l/ be the defining equation of the closure of the affine curve D0 in
C � C. It has no repeated factors and it is a factor of the A-polynomial of the knot
K defined in [2]. Denote by fX0 (resp. eY0) a smooth projective model of the affine
curveX0 (resp. Y0). The restriction morphism r W X0 ! Y0 induces an isomorphism
Qr WfX0 ! eY0 by Li and Wang [10, Lemma 3.4].

Let � D p� C q� 2 H1.@MK IZ/ be a non-zero primitive element with p; q
coprime. Define a regular function f� D I 2� � 4 on X0. It is nonconstant and

gives rises to a morphism from fX0 to CP
1 which is still denoted by f� . Since

� 2 H1.@MK IZ/, we can think of I� as a regular function on Y0 inX.@MK/. Define
on Y0 the function f 0

� D I 2� �4. Similarly, it induces a non-constant morphism from
eY0 to CP

1, denoted also by f 0
� . Then f� D f 0

� ı Qr:
Define Z� D f� 2 X0j�.�/ D ˙2g the set of zeros of the function f� on X0. If

� 2 Z� , then there exists a representation � 2 R0 such that the trace �.%.�// D ˙2
and its character �� D �. Then either �.�/ D ˙ I or �.�/ ¤ ˙ I and �.�.˛// D
˙2 for all ˛ 2 �1.@MK/ by Li and Wang [10, Lemma 3.5]. Given an irreducible
representation � 2 R0 	 R.MK/, assume that both �.�/ and �.�/ are parabolic.
Up to conjugation, we have

�.�/ D ˙

1 1

0 1

�
I �.�/ D ˙


1 t.�/

0 1

�
;



404 W. Li

where t .�/ is a complex number. It is conjectured in [10] that if �.�/ and �.�/ are
parabolic, then t .�/ … Q for an irreducible SL2.C/-representation of a hyperbolic
knot.

Let �� 2 Z� be the character of an irreducible representation �. It was shown in
[10, Proposition 3.4] that the trace �.�.�// ¤ ˙2 is equivalent to �.�/ D ˙ I
provided the conjecture mentioned above is true and p; q ¤ 0. Moreover, for
the character � 2 Z� of a reducible representation �, we have �.�/ ¤ ˙2 and
�.�/ D ˙ I .

Let E.p; q/ be the reducible curve mplq D ˙1 in C
� � C

� for p; q coprime
integers. Then the image tD.E.p; q// is a curve in X.@MK/. We know r.X0/ is
an irreducible curve in X.@MK/. They do not have common irreducible component
because the traces of characters of X0 are not constant. Hence tD.E.p; q//\ r.X0/
is finite. We see that the set tD.E.p; q// \ r.X0/ consists of possible characters
in X0 which can also be the characters of K.p=q/ in PSL2.C/, where K.p=q/
denotes the closed 3-manifold obtained fromMK by Dehn surgery along � D p�C
q� 2 H1.@MK IZ/. The following definition should be thought of as the algebro-
geometric invariant for .p; q/-Dehn surgery of MK .

Definition 1. (i)

b.p; q/ D
X

�2tD.E.p;q//\r.X0/
n�;

where n� is the intersection multiplicity at � in X.@MK/ (Definition 3.1
of [10]).

(ii)

�.p; q/ D
X

�2S.p;q/
n�;

where S.p; q/ D f� 2 tD.E.p; q// \ r.X0/j�.�/ ¤ ˙2g 	 X.@MK/

(Definition 3.2 of [10]).

The integer b.p; q/ is a well-defined invariant of the 3-manifold K.p=q/ result-
ing from .p; q/-Dehn surgery on the hyperbolic knot complement MK . It depends
on the knot K and the surgery coefficient p=q, and it is always positive by Li and
Wang [10, Theorem 3.1]. The set S.p; q/ contains all possible reducible characters.
Hence the number �.p; q/ counts both irreducible and reducible characters. The
quantity �.p; q/ is a well-defined algebro-geometric SL2.C/ Casson–Walker type
invariant ofK.p=q/ (see [13]). It depends on the knotK and the surgery coefficient
p=q by Li and Wang [10, Theorem 3.2]. By definition, �.p; q/ � b.p; q/ for any
coprime p, q and a hyperbolic knot in S3.
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3 An SL2.C/ Casson Type Topological Invariant
of Hyperbolic Knots

In this section we prove the following main result.

Theorem 1. The number �.p; q/ is a topological invariant of SL2.C/ Casson
type invariant of the 3-manifold K.p=q/ resulting from .p; q/-Dehn surgery on the
hyperbolic knot complement MK .

Remark 1. (i) Note that the number �.p; q/ counts both irreducible and reducible
characters. It can be seen as a Casson–Walker type invariant (see [13]) for
hyperbolic knots and its resulting 3-manifolds under the Dehn surgery.

(ii) For two analytic subvarieties of complementary dimension meeting in a finite
set of points on a compact complex manifold, Griffiths and Harris showed
that the topological intersection number is the algebraic geometric intersection
number in [8, Chapter 0, Section 4]. Our intersection points are in the variety
X.@MK/ which is not a manifold.

According to the definition, the number �.p; q/ is an algebro-geometric invari-
ant, which counts algebraic intersection multiplicity of curves in a surface. To prove
the theorem, we need to show that the multiplicity is topological. Although this
fact is well known in general without a proof, we give it a short geometric proof,
which is new to our knowledge. Note that Fulton and MacPherson [7] outlines their
arguments that if two subvarieties intersect properly, then the algebraic intersection
multiplicity is topological. There is no detailed proof of this result at the present, up
to our knowledge.

To begin with, we recall the following definition of intersection multiplicities.

Definition 2. Let C1 and C2 be two distinct irreducible affine curves in C
2 defined

by equations fi .x; y/ D 0 (i D 1; 2). Let P 2 C1 \ C2.
(i) The algebro-geometric intersection multiplicity .C1 � C2/P of C1 and C2 at P

is defined to be the length of the OP -module OP =.f1; f2/OP , where OP is the
local ring of C2 at P .

(ii) Let U 	 R
4 be a local coordinate chart of P with the induced orientation from

an identification R
4 D C

2(so that U contains no other intersection points of C1
and C2). Let Si D Ci \ U . The topological intersection multiplicity mP is the
local degree of a map  at P � P , where  W S1 � S2 �! R

4 is defined by
 .u1; u2/ D u1 � u2. Here u1 � u2 is the standard subtraction of vectors in R

4.

Remark 2. 1. For the algebro-geometric intersection multiplicity of high dimen-
sional varieties, one should use Serre’s intersection multiplicity (see [12, pp.
106–110]) instead, which involves the length of Tori modules. In the curve case,
we simply have Tori D 0 for i > 0.
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2. The definition of topological intersection multiplicity is taken from [7]. The local
degree of a map f W X �! Y at a point a 2 X is defined by the homomorphism

Hn.X;X � a/ �! Hn.Y; Y � f .a//

with n D dimX D dimY .

It is convenient to rephrase the algebro-geometric multiplicity .C1 � C2/P in the
following way. Let V be a Zariski open neighborhood of P in C

2 so that P is the
only intersection point of C1 and C2 in V . This is possible because C1 \ C2 is a
finite set. Let Di D Ci \ V . Define a map

� W D1 �D2 �! C
2 (2)

by �.u1; u2/ D u1 � u2. Then the intersection scheme D1 \ D2 is naturally
isomorphic to ��1.0/ with its induced scheme structure. Therefore .C1 � C2/P is
equal to the length of ��1.0/.

We remark that if we take V as a small analytic neighborhood, andD0
i D Ci\V ,

then in the same way we get a map �an W D0
1 �D0

2 �! C
2. Of course .C1 � C2/P is

equal to the length of ��1
an .0/ as well.

For the map  W S1 � S2 �! R
4 in the above definition, if � is a regular value

of  , then

deg. ; �/ D
X

.u1;u2/2 �1.�/

sign.detD .u1;u2//:

Notice that  is the restriction of �an to S1 � S2, so if � is a regular value and it
is close to 0 enough, deg. ; �/ is the topological intersection multiplicity mP of C1
and C2 at P , and it is equal to the length of ��1

an .�/. The existence of such an � is
guaranteed by Sard’s theorem.

Proposition 1. Let C1 and C2 be two distinct irreducible algebraic curves in C
2.

The algebro-geometric intersection multiplicity of C1 and C2 at a point is equal to
its topological intersection multiplicity.

Proof. According to the above discussion, the algebro-geometric intersection mul-
tiplicity is equal to the length of ��1

an .0/. For any regular value � of �an which is
close to 0, the topological intersection multiplicity is equal to the length of ��1

an .�/.
Therefore, to prove the proposition, we need to show

length.��1
an .0// D length.��1

an .�//:

This equality is in fact a corollary of the following Proposition 2 concerning the
flatness of the morphism �. ut
Proposition 2. The map � W D1 �D2 �! C

2 defined in (2) is a flat morphism.
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We use the following Lemma to prove this Proposition.

Lemma 1 ([11], Proposition 2.5). Let B be a flat A-algebra and b 2 B . If the
image of b in B=mB is not a zero divisor for any maximal ideal m of A, then B=.b/
is a flat A-algebra.

Proof (Proof of Proposition 2). Since Di 	 Ci is Zariski open in Ci , D1 �D2 !
C1 � C2 is an open embedding. It is clear that � can be factored as a composition

D1 �D2 7! C1 � C2 7! C
2:

Because open embedding is always is flat, and the composition of two flat
morphisms is still flat, it suffices to show that the second map in the above sequence
is flat. Later we denote this map by �.

Let �i be the closed embedding Ci ! C
2. Let p W C2 � C

2 ! C
2 be a map

defined by p.u; v/ D u � v. Then � W C1 � C2 ! C
2 can be factored as � D p ı h

with h D �1 � �2 W C1 � C2 ! C
2 � C

2.
It is clear that p is flat. Now we express p in terms of coordinates. Let A D

CŒx; y be the affine coordinate ring of C2. Let B D A˝C A. Then B is the affine
coordinate ring of C2 �C

2. The map p corresponds to a C-algebra homomorphism
p W A! B defined by

p.x/ D 1˝ x � x ˝ 1; p.y/ D 1˝ y � y ˝ 1:

Next we decompose h further as

C1 � C2 h27! C1 � C
2 h17! C

2 � C
2:

with h1 D �1 � id and h2 D id��2. Both hi are closed embedding.
Let �1 D p ı h1 W C1 � C

2 7! C
2. We now show that �1 is flat. Recall that

Ci 	 C
2 are defined by polynomials fi . Let R1 be the coordinate ring of C1 � C

2.
Then R1 D B=.f1 ˝ 1/. Now we apply Lemma 1 to b D f1 ˝ 1. For any maximal
ideal m D .x � a; y � b/ of A, B=mB is isomorphic to A as a C-algebra. So
B=mB is an integral domain. The image of f1 ˝ 1 in B=mB is obviously nonzero,
which implies that it is not a zero divisor. It follows from Lemma 1 that R1 is a flat
A-algebra.

Finally we let R be the coordinate ring of C1 � C2. R is an A-algebra via the
map �. We want to show that R is flat over A.

Consider the quotient map B 7! R1 D B=.f1 ˝ 1/. For 1˝ f2 2 B , let 1˝ f2
be its image in R1. Then the coordinate ring R D R1=.1˝ f2/. Notice that for any
maximal ideal m of A,

R1=mR1 D B=..f1 ˝ 1/CmB/ D .B=mB/=.f1 ˝ 1/ Š A=.f1/;
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where the last equality is an isomorphism as C-algebras. The image of 1˝ f2 in
R1=mR1 is equal to Nf2 in A=.f1/. We claim that Nf2 is not a zero divisor in A=.f1/.
If not, there is a non zero element Ns 2 A=.f1/ so that Ns Nf2 D 0. Lifting to A, it
says that there exist t 2 A so that sf2 D tf1. Since A is a UFD, and f1; f2 are
distinct irreducible polynomials, we get f1js, that is, Ns D 0, which contradicts to the
assumption that Ns is nonzero. Since R1 is A-flat, applying Lemma 1, it follows that
R is A-flat. ut
Remark 3. Proposition 2 and hence Proposition 1 can be generalized to higher
dimension without much effort, provided that Tori D 0 for i > 0.

Proof (Proof of Theorem 1). By identifying C1 D D0 and C2 D E.p; q/ as two
distinct curves in C

2, and using Proposition 1, we obtain the counting from algebro-
geometric intersections agrees with the counting from the topological intersections
in C

2. By using the identification through an one-to-one and onto regular map tD
in [10] and on S.p; q/, we obtain the following: �.p; q/ is an topological invariant
of SL2.C/ Casson type invariant of the 3-manifold K.p=q/ resulting from .p; q/-
Dehn surgery on the hyperbolic knot complement MK . ut

For two subvarieties V andW in a nonsingular algebraic variety X , recall that V
andW is called to intersect properly if each irreducible componentZi of V \W has
dimension dim.V /Cdim.W /�dim.X/. Hence, the algebraic geometry intersection
V �W is uniquely determined by

P
m.Zi/Zi with the geometric multiplicitym.Zi/.

Fulton and MacPherson in [7] showed that

m.Zi/ D lengthOZi
.OV ˝OX OW /Zi C

1X
jD1

.�1/j lengthOZi

�
TorOX

j .OV ;OW /
�
Zi
;

and the algebraic intersection multiplicity m.Zi/ is a topological intersection

multiplicity. For our special case,
�

TorOX

j .OV ;OW /
�
Zi
D 0 for j > 0. It would

be interesting to identify
�

TorOX

j .OV ;OW /
�
Zi

as some type of Walker correction

terms in general.
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The Möbius Geometry of Wintgen Ideal
Submanifolds

Xiang Ma and Zhenxiao Xie

Abstract Wintgen ideal submanifolds in space forms are those ones attaining
equality pointwise in the so-called DDVV inequality which relates the scalar
curvature, the mean curvature and the scalar normal curvature. They are Möbius
invariant objects. The mean curvature sphere defines a conformal Gauss map into
a Grassmann manifold. We show that any Wintgen ideal submanifold of dimension
greater than or equal to 3 has a Riemannian submersion structure over a Riemann
surface with the fibers being round spheres. Then the conformal Gauss map is shown
to be a super-conformal and harmonic map from the underlying Riemann surface.
Some of our previous results are surveyed in the final part.

1 Introduction

Geometers are always interested in beautiful shapes. In many cases they arise as
the extremal cases of certain geometrical inequalities. In particular, it would be
desirable to find some universal inequality, whose equality case include many non-
trivial examples. It would be more interesting if such objects are invariant under a
suitable transformation group.

For submanifolds in real space forms, such a universal inequality has been
found, called the DDVV inequality. The extremal case defines the Wintgen ideal
submanifolds. These are invariant object under the Möbius transformations; in
particular, the study of them from the viewpoint of Möbius geometry is the focus of
this paper.

Recall that given an m-dimensional submanifold Mm immersed in a real space
form of dimension m C p with constant sectional curvature c, at any point there
holds
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The DDVV inequality: K � c C jjH jj2 �KN : (1)

Here K D 2
m.m�1/

P
i<j hR.ei ; ej /ej ; ei i is the normalized scalar curvature with

respect to the induced metric on Mm, H is the mean curvature vector, and KN D
2

m.m�1/ jjR?jj is the normal scalar curvature.
This remarkable inequality attracts many geometers. It relates the most important

intrinsic and extrinsic quantities at one point of a submanifold, and it takes an
incredibly general form, without restrictions on the dimension/codimension, or any
additional geometrical or topological assumptions. It was first conjectured by De
Smet et al. [9] in 1999, and proved by Ge and Tang [12] in 2008. (Lu gave an
independent proof in [17].)

After discovering the DDVV inequality, people became interested in the extremal
case [5, 8, 9, 17]. Wintgen [20] first proved this inequality for surfaces in S

4, where
the equality is attained exactly when the surfaces are super-conformal. That means
at any point of the surface, the curvature ellipse is a circle, or equivalently, the Hopf
differential is an isotropic differential form. According to the suggestion of Chen
and other ones [4, 18], we make the following definition.

Definition 1. A submanifold Mm of dimension m and codimension p in a real
space form is called a Wintgen ideal submanifold if the equality is attained at
every point of Mm in the DDVV inequality (1). By the characterization of Ge and
Tang in [12], this happens if, and only if, at every point x 2 M there exists an
orthonormal basis fe1; � � � ; emg of the tangent space TxMm and an orthonormal
basis fn1; � � � ; npg of the normal space T ?

x M
m, such that the shape operators

fAr; r D 1; � � � ; pg take the form as below:

A1 D

0
BBBBB@

�1 �0 0 � � � 0
�0 �1 0 � � � 0
0 0 �1 � � � 0
:::
:::
:::
: : :

:::

0 0 0 � � � �1

1
CCCCCA
; A2 D

0
BBBBB@

�2C�0 0 0 � � � 0
0 �2��0 0 � � � 0
0 0 �2 � � � 0
:::

:::
:::
: : :

:::

0 0 0 � � � �2

1
CCCCCA
; (2)

A3 D �3Im; A� D 0 .� � 4/;

where Im is the identity matrix of order m.

People have found abundant examples of Wintgen ideal submanifolds [3,5–8,13,
21]. It is interesting yet difficult to obtain a complete classification of them.

We emphasize that generally they should be classified up to Möbius transforma-
tions, because Wintgen ideal is an Möbius invariant property.1 This follows directly
from (1) and the fact that up to a factor, the traceless part of the second fundamental

1It was first noticed by Dajczer and Tojeiro in [8], based on an equivalent formulation of the DDVV
inequality in [10].
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form is Möbius invariant. So the most suitable framework for the study of Wintgen
ideal submanifolds is Möbius geometry. This research program has been carried out
by us recently in [14–16,21] under various additional assumptions. Besides giving a
survey of these work, we will also report two new results on general Wintgen ideal
submanifolds.

For any submanifold Mm immersed in S
mCp , we can define the mean curvature

sphere at one point x 2Mm. It is the uniquem-dimensional round sphere tangent to
Mm at x which also shares the same mean curvature vector withMm at x. As a well-
known Möbius invariant construction,2 the characterization above holds true for
any other conformal metric of SmCp . Via the light-cone model, this codimension-p
sphere corresponds to a space-like p-space SpanRf�1; � � � ; �pg in the Lorentz space
R
mCpC2
1 . We call it the conformal Gauss map3 into the real Grassmannian

� D �1 ^ � � � ^ �p 2 Gr.p;RmCpC2
1 /:

The crucial observation is that the image �.Mm/ degenerates to a
two-dimensional surface when Mm is Wintgen ideal. Moreover, we have:

Theorem 1. For a Wintgen ideal submanifold of dimension m � 3, the conformal

Gauss map � factors as a projection map � W Mm ! M
2

(which is a Riemannian
submersion up to a constant), and a super-conformal harmonic map from a Riemann
surface

� WM2 ! Gr.p;RmCpC2
1 /:

In other words, �.Mm/ is a super-minimal surface M
2 	 Gr.p;RmCpC2

1 /

(endowed with the induced metric).

This result shows striking similarity with the celebrated characterization of
Willmore surfaces by its conformal Gauss map being a harmonic map [2,11]. Yet it
is far more than a parallel generalization. Besides that, it greatly simplifies the study
of Wintgen ideal submanifolds by reducing it to surface theory. (See Theorem 3 for
stronger result in codimension two.)

As a consequence, these m-dimensional mean curvature spheres is a two-
parameter family. We consider their envelope OMm, which contains Mm as an open
subset. The second new result is

Theorem 2. For a Wintgen ideal submanifold x W Mm ! S
mCp .m � 3/ and the

envelope OMm, we have the following conclusions:

1. There is a fiber bundle structure Sm�2 ! OMm ! M
2

over a Riemann surface.
The fibers are all round spheres of the ambient space.

2The notion of the mean curvature sphere can be traced back to Blaschke [1] in 1920s.
3This is an analog to the work of Bryant [2] and Ejiri [11] on Willmore surfaces in S

n.
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2. The projection � W OMm !M
2

is a Riemannian submersion up to a constant.
3. As a natural extension of Mm, OMm is still a Wintgen ideal submanifold.

This theorem shows that Wintgen ideal submanifolds have simple and elegant
structure. Based on this general picture, we can show that they arise either as
cylinders, cones, rotational submanifolds, or Hopf bundles over complex curves in
complex projective spaces under various specific assumptions.

This paper is organized as below. In Sect. 2, we will briefly review the sub-
manifold theory in Möbius geometry established by Wang [19]. Section 3 gives
the information on the invariants and the structure equations of Wintgen ideal
submanifolds. The two results mentioned above are proved separately in Sects. 4
and 5. Finally, we survey some recent results on Wintgen ideal submanifolds based
on our joint work with Tongzhu Li and Changping Wang. These include a reduction
theorem [14], the characterization of the minimal examples [21], and a classification
of Möbius homogeneous examples [16].

2 Submanifold Theory in Möbius Geometry

Here we follow the framework of Wang in [19] except that we take a different
canonical lift Y up to a constant.

In the classical light-cone model, the light-like directions in the Lorentz space
R
mCpC2
1 correspond to points in the round sphere SmCp , and the Lorentz orthogonal

group correspond to the conformal transformation group of S
mCp . The Lorentz

inner product between Y D .Y0; Y1; � � � ; YmCpC1/; Z D .Z0;Z1; � � � ; ZmCpC1/ 2
R
mCpC2
1 is

hY;Zi D �Y0Z0 C Y1Z1 C � � � C YmCpC1ZmCpC1:

Let f W Mm ! S
mCp 	 R

mCpC1 be a submanifold without umbilics. Take
fei j1 � i � mg as the tangent frame with respect to the induced metric I D df �df ,
and f�ig as the dual 1-forms. Let fnr j1 � r � pg be orthonormal frame for the
normal bundle. The second fundamental form and the mean curvature of f are

II D
X

ij;r
hrij �i ˝ �j nr ; H D

1

m

X
j;r
hrjj nr D

X
r
H rnr ; (3)

respectively. We define the Möbius position vector Y WMm ! R
mCpC2
1 of f by

Y D �.1; f /; �2 D 1

4

ˇ̌
II � 1

m
tr.II /I

ˇ̌2
(4)

which is a canonical lift of f . Two submanifolds f; Nf W Mm ! S
mCp are Möbius

equivalent if there exists T in the Lorentz group O.mC p C 1; 1/ in R
mCpC2
1 such

that NY D Y T: It follows immediately that
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g D hdY; dY i D �2df � df (5)

is a Möbius invariant, called the Möbius metric of x.
Let � be the Laplacian with respect to g. Define

N D � 1
m
�Y � 1

2m2
h�Y;�Y iY: (6)

Let fE1; � � � ; Emg be a local orthonormal frame for .Mm; g/ with dual 1-forms
f!1; � � � ; !mg. We define the tangent frame Yj D Ej .Y / and the normal frame

�r D .Hr ; nr CHrf /:

Then fY;N; Yj ; �rg is a moving frame of RmCpC2
1 along Mm, which is orthonormal

except

hY; Y i D 0 D hN;N i; hN; Y i D 1:

Remark 1. Geometrically, at one point x 2 Mm, �r (for any given r) corresponds
to the unique hypersphere tangent to Mm with normal vector nr and mean
curvatureHr.x/. In particular, the spacelike subspace SpanRf�1; � � � ; �pg represents
a uniquem-dimensional sphere tangent toMm with the same mean curvature vectorP

r H
rnr . This well-defined object was naturally named the mean curvature sphere

of Mm at x, which is well-known to share the same mean curvature at x even when
the ambient space is endowed with any other conformal metric.

We fix the range of indices in this section as below: 1 � i; j; k � mI 1 � r; s � p.
The structure equations are:

dY D
X

i
!iYi ;

dN D
X

ij
Aij !iYj C

X
i;r
C r
i !i �r ;

dYi D �
X

j
Aij !j Y � !iN C

X
j
!ij Yj C

X
j;r
Br
ij !j �r ;

d�r D �
X

i
C r
i !iY �

X
i;j
!iB

r
ij Yj C

X
s
�rs�s;

(7)

where !ij are the connection 1-forms of the Möbius metric g; �rs are the normal
connection 1-forms. The tensors

A D
X

i;j
Aij !i ˝ !j ; B D

X
i;j;r

Br
ij !i ˝ !j �r ; ˚ D

X
j;r
C r
j !j �r (8)

are called the Blaschke tensor, the Möbius second fundamental form and the Möbius
form of f , respectively [19]. The integrability conditions for the structure equations
are given as below:



416 X. Ma and Z. Xie

Aij;k � Aik;j D
X

r
.Br

ikC
r
j � Br

ij C
r
k /; (9)

C r
i;j � C r

j;i D
X

k
.Br

ikAkj � Br
jkAki /; (10)

Br
ij;k � Br

ik;j D ıij C r
k � ıikC r

j ; (11)

Rijkl D
X

r
.Br

ikB
r
jl � Br

ilB
r
jk/C ıikAjl C ıjlAik � ıilAjk � ıjkAil ; (12)

R?
rsij D

X
k
.Br

ikB
s
kj � Bs

ikB
r
kj /: (13)

Here the covariant derivatives Aij;k; Br
ij;k; C

r
i;j are defined as usual; R;R? denote

the curvature tensor of g and the normal curvature tensor, respectively. The tensor B
satisfies the following identities:

X
j
Br
jj D 0;

X
i;j;r
.Br

ij /
2 D 4: (14)

All coefficients in the structure equations are determined by fg;Bg and the normal
connection f�˛ˇg. In particular these are the complete set of Möbius invariants.

3 Invariants of a Wintgen Ideal Submanifold

Let f W Mm ! S
mCp be a Wintgen ideal submanifold (m � 3). We will always

assume that it is umbilic-free unless it is stated otherwise. In terms of the Möbius
invariants, that means the existence of a suitable tangent frame fE1; � � � ; Emg and
normal frame f�1; � � � ; �pg so that the Möbius second fundamental form is given by

B1 D

0
BBBBB@

0 1 0 � � � 0
1 0 0 � � � 0
0 0 0 � � � 0
:::
:::
:::
: : :

:::

0 0 0 � � � 0

1
CCCCCA
; B2 D

0
BBBBB@

1 0 0 � � � 0
0 �1 0 � � � 0
0 0 0 � � � 0
:::
:::
:::
: : :

:::

0 0 0 � � � 0

1
CCCCCA
; B˛ D 0; ˛ � 3: (15)

Remark 2. The reader is warned that the lift Y here is different from [19]. Hence in

the formulas below, we have removed the annoying factor � D
q

m�1
4m

appearing in
[14–16, 21].

Remark 3. The canonical distribution D2 D SpanfE1;E2g and the normal sub-
bundle Spanf�1; �2g are well-defined if (15) holds and we fix our frame up to
rotations

. QE1; QE2/ D .E1;E2/
�

cos t sin t
� sin t cos t

�
; . Q�1; Q�2/ D .�1; �2/

�
cos 2t � sin 2t
sin 2t cos 2t

�
:

(16)
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We will adopt the convention below on the range of indices:

1 � i; j; k; l � m; 3 � a; b � mI 1 � r; s � p; 3 � ˛; ˇ � p:

By definition, we compute the covariant derivatives of Br
ij and obtain

Br
ab;i D 0; B˛

1a;i D B˛
2a;i D 0; (17)

B1
12;i D B1

21;i D 0; B2
11;i D B2

22;i D 0; (18)

!2a D
X

i
B1
1a;i!i D �

X
i
B2
2a;i!i ; !1a D

X
i
B1
2a;i!i D

X
i
B2
1a;i!i ; (19)

2!12 C �12 D
X

i

�B1
11;i

�
!i D

X
i
B1
22;i!i D

X
i
B2
12;i!i ; (20)

�1˛ D
X

i
B˛
12;i!i ; �2˛ D

X
i
B˛
11;i!i : (21)

By (11), Br
ij;k is symmetric for distinctive i; j; k. It follows from (17)�(20) that

!1a.Eb/ D B1
2a;b D B1

ab;2 D 0; !2a.Eb/ D B1
1a;b D B1

ab;1 D 0 .a ¤ b/I
!1a.E1/ D B2

1a;1 D B1
2a;1 D B1

21;a D 0; !2a.E2/ D �B2
2a;2 D B1

1a;2 D B1
21;a D 0I

B2
1a;2D�!1a.E2/ D ��!2a.E1/D�.2!12 C �12/.Ea/DB1

2a;2 D B1
22;a D �B1

11;a:

Based on these information, we use (11) to compute C r
i;j as below:

C1
1 D B1

22;1 � B1
21;2 D B1

22;1; C 1
2 D B1

11;2 � B1
12;1 D B1

11;2; (22)

C1
1 D B1

aa;1 � B1
1a;a D �B1

1a;a; C 1
2 D B1

aa;2 � B1
2a;a D �B1

2a;a; (23)

C2
1 D B2

aa;1 � B2
1a;a D �B2

1a;a; C 2
2 D B2

aa;2 � B2
2a;a D �B2

2a;a; (24)

C1
a D B1

22;a � B1
2a;2 D 0; C 2

a D B2
11;a � B2

1a;1 D 0; (25)

C˛
1 D B˛

aa;1 � B˛
a1;a D 0; C ˛

2 D B˛
aa;2 � B˛

a2;a D 0; (26)

C˛
a D B˛

11;a � B˛
1a;1 D B˛

11;a; C ˛
a D B˛

22;a � B˛
2a;2 D B˛

22;a: .8 a; ˛/ (27)

Utilizing the fact
P

i B
˛
i i;k D 0, we deduce from (17) that C˛

a D 0. By (18), (19)
and (22)–(27), the final result is

C1
1 D �C2

2 D �!2a.ea/; C 1
2 D C2

1 D �!1a.ea/; (28)

C1
a D C2

a D 0; C ˛
i D 0: (29)
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For similar reasons, (26) and (27) imply

�1˛.E1/ � �2˛.E2/ D B˛
12;1 � B˛

11;2 D �C˛
2 D 0;

�1˛.E2/C �2˛.E1/ D .B˛
21;2 � B˛

22;1/C .B˛
22;1 C B˛

11;1/ D �C˛
1 D 0:

We summarize the most important information on the connection 1-forms as below.

Proposition 1. For a Wintgen ideal submanifold Mm;m � 3; denote

La D �B1
11;a; V D C1

2 D C2
1 ; U D C2

2 D �C1
1 ; S˛ D B˛

11;2; T˛ D B˛
11;1:

(30)

We can choose a suitable frame fE3; � � � ; Emg so that La D �B1
11;a D 0 when

a � 4 and denote L , L3 D �B1
11;3. Then

!1a D La!2 � V!a; !2a D �La!1 C U!aI (31)

2!12 C �12 D �U!1 � V!2 C L!3I (32)

�1˛ D S˛!1 � T˛!2; �2˛ D T˛!1 C S˛!2: (33)

Before discussing the properties of the conformal Gauss map� D �1^� � �^�p in
the next section, we notice that the subspace Spanf�1; �2g also defines a map into the
Grassmannian Gr.2;RmCpC2

1 /. This is also represented by Œ�1 � i�2 in a complex
quadric

Q
mCp
C D fŒZ 2 CPmCpC1j Z 2 R

mC4
1 ˝ C; hZ;Zi D 0; hZ; NZi > 0g:

We denote � D �1 � i�2, and call Œ� the second Gauss map of the Wintgen ideal
submanifold. When the codimension p D 2, Œ� is equivalent to the conformal Gauss
map � . To understand its geometry, substitute (15), (28), (29) and (33) into the last
structure equation of (7). The result is

d.�1� i�2/ D i.!1C i!2/.�1C i�2/C i�12.�1� i�2/C .!1� i!2/ �
X

˛
.S˛� iT ˛/�˛;

(34)
where

�1 D Y1 C C1
2 Y D Y1 C V Y; �2 D Y2 C C1

1 Y D Y2 � UY: (35)

This indicate that the image of Œ� degenerates to a two-dimensional surface, a
property also shared by the conformal Gauss map � .

Differentiate once more, the result would be

d.�1Ci�2/ D .!1Ci!2/
h
� QY �FY C�G

L
�iL

�
�3

i
�i˝12.�1Ci�2/Ci.!1�i!2/.�1�i�2/;

(36)
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where ˝12 D hd�1; �2i is a connection 1-form,

F D A11 � C1
2;1 C

1

2

 
U 2 C V 2 �

�
G

L

�2!
; G D A12 � C1

2;2 D .C 1
1;1 � C1

2;2/=2I
(37)

QY D N�V Y1CUY2CG
L
Y3�1

2

 
U 2 C V 2 C

�
G

L

�2!
Y; �3 D Y3�G

L
Y: (38)

Note that we have assumed L ¤ 0 at here. To prove (36), we have used (10) to
compute A1j . We omit the straightforward yet tedious computation at here.

4 The Conformal Gauss Map as a Harmonic Map

Proposition 2. For an umbilic-free Wintgen ideal submanifold f W Mm ! S
mCp

of dimension m � 3, the following three conclusions hold true:

1. The image of the conformal Gauss map � D �1 ^ � � � ^ �p W Mm !
Gr.p;RmCpC2

1 / is a real two-dimensional surface M
2
.

2. The projection � W Mm ! M
2

determined by � is a Riemannian submersion

(up to the factor
p
2), where Mm is endowed with the Möbius metric and M

2 	
Gr.p;RmCpC2

1 / with the induced metric.
3. The distribution D

?
2 D SpanfE3; � � � ; Emg is integrable. Its integral submani-

folds are exactly the fibers of the submersion mentioned above.

Proof. When p D 2, these conclusions and Theorem 1 has been proved in [15]. In
the general case when p � 3, we adopt the convention 3 � a � m; 3 � ˛ � p on
the indices. Then it follows from (7) and Proposition 1 that

E1.�/ D �Œ�2 ^ �2 ^
 C �1 ^ �1 ^
; .
 , �3 ^ �4 ^ � � � ^ �p/ (39)

E2.�/ D �Œ�1 ^ �2 ^
 � �1 ^ �2 ^
; (40)

Ea.�/ D 0; 8 3 � a � m: (41)

Consequently, the tangent space ��TxM
2 	 T�.x/Gr.p;RmCpC2

1 / is a plane
given by

Spanf�2 ^ �2 ^
 C �1 ^ �1 ^
; �1 ^ �2 ^
 � �1 ^ �2 ^
g;

and the induced metric is ds2 D 2Œ.!1/
2 C .!2/

2. This proves the first two

conclusions. In particular the image of � is a two-dimensional surface M
2
.

As the kernel of the tangent map ��, D?
2 , the vertical subspace at every point,

is always an integrable distribution whose integral submanifolds are nothing but the
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fibers of this submersion. Conclusion (3) follows immediately (or by the expressions
of !1˛; !2˛ in (31) and the Frobenius Theorem).

(Proof to Theorem 1). According to Proposition 2, we can regard � as a conformal

immersion from the Riemann surfaceM
2

to Gr.p;RmCpC2
1 /. E1;E2 can be viewed

as horizontal lift of an orthonormal basis (up to the factor
p
2) of .TM

2
; ds2/.

The second fundamental form of �.M
2
/ can be read out from a straightforward

computation as below using the structure equations:

E1E1.�/ D 2� C .˝12 C �12/.E1/ Œ�1 ^ �2 ^
 � �1 ^ �2 ^
C 2�1 ^ �2 ^


� L�3 ^ �2 ^
 � �1 ^
�
OFY C OY C G

L
�3

�
^
 C �1 ^ �2 � � � ^ .S˛�2 C T˛�1/ ^ � � � �p:

In the final expression, the first term is the radial component, the second is the
tangential component, and the third term can be ignored because it is not in the
tangent space T�Gr.p;RmC4

1 / at � D �1 ^ � � � ^ �p . The last three terms are the
normal component. Similarly we compute out

E2E2.�/ D 2� C .˝12 C �12/.E2/ Œ�2 ^ �2 ^
 C �1 ^ �1 ^
C 2�1 ^ �2 ^


C L�3 ^ �2 ^
 C �1 ^
�
OFY C OY C G

L
�3

�
^
 C �1 � � � ^ .�T˛�1 � S˛�2/ ^ � � � �p:

Thus .E1E1CE2E2/� has only radial and tangential components. In other words,

the mean curvature vector of the surface � W M2 	 Gr.p;RmC4
1 / vanishes. In the

same manner we derive

E1E2.�/ D .˝12 C �12/.E1/ Œ�2 ^ �2 ^
 C �1 ^ �1 ^


C L�1 ^ �3 ^
 �
�
OFY C OY C G

L
�3

�
^ �2 ^
 C �1 � � � ^ .S˛�1 � T˛�2/ ^ � � � �p :

Its normal component has the same squared norm as that ofE1E1.�/ andE2E2.�/.
Thus its curvature ellipse is a circle, which is the characteristic of a super-conformal

surface. So � WM2 	 Gr.p;RmC4
1 / is a conformal super-minimal immersion.

5 The Spherical Foliation Structure

This section is devoted to the proof of Theorem 2.
By Theorem 1, the mean curvature spheres Spanf�1; � � � ; �pg is a two-parameter

family, with the parameter space being M
2
. It is well-known that such a sphere

congruence has an envelope OMm if and only if V D Spanf�r ; d�r W 1 � r � pg
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form a space-like sub-bundle of the trivial bundle R
mCpC2
1 �M2

. This is satisfied
in our situation by (34), with V D Spanf�r ; �1; �2g being a spacelike sub-bundle
of rank p C 2. In particular, the points of the envelope correspond to the lightlike

directions in its orthogonal sub-bundle V ? over M
2
. By construction, OMm � Mm;

in general we would expect it to be a m-dimensional submanifold (possibly with
singularities).

We have noticed that the distribution D
?
2 D SpanfE3; � � � ; Emg is integrable; the

integral submanifolds are fibers of the Riemannian submersion mentioned before.
We assert that each fiber is contained in a .m � 2/-dimensional sphere determined

by the spacelike subspace V at some point q 2 M
2
. This is because of (36),

which implies that the subspace V is fixed along any integral submanifold of
D

?
2 D SpanfE3; � � � ; Emg. In particular, the integration of Y along D

?
2 is always

contained in V ?, which implies that any integral submanifold is located on the
corresponding .m � 2/-dimensional sphere. This proves the first conclusion of
Theorem 2.

Next we introduce a new moving frame fY; OY ; �1; �2; �aI �rg along M , which is
an orthonormal frame except that Y; OY are lightlike with hY; OY i D 1. They are

�1 D Y1 C V Y; �2 D Y2 � UY; �a D Ya C �aY: (42)

Here f�agmaD3 are real numbers chosen arbitrarily, depending smoothly on the

underlying Riemann surface M
2
. By conclusions in the previous paragraph, M

2

and f�agmaD3 give a parametrization of OMm. When f�agmaD3 vary arbitrarily, the point
corresponding to the lightlike direction

OY D N � 1
2
.V 2 C U 2 C

X
a
�2a/Y � V Y1 C UY2 C

X
a
�aYa (43)

will travel around the whole envelope OMm. Thus we may regard OY as a local lift of
the parameterized submanifold OMm, and any property of OMm can be obtained from
OY with arbitrarily given f�agmaD3. This is the key point in our analysis.

We will focus on the regular subset where OMm is immersed. Using the new
moving frame (42) and (43), there is a new system of structure equations:

d�1 D �!2�1 � !1�2 C �12�2; (44)

d�2 D �!1�1 C !2�2 � �12�1; (45)

d�˛ D ��1˛�1 � �2˛�2 C
X

ˇ
�˛ˇ�ˇ; (46)

d�1 D � O!1Y � !1 OY C
X

k
˝1k�k C !2�1 C !1�2; (47)

d�2 D � O!2Y � !2 OY C
X

k
˝2k�k C !1�1 � !2�2; (48)
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d�a D � O!aY � !a OY C
X

k
˝ak�k; (49)

dY D !Y C !1�1 C !2�2 C
X

a
!a�a; (50)

d OY D �! OY C O!1�1 C O!2�2 C
X

a
O!a�a: (51)

Here !;!k; O!k;˝jk are 1-forms locally defined on OMm which we don’t need to
know explicitly.

We claim that the envelope OMm, viewed as an immersion Œ OY  into the sphere,
still has SpanRf�1; �2; � � � ; �pg as its mean curvature sphere.

As a preparation, it is important to notice that there exist some functions OF ; OG
such that

O!1 D OF!1 C OG!2; O!2 D � OG!1 C OF!2: (52)

This follows from (36) and (43) directly (or from the integrability conditions of the
system (44)–(51)). Based on this, under the induced metric hd OY ; d OY i D Pm

jD1 O!2j
we take a frame f OEj gmjD1 so that O!i. OEj / D . OF 2C OG2/ıij . Since OMm is assumed to

be immersed, OF 2 C OG2 ¤ 0. Modulo the components in D
?
2 D SpanfE3; � � � ; Emg

one gets

OE1 � OF OE1 C OG OE2; OE2 � � OG OE1 C OF OE2; OEa � 0 .mod D
?
2 /: (53)

Next we compute the Laplacian O� OY . The mean curvature sphere at OY is deter-
mined by

SpanRf OY ; OYj ;
Xm

jD1
OEj OEj . OY /g D SpanRf OY ; OYj ; O� OY g:

To verify our claim, it suffices to show hPm
jD1 OEj OEj . OY /; �ri D 0: Because

h OY ; �ri D 0 D hd OY ; �ri D h OY ; d�ri, this is also equivalent to

h OY ;
Xm

jD1
OEj OEj .�r /i D 0; 1 � r � p:

This can be checked directly using (53) and (44)–(48). As a consequence, the
previous claim is proved.

Finally, for OY we take its canonical lift, whose derivatives are clearly combina-
tions of OY ; �1; �2; �a. Its normal frame is just f�1; �2g as we have shown. One reads
from (44) and (45) that this is still a Wintgen ideal submanifold, which finishes the
proof.
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6 Special Classes of Wintgen Ideal Submanifolds

This section reviews our recent work on Wintgen ideal submanifolds from a
unified viewpoint of the conformal Gauss map � and the fiber bundle structure

over M
2
. In the codimension two case we have the following result [15], where �

can be identified with the second Gauss map Œ� from the Riemann surface M
2
.

The theorem below is stronger than Theorem 1 by replacing harmonic map by
holomorphic map. It also supplement Theorem 2 by showing the converse is also
true.

Theorem 3 ([15]). The conformal Gauss map Œ� D Œ�1 � i�2 2 Q
mC2
C of a

Wintgen ideal submanifold of codimension two is a holomorphic and 1-isotropic

curve, i.e., with respect to a local complex coordinate z of M
2
, �Nz k �; h�z; �zi D 0:

Conversely, given a holomorphic 1-isotropic curve Œ� W M2 ! Q
mC2
C 	 CPmC3;

the envelope OMm of the corresponding two-parameter family spheres is a m-
dimensional Wintgen ideal submanifold (at the regular points).

Remark 4. Dajczer et. al. [8] have shown that codimension two Wintgen ideal
submanifolds can always be constructed from Euclidean minimal surfaces. Our
description is equivalent to theirs by a complex stereographic projection from Q

mC2
C

to the complex space C
mC2 D R

mC2 ˝ C, which maps holomorphic 1-isotropic
curves in one space to holomorphic 1-isotropic curves in the other space.

Consider the canonical distribution D2 D SpanfE1;E2g. In the Riemannian

submersion structure � W OMm ! M
2
, it can be viewed as the horizontal lift

(at various points) of the tangent plane TM
2
. By Proposition 1, D2 is integrable

if and only if L D 0. This is the geometric meaning of the invariant L D �B1
11;3 for

a Wintgen ideal submanifold. In general we may consider the integrable distribution
generated by D2 with the lowest dimension k and denote it as D. Related with the
case k < m we have the following conjecture, which has been proved for k D 2

[14] and for k D 3; 4; 5 (not published).

Conjecture 1. Let x W Mm �! R
mCp be a Wintgen ideal submanifold without

umbilic points. If the canonical distribution D2 generates an integrable distribution
D with dimension k < m, then locally x is Möbius equivalent to a cone (res. a
cylinder; a rotational submanifold) over a k-dimensional minimal Wintgen ideal
submanifold in S

kCp (res. in R
kCp; in H

kCp .)

In our attempts to prove this reduction conjecture for Wintgen ideal submanifolds
with a low dimensional (dim.D/ D k is fixed) integrable distribution D, we notice
that it is possible to choose a new frame fY; OY ; �1; �2; �ag with similar expressions
as (42) and (43) (some kind of gauge transformation), which helps to find a
decomposition of RmCpC2

1 into invariant subspaces [14]. Moreover, the integrability
of D implies that the Lorentz plane bundle SpanfY; OY g is flat, i.e., the connection
1-form ! D dY � OY is closed. Another conclusion is that the correspondence
ŒY  $ Œ OY  is a conformal map from OMm to itself. We strongly believe that these
facts are always true for arbitrary k � 2.
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In all cases we know, ! is a well-defined Möbius invariant whose explicit
expression depends on k. For example, when k D 3, ! D �C1

2 !1�C1
1 !2C E3.L/

L
!3

[21].
A natural question arises: for a fixed k and Wintgen ideal submanifolds of

dimension m D k which are irreducible (i.e., the only integrable distribution
containing D2 is the tangent bundle of M ), what is the meaning of d! D 0? We
conjecture the following characterization result, which has been proved for the case
m D 3; p D 2 [21] and the general three-dimensional case (to appear later).

Conjecture 2. For an irreducible Wintgen ideal submanifoldMk of dimension k �
3, if d! D 0, thenMk is Möbius equivalent to a minimal Wintgen ideal submanifold
in either of the three space forms.

A main difficulty in proving these two conjectures for arbitrary dimension k is
that when k changes we have to modify the frame fY; OY ; �1; �2; �ag as well as the
expression ! accordingly, and a unified treatment is still lacking.

Finally, we mention that under the condition of being Möbius homogeneous,
Wintgen ideal submanifolds could be classified [16]. It is interesting to note that
for a Möbius homogeneous Wintgen ideal submanifold M , the Möbius form must
vanish, andM can always be reduced to two or three dimensional minimal examples
in the sense of Conjecture 1. Proving these facts are the key steps in obtaining
the final classification in [16]. (Later we notice other three-dimensional irreducible
examples not contained in our classification results. Thus we will re-write the proof
in [16] and fix this problem.)
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Floer Homology for the Gelfand-Cetlin System

Yuichi Nohara and Kazushi Ueda

Abstract The Gelfand-Cetlin system is a completely integrable system on a flag
manifold of type A. In contrast to the case of toric moment maps, the Gelfand-Cetlin
system has non-torus Lagrangian fibers on some boundary strata of the momentum
polytope. In this paper we discuss Lagrangian intersection Floer theory for torus and
non-torus Lagrangian fibers of the Gelfand-Cetlin system on the three-dimensional
full flag manifold and the Grassmannian of two-planes in a four-dimensional vector
space.

1 Introduction

Let F D GL.n;C/=P be a (full or partial) flag manifold. The Gelfand-Cetlin
system is a completely integrable system

˚ W F �! R
.dimR F /=2

on F , i.e., a set of functionally independent and Poisson commuting functions,
which is introduced by Guillemin and Sternberg [11] as a symplectic geometric
analogue of Gelfand-Cetlin basis [9]. The image � D ˚.F / is a convex polytope,
which we call the Gelfand-Cetlin polytope, and ˚ gives a Lagrangian torus fibration
structure over the interior Int� of �. Because of non-smoothness of ˚ , it has
non-torus fibers on some faces of codim � 3. In this paper we study Lagrangian
intersection Floer theory for Lagrangian torus and non-torus fiber of the Gelfand-
Cetlin system.

Lagrangian intersection Floer theory for torus orbits in a toric manifold has
been developed by Fukaya et al. [8]. We recall some of the results which are
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relevant to this paper. Let .X; !/ be a compact toric manifold of dimCX D N ,
and ˚ W X ! R

N be the toric moment map with moment polytope� D ˚.X/. For
an interior point u 2 Int�, let L.u/ denote the Lagrangian torus fiber ˚�1.u/.

• The potential function PO of Lagrangian torus fibers is defined as a function on

[
u2Int�

H1.L.u/I�0=2�
p�1Z/ Š Int� � .�0=2�

p�1Z/N ;

where�0 is the Novikov ring. In the Fano case, PO can be regarded as a Laurent
polynomial, and it coincides with the superpotential of the Landau-Ginzburg
mirror of X .

• Each critical point of PO corresponds to a pair .L.u/; b/ of a fiber L.u/ and
b 2 H1.L.u/I�0=2�

p�1Z/ with nontrivial Floer homology.
• The quantum cohomology of X is isomorphic to the Jacobi ring Jac.PO/ of the

potential function.

See [8] or [7] for more detail. In particular, the number of critical points of PO is
equal to the rank of the cohomology group H�.X/ of X , provided that PO is a
Morse function.

In the case of Gelfand-Cetlin system, Nishinou and we [12] compute the
potential function of Lagrangian torus fibers by using a toric degeneration of the
flag manifold, and show that it coincides with the superpotential of the Landau-
Ginzburg mirror of the flag manifold [1,10]. In contrast to the toric case, the number
of critical points of the potential function, and hence the number of Lagrangian
torus fibers with nontrivial Floer homology, is smaller than the rank of H�.F / in
general. Eguchi et al. [3] and Rietsch [13] consider a partial compactification of
the mirror of F to get as many critical points of the superpotential as rankH�.F /.
It is natural to expect that the critical points at “infinity” correspond to Lagrangian
fibers on the boundary of the Gelfand-Cetlin polytope. In this paper, we study Floer
homology of such non-torus fibers in the three-dimensional flag manifold Fl.3/ and
the Grassmannian Gr.2; 4/ of two-planes in C

4.
This paper is organized as follows. In Sect. 2 we recall the construction of the

Gelfand-Cetlin system and see non-torus Lagrangian fibers in Fl.3/ and Gr.2; 4/.
In Sect. 3 we study the potential function for the Gelfand-Cetlin system. The
computation of the Floer homologies of non-torus Lagrangian fibers in Fl.3/ and
Gr.2; 4/ is given in Sect. 4.

2 Gelfand-Cetlin System

Fix a sequence 0 D n0 < n1 < � � � < nr < nrC1 D n of integers, and set
ki D ni � ni�1 for i D 1; : : : ; r C 1. The flag manifold F D F.n1; : : : ; nr ; n/ is
defined by
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F D U.n/=.U.k1/ � � � � � U.krC1//:

Let Fl.n/ WD F.1; 2; : : : ; n/ and Gr.k; n/ WD F.k; n/ denote the full flag
manifold and the Grassmannian of k-planes in C

n, respectively. The dimension of
F.n1; : : : ; nr ; n/ is given by

N D N.n1; : : : ; nr ; n/ WD dimC F.n1; : : : ; nr ; n/ D
rX
iD1
.ni � ni�1/.n � ni /:

We identify the dual u.n/� of the Lie algebra u.n/ of U.n/ with the space
p�1u.n/

of Hermitian matrices by using an invariant inner product. Then F is identified with
the adjoint orbit O� 	

p�1u.n/ of a diagonal matrix � D diag .�1; : : : ; �n/ with

�1 D � � � D �n1„ ƒ‚ …
k1

> �n1C1 D � � � D �n2„ ƒ‚ …
k2

> � � � > �nrC1 D � � � D �n„ ƒ‚ …
krC1

:

Note that O� consists of Hermitian matrices with fixed eigenvalues �1; : : : ; �n.
Let ! be the Kostant-Kirillov form on O�.

For x 2 O� and k D 1; : : : ; n� 1, let x.k/ denote the upper-left k � k submatrix
of x. Since x.k/ is also a Hermitian matrix, it has real eigenvalues �.k/1 .x/ �
�
.k/
2 .x/ � � � � � �

.k/

k .x/. By taking the eigenvalues for all k D 1; : : : ; n � 1, we

obtain a set of n.n � 1/=2 functions .�.k/i /1�i�k�n�1. Since the eigenvalues satisfy
the following inequalities

(1)
some of �.k/i are constant functions if F is not a full flag manifold. It is easy to see

that the number of nonconstant �.k/i coincides with N D dimC F . The Gelfand-
Cetlin system is defined to be the tuple

˚ D .�.k/i /i;k W F.n1; : : : ; nr ; n/ �! R
N.n1;:::;nr ;n/

of nonconstant �.k/i .
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Fig. 1 The Gelfand-Cetlin
polytope for Fl.3/

u1

u3

u2

Proposition 2.1 (Guillemin and Sternberg [11]). The map ˚ is a completely
integrable system on .F.n1; : : : ; nr ; n/; !/, and the functions �

.k/
i are action

coordinates. The image � D ˚.F / is a convex polytope defined by (1), and the
fiber L.u/ D ˚�1.u/ over each interior point u 2 Int� is a Lagrangian torus.

Example 2.1. The Gelfand-Cetlin polytope for the three-dimensional flag manifold
Fl.3/ is defined by

The Gelfand-Cetlin system has a non-torus fiber over the vertex u0 D
.�2; �2; �2/, where four edges are intersecting (see Fig. 1). The fiber L0 D ˚�1.u0/
is given by

L0 D
8<
:
0
@�2 0 z1
0 �2 z2
z1 z2 �1 � �2 C �3

1
A 2 O�

ˇ̌
ˇ̌
ˇ̌ jz1j2 C jz2j2 D .�1 � �2/.�2 � �3/

9=
; ;

which is diffeomorphic to a 3-sphere S3.

Example 2.2. Next we consider the case of Gr.2; 4/. After a translation, we may
assume that �1 D �2 D ��3 D ��4 D � for � > 0. Then � is given by

Figure 2 shows the projection �! Œ��; �, u D .u1; u2; u3; u4/ 7! u1.
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Fig. 2 The Gelfand-Cetlin
polytope for Gr.2; 4/

λ

−λ
0

In this case non-torus fibers appear along the edge u1 D u2 D u3 D u4. For
�� < t < �, the fiber Lt D ˚�1.ut / over ut D .t; t; t; t / is given by

Lt D
� 

tI2
p
�2 � t 2Pp

�2 � t 2P � .�t /I2

!
2 p�1u.4/

ˇ̌
ˇ̌ P 2 U.2/

�
Š U.2/:

3 Potential Functions for Gelfand-Cetlin Systems

Let �0 D
˚P1

iD1 aiT �i
ˇ̌
ai 2 C; �i � 0; limi!1 �i D1

�
be the Novikov ring.

The maximal ideal and the quotient field of the local ring �0 will be denoted by
�C and � respectively. For a spin and oriented Lagrangian submanifold L in a
symplectic manifold .X; !/, one can equip an A1-structure

mk D
X

ˇ2�2.X;L/
T !.ˇ/mk;ˇ W H�.LI�0/

˝k �! H�.LI�0/

on the cohomology group of L with coefficients in �0 by “counting” pseudo-
holomorphic disks [5, Theorem A]. An element b in H1.LI�C/ (or H1.LI�0/)
is called a weak bounding cochain if it satisfies the Maurer-Cartan equation

1X
kD0

mk.b; : : : ; b/ � 0 mod PD.ŒL/: (2)

The set of weak bounding cochains will be denoted by OMweak.L/. For any b 2
OMweak.L/, one can twist the Floer differential as

mb
1.x/ D

X
k;l

mkClC1.b˝k ˝ x ˝ b˝l /:



432 Y. Nohara and K. Ueda

The Maurer-Cartan equation (2) implies mb
1 ı mb

1 D 0, and the Floer homology of
the pair .L; b/ is defined by

HF..L; b/; .L; b/I�0/ D Kermb
1= Immb

1:

The potential function PO W OMweak.L/! �0 is defined by

1X
kD0

mk.b; : : : ; b/ D PO.b/ � PD.ŒL/:

Now we consider the Gelfand-Cetlin system ˚ W F D F.n1; : : : ; nr ; n/ ! �.
Take primitive vectors vi 2 Z

N and 
i 2 R so that the Gelfand-Cetlin polytope is
given by

� D fu 2 R
N j `i .u/ D hvi ;ui � 
i � 0; i D 1; : : : ; mg;

where m is the number of codimension one faces of �. Note that `i has the form
`i .u/ D uj � uk or `i .u/ D ˙.uj � �k/. Let

˚
�
.k/
i

�
i;k

be the angle coordinates

dual to the action coordinates
˚
�
.k/
i

�
i;k

. For each interior point u 2 Int�, we will

identify H1.L.u/I�0/ with �N
0 by

X
i;k

x
.k/
i d�

.k/
i 2 H1.L.u/I�0/ ! x D �x.k/i �

i;k
2 �N

0 :

The following theorem is a Gelfand-Cetlin analogue of [2, Section 15] and [6,
Proposition 3.2 and Theorem 3.4].

Theorem 3.1 ([12, Theorem 10.1]). For any interior point u 2 Int�, we have
an inclusion H1.L.u/I�0/ 	 OMweak.L.u//; and the potential function on
H1.L.u/I�0/ Š �N

0 is given by

PO.x/ D
mX
iD1

ehvi ;xiT `i .u/:

After the coordinate change

yk D exkT uk ; k D 1; : : : ; N;
Qj D T �nj ; j D 1; : : : ; r C 1;

the potential function can be regarded as a Laurent polynomial in y1; : : : ; yN with
coefficients in QŒQ˙1

1 ; : : : ;Q˙1
rC1.
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Example 3.1. In the case of three-dimensional flag manifold Fl.3/, the potential
function is given by

PO D e�x1T �u1C�1 C ex1T u1��2 C e�x2T �u2C�2

C ex2T u2��3 C ex1�x3T u1�u3 C e�x2Cx3T �u2Cu3

D Q1

y1
C y1

Q2

C Q2

y2
C y2

Q3

C y1

y3
C y3

y2
:

Critical points of PO are given by

y1 D y23=y2;
y2 D ˙

p
Q3.y3 CQ2/;

y3 D 3
p
Q1Q2Q3; e

2�
p�1=3 3

p
Q1Q2Q3; e

4�
p�1=3 3

p
Q1Q2Q3:

It is easy to see that all critical points are nondegenerate and have the same valuation
which lies in the interior of the Gelfand-Cetlin polytope. Hence we have as many
critical point as dimH�.Fl.3// D 6 in this case.

Example 3.2. Next we discuss the case of Gr.2; 4/, where �1 D �2 > �3 D �4.
The potential function is given by

PO D e�x2T �u2C�1 C e�x1Cx2T �u1Cu2 C ex1�x3T u1�u3

C ex3T u3��3 C ex2�x4T u2�u4 C e�x3Cx4T �u3Cu4

D Q1

y2
C y2

y1
C y1

y3
C y3

Q3

C y2

y4
C y4

y3
;

whose critical points are given by

y1 D y4 D ˙
p
Q1Q3; y2 D Q1Q3=y3; y3 D ˙

p
2Q3y1:

These four critical points are non-degenerate and have a common valuation in the
interior of the Gelfand-Cetlin polytope. Since dimH�.Gr.2; 4// D 6, one has less
critical point than dimH�.Gr.2; 4//.

4 Floer Homologies of Non-torus Fibers

In this section we discuss Floer homologies of non-torus Lagrangian fibers in Fl.3/
and Gr.2; 4/. Detailed proofs of the results in this section will appear elsewhere.
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4.1 Floer Homology of Lagrangian S 3 in Fl.3/

Recall that �2.Fl.3// Š Z
2 is generated by one-dimensional Schubert varieties

X1, X2. Since the fiber L0 is diffeomorphic to S3, the exact homotopy sequence
yields �2.Fl.3/; L0/ Š �2.Fl.3// Š Z

2: Let ˇ1, ˇ2 be generators of �2.Fl.3/; L0/
corresponding to X1 and X2, respectively. The Maslov index and the symplectic
area of ˇi are given by

�L0.ˇ1/ D �L0.ˇ2/ D 4; !.ˇ1/ D �1 � �2; !.ˇ2/ D �2 � �3:

Theorem 4.1. The Floer homology of L0 over the Novikov ring �0 is

HF.L0;L0I�0/ Š �0=T
minf�1��2;�2��3g�0:

Hence the Floer homology over the Novikov field � is trivial: HF.L0;L0I�/ D 0.

Sketch of proof. Since the minimal Maslov number is four, the only nontrivial parts
of the Floer differential are

m1;ˇi W H3.L0I�0/ Š H0.L0I�0/ �! H0.L0I�0/ Š H3.L0I�0/

for i D 1; 2.

Lemma 4.1. For each p0 ¤ p1 2 L0 and ˇi , there exists a holomorphic disk
v W .D2; @D2/! .Fl.3/; L0/ such that v.1/ D p0, v.�1/ D p1, and Œv D ˇi . Such
v is unique up to the action of fg 2 Aut.D2/ jg.1/ D 1; g.�1/ D �1g.

Let J be the standard complex structure on Fl.3/. Since .Fl.3/; L0/ is SU.2/-
homogeneous in the sense of Evans and Lekili [4, Definition 1.1.1], the result [4,
Proposition 3.2.1] implies that any J -holomorphic disk in .Fl.3/; L0/ is Fredholm
regular. Hence Lemma 4.1 implies the following.

Lemma 4.2. The moduli space M2.J; ˇi / of J -holomorphic disks in the class ˇi
with two boundary marked points is a smooth manifold of dimension 6, and the
evaluation map ev D .ev0; ev1/ WM2.J; ˇi /! L0 � L0 is generically one-to-one.

Then for the generator Œp 2 H0.L0IZ/ we have

m1;ˇ1.Œp/ D m1;ˇ2.Œp/ D ev0�ŒM2.J; ˇ1/ev1� fpg D ŒL0;

and thus

m1.Œp/ D
2X
iD1

T !.ˇi /m1;ˇi .Œp/ D .T �1��2 C T �2��3/ŒL0;

which proves the theorem.
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4.2 Floer Homologies of U.2/-fibers in Gr.2 ; 4/

Assume that �1 D �2 D ��3 D ��4 D � > 0, and set Lt D ˚�1.t; t; t; t / as
in Example 2.2. Recall that �2.Gr.2; 4// Š Z is generated by a one-dimensional
Schubert variety X1. Since �1.Gr.2; 4// D �2.Lt / D 0 and �1.Lt / Š Z, the exact
sequence

0 �! �2.Gr.2; 4// �! �2.Gr.2; 4/; Lt / �! �1.Lt / �! 0

implies that �2.Gr.2; 4/; Lt / Š Z
2. Let ˇ1; ˇ2 be generators of �2.Gr.2; 4/; Lt /

such that ˇ1 C ˇ2 D ŒX1 2 �2.Gr.2; 4//. The Maslov index and the symplectic
area are given by

�Lt .ˇ1/ D �Lt .ˇ2/ D 4; !.ˇ1/ D �C t; !.ˇ2/ D � � t:

Since Lt is diffeomorphic to U.2/ Š S1 � S3, we have H�.Lt / Š H�.S1/ ˝
H�.S3/. Let e1 2 H1.Lt IZ/ Š H1.S1IZ/ and e3 2 H3.Lt IZ/ Š H3.S3IZ/ be
generators. Since the minimal Maslov number is four, the only nontrivial parts of
the Floer differential mb

1 are

mb
1;ˇi
W H4.Lt I�0/ �! H1.Lt I�0/; H3.Lt I�0/ �! H0.Lt I�0/ Š �0

for i D 1; 2. By a similar argument to the proof of Theorem 4.1, we have the
following.

Theorem 4.2. For b D xe1 2 H1.L0I�0=2�
p�1Z/ Š �0=2�

p�1Z, the Floer
differential mb

1 is given by

mb
1.e3/ D exT �Ct C e�xT ��t ;

mb
1.e1 ˝ e3/ D .exT �Ct C e�xT ��t /e1:

Hence the Floer homologies of .Lt ; b/ are

HF..Lt ; b/; .Lt ; b/I�0/ Š
(
H�.L0I�0/ if tD0 and xD˙ �p�1=2;
.�0=T

minf��t;�Ctg�0/
2 otherwise;

HF..Lt ; b/; .Lt ; b/I�/ Š
(
H�.L0I�/ if t D 0 and x D ˙�p�1=2;
0 otherwise:
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9. Geĺfand, I. M., Tsetlin, M.L.: Finite-dimensional representations of the group of unimodular
matrices. (Russian) Doklady Akad. Nauk SSSR (N.S.) 71, 825–828 (1950)

10. Givental, A.: Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror
conjecture. In: Topics in Singularity Theory. American Mathematical Society Translations:
Series 2, vol. 180, pp. 103–115, The American Mathematical Society, Providence (1997)

11. Guillemin, V., Sternberg, S.: The Gelfand-Cetlin system and quantization of the complex flag
manifolds. J. Funct. Annal. 52, 106–128 (1983)

12. Nishinou, T., Nohara, Y., Ueda, K.: Toric degenerations of Gelfand-Cetlin systems and
potential functions. Adv. Math. 224, 648–706 (2010)

13. Rietsch, K.: A mirror symmetric construction of qH�

T .G=P /.q/. Adv. Math. 217(6), 2401–2442
(2008)



The Regularized Mean Curvature Flow
for Invariant Hypersurfaces in a Hilbert Space

Naoyuki Koike

Abstract In this note, I state some results for the regularized mean curvature flow
starting from invariant hypersurfaces in a Hilbert space equipped with an isometric
almost free Hilbert Lie group action whose orbits are minimal regularizable
submanifolds. First we derive the evolution equations for some geometric quantities
along this flow. Some of the evolution equations are described by using the O’Neill
fundamental tensor of the orbit map of the Hilbert Lie group action, where we note
that the O’Neill fundamental tensor implies the obstruction for the integrability of
the horizontal distribution of the orbit map. Next, by using the evolution equations,
we derive some results for this flow. Furthermore, we derive some results for the
mean curvature flow starting from compact Riemannian suborbifolds in the orbit
space (which is a Riemannian orbifold) of the Hilbert Lie group action.

1 Introduction

Hamilton [3] proved the existenceness and the uniqueness (in short time) of
solutions satisfying any initial condition of a weakly parabolic equation for sections
of a finite dimensional vector bundle. The Ricci flow equation for Riemannian
metrics on a fixed compact manifold M is a weakly parabolic equation, where we
note that the Riemannian metrics are sections of the .0; 2/-tensor bundle T .0;2/M
of M . Let ft (0 � t < T ) be a C1-family of immersions of M into the
m-dimensional Euclidean space R

m. Define a map F W M � Œ0; T / ! R
m by

F.x; t/ WD ft .x/ (.x; t/ 2 M � Œ0; T /). The mean curvature flow equation is
described as

@F

@t
D 4t ft ;
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where 4t is the Laplacian operator of the metric gt on M induced from the
Euclidean metric of R

m by ft . Here we note that 4t ft is equal to the mean
curvature vector of ft . This evolution equation also is a weakly parabolic equation,
where we note that the immersions ft ’s are regarded as sections of the trivial
bundle M � R

m over M under the identification of ft and its graph immersion
idM � f W M ! M � R

m (idM W the identity map of M ). Hence we can apply the
Hamilton’s result to this evolution equation and hence can show the existenceness
and the uniqueness (in short time) of solution of this evolution equation satisfying
any initial condition. In this paper, we consider the case where the ambient space
is a (separable infinite dimensional) Hilbert space V . Let M be a Hilbert manifold
and ft (0 � t < T ) be a C1-family of immersions of M into V . Assume that ft is
regularizable, where “regularizability” means that ft is proper Fredholm and that,
for each normal vector v of M , the regularized trace Trr Atv of the shape operator
Atv of ft and the trace Tr .Atv/

2 of .Atv/
2 exist. Denote by Ht the regularized mean

curvature vector of ft . See the next section about the definitions of Trr Atv and
Ht . Define a map F W M � Œ0; T / ! V as above in terms of ft ’s. We call ft ’s
(0 � t < T ) the regularized mean curvature flow if the following evolution equation
holds:

@F

@t
D 4rt ft : (1)

Here4rt ft is defined as the vector field along ft satisfying

h4rt ft ; vi WD Trrh.r t dft /.�; �/; vi] .8 v 2 V /;

where r t is the Riemannian connection of the metric gt on M induced from the
metric h ; i of V by ft , h.r t dft /.�; �/; vi] is the .1; 1/-tensor field on M defined
by gt .h.r t dft /.�; �/; vi].X/; Y / D h.r t dft /.X; Y /; vi .X; Y 2 TM/ and Trr .�/ is
the regularized trace of .�/. Note that 4rt ft is equal to Ht . Also, we note that the
regularized mean curvature flow was used in the investigation of the mean curvature
flow starting from equifocal submanifolds in a symmetric space of compact type
(see [7]). In general, the existenceness and the uniqueness (in short time) of solutions
of this evolution equation satisfying any initial condition has not been shown yet.
For we cannot apply the Hamilton’s result to this evolution equation because it is
regarded as the evolution equation for sections of the infinite dimensional vector
bundleM �V overM . However we can show the existenceness and the uniqueness
(in short time) of solutions of this evolution equation in special case. In this
paper, we consider a isometric almost free action of a Hilbert Lie group G on a
Hilbert space V whose orbits are regularized minimal, that is, they are regularizable
submanifold and their regularized mean curvature vectors vanish, where “almost
free” means that the isotropy group of the action at each point is discrete. Let
M.	 V / be a G-invariant submanifold in V . Assume that the image of M by
the orbit map of the G-action is compact. Let f be the inclusion map of M into
V . We first show that the regularized mean curvature flow starting from M exists
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uniquely in short time (see Proposition 4.1). In particular, we consider the case
where M is a hypersurface. The first purpose of this paper is to obtain the evolution
equations for various geometrical quantities along the regularized mean curvature
flow starting from G-invariant hypersurfaces (see Sect. 4). The second purpose is to
prove a horizontally strongly convexity preservability theorem for the regularized
mean curvature flow starting from the above invariant hypersurface by using the
evolution equations in Sect. 4 and using the maximum principle (see Sect. 5). From
this theorem, we derive the strongly convexity preservability theorem for the mean
curvature flow starting from compact Riemannian suborbifolds in the orbit space
V=G (which is a Riemannian orbifold) (see Sect. 6).

2 The Regularized Mean Curvature Flow

Let ft (0 � t < T ) be a one-parameter C1-family of immersions of a manifold M
into a (finite dimensional) Riemannian manifold N , where T is a positive constant
or T D 1. Denote by Ht the mean curvature vector of ft . Define a map F W
M � Œ0; T /! N by F.x; t/ D ft .x/ (.x; t/ 2M � Œ0; T /). If, for each t 2 Œ0; T /,
@F
@t
D Ht holds, then ft (0 � t < T ) is called a mean curvature flow.
Let f be an immersion of an (infinite dimensional) Hilbert manifold M into a

Hilbert space V and A the shape tensor of f . If codimM < 1, if the differential
of the normal exponential map exp? of f at each point ofM is a Fredholm operator
and if the restriction exp? to the unit normal ball bundle of f is proper, then M is
called a proper Fredholm submanifold. Then each shape operator Av is a compact
operator. In 1989, this notion was introduced by Terng [11]. Furthermore, if, for each
normal vector v of f , the regularized trace Trr Av and TrA2v exist, then M is called

regularizable submanifold, where Trr Av is defined by Trr Av WD
1P
iD1
.�C

i C ��
i /

(��
1 � ��

2 � � � � � 0 � � � � � �C
2 � �C

1 W the spectrum of Av). In 2006, this
notion was introduced by Heintze–Liu–Olmos [4]. In this paper, we then call f
regularizable immersion. If f is a regularizable immersion, then the regularized
mean curvature vector H of f is defined by hH; vi D Trr Av .8 v 2 T ?M/, where
h ; i is the inner product of V and T ?M is the normal bundle of f . IfH D 0, then
f is said to be minimal. In particular, if f is of codimension one, then we call the
norm jjH jj of H the regularized mean curvature function of f .

Let ft (0 � t < T ) be a C1-family of regularizable immersions of M
into V . Denote by Ht the regularized mean curvature vector of ft . Define a map
F WM � Œ0; T /! V by F.x; t/ WD ft .x/ (.x; t/ 2M � Œ0; T /). If @F

@t
D Ht holds,

then we call ft (0 � t < T ) the regularized mean curvature flow. It has not been
known whether the regularized mean curvature flow starting from any regularizable
hypersurface exists uniquely in short time. However its existence and uniqueness
(in short time) is shown in a special case (see Proposition 4.1).
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3 The Mean Curvature Flow in Riemannian Orbifolds

In this section, we shall define the notion of the mean curvature flow starting from
a suborbifold in a Riemannian orbifold. First we recall the notions of a Riemannian
orbifold and a suborbifold following to [1, 2, 10, 13]. Let M be a paracompact
Hausdorff space and .U; �; QU=� / a triple satisfying the following conditions:

(i) U is an open set of M ,
(ii) OU is an open set of Rn and � is a finite subgroup of the Ck-diffeomorphism

group Diffk. OU / of OU ,
(iii) � is a homeomorphism of U onto OU=� .

Such a triple .U; �; OU=� / is called an n-dimensional orbifold chart. Let O WD
f.U�; ��; OU=��/ j� 2 �g be a family of n-dimensional orbifold charts of M
satisfying the following conditions:

(O1) fU� j� 2 �g is an open covering of M ,
(O2) For any �;� 2 � with U� \U� 6D ; and any x 2 U� \U�, there exists an n-

dimensional orbifold chart .W; ; OW =� 0/ about x such that Ck-embeddings
�� W OW ,! OU� and �� W OW ,! OU� satisfying ��1

� ı ��� ı �� D  �1 ı �� 0 and
��1
� ı ��� ı �� D  �1 ı �� 0 , where ���; ��� and �� 0 are the orbit maps of
��; �� and � 0, respectively.

Such a family O is called an n-dimensional Ck-orbifold atlas of M and the
pair .M;O/ is called an n-dimensional Ck-orbifold. Let .U�; ��; OU�=��/ be an
n-dimensional orbifold chart around x 2 M . Then the group .��/ Ox WD fb 2
�� j b. Ox/ D Oxg is unique for x up to the conjugation, where Ox is a point of OU� with
.��1
� ı ���/. Ox/ D x. Denote by .��/x the conjugate class of this group .��/ Ox , This

conjugate class is called the local group at x. If the local group at x is not trivial,
then x is called a singular point of .M;O/. Denote by Sing.M;O/ (or Sing.M/)
the set of all singular points of .M;O/. This set Sing.M;O/ is called the singular
set of .M;O/.

Let .M;OM/ and .N;ON / be orbifolds, and f a map from M to N . If, for each
x 2M and each pair of an orbifold chart .U�; ��; OU�=��/ of .M;OM/ around x and
an orbifold chart .V�;  �; OV�=� 0

�/ of .N;ON / around f .x/ (f .U�/ 	 V�), there

exists a Ck-map Of�;� W OU� ! OV� with f ı ��1
� ı��� D  �1

� ı�� 0

�
ı Of�;�, then f is

called a Ck-orbimap (or simply a Ck-map). Also Of�;� is called a local lift of f with
respect to .U�; ��; OU�=��/ and .V�;  �; OV�=� 0

�/. Furthermore, if each local lift Of�;�
is an immersion, then f is called a Ck-orbiimmersion (or simply a Ck-immersion)
and .M;OM/ is called a Ck-(immersed) suborbifold in .N;ON ; g/. Similarly, if
each local lift Of�;� is a submersion, then f is called a Ck-orbisubmersion.

Now we shall define the notion of the mean curvature flow starting from a C1-
suborbifold in a C1-Riemannian orbifold. Let ft (0 � t < T ) be a C1-family of
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C1-orbiimmersions of a C1-orbifold .M;OM/ into a C1-Riemannian orbifold
.N;ON ; g/. Assume that, for each .x0; t0/ 2M � Œ0; T / and each pair of an orbifold
chart .U�; ��; OU�=��/ of .M;OM/ around x0 and an orbifold chart .V�; ��; OV�=� 0

�/

of .N;ON / around ft0.x0/ such that ft .U�/ 	 V� for any t 2 Œt0; t0 C "/ (" W a
sufficiently small positive number), there exists local lifts . Oft /�;� W OU� ! OV� of ft
(t 2 Œt0; t0 C "/) such that they give the mean curvature flow in . OV�; Og�/, where Og�
is the local lift of g to OV�. Then we call ft (0 � t < T ) the mean curvature flow in
.N;ON ; g/.

Theorem 3.1 ([8]). For any C1-orbiimmersion f of a compact C1-orbifold into
aC1-Riemannian orbifold, the mean curvature flow starting from f exists uniquely
in short time.

Proof. Let f be a C1-orbiimmersion of an n-dimensional compact C1-orbifold
.M;OM/ into an .nC r/-dimensional C1-Riemmannian orbifold .N;ON ; g/. Fix
x0 2 M . Take an orbifold chart .U�; ��; OU�=��/ of .M;OM/ around x0 and an
orbifold chart .V�;  �; OV�=� 0

�/ of .N;ON / around f .x0/ such that f .U�/ 	 V�

and that OU� is relative compact. Also, let Of�;� W OU� ,! OV� be a local lift of f and Og�
a local lift of g (to OV�). Since OU� is relative compact, there exists the mean curvature
flow . Of�;�/t W OU� ,! . OV�; Og�/ (0 � t < T / starting from Of�;� W OU� ,! . OV�; Og�/.
Since Of�;� is projetable to f jU� and Og� is � 0

�-invariant, . Of�;�/t (0 � t < T ) also are
projectable to maps of U� into V�. Denote by .f�;�/t ’s these maps of U� into V�.
It is clear that .f�;�/t (0 � t < T ) is the mean curvature flow starting from f jU� .
Hence, it follows from the arbitrariness of x0 and the compactness of M that the
mean curvature flow starting from f exists uniquely in short time (Figs. 1 and 2).

ut

Fig. 1 This is an example of
the mean curvature orbivector
of an orbiimmersion

̂Vμ

Vμ

ψ−1
μ ◦πΓ ′

μ

̂Hλ ,μ

H

̂Uλ
̂fλ ,μ
↪→

φ−1
λ ◦πΓλ

Uλ

f
↪→

(a local lift of H)
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Fig. 2 This is an example of
the mean curvature flow
starting from an
orbiimmersion

f (Uλ ) ft (Uλ )( t > 0)

̂fλ ,μ (̂Uλ ) (̂ft )λ ,μ (̂Uλ )( t > 0)

time goes by

time goes by

4 Evolution Equations

Let G Õ V be an isometric almost free action with minimal regularizable orbit of
a Hilbert Lie group G on a Hilbert space V equipped with an inner product h ; i.
The orbit space V=G is a (finite dimensional) C1-orbifold. Let � W V ! V=G be
the orbit map and set N WD V=G. Here we give an example of such an isometric
almost free action of a Hilbert Lie group.

Example. Let G be a compact semi-simple Lie group, K a closed subgroup of G
and � a discrete subgroup of G. Denote by g and k the Lie algebras of G and
K, respectively. Assume that a reductive decomposition g D k C p exists. Let B
be the Killing form of g. Give G the bi-invariant metric induced from �B . Let
H0.Œ0; 1; g/ be the Hilbert space of all paths in the Lie algebra g of G which are
L2-integrable with respect to �B . Also, let H1.Œ0; 1; G/ the Hilbert Lie group of
all paths in G which are of class H1 with respect to g. This group H1.Œ0; 1; G/

acts on H0.Œ0; 1; g/ isometrically and transitively as a gauge action:

.a 
 u/.t/ D AdG.a.t//.u.t// � .Ra.t//�1� .a0.t//
.a 2 H1.Œ0; 1; G/; u 2 H0.Œ0; 1; g//;

(see [11, 12]), where AdG is the adjoint representation of G and Ra.t/ is the right
translation by a.t/ and a0 is the weak derivative of a. Set P.G; � � K/ WD fa 2
H1.Œ0; 1; G/ j .a.0/; a.1// 2 � �Kg. The group P.G; � �K/ acts onH0.Œ0; 1; g/
almost freely and isometrically, and the orbit space of this action is diffeomorphic
to the orbifold � nG =K. Furthermore, each orbit of this action is regularizable and
minimal.

Give N the Riemannian orbimetric such that � is a Riemannian orbisubmersion.
Let f W M ,! V be a G-invariant submanifold immersion such that .� ı f /.M/

is compact. For this immersion f , we can take an orbiimmesion f of a compact
orbifold M into N and an orbisubmersion �M W M ! M with � ı f D f ı �M .
Let f t (0 � t < T ) be the mean curvature flow starting from f . The existenceness
and the uniqueness of this flow in short time is assured by Theorem 3.1. Define a
map F WM � Œ0; T /! N by F .x; t/ WD f t .x/ (.x; t/ 2M � Œ0; T /). Denote byH
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the regularized mean curvature vector of f and H the mean curvature vector of f .
Since � has minimal regularizable fibres,H is the horizontal lift ofH . Take x 2M
and u 2 ��1

M .x/. Define a curve cx W Œ0; T /! N by cx.t/ WD f t .x/ and let .cx/Lu W
Œ0; T / ! V be the horizontal lift of cx starting from f .u/. Define an immersion
ft W M ,! V by ft .u/ D .cx/

L
u .t/ (u 2 QM ) and a map F W M � Œ0; T / ! V by

F.u; t / D ft .u/ (.u; t / 2M � Œ0; T /).
Proposition 4.1 ([8]). The flow ft (0 � t < T ) is the regularized mean curvature
flow starting from f .

Proof. Denote byHt the mean curvature vector of f t andHt the regularized mean
curvature vector of ft . Take any .u; t / 2 M � Œ0; T /. Set x WD �M.u/. It is clear
that � ı ft D f t ı �M . Hence, since each fibre of � is regularizable and minimal,
.Ht /u coincides with one of the horizontal lifts of .H t /x to ft .u/. On the other

hand, from the definition of F , we have
@F

@t
.u; t / D ..cx/Lu /0.t/, which is one of

the horizontal lifts of .H t /x to ft .u/. These facts together with
@F

@t
.u; 0/ D Hu

implies that
@F

@t
.u; t / D .Ht /u. Thus it follows from the arbitrariness of .u; t / that ft

(0 � t < T ) is the regularized mean curvature flow starting from f . This completes
the proof. ut

Assume that the codimension of f is equal to one. Denote by QH (resp. QV )
the horizontal (resp. vertical) distribution of �. Denote by pr QH (resp. pr QV ) the
orthogonal projection of T V onto QH (resp. QV ). For simplicity, for X 2 T V ,
we denote pr QH .X/ (resp. pr QV .X/) by X QH (resp. X QV ). Define a distribution Ht

on M by ft�..Ht /u/ D ft�.TuM/ \ QHft .u/ (u 2 M ) and a distribution Vt on
M by ft�..Vt /u/ D QVft .u/ (u 2 M ). Note that Vt is independent of the choice
of t 2 Œ0; T /. Denote by gt ; ht ; At ;Ht and �t the induced metric, the second
fundamental form, the shape tensor and the regularized mean curvature vector and
the unit normal vector field of ft , respectively. The group G acts on M through ft .
Since � W V ! V=G is a G-orbibundle and QH is a connection of the orbibundle, it
follows from Proposition 4.1 that this action G Õ M is independent of the choice
of t 2 Œ0; T /. It is clear that quantities gt ; ht ; At and Ht are G-invariant. Also, let
r t be the Riemannian connection of gt . Let �M be the projection of M � Œ0; T /
onto M . For a vector bundle E over M , denote by ��

ME the induced bundle of
E by �M . Also denote by � .E/ the space of all sections of E. Define a section
g of ��

M.T
.0;2/M/ by g.u; t / D .gt /u (.u; t / 2 M � Œ0; T /), where T .0;2/M is

the .0; 2/-tensor bundle of M . Similarly, we define a section h of ��
M.T

.0;2/M/,
a section A of ��

M.T
.1;1/M/, sections H and � of the induced bundle F �T V of

T V by F . We regard H and � as V -valued functions over M � Œ0; T / under the
identification of TF.u;t/V ’s (.u; t / 2 M � Œ0; T /) and V . Define a subbundle H
(resp. V ) of ��

MTM by H.u;t/ WD .Ht /u (resp. V.u;t / WD .Vt /u). Denote by prH
(resp. prV ) the orthogonal projection of ��

M.TM/ onto H (resp. V ). For simplicity,
for X 2 ��

M.TM/, we denote prH .X/ (resp. prV .X/) by XH (resp. XV ). The
bundle ��

M.TM/ is regarded as a subbundle of T .M � Œ0; T //. For a section B of
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��
M.T

.r;s/M/, we define
@B

@t
by

�
@B

@t

�
.u;t/

WD dB.u;t/

dt
, where the right-hand side of

this relation is the derivative of the vector-valued function t 7! B.u;t / .2 T .r;s/u M/.
Also, we define a section BH of ��

M.T
.r;s/M/ by

BH D .prH ˝ � � � ˝ prH /
.r�times/

ıB ı .prH ˝ � � � ˝ prH /
.s�times/

:

The restriction ofBH to H �� � ��H (s-times) is regarded as a section of the .r; s/-
tensor bundle H .r;s/ of H . This restriction also is denoted by the same symbolBH .
For a tangent vector field X on M (or an open set U of M ), we define a section NX
of ��

MTM (or ��
MTM jU ) by NX.u;t / WD Xu (.u; t / 2 M � Œ0; T /). Denote by Qr the

Riemannian connection of V . Define a connection r of ��
MTM by

.rXY /.�;t / WD r tXY.�;t/ and r @
@t
Y WD dY.u;�/

dt

for X 2 T.u;t/.M � ftg/ and Y 2 � .��
MTM/, where

dY.u;t /

dt
is the derivative of

the vector-valued function t 7! Y.u;t / .2 TuM/. Define a connection rH of H by
rH
X Y WD .rXY /H for X 2 T .M � Œ0; T // and Y 2 � .H /. Similarly, define a

connection rV of V by rV
X Y WD .rXY /V forX 2 T .M � Œ0; T // and Y 2 � .V /.

Now we shall derive the evolution equations for some geometric quantities. First we
derive the following evolution equation for gH .

Lemma 4.2 ([8]). The sections .gH /t ’s of ��
M.T

.0;2/M/ satisfy the following
evolution equation:

@gH

@t
D �2jjH jjhH ;

where jjH jj WDphH;H i.
Proof. Take X; Y 2 � .TM/. We have

@gH

@t
. NX; NY / D @

@t
gH . NX; NY / D @

@t
g. NXH ; NYH / D @

@t
hF� NXH ; F� NYH i

D
	
@

@t
. NXH F /; NYH F



C
	
NXH F;

@

@t
. NYH F /




D
	
NXH

�
@F

@t

�
C

@

@t
; NXH

�
F; NYH F



C
	
NXH F; NYH

�
@F

@t

�
C

@

@t
; NYH

�
F




D h NXH .jjH jj�/; NYH F i C h NXH F; NYH .jjH jj�/i

D �jjH jjg.A NXH ; NYH / � jjH jjg. NXH ; A NYH / D �2jjH jjhH . NX; NY /;

where we use


@

@t
; NXH

�
2 V and


@

@t
; NYH

�
2 V . Thus we obtain the desired

evolution equation. ut
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Next we derive the following evolution equation for � .

Lemma 4.3 ([8]). The unit normal vector fields �t ’s satisfy the following evolution
equation:

@�

@t
D �F�.gradgjjH jj/;

where gradg.jjH jj/ is the element of ��
M.TM/ such that d jjH jj.X/ D

g.gradgjjH jj; X/ for any X 2 ��
M.TM/.

Proof. Since h�; �i D 1, we have h @�
@t
; �i D 0. Hence @�

@t
is tangent to ft .M/. Take

any .u0; t0/ 2M � Œ0; T /. Let feig1iD1 be an orthonormal base of Tu0M with respect
to g.u0;t0/. By the Fourier expanding @�

@t
jtDt0 , we have

�
@�

@t

�
.u0;t0/

D X*�
@�

@t

�
.u0;t0/

; ft0�.Nei jtDt0 /

+
ft0�.Nei jtDt0 /

D �X*
�.u0;t0/;

@ft�.Nei /
@t

ˇ̌
ˇ̌
tDt0

+
ft0�.Nei jtDt0 / D �X*

�.u0;t0/;
@

@t
.NeiF /

ˇ̌
ˇ̌
tDt0

+
ft0�.Nei jtDt0 /

D �X*
�.u0;t0/; Nei

 
@F

@t

ˇ̌
ˇ̌
tDt0

!+
ft0�.Nei jtDt0 / D �Xh�.u0;t0/; .NeiH/jtDt0ift0�.Nei jtDt0 /

D �X
.Nei jjH jj/jtDt0ft0�.Nei jtDt0 / D �X

g.u0;t0/.gradg.u0;t0/ jjH.u0;t0/jj; Nei jtDt0 /ft0�.Nei jtDt0 /

D �ft0�.gradg.u0;t0/ jjH.u0;t0/jj/ D �.F�.gradgjjH jj//.u0;t0/;

where we use


@

@t
; Nei
�
D 0. Here we note that

P
.�/i means lim

k!1
P

i2Sk .�/i as

Sk WD fi j j.�/i j > 1
k
g (k 2 N). This completes the proof. ut

Let St (0 � t < T ) be a C1-family of a .r; s/-tensor fields on M and S a
section of ��

M.T
.r;s/M/ defined by S.u;t / WD .St /u. We define a section 4H S of

��
M.T

.r;s/M/ by

.4H S/.u;t / WD
nX
iD1
reirei S;

where r is the connection of ��
M.T

.r;s/M/ (or ��
M.T

.r;sC1/M/) induced from r
and fe1; � � � ; eng is an orthonormal base of H.u;t / with respect to .gH /.u;t/. Also,
we define a section N4H SH of H .r;s/ by

. N4H SH /.u;t/ WD
nX
iD1
rH
ei
rH
ei
SH ;
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where rH is the connection of H .r;s/ (or H .r;sC1/) induced from rH and
fe1; � � � ; eng is as above. Let A � be the section of T �V ˝ T �V ˝ T V defined by

A
�
X Y WD . QrX QH

Y QH / QV C . QrX QH
Y QV / QH .X; Y 2 T V /:

Also, let T � be the section of T �V ˝ T �V ˝ T V defined by

T
�
X Y WD . QrX QV

Y QH / QV C . QrX QV
Y QV / QH .X; Y 2 T V /:

Also, let At be the section of T �M ˝ T �M ˝ TM defined by

.At /XY WD .r tXHt
YHt /Vt C .r tXHt

YVt /Ht .X; Y 2 TM/:

Also let A be the section of ��
M.T

�M ˝ T �M ˝ TM/ defined in terms of At ’s
(t 2 Œ0; T /). Also, let Tt be the section of T �M ˝ T �M ˝ TM defined by

.Tt /XY WD .r tXVt
YVt /Ht C .r tXVt

YHt /Vt .X; Y 2 TM/:

Also let T be the section of ��
M.T

�M ˝ T �M ˝ TM/ defined in terms of Tt ’s
(t 2 Œ0; T /). These sections are the analogues of the so-called O’Neill fundamental
tensor introduced in [9] for Riemannian submersions between finite dimensional
Riemannian manifolds. Clearly we have

F�.AXY / D A
�
F�X

F�Y

for X; Y 2H and

F�.TW X/ D T
�
F�W

F�X

for X 2 H and W 2 V . Let E be a vector bundle over M . For a section S of
��
M.T

.0;r/M ˝E/, we define Tr	
gH

S.� � � ; j�; � � � ; k�; � � � / by

.Tr	
gH

S.� � � ; j�; � � � ; k�; � � � //.u;t / D
nX
iD1

S.u;t /.� � � ; jei ; � � � ; kei ; � � � /

..u; t / 2 M � Œ0; T //, where fe1; � � � ; eng is an orthonormal base of H.u;t/ with

respect to .gH /.u;t /, S.� � � ; j�; � � � ; k�; � � � / means that � is entried into the j -th

component and the k-th component of S and S.u;t/.� � � ; jei ; � � � ; kei ; � � � / means that
ei is entried into the j -th component and the k-th component of S.u;t/.

Then we have the following relation.

Lemma 4.4 ([8]). Let S be a section of ��
M.T

.0;2/M/ which is symmetric with
respect to g. Then we have

.4H S/H .X; Y / D .4H
H SH /.X; Y /

�2Tr	
gH
..r	S/.A	X; Y // � 2Tr	

gH
..r	S/.A	Y;X//

�Tr	
gH
S.A	.A	X/; Y / � Tr	

gH
S.A	.A	Y /;X/

�Tr	
gH
S..r	A /	X; Y / � Tr	

gH
S..r	A /	Y;X/

�2Tr	
gH
S.A	X;A	Y /

for X; Y 2H , where r is the connection of ��
M.T

.1;2/M/ induced from r.
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Proof. Take any .u0; t0/ 2 M � Œ0; T /. Let fe1; � � � ; eng be an orthonormal base of
H.u0;t0/ with respect to .gH /.u0;t0/. Take any X; Y 2 H.u0;t0/. Let QX be a section of
H on a neighborhood of .u0; t0/with QX.u0;t0/ D X and .rH X/.u0;t0/ D 0. Similarly
we define QY and Qei . Let W D X; Y or ei . Then, it follows from .rH

ei
QW /.u0;t0/

D 0; .rei QW /.u0;t0/ D AeiW and the skew-symmetricness of A jH �H that

.4H S/H .X; Y / D
nX
iD1
.reirei S/.X; Y /

D
nX
iD1
.rH

ei
rH
ei
SH /.X; Y / � 2

nX
iD1

..rei S/.Aei X; Y /C .rei S/.Aei Y; X//

�
nX
iD1

.S.Aei .Aei X/; Y /C S.Aei .Aei Y /; X// � 2
nX
iD1

S.Aei X;Aei Y /

�
nX
iD1

.S..reiA /ei X; Y /C S..reiA /ei Y; X// :

The right-hand side of this relation is equal to the right-hand side of the relation in
the statement. This completes the proof. ut

Also we have the following Simons-type identity.

Lemma 4.5 ([8]). We have

4H h D rd jjH jj C jjH jj.A2/] � .Tr .A2/H /h;

where .A2/] is the element of � .��
MT

.0;2/M/ defined by .A2/].X; Y / WD
g.A2X; Y / (X; Y 2 ��

MTM ).

Proof. Take X; Y;Z;W 2 ��
M.TM/. Since the ambient space V is flat, it follows

from the Ricci’s identity, the Gauss equation and the Codazzi equation that

.rXrY h/.Z;W / � .rZrW h/.X; Y / D .rXrZh/.Y;W / � .rZrXh/.Y;W /
D h.X; Y /h.AZ;W / � h.Z; Y /h.AX;W /C h.X;W /h.AZ; Y / � h.Z;W /h.AX; Y /:

By using this relation, we obtain the desired relation. ut
Note. In the sequel, we omit the notation F� for simplicity.

Define a section R of ��
M.H

.0;2// by

R.X; Y / WD Tr	
gH
h.A	.A	X/; Y /C Tr	

gH
h.A	.A	Y /;X/

CTr	
gH
h..r	A /	X; Y /C Tr	

gH
h..r	A /	Y;X/

C2Tr	
gH
.r	h/.A	X; Y /C 2Tr	

gH
.r	h/.A	Y;X/

C2Tr	
gH
h.A	X;A	Y / .X; Y 2H /:
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From Lemmas 4.3, 4.4 and 4.5, we derive the following evolution equation for
.hH /t )s.

Theorem 4.6 ([8]). The sections .hH /t ’s of ��
M.T

.0;2/M/ satisfies the following
evolution equation:

@hH

@t
.X; Y / D .4H

H hH /.X; Y / � 2jjH jj..AH /2/].X; Y / � 2jjH jj..A �

�
/2/].X; Y /

CTr
�
.AH /2 � ..A �

�
/2/H

�
hH .X; Y / �R.X; Y /

for X; Y 2H .

Proof. Take X; Y 2H.u;t /. Easily we have

AX D AH X CA
�

� X and .A2/H X D .AH /2X � .A �

� /
2X; (2)

where we use
� QrW �

�
QH
D
� Qr�W C ŒW; �

�
QH
D
� Qr�W

�
QH
D A�W

for W 2 � . QV / because of ŒW; � 2 � . QV /. Also, since


@

@t
; NXH

�
2 V , we have


@

@t
; NXH

�
D 2jjH jjA �

�
NXH : (3)

From Lemmas 4.3, (2) and (3), we have

@hH

@t
.X; Y / D @

@t
.hH . NX; NY // D @

@t
h�; NXH . NYH F /i

D h@�
@t
; NXH . NYH F /i C h�; @

@t

� NXH . NYH F /
�i

D �hF�.gradgjjH jj/; QrXF� NYH i C h�;X
�
NYH

�
@F

@t

��
i

Ch�; X.Œ @
@t
; NYH F /i C h�; Œ @

@t
; NXH . NYH F /i

D �g.gradgjjH jj;rX NYH /CX. NYH jjH jj/ � jjH jjh�; QrXF�.A. NYH /i
Ch�; QrXF�.Œ

@

@t
; NYH /i C h�; Qr

Œ @@t ;
NXH 

F� NYH i
D .rd jjH jj/.X; Y / � jjH jjhH .X;AH Y /C jjH jjh.X;A �

�
Y /C 2jjH jjh.A �

�
X; Y /

D .rd jjH jj/.X; Y / � jjH jjgH ..AH /2X; Y / � 3jjH jjg..A �

�
/2X; Y /
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From this relation and the Simons-type identity in Lemma 4.5, we have

@hH

@t
D 4H h � 2jjH jj..AH /2/] � 2jjH jj..A �

� /
2/]

CTr
�
.AH /2 � ..A �

� /
2/H

�
hH :

(4)

Substituting the relation in Lemma 4.4 into (4), we obtain the desired relation. ut
From Lemma 4.2, we derive the following relation.

Lemma 4.7 ([8]). Let X and Y be local sections of H such that g.X; Y / is
constant. Then we have g.r @

@t
X; Y /C g.X;r @

@t
Y / D 2jjH jjh.X; Y /.

Next we prepare the following lemma for R.

Lemma 4.8 ([8]). For X; Y 2H , we have

R.X; Y / D 2Tr	
gH

�
h.A �	 X;A �	 .AH Y /i C h.A �	 Y;A �	 .AH X/i

�

C2Tr	
gH

�
h.A �	 X;A �

Y .AH �/i C h.A �	 Y;A �
X .AH �/i

�

C2Tr	
gH

�
h. Qr	A �/�Y;A

�	 Xi C h. Qr	A �/�X;A
�	 Y i

�

CTr	
gH

�
h. Qr	A �/	X;A �

� Y i C h. Qr	A �/	Y;A �

� Xi
�

C2Tr	
gH
hT �

A
�
�
X
�;A

�	 Y i;

where we omit F�.

Also, we prepare the following lemma.

Lemma 4.9 ([8]). For X; Y;Z 2H , we have

2hT �

A
�
X Y
�;A

�
X Zi D �hA �

X Z; .
QrXA �/�Y i C hA �

X Z; .
QrYA �/�Xi:

From the relations in Lemmas 4.8 and 4.9, we obtain the following relations
directly.

Lemma 4.10 ([8]). For X 2H , we have

R.X;X/ D 4Tr	
gH
hA �	 X;A �	 .AH X/i C 4Tr	

gH
hA �	 X;A �

X .AH �/i
C3Tr	

gH
h. Qr	A �/�X;A

�	 Xi C 2Tr	
gH
h. Qr	A �/	X;A �

� Xi
CTr	

gH
hA �	 X; . QrXA �/��i

and hence Tr	
gH

R.�; �/ D 0.

By using Theorem 4.6 and Lemmas 4.7 and 4.10, we can show the following
evolution equation for jjHt jj’s.
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Corollary 4.11 ([8]). The norms jjHt jj’s of Ht satisfy the following evolution
equation:

@jjH jj
@t

D 4H jjH jj C jjH jjTr.AH /2 � 3jjH jjTr..A �

� /
2/H :

Remark 4.1. From the evolution equations obtained in this section, the evolution
equations for the corresponding geometric quantities of f t .W M ,! V=G/ are
derived, respectively. In the case where the G-action is free and hence V=G is a
(complete) Riemannian manifold, the above derived evolution equations coincide
with the evolution equations for the corresponding geometric quantities along the
mean curvature flow in a complete Riemannian manifold which were given by
Huisken [6] (see [5] also). That is, the discussion in this section give a new proof of
the evolution equations in [6] in the case where the ambient complete Riemannian
manifold occurs as V=G. In the proof of [6], one need to take local coordinates of
the ambient space to derive the evolution equations. On the other hand, in our proof,
one need not take local coordinates of the ambient space because the ambient space
is a Hilbert space. This is an advantage of our proof.

5 Horizontally Strongly Convexity Preservability Theorem

Let G Õ V be an isometric almost free action with minimal regularizable orbit of
a Hilbert Lie group G on a Hilbert space V equipped with an inner product h ; i
and � W V ! V=G the orbit map. Denote by Qr the Riemannian connection of V .
Set n WD dim V=G � 1. Let M.	 V / be a G-invariant hypersurface in V such that
�.M/ is compact. Let f be an inclusion map of M into V and ft .0 � t < T / the
regularized mean curvature flow starting from f . We use the notations in Sect. 4.
In the sequel, we omit the notation ft� for simplicity. Set

L WD max
.X1;��� ;X5/2 QH 5

1

jhA �
X1
.. QrX2A �/X3X4/; X5ij;

where QH1 WD fX 2 QH j jjX jj D 1g. Assume that L < 1. Note that L < 1 in
the case where V=G is compact. Then we obtain the following horizontally strongly
convexity preservability theorem by using the evolution equations stated in Sect. 4
and the maximum principle.

Theorem 5.1 ([8]). If M satisfies jjH0jj2.hH /.�;0/ > 2n2L.gH /.�;0/, then T <1
holds and jjHt jj2.hH /.�;t / > 2n2L.gH /.�;t / holds for all t 2 Œ0; T /.
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6 Strongly Convex Preservability Theorem
in the Orbit Space

Let V; G and � be as in the previous section. Set N WD V=G and n WD dimV=G �
1. Denote by gN and RN the Riemannian orbimetric and the curvature orbitensor
of N . Also, rN the Riemannian connection of gN jNnSing.N /. Since the Riemannian
manifold .N nSing.N /; gN jNnSing.N // is locally homogeneous, the norm jjrNRN jj
of rNRN (with respect to gN ) is constant overN nSing.N /. Set LN WD jjrNRN jj.
Assume that LN < 1. Let M be a compact suborbifold of codimension one in N
immersed by f and f t (t 2 Œ0; T /) the mean curvature flow starting from f . Denote
by gt ; ht ; At and Ht be the induced orbimetric, the second fundamental orbiform,
the shape orbitensor and the mean curvature orbifunction of f t , respectively, and �t
the unit normal vector field of f t jMnSing.M/.

From Theorem 5.1, we obtain the following strongly convexity preservability
theorem for compact suborbifolds in N .

Theorem 6.1 ([8]). If f satisfies jjH0jj2h0 > n2LNg0, then T < 1 holds and
jjHt jj2ht > n2LNgt holds for all t 2 Œ0; T /.
Proof. Set M WD f.x; u/ 2 M � V jf .x/ D �.u/g and define f W M ! V

by f .x; u/ D u (.x; u/ 2 M ). It is clear that f is an immersion. Denote by H0

the regularized mean curvature vector of f . Define a curve cx W Œ0; T / ! N by
cx.t/ WD f t .x/ (t 2 Œ0; T /) and let .cx/Lu be the horizontal lift of cx starting from u,
where u 2 ��1.f .x//. Define an immersion ft W M ,! V by ft .x; u/ WD .cx/

L
u .t/

(.x; u/ 2 M ). Then ft (t 2 Œ0; T /) is the regularized mean curvature flow starting
from f (see the proof of Proposition 4.1). Denote by gt ; ht ; At and Ht the induced
metric, the second fundamental form, the shape tensor and the mean curvature vector
of ft , respectively. By the assumption, f 0 satisfies jjH0jj2h0 > n2LNg0. Also, we
can showLN D 2L by long calculation, whereL is as in the previous section. From
these facts, we can show that f0 satisfies jjH0jj2.hH /0 > 2n2L.gH /0. Hence, it
follows from Theorem 5.1 that ft (t 2 Œ0; T /) satisfies jjHt jj2.hH /t > 2n

2L.gH /t .
Furthermore, it follows from this fact that f t (t 2 Œ0; T /) satisfies jjHt jj2ht >
n2LNgt . ut
Remark 6.1. In the case where the G-action is free and hence N is a (complete)
Riemannian manifold, Theorem 6.1 implies the strongly convexity preservability
theorem by Huisken (see [6, Theorem 4.2]).
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Harmonic Maps into Grassmannians

Yasuyuki Nagatomo

Abstract A harmonic map from a Riemannian manifold into a Grassmannian
manifold is characterized by a vector bundle, a space of sections of the bundle and
a Laplace operator [10]. This characterization can be considered a generalization
of a theorem of Takahashi [11]. We apply our main result which generalizes a
theorem of Do Carmo and Wallach [4] to describe moduli spaces of special classes
of harmonic maps from compact reductive Riemannian homogeneous spaces into
Grassmannians. As an application, we give an alternative proof of the theorem of
Bando and Ohnita [1] which states the rigidity of the minimal immersion of the
complex projective line into complex projective spaces. Moreover, a similar method
yields rigidity of holomorphic isometric embeddings between complex projective
spaces, which is part of Calabi’s result [2]. Finally, we give a description of moduli
spaces of holomorphic isometric embeddings of the projective line into quadrics [9].

1 Introduction

Let us recall Theorem of Takahashi [11], because one of the main theorems in this
note concerns with a generalization of Theorem of Takahashi. Denote the standard
co-ordinates of RN by x WD .x1; � � � ; xN / and let SN�1 denote the unit sphere in RN .
Then (a version of) Theorem of Takahashi asserts

Theorem 1 ([11]). A map f W M ! SN�1 is a harmonic map if and only if there
exists a function h W M ! R such that �x D hx, where � is the Laplace operator
of .M; g/ and x stands for the pull-back functions by f . Under these conditions, we
have h D jdf j2.

We denote by Grp.W / a real or complex Grassmannian with a standard metric
of Fubini–Study type, where W is a real or complex vector space with a scalar
product. Since the tautological bundle is a subbundle of the trivial bundle W D
Grp.W /�W ! Grp.W /, we have a quotient bundle which is called the universal
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quotient bundle. The scalar product onW endows the universal quotient bundle with
a fibre metric and a connection.

When SN�1 is identified with the real Grassmannian of oriented hyperplanes in
RN , functions x1; � � � ; xN are regarded as sections of the universal quotient bundle.
Hence we can reformulate Theorem of Takahashi from the viewpoint of vector
bundles. Then we have a generalization of Theorem 1 (Theorems 2 and 3).

We apply Theorem 3 to obtain a generalization of the theory of Do Carmo and
Wallach [4] in Sect. 4. In their work, they apply Theorem of Takahashi to classify
minimal immersions of spheres into spheres. We are concerned with harmonic maps
from a compact reductive Riemannian homogeneous space M with isometry group
G into a Grassmannian. We fix a homogeneous vector bundle with a canonical
connection over M . If an eigenspace of the Laplace operator acting on sections
globally generates the bundle, then we induce a G-equivariant map from M into
a Grassmannian, which is called standard map. We give a sufficient condition for
a standard map being harmonic (Lemma 4). We will use Theorem 3 to obtain a
classification of a special class of harmonic maps (Theorem 4).

As an application, we give another proof of Theorem of Bando–Ohnita [1],
which states the rigidity of minimal immersion of the complex projective line
into complex projective spaces. Moreover, a similar method yields rigidity of
holomorphic isometric embeddings between complex projective spaces, which is
part of Calabi’s result [2].

In the final section, we give a description of moduli spaces of holomorphic
isometric embeddings of the projective line into quadrics [9].

More details on the results described in this note can be found in [9] and [10].

2 Preliminaries

2.1 A Harmonic Map

LetM andN be Riemannian manifolds and f WM ! N a map. The energy density
e.f / W M ! R of f is defined as e.f /.x/ WD jdf j2: Then, the tension field 
.f /
of f is defined to be 
.f / WD tracerdf which is a section of the pull-back bundle
f �TN !M of the tangent bundle TN ! N .

Definition 1 ([5]). A map f WM ! N is called a harmonic map if 
.f / � 0.

2.2 Geometry of Grassmannians

Let W be a real (oriented) or complex N -dimensional vector space and Grp.W /
a Grassmannian of (oriented) p-planes in W . The tautological vector bundle is
denoted by S ! Grp.W /. By definition, we have a bundle injection iS W S ! W ,
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whereW ! Grp.W / is a trivial bundle of fibreW . Then, the quotient vector bundle
Q ! Grp.W / with a natural projection �Q W W ! Q is called the universal
quotient bundle. By the natural projection �Q,W can also be regarded as a subspace
of � .Q/ which is the space of sections of Q ! Grp.W /. The (holomorphic)
tangent bundle T ! Grp.W / is identified with S� ˝Q.

Next, we fix a scalar product (an inner product or a Hermitian inner product)
on W . It gives orthogonal projections and so, we obtain two bundle homomor-
phisms: �S W W ! S , and iQ W Q! W . Then the vector bundles S;Q! Grp.W /

are equipped with fibre metrics, respectively.
A section t of Q ! Grp.W / is regarded as a W -valued function iQ.t/. Then

the differential diQ.t/ can be decomposed into two components:

diQ.t/ D �SdiQ.t/C �QdiQ.t/:

Indeed, �QdiQ.t/ is a connection denoted by rQt , which is the so-called canonical
connection. The other term �SdiQ.t/ denoted byKt is called the second fundamen-
tal form in the sense of Kobayashi [7], which turns out to be a 1-form with values in
Hom.Q; S/ Š Q� ˝ S .

In a similar way, a connection denoted byrS is defined on S ! Grp.W / and we
define the second fundamental formH WD �QdiS , which is a 1-form with values in
Hom.S;Q/ Š S� ˝Q.

The Levi–Civita connection is also induced from connections rS and rQ.

3 Harmonic Maps into Grassmannians

If f W M ! Grp.W / is a smooth map, then we pull back a fiber metric and a
connection on Q ! Grp.W / to obtain a fibre metric gV and a connection rV on
the pull-back bundle f �Q!M , which is denoted by V !M .

The second fundamental forms are also pulled back and denoted by the same
symbols H 2 � .f �T � ˝ f �S� ˝ V / and K 2 � .f �T � ˝ V � ˝ f �S/.

We still have a bundle epimorphism �V W W ! V , where W denotes a
trivial bundle M � W ! M . However, note that we have only a linear map
W ! � .f �Q/, because it may not be an injection. Even if the linear map is not
injective, we shall also call W a space of sections of V !M .

We assume that M is a Riemannian manifold with metric g, and let feigiD1;2;���m
be an orthonormal frame field of M . Then, we use the Riemannian structure on M
and the pull-back connection on V ! M to define the Laplace operator �V D
� D �Pn

iD1 rVei
�rV � .ei / acting on sections of V ! M . We will also introduce

a bundle homomorphism A 2 � .EndV / defined as the trace of the composition of
the second fundamental forms:

A WD
mX
iD1

HeiKei ;
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We call A 2 � .EndV / the mean curvature operator of f WM ! Grp.W /.

Lemma 1. The mean curvature operator A is a non-positive symmetric (or Hermi-
tian) operator. The energy density e.f / is equal to �traceA.

For t 2 � .V /, Zt denotes the zero set of t : Zt D fx 2M j t .x/ D 0g :
Definition 2. A space of sections W of a vector bundle V ! M has the zero
property for the Laplacian if Zt 	 Z�t for an arbitrary t 2 W .

Every eigenspace of the Laplacian has the zero property.

Theorem 2. Let .M; g/ be an m-dimensional Riemannian manifold and f W
M ! Grp.W / a smooth map. We fix a scalar product .�; �/ on W , which gives
a Riemannian structure on Grp.W /.

Then, the following two conditions are equivalent:

1. f WM ! Grp.W / is a harmonic map.
2. W has the zero property for the Laplacian.

Under these conditions, we have for an arbitrary t 2 W , �t D �At and e.f / D
�traceA, where A is the mean curvature operator of f .

Theorem 3. Under the same assumption as in Theorem 2, we have that the
following two conditions are equivalent:

1. f WM ! Grp.W / is a harmonic map and there exists a function h.x/ such that
Ax D �h.x/IdV for an arbitrary x 2M .

2. There exists a function h on M such that �t D ht for an arbitrary t 2 W .

Moreover, under the above conditions, we have e.f / D qh; where q D rankQ.

4 A Generalization of Theory of Do Carmo and Wallach

In this section, we give a generalization of Do Carmo–Wallach theory.

Definition 3. Let V ! M be a vector bundle and W a space of sections of
V !M . We define an evaluation homomorphism ev W W ! V in such a way
that ev.t/.x/ WD t .x/ 2 Vx for t 2 W and x 2 M . The vector bundle V ! M is
said to be globally generated by W if the evaluation homomorphism ev W W ! V

is surjective.

Definition 4. Let V ! M be a real or complex vector bundle of rank q which is
globally generated by W of dimension N . If the real vector bundle V ! M has
an orientation, we also fix an orientation on W . Then we have a map f W M !
Grp.W /, where Grp.W / is a real (oriented) or complex Grassmannian according
to the co-efficient field of V !M and p D N � q. The map f is defined by

f .x/ WD Ker evx D ft 2 W j t .x/ D 0g :
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We call f WM ! Grp.W / the induced map by .V ! M;W /, or the induced map
by W , if the vector bundle V !M is specified.

From the definition of the induced map f W M ! Grp.W /, the vector bundle
V ! M can be naturally identified with f �Q ! M . Conversely, if f W M !
Grp.W / is a smooth map, then f W M ! Grp.W / can be recognized as the
induced map by .f �Q!M;W /.

Let M D G=K0 be a compact reductive Riemannian homogeneous space with
decomposition g D k ˚ m, where G is a compact Lie group and K0 is a closed
subgroup of G.

Let V0 be a q-dimensional real or complex K0-representation space with a K0-
invariant scalar product. We can construct a homogeneous vector bundle V ! M ,
V WD G�K0V0 with an invariant fibre metric gV induced by the scalar product on V0.
Moreover V !M has a canonical connection r with respect to the decomposition
g D k˚m. (This means that the horizontal distribution is defined as fLgm jg 2 Gg
on the principal fibre bundle G !M , where Lg is the left translation.)

A Lie group G naturally acts on the space of sections � .V / of V ! M , which
has a G-invariant L2-inner product.

Using the Levi–Civita connection andr, we can decompose the space of sections
of V !M into the eigenspaces of the Laplacian:

� .V / D ˚�W�; W� WD ft 2 � .V / j�t D �tg :

It is well-known that W� is a finite dimensional G-representation space with a
G-invariant scalar product inherited from the L2-inner product.

Lemma 2. Let W be a G-submodule of W�. If W globally generates V ! G=K0,
then V0 can be regarded as a subspace of W .

4.1 Standard Maps

Suppose that an eigenspace W� globally generates V ! M . Then we define the
induced map f0 WM ! Grp.W�/ by W�, where p D N � q, N D dimW�, which
is called the standard map by W�.

In general, W� is not irreducible as G-representation. Let W be a G-submodule
of W� and suppose that W globally generates V ! G=K0. Then the induced map
by W is also called the standard map by W .

Since V0 	 W by Lemma 2, we have the orthogonal complement of V0 denoted
by U0. Then the induced map f0 WM ! Grp.W / is expressed as f0.Œg/ D gU0 	
W; which is G-equivariant.

Suppose that we have a standard map by W . Next, we consider the pull-back
connection rV . Then we have
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Lemma 3. The pull-back connection rV is the canonical connection if and only if
mV0 	 U0.
Lemma 4. If a G-module .%;W / satisfies the condition mV0 	 U0, then the
standard map f0 W M ! Grp.W / is harmonic and we have e.f0/ D q�, and
A D ��IdV .

4.2 A Generalization of Do Carmo–Wallach Theory

Let G be a compact Lie group and W a real or complex representation of G
with an invariant scalar product .�; �/W . We denote by H.W / the set of symmetric
or Hermitian endomorphisms of W depending on W being a real or complex
vector space. We equip H.W / with an inner product .�; �/H ; .A;B/H WD traceAB ,
forA;B 2 H.W /. It is easily seen that .�; �/H is G-invariant. We define a symmetric
or Hermitian operator H.u; v/ for u, v 2 W as

H.u; v/ WD 1

2
fu˝ .�; v/W C v˝ .�; u/W g :

If U and V are subspaces of W , we define a real subspace H.U; V / 	 H.W /
spanned by H.u; v/ where u 2 U and v 2 V . In a similar fashion, GH.U; V /
denotes the subspace of H.W / spanned by gH.u; v/, where g 2 G.

In this section, K denotes either R or C. Symmetric operators are also called
Hermitian operators, for simplicity.

Definition 5. Let f W M ! Grp.Km/ be a map and we regard Km as a space of
sections of f �Q ! M . Then the map f W M ! Grp.Km/ is called a full map if
the linear map Km ! � .f �Q/ is injective.

When Km has a scalar product, two equivalence relations of maps are given.

Definition 6. Let f1 and f2 W M ! Grp.Km/ be maps. Then f1 is called image
equivalent to f2, if there exists an isometry � of Grp.Km/ such that f2 D � ı f1.
Notice that an isometry � of Grp.Km/ gives a bundle isomorphism of Q !
Grp.Km/ denoted by Q� which covers �. If we have a map f W M ! Grp.Km/,
then Q� induces a bundle isomorphism from f �Q ! M to f � Q�Q ! M denoted
by the same symbol, which is the pull-back bundle of the quotient bundle by � ı f .

Definition 7. Let V !M be a vector bundle and f a map from M into Grp.Km/

such that f �Q ! M is isomorphic to V ! M . We consider a pair .f; �/, where
� W V ! f �Q is a bundle isomorphism. Then such pairs .fi ; �i /,.i D 1; 2/ are
called gauge equivalent, if there exists an isometry � of Grp.Km/ such that f2 D
� ı f1 and �2 D Q� ı �1.
By definition, gauge equivalence yields image equivalence of maps.
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Theorem 4 ([10]). Let G=K0 be a compact reductive Riemannian homogeneous
space with decomposition g D k ˚ m. We fix a homogeneous vector bundle V D
G�K0 V0 ! G=K0 of rank q with an invariant metric and the canonical connection.

Let f W G=K0 ! Grp.Km/ be a full harmonic map satisfying the following two
conditions.

(i) The pull-back bundle f �Q ! M with the pull-back metric and connection is
gauge equivalent to V ! G=K0 with the invariant metric and the canonical
connection. (Hence, q D m � p.)

(ii) The mean curvature operator A 2 � .EndV / of f is expressed as ��IdV with
some real positive number �, and so e.f / D �q.

Then there exist an eigenspace W 	 � .V / with an eigenvalue � of the
Laplacian equipped with L2-scalar product .�; �/W and a semi-positive Hermitian
endomorphism T 2 End .W /. We regard W as g-representation .%;W /. The pair
.W; T / satisfies the following four conditions.

(I) The vector space Km is a subspace of W with the inclusion � W Km ! W and
V ! G=K0 is globally generated by Km.

(II) As a subspace, Km D KerT ? and the restriction of T on Km is a positive
Hermitian transform.

(III) The endomorphism T satisfies

�
T 2 � IdW ;GH.V0; V0/

�
H
D 0; �T 2;GH.%.m/V0; V0/�H D 0: (1)

(IV) The endomorphism T gives an embedding of Grp.Km/ into Grp0.W /, where
p0 D p C dim KerT and also gives a bundle isomorphism � W V ! f �Q.

Then, f W G=K0 ! Grp.Km/ can be expressed as

f .Œg/ D ���T ���1 �f0 .Œg/ \ KerT ?� ; (2)

where �� denotes the adjoint operator of � under the induced scalar product on Km

from .�; �/W on W and f0 is the standard map by W . Such two pairs .fi ; �i /, .i D
1; 2/ are gauge equivalent if and only if ��1 T1�1 D ��2 T2�2; where .Ti ; �i / correspond
to fi .i D 1; 2/ under the expression in (2), respectively.

Conversely, suppose that a vector space Km, an eigenspace W 	 � .V / with an
eigenvalue � and a semi-positive Hermitian endomorphism T 2 End .W / satisfy
conditions (I), (II) and (III). Then we have a unique embedding of Grp.Km/ into
Grp0.W / and a map f W G=K0 ! Grp.Km/ defined as (2) is a full harmonic
map into Grp.Km/ satisfying conditions (i) and (ii) with a bundle isomorphism
V Š f �Q.

Remark 1. When the sphere SN�1 is regarded as an oriented Grassmannian of
hyperplanes GrN�1.RN /, a map f W M ! GrN�1.RN / gives a trivialization of
f �Q ! M . Hence when the target is the sphere, we can drop condition (i) in
Theorem 4.
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Remark 2. When the target is a symmetric space of rank 1, the quotient bundle is
also of rank 1. Hence condition (ii) in Theorem 4 is equivalent to the condition that
f has constant energy density.

Remark 3. The role of condition (IV) in Theorem 4 should be emphasized. When-
ever we consider a full harmonic map from G=K0 into Grp.Km/ with conditions
(i) and (ii), we also have an embedding of Grp.Km/ into Grp0.W / and a bundle
isomorphism V ! f �Q. Hence we can consider the moduli space M of those
full maps into Grp0.W / by gauge equivalence. Moreover Theorem 4 interprets
the compactification M of M . Under an appropriate assumption, we can deduce
that M is a bounded open convex body in a G-submodule of H.W / with topology
induced by L2-metric. Then each boundary point .W; T / of M corresponds to an
embedding of Grp.KerT ?/ into Grp0.W / and a full map into Grp.KerT ?/ with a
bundle isomorphism under the compactification in the topology (see Theorem 8).

If we consider the image equivalence relation, then we also need to take the action
of the centralizer of the holonomy group on the pull-back bundle into account. This
requires a case-by-case consideration, and so we give examples in Sects. 5 and 6.

5 Harmonic Maps into Complex Projective Spaces

We introduce two theorems which are proved in independent ways. A unified proof
can be given in the light of Theorem 4.

Theorem 5 ([1]). Let f W CP 1 ! CPn be a full harmonic map with constant
energy density. Then f is an SU.2/-equivariant map, in other words, it is a standard
map up to gauge equivalence.

Theorem 6 ([2]). Let f W CPm ! CPn be a full holomorphic map with constant
energy density. Then f is an SU.m C 1/-equivariant map, in other words, it is a
standard map up to gauge equivalence.

When we regard CPn as a complex Grassmannian Grn.CnC1/ in both cases,
the pull-back bundle has a holomorphic vector bundle structure induced by the
pull-back connection. Since CPm is Fano, the holomorphic line bundle structure
is unique. Then we can easily construct a gauge transformation satisfying condition
(i) in Theorem 4, because the pull-back bundle is of rank 1 and the compatible
connection with fibre metric and holomorphicity is unique. Combined with Remarks
after Theorem 4, we can apply Theorem 4 to get both results.

Toth gives a conception of polynomial harmonic map between complex projec-
tive spaces [12]. In the definition of polynomial harmonic map, Toth makes use
of the Hopf fibration to get polynomial maps and implicitly requires condition (i)
in Theorem 4 as horizontality. Theorem 2 implies that the former condition is not
needed to develop the theory.
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Lemma 5 ([10]). Let f W CPm ! CPn .m = 2/ be a harmonic map with constant
energy density. Then f is a polynomial harmonic map in the sense of Toth if and
only if f satisfies the condition (i) in Theorem 4.

Toth gives an estimate of the dimension of the moduli space by image equiva-
lence relation. Since the pull-back bundle is holonomy irreducible, Schur’s lemma
implies that the moduli by image equivalence is the same as the moduli by gauge
equivalence of maps. Consequently, we can apply Toth’s result to get an estimate
the dimension of the moduli space by gauge equivalence.

6 Holomorphic Isometric Embeddings of the Projective Line
into Quadrics

Though research on harmonic maps from the projective line into quadrics has been
pursued before from various viewpoints (for example, [3, 6, 8] and [13]), we would
like to apply Theorem 4 to give a description of the moduli.

A complex quadric of CPnC1 is now realized as a real oriented Grassmannian
Grn.RnC2/. Then the quotient bundle has a holomorphic bundle structure. However
we regard the quotient bundle as a real vector bundle of rank 2, when applying
Theorem 4. Note that the curvature form of the canonical connection is the
fundamental 2-form !Q on Grn.RnC2/ up to a multiple constant. Denote by !0
the fundamental 2-form on CP 1.

Definition 8. Let f W CP 1 ! Grn.RnC2/ be a holomorphic embedding. Then f
is called an isometric embedding of degree k if f �!Q D k!0 (and so, k must be a
positive integer).

Lemma 6 ([9]). Let f W CP 1 ! Grn.RnC2/ be a holomorphic embedding. Then
f is an isometric embedding of degree k if and only if f satisfies the condition (i) in
Theorem 4. Under these conditions, the condition (ii) in Theorem 4 is automatically
satisfied.

If the degree of f is equal to k, then the pull-back of the quotient bundle is
regarded as the holomorphic line bundle of degree k on CP 1. The uniqueness of the
Einstein–Hermitian connection yields the result.

We also use the Einstein–Hermitian connection to obtain that any holomorphic
section of O.k/ ! CP 1 is an eigensection. Since RnC2 is a real subspace of
H0

�
CP 1;O.k/

�
, it follows from Theorem 3 that the mean curvature operator is

proportional to the identity with a constant multiple.
Hence we can apply Theorem 4 to obtain the moduli space Mk of holomorphic

isometric embeddings of degree k by gauge equivalence of maps. Using Lemma 4,
the standard map byH0

�
CP 1;O.k/

�
of dimension kC1 is a holomorphic isometric

embedding of degree k. When k is even, say 2l , H0
�
CP 1;O.2l/

�
has an invariant

real subspace denoted by W of real dimension 2l C 1. Since W also globally
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generates O.2l/ ! CP 1, we have a standard map by W which turns out to be
a holomorphic isometric embedding of degree 2l by Lemma 4.

Theorem 7 ([9]). Let f W CP 1 ! Gr2k�1.R2kC1/ be a holomorphic embedding
of degree 2k. Then f is the standard map by W up to gauge equivalence.

To state Theorem 8, we denote by S2lC2 the symmetric power of the standard
representation C2 of SU.2/. We apply Theorem 4 to obtain

Theorem 8 ([9]). Let Mk be the moduli space of holomorphic isometric embed-
dings of degree k of the complex projective line into Gr2k.R2kC2/ by gauge
equivalence of maps. Then Mk can be regarded as a compact convex body in
˚k=2llD1 S2k�4lC2. The interior points of the moduli correspond to full maps and the
boundary points of Mk correspond to maps whose images are included in specified
totally geodesic submanifolds Grp.RpC2/ of Gr2k.R2kC2/, where p < 2k. Each
totally geodesic submanifold Grp.RpC2/ is specified as the common zero set of
some sections of Q! Gr2k.R2kC2/, which belongs to R2kC2.

We can show that the centralizer of the holonomy group S1 acts on Mk with a
scalar multiplication. Hence we have

Theorem 9 ([9]). Let Mk be the moduli space of holomorphic isometric embed-
dings of degree k of the complex projective line into Gr2k.R2kC2/ by image
equivalence of maps. Then Mk DMk=S

1.
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Conformal Transformations Between Complete
Product Riemannian Manifolds

Byung Hak Kim

Abstract Nagano proved that if the non-homothetic conformal transformation
between complete Riemannian manifolds with parallel Ricci tensor is admitted,
then the manifolds are irreducible and isometric to a sphere. From this result and
other reasons, it is natural to ask for the problem that does there exist globally a
non-homothetic conformal transformation between complete product Riemannian
manifolds? In this talk, we introduce and consider about this question and related
topics.

1 Introduction

As it well known that the conformal transformation on the Riemannian manifold
does not change the angle between two vectors at a point and characterized by
a change of a Riemannian metric. A conformal transformation in an Einstein
manifold is concircular transformation [1]. By use of this fact, Yano and Nagano
[6] proved that if a complete Einstein manifold admits a global one-parameter
group of non-isometric conformal transformations, then the manifold is isometric
to a sphere. Tashiro [1, 5] studied structures of complete Riemannian manifolds
admitting a concircular scalar field and devoted to a study of infinitesimal conformal
transformations in complete product Riemannian manifolds. In 1967, Tashiro and
Miyashita [2] proved that if a complete reducible Riemannian manifold admits
a complete non-isometric conformal vector field, then the manifold is locally
Euclidean and the vector field is homothetic.

From these facts and other reasons, Tashiro conjectured that there were no global
non-isometric conformal transformation between complete product Riemannian
manifolds which are not Euclidean. In other words, is a conformal transformation
between complete product Riemannian manifolds necessarily isometric?

In this point of a view, I am going to give survey report and results related to this
conjecture with the works of Tashiro [3–5].
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2 Theorems and an Example

Let (M;g; F ) and (M �; g�; G) be Riemannian manifolds of dimension n = 3

with metric g and g� and product structure F and G respectively. Under a
diffeomorphism f ofM toM �, the image of a quantity onM � toM by the induced
map f � will be denoted by the same character as the original. Greek indices run
from 1 to n.

The product structures F and G are by definition (1,1)-tensor fields .F 	
� / and

.G	
�/ different from the unit tensor I and satisfying F 2 D I and G2 D I .

The structures F and G are said to be commutat ive with one another under a
diffeomorphism f WM !M � if FG D GF .

Let M and M � be products M DM1 �M2 and M � DM �
1 �M �

2 respectively.
The dimensions of the parts M1;M2;M

�
1 and M �

2 are denoted by n1; n2; n�
1 and n�

2

respectively, n1Cn2 D n�
1 Cn�

2 D n. Latin indices will run on the following ranges

h; i; j; k D 1; 2; � � � ; n1I
p; q; r; s D n1 C 1; � � � ; n:

A conformal diffeomorphism f WM !M � is characterized by a metric change

g�
�� D

1

�2
g��

where � is a positive valued scalar field said to be associated with f .

Theorem 1. There is no global conformal diffeomorphism between complete prod-
uct Riemannian manifoldsM andM � under which the product structures F and G
are not commutative in an open subset of M .

The following example is a global conformal diffeomorphism under which the
product structures F and G are commutative.

Example 1. Let S be a unit circle and T 3 a 3-dimensional torus S � S � S of three
copies of S . Denote by x; y; z arc lengths modulo 2� of the copies. Take a positive
valued function �.y/ with period 2� , for example � D siny C 2. Consider two
Riemannian manifolds M and M � on the same underlying manifold T 3 with the
metrics

ds2 D f�.y/g2dx2 C dy2 C dx2;

ds�2 D dx2 C 1

f�.y/g2 .dy
2 C d z2/

respectively. These are conformally related with �.y/ as associated scalar field.
The first manifold M is the product M1 �M2 of the 2-dimensional manifold M1

with metric �2dx2 C dy2 and the circle M2 D S . The second M � is the product



Conformal Transformations Between Complete Product Riemannian Manifolds 467

M �
1 �M �

2 of the circleM �
1 D S andM �

2 with metric .dy2Cd z2/=�2 on T 2. These
manifolds are compact and consequently complete. The product structures F andG
are given by

F D
0
@1 0 00 1 0

0 0 �1

1
A ; G D

0
@�1 0 00 1 0

0 0 1

1
A ;

respectively, and commutative with one another.

Theorem 2. Let product Riemannian manifoldsM andM � be complete. If there is
a global non-homothetic conformal diffeomorphism f of M onto M �, then the
underlying manifold of M and M � is the product N1 � N0 � N2 of three complete
Riemannian manifolds, and � depends on one part only, say N0.

Denoting their metric forms by ds21; ds
2
0 and ds22 , then

(i) M is the product M1 �N2, where M1 is irreducible, and the metric form of M
is written as

�2ds21 C ds20 C ds22 (1)

on the underlying manifold N1 �N0 �N2, and
(ii) M � is the product N1 �M �

2 , where M �
2 is irreducible, and the metric form of

M � is written as

ds21 C ��2.ds20 C ds22/ (2)

on the same underlying manifold N1 �N0 �N2

3 Almost Product Riemannian Structure and Separate
Coordinate System

Conditions for .M; g; F / and .M �; g�; G/ to be almost product Riemannian
structures are

g��F
�
� F

�
	 D g�	; g�

��G
�
�G

�
	 D g�

�	 (3)

and integrability conditions for them to be product Riemannian ones are

r�F 	
� D 0; r�

�G
	
� D 0 (4)

The covariant tensors F�	 D F !
� g!	 and G�

�	 D G!
� g

�
!	 are symmetric and the

conditions (4) are equivalent to

r�F�	 D 0; r�
�G

�
�	 D 0 (5)



468 B.H. Kim

We put �� D r�� and denote the gradient vector field by Y D .�	/. Then the
Christoffel symbol is transformed by the formula

�
	

��

��
D
�
	

��

��
� 1
�
.ı	��� C ı	��� � g���	/ (6)

Under a conformal diffeomorphism f , we have the equations

G�
�G

	
� D ı	�; g��G

�
�G

�
	 D g�	

which mean that G constitutes an almost product Riemannian structure together
with g on M but not necessarily integrable. The covariant tensor G�� D G	

�g�	

is symmetric. Substituting G�
�� D G��=�

2 into the second Eq. (5) and (6), we can
obtain the differential equation

r�G�	 D �1
�
.G���	 CG�	�� � g��G	!�! � g�	G�!�!/; (7)

and applying Ricci’s formula to this equation, we have

�.K!
���G!	 CK!

��	G!�/

D G��r��	 CG�	r��� �G��r��	 �G�	r���

� g��Œ.r��!/G	! � ˚
�
G�	 � g�	Œ.r��!/G�! � ˚

�
G��

C g��Œ.r��!/G	! � ˚
�
G�	C g�	Œ.r��!/G�! � ˚

�
G��

(8)

where K	
��� is the curvature tensor of M and ˚ D jY j2 D �	�	:

These equations play important roles and an efficient method is to use freely
equations referred with a separate coordinate system.

In the product Riemannian manifold M D M1 �M2, there is locally a separate
coordinate system .xh; xp/ such that the metric form of M is expressed as

ds2 D gji .xh/dxj dxi C grq.xp/dxrdxq

The product structure F has components

�
ıhi 0

0 �ıpq
�

in such a coordinate system to within signature. The Christoffel symbol f 	
��
g and

the curvature tensorK	
��� have pure components only. The covariant differentiations

ri along M1 and rq along M2 are commutative.
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If F and G are commutative under a diffeomorphism, then we have FGF D G

which is equivalent to the purity of G with respect to F , i.e., all the hybrid
components Gh

q ;G
p
i and Gqi in a separate coordinate system vanish.

Lemma 1. A conformal diffeomorphism f of .M; g; F / to .M �; g�; G/ is a
homothety if and only if G constitutes a product structure together with g on M ,
that is,

r�G�	 D 0: (9)

Then the structures F and G are commutative under f .

Proof. If f is a homothety, then � is a constant. Substituting �� D 0 into (7), we
have (9). Conversely if (9) is satisfied, then contracting the Eq. (7) put equal to 0
with �	 , we have

˚G�� � g��G	!�	�! D ��G�!�! � ��G�!�!:

Since the left hand side is symmetric in � and � and the right hand side is skew-
symmetric, both of the sides are equal to 0. By account of G ¤ ˙I; we can see that
�� D 0 and � is a constant.

ThenM is decomposed into the product of a number of irreducible parts. Taking
account of (9) on each part and G2 D I , we can see that G is a diagonal matrix
having ˙1 as diagonal components. Hence we have FG D GF .

We put the parts Y1 D .�	/ and Y2 D .�p/ of Y D .�	/ belonging to M1

and M2 respectively. If � is independent of points of M2, then Y2 D .�p/ vanishes
identically.

When we refer an equation to a separate coordinate system and restrict indices to
the parts, for example, 	 D � D i; � D j; � D p in (8), we indicate .	; �; �; �/ D
.i; i; j; p/:

Lemma 2. If F and G are commutative under a non-homothetic conformal
diffeomorphism f , then � is a function on either of M1 or M2 only.

Proof. Since F and G are commutative, the hybrid components Gpi in M all
vanish. The Eq. (7) splits into the equations

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

rjGih D ���1.Gji�h CGjh�i � gjiGhk�k � gjhGik�k/;
rqGji D 0;
rjGpi D ���1.Gji�p � gjiGpr�r / D 0;
rqGpi D ���1.Gqp�i � gqpGih�h/ D 0;
rjGqp D 0;
rrGqp D ���1.Grq�p CGrp�q � grqGps�s � grpGqs�s/:

(10)

The second and fifth equations of (10) are reduced to @qGji D 0 and @jGqp D 0,
which mean that the part .Gji / depends onM1 only and .Gqp/ depends onM2 only.
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If there are points P nd Q in U such that �i .P / ¤ 0 and �q.Q/ ¤ 0, then the
third equation of (10) implies that G1 is proportional to I1 and hence G1 D ˙I1 in
U because ofG2 D I and the independence ofG1 onM2. Similarly from the fourth
equation of (10), we haveG2 D ˙I2. SinceG is different from I , we haveG D ˙F
and hence f is a homothety by Lemma 1. This contradicts the non-homothety of f .
Therefore � should be dependent of one part only.

A converse to Lemma 2 is the following.

Lemma 3. If � depends on one part only, say M1, but not a constant, then G is
commutative with F under f , or � satisfies the equation

rj �i D c2�gji (11)

where c is a positive constant.

Proof. By the assumption, �p D 0 and rp�� D 0. We suppose G is not
commutative with F , and a hybrid component Gqi does not vanish. Putting
.	; �; �; �/ D .h; i; j; p/ in (8), we have

Gqi .rj �h � ˚
�
gjh/CGqh.rj �i � ˚

�
gji / D 0:

The expression Gqi .rj �h � ˚
�
gjh/ is symmetric in h and j .

On the other hand, the equation above means this expression is skew-symmetric
in h and i . Hence the expression vanishes, and we can see that

rj �i D ˚

�
gji : (12)

Contracting (12) with 2�i , integrating and putting ˚ D �i�i D c2�2, we can obtain
the Eq. (11).

We prepare Lemmas 4 and 5, but we omit the proof.

Lemma 4. Suppose that Y1 D .�h/ and Y2 D .�p/ do not vanish in an open subset
U . Then the square ˚ of the length of jY j2 D �	�	 is decomposable in U , i.e. a sum

˚ D �	�	 D ˚1 C ˚2
of functions ˚1.xh/ and ˚2.xp/, and we obtain the equations

� rkrjri˚1 D k.2gjirk˚1 C gkjri˚1 C gkirj˚1/;
rrrqrp˚2 D �k.2gqprr˚2 C grqrp˚2 C grprq˚2/ (13)

in U . The functions ˚1 and ˚2 may be replaced with ˚ .
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Lemma 5. Let M and M � be complete Riemannian manifolds and f a diffeomor-
phism of M onto M �. If the length s of a differentiable curve � in M is extendable
to the infinity, then so is the length s� of the image � � D f .� / in M �.

4 Proof of Theorem 1

There are three following cases to be considered. Case (1) in Lemma 3 occurs the
Eq. (11). Case (2) k D 0 and Case (3) k ¤ 0 in the Eq. (13)

Let us prove Case (3) here. Along any geodesic curve with arc-length s and lying
in the part M1, we have

.˚1.s/ � k�2.s//00 D k.˚1 � k�2/C b � k˚2.P / (14)

and

.˚1/
000 D 4k.˚1/0; (15)

prime0 indicating derivatives in s. We put k D c2 or k D �c2 according as k > 0 or
k < 0. The general solution of (15) is given by

˚1 D
�
Ae2cs C Be�2cs C C .k D c2/
A cos 2cs C B sin 2cs C C .k D �c2/ (16)

and consequently, by means of (14), �2 is given in the form

�2 D

8̂
<
:̂
1

c2
.Ae2cs C Be�2cs/C A1ecs C B1e�cs C C1

1

c2
.A cos 2cs C B sin 2cs/C A1 cos cs C B1 sin cs C C1;

(17)

where A;B;C and so on are arbitrary constants.
We may suppose k D c2 in U . Take the part M1.P / through a point P 2 U .

If M1.P / contains a relatively open subset where Y1 D .�h/ D 0 and ˚1 D 0, then,
by considering the solution of (15) along a geodesic connecting P with a point in
the subset, we can see that Y1 should identically vanish. This is a contradiction.

By similar arguments, in the case where ˚1 is given by the second equation
of (16) somewhere in M1.P /, we can lead a contradiction. Hence the expressions
the first equation of (16) and the first equation of (17) are valid in the whole of any
geodesic in M1.P /.

At least one ofA;B;A1; B1 in (17) is different from zero. If, for example,A ¤ 0,
then A should be positive and we put A D a2; a > 0. Take a value s0 so large that
the inequality

� >
a

2c
ecs
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hold on for s > s0. Let � � be the image f .� /, s� the arc length of � � and s�
0 the

value corresponding to s0. Then s� is related to s by the differential equation

ds�

ds
D 1

�
<
2c

a
e�cs:

The length s� of the image � � is bounded as s tends to the infinity. This is
a contradiction by Lemma 5. Hence, in Case (3), there is no global conformal
diffeomorphism.
Case (1) and (2) can be proved by similar arguments.

5 Proof of Theorem 2

Notice that Lemma 2 is globally valid. Therefore the product structure F and G are
commutative everywhere and � may be assumed as a function of M1 only. We have
G2 D ˙I2 as seen in the proof of Lemma 2. We choose G2 D I2, then Gqp in a
separate coordinate system in M .

Let M1.P / be the part M1 passing through any point P of M and M 0
1 the image

f .M1.P // by f . If we denote by ds1
2

and ds22 the metric forms of M1 and M2

respectively, then the induced metric form of M 0
1 in M � is identical with ��2ds21 .

The partM1.P / is simply connected and so is the imageM 0
1. SinceM � is complete,

the closed submanifold M 0
1 is also complete.

Since the first of Eq. (10) leads to the integrability condition r�
j Gih D 0 of

G1 D .Gh
i / in M 0

1 and we have chosen G2 D I2, the structure G1 on M 0
1 can be

written in the form G1 D �I1 or

G1 D
�

-I 0
0 I

�
(18)

If G1 D �I1, we have G D ˙F and hence f is homothety by Lemma 1. Thus
G1 must be of the form (18) on M 0

1, and M 0
1 is a product manifold N1 � N0 of

two complete Rimannian manifolds N1 and N0. The fourth equation of (10) implies
Gh
i �h D �i . By means of (18), � depends on N0 only. If we denote the metric forms

of N1 and N0 by ds21 and ds20 respectively, then the metric form of M 0
1 is ds21 C ds20

and the underlying manifold of M1 is N1 � N0. Therefore the metric form ds1
2

of

M1 is written as ds1
2 D �2.ds21 C ds20/ . Putting N2 D M2 and rewriting ds20 for

�2ds20 , we see that the underlying manifold of M is the product N1 � N0 � N2 and
the metric form is given by (1). The metric form of M � is then expressed as (2) on
the same underlying manifold.

IfM1 is reducible and a Riemannian productM 0�M 00 of two manifoldsM 0 and
M 00, then we considerM as the productM 0� .M 00�M2/ in place ofM1�M2. If �
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depends on both the parts M 0 and M 00, then, by means of Theorem 1, there is no
global non-homothetic conformal diffeomorphism. Consequently � should depend
on one part only. Hence M1 is considered to be irreducible. Similarly M �

2 is an
irreducible part of M �.
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Orbifold Holomorphic Discs and Crepant
Resolutions

Cheol-Hyun Cho

Abstract This is a note of a lecture at the conference, “Real and Complex
submanifolds”. We survey the definition and properties of orbifold holomorphic
discs and an application to crepant resolution conjecture

1 Holomorphic Discs

Holomorphic discs with Lagrangian boundary condition has played pivotal role
in symplectic geometry and mirror symmetry in the last two decades. It has been
discovered that quantum geometric invariants of a space, such as Lagrangian Floer
homology and Fukaya category, are based on the moduli space of holomorphic
discs, and also has deep connection to quantum cohomology. Moreover, via mirror
symmetry, it is also connected to the theory of coherent sheaves, singularity theory,
and matrix factorizations. The purpose of this lecture is to give an elementary
introduction to the some of the ideas of author’s recent works [4, 9] with Poddar,
Chan, Lau and Tseng to the non-experts of this field, focusing on the simplest
example.

Let .M;!/ be a 2n-dimensional symplectic manifold. We will be mainly inter-
ested in (possibly non-compact) toric manifolds and orbifolds. An n-dimensional
submanifold L is called Lagrangian if !jTL � 0. Easiest example is a circle S1 in
.C; dx^dy/, or their products .S1/n 	 C

n. Toric manifolds or orbifolds come with
moment maps � W M ! R

n, whose images are given by polytopes PM , and one
can check that ��1.p/ for an interior point p 2 PM becomes a Lagrangian torus
fiber.

Holomorphic discs are maps

u W .D2@D2/! .M;L/:
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For .C; S1/, holomorphic discs are given by a product of biholomorphic maps of

D2, or Blaschke factors ei�
z � ˛
1 � ˛z

for ˛ 2 D2. The number of such factors can

be measured by the winding number of @D2 under u, denoted as �

2
. In general

Maslov index � of a holomorphic disc is defined to be the winding number
of Lagrangian sub-bundle in the trivialization of u�TM over @D2. Clearly the
dimension of the space of holomorphic discs is n C � for this example .C; S1/
with n D 1, since a choice of � contributes n D 1 dimension, and the choice of
˛ in each factor contributes total of �-dimensional family. In general, we consider
the (compactified) moduli space of holomorphic discs M .M;L; ˇ/ of a homotopy
class ˇ 2 �2.M;L/, whose expected dimension is nC�.ˇ/� 3, where �3 is from
the equivalence relations by Aut .D2/. Let us also consider k C 1 marked points
z0; � � � ; zk on @D2 in a counter-clockwise order to define MkC1.M;L; ˇ/. Whether
the actual dimension of the moduli space equals the expected dimension depends
on the transversality of the (linearized) @ equation for each element, which is
called Fredholm-regularity. In general, one may considers J -holomorphic discs for
a generic almost complex structure J ofM instead of the standard complex structure
J0 or perturbed @ equation @u D �, to have a better chance for Fredholm-regularity.

When � D 2, the expected dimension of M1.M;L; ˇ/ is of dimension n,
and hence one can define an one-point open Gromov–Witten number o1.L; ˇ/, by
considering the intersection of the evaluation map ev0 WM1.M;L; ˇ/ ! L with a
generic point p 2 L. To determine whether o1.L; ˇ/ is an invariant of .M;L/, we
need to consider the compactification of holomorphic discs, i.e. whether the moduli
space M1.M;L; ˇ/ is a cycle (without boundary) or a chain (with boundary).

One of the key property of .J /-holomorphic maps is that theL2-energy
R
D2 jduj2

equals symplectic energy
R
D2 u�! which is topological. Gromov explained that

the compactification of such maps could only have a bubbling off phenomenon,
when L2-energy locally concentrate to a point or escape to the boundary in the
limiting sequence, which is called Gromov-compactness. In the former case, one can
re-capture such information by a tree of holomorphic sphere bubbles by rescaling,
and in the latter by holomorphic disc bubbles. The latter is a codimension one
phenomenon, and hence in general the moduli space of holomorphic discs do have a
boundary. As the total Maslov index� (sum of indices of such bubbles) is preserved,
we can deduce that if Maslov index of non-constant holomorphic discs (or spheres)
are positive, then � D 2 moduli space cannot bubble off, and hence becomes a
cycle. Hence one point open Gromov–Witten invariants are well-defined for such
Lagrangians.

In fact, for a semi-Fano toric manifold, where it is allowed to have index 0
holomorphic spheres (which are included in toric divisors), the stable holomorphic
disc of Maslov index two is given with a basic disc component of homotopy class ˇ0
which intersects in its interior, a (tree) of index 0 holomorphic spheres (of class m˛
for m 2 N). Since, a basic disc component cannot bubble off and spheres bubblings
are of codimension two or more, the moduli space of such discs gives a virtual cycle
of dimension n, hence defines an open Gromov–Witten invariant o1.L; ˇCm˛/ for
each m 2 N.
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It is natural to consider the coefficient ring, called Novikov field

� D
( 1X
iD1

aiT
�i j; ai 2 C; �i 2 R; lim

i!1�i D1
)

We may consider the space of such Lagrangian torus with a U.1/-holonomy (of a
flat complex line bundle on it), which is denoted as f.L;r/g. Then, such one-point
open Gromov–Witten invariants may define a function on such space

W.L;r/ D
X

ˇ2�2.M;L/
o1.L; ˇ/T

!.ˇ/Holr.@ˇ/

where Holr.@ˇ/ is the holonomy of the line bundle along @ˇ. This may be defined
more canonically, using algebraic formalism of bounding cochains (see [14]).

Strominger–Yau–Zaslow approach views mirror symmetry as a phenomenon
between two dual torus fibrations. If the Lagrangian L’s form a torus bundle M ,
then the space LM of such f.L;r/g may be naturally identified with space of dual
torus bundle. This may be applied to the toric case, by considering toric manifold
(orbifolds) away from toric divisors as explained in [1].

Hence such one-point open Gromov–Witten invariants define a function on the
mirror space, called mirror Landau–Ginzburg super-potential. Such relation were
conjectured by Hori–Vafa [17], and verified in the toric Fano case by Cho–Oh [8],
in more generality, Fukaya–Oh–Ohta–Ono [15], Chan–Lau–Leung–Tseng [5] and
so on.

Holomorphic discs in toric manifolds (resp. orbifolds) with boundary on
Lagrangian torus fiber are completely classified by Oh and the author [8] (resp.
Poddar and the author [9]). It was shown that there exist unique holomorphic
disc of Maslov index two (up to T n-action and Aut .D2/) corresponding to each
facet. Hence, it gives rise to a leading order potential W0.L;r/, which can be read
off combinatorially from the moment polytope PM . The terms in W � W0 are
rather difficult to compute. Usually, W0 is called Hori–Vafa potential (also known
previously by Givental’s work), and its relation to W , which is sometimes called
quantum corrections, seem to contain essential informations such as inverse mirror
maps (see [5] for more details).

2 Orbi-Discs

For symplectic orbifold .M;!/, it is natural to consider a holomorphic map from
a Riemann surface ˙ with orbifold singularity. Such a notion has been defined by
Chen and Ruan [6, 7] who developed an orbifold Gromov–Witten theory, but also
defined new cohomology theory of orbifolds, which are called Chen–Ruan orbifold
cohomology.
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Let us first explain what is an orbifold version of Riemann surface. A non-trivial
finite group action on D2 	 C which preserves the origin and a complex structure,
is nothing but a cyclic group action of Z=n by rotation. Consider the quotient map
� W D2 ! D2= � of Z=n action, where the latter is again topologically a disc, and
the map � is n to 1. Note also that the map D2 ! D2 given by z ! zn is also n
to 1 map to a disc. It is convenient to identify these two maps, and consider D2= �
as D2. In this sense, orbifold Riemann surface is defined to be a Riemann surface
˙ , with finite set of points zC

1 ; : : : ; z
C
k 2 ˙ , each of which has a disc neighborhood

D.zC
i / and its branch cover AD.zC

i / ! D.zC
i /, locally given by br W z ! zmi

for some positive integer mi . If mi D 1, it is a smooth marked point. We are
particularly interested in an orbifold disc, which is D2 with a finite set of interior
points zC

1 ; : : : ; z
C
k with a branch covering structure as above.

Let X be a symplectic orbifold. Then, a holomorphic map from an orbifold
Riemann surface .˙; zC;m/ to X is given by a continuous map u W ˙ ! X ,
holomorphic away from zC and has a local lift (which is an equivariant map)
AD.zC

i / ! QU near zC
i , for the uniformizing chart QU ! U of u.zC

i /. It is
further assumed that the relevant local group homomorphism is injective (called
“representable”) and is assumed to be a good map (such local lifts are compatible
with each other in a specific sense, which we refer to [6]). Let us just remark that
the representability is essential in the sense that otherwise, there will be infinitely
many types of holomorphic maps from possibly more and more singular Riemann
surfaces. The good map condition is essential when dealing with constant maps, and
maps which degenerate into singular loci (it is proved in [6] that if the inverse image
of the non-singular part ofX is open, dense and connected then such a map is good).

As an example, let us consider an orbifold X D ŒD2=.Z=n/, and consider
orbifold discs to X . We may write Z=n as 0; 1

n
; 2
n
; : : : ; n�1

n
with n

n
D 0, where

k
n

act on D2 by a multiplication of exp.2�k
p�1
n

/, which has a unique fixed point 0
for each k ¤ 0. A twisted sector of X is given by a fixed point set Xk

n
D f0g for

each k ¤ 0.
An orbifold holomorphic disc .D2; zC

1 ;m1/ toX is given as follows. First, we can
set zC

1 D 0 by Aut .D2/. To be representable, we need to map zC
1 D 0 to the unique

singular point 0 of X , and we need an injective homomorphism from Z=m1 to Z=n,
which implies that n is a multiple ofm1. Hence, we set n D m1 �q. Consider z 2 fD2

which maps to D2 by z ! zq , which defines a desired Z=m1 equivariant map. The
generator of Z=m1 maps to the element q

n
, and such an orbifold holomorphic disc

meets the twisted sector Xq
n
. In fact, a map z ! zknCq for any integer k � 0 also

defines an orbifold holomorphic disc which meets the twisted sectorXq
n
. Let us also

remark that when m1 D 1, the domain disc is in fact smooth, and we have q D n.
Namely, any map of the type zkn for k � 1 defines a smooth disc to X , and one can
see that even when the domain do not have orbifold singularity, the holomorphic
disc can pass through the singular loci (when it has the right multiplicity).

To discuss the expected dimension of orbifold discs, we need a notion of Maslov
index, which has been defined by Shin and the author [10], by introducing a Chern–
Weil version of the Maslov index. Namely, for an orbifold map u, we consider
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its pull-back orbi-bundle u�TX , which may not be trivial bundle. We consider an
unitary connection r which preserved the Lagrangian boundary condition on along
@D2, and define its Maslov index to be

�CW .u/ D
p�1
�

Z
D2

t r.Fr/

for the curvature Fr . One can see that such an index is rather topological, once we
fix the twisted sectors X�i that it intersects with at zC

i ’s.
Then, the consider the moduli space of (compactified) orbifold holomorphic

discs u W .D2; z;m/! .X;L/ of homotopy class ˇ 2 �2.X;L/, whose i -th orbifold
marked point meets the twisted sector X�i , with one boundary marked point z0, has
an expected dimension

nC �CW .ˇ/C 1C 2k � 3 �
kX
iD1

2�.�i /;

where �.�i / is the Chen–Ruan degree shifting number of X�i .
Here, �.�i / is roughly given by the sum of exponents of the diagonalized normal

direction to the fixed loci. Namely, if �i 2 Z=n acts on C
n by

diag.exp.
2�a1

p�1
n

/; : : : ; exp.
2�as

p�1
n

//

for 0 � a1; � � � ; as < 2� , then the degree shifting number �.�i / DPs
jD1

aj
n

.
Hence, when

2k � 2C �CW .ˇ/ D 2
kX
iD1

�.�i /; (1)

the expected dimension becomes n, and hence we can define an orbifold open
Gromov–Witten number o.L; ˇ; �1; � � � ; �k/, by taking an intersection with a
generic point on L. Note that when � D �i for all i with �.�/ D 1 and when
�CW .ˇ/ D 2, the above condition is satisfied for any k, and hence gives rise to
infinitely many such open Gromov–Witten numbers.

As before, one may ask whether this number becomes an invariant, by consider-
ing its compactification as considered in [6]. It is similar to the case of a holomorphic
discs, but in this case, there are two things that one has to be careful. One is that
nodal point (of the sphere bubble) can have an orbifold structure. And the other is
that even constant orbifold spheres may not be Fredholm-regular (and needs virtual
technique to perturb them).

In general toric situations, one can use T n-equivariant perturbation to define such
open Gromov–Witten invariants, as the possible codimension one boundary stratum
has dimension n � 1. Such stratum cannot exist since T n-equivariance implies that
the dimension is at least n.
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But like in semi-Fano toric manifolds, if there exist a unique disc component,
which cannot bubble off, then such property can be used to show that the moduli
space has a virtual cycle.

Let us finish this section, by considering the case of X WD ŒC2=.Z=2/, where 1
2

of Z=2 acts on C
2 by .z1; z2/ ! .�z1;�z2/. For the twisted sector X1

2
D f.0; 0/g,

degree shifting number is �. 1
2
/ D 1. Consider the Lagrangian torus L D U.1/2 	

C
2, and an orbi-disc u with one orbifold point zC

1 whose boundary lies on L=.Z=2/
(which is still smooth). It is obtained from the Z=2-equivariant lift Qu W D2 ! C

2,
given by z 7! .z; z/; modulo .S1/2 rotation action.

Note that the Maslov index of Qu is 4. Using Proposition 6.7 of [10], we know that
the orbi-disc u has Maslov index 2, which is obtained by from the Maslov index of Qu
divided by the degree of the branch covering map. Hence, if we denote the homotopy
class of this orbi-disc by ˇ, one sees that the dimension condition (1) is satisfied for
the orbi-discs of class ˇ, with an arbitrary number of twisted sector 1

2
insertions.

Namely, we have open Gromov–Witten invariants o.L; ˇ; 1
2
; � � � ; 1

2
/, starting from

o.L; ˇ; 1
2
/ D 1. One can check that there do not exist orbi-discs of class ˇ with

k � 2 twisted sector insertions, except stable discs with one disc component of
class ˇ, together with constant orbifold sphere bubble trees attached to the nodal
point 1

2
of the disc ˇ.

3 Lagrangian Floer Superpotential and Crepant
Resolutions

From the above example, it is natural to define the following generating function of
open orbifold Gromov–Witten invariants in this example of X D ŒC2=.Z=2/:

W.L;r/orb D
1X
kD0

1

kŠ
o.L; ˇ;

1

2
; � � � ; 1

2„ ƒ‚ …
k

/T !.ˇ/Holr.@ˇ/:

In fact, one can include an additional parameter as follows. Recall that Chen–
Ruan orbifold cohomology, as a module, is given by the cohomology of its inertia
orbifold, and hence has additional contribution from the twisted sectors. In this case,
we have the contribution from H0.X1

2
/, regarded as an element of H2

CR.X/, after

degree shifting 2�. 1
2
/ D 2. To include the Kähler parameter 
 1

2
for this cohomology

class, we consider 
tw D 
 1
2

1
2
2 H2

CR.X/ to define the generating function.
The following definition of Lagrangian Floer superpotential has been proposed

in the general setting in Definition 19 [4] (see also [9]).
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Definition 1. Lagrangian Floer superpotential of an orbifold � is the function W� W
L�! C defined by

W orb
� D

X
ˇ2�2.�;L/

X
k�0

1

kŠ
o.L; ˇ; 
tw; : : : ; 
tw/exp.�

Z
ˇ

!/Holr.@ˇ/:

Here 
tw is defined using Kähler parameters for all twisted sectors �’s with �.�/ � 1.
Note that the above potential depends on two different kind of Kähler parameters,
one is the 
tw, and the other is the standard Kähler parameters in H2.X/, which is
implicit in the expression exp.� R

ˇ
!/. We will use q to denote both parameters.

Now, an orbifold � may admit a crepant resolution Y . The crepant resolution
conjecture, which tries to relate quantum cohomology (or in general, Gromov–
Witten invariants) of � and Y , has been actively investigated in the last ten years, and
much evidence has been found. Ruan [18] is the first person to gave the conjecture
that QH�.Y / should be isomorphic to QH�.�/ after analytic continuation of the
quantum parameters, and specialization of some of the parameters, which was
further generalized by Bryan–Graber [2], Coates–Iritani–Tseng [12], Coates–Ruan
[11] and so on.

In [4], we have formulated the following different version of crepant resolution
conjecture, called open crepant resolution conjecture. Namely, for a toric orbifold
� and its toric crepant resolution Y , we have claimed that their Lagrangian Floer
superpotentials W�.q/ and WY .Q/ are related by analytic continuation and change
of variables.

This conjecture, compared to the previous ones, has the following noble aspect.
As we have explained, the Lagrangian Floer superpotentials are made from the
counting of holomorphic (orbi)-discs. Hence, the mysterious change of variables
in the process of crepant resolution relations, can be explained as a relation between
disc-counting invariants of � and Y , providing geometric understanding of the
phenomenon.

Such conjecture has been proved for the weighted projective spaces � D
P.1; : : : ; 1; n/whose crepant resolution is Y D P.KPn�1˚OPn�1 / in Theorem 3 [4].

Let us consider case of n D 2, namely X D P.1; 1; 2/, which has the previous
example ŒC2=.Z=2/, as an open coordinate chart. Its crepant resolution Y is nothing
but the Hirzebruch surface F2 obtained by blowing up the singular point.

Let us first consider the Lagrangian Floer potential of F2. Note that F2 has an
exceptional curveD (with self intersection number .�2/) which is obtained from the
blowup. The curveD as a holomorphic sphere, has a Chern number 0: such a Chern
number is given by the intersection number with union of toric divisors, and D
meets two divisors of fiber class, and self-intersect D, which gives the intersection
number 0. In particular, F2 is semi-Fano.

We can define the Lagrangian Floer potential by counting holomorphic discs as
described in Sect. 1. Toric fan of F2 can be chosen so that it has the following one
dimensional generators,
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v1 D .1; 0/; v2 D .0; 1/; v3 D .�1;�2/; v4 D .0;�1/

First, by classification of holomorphic discs [8], we have unique holomorphic discs
of class ˇi corresponding to vi for each i D 1; 2; 3; 4. From this, we have the
following leading order potential

WF2;0 D z1 C z2 C Q1Q
2
2

z1z22
C Q2

z2
:

Here,Q1 is the Kähler parameter corresponding to the size ofD, whereasQ2 to that
of the fiber class. The exceptional divisor D meets the disc ˇ4, and theoretically,
there could be stable holomorphic discs of class ˇ4 C mD for any positive integer
m, but it has been computed by Auroux [1], Chan [3], Fukaya–Oh–Ohta–Ono [16]
that it is non-trivial only if m D 1, whose invariant equal to one.

Hence, the total potential can be written as

WF2 D z1 C z2 C Q1Q
2
2

z1z22
C Q2 CQ1Q2

z2

Now, toric Fan of P.1; 1; 2/ can be chosen so that it has the following one
dimensional generators.

b1 D .1; 0/; b2 D .0; 1/; b3 D .�1;�2/:
Hence, by classification of holomorphic discs [9], we have the following potential
which just records smooth holomorphic discs

WP.1;1;2/ D z1 C z2 C q

z1z22
:

To observe the relation of Kähler parameters between QH�.F2/ and
QH�.P.1; 1; 2//, we can directly compare two potentials obtained by counting
smooth holomorphic discs

WF2 D WP.1;1;2/;

which produces identities

Q1Q
2
2 D q;Q2.1CQ1/ D 0:

Hence, we obtain

Q1 D �1;Q2 D
p�1q 1

2 :

The first identification, specialization to the root of unity, was conjectured by Ruan
[18] to identify quantum cohomology of the orbifold and its crepant resolution, and
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we find a geometric explanation of Q1 D �1 in this way. Note that the number of
parameters are different between these cases.

In general, if we consider Chen–Ruan quantum cohomology ring of orbifold,
then the number of parameters are expected to be the same. To observe the relation
of such Kähler parameters betweenQH�.F2/ andQH�

CR.P.1; 1; 2//, we need to set

WF2 D W orb
P.1;1;2/ (2)

where the latter is obtained by counting also orbi-discs.
For this, we need to compute the open orbifold Gromov–Witten invariants

o.L; ˇ;
1

2
; � � � ; 1

2„ ƒ‚ …
k

/

for any k � 0. Such invariants has been computed in [4] by first putting a cap
to the orbi-disc to identify it with an orbi-sphere (which is possible since the
relevant orbi-disc class has a unique disc component), and compute the number of
such orbi-spheres (with one point intersection condition) by using orbifold mirror
theorem of Coates–Corti–Iritani–Tseng [13], which identifies so called I -function
and J -function upon mirror map. The outcome of such computation shows that we
have

o.L; ˇ;
1

2
; � � � ; 1

2„ ƒ‚ …
2kC1

/ D .�1/k 1

.2k C 1/Š22k ; o.L; ˇ;
1

2
; � � � ; 1

2„ ƒ‚ …
2k

/ D 0:

Hence, the superpotential W orb
P.1;1;2/ is given as

W orb
P.1;1;2/ D z1 C z2 C q

z1z22
C 2q1=2 sin. 


2
/

z2
:

Hence the identification with orbifold potential (2) implies the relation between
Kähler parameters

Q1 D e�p�1.��
/; Q2 D q 1
2 e

p�1.��
/=2:

Note that the region where q; 
 are small is different from where Q1;Q2 are small,
and it illustrates that one need an analytic continuation in general.
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On the Hamiltonian Minimality of Normal
Bundles

Toru Kajigaya

Abstract A Hamiltonian minimal (shortly, H-minimal) Lagrangian submanifold in
a Kähler manifold is a critical point of the volume functional under all compactly
supported Hamiltonian deformations. We show that any normal bundle of a principal
orbit of the adjoint representation of a compact simple Lie group G in the Lie
algebra g of G is an H-minimal Lagrangian submanifold in the tangent bundle
T g which is naturally regarded as C

m. Moreover, we specify these orbits with
this property in the class of full irreducible isoparametric submanifolds in the
Euclidean space.

1 Introduction

A Lagrangian submanifold L is an m-dimensional submanifold in a 2m-
dimensional symplectic manifold .M;!/ on which the pull-back of the symplectic
form ! vanishes. When M is a Kähler manifold, extrinsic properties of Lagrangian
submanifolds have been studied by many authors. Since the Lagrangian property
is preserved by Hamiltonian flows, namely, flows generated by Hamiltonian vector
fields on M , it is natural to consider the variational problem under the Hamiltonian
constraint. A Lagrangian submanifold which attains an extremal of the volume
functional under Hamiltonian deformations is called Hamiltonian minimal (shortly,
H-minimal). This was first investigated by Oh [26], where he gave some basic
examples. Many more examples have been constructed in Kähler manifolds by
various methods (see Sect. 2).

In this note, we review some basic results of H-minimal Lagrangian submani-
folds in a general Kähler manifold (Sect. 2). Furthermore, we focus on constructions
of H-minimal Lagrangian submanifolds in the complex Euclidean space C

m

(Sect. 3.1). In particular, we give a new family of non-compact, complete H-
minimal Lagrangian submanifolds in the complex Euclidean space C

m (Sect. 3.2
through 3.4).
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Let Nn be a submanifold in R
nCk . Our examples are given by the normal

bundle �N of N in TRnCk ' C
nCk . It is known that the normal bundle �N is

a Lagrangian submanifold in TRnCk . Harvey–Lawson [10] first showed that �N
is a minimal Lagrangian submanifold if and only if N is an austere submanifold,
namely, the set of principal curvatures of N with respect to any unit normal
vector is invariant under the multiplication by �1. In their context, the condition
that a Lagrangian submanifold is minimal is equivalent to that it is a special
Lagrangian submanifold of some phase. Hence, one can construct examples of
special Lagrangian submanifold in C

nCk from austere submanifolds. On the other
hand, in [18], the author proves that any normal bundle over the principal orbit of the
adjoint action of a compact semi-simple Lie group G is a non-minimal, H-minimal
Lagrangian submanifold. Such an orbit is called the complex flag manifold or
regular Kähler C-space. Moreover, we show that this property characterizes regular
C-spaces among the class of full and irreducible isoparametric submanifolds in the
Euclidean space (Sect. 3.3, Theorem 1). In Sect. 3.4, we review a proof of this result
which is given in [18].

2 Hamiltonian Minimal Lagrangian Submanifolds

Let � W L ! M be a Lagrangian immersion into a Kähler manifold .M;!; J /,
where ! is the Kähler form and J is the complex structure on M . An infinitesimal
deformation �t W L � .�"; "/ ! M of � is called a Hamiltonian deformation if
˛ QVt 2 ˝1.L/ is an exact form for t 2 .�"; "/, namely, ˛Vt D dft for some functions

ft 2 C1
0 .L/, where QVt WD d�t=dt is the variational vector field of �t . Define the

mean curvature form of � by ˛H WD ��.!.H; �//, where H is the mean curvature
vector of �. A Lagrangian immersion � is called minimal if ˛H D 0, or equivalently
H D 0. When M is Kähler–Einstein, the mean curvature form ˛H is a closed
1-from by the result of Dazord [9], and hence, it defines a real cohomology class
Œ˛H  2 H1.L;R/. It is known that any Hamiltonian isotopy preserves Œ˛H , namely,
under any global Hamiltonian isotopy f�tg0�t�1 of � D �0, the 1-forms ˛Ht on L
represent the same cohomology class, where ˛Ht is the mean curvature form of
�t (see [27]). In particular, for a Lagrangian immersion � into a Kähler–Einstein
manifold M , if there exist a minimal Lagrangian immersion in its Hamiltonian
isotopy class, then Œ˛H  D 0. Therefore, there exist an obstruction for the existence
of minimal Lagrangian submanifold in the Hamiltonian isotopy class (see also [30]).

A Lagrangian immersion � is called Hamiltonian minimal (shortly, H-minimal)
if it is a critical point of the volume functional under all compactly supported
Hamiltonian deformations. It is known that � is H-minimal if and only if the
mean curvature form ˛H 2 ˝1.L/ satisfies the equation ı˛H D 0, where ı is
the codifferential acting on ˝1.L/ (see [26]). When M is Kähler–Einstein, the
maximum principle implies that if � W L ! M is a non-minimal, H-minimal
immersion of a compact manifold L into M , then H1.L;R/ ¤ 0 ([26]).
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Example 1. (1) Any minimal Lagrangian immersion is H-minimal. Thus, the
notion of H-minimality is an extension of minimal submanifold.

(2) Any Lagrangian immersion with the parallel mean curvature vector (i.e.,
r?H D 0) is H-minimal.

(3) A curve with constant geodesic curvature in a Riemann surface.
(4) Any compact extrinsically homogeneous Lagrangian submanifold in a Kähler

manifold.

An H-minimal Lagrangian immersion � W Ln ! M2n is Hamiltonian stable
(or H-stable) if the second variation of the volume functional of the immersion is
non-negative for all Hamiltonian deformations f�tgt . In [26], Oh derived the second
variation under a Hamiltonian deformation for a compact Lagrangian submanifold
in a Kähler manifold as follows:

d2

dt2

???
tD0Vol.�t .L// D

Z
L

n
j�f j2 � Ric.rf / � 2g.B.rf;rf /;H/C g.Jrf;H/2

o
dvL;

where ˛V0 D df , Ric is the Ricci curvature of M , and B is the second fundamental
form of L. When M is Kähler–Einstein, and L is a compact minimal Lagrangian
submanifold, it turns out that the H-stability is equivalent to �1 � c, where �1 is
the first eigenvalue of � acting on C1.L/ and c is the Einstein constant of M .
In particular, any compact minimal Lagrangian submanifold in a Kähler–Einstein
manifold with non-positive Ricci curvature is H-stable.

Example 2. The following examples are H-stable.

(1) Einstein real forms (i.e., the fixed point sets of an anti-holomorphic involution
on M ) in a Hermitian symmetric space of compact type [25].

(2) The standard tori T m D S1.r1/ � � � �S1.rm/ in C
m [26].

(3) Lagrangian submanifolds with parallel second fundamental form in C
m or CPm

[1, 2].

For more examples of H-stable Lagrangian submanifold, we refer to [20,21] and
a survey article by Ohnita [28].

A diffeomorphism � on M is called a Hamiltonian diffeomorphism of M if �
satisfies the following conditions:

(i) � is symplectic, namely, ��! D !.
(ii) � is represented by the flow f�tgt2Œ0;1 of a time dependent Hamiltonian vector

field fXFt g on M , namely, d=dt.�t .x// D XFt .�t .x// with �0 D IdM and
�1 D �, where !.XFt ; �/ D dFt for Ft 2 C1

0 .M/.

We denote the set of all Hamiltonian diffeomorphisms by Ham.M;!/.
A Lagrangian submanifold L in M is called Hamiltonian volume minimizing (or
shortly, H.V.M. Lagrangian submanifold) if L is a volume minimizer of any Hamil-
tonian diffeomorphism, namely, L satisfies the inequality Vol.�.L// � Vol.L/
for any � 2 Ham.M;!/. By definition, it follows that an H.V.M. Lagrangian
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submanifold is necessarily H-minimal and H-stable. We know only a few examples
of H.V.M. Lagrangian submanifolds.

Example 3. (1) The totally geodesic RPn in CPn (Kleiner–Oh, cf. [25]).
(2) The product of two equators S1 � S1 in S2 � S2 (Iriyeh–Ono–Sakai, [16]).
(3) The totally geodesic Sn in Qn.C/ (cf. Iriyeh–Sakai–Tasaki, [17]).

Note that all known examples of H.V.M. Lagrangians belong to Einstein real
forms in a Hermitian symmetric space. Based on these examples, Oh posed the
following conjecture:

Conjecture 1. Let L be a real form, i.e., the fixed point sets of an anti-holomorphic
involution of a Kähler–Einstein manifold M . If L is Einstein, then L is H.V.M.

More generally, we consider the following problem:

Problem 1. Construct and classify H-minimal Lagrangian submanifolds, H-stable
Lagrangian submanifolds and H.V.M. Lagrangian submanifolds in a specific Kähler
manifold.

3 Hamiltonian Minimality of Normal Bundles in T R
nCk

3.1 H-Minimal Lagrangian Submanifolds in C
m

Let L be an oriented Lagrangian submanifold in the complex Euclidean space C
m.

The Lagrangian angle of L is an S1-valued function � W L! S1 D R=2�Z on L
defined by

e
p�1�.p/ D d z1 ^ : : : ^ d zm.e1; : : : ; em/.p/;

where zi D xi C
p�1yi and fe1; : : : ; emg is an oriented orthonormal basis of L.

Then one can show that the mean curvature form ˛H of L satisfies the relation

˛H D �d�: (1)

Recall that a Lagrangian submanifold L in C
m is special Lagrangian with phase

e
p�1� if L is calibrated by the calibration Re.e�p�1�˝/, where ˝ D d z1 ^ : : : ^
d zm. A special Lagrangian submanifold is automatically volume minimizing in its
homology class.

Proposition 1. For an oriented, connected Lagrangian submanifold L in C
m, we

have (i) � is special Lagrangian if and only if � is constant, and (ii) � is H-minimal
if and only if � is harmonic (as a S1-valued function), namely, �� D 0.

The minimality of a Lagrangian submanifold L in C
m is equivalent to that L

is a special Lagrangian submanifold of some phase (see Proposition 2.17 in [10]).
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We also note that there exist no compact minimal submanifolds in the (complex)
Euclidean space.

On the other hand, Oh [26] pointed out that the standard tori T m D S1.r1/

� � � ��S1.rm/ are H-minimal. Generalizing Oh’s results [26], Dong [8] showed that
the pre-image of an H-minimal Lagrangian submanifold in the complex projective
space CPm�1 via the Hopf fibration � W S2m�1 ! CPm�1 is H-minimal
Lagrangian in C

m. We note that there are some known H-minimal Lagrangian
submanifolds in CPm�1. For instance, any compact, extrinsically homogeneous
Lagrangian submanifolds in CPm�1 are H-minimal, and Bedulli and Gori [4] gives
the complete classification of Lagrangian orbits which are obtained by a simple
Lie group of isometries acting on CPm�1. On the other hand, Anciaux and Castro
[3] gave examples of H-minimal Lagrangian immersions of manifolds with various
topology by taking a product of a Lagrangian surface and Legendrian immersions in
odd-dimensional unit spheres. Note that these examples are compact and contained
in a sphere. In [18], we give a new family of non-compact, complete H-minimal
Lagrangian submanifolds in C

m, which is described in the following subsections.
For more examples in C

m (and CPm�1), we refer to [1–3, 11, 12] and references
therein.

3.2 Normal Bundles in T R
nCk

Let R
nCk be the Euclidean space with the standard flat metric h; i. Denote the

tangent bundle of R
nCk by TRnCk . Since TRnCk is trivial, it is identified with

the direct sum R
nCk ˚ R

nCk on which we can define the flat metric g.; / induced
from h; i. Moreover, we define the complex structure J by J.X; Y / D .�Y;X/ for
.X; Y / 2 TpRnCk˚TuR

nCk where .p; u/ 2 R
nCk˚RnCk . By this identification, we

regard TRnCk as the complex Euclidean space CnCk with the standard Kähler form
! WD g.J �; �/. Let � W Nn ! R

nCk be an isometric embedding of an n-dimensional
smooth manifold into R

nCk . In the following, we always identify N with its image
under �, and call it a submanifold in R

nCk . Define the normal bundle of N by
�N WD f.p; u/ 2 TRnCk I p 2 N; u ? TpN g. This is an .n C k/-dimensional
submanifold in TRnCk . Moreover, one can check that �N is Lagrangian in TRnCk
with respect to the standard symplectic form.

We denote the Levi–Civita connections on R
nCk and TRnCk by r and Qr,

respectively. For a normal vector u 2 �pN at p 2 N , the shape operator
Au 2 End.TpN / is defined byAu.X/ WD �.rXu/> forX 2 TpN , where> denotes
the tangent component of the vector. SinceAu is represented by a symmetric matrix,
the eigenvalues of Au are real, and we denote it by 	i .p; u/ for i D 1; : : : ; n. If u
is an unit normal vector, these eigenvalues are called the principal curvatures of N
with respect to the normal direction u.

Lemma 1 ([18]). Let Nn be an oriented submanifold in R
nCk . Then the

Lagrangian angle of the normal bundle �N in TRnCk ' C
nCk is given by
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�.p; u/ D �
nX
iD1

Arctan	i .p; u/C k�

2
.mod 2�/; (2)

where Arctan	i .p; u/ denotes the principal value of arctan 	i .p; u/.

By the relation (1) and (2), the mean curvature form of the normal bundle can be
written by

˛H D d
� nX
iD1

arctan 	i
�
: (3)

For convenience, we put Q� WDPn
iD1 arctan 	i .

Remark 1. We remark that a similar formula of (3) has been obtained by Palmer
[33] in a different situation.

The following necessary and sufficient conditions for the minimality of normal
bundles in C

nCk was first given by Harvey–Lawson [10]:

Proposition 2 (Theorem 3.11 in [10]). Let Nn be a connected submanifold in
R
nCk . Then the normal bundle �N is a minimal Lagrangian submanifold in

TRnCk ' C
nCk if and only if N is austere, namely, the set of principal curvatures

f	i .p; u/gniD1 is invariant under the multiplication by �1.

By using this result, one can produce examples of special Lagrangian submani-
folds in C

nCk from austere submanifolds in R
nCk .

By the explicit formulation of the Lagrangian angle of �N given in Lemma 2.1,
we improve Harvey–Lawson’s result a bit as follows:

Proposition 3 ([18]). Let Nn be a submanifold in R
nCk . If the mean curvature

vector of the normal bundle �N is parallel in TRnCk ' C
nCk , then �N is minimal.

By Proposition 2 and 3, we obtain the following.

Corollary 1. Let Nn be a submanifold in R
nCk . Then the following three

are equivalent: (i) N is austere, (ii) the normal bundle �N is minimal in
TRnCk ' C

nCk , (iii) �N has parallel mean curvature vector.

In the following, we investigate the H-minimality of a Lagrangian submanifold in
the complex Euclidean space CnCk obtained as the normal bundle of a submanifold
Nn in R

nCk . By Lemma 1, the H-minimality of the normal bundle �N in C
nCk is

equivalent to

� Q� D 0; where Q� WD
nX
iD1

arctan	i : (4)
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We recall that there are no non-minimal, H-minimal Lagrangian normal bundles
in C

nCk with parallel mean curvature vector by Corollary 1.
Besides, one can show that the normal bundle of the Riemannian product

N1 � N2 ! R
n1Ck1 � R

n2Ck2 of two embeddings Ni ! R
niCki .i D 1; 2/ is

H-minimal if and only if each of �Ni is H-minimal. Thus, in the following, our
concern is always irreducible ones.

3.3 Normal Bundles over Isoparametric Submanifolds

In [18], we classify isoparametric submanifolds in R
nCk with H-minimal normal

bundles. Before describing the main result, we briefly review the isoparametric
submanifolds in R

nCk (For more details, refer to [5, 39] and references therein).
Let Nn be a submanifold in R

nCk of an arbitrary codimension k. There are
several ways to define the notion of isoparametric submanifolds (see [39]). In this
article, we consider the following two conditions.

(i) For any parallel normal vector field u.t/ along a piece-wise smooth curve c.t/
on N , the shape operator Au.t/ has constant eigenvalues.

(ii) The normal bundle of N is flat, namely, R? D 0, where R? denotes the
curvature tensor with respect to the normal connection of N .

If N satisfies the condition (i), we say N has constant principal curvatures. If
N satisfies both conditions, we call N an isoparametric submanifold. It is known
that any non-compact complete isoparametric submanifold is a product of compact
isoparametric submanifolds and the Euclidean space (see [37]). Since the Euclidean
factor is obviously austere, we may assume that an isoparametric submanifold N is
compact for our purpose.

In the following, we consider an isoparametric submanifold Nn in R
nCk .

The isoparametric hypersurfaces in R
nC1 are classified by Somigliana [35] for

n D 3, and Segre [34] for the general dimension. We denote the number of distinct
principal curvatures by g. Then g is at most two, and an isoparametric hypersurface
in R

nC1 is one of the following:

g D 1: An affine hyperplane R
n or a hypersphere Sn.r/, where r > 0.

g D 2: A spherical cylinder Rk � Sn�k.r/, i.e., a tube around an affine plane R
k ,

where r > 0.

The codimension two isoparametric submanifolds in R
nC2 are known as isopara-

metric hypersurfaces in the unit sphere SnC1.1/. One of large subclasses of these
hypersurfaces are extrinsically homogeneous hypersurfaces in SnC1.1/ and these
are classified by Hsiang–Lawson [10]. This result asserts that all homogeneous
hypersurfaces in SnC1.1/ are obtained by principal orbits of s-representations of
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symmetric spaces of rank 2, where the s-representation is the isotropy representation
of a symmetric space U=K (see Sect. 3.4). Other classes includes infinitely many
non-homogeneous examples due to Ozeki–Takeuchi and Ferus–Karcher–Münzner.
These are the so called isoparametric hypersurfaces of OT-FKM type (for more
details, refer to monographs [6, 39] and references therein). The classification of
isoparametric hypersurfaces in SnC1.1/ has not been completed yet. Let N be an
isoparametric hypersurface in the unit sphere SnC1.1/, and � the unit normal vector
field on N . We denote the distinct principal curvatures of N with respect to � by
	i D cot �i with 0 < �1 < � � � < �g < � , and these multiplicities by mi for
i D 1; : : : ; g, respectively. Then, Münzner showed the following ([23]):

�i D �1 C i � 1
g

�; for i D 1; : : : ; g; (5)

mi D miC2; modulo g indexing: (6)

In particular, 0 < �1 < �=g, and the multiplicities are same if g is odd. Münzner
also proved that the number of distinct principal curvatures g is equal to 1; 2; 3; 4 or
6 [24].

On the other hand, Thorbergsson [38] proved that any full, irreducible, isopara-
metric submanifold in R

nCk with k � 3 is extrinsically homogeneous (see also
Olmos [29]). Moreover, combining it with the results of Dadok [7] and Palais-Terng
[32], they are principal orbits of an s-representation, namely, an isotropy orbit of
semi-simple symmetric space U=K.

Let us describe the main results in [18]. For the H-minimality of normal bundles
of isoparametric submanifolds, we prove the following:

Theorem 1 ([18]). Let N be a full, irreducible isoparametric submanifold in the
Euclidean space R

nCk . Then the normal bundle �N is H-minimal in TRnCk '
C
nCk if and only if N is a principal orbit of the adjoint action of a compact simple

Lie group G.

In particular, we obtain:

Corollary 2 ([18]). Let G be a compact, connected, semi-simple Lie group, g the
Lie algebra of G, and Nn D Ad.G/w a principal orbit of the adjoint action of G
on g ' R

nCk through w 2 g. Then the normal bundle �N of N is an H-minimal
Lagrangian submanifold in the tangent bundle T g ' C

nCk .

The principal orbit N is diffeomorphic to G=T , where T is a maximal torus of
G, and N is called a complex flag manifold or regular Kähler C-space. Since N D
Ad.G/w is compact, N is never austere in R

nCk , and hence, �N is not minimal.
Moreover, it does not have parallel mean curvature vector (see Proposition 3). We
also note that the normal bundle of N D Ad.G/w is always trivial, namely, �N is
homeomorphic to N � R

k .
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3.4 Outline of a Proof of Theorem 1

The strategy of the proof of Theorem 1 in [18] is as follows. When N is an
isoparametric submanifold, the differential equation (4) on �N is expressed in
terms of the eigenvalues of the shape operators of N . If the codimension of
isoparametric submanifold is equal to 1, by using the classification results, we
specify submanifolds with (4). The full and irreducible (or compact) one is the
hypersphere. Then we have the following:

Proposition 4. The normal bundle of the n-dimensional hypersphere Nn D Sn.r/
with radius r > 0 in R

nC1 is H-minimal if and only if n D 2.

When the codimension is 2, they are isoparametric hypersurfaces in the sphere,
and the known examples consist of principal orbits of s-representations and non-
homogeneous ones. By applying the relations (5) and (6) to (4), we obtain the
following crucial lemma:

Lemma 2. Let Nn be an isoparametric hypersurface in the unit sphere SnC1.1/ 	
R
nC2. Suppose that the normal bundle �N of N as a submanifold in R

nC2 is
H-minimal in C

nC2 ' TRnC2. Then the multiplicities of the distinct principal
curvatures in f	igniD1 are all equal to 2.

In particular, it turns out that N is a homogeneous hypersurface. In fact, Cartan
proved this for g � 3, and Ozeki–Takeuchi for the case .g;m/ D .4; 2/ [31] .
The remaining case .g;m/ D .6; 2/ was settled by R. Miyaoka [22], where m is
the same multiplicity. Therefore, together with the results of Hsiang–Lawson [14]
and the fact that isoparametric submanifolds of codimension grater than three are
homogeneous (Thorbergsson [38]), it is sufficient to consider the normal bundle of
principal orbits of s-representations.

The eigenvalues of the shape operators of these orbits are given by the restricted
root systems of associated symmetric spaces. Let .U;K/ be a Riemannian sym-
metric pair of compact type, where U is a compact, connected real semi-simple
Lie group and K a closed subgroup of U such that there exist an involutive
automorphism � of U so that Fix.�; U /0 	 K 	 Fix.�; U /, where Fix.�; U / WD
fg 2 U I �.g/ D gg and Fix.�; U /0 is the identity component of Fix.�; U /. Denote
the Lie algebra of U and K by u and k, respectively. Let .u; �/ be the orthogonal
symmetric Lie algebra which corresponds to .U;K/, namely, � is an involution on
u such that the C1-eigenspace coincides with k and k is a compactly embedded Lie
algebra in u.

We take an inner product h; i of u which is invariant under � and Ad.U / on u.
Then we have the orthogonal decomposition u D k C p. Since the subspace p is
invariant under Ad.K/jp, K acts on p as an orthogonal transformation. We call this
action of K the s-representation of the symmetric space U=K.

Choose a maximal abelian subspace a of p. For an 1-form � on a, set

k� WD fX 2 kI .adH/2X D ��.H/2X for all H 2 ag;
p� WD fX 2 pI .adH/2X D ��.H/2X for all H 2 ag:
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Then p�� D p�, k�� D k�, p0 D a, and k0 is the centralizer of a in k. A non-zero
1-form � is called a (restricted) root of .u; �/ with respect to a if p� ¤ f0g. We
denote the set of all roots of .u; �/ by R, and call R the restricted root system on a.
We take a basis of the dual space a� of a and define the lexicographic ordering on
a� with respect to the basis. We call a root � 2 R a positive root if � > 0, and put
RC WD f� 2 RI � > 0g. Then we have decompositions

k D k0 C
X
�2RC

k�; p D aC
X
�2RC

p�: (7)

These are orthogonal direct sums with respect to h; i. We put m� WD dimRp�, and
call it the multiplicity of � 2 RC.

Let us consider orbits of the s-representation. Since any s-representation is polar
(see [5]) and the section is given by a, it is sufficient to consider the orbits through
a point w 2 a. The point w is called a regular element if �.w/ ¤ 0 for any � 2 R
(otherwise, it is called singular). We note that regular orbits are orbits of maximal
dimension [36]. Since the isotropy action does not have any exceptional orbit, an
orbit is regular if and only if it is principal.

When w is a regular element, we have the following [36] (See also [15]):

(i) The tangent space TwNw and the normal space �wNw of Nw at w in p are
given by

TwNw D
X
�2RC

p�; �wNw D a:

In particular, codimNw D dima.
(ii) The shape operator Au of Nw in p in the direction u 2 �wNw satisfies

Au.X�/ D � �.u/
�.w/

X� for X� 2 p� and � 2 RC:

By using these, we characterize the H-minimality of normal bundles over the
principal orbits of s-representations as follows: For the root system R, we set

r WD f� 2 RI �=2 62 Rg; and rC WD r \RC:

Then r is a reduced root system, namely, if two roots �;� 2 r are proportional, then
� D ˙�. We also set l� WD m� Cm2�, where m2� D 0 unless 2� 2 r . By using an
argument of the reduced root system, we prove the following.

Proposition 5. Let Nn D Nw be a regular orbit of an s-representation through an
element w 2 p ' R

nCk . Then the normal bundle �N is H-minimal in T p ' C
nCk

if and only if l� D 2 for all � 2 rC (In fact, this is equivalent to m� D 2 for all
� 2 RC).
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On the other hand, we have the following characterization of symmetric spaces
of Type II due to Loos [19]:

Proposition 6 (cf. [19]). Let .u; �/ be an effective, irreducible orthogonal symmet-
ric Lie algebra of compact type and u D k C p the ˙1-eigenspace decomposition
with respect to � . Then the following statements are equivalent:

(i) For the restricted root system R of .u; �/, m� D 2 for all � 2 RC.
(ii) The dual u� WD k C p�1p of u has a complex structure (i.e., there exist a

complex structure J on u such that J ŒX; Y  D ŒX; J Y  for any X; Y 2 u).
(iii) .u; �/ is isomorphic to an irreducible orthogonal symmetric Lie algebra of

Type II (in the sense of [13]).

The compact Lie group G is regarded as a symmetric space of the Riemannian
symmetric pair .G � G;�G/, where �G D f.g; g/ 2 G � GIg 2 Gg ' G, and
the isotropy representation is equivalent to the adjoint representation ofG. Since the
associated globally symmetric space with .u; �/ of Type II is a compact, connected
simple Lie group G, the assertion of Theorem 1 follows from Proposition 5 and 6.
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Construction of Coassociative Submanifolds

Kotaro Kawai

Abstract The notion of coassociative submanifolds is defined as the special class
of the minimal submanifolds in G2-manifolds. In this talk, we introduce the method
of [5] to construct coassociative submanifolds by using the symmetry of the Lie
group action. As an application, we give explicit examples in the 7-dimensional
Euclidean space and in the anti-self-dual bundle over the 4-sphere.

1 Introduction

A G2-manifold is a Riemannian 7-manifold whose holonomy group is contained in
the exceptional Lie groupG2. This is characterized by a closed and coclosed 3-form.
This characterization is useful for the study of submanifolds in a G2-manifold.

Definition 1. Define a 3-form '0 on R
7 by

'0 D dx123 C dx1.dx45 � dx67/C dx2.dx46 � dx57/C dx3.dx47 � dx56/;

where .x1; � � � ; x7/ is the standard coordinate of R7 and wedge signs are omitted.
The stabilizer of '0 is the exceptional Lie group G2:

G2 D fg 2 GL.7;R/Ig�'0 D '0g:

This is a 14-dimensional compact simply-connected semisimple Lie group.

The Lie group G2 also fixes the standard metric g0, the orientation on R
7 and the

Hodge dual 
'0. They are uniquely determined by '0 via

� 6g0.v1; v2/volg0 D i.v1/'0 ^ i.v2/'0 ^ '0; (1)

where volg0 is the volume form of g0, i.�/ is the interior product, and vi 2 T .R7/.
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Remark 1. Identifying R
7 with the anti-self-dual bundle �2�R4 Š R

4 ˚ R
3 over

R
4, we have

' D d
 C volV ;

where 
 2 ˝2.�2�R4/ is a tautological 2-form and volV is a volume 3-form on the
vertical fibers.

Definition 2. Let .Y; g/ be a 7-dimensional Riemannian manifold and ' a 3-form
on Y satisfying d' D 0 and d 
 ' D 0. A triple .Y; '; g/ is called a G2-manifold
if for each y 2 Y , there exists an oriented isomorphism between TyY and R

7

identifying 'y with '0 and g is the metric induced from (1).

Lemma 1 ([2]). A G2-manifold .Y; '; g/ satisfies Hol(g) 	 G2.
Definition 3. An oriented 4-submanifold L 	 Y is called coassociative if
'jTL D 0.

Remark 2. The 3-form ' and its Hodge dual 
' are calibrations on Y , and the
corresponding calibrated submanifolds are called associative and coassociative
submanifolds. The latter are characterized in terms of the vanishing of the form
as above. This implies that they behave like special Lagrangian submanifolds in
Calabi–Yau manifolds.

2 Construction of Examples with Symmetries

To construct a coassociative submanifold L, we suppose that L is preserved by an
action of a Lie group G. As is well known in [5], if G acts with cohomogeneity one
on L, then the P.D.E. of the coassociative condition reduces to a first-order O.D.E.
on the orbit space. We give a summary based on [4].

Proposition 1. Let .Y; '; g/ be a G2-manifold. Suppose that a Lie group G with
the Lie algebra g acts on Y satisfying the following conditions:

• g�' D r.g/ � ' for a smooth function r W G ! R>0.
• The dimension of the generic orbit of G is equal to 3.

Then we can construct coassociative submanifolds in the following way.

1. Find a subset ˙ 	 Y such that

• G �˙ D fg � x 2 Y Ig 2 G; x 2 ˙g D Y ,
• Tx˙ \ Tx.G-orbit/ D f0g for each x 2 ˙ , where Tx.G-orbit/ is the tangent

space to the G-orbit at x.

2. Find a path c W I ! ˙ for an open interval I 	 R satisfying
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'.v�
1 ; v

�
2 ; v

�
3 /jc D 0; '.v�

i ; v
�
j ; Pc/jc D 0;

for vi 2 g, where Pc D dc
dt

and v� is the vector field on Y generated by v 2 g.
3. Then L WD G � Image.c/ is a G-invariant coassociative submanifold in Y .

Remark 3. The subset ˙ is usually the union of different dimensional submani-
folds. The subset ˙ is regarded as (the covering space of) the orbit space. By this
method, we easily see whether the resulting submanifold contains singular orbits.

3 Coassociative Submanifolds in R
7

3.1 The Case G D SU.2/

The group SU.2/ acts on R
4 Š C

2 canonically and this action lifts to �2�R4 D R
7.

This action preserves '0 on R
7. The orbit space ˙ of the SU.2/-action is described

as follows:

˙ D ˙1 t˙2 t˙3;

˙1 D f.y1; 0; 0; 0; a1; a2; a3/ 2 R
7Iy1 > 0; ai 2 Rg;

˙2 D
(
.0; 0; 0; 0; a1; a2; a3/ 2 R

7I
3X
iD1
jai j2 > 0

)
; ˙3 D f0g;

Then we have SU.2/ �˙ D R
7. The orbit topology is described as follows:

SU.2/ � x Š
8<
:
S3 .x 2 ˙1/;

S2 .x 2 ˙2/;


 .x 2 ˙3/:

Take the basis fX1;X2;X3g of the Lie algebra su.2/ of SU.2/ satisfying
ŒXj ; XjC1 D XjC2.j 2 Z=3/. We may find a path c W I ! ˙ satisfying

'.X�
1 ; X

�
2 ; X

�
3 /jc D 0; '.X�

i ; X
�
j ; Pc/jc D 0 .1 � i; j � 3/

Solving these, we see that c is of the form
˚
..y1; 0; 0; 0/; rv/ 2 R

7I r.4r2 � 5.y1/2/2 D C; r � 0�

(v 2 S2 	 R
3, C � 0) which gives the example of Harvey and Lawson [3].

Theorem 1 (Harvey and Lawson [3] ). For any v 2 S2 	 R
3, C � 0,

MC WD SU.2/ � ˚..y1; 0; 0; 0/; rv/ 2 R
7I r.4r2 � 5.y1/2/2 D C; r � 0�

is an SU.2/-invariant coassociative submanifold in R
7.
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For C > 0, MC has two connected components MĊ defined by

MĊ WDMC \ SU.2/ � ˚..y1; 0; 0; 0/; rv/ 2 R
7I˙.4r2 � 5.y1/2/ > 0�

andMC
C (resp.M�

C ) is diffeomorphic to the tautological line bundle OCP1.�1/ over
CP 1 Š S2 (resp. S3 � R). For C D 0, we have

M0 D M0
0 tM

0

0; M
0
0 D SU.2/ � ˚.y1; 0; 0; 0; 0; 0; 0/Iy1 � 0� ;

M
0

0 D SU.2/ �
n
y1 �

�
.1; 0; 0; 0/;

p
5
2

v
�
2 R

7Iy1 > 0
o
;

where M0
0 is a flat R4 and M

0

0 is the cone on the graph of the Hopf fibration S3 !
S2 and isomorphic to S3�R. Moreover, all the coassociative submanifolds invariant
under this SU.2/-action are given in this way.

3.2 The Case G D T 2 � R>0

Define the T 2 � R>0-action on R
7 by

.ei� ; ei ; R/ � .z1; z2; a1;w/ D .Rei� z1; Rei z2; Ra1; Rei. ��/w/;

where .ei� ; ei ; R/ 2 T 2�R>0, .z1; z2; a1;w/ 2 C
2˚R˚C D R

7. The orbit space
˙ of the T 2 � R>0-action is described as follows:

˙ D ˙1 t˙2 t˙3 t˙4;

˙1 D f.y1; 0; y3; 0; a1; a2; a3/ 2 S6Iy1; y3 � 0; jy1j2 C jy3j2 > 0g;
˙2 D f.y1; 0; y3; 0; a1; a2; 0/ 2 S6I #fx D 0I x 2 fy1; y3; a2gg D 2g;
˙3 D f.0; 0; 0; 0; 1; 0; 0/g; ˙4 D f0g:

Then we have T 2 � R>0 �˙ D R
7. The orbit topology is described as follows:

T 2 � R>0 � x Š

8̂
<̂
ˆ̂:

T 2 � R>0 .x 2 ˙1/;

S1 � R>0 .x 2 ˙2/;

R>0 .x 2 ˙3/;


 .x 2 ˙4/:

Take the orthonormal basis fX1;X2g of the Lie algebra t2 of T 2. We find a path
c W I ! ˙ satisfying

'.X�
1 ; X

�
2 ; r

@
@r
/jc D 0; '.X�

1 ; X
�
2 ; Pc/jc D 0; '.X�

1 ; r
@
@r
; Pc/jc D 0; '.X�

2 ; r
@
@r
; Pc/jc D 0:

to obtain the next result.
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Theorem 2 ([6]). Let ˛; � W I ! .0; �=2/, and ˇ W I ! R be smooth functions on
a small open interval I 	 R satisfying

d

dt
log.sin �/ D �2 tanˇ � tan.2˛ � ˇ/ � P̌

tan.2˛ � ˇ/C 3 tanˇ
;

d

dt
log.tan �/ D � tan.2˛ � ˇ/ � . P̨ C P̌/;

where we denote P̨ D d˛
dt

, etc. Then the subset M of C2 ˚ R˚ C Š R
7 defined by

M D ˚�
Rei� cos �.t/ � cos˛.t/; Rei cos �.t/ � sin˛.t/;

R sin �.t/ � cosˇ.t/; Rei. ��/ sin �.t/ � sinˇ.t/
� IR > 0; �;  2 R; t 2 I�

is a T 2-invariant coassociative cone in R
7 which is diffeomorphic to T 2 �R>0 � I .

4 Coassociative Submanifolds in �2
�S 4

4.1 G2-Structure on �2
�S 4

We introduce the complete metric g�.� > 0/ on the bundle �2�S4 of anti-self-dual
2-forms on the 4-sphere S4 obtained by Bryant and Salamon [1].

Since �2�S4 has a connection induced by the Levi Civita connection on S4, the
tangent space T!.�2�S4/ has a canonical splitting T!.�2�S4/ Š H! ˚ V! into
horizontal and vertical subspaces for each ! 2 �2�S4.

Proposition 2 (Bryant and Salamon [1]). For � > 0, define the 3-form '� 2
˝3.�2�S4/ and the metric g� on �2�S4 as

'� D 2s�d
 C 1

s3�
volV ; g� D 2s2�gH C

1

s2�
gV ;

where s� D .� C r2/1=4, r is the distance function measured by the fiber metric
induced by that on S4, 
 is a tautological 2-form and volV is the volume form of
gV on the vertical fiber.

Then for each � > 0, .�2�S4; '�; g�/ is a G2-manifold with Hol.g�/ D G2 and
the metric g� is complete.

Remark 4. For � D 0, the metric g0 is a cone metric on �2�S4 � f0 � sectiong Š
CP 3�R>0. The metric gCP3 is not the standard metric, but a 3-symmetric Einstein,
non-Kähler metric. The metric g0 is not complete because of the singularity at 0,
while it satisfies Hol.g0/ D G2.
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4.2 The Case G D SU.2/

Since S4 	 R
5 D C

2 ˚ R, SU.2/ acts on S4 in the canonical way and it lifts to
�2�S4. This action preserves the G2-structure '� for each � > 0.

Let .y1; � � � ; y4/ be the local coordinates of S4 � fx5 D 1g obtained by the
stereographic projection, and let .a1; a2; a3/ be the fiber coordinate corresponding
.y1; � � � ; y4/. Then the orbit space ˙ of the SU.2/-action is described as follows:

˙ D ˙1 t˙2 t˙3;

˙1 D f.y1; 0; 0; 0; a1; a2; a3/ 2 R
7Iy1 > 0; ai 2 Rg;

˙2 D �2�S4jx5D�1 � f0g t�2�S4jx5D1 � f0g; ˙3 D fx5 D ˙1g 	 S4;

We have SU.2/ �˙ D R
7 and the orbit topology is described as follows:

SU.2/ � x Š
8<
:
S3 .x 2 ˙1/;

S2 .x 2 ˙2/;


 .x 2 ˙3/:

The argument on R
7 applies almost identically on �2�S4 to obtain the following

theorem.

Theorem 3 ([6]). For any C 2 R, v 2 S2 	 R
3, the set

MC WD SU.2/ �
(
..y1; 0; 0; 0/; rv/I �

Rp
r

0
.�C a4/1=8daC .�Cr2/1=8pr

1C.y1/2 D C;
r � 0; y1 2 R [ f1g

)
;

is an SU.2/-invariant coassociative submanifold in �2�S4 and we have

MC Š OCP1.�1/ .C ¤ 0/; S4 t S3 � R .C D 0/:

Moreover, all the coassociative submanifolds invariant under this SU.2/-action are
given in this way.

4.3 The Case G D T 2 � R>0

In the same way, we can derive a system of O.D.E.s whose solutions give T 2-
invariant coassociative cones in �2�S4 � f0-sectiong Š CP 3 � R>0.

We obtain some explicit examples such as T �S2, where S2 	 S4 is totally
geodesic, and the rank one vector bundle over a small sphere in S4.
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Calibrations and Manifolds with Special
Holonomy

Selman Akbulut and Sema Salur

Abstract The purpose of this paper is to introduce Harvey–Lawson manifolds and
review the construction of certain “mirror dual” Calabi–Yau submanifolds inside a
G2 manifold. More specifically, given a Harvey–Lawson manifold HL, we explain
how to assign a pair of tangent bundle valued 2 and 3-forms to a G2 manifold
.M;HL; ';�/, with the calibration 3-form ' and an oriented 2-plane field �. As
in [3] these forms can then be used to define different complex and symplectic
structures on certain 6-dimensional subbundles of T .M/. When these bundles are
integrated they give mirror CY manifolds (related through HL manifolds).

1 Introduction

Let .M7; '/ be a G2 manifold with the calibration 3-form '. If ' restricts to be
the volume form of an oriented 3-dimensional submanifold Y 3, then Y is called
an associative submanifold of M . In [3] the authors introduced a notion of mirror
duality in any G2 manifold .M7; '/ based on the associative/coassociative splitting
of its tangent bundle TM D E ˚ V by the non-vanishing 2-frame fields provided
by [7]. This duality initially depends on the choice of two non-vanishing vector
fields, one in E and the other in V. In this article we give a natural form of this duality
where the choice of these vector fields are made more canonical, in the expense
of possibly localizing this process to the tubular neighborhood of the 3-skeleton
of .M; '/.
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2 Basic Definitions

Let us recall some basic facts about G2 manifolds (e.g. [2, 4, 5]). Octonions
give an 8-dimensional division algebra O D H ˚ lH D R

8 generated by
h1; i; j; k; l; li; lj; lki. The imaginary octonions imO D R

7 is equipped with the
cross product operation � W R7 � R

7 ! R
7 defined by u � v D im.Nv:u/. The

exceptional Lie group G2 is the linear automorphisms of imO preserving this cross
product. Alternatively:

G2 D f.u1; u2; u3/ 2 .R7/3 j hui ; uj i D ıij ; hu1 � u2; u3i D 0 g; (1)

G2 D fA 2 GL.7;R/ j A�'0 D '0 g (2)

where '0 D e123 C e145 C e167 C e246 � e257 � e347 � e356 with eijk D dxi ^
dxj ^ dxk . We say a 7-manifold M7 has a G2 structure if there is a 3-form
' 2 ˝3.M/ such that at each p 2 M the pair .Tp.M/; '.p// is (pointwise)
isomorphic to .T0.R7/; '0/. This condition is equivalent to reducing the tangent
frame bundle of M from GL.7;R/ to G2. A manifold with G2 structure .M; '/ is
called a G2 manifold (integrable G2 structure) if at each point p 2 M there is a
chart .U; p/! .R7; 0/ on which ' equals to '0 up to second order term, i.e. on the
image of the open set U we can write '.x/ D '0 CO.jxj2/.

One important class of G2 manifolds are the ones obtained from Calabi–
Yau manifolds. Let .X; !;˝/ be a complex 3-dimensional Calabi–Yau manifold
with Kähler form ! and a nowhere vanishing holomorphic 3-form ˝, then
X6 � S1 has holonomy group SU.3/ 	 G2, hence is a G2 manifold. In this case
'= Re ˝ C ! ^ dt . Similarly, X6 � R gives a noncompact G2 manifold.

Definition 1. Let .M; '/ be a G2 manifold. A 4-dimensional submanifold X 	M
is called coassociative if 'jX D 0. A 3-dimensional submanifold Y 	 M is called
associative if 'jY � vol.Y /; this condition is equivalent to the condition �jY � 0,
where � 2 ˝3.M; TM/ is the tangent bundle valued 3-form defined by the identity:

h�.u; v;w/; zi D 
'.u; v;w; z/: (3)

The equivalence of these conditions follows from the ‘associator equality’ of [5]

'.u; v;w/2 C j�.u; v;w/j2=4 D ju ^ v ^ wj2:

Similar to the definition of � one can define a tangent bundle 2-form, which is
just the cross product ofM (nevertheless viewing it as a 2-form has its advantages).

Definition 2. Let .M; '/ be a G2 manifold. Then  2 ˝2.M; TM/ is the tangent
bundle valued 2-form defined by the identity:

h .u; v/;wi D '.u; v;w/ D hu � v;wi: (4)
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On a local chart of a G2 manifold .M; '/, the form ' coincides with the form
'0 2 ˝3.R7/ up to quadratic terms, we can express the tangent valued forms
� and  in terms of '0 in local coordinates. More generally, if e1; : : : e7 is any
local orthonormal frame and e1; : : : ; e7 is the dual frame, from definitions we get:

� D .e256 C e247 C e346 � e357/e1 C .�e156 � e147 � e345 � e367/e2
C .e157 � e146 C e245 C e267/e3 C .e127 C e136 � e235 � e567/e4
C .e126 � e137 C e234 C e467/e5 C .�e125 � e134 � e237 � e457/e6
C .�e124 C e135 C e236 C e456/e7;

 D .e23 C e45 C e67/e1 C .e46 � e57 � e13/e2 C .e12 � e47 � e56/e3
C .e37 � e15 � e26/e4 C .e14 C e27 C e36/e5 C .e24 � e17 � e35/e6
C .e16 � e25 � e34/e7:

Here are some useful facts :

Lemma 1 ([2]). To any 3-dimensional submanifold Y 3 	 .M; '/, � assigns a
normal vector field, which vanishes when Y is associative.

Lemma 2 ([2]). To any associative manifold Y 3 	 .M; '/ with a non-vanishing
oriented 2-plane field, � defines a complex structure on its normal bundle (notice
in particular that any coassociative submanifold X 	 M has an almost complex
structure if its normal bundle has a non-vanishing section).

Proof. Let L 	 R
7 be an associative 3-plane, that is '0jL D vol.L/. Then for every

pair of orthonormal vectors fu; vg 	 L, the form � defines a complex structure on
the orthogonal 4-plane L?, as follows: Define j W L? ! L? by

j.X/ D �.u; v; X/: (5)

This is well defined i.e. j.X/ 2 L?, because when w 2 L we have:

h�.u; v; X/;wi D 
'0.u; v; X;w/ D � 
 '0.u; v;w; X/ D h�.u; v;w/; Xi D 0:

Also j 2.X/ D j.�.u; v; X// D �.u; v; �.u; v; X// D �X . We can check the last
equality by taking an orthonormal basis fXj g 	 L? and calculating

h�.u; v; �.u; v; Xi //; Xj i D 
'0.u; v; �.u; v; Xi /; Xj / D � 
 '0.u; v; Xj ; �.u; v; Xi //
D �h�.u; v; Xj /; �.u; v; Xi /i D �ıij :

The last equality holds since the map j is orthogonal, and the orthogonality can
be seen by polarizing the associator equality, and by noticing '0.u; v; Xi / D 0.
Observe that the map j only depends on the oriented 2-plane � D< u; v >

generated by fu; vg (i.e. it only depends on the complex structure on �). ut
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3 Calabi–Yau’s Hypersurfaces in G2 Manifolds

In [3] authors proposed a notion of mirror duality for Calabi–Yau submanifold
pairs lying inside of a G2 manifold .M; '/. This is done first by assigning
almost Calabi–Yau structures to hypersurfaces induced by hyperplane distributions.
The construction goes as follows. Suppose � be a nonvanishing vector filed
� 2 ˝0.M; TM/, which gives a codimension one integrable distribution V� WD �?
on M . If X� is a leaf of this distribution, then the forms � and  induce a non-
degenerate 2-form !� and an almost complex structure J� on X� as follows:

!� D h ; �i and J�.u/ D u � �; (6)

Re ˝� D 'jV� and Im ˝� D h�; �i; (7)

where the inner products, of the vector valued differential forms and �with vector
field � , are performed by using their vector part. So !� D �y ', and Im ˝� D
�y 
 '. Call ˝� D Re ˝� C i Im ˝� . These induce almost Calabi–Yau structure
on X� , analogous to Example 1.

Theorem 1 ([3]). Let .M; '/ be a G2 manifold, and � be a unit vector field such
that �? comes from a codimension one foliation on M , then .X�; !� ;˝�; J�/ is
an almost Calabi–Yau manifold such that 'jX� D Re ˝� and 
'jX� D 
3 !� .
Furthermore, if L� .'/jX� D 0 then d!� D 0, and if L� .
'/jX� D 0 then J�
is integrable; when both conditions are satisfied .X�; !� ;˝�; J�/ is a Calabi–Yau
manifold.

Here is a brief discussion of [3] with explanation of its terms: Let �# be the dual
1-form of � , and e�# and i� D �y denote the exterior and interior product operations
on differential forms, then

' D e�# ı i� .'/C i� ı e�#.'/ D !� ^ �# CRe ˝�:

This is the decomposition of the form ' with respect to � ˚ �?. The condition that
the distribution V� to be integrable is d�# ^ �# D 0. Also it is clear from definitions
that J� is an almost complex structure on X� , and the 2-form !� is non-degenerate
on X� , because

!3� D .�y '/3 D �y Œ .�y '/ ^ .�y '/ ^ '  D �y .6j�j2�/ D 6��
where �� D �jV� is the induced orientation form on V� . For u; v 2 V�

!�.J�.u/; v/ D !�.u � �; v/ D h .u � �; v/; �i D '.u � �; v; �/
D �'.�; � � u; v/ D �h � � .� � u/; v i
D �h �j�j2uC h�; ui�; v i D j�j2hu; vi � h�; uih�; vi
D hu; vi
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implies hJ�.u/; J�.v/i D �!�.u; J�.v// D hu; vi. By a calculation of J� , one checks
that the 3-form ˝� is a .3; 0/ form, furthermore it is non-vanishing because

1

2i
˝� ^˝� D Im ˝� ^Re ˝� D .�y 
 '/ ^ Œ �y .�# ^ '/ 

D ��y Œ .�y 
 '/ ^ .�# ^ '/ 
D �y Œ
.�# ^ '/ ^ .�# ^ '/ 
D j�# ^ 'j2 �y vol.M/

D 4j�#j2 .
�#/ D 4 vol.X�/:

It is easy to see 
Re ˝� D �Im ˝� ^ �# and 
Im ˝� D Re ˝� ^ �#.


3Re ˝� D Im ˝�:

Notice that !� is a symplectic structure on X� when d' D 0 and L� .'/jV� D 0,
(L� is the Lie derivative along �), since !� D �y ' and:

d!� D L� .'/ � �y d' D L� .'/:

J� is integrable complex structure if d�' D 0 and L� .
'/jV� D 0 since

d.Im˝�/ D d.�y 
 '/ D L� .
'/ � �y d.
'/ D 0:

Also notice that d' D 0 H) d.Re ˝�/ D d.'jX� / D 0.

4 HL Manifolds and Mirror Duality in G2 Manifolds

By [7] any 7-dimensional Riemanninan manifold admits a non-vanishing orthonor-
mal 2-frame field � D< u; v >, in particular .M; '/ admits such a field. � gives
a section of the bundle of oriented 2-frames V2.M/ ! M , and hence gives an
associative/coassociative splitting of the tangent bundle TM D E ˚ V, where
E D E� D< u; v; u�v > and V D V� D E?. When there is no danger of confusion
we will denote the 2-frame fields and the 2-planes fields which they induce by the
same symbol�. Also, any unit section � of E!M induces a complex structure J�
on the bundle V!M by the cross product J�.u/ D u � � .

In [3] any two almost Calabi–Yau’s X� and X�0 inside .M; '/ were called dual
if the defining vector fields � and � 0 are chosen from V and E, respectively. Here we
make this correspondence more precise, in particular showing how to choose � and
� 0 in a more canonical way.
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Definition 3. A 3-dimensional submanifold Y 3 	 .M; '/ is called Harvey–Lawson
manifold (HL in short) if 'jY D 0.

Definition 4 ([2]). Call any orthonormal 3-frame field � D< u; v;w > on .M; '/,
a G2-frame field if '.u; v;w/ D< u � v;w >D 0, equivalently w is a unit section of
V� ! X , with � D< u; v > (see (1)).

Now pick a nonvanishing 2-frame field� D< u; v > onM and let TM D E˚V
be the induced splitting with E D< u; v; u � v >. Let w be a unit section of the
bundle V ! M . Such a section w may not exist on whole M , but by obstruction
theory it exists on a tubular neighborhood U of the 3-skeleton M.3/ of M (which is
a complement of some 3-complex Z 	 M ). So '.u; v;w/ D 0, and hence � D<
u; v;w > is a G2 frame field. Next consider the non-vanishing vector fields:

• R D �.u; v;w/ D �u � .v � w/,
• R0 D 1p

3
.u � vC v � wC w � u/,

• R00 D 1p
3
.uC vC w/.

If the 6-plane fields R?, R0?, and R00?, are integrable we get almost Calabi–Yau
manifolds .XR;wR;˝R; JR/, .XR0 ;wR0 ; ˝R0 ; JR0/, and .XR00 ;wR00 ; ˝R00 ; JR00/. Let
us use the convention that a; b; c are real numbers, and Œu1; ::un is the distribution
generated by the vectors u1; ::; un.

Lemma 3. By definitions, the following hold

(a) Y WD Œu; v;w D ŒauC bvC cw j aC b C c D 0˚ ŒR00.
(b) V D Œu; v;w; R, is a coassociative 4-plane field.
(c) e WD Œu � v; v � w;w � u is an associative 3-plane field.
(d) e ? V.

Theorem 2. For .a; b; c/ 2 R
3 with aC b C c D 0, then

(a) TXR D ŒauC bvC cw; R00; R0; a.v � w/C b.w � u/C c.u � v/,
JR.auC bvC cw/ D �a.v � w/ � b.w � u/ � c.u � v/,
JR.R

00/ D �R0,

(b) TXR0 D ŒauC bvC cw; R00; R; a.v � w/C b.w � u/C c.u � v/,
JR0.auC bvC cw/ D �..b � c/uC .c � a/vC .a � b/w/=p3,
JR0.a.v � w/C b.w � u/C c.u � v// D
..b � c/.v � w/C .c � a/.w � u/C .a � b/.u � v//=

p
3,

JR0.R00/ D R,

(c) TXR00 D ŒauC bvC cw; R;R0; .a.v � w/C b.w � u/C c.u � v/,
JR00.auC bvC cw/ D
..b � a/.u � v/C .c � b/.v � w/C .a � c/.w � u//=

p
3,

JR00.R/ D R0,

(d) fu; v;w; R; u � v; v � w;w � ug is an orthonormal frame field.
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Proof. To show (a) by using (4) we calculate:

R � u D �.u; v;w/ � u D �Œu � .v � w/ � u D u � Œu � .v � w/

D ��.u; u; v � w/� < u; u > .v � w/C < u; v � w > u

D �.v � w/C '.u; v;w/u:

Therefore

R � u D �.v � w/: (8)

Similarly, R � v D �.w � u/ and R � w D �.u � v/. Therefore we have JR.auC
bvC cw/ D �a.v � w/ � b.w � u/ � c.u � v/, and JR.R00/ D �R0.

p
3 R0 � u D .u � vC v � wC w � u/ � u

D �u � .u � v/ � u � .v � w/ � u � .w � u/

D < u; u > v� < u; v > uC �.u; v;w/

C < u; v > w� < u;w > vC < u;w > u� < u; u > w:

Therefore

p
3 R0 � u D RC .v � w/: (9)

Similarly
p
3 R0� v D RC .w� u/, and

p
3 R0�w D RC .u� v/, which implies

the first part of (b), and JR0.R00/ D R.
For the second part of (b) we need the compute the following:

p
3R0 � Œa.v � w/C b.w � u/C c.u � v/

D .u � vC v � wC w � u/ � Œa.v � w/C b.w � u/C c.u � v/:
(10)

For this first by repeatedly using (4) and '.u; v;w/ D 0 we calculate:

.v � u/ � .w � v/ D ��.v � u;w; v/� < v � u;w > vC < v � u; v > w

D ��.v � u;w; v/ D ��.w; v; v � u/

D w � .v � .v � u//C < w; v > .v � u/� < w; v � u > v

D w � .v � .v � u//

D w � .��.v; v; u/� < v; v > uC < v; u > v/ D �.w � u/:

Then by plugging in (9) gives (b). Proof of (c) is similar to (a). ut
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In particular from the above calculations we can express ' as:

Corollary 1.

' D u# ^ v# ^ .u# � v#/C v# ^ w# ^ .v# � w#/C w# ^ u# ^ .w# � u#/

C u# ^R# ^ .v# � w#/C .v# ^R#/ ^ .w# � u#/C w# ^R# ^ .u# � v#/

� .u# � v#/ ^ .v# � w#/ ^ .w# � u#/:

Recall that in an earlier paper we proved the following facts:

Proposition 1 ([3]). Let f˛; ˇg be orthonormal vector fields on .M; '/. Then on
X˛ the following hold

(i) Re ˝˛ D !ˇ ^ ˇ# CRe ˝ˇ ,
(ii) Im ˝˛ D ˛y .?!ˇ/ � .˛y Im ˝ˇ/ ^ ˇ#,

(iii) !˛ D ˛y Re ˝ˇ C .˛y !ˇ/ ^ ˇ#.

Proof. SinceRe ˝˛ D 'jX˛ (i) follows. Since Im ˝˛ D ˛y
' following gives (ii)

˛y .?!ˇ/ D ˛y Œ ˇy 
 .ˇy '/ 

D ˛y ˇy .ˇ# ^ 
'/
D ˛y 
 ' C ˇ# ^ .˛y ˇy 
 '/
D ˛y 
 ' C .˛y Im ˝ˇ/ ^ ˇ#:

(iii) follows from the following computation

˛y Re ˝ˇ D ˛y ˇy .ˇ# ^ '/ D ˛y ' C ˇ# ^ .˛y ˇy '/ D ˛y ' � .˛y !ˇ/ ^ ˇ#:

ut
Note that even though the identities of this proposition hold only after restricting

the right hand side toX˛ , all the individual terms are defined everywhere on .M; '/.
Also, from the construction, X˛ and Xˇ inherit vector fields ˇ and ˛, respectively.

Corollary 2 ([3]). Let f˛; ˇg be orthonormal vector fields on .M; '/. Then there
are A˛ˇ 2 ˝3.M/, and W˛ˇ 2 ˝2.M/ satisfying

(a) 'jX˛ D Re ˝˛ and 'jXˇ D Re ˝ˇ ,
(b) A˛ˇjX˛ D Im ˝˛ and A˛ˇjXˇ D ˛y .?!ˇ/,
(c) W˛ˇjX˛ D !˛ and W˛ˇjXˇ D ˛y Re ˝ˇ .

Now we can choose ˛ as R and ˇ as R0 of the given HL manifold. That
concludes that given a HL submanifold of a G2 manifold, it will determine a
“canonical” mirror pair of Calabi–Yau manifolds (related through the HL manifold)
with the complex and symplectic structures given above.
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Sequences of Maximal Antipodal Sets
of Oriented Real Grassmann Manifolds

Hiroyuki Tasaki

Abstract We construct two sequences of antipodal sets of the oriented real
Grassmann manifolds in a combinatorial way and a sequence of antipodal sets
in a different way. We show that they are maximal antipodal sets under certain
conditions.

1 Introduction

The author reduced the problem of classifying all maximal antipodal sets in the
oriented real Grassmann manifold QGk.Rn/ consisting of k-dimensional oriented
subspaces in R

n to that of classifying all maximal antipodal subsets in the set
Pk.n/ consisting of subsets of cardinality k in f1; : : : ; ng and classified all maximal
antipodal subsets of Pk.n/ for k � 4 in Tasaki [2]. A subset S of a Riemannian
symmetric space is an antipodal set, if sx.y/ D y for any x; y in S , where sx
is a geodesic symmetry with respect to x. The notion of an antipodal set in a
Riemannian symmetric space was introduced by Chen and Nagano [1]. According
to Theorem 3.1 of [2], any maximal antipodal set of QGk.Rn/ is equal to

f˙spanfe˛.1/; : : : ; e˛.k/g j ˛ 2 Ag

for an orthonormal basis feig of Rn and a maximal antipodal subset A of Pk.n/.
Here ˛ D f˛.1/; : : : ; ˛.k/g and ˙ means both orientations of a subspace.
The definition of an antipodal subset of Pk.n/ is given in Sect. 2.

If k is more than 4, there may be so many maximal antipodal subsets of Pk.n/
that it is difficult to classify all of them. In this paper, we construct some sequences
of maximal antipodal subsets of Pk.n/, which may be usefull for the classification
of maximal antipodal subsets of Pk.n/,

In Sect. 2 we review the definition of antipodal subsets inPk.n/ and prepare some
notation for the sequel sections. In Sect. 3 we define two sequences of antipodal
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subsets in a combinatorial way and prove that they are maximal antipodal subsets
under a certain condition. In Sect. 4 we define a sequence of antipodal subsets using
even numbers and show which of them are maximal. These are generalizations of
the sequences of antipodal subsets defined in [2].

2 Antipodal Subsets

The definition of antipodal subsets in Pk.n/ comes from the notion of antipodal sets
in Riemannian symmetric spaces. Two elements ˛ and ˇ in Pk.n/ are antipodal, if
the cardinality #.ˇ � ˛/ is even, where ˇ � ˛ D fi 2 ˇ j i … ˛g. A subset A of
Pk.n/ is antipodal, if any ˛ and ˇ in A are antipodal. We denote by Sym.n/ the
symmetric group on f1; : : : ; ng. Two subsets X and Y in Pk.n/ are congruent, if X
is transformed to Y by an element of Sym.n/. If X 	 Pk.n/ is antipodal, then a
subset congruent with X is also antipodal.

In order to describe antipodal subsets we prepare some notation. For a set X we
denote by Pk.X/ the set consisting of all subsets of cardinality k in X . We simply
write Pk.n/ instead of Pk.f1; : : : ; ng/. WhenX D X1[� � �[Xm is a disjoint union,
we put

A1 � � � � � Am D f˛1 [ � � � [ ˛m j ˛i 2 Ai .1 � i � m/g

for subsets Ai of Pki .Xi /. We get

A1 � � � � � Am 	 Pk1C���Ckm.X/:

If any Ai is antipodal in Pki .Xi /, then A1 � � � � �Am is antipodal in Pk1C���Ckm.X/.

3 Combinatorial Sequences of Antipodal Subsets

We define two sequences of antipodal subsets as follows:

A.2k; 2l/ D f˛1 [ � � � [ ˛k 2 P2k.2l/ j ˛i 2 ff1; 2g; : : : ; f2l � 1; 2lggg;
A.2k C 1; 2l C 1/ D A.2k; 2l/ � ff2l C 1gg:

It follows from the definition that A.2k; 2l/ is an antipodal subset of P2k.2l/ and
thatA.2kC1; 2lC1/ is an antipodal subset of P2kC1.2lC1/. Their cardinalities are

#A.2k; 2l/ D #A.2k C 1; 2l C 1/ D
 
l

k

!
:
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Remark 1. In the case where k D 1, the definition of A.3; 2l C 1/ is different from
that of A.3; 2lC 1/ in [2], but they are congruent. According to Theorem 5.1 of [2],
A.3; 2l C 1/ is a maximal antipodal subset of P3.2l C 1/ and P3.2l C 2/, if l � 4.
Moreover A.3; 7/ is not a maximal antipodal subset of P3.7/, as is showed in Sect. 5
of [2], that is, A.3; 7/ is included in the set of projective lines in the projective plane
F2P

2 over the binary field F2 consisting of 0 and 1. The following theorem is a
generalization of the phenomenon mentioned above and Proposition 7.1 in [2].

Theorem 1. If l � 3k�1, then A.2k; 2l/ is a maximal antipodal subset of P2k.2l/
and P2k.2lC 1/. Moreover if k � 2, then A.2kC 1; 2lC 1/ is a maximal antipodal
subset of P2kC1.2l C 1/ and P2kC1.2l C 2/.
Proof. Since A.2k; 2l/ is a maximal antipodal subset of P2k.2l/ and P2k.2l C 1/
by Proposition 7.1 in [2], it is sufficient to prove that A.2kC1; 2lC1/ is a maximal
antipodal subset of P2kC1.2l C 1/ and P2kC1.2l C 2/.

In order to show that A.2k C 1; 2l C 1/ is a maximal antipodal subset of
P2kC1.2l C 1/ we take ˛ 2 P2kC1.2l C 1/ which is antipodal with all elements in
A.2kC1; 2lC1/. If ˛ contains 2lC1, then ˛�f2lC1g 2 P2k.2l/ is antipodal with
all elements in A.2k; 2l/. Since A.2k; 2l/ is a maximal antipodal subset of P2k.2l/,
the element ˛�f2lC1g is contained inA.2k; 2l/ and we get ˛ 2 A.2kC1; 2lC1/.
So we suppose that ˛ does not contain 2l C 1, that is, ˛ 2 P2kC1.2l/.

We define subsets I0; I1 and I2 of f1; : : : ; lg by

Ij D fi j #.f2i � 1; 2ig \ ˛/ D j .1 � i � l/g .j D 0; 1; 2/:

f1; : : : ; lg is decomposed to the disjoint union

f1; : : : ; lg D I0 [ I1 [ I2:

We get

2k C 1 D #˛ D #I1 C 2#I2;

hence I1 is not empty.
We divide the argument into two cases of #I1 D 1 and #I1 � 2. We first consider

the case where #I1 D 1. Since l � 3k � 1, we have

#.f1; : : : ; lg � I1/ D l � 1 � 3k � 2 � k;

thus we can take a subset

fj1; : : : ; jkg 	 f1; : : : ; lg � I1 D I0 [ I2:

We take

� D f2j1 � 1; 2j1; : : : ; 2jk � 1; 2jk; 2l C 1g 2 A.2k C 1; 2l C 1/:



518 H. Tasaki

The cardinality #.˛\�/ is even and ˛; � are not antipodal, which is a contradiction.
Therefore this case does not happen.

In the case where #I1 � 2, we can take fi1; i2g 	 I1. Since #I1 � #˛ D 2k C 1,
we have

#.f1; : : : ; lg � I1/ � l � .2k C 1/ � .3k � 1/ � .2k C 1/ D k � 2 � 0:

Hence we can take a subset

fj3; : : : ; jkg 	 f1; : : : ; lg � I1 D I0 [ I2:

If k D 2, the left hand side is empty. We put

ı D f2i1 � 1; 2i1; 2i2 � 1; 2i2; 2j3 � 1; 2j3; : : : ; 2jk � 1; 2jk; 2l C 1g;

which is an element inA.2kC1; 2lC1/. The cardinality #.˛\ı/ is even and ˛; ı are
not antipodal, which is a contradiction. Therefore this case does not happen and any
element of P2kC1.2l C 1/ which is antipodal with all elements in A.2kC 1; 2l C 1/
is contained in A.2kC 1; 2l C 1/. This implies that A.2kC 1; 2l C 1/ is a maximal
antipodal subset of P2kC1.2l C 1/.

Next we show that A.2k C 1; 2l C 1/ is also a maximal antipodal subset of
P2kC1.2l C 2/. We take ˛ 2 P2kC1.2l C 2/ which is antipodal with all elements in
A.2k C 1; 2l C 1/. We have already showed that A.2k C 1; 2l C 1/ is a maximal
antipodal subset of P2kC1.2l C 1/. So we suppose that ˛ is not contained in
P2kC1.2l C 1/, which implies that ˛ contains 2l C 2. We also define subsets I0; I1
and I2 of f1; : : : ; lg by

Ij D fi j #.f2i � 1; 2ig \ ˛/ D j .1 � i � l/g .j D 0; 1; 2/:

We divide the arguments into three cases of #I1 D 0; 1 and #I1 � 2. We consider
the case where #I1 D 0. Any ˇ 2 A.2k C 1; 2l C 1/ and ˛ are antipodal, hence ˛
contains 2l C 1. So we get #˛ D 2C 2#I2, which is a contradiction. Thus this case
does not happen.

We consider the case where #I1 D 1. Since

#.f1; : : : ; lg � I1/ D l � 1 � 3k � 2 � k;

we can take a subset

fj1; : : : ; jkg 	 f1; : : : ; lg � I1 D I0 [ I2:

We take an element

� D f2j1 � 1; 2j1; : : : ; 2jk � 1; 2jk; 2l C 1g 2 A.2k C 1; 2l C 1/;
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which is antipodal with ˛. So ˛ contains 2l C 1. We put I1 D fi1g and take an
element

� 0 D f2i1 � 1; 2i1; 2j2 � 1; 2j2; : : : ; 2jk � 1; 2jk; 2l C 1g 2 A.2k C 1; 2l C 1/:

The cardinality #.˛\� 0/ is even and ˛; � 0 are not antipodal, which is a contradiction.
Therefore this case does not happen.

In the case where #I1 � 2, we can take fi1; i2g 	 I1. Since

#I1 � #.˛ � f2l C 2g/ D 2k;

we have

#.f1; : : : ; lg � I1/ � l � 2k � .3k � 1/ � 2k D k � 1:

Hence we can take a subset

fj2; : : : ; jkg 	 f1; : : : ; lg � I1 D I0 [ I2:

We take an element

ı D f2i1 � 1; 2i1; 2i2 � 1; 2i2; 2j3 � 1; 2j3; : : : ; 2jk � 1; 2jk; 2l C 1g;

which is an element inA.2kC1; 2lC1/. Since ı; ˛ are antipodal, ˛ contains 2lC1.
We take an element

ı0 D f2i1 � 1; 2i1; 2j2 � 1; 2j2; : : : ; 2jk � 1; 2jk; 2l C 1g;

which is an element in A.2k C 1; 2l C 1/. The cardinality #.˛ \ ı0/ is even and
˛; ı0 are not antipodal, which is a contradiction. Therefore this case does not happen
and any element of P2kC1.2l C 2/ which is antipodal with all elements in A.2k C
1; 2l C 1/ is contained in A.2kC 1; 2l C 1/. This implies that A.2kC 1; 2l C 1/ is
a maximal antipodal subset of P2kC1.2l C 2/. Therefore we complete the proof of
the theorem.

We define

a.k; n/ D maxf#A j A is antipodal in Pk.n/.g:

The existences of A.2k; 2l/ and A.2k C 1; 2l C 1/ imply the following estimates.

.
/ a.2k; n/ �
 �

n
2

�
k

!
; a.2k C 1; n/ �

 �
n�1
2

�
k

!
:
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We can obtain the values of a.k; n/ for k � 4 using the classifications of maximal
antipodal subsets of Pk.n/ obtained in [2]. The equalities in .
/ hold for a.k; n/
with k � 4 and sufficiently large n. The author recently obtained the equality

a.5; n/ D
 �

n�1
2

�
2

!

for sufficiently large n. Moreover if an antipodal subsetA ofP5.n/ for such n attains

a.5; n/, then A is congruent with A

�
5; 2


n � 1
2

�
C 1

�
. These results will appear

in a forthcoming paper.

4 Even Sequences of Antipodal Subsets

For a natural number m we define

Ev2m D ff˛.1/; : : : ; ˛.m/g j ˛.i/ 2 f2i � 1; 2ig .1 � i � m/;
the number of even numbers ˛.i/ is eveng:

This is a subset of P1.f1; 2g/ � � � � � P1.f2m � 1; 2mg/ 	 Pm.2m/ and a
generalization of Ev4m defined in [2]. In order to prove that Ev2m is an antipodal
subset of Pm.2m/ we prepare the following lemma.

Lemma 1. For a natural number m and

˛ D f˛.1/; : : : ; ˛.m/g 2 P1.f1; 2g/ � � � � � P1.f2m � 1; 2mg/ 	 Pm.2m/

we define

˛e D fi j ˛.i/ is eveng; ˛o D fi j ˛.i/ is oddg:

For ˛; ˇ 2 P1.f1; 2g/ � � � � � P1.f2m � 1; 2mg/ we have

#.˛ \ ˇ/ D 2#.˛e \ ˇe/C #ˇo � #˛e:

Proof. By the definition

˛e [ ˛o D ˇe [ ˇo D f1; : : : ; mg

are disjoint unions.

˛ \ ˇ D f˛.i/ j i 2 ˛e \ ˇeg [ f˛.i/ j i 2 ˛o \ ˇog
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is also a disjoint union, thus we have

#.˛ \ ˇ/ D #.˛e \ ˇe/C #.˛o \ ˇo/
D #.˛e \ ˇe/C .#ˇo � #.˛e \ ˇo//:

˛e D .˛e \ ˇe/ [ .˛e \ ˇo/ is a disjoint union, so

#˛e D #.˛e \ ˇe/C #.˛e \ ˇo/:

Hence

#.˛e \ ˇo/ D #˛e � #.˛e \ ˇe/

and we obtain

#.˛ \ ˇ/ D #.˛e \ ˇe/C .#ˇo � #.˛e \ ˇo//
D 2#.˛e \ ˇe/C #ˇo � #˛e:

Lemma 2. Ev2m is an antipodal subset of Pm.2m/.

Proof. By Lemma 1, for any ˛; ˇ 2 Ev2m we have

#.˛ \ ˇ/ D 2#.˛e \ ˇe/C #ˇo � #˛e � #ˇo .mod2/

D m � #ˇe � m .mod2/:

Therefore ˛; ˇ are antipodal.

Example 1.

Ev6 D ff1; 3; 5g; f2; 4; 5g; f2; 3; 6g; f1; 4; 6gg

is transformed by

�
1 2 3 4 5 6

2 5 1 6 3 4

�

to

B.3; 6/ D ff1; 2; 3g; f1; 4; 5g; f2; 4; 6g; f3; 5; 6gg;

which was defined in [2] and is a maximal antipodal subset of P3.6/.

Theorem 2. If 2m � 2; 4; 6.mod8/, then Ev2m is a maximal antipodal subset of
Pm.2m/. On the other hand, Ev8m is not a maximal antipodal subset of P4m.8m/,
but A.4m; 8m/ [Ev8m is a maximal antipodal subset of P4m.8m/.
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Proof. We have already proved that A.4m; 8m/ [ Ev8m is a maximal antipodal
subset of P4m.8m/ in [2]. Hence it is sufficient to prove that Ev2m is a maximal
antipodal subset of Pm.2m/ in the cases where 2m � 2; 4; 6.mod8/.

We first consider the cases where 2m � 2; 6.mod8/ and prove that Ev4mC2 is a
maximal antipodal subset of P2mC1.4mC 2/. We take an element ˛ 2 P2mC1.4m
C 2/ which is antipodal with all elements of Ev4mC2. We take an element

ˇ D f2i � 1 j 1 � i � 2mC 1g 2 Ev4mC2:

Since ˛; ˇ are antipodal, the cardinality of

˛ � ˇ D f˛.i/ j ˛.i/ is eveng

is even. If ˛ 2 P1.f1; 2g/ � � � � � P1.f4mC 1; 4mC 2g/, then ˛ 2 Ev4mC2. So we
consider the case where ˛ … P1.f1; 2g/ � � � � � P1.f4mC 1; 4mC 2g/. In this case
there exists 1 � j � 2mC 1 which satisfies

f2j � 1; 2j g \ ˛ D ;:

For � 2 Sym.2mC 1/ we define Q� 2 Sym.4mC 2/ by

Q�.2i � 1/ D 2�.i/ � 1; Q�.2i/ D 2�.i/:

By this Sym.2m C 1/ acts on f1; 2; : : : ; 4m C 2g. Ev4mC2 is invariant under this
action. We take 
 2 Sym.2mC 1/ satisfying 
.j / D 2mC 1. This implies

; D Q
.f2j � 1; 2j g \ ˛/ D f4mC 1; 4mC 2g \ Q
.˛/;

that is, Q
.˛/ 2 P2mC1.4m/. Moreover Q
.˛/ is antipodal with all elements ofEv4mC2
and the cardinality of

fQ
.˛/.i/ j Q
.˛/.i/ is eveng

is even. We take an element

� D f2i j 1 � i � 2mg [ f4mC 1g 2 Ev4mC2:

#. Q
.˛/ \ �/ is even, which contradicts that Q
.˛/ and � are antipodal. Therefore
˛ 2 Ev4mC2. Hence Ev4mC2 is a maximal antipodal subset of P2mC1.4mC 2/.

We second prove that Ev8mC4 is a maximal antipodal subset of P4mC2.8mC 4/.
We take an element ˛ 2 P4mC2.8m C 4/ which is antipodal with all elements of
Ev8mC4. We take an element

ˇ D f2i � 1 j 1 � i � 4mC 2g 2 Ev8mC4:
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Since ˛; ˇ are antipodal, the cardinality of

˛ � ˇ D f˛.i/ j ˛.i/ is eveng

is even. If ˛ 2 P1.f1; 2g/ � � � � � P1.f8mC 3; 8mC 4g/, then ˛ 2 Ev8mC4. So we
consider the case where ˛ … P1.f1; 2g/ � � � � � P1.f8mC 3; 8mC 4g/. We put

Bj D f2j � 1; 2j g .1 � j � 4mC 2/:

There exist 1 � j; k � 4mC 2 such that

Bj \ ˛ D ;; Bk 	 ˛:

We put

Beo D fBj j Bj 	 ˛g; Bo D fBj j Bj \ ˛ D f2j � 1gg;
Be D fBj j Bj \ ˛ D f2j gg; B; D fBj j Bj \ ˛ D ;g:

Then Beo ¤ ;; B; ¤ ; and

Beo [ Bo [ Be [ B; D fBj j 1 � j � 4mC 2g

is a disjoint union.

4mC 2 D #˛ D 2#Beo C #Bo C #Be

is even, hence #Bo C #Be is also even. If #Bo C #Be D 0, then #Beo D 2mC 1,
which contradicts that #f˛.i/ j ˛.i/ is eveng is even. Hence #Bo C #Be � 2. We
can take � 2 P1.B1/ � � � � � P1.B4mC2/ in the following way. We take an even
number in each Bj of Beo, an odd number in each of Bo and an even number in
each of Be , however we change the parity of one in Bo [Be ¤ ; in the case where
#Beo C #Bo C #Be is even. We take a number in each of B; ¤ ; such that the
numbers of all even numbers we take is even and define � . Then � 2 Ev8mC4 and

#.˛ \ �/ D #Beo C #Bo C #Be or #Beo C #Bo C #Be � 1;

which is odd. This contradicts that ˛ and � are antipodal. Therefore ˛ 2 Ev8mC4 and
Ev8mC4 is a maximal antipodal subset of P4mC2.8mC 4/. Therefore we complete
the proof of the theorem.
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