Skip to main content

Physikalische Chemie der Ernährung und der Ernährungsformen

  • Chapter
  • First Online:
Biophysik der Ernährung
  • 4040 Accesses

Zusammenfassung

Wie schädlich ist Essen, welche Nahrungsmittelbestandteile machen krank? Und was ist gesund? Was sollte nicht mehr gegessen werden? Was muss gegessen werden, damit ein langes, gesundes Leben möglich wird? Diese Fragen sind nahezu täglich zu hören und zu lesen. Antworten darauf gibt es aus wissenschaftlicher Sicht meist nicht. An typischen Beispielen wird diesen Fragen in diesem Kapitel aus physikalisch-chemischer und physiologischer Sicht auf den Grund gegangen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  1. Schoenfeld, J. D., & Ioannidis, J. P. (2012). Is everything we eat associated with cancer? A systematic cookbook review. The American Journal of Clinical Nutrition, 97(1), 127–134.

    Article  Google Scholar 

  2. Siehe https://www.eufic.org/article/de/lebensmittelsicherheit-qualitat/sichere-lebensmittelhandhabung/artid/angst-vor-dem-essen/.

  3. Schmidbauer, W. (2005). Lebensgefühl Angst: Jeder hat sie. Keiner will sie. Was wir gegen Angst tun können. Herde.

    Google Scholar 

  4. https://www.sprachaktivierung.de/index.php/grundlagen.html

  5. Kast, B. (2018). Der Ernährungskompass: Das Fazit aller wissenschaftlichen Studien zum Thema Ernährung. Bertelsmann.

    Google Scholar 

  6. Wenzel, S. (2018). Der Ernährungskompass. Ernährung & Medizin, 33(04), 184–186.

    Google Scholar 

  7. https://www.medpagetoday.com/blogs/revolutionandrevelation/75045.

  8. Ioannidis, J. P. (2018). The challenge of reforming nutritional epidemiologic research. JAMA, 320(10), 969–970.

    Article  Google Scholar 

  9. Ioannidis, J. P. (2013). Implausible results in human nutrition research. British Medical Journal, 14(4), 401–410.

    Google Scholar 

  10. https://www.aerztezeitung.de/panorama/ernaehrung/article/961348/neue-eu-regelung-acrylamid-gefaehrlicher-stickoxide.html.

  11. Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S., & Törnqvist, M. (2000). Acrylamide: A cooking carcinogen? Chemical Research in Toxicology, 13(6), 517–522.

    Article  CAS  Google Scholar 

  12. Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S., & Törnqvist, M. (2002). Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of Agricultural and Food Chemistry, 50(17), 4998–5006.

    Article  CAS  Google Scholar 

  13. Mottram, D. S., Wedzicha, B. L., & Dodson, A. T. (2002). Food chemistry: Acrylamide is formed in the Maillard reaction. Nature, 419(6906), 448.

    Article  CAS  Google Scholar 

  14. Krishnakumar, T., & Visvanathan, R. (2014). Acrylamide in food products: A review. Journal of Food Processing & Technology, 5(7), 1.

    Google Scholar 

  15. EFSA Panel on Contaminants in the Food Chain (CONTAM). (2015). Scientific opinion on acrylamide in food. EFSA Journal, 13(6), 4104.

    Google Scholar 

  16. Daniali, G., Jinap, S., Hajeb, P., Sanny, M., & Tan, C. P. (2016). Acrylamide formation in vegetable oils and animal fats during heat treatment. Food chemistry, 212, 244–249.

    Article  CAS  Google Scholar 

  17. Granvogl, M., Koehler, P., Latzer, L., & Schieberle, P. (2008). Development of a stable isotope dilution assay for the quantitation of glycidamide and its application to foods and model systems. Journal of Agricultural and Food Chemistry, 56(15), 6087–6092.

    Article  CAS  Google Scholar 

  18. Mustaţeǎ, G., Ppoa, M. E., & Negoiţǎ, M. (2015). A case study on mitigation strategies of acrylamide in bakery products. Scientific Bulletin. Series F. Biotechnologies, 19, 348–353.

    Google Scholar 

  19. Dybing, E., Farmer, P. B., Andersen, M., Fennell, T. R., Lalljie, S. P. D., Müller, D. J. G., et al. (2005). Human exposure and internal dose assessments of acrylamide in food. Food and Chemical Toxicology, 43(3), 365–410.

    Article  CAS  Google Scholar 

  20. Martins, S. I., Jongen, W. M., & Van Boekel, M. A. (2000). A review of Maillard reaction in food and implications to kinetic modelling. Trends in Food Science & Technology, 11(9–10), 364–373.

    Article  CAS  Google Scholar 

  21. Mestdagh, F., Maertens, J., Cucu, T., Delporte, K., Van Peteghem, C., & De Meulenaer, B. (2008). Impact of additives to lower the formation of acrylamide in a potato model system through pH reduction and other mechanisms. Food Chemistry, 107(1), 26–31.

    Article  CAS  Google Scholar 

  22. Fredriksson, H., Tallving, J., Rosen, J., & Åman, P. (2004). Fermentation reduces free asparagine in dough and acrylamide content in bread. Cereal Chemistry, 81(5), 650–653.

    Article  CAS  Google Scholar 

  23. Arima, K., Sakamoto, T., Araki, C., & Tamura, G. (1972). Production of extracellular l-asparaginases by microorganisms. Agricultural and Biological Chemistry, 36(3), 356–361.

    Article  CAS  Google Scholar 

  24. Hill, J. M., Roberts, J., Loeb, E., Khan, A., MacLellan, A., & Hill, R. W. (1967). l-asparaginase therapy for leukemia and other malignant neoplasms: Remission in human leukemia. JAMA, 202(9), 882–888.

    Article  CAS  Google Scholar 

  25. Xu, F., Oruna-Concha, M. J., & Elmore, J. S. (2016). The use of asparaginase to reduce acrylamide levels in cooked food. Food Chemistry, 210, 163–171.

    Article  CAS  Google Scholar 

  26. Alam, S., Pranaw, K., Tiwari, R., & Khare, S. K. (2019). Recent development in the uses of asparaginase as food enzyme. In S. Alam, K. Pranaw, R. Tiwari, & S. K. Khare (Hrsg.), Green bio-processes (S. 55–81). Springer.

    Chapter  Google Scholar 

  27. Cho, I. H., Lee, S., Jun, H. R., Roh, H. J., & Kim, Y. S. (2010). Comparison of volatile Maillard reaction products from tagatose and other reducing sugars with amino acids. Food Science and Biotechnology, 19(2), 431–438.

    Article  CAS  Google Scholar 

  28. Koehler, P. E., Mason, M. E., & Newell, J. A. (1969). Formation of pyrazine compounds in sugar-amino acid model systems. Journal of Agricultural and Food Chemistry, 17(2), 393–396.

    Article  CAS  Google Scholar 

  29. Wong, K. H., Abdul Aziz, S., & Mohamed, S. (2008). Sensory aroma from Maillard reaction of individual and combinations of amino acids with glucose in acidic conditions. International Journal of Food Science & Technology, 43(9), 1512–1519.

    Article  CAS  Google Scholar 

  30. Delgado-Andrade, C. (2014). Maillard reaction products: Some considerations on their health effects. Clinical Chemistry and Laboratory Medicine, 52(1), 53–60.

    Article  CAS  Google Scholar 

  31. Selvam, J. P., Aranganathan, S., Gopalan, R., & Nalini, N. (2009). Chemopreventive efficacy of pronyl-lysine on lipid peroxidation and antioxidant status in rat colon carcinogenesis. Fundamental & Clinical Pharmacology, 23(3), 293–302.

    Article  CAS  Google Scholar 

  32. Michalska, A., Amigo-Benavent, M., Zielinski, H., & del Castillo, M. D. (2008). Effect of bread making on formation of Maillard reaction products contributing to the overall antioxidant activity of rye bread. Journal of Cereal Science, 48(1), 123–132.

    Article  CAS  Google Scholar 

  33. Somoza, V., Lindenmeier, M., Wenzel, E., Frank, O., Erbersdobler, H. F., & Hofmann, T. (2003). Activity-guided identification of a chemopreventive compound in coffee beverage using in vitro and in vivo techniques. Journal of Agricultural and Food Chemistry, 51(23), 6861–6869.

    Article  CAS  Google Scholar 

  34. Wang, H. Y., Qian, H., & Yao, W. R. (2011). Melanoidins produced by the Maillard reaction: Structure and biological activity. Food Chemistry, 128(3), 573–584.

    Article  CAS  Google Scholar 

  35. Yilmaz, Y., & Toledo, R. (2005). Antioxidant activity of water-soluble Maillard reaction products. Food Chemistry, 93(2), 273–278.

    Article  CAS  Google Scholar 

  36. Benjakul, S., Lertittikul, W., & Bauer, F. (2005). Antioxidant activity of Maillard reaction products from a porcine plasma protein–sugar model system. Food Chemistry, 93(2), 189–196.

    Article  CAS  Google Scholar 

  37. Gu, F. L., Kim, J. M., Abbas, S., Zhang, X. M., Xia, S. Q., & Chen, Z. X. (2010). Structure and antioxidant activity of high molecular weight Maillard reaction products from casein–glucose. Food Chemistry, 120(2), 505–511.

    Article  CAS  Google Scholar 

  38. Tagliazucchi, D., & Bellesia, A. (2015). The gastro-intestinal tract as the major site of biological action of dietary melanoidins. Amino Acids, 47(6), 1077–1089.

    Article  CAS  Google Scholar 

  39. Raters, M. & Matissek, R. (2012). The big bang acrylamid: 10 Jahre Acrylamid – Rückblick und Status quo, LCI, 184–189. https://www.lci-koeln.de/download/dlr-acrylamid-raters-matissek.

  40. Lee, W. T., Weisell, R., Albert, J., Tomé, D., Kurpad, A. V., & Uauy, R. (2016). Research approaches and methods for evaluating the protein quality of human foods proposed by an FAO expert working group in 2014. The Journal of Nutrition, 146(5), 929–932.

    Article  CAS  Google Scholar 

  41. Bossel, H. (1990). Nährstoffbedarf, Nährstoffkreisläufe, Boden. In H. Bossel (Hrsg.), Umweltwissen (S. 55–68). Springer.

    Chapter  Google Scholar 

  42. Sharma, S., Singh, R., & Rana, S. (2011). Bioactive peptides: A review. International Journal of Bioautomation, 15(4), 223–250.

    CAS  Google Scholar 

  43. Lafarga, T., & Hayes, M. (2014). Bioactive peptides from meat muscle and by-products: Generation, functionality and application as functional ingredients. Meat Science, 98(2), 227–239.

    Article  CAS  Google Scholar 

  44. Pihlanto-Leppälä, A. (2000). Bioactive peptides derived from bovine whey proteins: Opioid and ace-inhibitory peptides. Trends in Food Science & Technology, 11(9–10), 347–356.

    Article  Google Scholar 

  45. Bhat, Z. F., Kumar, S., & Bhat, H. F. (2015). Bioactive peptides of animal origin: A review. Journal of Food Science and Technology, 52(9), 5377–5392.

    Article  CAS  Google Scholar 

  46. Maestri, E., Marmiroli, M., & Marmiroli, N. (2016). Bioactive peptides in plant-derived foodstuffs. Journal of Proteomics, 147, 140–155.

    Article  CAS  Google Scholar 

  47. Vilgis, T. A., Lendner, I., & Caviezel, R. (2014). Ernährung bei Pflegebedürftigkeit und Demenz: Lebensfreude durch Genuss. Springer.

    Google Scholar 

  48. Volm, C. (2010). Rohköstliches Gesund durchs Leben mit Rohkost und Wildpflanzen. Ulmer.

    Google Scholar 

  49. Harkness, M. L., Harkness, R. D., & Venn, M. F. (1978). Digestion of native collagen in the gut. Gut, 19(3), 240–243.

    Article  CAS  Google Scholar 

  50. Knupp, C., & Squire, J. M. (2005). Molecular packing in network-forming collagens. In J. P. Richard (Hrsg.), Advances in protein chemistry (Bd. 70, S. 375–403). Academic Press.

    Google Scholar 

  51. Shigemura, Y., Akaba, S., Kawashima, E., Park, E. Y., Nakamura, Y., & Sato, K. (2011). Identification of a novel food-derived collagen peptide, hydroxyprolyl-glycine, in human peripheral blood by pre-column derivatisation with phenyl isothiocyanate. Food Chemistry, 129(3), 1019–1024.

    Article  CAS  Google Scholar 

  52. Asserin, J., Lati, E., Shioya, T., & Prawitt, J. (2015). The effect of oral collagen peptide supplementation on skin moisture and the dermal collagen network: Evidence from an ex vivo model and randomized, placebo-controlled clinical trials. Journal of Cosmetic Dermatology, 14(4), 291–301.

    Article  Google Scholar 

  53. Raj, U. L., Sharma, G., Dang, S., Gupta, S., & Gabrani, R. (2016). Impact of dietary supplements on skin aging. Textbook of Aging Skin, 1–13. Springer-Verlag Berlin Heidelberg 2015 M.A. Farage et al. (eds.), Textbook of Aging Skin, DOI https://doi.org/10.1007/978-3-642-27814-3_174-1

  54. Roh, E., Kim, J. E., Kwon, J. Y., Park, J. S., Bode, A. M., Dong, Z., & Lee, K. W. (2017). Molecular mechanisms of green tea polyphenols with protective effects against skin photoaging. Critical Reviews in Food Science and Nutrition, 57(8), 1631–1637.

    Article  Google Scholar 

  55. Felixberger, J. K. (2018). Proteine – Essenzieller Bestandteil unserer Ernährung. In A. Ghadiri, T. A. Vilgis, & T. Bosbach (Hrsg.), Wissen schmeckt (S. 169–195). Springer.

    Chapter  Google Scholar 

  56. Richter, C. K., Skulas-Ray, A. C., Champagne, C. M., & Kris-Etherton, P. M. (2015). Plant protein and animal proteins: Do they differentially affect cardiovascular disease risk? Advances in Nutrition, 6(6), 712–728.

    Article  CAS  Google Scholar 

  57. Revel, A., Jarzaguet, M., Peyron, M. A., Papet, I., Hafnaoui, N., Migné, C., et al. (2017). At same leucine intake, a whey/plant protein blend is not as effective as whey to initiate a transient post prandial muscle anabolic response during a catabolic state in mini pigs. PLoS One, 12(10), e0186204.

    Google Scholar 

  58. Boland, M. J., Rae, A. N., Vereijken, J. M., Meuwissen, M. P., Fischer, A. R., van Boekel, M. A., et al. (2013). The future supply of animal-derived protein for human consumption. Trends in Food Science & Technology, 29(1), 62–73.

    Article  CAS  Google Scholar 

  59. Li, Y., Xin, R., Zhang, D., & Li, S. (2014). Molecular characterization of α-gliadin genes from common wheat cultivar Zhengmai 004 and their role in quality and celiac disease. The Crop Journal, 2(1), 10–21.

    Article  Google Scholar 

  60. Bromilow, S., Gethings, L. A., Buckley, M., Bromley, M., Shewry, P. R., Langridge, J. I., & Mills, E. C. (2017). A curated gluten protein sequence database to support development of proteomics methods for determination of gluten in gluten-free foods. Journal of proteomics, 163, 67–75.

    Article  CAS  Google Scholar 

  61. Schwefel, D., Maierhofer, C., Beck, J. G., Seeberger, S., Diederichs, K., Möller, H. M., et al. (2010). Structural basis of multivalent binding to wheat germ agglutinin. Journal of the American Chemical Society, 132(25), 8704–8719.

    Article  CAS  Google Scholar 

  62. https://www.uniprot.org/uniprot/?query=AGGLUTININ&sort=score.

  63. Gundry, S. R. (2017). Böses Gemüse. Beltz.

    Google Scholar 

  64. Schaufler, M., & Drössler, W. A. (2017). Lektine – Das heimliche Gift. Riva.

    Google Scholar 

  65. https://praxistipps.focus.de/weizenkeimoel-wirkung-und-tipps-zur-anwendung_101131.

  66. van Buul, V. J., & Brouns, F. J. (2014). Health effects of wheat lectins: A review. Journal of Cereal Science, 59(2), 112–117.

    Article  Google Scholar 

  67. Schuppan, D., & Gisbert-Schuppan, K. (2018). Tägliches Brot: Krank durch Weizen. Springer.

    Book  Google Scholar 

  68. Strunz, U. (2015). Warum macht die Nudel dumm?: Leichter, klüger, besser drauf: No Carbs und das Geheimnis wacher Intelligenz. Heyne.

    Google Scholar 

  69. Perlmutter, D., & Loberg, K. (2014). Dumm wie Brot: Wie Weizen schleichend Ihr Gehirn zerstört. Mosaik.

    Google Scholar 

  70. Davis, W. (2013). Weizenwampe: Warum Weizen dick und krank macht. Goldmann.

    Google Scholar 

  71. Schuppan, D., & Gisbert-Schuppan, K. (2018). Tägliches Brot: Krank durch Weizen (S. 61). Gluten und ATI: Springer.

    Google Scholar 

  72. Cuccioloni, M., Mozzicafreddo, M., Ali, I., Bonfili, L., Cecarini, V., Eleuteri, A. M., & Angeletti, M. (2016). Interaction between wheat alpha-amylase/trypsin bi-functional inhibitor and mammalian digestive enzymes: Kinetic, equilibrium and structural characterization of binding. Food Chemistry, 213, 571–578.

    Article  CAS  Google Scholar 

  73. https://www.schaer.com/de-de/p/landbrot.

  74. Schober, T. J., Bean, S. R., Boyle, D. L., & Park, S. H. (2008). Improved viscoelastic zein-starch doughs for leavened gluten-free breads: Their rheology and microstructure. Journal of Cereal Science, 48(3), 755–767.

    Google Scholar 

  75. Fischer, M. H., Yu, N., Gray, G. R., Ralph, J., Anderson, L., & Marlett, J. A. (2004). The gel-forming polysaccharide of psyllium husk (Plantago ovata Forsk). Carbohydrate Research, 339(11), 2009–2017.

    Article  CAS  Google Scholar 

  76. Thakur, V. K., & Thakur, M. K. (2014). Recent trends in hydrogels based on psyllium polysaccharide: A review. Journal of Cleaner Production, 82, 1–15.

    Article  CAS  Google Scholar 

  77. Reese, I., et al. (2018). Nicht-Zöliakie-Gluten-/Weizen-Sensitivität (NCGS) – ein bislang nicht definiertes Krankheitsbild mit fehlenden Diagnosekriterien und unbekannter Häufigkeit. Aktuelle Ernährungsmedizin, 43(06), 479–483.

    Google Scholar 

  78. Zhang, W., Xu, J., Bennetzen, J. L., & Messing, J. (2016). Teff, an orphan cereal in the chloridoideae, provides insights into the evolution of storage proteins in grasses. Genome Biology and Evolution, 8(6), 1712–1721.

    Article  CAS  Google Scholar 

  79. Hager, A. S., Wolter, A., Czerny, M., Bez, J., Zannini, E., Arendt, E. K., & Czerny, M. (2012). Investigation of product quality, sensory profile and ultrastructure of breads made from a range of commercial gluten-free flours compared to their wheat counterparts. European Food Research and Technology, 235(2), 333–344.

    Article  CAS  Google Scholar 

  80. Zhu, F. (2018). Chemical composition and food uses of teff (Eragrostis tef). Food Chemistry, 239, 402–415.

    Google Scholar 

  81. Hadji-Gerogoloulus, A., Schmidt, M. I., Margolis, S., & Kowarski, A. A. (1980). Elevated hypoglycemic index and late hyperinsulinism in symptomatic postprandial hypoglycemia. The Journal of Clinical Endocrinology & Metabolism, 50(2), 371–376.

    Article  Google Scholar 

  82. Tappy, L., Würsch, P., Randin, J. P., Felber, J. P., & Jequier, E. (1986). Metabolic effect of pre-cooked instant preparations of bean and potato in normal and in diabetic subjects. The American Journal of Clinical Nutrition, 43(1), 30–36.

    Article  CAS  Google Scholar 

  83. Leathwood, P., & Pollet, P. (1988). Effects of slow release carbohydrates in the form of bean flakes on the evolution of hunger and satiety in man. Appetite, 10(1), 1–11.

    Article  CAS  Google Scholar 

  84. Goletzke, J., Atkinson, F. S., Ek, K. L., Bell, K., Brand-Miller, J. C., & Buyken, A. E. (2016). Glycaemic and insulin index of four common German breads. European Journal of Clinical Nutrition, 70(7), 808.

    Article  CAS  Google Scholar 

  85. Zimmerman, M. A., Singh, N., Martin, P. M., Thangaraju, M., Ganapathy, V., Waller, J. L., et al. (2012). Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells. American Journal of Physiology-Heart and Circulatory Physiology, 302, G1405–G1415.

    CAS  Google Scholar 

  86. Vital, M., Karch, A., & Pieper, D. H. (2017). Colonic butyrate-producing communities in humans: An overview using omics data. MSystems, 2(6), e00130-e217.

    Article  CAS  Google Scholar 

  87. Mathes, P. (2012). Hilfen durch Medikamente. Ratgeber Herzinfarkt (S. 167–189). Springer.

    Chapter  Google Scholar 

  88. Gehring, J., & Klein, G. (2015). Mobilität nach Herzinfarkt oder Bypass-Operation. In J. Gehring & G. Klein (Hrsg.), Leben mit der koronaren Herzkrankheit (S. 154–158). Urban und Vogel.

    Google Scholar 

  89. Schmid, A. (2006). Einfluss von Nitrat und Nitrit aus Fleischerzeugnissen auf die Gesundheit des Menschen. Ernährungsumschau, 53(12), 490–495.

    CAS  Google Scholar 

  90. Martin, H. H. (2008). Vom Saulus zum Paulus? UGB Forum, 5, 245.

    Google Scholar 

  91. Bedale, W., Sindelar, J. J., & Milkowski, A. L. (2016). Dietary nitrate and nitrite: Benefits, risks, and evolving perceptions. Meat Science, 120, 85–92.

    Article  CAS  Google Scholar 

  92. Habermeyer, M., Roth, A., Guth, S., Diel, P., Engel, K. H., Epe, B., Fürst, P., Heinz, V., Knorr, D., de Kok, T., Kulling, S., Lampen, A., Marko, D., Rechkemmer, G., Rietjens, I., Stadler, R.H., Vieths, S., Vogel, R., Steinberg, P., & Eisenbrand, G. (2015). Nitrate and nitrite in the diet: How to assess their benefit and risk for human health. Molecular Nutrition & Food Research, 59(1), 106–128.

    Google Scholar 

  93. Li, Y., et al. (2018). Secretin-activated brown fat mediates prandial thermogenesis to induce satiation. Cell, 175(6), 1561–1574.

    Article  CAS  Google Scholar 

  94. Stanford, K. I., Middelbeek, R. J., Townsend, K. L., An, D., Nygaard, E. B., Hitchcox, K. M., et al. (2012). Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. The Journal of Clinical Investigation, 123(1), 215–223.

    Article  Google Scholar 

  95. Lundberg, J. O., Carlström, M., & Weitzberg, E. (2018). Metabolic effects of dietary nitrate in health and disease. Cell metabolism, 28(1), 9–22.

    Article  CAS  Google Scholar 

  96. Lundberg, J. O., & Weitzberg, E. (2017). Nitric oxide formation from inorganic nitrate. In J. O. Lundberg & E. Weitzberg (Hrsg.), Nitric oxide (S. 157–171). Academic Press.

    Chapter  Google Scholar 

  97. Williams, A. R. (1975). The production of saltpetre in the middle ages. Ambix, 22(2), 125–133.

    Article  CAS  Google Scholar 

  98. Vilgis, T. A. (2018). Ikejime versus karashi jukusei (dry aging): Vielfältige molekulare Umami-Phasen. Journal Culinaire, 27, 56–84.

    Google Scholar 

  99. Vilgis, T. (2013). Fermentation – Molekulares Niedrigtemperaturgaren. Journal Culinaire, 17, 38–53.

    Google Scholar 

  100. Bognár, A. (2003). Vitaminveränderungen bei der Lebensmittelverarbeitung im Haushalt. Ernährung im Fokus, 11, 330–335.

    Google Scholar 

  101. Munyaka, A. W., Makule, E. E., Oey, I., Van Loey, A., & Hendrickx, M. (2010). Thermal stability of l-ascorbic acid and ascorbic acid oxidase in broccoli (Brassica oleracea var. italica). Journal of Food Science, 75(4), C336–C340.

    Google Scholar 

  102. Burggraf, C., Teuber, R., Brosig, S., & Meier, T. (2018). Review of a priori dietary quality indices in relation to their construction criteria. Nutrition Reviews, 76(10), 747–764.

    Article  Google Scholar 

  103. Ströhle, A., & Hahn, A. (2011). Diets of modern hunter-gatherers vary substantially in their carbohydrate content depending on ecoenvironments: Results from an ethnographic analysis. Nutrition Research, 31(6), 429–435.

    Article  Google Scholar 

  104. Ströhle, A., Wolters, M., & Hahn, A. (2009). Die Ernährung des Menschen im evolutionsmedizinischen Kontext. Wiener klinische Wochenschrift, 121(5–6), 173–187.

    Article  Google Scholar 

  105. Manheimer, E. W., van Zuuren, E. J., Fedorowicz, Z., & Pijl, H. (2015). Paleolithic nutrition for metabolic syndrome: Systematic review and meta-analysis. The American Journal of Clinical Nutrition, 102(4), 922–932.

    Article  CAS  Google Scholar 

  106. Fenton, T. R., & Fenton, C. J. (2016). Paleo diet still lacks evidence. The American Journal of Clinical Nutrition, 104(3), 844–844.

    Article  CAS  Google Scholar 

  107. Bland, J. M., & Altman, D. G. (2015). Best (but oft forgotten) practices: Testing for treatment effects in randomized trials by separate analyses of changes from baseline in each group is a misleading approach. The American Journal of Clinical Nutrition, 102(5), 991–994.

    Article  CAS  Google Scholar 

  108. Ioannidis, J. P. (2005a). Why most published research findings are false. PLoS Medicine, 2(8), e124.

    Google Scholar 

  109. Ioannidis, J. P. (2005). Contradicted and initially stronger effects in highly cited clinical research. JAMA, 294(2), 218–228.

    Article  CAS  Google Scholar 

  110. Zinkant, K. (2019). „Wir müssen die Forscher befreien“ (Interview in der Süddeutschen Zeitung, 3. April 2019). https://www.sueddeutsche.de/wissen/wissenschaft-meta-research-ioannidis-1.4394526?reduced=true.

  111. Ströhle, A., Behrendt, I., Behrendt, P., & Hahn, A. (2016). Alternative Ernährungsformen. Aktuelle Ernährungsmedizin, 41(02), 120–138.

    Article  Google Scholar 

  112. Leitzmann, C., & Behrendt, I. (2015). Vegane Ernährung. Erfahrungsheilkunde, 64(02), 76–83.

    Google Scholar 

  113. https://www.spiegel.de/panorama/gesellschaft/bulle-toetet-bauer-radikale-veganer-erklaeren-das-tier-zum-helden-a-1015210.html und https://www.morgenpost.de/berlin/article212340909/Nach-Pumpgun-Foto-Koch-Hildmann-von-der-Polizei-vorgeladen.html.

  114. https://www.sueddeutsche.de/panorama/frankreich-veganer-tiere-speziesismus-1.4193393.

  115. Cantone, D. (2017). Veganer glauben moralisch überlegen zu sein. Essay, Neue Zürcher Zeitung, 26(04), 2017.

    Google Scholar 

  116. Hund, W. D. (2015). Rassismus. Transcript.

    Google Scholar 

  117. Bauknecht, B. R. (2015). Salafismus-Ideologie der Moderne. Bundeszentrale für Politische Bildung.

    Google Scholar 

  118. Potts, A., & Armstrong, P. (2018). VEGAN 27. Critical Terms for Animal Studies, 395.

    Google Scholar 

  119. Dinu, M., Abbate, R., Gensini, G. F., Casini, A., & Sofi, F. (2017). Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies. Critical Reviews in Food Science and Nutrition, 57(17), 3640–3649.

    Article  Google Scholar 

  120. Bradbury, K. E., Crowe, F. L., Appleby, P. N., Schmidt, J. A., Travis, R. C., & Key, T. J. (2014). Serum concentrations of cholesterol, apolipoprotein AI and apolipoprotein B in a total of 1694 meat-eaters, fish-eaters, vegetarians and vegans. European Journal of Clinical Nutrition, 68(2), 178.

    Article  CAS  Google Scholar 

  121. Spencer, E. A., Appleby, P. N., Davey, G. K., & Key, T. J. (2003). Diet and body mass index in 38 000 EPIC-Oxford meat-eaters, fish-eaters, vegetarians and vegans. International Journal of Obesity, 27(6), 728.

    Article  CAS  Google Scholar 

  122. https://www.dr-schmiedel.de/macht-vegan-krank/.

  123. Appleby, P., Roddam, A., Allen, N., & Key, T. (2007). Comparative fracture risk in vegetarians and nonvegetarians in EPIC-Oxford. European Journal of Clinical Nutrition, 61(12), 1400.

    Article  CAS  Google Scholar 

  124. Orlich, M. J., Singh, P. N., Sabaté, J., Jaceldo-Siegl, K., Fan, J., Knutsen, S., et al. (2013). Vegetarian dietary patterns and mortality in adventist health study 2. JAMA Internal Medicine, 173(13), 1230–1238.

    Article  CAS  Google Scholar 

  125. Larsson, C. L., & Johansson, G. K. (2002). Dietary intake and nutritional status of young vegans and omnivores in Sweden. The American Journal of Clinical Nutrition, 76(1), 100–106.

    Article  CAS  Google Scholar 

  126. Sastre, R. R., & Posten, C. (2010). Die vielfältige Anwendung von Mikroalgen als nachwachsende Rohstoffe. Chemie Ingenieur Technik, 11(82), 1925–1939.

    Article  Google Scholar 

  127. Greupner, T., Kutzner, L., Nolte, F., Strangmann, A., Kohrs, H., Hahn, A., et al. (2018). Effects of a 12-week high-α-linolenic acid intervention on EPA and DHA concentrations in red blood cells and plasma oxylipin pattern in subjects with a low EPA and DHA status. Food & Function, 9(3), 1587–1600.

    Article  CAS  Google Scholar 

  128. Egert, S., Baxheinrich, A., Lee-Barkey, Y. H., Tschoepe, D., Stehle, P., Stratmann, B., & Wahrburg, U. (2018). Effects of a hypoenergetic diet rich in α-linolenic acid on fatty acid composition of serum phospholipids in overweight and obese patients with metabolic syndrome. Nutrition, 49, 74–80.

    Article  CAS  Google Scholar 

  129. Ferdinandusse, S., Denis, S., Mooijer, P. A., Zhang, Z., Reddy, J. K., Spector, A. A., & Wanders, R. J. (2001). Identification of the peroxisomal β-oxidation enzymes involved in the biosynthesis of docosahexaenoic acid. Journal of Lipid Research, 42(12), 1987–1995.

    Article  CAS  Google Scholar 

  130. Sutter, D. O. (2017). The impact of vegan diet on health and growth of children and adolescents–Literature review. Doctoral dissertation, University of Bern.

    Google Scholar 

  131. Masana, M. F., Koyanagi, A., Haro, J. M., & Tyrovolas, S. (2017). n-3 Fatty acids, Mediterranean diet and cognitive function in normal aging: A systematic review. Experimental Gerontology, 91, 39–50.

    Article  CAS  Google Scholar 

  132. Zoe, J., & Weyer, F. Pegan: Paleo + Vegan. (2016). Hyman, M. (2015). Why this health expert recommends a Paleo-Vegan diet. https://www.elephantjournal.com/2015/06/why-this-health-expert-recommends-a-paleo-vegan-diet/.

  133. Eisenhauer, B. (2019). Vegane Influencerin outet sich: Wer weiß schon, was sich hinter der digitalen Maske verbirgt? Frankfurter Allgemeine Zeitung. https://www.faz.net/aktuell/stil/leib-seele/fans-der-veganen-influencerin-rawvana-fuehlen-sich-verraten-16104911.html. Zugegriffen: 30. März 2019.

  134. Şanlier, N., Gökcen, B. B., & Sezgin, A. C. (2017). Health benefits of fermented foods. Critical Reviews in Food Science and Nutrition, 2017, 1–22.

    Google Scholar 

  135. Tarvainen, M., Fabritius, M., & Yang, B. (2019). Determination of vitamin K composition of fermented food. Food Chemistry, 275, 515–522.

    Article  CAS  Google Scholar 

  136. Daliri, E., Oh, D., & Lee, B. (2017). Bioactive peptides. Foods, 6(5), 32.

    Google Scholar 

  137. Schmid, J. (2018). Recent insights in microbial exopolysaccharide biosynthesis and engineering strategies. Current Opinion in Biotechnology, 53, 130–136.

    Article  CAS  Google Scholar 

  138. Lynch, K. M., Zannini, E., Coffey, A., & Arendt, E. K. (2018). Lactic acid bacteria exopolysaccharides in foods and beverages: Isolation, properties, characterization, and health benefits. Annual Review of Food Science and Technology, 9, 155–176.

    Article  CAS  Google Scholar 

  139. Sanjukta, S., & Rai, A. K. (2016). Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends in Food Science & Technology, 50, 1–10.

    Article  CAS  Google Scholar 

  140. Liu, Y., Song, H., & Luo, H. (2018). Correlation between the key aroma compounds and gDNA copies of Bacillus during fermentation and maturation of natto. Food Research International, 112, 175–183.

    Google Scholar 

  141. Mahdinia, E., Mamouri, S. J., Puri, V. M., Demirci, A., & Berenjian, A. (2019). Modeling of vitamin K (Menaquinoe-7) fermentation by Bacillus subtilis natto in biofilm reactors. Biocatalysis and Agricultural Biotechnology, 17, 196–202.

    Google Scholar 

  142. Hsueh, Y. H., Huang, K. Y., Kunene, S., & Lee, T. Y. (2017). Poly-γ-glutamic acid synthesis, gene regulation, phylogenetic relationships, and role in fermentation. International Journal of Molecular Sciences, 18(12), 2644.

    Article  Google Scholar 

  143. Hafner, U. (2014). Vische stinken nicht. Neue Zürcher Zeitung. https://www.nzz.ch/wissenschaft/bildung/vische-stinken-nicht-1.18327936.

  144. Zielbauer, B. I., Franz, J., Viezens, B., & Vilgis, T. A. (2016). Physical aspects of meat cooking: Time dependent thermal protein denaturation and water loss. Food Biophysics, 11(1), 34–42.

    Article  Google Scholar 

  145. Vilgis, T. A. (2016). Brühwurst Warm- und Kaltfleischverarbeitung. Journal Culinaire, 22, 50–70.

    Google Scholar 

  146. Grimm, H. U. (2012). Vom Verzehr wird abgeraten: Wie uns die Industrie mit Gesundheitsnahrung krank macht. KnaureBook.

    Google Scholar 

  147. Grimm, H. U. (2003). Die Ernährungslüge: Wie uns die Lebensmittelindustrie um den Verstand bringt. Droemer HC.

    Google Scholar 

  148. Capuano, E., Oliviero, T., Fogliano, V., & Pellegrini, N. (2018). Role of the food matrix and digestion on calculation of the actual energy content of food. Nutrition reviews, 76(4), 274–289.

    Article  Google Scholar 

  149. Palzer, S. (2009). Food structures for nutrition, health and wellness. Trends in Food Science & Technology, 20(5), 194–200.

    Article  CAS  Google Scholar 

  150. Turgeon, S. L., & Rioux, L. E. (2011). Food matrix impact on macronutrients nutritional properties. Food Hydrocolloids, 25(8), 1915–1924.

    Article  CAS  Google Scholar 

  151. González, R. J., Drago, S. R., Torres, R. L., & De Greef, D. M. (2016). 12 Extrusion Cooking of. Engineering Aspects of Cereal and Cereal-Based Products, 269.

    Google Scholar 

  152. Lin, S., Huff, H. E., & Hsieh, F. (2002). Extrusion process parameters, sensory characteristics, and structural properties of a high moisture soy protein meat analog. Journal of Food Science, 67(3), 1066–1072.

    Article  CAS  Google Scholar 

  153. Palanisamy, M., Franke, K., Berger, R. G., Heinz, V., & Töpfl, S. (2019). High moisture extrusion of lupin protein: Influence of extrusion parameters on extruder responses and product properties. Journal of the Science of Food and Agriculture, 99(5), 2175–2185.

    Article  CAS  Google Scholar 

  154. Osen, R., Toelstede, S., Eisner, P., & Schweiggert-Weisz, U. (2015). Effect of high moisture extrusion cooking on protein–protein interactions of pea (Pisum sativum L.) protein isolates. International Journal of Food Science & Technology, 50(6), 1390–1396.

    Google Scholar 

  155. Wilson, D. O., & Reisenauer, H. M. (1963). Determination of leghemoglobin in legume nodules. Analytical Biochemistry, 6(1), 27–30.

    Article  CAS  Google Scholar 

  156. Appleby, C. A. (1984). Leghemoglobin and Rhizobium respiration. Annual Review of Plant Physiology, 35(1), 443–478.

    Google Scholar 

  157. Hyldig-Nielsen, J. J., Jensen, E. Ø., Paludan, K., Wiborg, O., Garrett, R., Jørgensen, P., & Marcker, K. A. (1982). The primary structures of two leghemoglobin genes from soybean. Nucleic Acids Research, 10(2), 689–701.

    Article  CAS  Google Scholar 

  158. Fu, Y., Bak, K. H., Liu, J., De Gobba, C., Tøstesen, M., Hansen, E. T., et al. (2019). Protein hydrolysates of porcine hemoglobin and blood: Peptide characteristics in relation to taste attributes and formation of volatile compounds. Food Research International., 121, 28–38.

    Article  CAS  Google Scholar 

  159. Robinson, C. (2018). The impossible burger: Boon or risk to health and environment? GMO Science, https://gmoscience.org/2018/05/16/impossible-burger-boon-risk-health-environment/

  160. Dance, A. (2017). Engineering the animal out of animal products. Nature Biotechnology, 35(8), 704–707.

    Article  CAS  Google Scholar 

  161. Hinzmann, M. (2018). Die Wahrnehmung von In-Vitro-Fleisch in Deutschland. TU-Berlin.

    Google Scholar 

  162. Siegrist, M., Sütterlin, B., & Hartmann, C. (2018). Perceived naturalness and evoked disgust influence acceptance of cultured meat. Meat Science, 139, 213–219.

    Article  Google Scholar 

  163. van der Weele, C., & Tramper, J. (2014). Cultured meat: Every village its own factory? Trends in biotechnology, 32(6), 294–296.

    Article  Google Scholar 

  164. Arshad, M. S., Javed, M., Sohaib, M., Saeed, F., Imran, A., & Amjad, Z. (2017). Tissue engineering approaches to develop cultured meat from cells: A mini review. Cogent Food & Agriculture, 3(1), 1320814.

    Article  Google Scholar 

  165. Shockley, M., & Dossey, A. T. (2014). Insects for human consumption. In M. Shockley & A. T. Dossey (Hrsg.), Mass production of beneficial organisms (S. 617–652). Academic Press.

    Chapter  Google Scholar 

  166. Rumpold, B. A., & Schlüter, O. K. (2013). Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science & Emerging Technologies, 17, 1–11.

    Article  CAS  Google Scholar 

  167. Churchward-Venne, T. A., Pinckaers, P. J., van Loon, J. J., & van Loon, L. J. (2017). Consideration of insects as a source of dietary protein for human consumption. Nutrition Reviews, 75(12), 1035–1045.

    Article  Google Scholar 

  168. Fiebelkorn, F. (2017). Insekten als Nahrungsmittel der Zukunft: Entomophagie. Biologie in unserer Zeit, 47(2), 104–110.

    Article  Google Scholar 

  169. Holst, K. (2019). Von Entomophobie zu Entomophagie. Hamburger Journal für Kulturanthropologie (HJK), 8, 85–98.

    Google Scholar 

  170. Smetana, S., Pernutz, C., Toepfl, S., Heinz, V., & Van Campenhout, L. (2019). High-moisture extrusion with insect and soy protein concentrates: Cutting properties of meat analogues under insect content and barrel temperature variations. Journal of Insects as Food and Feed, 5(1), 29–34.

    Article  Google Scholar 

  171. Dicke, M., & van Huis, A. (2015). Six-legged protein. Oxygen, 26, 68–71.

    Google Scholar 

  172. Tresidder, R. (2015). Eating ants: Understanding the terroir restaurant as a form of destination tourism. Journal of Tourism and Cultural Change, 13(4), 344–360.

    Article  Google Scholar 

  173. McIlveen, H., Abraham, C., & Armstrong, G. (1999). Meat avoidance and the role of replacers. Nutrition & Food Science, 99(1), 29–36.

    Article  Google Scholar 

  174. Stephan, A., Ahlborn, J., Zajul, M., & Zorn, H. (2018). Edible mushroom mycelia of Pleurotus sapidus as novel protein sources in a vegan boiled sausage analog system: Functionality and sensory tests in comparison to commercial proteins and meat sausages. European Food Research and Technology, 244(5), 913–924.

    Article  CAS  Google Scholar 

  175. Linke, D., Bouws, H., Peters, T., Nimtz, M., Berger, R. G., & Zorn, H. (2005). Laccases of Pleurotus sapidus: Characterization and cloning. Journal of Agricultural and Food Chemistry, 53(24), 9498–9505.

    Google Scholar 

  176. Christ, A. K., et al. (2018). Western diet triggers NLRP3-dependent innate immune reprogramming. Cell, 172(1–2), 162–175.

    Article  CAS  Google Scholar 

  177. Schnabel, L., Kesse-Guyot, E., Allès, B., Touvier, M., Srour, B., Hercberg, S., et al. (2019). Association between ultraprocessed food consumption and risk of mortality among middle-aged adults in France. JAMA internal Medicine. https://doi.org/10.1001/jamainternmed.2018.7289.

    Article  Google Scholar 

  178. Schymanski, I. (2015). Im Teufelskreis der Lust: Raus aus der Belohnungsfalle! Schattauer.

    Google Scholar 

  179. Small, D. M., & DiFeliceantonio, A. G. (2019). Processed foods and food reward. Science, 363(6425), 346–347.

    Article  CAS  Google Scholar 

  180. Hancock, R. D., McDougall, G. J., & Stewart, D. (2007). Berry fruit as ‘superfood’: Hope or hype. Biologist, 54(2), 73–79.

    Google Scholar 

  181. Cassiday, L. (2017). Chia: Superfood or superfat. Inform, 28(1), 6–13.

    Google Scholar 

  182. Berlett, B. S., & Stadtman, E. R. (1997). Protein oxidation in aging, disease, and oxidative stress. Journal of Biological Chemistry, 272(33), 20313–20316.

    Article  CAS  Google Scholar 

  183. Federle, S., Hergesell, S., & Schubert, S. (2017). Aromaten. In S. Federle, S. Hergesell, & S. Schubert (Hrsg.), Die Stoffklassen der organischen Chemie (S. 43–65). Springer Spektrum.

    Chapter  Google Scholar 

  184. Quideau, S., Deffieux, D., Douat-Casassus, C., & Pouységu, L. (2011). Pflanzliche Polyphenole: Chemische Eigenschaften, biologische Aktivität und Synthese. Angewandte Chemie, 123(3), 610–646.

    Article  Google Scholar 

  185. Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular longevity, 2(5), 270–278.

    Article  Google Scholar 

  186. Papuc, C., Goran, G. V., Predescu, C. N., Nicorescu, V., & Stefan, G. (2017). Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Comprehensive Reviews in Food Science and Food Safety, 16(6), 1243–1268.

    Article  CAS  Google Scholar 

  187. Schöbel, N., Radtke, D., Kyereme, J., Wollmann, N., Cichy, A., Obst, K., et al. (2014). Astringency is a trigeminal sensation that involves the activation of G protein-coupled signaling by phenolic compounds. Chemical Senses, 39(6), 471–487.

    Google Scholar 

  188. Kühlbrandt, W., Wang, D. N., & Fujiyoshi, Y. (1994). Atomic model of plant light-harvesting complex by electron crystallography. Nature, 367(6464), 614–621.

    Article  Google Scholar 

  189. Liu, Z., Yan, H., Wang, K., Kuang, T., Zhang, J., Gui, L., An, X., & Chang, W. (2004). Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature, 428(6980), 287–292.

    Google Scholar 

  190. Haken, H., & Wolf, H. C. (2013). Atom-und Quantenphysik: Einführung in die experimentellen und theoretischen Grundlagen. Springer.

    Google Scholar 

  191. Goralczyk, R. (2009). ß-Carotene and lung cancer in smokers: Review of hypotheses and status of research. Nutrition and Cancer, 61(6), 767–774.

    Article  CAS  Google Scholar 

  192. Vrolijk, M. F., Opperhuizen, A., Jansen, E. H., Godschalk, R. W., van Schooten, F. J., Bast, A., & Haenen, G. R. (2015). The shifting perception on antioxidants: The case of vitamin E and β-carotene. Redox Biology, 4, 272–278.

    Article  CAS  Google Scholar 

  193. Hahne, D. (2012). Epigenetik und Ernährung. Folgenreiche Fehlprogrammierung. Deutsches Ärzteblatt, 109(40), A-1986/B-1614/C-1586.

    Google Scholar 

  194. Bittner, N., Jockwitz, C., Mühleisen, T. W., Hoffstaedter, F., Eickhoff, S. B., Moebus, S., et al. (2019). Combining lifestyle risks to disentangle brain structure and functional connectivity differences in older adults. Nature Communications, 10. https://doi.org/10.1038/s41467-019-08500-x.

  195. Fabris, J. C., Piattella, O. F., Rodrigues, D. C., Velten, H. E., & Zimdahl, W. (2016). The cosmic microwave background. Astrophysics and Space Science Proceedings, 45, 369.

    Google Scholar 

  196. Patrignani, C., Weinberg, V., et al. (2016). Review of particle physics. Chinese Physics B, 40, 100001.

    Google Scholar 

  197. Anastasiou, C., Duhr, C., et al. (2016). High precision determination of the gluon fusion Higgs boson cross-section at the LHC. Journal of High Energy Physics, 2016(5), 58.

    Article  Google Scholar 

  198. Cheng, T. P., & Li, L. F. (1984). Gauge theory of elementary particle physics. Clarendon Press.

    Google Scholar 

  199. https://eventhorizontelescope.org/.

  200. Güsten, R., Wiesemeyer, H., Neufeld, D., Menten, K. M., Graf, U. U., Jacobs, K., et al. (2019). Astrophysical detection of the helium hydride ion HeH+. Nature, 568(7752), 357.

    Google Scholar 

  201. Graf, D. (Hrsg.). (2010). Evolutionstheorie-Akzeptanz und Vermittlung im europäischen Vergleich. Springer.

    Google Scholar 

  202. Williams, J. D. (2010). Evolution und Kreationismus im Schulunterricht aus Sicht Großbritanniens. Ist Evolution eine Sache der Akzeptanz oder des Glaubens?. In Evolutionstheorie-Akzeptanz und Vermittlung im europäischen Vergleich (S. 99–118). Springer.

    Google Scholar 

  203. Bucher, T., Müller, B., & Siegrist, M. (2015). What is healthy food? Objective nutrient profile scores and subjective lay evaluations in comparison. Appetite, 95, 408–414.

    Article  CAS  Google Scholar 

  204. Laska, M. N., Hearst, M. O., Lust, K., Lytle, L. A., & Story, M. (2015). How we eat what we eat: Identifying meal routines and practices most strongly associated with healthy and unhealthy dietary factors among young adults. Public Health Nutrition, 18(12), 2135–2145.

    Article  Google Scholar 

  205. Cairns, K., & Johnston, J. (2015). Choosing health: Embodied neoliberalism, postfeminism, and the “do-diet”. Theory and Society, 44(2), 153–175.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Vilgis .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vilgis, T.A. (2022). Physikalische Chemie der Ernährung und der Ernährungsformen. In: Biophysik der Ernährung. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65108-7_5

Download citation

Publish with us

Policies and ethics