Skip to main content

Biomechanik des Laufens und Laufanalyse

  • Living reference work entry
  • First Online:
Bewegung, Training, Leistung und Gesundheit

Zusammenfassung

Laufen zählt zu den bekanntesten Sportarten der Welt und ist darüber hinaus die Grundlage für die Ausübung vieler weiterer Sportarten. Dieses Kapitel soll einerseits einen Überblick über die biomechanischen Grundlagen des Laufens geben und näher erläutern, welche kinematischen und dynamischen Besonderheiten dem hochautomatisierten Laufzyklus zugrunde liegen und andererseits einen Einblick in die Laufschuhentwicklung der letzten Jahre sowie in die Leistungsdiagnostik beim Laufen geben.

Dieser Beitrag ist Teil der Sektion Sportbiomechanik, herausgegeben vom Teilherausgeber Hermann Schwameder, innerhalb des Handbuchs Sport und Sportwissenschaft, herausgegeben von Arne Güllich und Michael Krüger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Anderson, T. (1996). Biomechanics and running economy. The American Journal of Sports Medicine, 22(2), 76–89.

    Article  CAS  Google Scholar 

  • Bertelsen, M. L., Jensen, J. F., Nielsen, M. H., Nielsen, R. O., & Rasmussen, S. (2012). Footstrike patterns among novice runners wearing a conventional, neutral running shoe. Gait & Posture, 38(2), 354–356. https://doi.org/10.1016/j.gaitpost.2012.11.022.

    Article  Google Scholar 

  • Bonacci, J., Saunders, P. U., Hicks, A., Rantalainen, T., Vicenzino, B. G., & Spratford, W. (2013). Running in a minimalist and lightweight shoe is not the same as running barefoot: a biomechanical study. British Journal of Sports Medicine, 47(6), 387–392. https://doi.org/10.1136/bjsports-2012-091837.

    Article  PubMed  Google Scholar 

  • Bosco, C., & Rusko, H. (1983). The effect of prolonged skeletal-muscle stretch-shortening cycle on recoil of elastic energy and on energy-expenditure. Acta Physiologica Scandinavica, 119(3), 219–224. https://doi.org/10.1111/j.1748-1716.1983.tb07331.x.

    Article  CAS  PubMed  Google Scholar 

  • Bosco, C., & Vittori, C. (1986). Biomechanical characteristics of sprint running during maximal and supra-maximal speed. International Association of Athletic Federations, 1, 39–45.

    Google Scholar 

  • Breine, B., Malcolm, P., Frederick, E. C., & De Clercq, D. (2014). Relationship between running speed and initial foot contact patterns. Medicine and Science in Sports and Exercise, 46(8), 1595–1603. https://doi.org/10.1249/MSS.0000000000000267.

    Article  PubMed  Google Scholar 

  • Burkett, L. N., Kohrt, W. M., & Buchbinder, R. (1985). Effects of shoes and foot orthotics on VO2 and selected frontal plane knee kinematics. Medicine and Science in Sports and Exercise, 17(1), 158–163.

    Article  CAS  Google Scholar 

  • Butler, R. J., Hamill, J., & Davis, I. (2007). Effect of footwear on high and low arched runners’ mechanics during a prolonged run. Gait & Posture, 26(2), 219–225. https://doi.org/10.1016/j.gaitpost.2006.09.015.

    Article  Google Scholar 

  • Cappellini, G., Ivanenko, Y. P., Poppele, R. E.a und Lacquaniti, F. (2006). Motor Patterns in Human Walking and Running. J Neurophysiol, 95, 3426 –3437.

    Google Scholar 

  • Cavanagh, P. R. (1987). The biomechanics of lower extremity action in distance running. Foot & Ankle, 7(4), 197–217. https://doi.org/10.1177/107110078700700402.

    Article  CAS  Google Scholar 

  • Cavanagh, P. R., & Kram, R. (1989). Stride length in distance running: Velocity, body dimensions, and added mass effects. Medicine and Science in Sports and Exercise, 21(4), 467–479.

    Article  CAS  Google Scholar 

  • Cavanagh, P. R., & Lafortune, M. A. (1980). Ground reaction forces in distance running. Journal of Biomechanics, 13(5), 397–406.

    Article  CAS  Google Scholar 

  • Cavanagh, P. R., & Williams, K. R. (1982). The effect of stride length variation on oxygen uptake during distance running. Medicine and Science in Sports and Exercise, 14(1), 30–35. https://doi.org/10.1249/00005768-198214010-00006.

    Article  CAS  PubMed  Google Scholar 

  • Chang, Y. H., & Kram, R. (1999). Metabolic cost of generating horizontal forces during human running. Journal of Applied Physiology, 86(5), 1657–1662.

    Article  CAS  Google Scholar 

  • Cheung, R. T. H., & Davis, I. S. (2011). Landing pattern modification to improve patellofemoral pain in runners: A case series. Journal of Orthopaedic & Sports Physical Therapy, 41(12), 914–919. https://doi.org/10.2519/jospt.2011.3771.

    Article  Google Scholar 

  • Coh, M., Milanovic, D., & A., D. (1999). Biomechanische Merkmale des Sprintschritts von Sprinterinnen der Spitzenklasse. Leistungssport, 19(5), 41–46.

    Google Scholar 

  • Conley, D. L., & Krahenbuhl, G. S. (1980). Running economy and distance running performance of highly trained athletes. Medicine and Science in Sports and Exercise, 12(5), 357–360. https://doi.org/10.1249/00005768-198012050-00010.

    Article  CAS  PubMed  Google Scholar 

  • Denoth, J., Gruber, K., Keppler, M., & Riuder, H. (1984). Forces and torques during sport activities with high acceleration. In S. M. Perren & E. Schneider (Hrsg.), Biomechanics current interdisciplinary research (S. 102–106). Dordrecht: Springer. https://doi.org/10.1007/978-94-011-7432-9_100.

  • Divert, C., Mornieux, G., Freychat, P., Baly, L., Mayer, F., & Belli, A. (2008). Barefoot-shod running differences: Shoe or mass effect? International Journal of Sports Medicine, 29(6), 512–518. https://doi.org/10.1055/s-2007-989233.

    Article  CAS  PubMed  Google Scholar 

  • Dugan, S. A., & Bhat, K. P. (2005). Biomechanics and analysis of running gait. Physical Medicine and Rehabilitation Clinics of North America, 16(3), 603–621. https://doi.org/10.1016/j.pmr.2005.02.007.

    Article  PubMed  Google Scholar 

  • Elliott, B. C., & Blanksby, B. A. (1976). A cinematographic analysis of overground and treadmill running by males and females. Medicine and Science in Sports and Exercise, 8(2), 84–87. https://doi.org/10.1249/00005768-197600820-00013.

    Article  CAS  Google Scholar 

  • Eskofier, B. M., Kraus, M., Worobets, J. T., Stefanyshyn, D. J., & Nigg, B. M. (2012). Pattern classification of kinematic and kinetic running data to distinguish gender, shod/barefoot and injury groups with feature ranking. Computer Methods in Biomechanics and Biomedical Engineering, 15(5), 467–474. https://doi.org/10.1080/10255842.2010.542153.

    Article  PubMed  Google Scholar 

  • Fellin, R. E., Manal, K., & Davis, I. S. (2010). Comparison of lower extremity kinematic curves during overground and treadmill running. Journal of Applied Biomechanics, 26(4), 407–414.

    Article  Google Scholar 

  • Fletcher, J. R., Esau, S. P., & Macintosh, B. R. (2009). Economy of running: beyond the measurement of oxygen uptake. Journal of Applied Physiology, 107(6), 1918–1922. https://doi.org/10.1152/japplphysiol.00307.2009.

    Article  PubMed  Google Scholar 

  • Franz, J. R., Wierzbinski, C. M., & Kram, R. (2012). Metabolic cost of running barefoot versus shod: is lighter better? Medicine and Science in Sports and Exercise, 44(8), 1519–1525. https://doi.org/10.1249/MSS.0b013e3182514a88.

    Article  CAS  PubMed  Google Scholar 

  • Frederick, E. C. (1984). Physiological and ergonomics factors in running shoe design. Applied Ergonomics, 15(4), 281–287. https://doi.org/10.1016/0003-6870(84)90199-6.

    Article  CAS  PubMed  Google Scholar 

  • Freychat, P., Belli, A., Carret, J. P., & Lacour, J. R. (1996). Relationship between rearfoot and forefoot orientation and ground reaction forces during running. Medicine and Science in Sports and Exercise, 28(2), 225–232. https://doi.org/10.1097/00005768-199602000-00011.

    Article  CAS  PubMed  Google Scholar 

  • Fuller, J. T., Thewlis, D., Tsiros, M. D., Brown, N. A. T., & Buckley, J. D. (2016). Effects of a minimalist shoe on running economy and 5-km running performance. Journal of Sports Sciences, 34(18), 1740–1745. https://doi.org/10.1080/02640414.2015.1136071.

    Article  PubMed  Google Scholar 

  • Gleim, G. W., Stachenfeld, N. S., & Nicholas, J. A. (1990). The influence of flexibility on the economy of walking and jogging. Journal of Orthopaedic Research, 8(6), 814–823. https://doi.org/10.1002/jor.1100080606.

    Article  CAS  PubMed  Google Scholar 

  • Grau, S., Müller, O., Bäurle, W., Beck, M., Krauß, I., Maiwald, C., & Meyer, F. (2000). Grenzen und Möglichkeiten der 2D-Videoanalyse in der Bewertung physiologischer und pathologischer Abrollvorgänge des Fußes bei Läufern. Sportverletzung Sportschaden, 14, 107–114.

    Article  CAS  Google Scholar 

  • Hamill, J. (2012). Rearfoot and forefoot footfall patterns: Implications for barefoot running. Journal of Foot and Ankle Research, 5(1), K1. https://doi.org/10.1186/1757-1146-5-S1-K1.

    Article  PubMed Central  Google Scholar 

  • Hamill, J., Russell, E. M., Gruber, A. H., & Miller, R. (2011). Impact characteristics in shod and barefoot running. Footwear Science, 3(1), 33–40.

    Article  Google Scholar 

  • Hamill, J., Gruber, A. H., & Derrick, T. R. (2014). Lower extremity joint stiffness charateristics during running with different footfall patterns. European Journal of Sport Science, 14(2), 130–136. https://doi.org/10.1080/17461391.2012.728249.

  • Hamner, S. R., Seth, A., & Delp, S. L. (2010). Muscle contributions to propulsion and support during running. Journal of Biomechanics, 43(14), 2709–2716. https://doi.org/10.1016/j.jbiomech.2010.06.025.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardin, E. C., van den Bogert, A. J., & Hamill, J. (2004). Kinematic adaptations during running: effects of footwear, surface, and duration. Medicine and Science in Sports and Exercise, 36(5), 838–844.

    Article  Google Scholar 

  • Hasegawa, H., Yamauchi, T., & Kraemer, W. J. (2007). Foot strike patterns of runners at the 15-km point during an elite-level half marathon. Journal of Strength and Conditioning Research, 21(3), 888–893. https://doi.org/10.1519/R-22096.1.

    Article  PubMed  Google Scholar 

  • Heise, G. D., Smith, J. D., & Martin, P. E. (2011). Lower extremity mechanical work during stance phase of running partially explains interindividual variability of metabolic power. European Journal of Applied Physiology, 111(8), 1777–1785. https://doi.org/10.1007/s00421-010-1793-z.

    Article  PubMed  Google Scholar 

  • Hoerzer, S., Trudeau, M. B., Edwards, B., & Nigg, B. (2015). How reliable are subjective footwear comfort. Footwear Science, 7(sup1), S1–S2. https://doi.org/10.1080/19424280.2015.1036928.

    Article  Google Scholar 

  • Högberg, P. (1952). How do stride length and stride frequency influence the energy-output during running? Arbeitsphysiologie, 14, 437–441.

    PubMed  Google Scholar 

  • Keller, T. S., Weisberger, A. M., Ray, J. L., Hasan, S. S., Shiavi, R. G., & Spengler, D. M. (1996). Relationship between vertical ground reaction force and speed during walking, slow jogging, and running. Clinical biomechanics, 11(5), 253–259. https://doi.org/10.1016/0268-0033(95)00068-2.

    Article  CAS  PubMed  Google Scholar 

  • Kluitenberg, B., Bredeweg, S. W., Zijlstra, S., Zijlstra, W., & Buist, I. (2012). Comparison of vertical ground reaction forces during overground and treadmill running. A validation study. BMC Musculoskeletal Disorders, 13, 235. https://doi.org/10.1186/1471-2474-13-235.

    Article  PubMed  PubMed Central  Google Scholar 

  • Knoepfli-Lenzin, C., Waech, J. C., Gülay, T., Schellenberg, F., & Lorenzetti, S. (2014). The influence of a new sole geometry while running. Journal of Sports Sciences, 32(18), 1671–1679. https://doi.org/10.1080/02640414.2014.915421.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kramers-de Quervain, I., Stacoff, A., & Stüssi, E. (2009). Gehen und Laufen. In A. Gollhofer & E. Müller (Hrsg.), Handbuch Sportbiomechanik (S. 192–213). Schorndorf: Hofmann.

    Google Scholar 

  • Kranzl, A. (2012). Betrachtung des Laufstils unter sportwissenschaftlich-biomechanischen Aspekten. medicalsports network, 3, 12–14.

    Google Scholar 

  • Kyrolainen, H., Belli, A., & Komi, P. V. (2001). Biomechanical factors affecting running economy. Medicine and Science in Sports and Exercise, 33(8), 1330–1337. https://doi.org/10.1097/00005768-200108000-00014.

    Article  CAS  PubMed  Google Scholar 

  • Larson, P., Higgins, E., Kaminski, J., Decker, T., Preble, J., Lyons, D., … Normile, A. (2011). Foot strike patterns of recreational and sub-elite runners in a long-distance road race. Journal of Sports Sciences, 29(15), 1665–1673. https://doi.org/10.1080/02640414.2011.610347.

  • Lieberman, D. E., Venkadesan, M., Werbel, W. A., Daoud, A. I., D’Andrea, S., Davis, I. S., Pitsiladis, Y. et al. (2010). Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature, 463(7280), rom. https://doi.org/10.1038/Nature08723.

  • Lin, Y. F., Jan, M. H., Lin, D. H., & Cheng, C. K. (2008). Different effects of femoral and tibial rotation on the different measurements of patella tilting: An axial computed tomography study. Journal of Orthopaedic Surgery and Research, 3, 5. https://doi.org/10.1186/1749-799X-3-5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ly, Q. H., Alaoui, A., Erlicher, S., & Baly, L. (2010). Towards a footwear design tool: Influence of shoe midsole properties and ground stiffness on the impact force during running. Journal of Biomechanics, 43(2), 310–317. https://doi.org/10.1016/j.jbiomech.2009.08.029.

    Article  PubMed  Google Scholar 

  • Lysholm, J., & Wiklander, J. (1987). Injuries in runners. The American Journal of Sports Medicine, 15(2), 168–171.

    Article  CAS  Google Scholar 

  • Malinzak, R. A., Colby, S. M., Kirkendall, D. T., Yu, B., & Garrett, W. E. (2001). A comparison of knee joint motion patterns between men and women in selected athletic tasks. Clinical biomechanics, 16(5), 438–445. https://doi.org/10.1016/S0268-0033(01)00019-5.

    Article  CAS  PubMed  Google Scholar 

  • Mann, R. A., & Hagy, J. (1980). Biomechanics of walking, running, and sprinting. The American Journal of Sports Medicine, 8(5), 345–350.

    Article  CAS  Google Scholar 

  • Marquardt, M. (2011). Die Laufbibel (Bd. 10). Hamburg: spomedis GmbH.

    Google Scholar 

  • Marquardt, M. (2012). Laufen und Laufanalyse. Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • Martin, P. E., & Morgan, D. W. (1992). Biomechanical considerations for economical walking and running. Medicine and Science in Sports and Exercise, 24(4), 467–474.

    Article  CAS  Google Scholar 

  • Mero, A., & Komi, P. V. (1986). Force-, EMG-, and elasticity-velocity relationships at submaximal, maximal and supramaximal running speeds in sprinters. European Journal of Applied Physiology and Occupational Physiology, 55(5), 553–561.

    Article  CAS  Google Scholar 

  • Miller, J. E., Nigg, B. M., Liu, W., Stefanyshyn, D. J., & Nurse, M. A. (2000). Influence of foot, leg and shoe characteristics on subjective comfort. Foot & Ankle International, 21(9), 759–767.

    Article  CAS  Google Scholar 

  • Morley, J. B., Decker, L. M., Dierks, T., Blanke, D., French, J. A., & Stergiou, N. (2010). Effects of varying amounts of pronation on the mediolateral ground reaction forces during barefoot versus shod running. Journal of Applied Biomechanics, 26(2), 205–214.

    Article  Google Scholar 

  • Mundermann, A., Nigg, B. M., Stefanyshyn, D. J., & Humble, R. N. (2002). Development of a reliable method to assess footwear comfort during running. Gait & Posture, 16(1), 38–45.

    Article  Google Scholar 

  • Munro, C. F., Miller, D. I., & Fuglevand, A. J. (1987). Ground reaction forces in running: a reexamination. Journal of Biomechanics, 20(2), 147–155.

    Article  CAS  Google Scholar 

  • Nigg, B. (1997). Impact forces in running. Current opinion in Orthopedics, 8(6), 43–47.

    Article  Google Scholar 

  • Nigg, B. (2010). Biomechanic of sport shoes (Bd. 1). Topline Printing, Calgary.

    Google Scholar 

  • Nigg, B. M., Bahlsen, H. A., Luethi, S. M., & Stokes, S. (1987). The influence of running velocity and midsole hardness on external impact forces in heel-toe running. Journal of Biomechanics, 20(10), 951–959.

    Article  CAS  Google Scholar 

  • Nigg, B. M., Khan, A., Fisher, V., & Stefanyshyn, D. (1998). Effect of shoe insert construction on foot and leg movement. Medicine and Science in Sports and Exercise, 30(4), 550–555.

    Article  CAS  Google Scholar 

  • Nigg, B. M., Nurse, M. A., & Stefanyshyn, D. J. (1999). Shoe inserts and orthotics for sport and physical activities. Medicine and Science in Sports and Exercise, 31(7 Suppl), S421–S428.

    Article  CAS  Google Scholar 

  • Nigg, B. M., Stefanyshyn, D., Cole, G., Stergiou, P., & Miller, J. (2003a). The effect of material characteristics of shoe soles on muscle activation and energy aspects during running. Journal of Biomechanics, 36(4), 569–575. https://doi.org/10.1016/S0021-9290(02)00428-1.

    Article  CAS  PubMed  Google Scholar 

  • Nigg, B. M., Stergiou, P., Cole, G., Stefanyshyn, D., Mundermann, A., & Humble, N. (2003b). Effect of shoe inserts on kinematics, center of pressure, and leg joint moments during running. Medicine and Science in Sports and Exercise, 35(2), 314–319. https://doi.org/10.1249/01.MSS.0000048828.02268.79.

    Article  PubMed  Google Scholar 

  • Nigg, B. M., Baltich, J., Hoerzer, S., & Enders, H. (2015). Running shoes and running injuries: mythbusting and a proposal for two new paradigms: ‚preferred movement path‘ and ‚comfort filter‘. British Journal of Sports Medicine, 49(20), 1290–1294. https://doi.org/10.1136/bjsports-2015-095054.

    Article  CAS  PubMed  Google Scholar 

  • Novacheck, T. F. (1998). The biomechanics of running. Gait & Posture, 7(1), 77–95.

    Article  CAS  Google Scholar 

  • Nummela, A., Keranen, T., & Mikkelsson, L. O. (2007). Factors related to top running speed and economy. International Journal of Sports Medicine, 28(8), 655–661. https://doi.org/10.1055/s-2007-964896.

    Article  CAS  PubMed  Google Scholar 

  • Pollock, M. L. (1977). Submaximal and maximal working capacity of elite distance runners. Part I: Cardiorespiratory aspects. Annals of the New York Academy of Sciences, 301, 310–322.

    Article  CAS  Google Scholar 

  • Potthast, W. (2011). Impact and Cushioning. Footwear Science, 3(1), 1.

    Article  Google Scholar 

  • Riley, P. O., Dicharry, J., Franz, J., Della Croce, U., Wilder, R. P., & Kerrigan, D. C. (2008). A kinematics and kinetic comparison of overground and treadmill running. Medicine and Science in Sports and Exercise, 40(6), 1093–1100. https://doi.org/10.1249/MSS.0b013e3181677530.

    Article  PubMed  Google Scholar 

  • Rodgers, M. M., & Cavanagh, P. R. (1984). Glossary of biomechanical terms, concepts, and units. Physical Therapy, 64(12), 1886–1902.

    Article  CAS  Google Scholar 

  • Roy, J. P., & Stefanyshyn, D. J. (2006). Shoe midsole longitudinal bending stiffness and running economy, joint energy, and EMG. Medicine and Science in Sports and Exercise, 38(3), 562–569. https://doi.org/10.1249/01.mss.0000193562.22001.e8.

    Article  PubMed  Google Scholar 

  • Satterthwaite, P., Larmer, P., Gardiner, J., & Norton, R. (1996). Incidence of injuries and other health problems in the Auckland Citibank marathon, 1993. British Journal of Sports Medicine, 30(4), 324–326.

    Article  CAS  Google Scholar 

  • Saunders, P. U., Pyne, D. B., Telford, R. D., & Hawley, J. A. (2004). Factors affecting running economy in trained distance runners. Sports Medicine, 34(7), 465–485. https://doi.org/10.2165/00007256-200434070-00005.

    Article  PubMed  Google Scholar 

  • Schache, A. G., Blanch, P. D., Rath, D. A., Wrigley, T. V., Starr, R., & Bennell, K. L. (2001). A comparison of overground and treadmill running for measuring the three-dimensional kinematics of the lumbo-pelvic-hip complex. Clinical biomechanics, 16(8), 667–680. https://doi.org/10.1016/S0268-0033(01)00061-4.

    Article  CAS  PubMed  Google Scholar 

  • Schwameder, H. (2004). Biomechanische Belastungsanalysen beim Berggehen. Aachen: Meyer&Meyer.

    Google Scholar 

  • Sinclair, J., McGrath, R., Brook, O., Taylor, P. J., & Dillon, S. (2016). Influence of footwear designed to boost energy return on running economy in comparison to a conventional running shoe. Journal of Sports Sciences, 34(11), 1094–1098. https://doi.org/10.1080/02640414.2015.1088961.

    Article  CAS  PubMed  Google Scholar 

  • Sobhani, S., Bredeweg, S., Dekker, R., Kluitenberg, B., van den Heuvel, E., Hijmans, J., & Postema, K. (2013). Rocker shoe, minimalist shoe, and standard running shoe: A comparison of running economy. Journal of Science and Medicine in Sport, 17(3), 312–316. https://doi.org/10.1016/j.jsams.2013.04.015.

    Article  PubMed  Google Scholar 

  • Squadrone, R., & Gallozzi, C. (2009). Biomechanical and physiological comparison of barefoot and two shod conditions in experienced barefoot runners. The Journal of Sports Medicine and Physical Fitness, 49(1), 6–13. https://doi.org/10.1016/j.jshs.2014.03.003.

    Article  CAS  PubMed  Google Scholar 

  • Stefanyshyn, D., & Nigg, B. (2000). Energy aspects associated with sport shoes. Sportverletzung Sportschaden, 14, 82–89.

    Article  CAS  Google Scholar 

  • Stefanyshyn, D., Stergiou, P., Nigg, B., Rozitis, A. I., & Goepfert, B. (2003). Do pronators pronate. Paper presented at the 6th symposium on footwear biomechanics, Otago.

    Google Scholar 

  • Stefanyshyn, D. J., & Nigg, B. M. (1997). Mechanical energy contribution of the metatarsophalangeal joint to running and sprinting. Journal of Biomechanics, 30(11–12), 1081–1085.

    Article  CAS  Google Scholar 

  • Stefanyshyn, D. J., & Nigg, B. M. (1998). Contribution of the lower extremity joints to mechanical energy in running vertical jumps and running long jumps. Journal of Sports Sciences, 16(2), 177–186. https://doi.org/10.1080/026404198366885.

    Article  CAS  PubMed  Google Scholar 

  • Tartaruga, M. P., Brisswalter, J., Peyre-Tartaruga, L. A., Avila, A. O. V., Alberton, C. L., Coertjens, M., Kruel, L. F. M. et al. (2012). The relationship between running economy and biomechanical variables in distance runners. Research Quarterly for Exercise and Sport, 83(3), 367–375. https://doi.org/10.1080/02701367.2012.10599870.

  • Wakeling, J. M., Pascual, S. A., & Nigg, B. M. (2002). Altering muscle activity in the lower extremities by running with different shoes. Medicine and Science in Sports and Exercise, 34(9), 1529–1532. https://doi.org/10.1249/01.MSS.0000027714.70099.08.

    Article  PubMed  Google Scholar 

  • Weyand, P. G., Sternlight, D. B., Bellizzi, M. J., & Wright, S. (2000). Faster top running speeds are achieved with greater ground forces not more rapid leg movements. Journal of Applied Physiology, 89(5), 1991–1999.

    Article  CAS  Google Scholar 

  • Weyand, P. G., Sandell, R. F., Prime, D. N., & Bundle, M. W. (2010). The biological limits to running speed are imposed from the ground up. Journal of Applied Physiology, 108(4), 950–961. https://doi.org/10.1152/japplphysiol.00947.2009.

    Article  PubMed  Google Scholar 

  • Willems, P. A., Cavagna, G. A., & Heglund, N. C. (1995). External, Internal and Total Work in Human Locomotion. The Journal of Experimental Biology, 198(2), 379–393.

    Article  CAS  Google Scholar 

  • Williams, K. R., & Cavanagh, P. R. (1987). Relationship between distance running mechanics, running economy, and performance. Journal of Applied Physiology, 63(3), 1236–1245.

    Article  CAS  Google Scholar 

  • Worobets, J., Tomaras, E., Wannop, J. W., & Stefanyshyn, D. (2014). Running shoe cushioning properties can influence oxygen consumtion. Footwear Science, 5(1), S75–S76. https://doi.org/10.1080/19424280.2013.799566.

    Article  Google Scholar 

  • Wunsch, T., & Schwameder, H. (2015). Lauftechniken sportbiomechanisch analysieren. Sportphysio, 3. https://doi.org/10.1055/s-005-29905.

  • Wunsch, T., Kröll, J., & Schwameder, H. (2014a). Anpassung des Fußaufsatzwinkels an zunehmende Laufgeschwindigkeiten. In I. Werner (Hrsg.), 15ter Kongress der Österreichischen Sportwissenschaftlichen Gesellschaft (ÖSG) (S. 64–65). ÖSG, Innsbruck.

    Google Scholar 

  • Wunsch, T., Kröll, J., Stöggl, T., & Schwameder, H. (2014b). Effects of a leaf spring structured and a foam midsole shoe on the foot kinematics in overground and treadmill running. In S. Nigg (Hrsg.), International Calgary running symposium (S. 154). Topline Printing, Calgary.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Wunsch .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wunsch, T., Schwameder, H. (2021). Biomechanik des Laufens und Laufanalyse. In: Güllich, A., Krüger, M. (eds) Bewegung, Training, Leistung und Gesundheit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53386-4_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53386-4_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53386-4

  • Online ISBN: 978-3-662-53386-4

  • eBook Packages: Springer Referenz Naturwissenschaften

Publish with us

Policies and ethics