Skip to main content

Plastizität und motorisches Lernen

  • Chapter
  • First Online:
Funktionelle Elektrostimulation in der Neurorehabilitation

Zusammenfassung

Dieses Kapitel gibt einen allgemeinen Einblick zu schädigungs- und trainingsinduzierten neuroplastischen Veränderungen sowie zu den Phasen, Prinzipien und beeinflussenden Faktoren des motorischen Lernens. Im Besonderen widmet es sich dem Thema, wie die FES motorisches Lernen zu beeinflussen vermag. Übersichtliche Zusammenfassungen, Praxistipps und Tabellen erläutern, durch welche Faktoren die FES den motorischen Lernprozess unterstützen kann.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmichael TS, Chesselet M-F (2002) Synchronous neuronal activity is a signal for axonal sprouting after cortical lesions in the adult. J Neurosci 22(14):6062–6070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cramer SC (2008) Repairing the human brain after stroke: 1. Mechanisms of spontaneous recovery. Ann Neurol 63:272–287

    Article  PubMed  Google Scholar 

  • Elbert T, Rockstroh B (2004) Reorganization of human cerebral cortex: the range of changes following use and injury. Neuroscientist 10(2):129–141

    Article  PubMed  Google Scholar 

  • Ende-Henningsen B, Henningsen H (2010) Neurobiologische Grundlagen der Plastizität des Nervensystems. In: Frommelt P, Lösslein H (Hrsg) Neuro-rehabilitation, 1. Aufl. Springer, Berlin/Heidelberg, S 67–79

    Google Scholar 

  • Fitts PM, Posner MI (1967) Human performance. Brooks/Cole Publishing Company, Belmont

    Google Scholar 

  • Freivogel S (2011) Grundkonzepte der Physiotherapie. In: Dettmers C, Stephan KM (Hrsg) Motorische Therapie nach Schlaganfall, 1 Aufl. Hippocampus, Bad Honnef, S 106–118

    Google Scholar 

  • Freivogel S, Fries W (2010) Motorische Rehabilitation. In: Frommelt P, Lösslein H (Hrsg) Neuro-rehabilitation, 1. Aufl. Springer, Berlin/Heidelberg, S 225–266

    Google Scholar 

  • Freivogel S, Hummelsheim H (2003) Qualitätskriterien und Leitlinie für die motorische Rehabilitation von Patienten mit Hemiparesen. Aktuelle Neurol 30(8):401–406

    Article  Google Scholar 

  • Hauptmann B, Müller C (2011) Motorisches Lernen und repetitives Training. In: Nowak D (Hrsg) Handfunktionsstörungen in der Neurologie. Springer, Berlin/Heidelberg, S 214–223

    Google Scholar 

  • Hebb DO (1955) Drives and the C.N.S. (conceptual nervous system). Psychol Rev 62(4):243–254

    Article  CAS  PubMed  Google Scholar 

  • Horst R (2005) Motorisches Strategietraining und PNF, 1. Aufl. Aufl. Georg Thieme, Stuttgart

    Google Scholar 

  • Krakauer JW (2006) Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol 19:84–90

    Article  PubMed  Google Scholar 

  • Lang CE, MacDonald JR, Gnip C (2007) Counting repetitions: an observational study of outpatient therapy for people with hemiparesis post-stroke. J Neurol Phys Ther 31(1):3–10

    Article  PubMed  Google Scholar 

  • Lang CE, MacDonald JR, Reisman DS, Boyd L, Kimberley TJ, Schindler-Ivens SM, … Scheets PL (2009) Observation of amounts of movement practice provided during stroke rehabilitation. Arch Phys Med Rehabil 90(10):1692–1698

    Google Scholar 

  • Langhammer B, Stanghelle JK (2011) Can Physiotherapy after stroke based on the Bobath concept result in improved quality of movement compared to the motor relearning programme. Physiother Res Int 16(2):69–80

    Article  PubMed  Google Scholar 

  • Lashley KS (1917) The accuracy of movement in the absence of excitation from the moving organ. Am J Physiol 43:169–194

    Article  Google Scholar 

  • Majsak MJ (1996) Application of motor learning principles to the stroke population. Top Stroke Rehabil 3(2):37–59

    Article  PubMed  Google Scholar 

  • Mehrholz J (2008) Frühphase Schlaganfall, 1. Aufl. Georg Thieme, Stuttgart

    Google Scholar 

  • Mulder T (2007) Das adaptive Gehirn. Georg Thieme, Stuttgart

    Google Scholar 

  • Nudo RJ, Milliken GW (1996) Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol 75(5):2144–2149

    Article  CAS  PubMed  Google Scholar 

  • Scheidtmann K (2010) Nutzen der neuronalen Plastizität. In: Hüter-Becker A, Dölken M (Hrsg) Physiotherapie in der Neurologie, 3. Aufl. Georg Thieme, Stuttgart, S 7–8

    Google Scholar 

  • Shepherd R, Carr J (2005) Scientific basis of neurological physiotherapy: bridging the gap between science and practice. In: Dettmers C, Weiler C (Hrsg) Update neurologische Rehabilitation, 1. Aufl. Hippocampus, Bad Honnef, S 61–71

    Google Scholar 

  • Singer RN (1980) Motor learning and human performance: an application to motor skills and movement behaviors. Macmillan, New York

    Google Scholar 

  • Sterr A, Conforto AB (2012) Plasticity of adult sensorimotor system in severe brain infarcts: challenges and opportunities. Neural Plast 2012:970136, 1–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Taub E, Miller NE, Novack TA, Cook EW 3rd, Fleming WC, Nepomuceno CS (1993) Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil 74(4):347–354

    CAS  PubMed  Google Scholar 

  • Taub E, Crago JE, Burgio LD, Groomes TE, Cook EW III, DeLuca SC, Miller NE (1994) An operant approach to rehabilitation medicine: overcoming learned nonuse by shaping. J Exp Anal Behav 61(2):281–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wulf D (2010) Motorisches Lernen. In: Hüter-Becker A, Dölken M (Hrsg) Physiotherapie in der Neurologie, 3. Aufl. Aufl. Georg Thieme, Stuttgart, S 41–72

    Google Scholar 

  • Wulf G (2011) Bewegungen erlernen und automatisieren: Worauf ist die Aufmerksamkeit zu richten? neuroreha 3(01):18–23

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Meier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meier, P. (2021). Plastizität und motorisches Lernen. In: Schick, T. (eds) Funktionelle Elektrostimulation in der Neurorehabilitation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61705-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61705-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61704-5

  • Online ISBN: 978-3-662-61705-2

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics