Keywords

1 Introduction

In 1990–1991, Buckley [1] proposed the concept of fuzzy complex numbers and fuzzy complex-valued function. In 1997, Qiu Jiqing [25] firstly proposed the concept of the complex fuzzy measure on the basis of classical measure theory method. Since 2000, According to this issue, Ma shengquan [6] has done some exploratory work, and made a series of achievement in this field. The theory of fuzzy complex valued measure is an important part of fuzzy complex analysis, which has a strong background of practical application [7]. For instance it can use in the fuzzy system identification, fuzzy control, multi-classifier system design and other fields. The development of theoretical research of fuzzy complex valued measure is slow, because it is much more complicated than Fuzzy real-valued measure. The complex Fuzzy measure which defined in this paper is different from that in paper [2], the concept of Fuzzy measure was redefined, which distinguished between the real and imaginary parts in order to facilitate research.

2 Complex Fuzzy Measure

\(\hat{{R}}^{+}\) denote positive real set, \(\hat{{C}}^{+}\) denote the set of complex number on \(\hat{{R}}^{+}\) [8].

Definition 2.1

Let \(X\) be a nonempty set, \(\text {F}\) be a \(\sigma -\) algebra, comprising of the subset of \(X ,\) the mapping \(\mu \text {:F} \rightarrow {\hat{{\mathrm{C}}}}^{+}\) is set function, satisfying:

  1. (1)

    \(\mu (\emptyset )=0\);

  2. (2)

    (monotonicity) If \( A,B \in \text {F}\) and \(A\subseteq B\) ,then \(Re(\mu (A)) \le Re(\mu (B))\) and \(Im(\mu (A))\le Im(\mu (B)).\) Denote \(\mu (A)\le \mu (B)\)

  3. (3)

    if \(A_n \in \text {F} (n=1,2,\cdots )\), \(A_1 \subseteq A_2 \subseteq \cdots \subseteq A_n \subseteq \cdots \) then

    $$\begin{aligned} \mu (\bigcup _{n=1}^\infty {A_n } )=\mathop {\lim }\limits _{n\rightarrow \infty } \mu (A_n ) \end{aligned}$$
  4. (4)

    if \(A_n \in \text {F} (n=1,2,\ldots )\), \(A_1 \supseteq A_2 \supseteq \cdots \supseteq A_n \supseteq \cdots \), and \(\exists n_0 \) such that \(\text {Re}(\mu (A_{n_0 } ))<\infty ,\text {Im}(\mu (A_{n_0 } ))<\infty \) then \(\mu ({\mathop \bigcap \limits _{n=1}^\infty {A_n}})=\mathop {\lim }\limits _{n\rightarrow \infty } \mu (A_n )\). Then \(\mu \) is called as complex Fuzzy measure on \(\text {F}, (\text {X,F,}\mu )\) is called as complex Fuzzy measure space.

Definition 2.2

Fuzzy complex measure \(\mu \) is said to be zero-additive, if for arbitrary \(E,F\in \text {F}, \mu (F)=0\) and \(E\cap F=\varphi \), then \(\mu (E\cup F)=\mu (E)\).

Theorem 2.1

(X, F, \(\mu \)) is complex Fuzzy measure space, The following propositions are equivalence.

  1. (1)

    \(\mu \) is zero-additive ;

  2. (2)

    since \(\mu (F)=0\), then for arbitrary \(E,F\in \text {F}\), such that \(\mu (E\cup F)=\mu (E)\);

  3. (3)

    since \(\mu (F)=0\), then for arbitrary \(E,F\in \text {F}\), such that \(\mu (E\backslash F)=\mu (E)\):

Proof.

(1)\(\Rightarrow \)(2):

\(E\cup F=E\cup (F\backslash E),\) since \(\mu \) is nonnegative monotony, then for \(\mu (F)=0\), such that

\(\mu (F\backslash E)\le \mu (F)=0,\) therefore \(\mu (F\backslash E)=0\). Applying the zero-additive of \(\mu ,\mu (F\backslash E)=0\) and \(E\cap (F\backslash E)=\varphi \), then

$$\begin{aligned} \mu (E\cup F)=\mu (E\cup (F\backslash E))=\mu (E). \end{aligned}$$

(2)\(\Rightarrow \)(3):

Due to \(E=(E\backslash F)\cup (E\cap F)\), and \(\mu (F)=0\), then \(\mu (E\cap F)=0\).

We know \(\mu (E)=\mu ((E\backslash F)\cup (E\cap F))=\mu (E\backslash F)\) from the proposition (2).(3)\(\Rightarrow \)(1):

Due to \(E\cap F=\varphi \), then \(E=(E\cup F)\backslash F\).

If \(\mu (F)=0\) and \(E\cap F=\varphi \), we can know

$$\begin{aligned} \mu (E)=\mu ((E\cup F)\backslash F)=\mu (E\cup F) \end{aligned}$$

from the proposition (3).

Theorem 2.2

Suppose \(\mu \) is complex Fuzzy measure of zero-additive, \(A\in \text {F}\), there is a descending sequence of \(\{B_n \}\subset \text {F}\), \((B_1 \supseteq B_2 \supseteq \cdots )\), if \(\mu (B_n )\rightarrow 0\), then

  1. (1)

    \(\mu (A\backslash B_n )\rightarrow \mu (A)\);

  2. (2)

    whereupon \(\text {Re}(\mu (A))<\infty ,\) and \(\text {Im}(\mu (A))<\infty \) , and if exists \(\text {Re}(\mu (A\cup B_{n_0 } ))<\infty \) and \(\text {Im}(\mu (A\cup B_{n_0 } ))<\infty \) , therefore \(\mu (A\cup B_n )\rightarrow \mu (A)\).

Proof.

(1) since \(\{A\backslash B_n \}\) is ascending sequence and if \(\mu \) is lower-continuous, we can know \(\mathop {\lim }\limits _{n\rightarrow \infty } \mu (A\backslash B_n )=\mu ({\mathop \bigcup \limits _{n=1}^\infty {(A\backslash B_n )}})=\mu (A\backslash {\mathop \bigcap \limits _{n=1}^\infty {B_n)}} \).

Applying \(\mu \) is upper-continuous, \(\mathop {\lim }\limits _{n\rightarrow \infty } \mu (B_n )=\mu ({\mathop \bigcap \limits _{n=1}^\infty {B_n}})=0\), since \(\mu \) is zero-additive, from the Theorem 1, then \(\mathop {\lim }\limits _{n\rightarrow \infty } \mu (A\backslash B_n )=\mu (A)\).

(2) \(\{A\cup B_n \}\) is descending sequence, \(Re(\mu (A))<\infty ,\) and \(Im(\mu (A))<\infty \), and exist \(Re(\mu (A\cup B_{n_0 } ))<\infty \) and \(Im(\mu (A\cup B_{n_0 } ))<\infty \), due to \(\mu \) is upper-continuous,

$$\begin{aligned} \mathop {\lim }\limits _{n\rightarrow \infty } \mu (A\cup B_n )=\mu (\bigcap _{n=1}^\infty {(A\cup B_n } ))=\mu (A\cup (\bigcap _{n=1}^\infty {B_n } )). \end{aligned}$$

Since \(\mu \) is zero-additive, and \(\mu ({\mathop \bigcap \limits _{n=1}^\infty {B_n}})=0\), so we know

$$\begin{aligned} \mathop {\lim }\limits _{n\rightarrow \infty } \mu (A\cup B_n )=\mu (A) \end{aligned}$$

according to Theorem 1.

Definition 2.3

Let \(\text {(X,F)}\) be measurable space, the mapping \(\mu \text {:F}\rightarrow {\hat{{\mathrm{C}}}}^{+}\) is set function, Complex fuzzy measure \(\mu \) is upper-self-continuous, if for arbitrary \(A,B_n \in \text {F}\), and \(A\cap B_n =\Phi \), \(\mathop {\lim }\limits _{n\rightarrow \infty } B_n =0\), then

$$\begin{aligned} \mathop {\lim }\limits _{n\rightarrow \infty } \mu (A\backslash B_n )=\mu (A). \end{aligned}$$

Complex fuzzy measure \(\mu \) is lower-self-continuous, if for arbitrary \(A,B_n \in \text {F}\) and \(B_n \subseteq A\), \(\mathop {\lim }\limits _{n\rightarrow \infty } B_n =0\), then \(\mathop {\lim }\limits _{n\rightarrow \infty } \mu (A\backslash B_n )=\mu (A)\).

Complex fuzzy measure \(\mu \) is self-continuous, if and only if \(\mu \) is not only upper-self-continuous but also lower-self-continuous.

Theorem 2.3

Suppose \(\mu \) is complex Fuzzy measure on \(\text {(X,F)}\), then

  1. (1)

    \(\mu \) is upper-self-continuous if and only if \(\mathop {\lim }\limits _{n\rightarrow \infty } \mu (A\cup B_n )=\mu (A)\) if for arbitrary \(A,B_n \in \text {F}\) and \(\mathop {\lim }\limits _{n\rightarrow \infty } B_n =0\).

  2. (2)

    \(\mu \) is lower-self-continuous if and only if \(\mathop {\lim }\limits _{n\rightarrow \infty } \mu (A\backslash B_n )=\mu (A)\) if for arbitrary \(A,B_n \in \text {F}\) and \(\mathop {\lim }\limits _{n\rightarrow \infty } B_n =0\).

Proof.

The necessity is easily proved from the definition.2.3

  1. (1)

    Sufficiency: Let \(E_n =B_n \backslash A\), we know \(\mu (E_n )\le \mu (B_n )\), therefore \(E_n \cap A=\varphi \), and \(\mathop {\lim }\limits _{n\rightarrow \infty } \mu (E_n )=0\), then \(\mathop {\lim }\limits _{n\rightarrow \infty } \mu (A\cup E_n )=\mu (A)\), so \(\mu \) is upper-self-continuous.

  2. (2)

    Sufficiency: Let \(E_n =B_n \cap A\), we know \(\mu (E_n )\le \mu (B_n )\), therefore \(E_n \subseteq A\), and \(\mathop {\lim }\limits _{n\rightarrow \infty } \mu (E_n )=0\), then \(\mathop {\lim }\limits _{n\rightarrow \infty } \mu (A\backslash E_n )=\mu (A)\), so \(\mu \) is lower-self-continuous

Definition 2.4

Let \(\text {(X, F)}\) be measurable space, the mapping \(\mu \text {:F}\rightarrow {\hat{{\mathrm{C}}}}^{+}\) is set function,

  1. (1)

    Suppose for arbitrary \(\varepsilon _i >0\), exists \(\delta _i =\delta (\varepsilon _i )>0(i=1,2)\), where \(\varepsilon =\varepsilon _1 +i\varepsilon _2 , \delta =\delta _1 +i\delta _2 \), Complex fuzzy measure \(\mu \) is uniform-upper-self-continuous, if for arbitrary \(A,B\in \text {F}\) and \(\mu (B)\le \delta \) , then \(\mu (A\cup B)\le \mu (A)+\varepsilon \).

  2. (2)

    Suppose for arbitrary \(\varepsilon _i >0\), exists \(\delta _i =\delta (\varepsilon _i )>0(i=1,2)\), where \(\varepsilon =\varepsilon _1 +i\varepsilon _2 \), \(\delta =\delta _1 +i\delta _2 \), Complex fuzzy measure \(\mu \) is uniform-lower-self- continuous, if for arbitrary \(A,B\in \text {F}\) and \(\mu (B)\le \delta \), then \(\mu (A)-\varepsilon \le \mu (A\backslash B)\).

  3. (3)

    Complex fuzzy measure \(\mu \) is uniform-self-continuous, if and only if \(\mu \) is not only uniform-upper-self-continuous but also uniform-lower-self-continuous.

Theorem 2.4

Suppose set function \(\mu \) is uniform-upper-self-continuous (uniform-lower-self-continuous), then \(\mu \) is upper-self-continuous (lower-self- continuous).

Proof.

It is obvious.

Theorem 2.5

Suppose \(\mu \) is complex Fuzzy measure on \(\text {(X,F)}\), The following propositions are equivalence.

  1. (1)

    \(\mu \) is uniform-self-continuous;

  2. (2)

    \(\mu \) is uniform-upper-self-continuous;

  3. (3)

    \(\mu \) is uniform-lower-self-continuous.

Proof.

\((1)\Rightarrow (2)\) It is obvious.

\((2)\Rightarrow (3)\): Since \(\mu \) is uniform-upper-self-continuous, so if for arbitrary \(\varepsilon _i >0,\exists \delta _i =\delta (\varepsilon _i )>0(i=1,2)\), where \(\varepsilon =\varepsilon _1 +i\varepsilon _2 ,\delta =\delta _1 +i\delta _2 \), and for arbitrary \({A}',{B}'\in \text {F},\mu ({B}')\le \delta , \)then \(\mu ({A}')-\varepsilon \le \mu ({A}'\cup {B}')\le \mu ({A}')+\varepsilon \). if for arbitrary \(A,B\in \text {F},\mu (B)\le \delta ,\) Let\({A}'=A\backslash B,{B}'=A\cap B,\mu ({B}')\le \mu (B)\le \delta ,\)

if \(\mu (A\backslash B)-\varepsilon \le \mu ({A}'\cup {B}')\le \mu (A\backslash B)+\varepsilon \), then \(\mu (A)-\varepsilon \le \mu (A\backslash B)\le \mu (A)+\varepsilon \). It means \(\mu \) is uniform-lower-self-continuous.

\((3)\Rightarrow (1)\): Since \(\mu \) is uniform-lower-self-continuous, if for arbitrary

\(\varepsilon _i >0,\exists \delta _i =\delta (\varepsilon _i )>0(i=1,2),\) where \(\varepsilon =\varepsilon _1 +i\varepsilon _2 ,\delta =\delta _1 +i\delta _2 \), and for arbitrary \({A}',{B}'\in \text {F},\mu ({B}')\le \delta ,\) then \(\mu ({A}')-\varepsilon \le \mu ({A}'\backslash {B}')\le \mu ({A}')+\varepsilon \). if for arbitrary

\(A,B\in \text {F}, \mu (B)\le \delta ,\) Let\({A}'=A\cup B,{B}'=A\cap B,\mu ({B}')\le \mu (B)\le \delta ,\)

therefore

$$\begin{aligned} \mu ({A^\prime }\backslash {B\prime })\ge \mu ({A^\prime })-\varepsilon \ge \mu (A)-\varepsilon . \end{aligned}$$

Again let \({{A}^{\prime \prime }}=(A\cup B)\backslash (A\cap B),{{B}^{\prime \prime }}=B\backslash A\), then \({{A}^{\prime \prime }}\backslash {{B}^{\prime \prime }}=A\backslash B\), and \(\mu ({{B}^{\prime \prime }})\le \mu (B)\le \delta ,\) so

$$\begin{aligned} \mu ({{A}^{\prime \prime }})-\varepsilon \le \mu ({{A}^{\prime \prime }}\backslash {{B}^{\prime \prime }})=\mu (A\backslash B) \Rightarrow \mu (A\backslash B)+\varepsilon \le \mu (A)+\varepsilon . \end{aligned}$$

Again let \(A=E,B=F\backslash E\), then \((A\cup B)\backslash (A\cap B)=E\cup F , \mu (B)\le \mu (F)\le \delta ,\) so \(\mu (E)-\varepsilon \le \mu (E\cup F)\le \mu (E)+\varepsilon \). It means \(\mu \) is uniform-upper-self-continuous.

So \(\mu \) is uniform-self-continuous.

Definition 2.5

Let \(\text {(X,F)}\) be measurable space, the mapping \(\mu \text {:F}\rightarrow {\hat{{\mathrm{C}}}}^{+}\) is set function, If for arbitrary \(\{B_n \}\subseteq \text {A}, B_1 \supseteq B_2 \supseteq \cdots \), if \(\exists n_0 ,\forall n>n_0 , Re(\mu (B_n ))<\infty \), \(Im(\mu (B_n ))<\infty \) and \({\mathop \bigcap \limits _{n=1}^\infty {B_n}} =\varphi \), there must be \(\mathop {\lim }\limits _{n\rightarrow \infty } \mu (B_n )=0\), so \(\mu \) is called zero-upper-continuous.

Theorem 2.6

\(\mu \) is nonnegative monotonic ascending set function, and zero-upper-continuous, Then if \(\mu \) is upper-self- continuous, then \(\mu \) is upper- continuous;

if \(\mu \) is limit and lower-self- continuous, then \(\mu \) is lower- continuous.

Proof

(1) If \(\{A_n \}\subseteq \text {F}, A_1 \supseteq A_2 \supseteq \cdots \), exist \(Re(\mu (B_n ))<\infty ,Im(\mu (B_n ))<\infty \), let

\(A={\mathop \bigcap \limits _{n=1}^\infty {A_n}} ,B_n =A_n \backslash A \quad (n=1,2,\cdots ),\)then \(B_1 \supseteq B_2 \supseteq \cdots \), and \({\mathop \bigcap \limits _{n=1}^\infty {B_n}} =\varphi \).if for

arbitrary

$$\begin{aligned} n>n_0 ,Re(\mu (B{ }_n))\le Re(\mu (B_{n_0 } ))\le Re(\mu (A_{n_0 } ))<\infty , \end{aligned}$$

\(\text {Im}(\mu (B{ }_n))\le \text {Im}(\mu (B_{n_0 } ))\le \text {Im}(\mu (A_{n_0 } ))<\infty .\) Since \(\mu \) is zero-upper-continuous, we know \(\mathop {\lim }\limits _{n\rightarrow \infty } \mu (B_n )=0\). Due to \(A_n =A\cup B_n ,A\cap B_n =\varphi \), and \(\mu \) is upper-self-continuous, if \(\mu (A_n )=\mu (A\cup B_n )\), then \(\mu (A)=\mu ({\mathop \bigcap \limits _{n=1}^\infty {A_n}})\).So \(\mu \) is upper- continuous.

(2)The proof is similar to (1) above.

3 Complex Fuzzy Measurable Function

\(R\) denote real set, \(C\) denote the set of complex number on \(R\).

Definition 3.1

[2] Suppose \((\text {X,F,}\mu )\) is complex Fuzzy measure space, the mapping \(\tilde{f}:X\rightarrow C\) is called complex Fuzzy measurable function, if for arbitrary \(a+bi\in C\), then \(\{x\in X\left| {Re[\tilde{f}(x)]\ge a,Im[\tilde{f}(x)]\ge b\}\in } \right. \text {F}\).

Definition 3.2

Suppose \((\text {X,F,}\mu )\) is complex Fuzzy measure space, \(\tilde{f}_n (n=1,2,\cdots ),\tilde{f}\) is complex fuzzy measurable function, for arbitrary \(A\in \text {F}\),

  1. (1)

    \(\{\tilde{f}_n \}\) almost everywhere converge to \(\tilde{f}\) on \(A\), denote \(\tilde{f}_n {\mathop {\rightarrow }\limits ^{a.e.}}\tilde{f}\), if there exists \(B\in \text {F}\), such that \(\mu (B)=0\) , then \(\{\tilde{f}_n \}\) with pointwise convergence to \(\tilde{f}\) on \(A\backslash B\).

  2. (2)

    \(\{\tilde{f}_n \}\) pseudo-almost everywhere converge to \(\tilde{f}\) on \(A\), denote \(\tilde{f}_n \mathop {\rightarrow }\limits ^{p.a.e.}\tilde{f}\), if there exists \(B\in \text {F}\), such that \(\mu (A\backslash B)=\mu (A)\), then \(\{\tilde{f}_n \}\) with pointwise convergence to \(\tilde{f}\) on \(A\backslash B\).

  3. (3)

    \(\{\tilde{f}_n \}\) almost everywhere uniformly converge to \(\tilde{f}\) on \(A\), denote \(\tilde{f}_n \mathop {\rightarrow }\limits ^{a.e.u.}\tilde{f}\), if there exists \(B\in \text {F}\), such that \(\mu (B)=0\), then \(\{\tilde{f}_n \}\) with pointwise uniform convergence to \(\tilde{f}\) on \(A\backslash B\).

  4. (4)

    \(\{\tilde{f}_n \}\) pseudo-almost everywhere uniformly converge to \(\tilde{f}\) on \(A\), denote \(\tilde{f}_n \mathop {\rightarrow }\limits ^{p.a.e.u.}\tilde{f}\), if there exists \(B\in \) F, such that \(\mu (A\backslash B)=\mu (A)\), then \(\{\tilde{f}_n \}\) with pointwise uniform convergence to \(\tilde{f}\) on \(A\backslash B\).

  5. (5)

    \(\{\tilde{f}_n \}\) almost uniformly converge to \(\tilde{f}\) on \(A\), denote \(\tilde{f}_n \mathop {\rightarrow }\limits ^{a.u.}\tilde{f}\), if there exists set sequence\(\{E_k \}\) on \(\text {F}\), such that \(\tilde{\mu }(E_k )\rightarrow 0\) ,and for arbitrary \(k\), then \(\{\tilde{f}_n \}\) with pointwise uniform convergence to \(\tilde{f}\) on \(A\backslash E_k \).

  6. (6)

    \(\{\tilde{f}_n \}\) pseudo-almost uniformly converge to \(\tilde{f}\) on \(A\), denote \(\tilde{f}_n \mathop {\rightarrow }\limits ^{p.a.u.}\tilde{f}\), if there exists set sequence \(\{E_k \}\) on \(\text {F}\), such that \(\mu (A\backslash E_k )\rightarrow \mu (A)\), and for arbitrary \(k\), then \(\{\tilde{f}_n \}\) with pointwise uniform convergence to \(\tilde{f}\) on \(A\backslash E_k \).

  7. (7)

    \(\{\tilde{f}_n \}\) converge in complex fuzzy measure \(\mu \) to \(\tilde{f}\) on \(A\), denote \(\tilde{f}_n \mathop {\rightarrow }\limits ^{u.}\tilde{f}\), if for arbitrary \(\varepsilon =\varepsilon _1 +i\varepsilon _2 ,\varepsilon _1 ,\varepsilon _2 >0\), such that

    $$\begin{aligned} \mathop {\lim }\limits _{n\rightarrow \infty } \mu (\{x\left| {Re\left| {\tilde{f}_n -\tilde{f}} \right| } \right. \ge \varepsilon _1 ,Im\left| {\tilde{f}_n -\tilde{f}} \right| \ge \varepsilon _2 \}\cap A)=0. \end{aligned}$$
  8. (8)

    \(\{\tilde{f}_n \}\) converge in pseudo complex fuzzy measure \(\tilde{\mu }\) to \(\tilde{f}\) on \(A\), denote \(\tilde{f}_n \mathop {\rightarrow }\limits ^{p.u.}\tilde{f}\), if for arbitrary \(\varepsilon >0\), such that

    $$\begin{aligned} \mathop {\lim }\limits _{n\rightarrow \infty } \mu (\{x\left| {Re\left| {\tilde{f}_n -\tilde{f}} \right| } \right. <\varepsilon _1 ,Im\left| {\tilde{f}_n -\tilde{f}} \right| <\varepsilon _2 \}\cap A)=\mu (A). \end{aligned}$$

Theorem 3.1

Suppose \((\text {X,F,}\mu ) \) is complex Fuzzy measure space, \(\tilde{f}_n (n=1,2,\cdots ),\tilde{f}\) is complex fuzzy measurable function, for arbitrary \(A\in \) F,

  1. (1)

    \(\tilde{f}_n \mathop {\rightarrow }\limits ^{a.e.}\tilde{f}\) if and only if \(\{\tilde{f}_n \}\) converge to \(\tilde{f}\) on \(A\backslash E_k \), if there exists set sequence \(\{E_k \}\) on F, such that \(\mu (E_k )\rightarrow 0\), and for arbitrary \(k\).

  2. (2)

    \(\tilde{f}_n \mathop {\rightarrow }\limits ^{p.a.e.}\tilde{f}\) if and only if \(\{\tilde{f}_n \}\) converge to \(\tilde{f}\) on \(A\backslash E_k \), if there exists set sequence \(\{E_k \}\) on F, such that \(\mu (A\backslash E_k )\rightarrow \mu (A)\), and for arbitrary \(k\).

  3. (3)

    \(\tilde{f}_n \mathop {\rightarrow }\limits ^{a.e.u.}\tilde{f}\) if and only if \(\left| {Re(\tilde{f}-\tilde{f}_k )} \right| <\varepsilon _1 \) and \(\left| {Im(\tilde{f}-\tilde{f}_k )} \right| <\varepsilon _2 \), if there exists set sequence \(\{E_k \}\) on F, such that \(\mu (E_k )\rightarrow 0\), and for arbitrary \(\varepsilon _i >0,(i=1,2)\), where \(\varepsilon =\varepsilon _1 +i\varepsilon _2 \), \(\exists n_0,\forall n>n_0,\forall k,\forall x\in A\backslash E_k \).

  4. (4)

    \(\tilde{f}_n \mathop {\rightarrow }\limits ^{p.a.e.u.}\tilde{f}\) if and only if \(\left| {Re(\tilde{f}-\tilde{f}_k )} \right| <\varepsilon _1 \) and \(\left| {Im(\tilde{f}-\tilde{f}_k )} \right| <\varepsilon _2 \), if there exists set sequence \(\{E_k \}\) on \(\text {F}\), such that \(\mu (A\backslash E_k )\rightarrow \mu (A)\), and for arbitrary \(\varepsilon _i >0,(i=1,2)\), where \(\varepsilon =\varepsilon _1 +i\varepsilon _2 \), \(\exists n_0, \forall n>n_0, \forall k,\forall x\in A\backslash E_k \).

Proof.

(1) If \(\tilde{f}_n \mathop {\rightarrow }\limits ^{a.e.}\tilde{f}\), then exists \(B\in \)F, \(\mu (B)=0\), such that \(\tilde{f}_n \rightarrow \tilde{f}\) on \(A\backslash B\). Let \(E_k =B (k=1,2,\cdots )\), we know \(\mu (E_k )\rightarrow 0\), and \(\{\tilde{f}_n \}\) converge to \(\tilde{f}\) on \(A\backslash E_k \), for arbitrary \(k\).

Otherwise, if there exists \(\{E_k \}\subseteq \)F,\( \mu (E_k )\rightarrow 0\), such that \(\tilde{f}_n \rightarrow \tilde{f}\) on \(A\backslash E_k \). Let \(B_k ={\mathop \bigcap \limits _{i=1}^k {E_i}} ,B={\mathop \bigcap \limits _{k=1}^\infty {B_k}} ={\mathop \bigcap \limits _{k=1}^\infty {E_k}} \), so \(\mu (B_k )\le \mu (E_k )\) and \(B_1 \supseteq B_2 \supseteq \cdots \). Due to \(\mu (E_k )\rightarrow 0\), there exists

\(\text {Re}(\mu (B_{k_0 } ))\le \text {Re}(\mu (E_{k_0 } ))<\infty ,\)and \(\text {Im}(\mu (B_{k_0 } ))\le \text {Im}(\mu (E_{k_0 } ))<\infty \).

Applying the upper-continuity of \(\mu \), we know that \(\mu (B)=\mathop {\lim }\limits _{k\rightarrow 0} \mu (B_k )=0\). If for arbitrary \(x\in A\backslash B={\mathop \bigcup \limits _{k=1}^\infty {(A\backslash E_k )}} ,\exists k_0 ,x\in A\backslash E_{k_0 } \), then \(\tilde{f}_n \rightarrow \tilde{f}\), therefore \(\{\tilde{f}_n \}\) converge to \(\tilde{f}\) on \(A\backslash B\), denote \(\tilde{f}_n \mathop {\rightarrow }\limits ^{a.e.}\tilde{f}\).

The proof of (2),(3),(4) is similar to (1), we omit here.

Inference 3.1 If \(\tilde{f}_n \mathop {\rightarrow }\limits ^{a.e.u.}\tilde{f}\), then \(\tilde{f}_n \mathop {\rightarrow }\limits ^{a.u.}\tilde{f}\);If \(\tilde{f}_n \mathop {\rightarrow }\limits ^{p.a.e.u.}\tilde{f}\), then \(\tilde{f}_n \mathop {\rightarrow }\limits ^{p.a.u.}\tilde{f}\).

Theorem 3.2

Suppose complex Fuzzy measure \(\mu \) is lower-self- continuity, for \(A\in \)F,

If \(\tilde{f}_n \mathop {\rightarrow }\limits ^{a.e.}\tilde{f}\) , then \(\tilde{f}_n \mathop {\rightarrow }\limits ^{p.a.e.}\tilde{f}\).

If \(\tilde{f}_n \mathop {\rightarrow }\limits ^{a.e.u.}\tilde{f}\) , then \(\tilde{f}_n \mathop {\rightarrow }\limits ^{p.a.e.u.}\tilde{f}\).

If \(\tilde{f}_n \mathop {\rightarrow }\limits ^{a.u.}\tilde{f}\) then \(\tilde{f}_n \mathop {\rightarrow }\limits ^{p.a.u.}\tilde{f}\).

Proof.

(1) If \(\tilde{f}_n \mathop {\rightarrow }\limits ^{a.e.}\tilde{f}\) on \(\text {A}\), then there exists \(B\in \text {F}, \mu (B)=0\), such that \(\{\tilde{f}_n \}\) converge to \(\tilde{f}\) on \(A\backslash B\), therefore \(\tilde{f}_n \mathop {\rightarrow }\limits ^{p.a.e.}\tilde{f}\) on \(A\).

The proof of (2),(3) is similar to (1), we omit here.

Theorem 3.3

Suppose for arbitrary \(A\in \)F, and complex fuzzy measurable function \(\tilde{f}\) and \(\tilde{f}_n (n=1,2,\cdots )\), if \(\tilde{f}_n \mathop {\rightarrow }\limits ^{u.}\tilde{f}\), then \(\tilde{f}_n \mathop {\rightarrow }\limits ^{p.u.}\tilde{f}\) if and only if complex fuzzy measure \(\mu \) is lower-self- continuity.

Proof.

(necessity) if \(\tilde{f}_n \mathop {\rightarrow }\limits ^{u.}\tilde{f}\), then \(\tilde{f}_n \mathop {\rightarrow }\limits ^{p.u.}\tilde{f}\), so \(\mathop {\lim }\limits _{n\rightarrow \infty } \mu (B_n )=0\), for arbitrary \(A\,\in \, \)F and \(\{B_n \}\,\subseteq \, \)F

Let

$$\begin{aligned} \tilde{f}_n (x)=\left\{ {\begin{array}{l} {\begin{array}{lll} 1&{} &{} {x\in B_n } \\ \end{array} } \\ {\begin{array}{lll} 0&{} &{} {x\notin B_n } \\ \end{array} } \\ \end{array}} \right. \end{aligned}$$

So

$$\begin{aligned} \mathop {\lim }\limits _{n\rightarrow \infty } \mu (\{x\left| {\left| {\text {Re}(\tilde{f}_n -0)} \right| } \right. \ge \varepsilon _1 , \left| {\text {Im}(\tilde{f}_n -0)} \right| \ge \varepsilon _2 \}\cap A)=\mathop {\lim }\limits _{n\rightarrow \infty } \mu (B_n )=0, \end{aligned}$$

where for arbitrary \(\varepsilon _i >0, (i=1,2),\varepsilon =\varepsilon _1 +i\varepsilon _2 \). So on \(\text {A}\), if \(\tilde{f}_n \mathop {\rightarrow }\limits ^{u.}0\), then \(\tilde{f}_n \mathop {\rightarrow }\limits ^{p.u.}0\).

Suppose for \(\varepsilon _i <1\), then \(\mu (A\backslash B_n )=\mu (\{x\left| {\left| {\text {Re}(\tilde{f}_n -0)} \right| } \right. <\varepsilon _1 , \left| {\text {Im}(\tilde{f}_n -0)} \right| <\varepsilon _2 \}\cap A)=\mu (A)\),

So \(\mu \) is lower-self- continuity.

(Sufficiency): If \(\tilde{f}_n \mathop {\rightarrow }\limits ^{u.}\tilde{f}\) on A, then \(\mathop {\lim }\limits _{n\rightarrow \infty } \mu (\{x\left| {\left| {Re(\tilde{f}_n -0)} \right| } \right. \ge \varepsilon _1 , \left| {Im(\tilde{f}_n -0)} \right| \ge \varepsilon _2 \}\cap A)=0\), where for arbitrary \(\varepsilon _i >0,(i=1, 2),\varepsilon =\varepsilon _1 +i\varepsilon _2 \). Let

$$\begin{aligned} B_n =\{x\left| {\left| {Re(\tilde{f}_n -\tilde{f})} \right| } \right. \ge \varepsilon _1 , \left| {Im(\tilde{f}_n -\tilde{f})} \right| \ge \varepsilon _2 \}\cap A, \end{aligned}$$

then \(\{B_n \}\subseteq \text {A}\) and \(\mathop {\lim }\limits _{n\rightarrow \infty } \mu (B_n )=0\). Due to \(\mu \) is lower-self- continuity, so

$$\begin{aligned} \mu (A\cap \{x\left| {\left| {Re(\tilde{f}_n -\tilde{f})} \right| } \right. <\varepsilon _1 ,\left| {Im(\tilde{f}_n -\tilde{f})} \right| <\varepsilon _2 \})=\mu (A\backslash B_n )\rightarrow \mu (A). \end{aligned}$$

Therefore \(\tilde{f}_n \mathop {\rightarrow }\limits ^{p.u.}\tilde{f}\) on A.

4 Conclusion

On the basis of the concept of complex Fuzzy measurable function in [2], we study its convergence theorem. It builds the certain foundation for the research of complex Fuzzy integral. Provide a strong guarantee for the complex fuzzy integral development, enrichment and development of complex fuzzy Discipline.