Skip to main content

Multiresistente gramnegative Erreger

SpringerReference Innere Medizin

Part of the book series: Springer Reference Medizin ((SRM))

  • 304 Accesses

Zusammenfassung

Bedeutsame gramnegative Erreger im klinischen Alltag, die durch Multiresistenz gegenüber Antibiotika auffallen, sind insbesondere Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii und Stenotrophomonas maltophilia. Ein wesentlicher Resistenzmechanismus ist ESBL (Betalactamasen mit erweitertem Spektrum). Während multiresistente und insbesondere panresistente gramnegative Erreger in Deutschland selten sind, können bereits in Mittelmeerstaaten hohe Raten an multiresistenten Bakterien verzeichnet werden. Im stationären Bereich sind insbesondere der Aufenthalt auf einer Intensivstation, Liegedauer und Anzahl von Harn- oder Blutstromkathetern, invasive Beatmung, Nierenersatzverfahren sowie chirurgische Eingriffe bedeutsame Risikofaktoren für das Akquirieren eines multiresistenten Erregers. Die wesentliche Herausforderung für das mikrobiologische Labor stellt das Erkennen von Resistenzmechanismen dar. Da zahlreiche Erreger bereits mehrere Resistenzmechanismen zugleich aufweisen, kommt der molekularbiologischen Diagnostik wachsende Bedeutung zu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Literatur

  • (2012) Bundesgesundheitsblatt 55:1311–1354

    Google Scholar 

  • American Thoracic Society (2005) Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 171:388–416

    Article  Google Scholar 

  • Araoka H et al (2012) In vitro combination effects of aztreonam and aminoglycoside against multidrug-resistant Pseudomonas aeruginosa in Japan. Jpn J Infect Dis 65:84–87

    CAS  PubMed  Google Scholar 

  • Bassetti M et al (2008) Pseudomonas aeruginosa serious infections: mono or combination antimicrobial therapy? Curr Med Chem 15:517–522

    Article  CAS  PubMed  Google Scholar 

  • Behnia M et al (2014) Nosocomial and ventilator-associated pneumonia in a community hospital intensive care unit: a retrospective review and analysis. BMC Res Notes 7:232–241

    Article  PubMed Central  PubMed  Google Scholar 

  • Brooke JS (2012) Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. J Clin Microbiol Rev 25:2–41

    Article  CAS  Google Scholar 

  • Buyck JM et al (2012) Increased susceptibility of Pseudomonas aeruginosa to macrolides and ketolides in eukaryotic cell culture media and biological fluids due to decreased expression of oprM and increased outer-membrane permeability. Clin Infect Dis 55:534–542

    Article  CAS  PubMed  Google Scholar 

  • Canton R et al (2008) Prevalence and spread of extended-spectrum beta-lactamase-producing enterobacteriaceae in Europe. Clin Microbiol Infect 14:144–153

    Article  CAS  PubMed  Google Scholar 

  • Chuang YC et al (2014) Effectiveness of tigecycline-based versus colistin-based therapy for treatment of pneu-monia caused by multidrug-resistant Acinetobacter baumannii in a critical setting: a matched cohort analysis. BMC Infect Dis 14:102–110

    Article  PubMed Central  PubMed  Google Scholar 

  • Dalfino L et al (2012) High-dose, extended-interval colistin administration in critically ill patients: is this the right dosing strategy? A preliminary study. Clin Infect Dis 54:1720–1726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dalhoff K et al (2012) S3-Leitlinie Epidemiologie, Diagnostik und Therapie erwachsener Patienten mit nosokomialer Pneumonie. AWMF-Registernummer 020/013. Pneumologie 66:707–765

    Article  CAS  PubMed  Google Scholar 

  • De Waele JJ et al (2014) Therapeutic drug monitoring-based dose optimisation of piperacillin and meropenem: a randomised controlled trial. Intensive Care Med 40:380–387

    Article  PubMed  Google Scholar 

  • Dewar S et al (2014) Emerging clinical role of pivmecillinam in the treatment of urinary tract infection in the context of multidrug-resistant bacteria. J Antimicrob Chemother 69:303–308

    Article  CAS  PubMed  Google Scholar 

  • Durante-Mangoni E et al (2013) Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: a multicenter, randomized clinical trial. Clin Infect Dis 57:349–358

    Article  CAS  PubMed  Google Scholar 

  • Eckmann C et al (2011) Prospective, non-interventional, multi-centre trial of tigecycline in the treatment of severely ill patients with complicated infections: new insights into clinical results and treatment practice. Cheomotherapy 57:275–284

    Article  CAS  Google Scholar 

  • Falagas ME, Karageorgopoulos DE (2009a) Extended-spectrum beta-lactamase-producing organisms. J Hosp Infect 73:345–354

    Article  CAS  PubMed  Google Scholar 

  • Falagas ME, Karageorgopoulos DE (2009b) Extended-spectrum beta-lactamase-producing organisms. Med Sci Monit 14:75–79

    Google Scholar 

  • Falagas ME et al (2008) Therapeutic options for Stenotrophomonas maltophilia infections beyond co-trimoxazole: a systematic review. J Antimicrob Chemother 62:889–894

    Article  CAS  PubMed  Google Scholar 

  • Falagas ME et al (2009) Attributable mortality of Stenotrophomonas maltophilia infections: a systematic review of the literature. Future Microbiol 4:1103–1109

    Article  PubMed  Google Scholar 

  • Fitzpatrick MA et al (2012) Successful treatment of extensively drug-resistant Acinetobacter baumannii peritoneal dialysis peritonitis with intraperitoneal polymyxin B and ampicillin-sulbactam. Ann Pharmacother 46:e17

    Article  PubMed  Google Scholar 

  • Galani I et al (2014) Colistin/daptomycin: an unconventional antimicrobial combination synergistic in vitro against multidrug-resistant Acinetobacter baumannii. Int J Antimicrob Agents 43:370–374

    Article  CAS  PubMed  Google Scholar 

  • Ghafourian S et al (2014) Extended spectrum beta-lactamases: definition, classification and epidemiology. Curr Issues Mol Biol 17:11–22

    PubMed  Google Scholar 

  • Gordon NC et al (2010) Potent synergy and sustained bactericidal activity of a vancomycin–colistin combination versus multidrug-resistant strains of Acinetobacter baumannii. Antimicrob Agents Chemother 54:5316–5322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grabe M, Bartoletti R et al (2014) Guidelines on urological infections, 14th edn. EAU 2014. http://www.uroweb.org/guidelines/online-guidelines/?no_cache=1. Zugegriffen am 21.07.2014

  • Hirsch EB, Tam VH (2010) Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert Rev Pharmacoecon Outcomes Res 10:441–451

    Article  PubMed Central  PubMed  Google Scholar 

  • Hong MC et al (2013) Ceftolozane/tazobactam: a novel antipseudomonal cephalosporin and β-lactamase-inhibitor combination. Infect Drug Resist 6:215–223

    PubMed Central  PubMed  Google Scholar 

  • Howard A et al (2012) Acinetobacter baumannii – an emerging opportunistic pathogen. Virulence 3:243–250

    Article  PubMed Central  PubMed  Google Scholar 

  • Jacoby GA et al (2005) The new beta-lactamases. N Engl J Med 352:380–391

    Article  CAS  PubMed  Google Scholar 

  • Jansaker F et al (2014) Clinical and bacteriological effects of pivmecillinam for ESBL-producing Escherichia coli or Klebsiella pneumoniae in urinary tract infections. J Antimicrob Chemother 69:769–772

    Article  CAS  PubMed  Google Scholar 

  • Karisik E et al (2006) J Antimicrob Chemother 58:665–668

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ et al (2014) Risk factors for mortality in patients with Pseudomonas aeruginosa bacteremia; retrospective study of impact of combination antimicrobial therapy. BMC Infect Dis 14:161–168

    Article  PubMed Central  PubMed  Google Scholar 

  • Kollef MH et al (2013) Aerosolized antibiotics: do they add to the treatment of pneumonia? Curr Opin Infect Dis 26:538–544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee HY et al (2014) Risk factors and outcome analysis of Acinetobacter baumannii complex bacteremia in critical patients. Crit Care Med 42:1081–1088

    Article  CAS  PubMed  Google Scholar 

  • Li J et al (2005) Evaluation of colistin as an agent against multi-resistant gram-negative bacteria. Int J Antimicrob Agents 25:11–25

    Article  PubMed  Google Scholar 

  • Liu Q et al (2014) Efficacy and safety of polymyxins for the treatment of Acinectobacter baumannii infection: a systematic review and meta-analysis. PLoS One 9:e98091

    Article  PubMed Central  PubMed  Google Scholar 

  • Livermore DM (2012) Korean J Intern Med 27:128–142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu Q et al (2012) Efficacy of high-dose nebulized colistin in ventilator-associated pneumonia caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Anesthesiology 117:1335–1347

    Article  CAS  PubMed  Google Scholar 

  • Lutz L et al (2012) Macrolides decrease the minimal inhibitory concentration of anti-pseudomonal agents against Pseudomonas aeruginosa from cystic fibrosis patients in biofilm. BMC Microbiol 12:196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mietto C et al (2013) Ventilator associated pneumonia: evolving definitions and preventive strategies. Respir Care 58:990–1007

    Article  PubMed  Google Scholar 

  • Montgomery AB et al (2014) Potentiation effects of amikacin and fosfomycin against selected amikacin-nonsusceptible gram-negative respiratory tract pathogens. Antimicrob Agents Chemother 58:3714–3719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Navon-Venezia S et al (2007) High tigecycline resistance in multidrug-resistant Acinetobacter baumannii. J Antimicrob Chemother 59:772–774

    Article  CAS  PubMed  Google Scholar 

  • Paterson DL (2004) „Collateral damage“ from cephalosporin or quinolone antibiotic therapy. Clin Infect Dis 38:341–345

    Article  Google Scholar 

  • Paterson DL, Bonomo RA (2005) Clin Microbiol Rev 18:657–686

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paterson DL et al (2000) Epidemiology of ciprofloxacin resistance and its relationship to extended-spectrum b-lactamase production in Klebsiella pneumoniae isolates causing bacteremia. Clin Infect Dis 30:473–478

    Article  CAS  PubMed  Google Scholar 

  • Pfaller MA, Segreti J (2006) Overview of the epidemiological profile and laboratory detection of extended-spectrum betalactamases. Clin Infect Dis 42:153–163

    Article  Google Scholar 

  • Pitout JD (2010) Infections with extended-spectrum b-lactamase-producing Enterobacteriaceae: changing epidemiology and drug treatment choices. Drugs 70:313–333

    Article  CAS  PubMed  Google Scholar 

  • Pitout JD, Laupland KB (2008) Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging publichealth concern. Lancet Infect Dis 8:159–166

    Article  CAS  PubMed  Google Scholar 

  • Prasad P et al (2012) Excess deaths associated with tigecycline after approval based on noninferiority trials. Clin Infect Dis 54:1699–1709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Retamara P et al (2013) Impact of the MIC of piperacillin-tazobactam on the outcome of patients with bacteremia due to extended-spectrum-β-lactamase-producing escherichia coli. Antimicrob Agents Chemother 57:3402–3404

    Article  Google Scholar 

  • Roberts JA et al (2014) DALI: defining antibiotic levels in intensive care unit patients: are current β-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis 58:1072–1083

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Bano J et al (2008) Community infections caused by extended-spectrum beta-lactamaseproducing Escherichia coli. Arch Intern Med 168:1897–1902

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Bano J et al (2012) β-Lactam/β-lactam inhibitor combinations for the treatment of bacteremia due to extended-spectrum β-lactamase-producing Escherichia coli: a post hoc analysis of prospective cohorts. Clin Infect Dis 54:167–1674

    Article  CAS  PubMed  Google Scholar 

  • Rossolini GM et al (2008) The spread of CTX-M-type extended-spectrum beta-lactamases. Clin Microbiol Infect 14:33–41

    Article  CAS  PubMed  Google Scholar 

  • Rynn C et al (1999) In vitro assessment of colistin’s antipseudomonal antimicrobial interactions with other antibiotics. Clin Microbiol Infect 5:32–36

    PubMed  Google Scholar 

  • Savage PB (2001) Multidrug-resistant bacteria: overcoming antibiotic permeability barriers of gram-negative bacteria. Ann Med 33:167–171

    Article  CAS  PubMed  Google Scholar 

  • Speksnijder DC et al (2014) Reduction of veterinary antimicrobial use in the Netherlands. The dutch success model. Zoonoses Public Health 25. doi:10.1111/zph.12167. [Epub ahead of print]

    Google Scholar 

  • Timurkaynak F et al (2006) In vitro activities of non-traditional antimicrobials alone or in combination against multidrug-resistant strains of Pseudomonas aeruginosa and Acinetobacter baumannii isolated from intensive care units. Int J Antimicrob Agents 27:224–228

    Article  CAS  PubMed  Google Scholar 

  • Tumbarello M et al (2007) Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-blactamase-producing Enterobacteriaceae: importance of inadequate initial antimicrobial treatment. Antimicrob Agents Chemother 51:1987–1994

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tumbarello M et al (2013) Effect of aerosolized colistin as adjunctive treatment on the outcomes of micro-biologically documented ventilator-associated pneumonia caused by colistin-only susceptible gram-negative bacteria. Chest 144:1768–1775

    Article  CAS  PubMed  Google Scholar 

  • Valenza G et al (2008) Prevalence and antimicrobial susceptibility of microorganisms isolated from sputa of patients with cystic fibrosis. J Cyst Fibros 7:123–127

    Article  CAS  PubMed  Google Scholar 

  • Valverde A et al (2008) Complex molecular epidemiology of extended-spectrum beta-lactamases in Klebsiella pneumoniae: a long-term perspective from a single institution in Madrid. J Antimicrob Chemother 61:64–72

    Article  CAS  PubMed  Google Scholar 

  • Vardakas KZ et al (2012) Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum β-lactamases: a systematic review and meta-analysis. J Antimicrob Chemother 67:2793–2803

    Article  CAS  PubMed  Google Scholar 

  • Vicari G et al (2013) Association between colistin dose and microbiologic outcomes in patients with multidrug-resistant gram-negative bacteremia. Clin Infect Dis 56:398–404

    Article  CAS  PubMed  Google Scholar 

  • Vouillamoz J et al (2008) In vitro activities of tigecycline combined with other antimicrobials against multiresistant gram-positive and gram-negative pathogens. J Antimicrob Chemother 61:371–374

    Article  CAS  PubMed  Google Scholar 

  • Wang WS et al (2004) Stenotrophomonas maltophilia bacteremia in adults: four years’ experience in a medical center in northern Taiwan. J Microbiol Immunol Infect 37:359–365

    PubMed  Google Scholar 

  • Wisplinghoff H et al (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309–317

    Article  PubMed  Google Scholar 

  • Wood GC et al (2010) Treatment of recurrent Stenotrophomonas maltophilia ventilator-associated pneumonia with doxycycline and aerosolized colistin. Ann Pharmacother 44:1665–1668

    Article  PubMed  Google Scholar 

  • Xie J, Wang T et al (2014) Optimal tigecycline dosage regimen is urgently needed: results from a phar-macokinetic/pharmacodynamic analysis of tigecycline by Monte Carlo simulation. Int J Infect Dis 18:62–67

    Article  CAS  PubMed  Google Scholar 

  • Zarrilli R et al (2013) Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. Int J Antimicrob Agents 41:11–19

    Article  CAS  PubMed  Google Scholar 

  • Zelenitsky SA et al (2005) Antibiotic combinations significantly more active than monotherapy in an in vitro infection model of Stenotrophomonas maltophilia. Diagn Microbiol Infect Dis 51:39–43

    Article  CAS  PubMed  Google Scholar 

  • Zhanel GG et al (2014) Ceftolozane/tazobactam: a novel cephalosporin/b-lactamase inhibitor combination with activity against multidrug-resistant gram-negative bacilli. Drugs 74:31–51

    Article  CAS  PubMed  Google Scholar 

  • Zusman O et al (2013) Systematic review and meta-analysis of in vitro synergy of polymyxins and carbape-nems. Antimicrob Agents Chemother 57:5104–5111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Marco Kern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kern, J.M. (2015). Multiresistente gramnegative Erreger. In: Lehnert, H. (eds) SpringerReference Innere Medizin. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54676-1_548-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54676-1_548-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-54676-1

  • eBook Packages: Springer Referenz Medizin

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Multiresistente gramnegative Erreger
    Published:
    25 December 2021

    DOI: https://doi.org/10.1007/978-3-642-54676-1_548-2

  2. Original

    Multiresistente gramnegative Erreger
    Published:
    16 February 2015

    DOI: https://doi.org/10.1007/978-3-642-54676-1_548-1