Skip to main content

Einführung in die Genetik

  • Chapter
  • First Online:
Molekulare Sport- und Leistungsphysiologie

Zusammenfassung

Die DNA stellt den molekularen Grundbaustein der Erbinformation oder den Bauplan eines Organismus dar. Die Mechanismen zur Weitergabe der genetischen Information liegen im strukturellen und organisatorischen Aufbau der menschlichen DNA begründet. Während die Genetik vor allem den Genotyp betrachtet, ist der Phänotyp die Erscheinungsform nach außen, die normalerweise gut an die jeweiligen Umweltbedingungen angepasst ist. Doch innerhalb einer Population herrscht meist eine enorme genetische Vielfalt, was die unterschiedlichen Phänotypen zwischen den Individuen erklären kann, aber auch Grundlage der Evolution ist. Die Populationsgenetik hat es sich zur Aufgabe gemacht, Veränderungen in Populationen über einen großen Zeitrahmen hinweg zu untersuchen. Epigenetische Mechanismen letztlich bedingen eine Modifikation in der Struktur des Chromatins und stellen so vererbbare Veränderungen der Genfunktion dar, welche nicht durch Veränderungen der DNA-Sequenz erklärt werden können.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  1. Lee Y, Rio DC (2015) Mechanisms and Regulation of Alternative Pre-mRNA Splicing. Annual review of biochemistry 84:291-323. doi:10.1146/annurev-biochem-060614-034316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goldspink G (2005) Mechanical signals, IGF-I gene splicing, and muscle adaptation. Physiology 20:232–238. doi:10.1152/physiol.00004.2005

    Article  CAS  PubMed  Google Scholar 

  3. Miescher F (1871) Ueber die chemische Zusammensetzung der Eiterzellen. Medizinisch-chemische Untersuchungen 4:441–460

    Google Scholar 

  4. Dahm R (2008) Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Hum Genet 122 (6):565–581. doi:10.1007/s00439-007-0433-0

  5. Avery OT, Macleod CM, McCarty M (1944) Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type Iii. J Exp Med 79 (2):137–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171 (4356):737–738

    Article  CAS  PubMed  Google Scholar 

  7. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al. (2001) Initial sequencing and analysis of the human genome. Nature 409 (6822):860–921. doi:10.1038/35057062

    Article  CAS  PubMed  Google Scholar 

  8. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG et al. (2001) The sequence of the human genome. Science 291 (5507):1304–1351. doi:10.1126/science.1058040291/5507/1304 [pii]

    Article  CAS  PubMed  Google Scholar 

  9. Claverie JM (2001) Gene number. What if there are only 30,000 human genes? Science 291 (5507):1255–1257

    Google Scholar 

  10. Consortium CeS (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282 (5396):2012–2018

    Article  Google Scholar 

  11. Felsenfeld G, Groudine M (2003) Controlling the double helix. Nature 421 (6921):448–453. doi:10.1038/nature01411nature01411 [pii]

    Article  PubMed  Google Scholar 

  12. Hathcock KS, Chiang YJ, Hodes RJ (2005) Telomere biology and immune system. Discov Med 5 (27):288–292

    PubMed  Google Scholar 

  13. Blackburn EH (2000) Telomere states and cell fates. Nature 408 (6808):53–56. doi:10.1038/35040500

  14. Blasco MA (2003) Mammalian telomeres and telomerase: why they matter for cancer and aging. Eur J Cell Biol 82 (9):441–446. doi:S0171-9335(04)70315-5 [pii] 10.1078/0171-9335-00335

    Google Scholar 

  15. Garcia-Rodriguez LJ (2007) Appendix 1. Basic properties of mitochondria. Methods Cell Biol 80:809–812. doi:S0091-679X(06)80040-3 [pii] 10.1016/S0091-679X(06)80040-3

    Article  PubMed  Google Scholar 

  16. Schon EA, DiMauro S, Hirano M (2012) Human mitochondrial DNA: roles of inherited and somatic mutations. Nat Rev Genet 13 (12):878–890. doi:10.1038/nrg3275 nrg3275 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chagin VO, Stear JH, Cardoso MC (2010) Organization of DNA replication. Cold Spring Harb Perspect Biol 2 (4): a000737. doi:10.1101/cshperspect.a0007372/4/a000737 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nagaoka SI, Hassold TJ, Hunt PA (2012) Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet 13 (7):493–504. doi:10.1038/nrg3245 nrg3245 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Watanabe Y (2012) Geometry and force behind kinetochore orientation: lessons from meiosis. Nat Rev Mol Cell Biol 13 (6):370–382. doi:10.1038/nrm3349 nrm3349 [pii]

    Article  CAS  PubMed  Google Scholar 

  20. Mendel G (1866) Versuche über Plflanzenhybriden. Verhandlungen des naturforschenden Vereines in Brünn Band IV:3–47

    Google Scholar 

  21. Zschocke J (2008) Dominant versus recessive: molecular mechanisms in metabolic disease. J Inherit Metab Dis 31 (5):599–618. doi:10.1007/s10545-008-1016-5

    Article  CAS  PubMed  Google Scholar 

  22. Kim J, Oh S, Min H, Kim Y, Park T (2011) Practical issues in genome-wide association studies for physical activity. Ann N Y Acad Sci 1229:38-44. doi:10.1111/j.1749-6632.2011.06102.x

    Article  PubMed  Google Scholar 

  23. Holt IJ, Reyes A (2012) Human mitochondrial DNA replication. Cold Spring Harb Perspect Biol 4 (12). doi:10.1101/cshperspect.a012971 a012971 [pii] cshperspect.a012971 [pii]

  24. Palmer CS, Osellame LD, Stojanovski D, Ryan MT (2011) The regulation of mitochondrial morphology: intricate mechanisms and dynamic machinery. Cell Signal 23 (10):1534–1545. doi:10.1016/j.cellsig.2011.05.021 S0898-6568(11)00170-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  25. Hegde ML, Hazra TK, Mitra S (2008) Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res 18 (1):27–47. doi:10.1038/cr.2008.8 cr20088 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kunz C, Saito Y, Schar P (2009) DNA Repair in mammalian cells: Mismatched repair: variations on a theme. Cell Mol Life Sci 66 (6):1021–1038. doi:10.1007/s00018-009-8739-9

    Article  CAS  PubMed  Google Scholar 

  27. Darwin C (1859) On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London

    Book  Google Scholar 

  28. Sousa V, Hey J (2013) Understanding the origin of species with genome-scale data: modelling gene flow. Nat Rev Genet 14 (6):404–414. doi:10.1038/nrg3446 nrg3446 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. O'Keefe JH, Vogel R, Lavie CJ, Cordain L (2011) Exercise like a hunter-gatherer: a prescription for organic physical fitness. Prog Cardiovasc Dis 53 (6):471–479. doi:10.1016/j.pcad.2011.03.009 S0033-0620(11)00064-8 [pii]

    Article  PubMed  Google Scholar 

  30. Wells JC (2012) The evolution of human adiposity and obesity: where did it all go wrong? Dis Model Mech 5 (5):595–607. doi:10.1242/dmm.009613 5/5/595 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mayo O (2008) A century of Hardy-Weinberg equilibrium. Twin Res Hum Genet 11 (3):249–256. doi:10.1375/twin.11.3.249 10.1375/twin.11.3.249 [pii]

    Article  PubMed  Google Scholar 

  32. Disotell TR (2012) Archaic human genomics. Am J Phys Anthropol 149 Suppl 55:24–39. doi:10.1002/ajpa.22159

    Article  PubMed  Google Scholar 

  33. Stringer C (2012) Evolution: What makes a modern human. Nature 485 (7396):33–35. doi:10.1038/485033a 485033a [pii]

    CAS  PubMed  Google Scholar 

  34. Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature cell biology 11 (3):228–234. doi:10.1038/ncb0309-228

    Article  CAS  PubMed  Google Scholar 

  35. Baar K (2006) Training for endurance and strength: lessons from cell signaling. Medicine and science in sports and exercise 38 (11):1939–1944. doi:10.1249/01.mss.0000233799.62153.19

    Article  PubMed  Google Scholar 

  36. Handschin C (2010) Regulation of skeletal muscle cell plasticity by the peroxisome proliferator-activated receptor gamma coactivator 1alpha. Journal of receptor and signal transduction research 30 (6):376–384. doi:10.3109/10799891003641074

    Article  CAS  PubMed  Google Scholar 

  37. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nature biotechnology 28 (10):1057–1068. doi:10.1038/nbt.1685

    Article  CAS  PubMed  Google Scholar 

  38. Wood C, Snijders A, Williamson J, Reynolds C, Baldwin J, Dickman M (2009) Post-translational modifications of the linker histone variants and their association with cell mechanisms. FEBS J 276 (14):3685–3697. doi:10.1111/j.1742-4658.2009.07079.x

    Article  CAS  PubMed  Google Scholar 

  39. Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends in biochemical sciences 31 (2):89–97. doi:10.1016/j.tibs.2005.12.008

    Article  CAS  PubMed  Google Scholar 

  40. Bird AP, Wolffe AP (1999) Methylation-induced repression-belts, braces, and chromatin. Cell 99 (5):451–454

    Article  CAS  PubMed  Google Scholar 

  41. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403 (6765):41–45. doi:10.1038/47412

    Article  CAS  PubMed  Google Scholar 

  42. Kouzarides T (2007) Chromatin modifications and their function. Cell 128 (4):693–705. doi:10.1016/j.cell.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  43. Clayton AL, Hazzalin CA, Mahadevan LC (2006) Enhanced histone acetylation and transcription: a dynamic perspective. Molecular cell 23 (3):289–296. doi:10.1016/j.molcel.2006.06.017

    Article  CAS  PubMed  Google Scholar 

  44. de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. The Biochemical journal 370 (Pt 3):737–749. doi:10.1042/BJ20021321

    Article  PubMed  PubMed Central  Google Scholar 

  45. McKinsey TA, Zhang CL, Olson EN (2001) Control of muscle development by dueling HATs and HDACs. Current opinion in genetics & development 11 (5):497–504

    Article  CAS  Google Scholar 

  46. Nebbioso A, Manzo F, Miceli M, Conte M, Manente L, Baldi A et al. (2009) Selective class II HDAC inhibitors impair myogenesis by modulating the stability and activity of HDAC-MEF2 complexes. EMBO Rep 10 (7):776–782. doi:10.1038/embor.2009.88 embor200988 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Choudhuri S, Cui Y, Klaassen CD (2010) Molecular targets of epigenetic regulation and effectors of environmental influences. Toxicology and applied pharmacology 245 (3):378–393. doi:10.1016/j.taap.2010.03.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Clayton AL, Mahadevan LC (2003) MAP kinase-mediated phosphoacetylation of histone H3 and inducible gene regulation. FEBS Lett 546 (1):51–58. doi:S0014579303004514 [pii]

    Article  CAS  PubMed  Google Scholar 

  49. Li KK, Luo C, Wang D, Jiang H, Zheng YG (2012) Chemical and biochemical approaches in the study of histone methylation and demethylation. Med Res Rev 32 (4):815–867. doi:10.1002/mrr.20228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Biel M, Wascholowski V, Giannis A (2005) Epigenetik – ein Epizentrum der Genregulation: Histone und histonmodifizierende Enzyme. Angewandte Chemie 117 (21):3248–3280. doi:10.1002/ange.200461346

    Article  Google Scholar 

  51. Rice JC, Allis CD (2001) Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr Opin Cell Biol 13 (3):263–273. doi:S0955-0674(00)00208-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  52. Bannister AJ, Kouzarides T (2005) Reversing histone methylation. Nature 436 (7054):1103–1106. doi:nature04048 [pii] 10.1038/nature04048

    Article  CAS  PubMed  Google Scholar 

  53. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21 (3):381–395. doi:10.1038/cr.2011.22 cr201122 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tollefsbol TO (2004) Epigenetics protocols. In: Methods in molecular biology, vol 287. Humana Press, Totowa, N.J.

    Book  Google Scholar 

  55. Vaissiere T, Sawan C, Herceg Z (2008) Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res 659 (1-2):40–48. doi:10.1016/j.mrrev.2008.02.004 S1383-5742(08)00032-X [pii]

    Article  CAS  PubMed  Google Scholar 

  56. Cheng X, Blumenthal RM (2010) Coordinated chromatin control: structural and functional linkage of DNA and histone methylation. Biochemistry 49 (14):2999–3008. doi:10.1021/bi100213t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Burgio G, Onorati MC, Corona DF (2010) Chromatin remodeling regulation by small molecules and metabolites. Biochim Biophys Acta 1799 (10-12):671–680. doi:10.1016/j.bbagrm.2010.05.007 S1874-9399(10)00068-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  58. Sadava D, Orians, G., Heller, H.C., Hillis, D., Berenbaum, M.R. (2011) Purves, Biologie. 9. edn. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Wessner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Wien

About this chapter

Cite this chapter

Wessner, B., Katschinka, G. (2018). Einführung in die Genetik. In: Bachl, N., Löllgen, H., Tschan, H., Wackerhage, H., Wessner, B. (eds) Molekulare Sport- und Leistungsphysiologie. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1591-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1591-6_1

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1590-9

  • Online ISBN: 978-3-7091-1591-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics