Skip to main content

Telemedizin am Beispiel aktiver Implantate

  • Chapter
  • First Online:
Medizintechnik

Part of the book series: Springer Reference Technik ((SRT))

Zusammenfassung

Die Telemedizin ist ein Bereich der Telematik, die es ermöglicht, diagnostische oder therapeutische Daten zwischen zwei Orten (räumliche Distanz) oder zeitlich versetzt (zeitliche Distanz) zu übertragen. Dies beinhaltet sowohl die bidirektionale Übertragungsstrecke zwischen Patient und Arzt als auch die Übertragungsstrecke zwischen zwei Ärzten. Hierzu werden die Informationen ohne materiellen Transport übertragen. In der technischen Umsetzung werden sowohl drahtgebundene als auch drahtlose Kommunikationskanäle genutzt. Die Möglichkeiten, medizinisch relevante Daten zu versenden, eröffnen weite Anwendungsfelder. Moderne aktive Implantate verfügen i. d. R. über eine drahtlose informationstechnische Anbindung an die Außenwelt. In den diesem Kapitel werden nach einem kurzen Überblick über den Einsatz der Telemedizin bei Operationen und Homecare-Anwendungen die Möglichkeiten der Telemedizin zur Ansteuerung aktiver Implantate betrachtet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 639.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Streng genommen, dienen ISM-Frequenzen keinen Kommunikationszwecken, sondern Anwendungen wie beispielsweise der Hochfrequenzablation. In vielen Fällen wird der lizenzfreie Betrieb auf diesen Frequenzen von in der Sendeleistung stark eingeschränkten Funksystemen für kurze Reichweiten (Short Range Devices) gestattet.

  2. 2.

    Der Begriff „Schrittmacher“ bzw. „Herzschrittmacher“ schließt hier und im Folgenden ausdrücklich Implantate zur kardialen Resynchronisationstherapie (CRT) sowie implantierbare Defibrillatoren (ICD) mit ein.

Literatur

  • Ackermann DM, Smith B, Wang X, Kilgore KL, Peckham PH (2008) Designing the optical interface of a transcutaneous optical telemetry link. IEEE Trans Biomed Eng 55(4):1365–1373. doi:10.1109/TBME.2007.913411

    Article  Google Scholar 

  • Ahn JM, Lee JH, Choi SW, Kim WE, Omn KS, Park SK, Kim WG, Roh JR, Min BG (1998) Implantable control, telemetry, and solar energy system in the moving actuator type total artificial heart. Artif Organs 22(3):250–259. doi:10.1046/j.1525-1594.1998.06014.x

    Article  Google Scholar 

  • Bandorski D, Keuchel M, Brück M, Hoeltgen R, Wieczorek M, Jakobs R (2011) Capsule endoscopy in patients with cardiac pacemakers, implantable cardioverter defibrillators, and left heart devices: a review of the current literature. Diagn Ther Endosc 2011:376053. doi:10.1155/2011/376053

    Article  Google Scholar 

  • Bergmann G, Graichen F, Rohlmann A (2004) Hip joint contact forces during stumbling. Langenbecks Arch Surg 389(1):53–59

    Article  Google Scholar 

  • Bolz A (2005) Schlüsselkomponenten für die Integration existierender TeleHomeCare-Komponenten. In: Fachtagung TeleHealthCare 2005 auf dem 6. Würzburger Medizintechnik Kongress. TeleHealthCare 2005. Würzburg, S 262–269, 10–11 May 2005

    Google Scholar 

  • Bundesamt für Strahlenschutz (2014) Herzschrittmacher mit radioaktiven Isotopenbatterien. http://www.bfs.de/de/ion/medizin/weitere_informationen/plutoniumhaltige_herzschrittmacher.html. Zugegriffen am 27.03.2015

  • Chen J, Wilkoff BL, Choucair W, Cohen TJ, Crossley GH, Johnson WB, Mongeon LR, Serwer GA, Sherfesee L (2008) Design of the Pacemaker REmote Follow-up Evaluation and Review (PREFER) trial to assess the clinical value of the remote pacemaker interrogation in the management of pacemaker patients. Trials 9:18. doi:10.1186/1745-6215-9-18

    Article  Google Scholar 

  • Continua (2015) About Continua. http://www.continuaalliance.org/about-continua. Zugegriffen am 21.12.2015

  • Dobelle WH (2000) Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J 46(1):3–9. http://journals.lww.com/asaiojournal/Fulltext/2000/01000/Artificial_Vision_for_the_Blind_by_Connecting_a.2.aspx

  • ECC (2006) Coexistance between Ultra-Low Power Active Medical Implants (ULP-AMI) and existing radiocommunication systems and services in the frequency bands 401–402 MHz and 405–406 MHz. ECC Report 92. Electronic Communications Committee (ECC) within CEPT, Lübeck

    Google Scholar 

  • Fahim M, Fatima I, Sungyoung Lee, Young-Koo Lee (2012) Daily life activity tracking application for smart homes using android smartphone. In: The 14th international conference on advanced communication technology. ICACT 2012. IEEE, Pyeong Chang, S 241–245, 19–22 Feb 2012

    Google Scholar 

  • FCC (2015) Medical Device Radiocommunications Service (MedRadio). http://www.fcc.gov/encyclopedia/medical-device-radiocommunications-service-medradio. Zugegriffen am 28.03.2015

  • Flick B, Orglmeister R (2000) A portable microsystem-based telemetric pressure and temperature measurement unit. IEEE Trans Biomed Eng 47(1):12–16

    Article  Google Scholar 

  • Goehring JL, Hughes ML, Baudhuin JL (2012) Evaluating the feasibility of using remote technology for cochlear implants. The Volta Rev 112(3):255–265. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160841/

  • Guillory KS, Misener AK, Pungor A (2004) Hybrid RF/IR transcutaneous telemetry for power and high-bandwidth data. In: IEEE EMBS (Hrsg) Proceedings of the 26th annual international conference of the IEEE EMBS. 26th annual international conference of the IEEE EMBS. San Francisco, S 4338–4340, 1–5 Sept 2004

    Google Scholar 

  • Heidbuchel H, Hindricks G, Broadhurst P, van Erven L, Fernandez-Lozano I, Rivero-Ayerza M, Malinowski K, Marek A, Garrido R, Rafael F, Löscher S, Beeton I, Garcia E, Cross S, Vijgen J, Koivisto U, Peinado R, Smala A, Annemans L (2015) EuroEco (European Health Economic Trial on Home Monitoring in ICD Patients): a provider perspective in five European countries on costs and net financial impact of follow-up with or without remote monitoring. Eur Heart J 36(3):158–169. doi:10.1093/eurheartj/ehu339

    Article  Google Scholar 

  • Hochmair ES (1984) System optimization for improved accuracy in transcutaneous signal and power transmission. IEEE Trans Biomed Eng 31(2):177–186

    Article  Google Scholar 

  • Iddan G, Meron G, Glukhovsky A, Swain P (2000) Wireless capsule endoscopy. Nature 405(6785):417. doi:10.1038/35013140

    Article  Google Scholar 

  • ITU-R (2012) Radio regulations – Bd 1. Articles, vom 2012(1)

    Google Scholar 

  • Kendir GA, Liu W, Sivaprakasam M, Bashirullah R, Humayun MS, Weiland JD (2005) An optimal design methodology for inductive power link with class-E amplifier. IEEE Trans Circuits Syst I Regul Pap 52(5):857–866

    Article  Google Scholar 

  • Kiefer S, Schäfer M, Schera F, Kruse J (2004) TOPCARE – A telematic homecare platform for cooperative healthcare provider networks. Biomedizinische Technik, Ergänzungsband 2(49):246–247

    Google Scholar 

  • Kim S, Bhandari R, Klein M, Negi S, Rieth L, Tathireddy P, Toepper M, Oppermann H, Solzbacher F (2009) Integrated wireless neural interface based on the Utah electrode array. Biomed Microdevices 11(2):453–466. doi:10.1007/s10544-008-9251-y

    Article  Google Scholar 

  • Kudo N, Shimizo K, Matsumoto G (1988) Fundamental study on transcutaneous biotelemetry using diffused light. Fron Med Biol Eng 1(1):19–28

    Google Scholar 

  • Mitamura Y, Okamoto E, Mikami T (1990) A transcutaneous optical information transmission system for implantable motor-driven artificial hearts. Am Soc Artif Inter Organ Trans 36(3):M278–M280

    Google Scholar 

  • Normann RA (1990) Towards an artificial eye. Med Device Technol 8:14–20

    Google Scholar 

  • Okamoto E, Yamamoto Y, Inoue Y, Makino T, Mitamura Y (2005) Development of a bidirectional transcutaneous optical data transmission system for artificial hearts allowing long-distance data communication with low electric power consumption. J Artif Organs 8(3):149–153. doi:10.1007/s10047-005-0299-7

    Article  Google Scholar 

  • Qiang JK, Marras C (2015) Telemedicine in Parkinson’s disease: a patient perspective at a tertiary care centre. Parkinsonism Relat Disord (0). doi:10.1016/j.parkreldis.2015.02.018

    Google Scholar 

  • Scholz O (2000) Konzeption und Entwicklung eines Datenübertragungssystems für den Einsatz in der Neuroprothetik. Saarbrücken: Dissertation an der Universität des Saarlandes

    Google Scholar 

  • Scholz O, Parramon J, Meyer J, Valderrama E (1998) The Design of an Implantable Telemetric Device for the Use in Neural Prostheses. In:Penzel T, Salmons S und Neuman M (Hrsg) Proceedings of the 14th international symposium on biotelemetry. Biotelemetry XIV. Tectum Verlag, Marburg, S 265–270, 6–11 Apr 1997

    Google Scholar 

  • Scholz O, Wolff A, Schumacher A, Giannola LI, Campisi G, Ciach T, Velten T (2008) Drug delivery from the oral cavity: focus on a novel mechatronic delivery device. Drug Discov Today 13(5–6):247–253

    Article  Google Scholar 

  • Schuchert A (2009) Telemedizin in der Schrittmachertherapie und Nachsorge. Herzschrittmacherther Elektrophysiol 20(4):164–172. doi:10.1007/s00399-009-0058-1

    Article  Google Scholar 

  • Skupin H (2005) Telemedizin in der täglichen Routine. In: Fachtagung TeleHealthCare 2005 auf dem 6. Würzburger Medizintechnik Kongress. TeleHealthCare 2005. Würzburg, S 262–269, 10–11 May 2005

    Google Scholar 

  • Smith B, Peckham PH, Keith MW, Roscoe DD (1987) An externally powered, multichannel, implantable stimulator for versatile control of paralyzed muscle. IEEE Trans Biomed Eng 34(7):499–508

    Article  Google Scholar 

  • Strietzel FP, Martín-Granizo R, Fedele S, Lo Russo L, Mignogna M, Reichart PA, Wolff A (2007) Electrostimulating device in the management of xerostomia. Oral Dis 13(2):206–213. doi:10.1111/j.1601-0825.2006.01268.x

    Article  Google Scholar 

  • Varnfield M, Karunanithi M, Lee C, Honeyman E, Arnold D, Ding H, Smith C, Walters DL (2014) Smartphone-based home care model improved use of cardiac rehabilitation in postmyocardial infarction patients: results from a randomised controlled trial. Heart 100(22):1770–1779. doi:10.1136/heartjnl-2014-305783

    Article  Google Scholar 

  • Vodermayer B, Gruber R, Schmid T, Schiller W, Hirzinger G, Liepsch D, Welz A (2005) Adaptive transcoutanous energy transfer system (TET) for implantable devices. Int J Artif Organ 28(9):885

    Google Scholar 

  • Zierhofer CM, Hochmair ES (1994) Implementation of a telemetric monitoring system in a cochlear implant. In: IEEE EMBS (Hrsg) Proceedings of the 16th annual international conference of the IEEE engineering in medicine and biology society, Bd 2. 16th annual international conference of the IEEE engineering in medicine and biology society, S 910–911

    Google Scholar 

  • Zierhofer CM, Hochmair-Desoyer IJ, Hochmair ES (1995) Electronic design of a cochlear implant for multichannel high rate pulsatile stimulation strategies. IEEE Trans Rehabil Eng 3(1):112–116

    Article  Google Scholar 

  • Zrenner E, Wilke R, Sachs H, Bartz-Schmidt K, Gekeler F, Besch D, Greppmaier U, Harscher A, Peters T, Wrobel G, Wilhelm B, Bruckmann A, Stett A, SUBRET Study Group (2008) Visual sensations mediated by subretinal microelectrode arrays implanted into blind retinitis pigmentosa patients. In: Proceedings of the 13th annual international conference of the international functional electrical stimulation society. IFESS 2008. Freiburg, S 218–222, 21–25 Sept 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Peter Koch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Koch, K.P., Scholz, O. (2017). Telemedizin am Beispiel aktiver Implantate. In: Kramme, R. (eds) Medizintechnik. Springer Reference Technik . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48771-6_43

Download citation

Publish with us

Policies and ethics