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Preface

This book is a monograph from submissions from the 6th International Conference
on Fuzzy Information and Engineering (ICFIE2012) on October 25–26, 2012 in
Babolsar, Iran and from the 6th academic conference from Fuzzy Information &
Engineering Branch of Operation Research Society of China (FIEBORSC2012)
during December 18–24, 2012 in Shenzhen, China. The monograph is published by
Advances in Intelligent Systems and Computing (AISC), Springer, ISSN: 2194-5357.

This year, we have received more than 300 submissions. Each paper has
undergone a rigorous review process. Only high-quality papers are included in it.
The book, containing papers, is divided into Seven main parts:

Part I—themes on ‘‘Programming and Optimization’’.
Part II—subjects on ‘‘Lattice and Measures’’.
Part III—topics are discussed on ‘‘Algebras and Equation’’ appearance.
Part IV—ideas circle around ‘‘Forecasting, Clustering and Recognition’’.
Part V—focuses on ‘‘Systems and Algorithm’’.
Part VI—thesis on ‘‘Graph and Network’’.
Part VII—dissertations on ‘‘Others’’.

We appreciate the organizations sponsored by Mazandaran University, Iran;
Fuzzy Information and Engineering Branch of China Operation Research Society;
China Guangdong, Hong Kong and Macao Operations Research Society, and
Guangdong Province Operations Research Society.

We are showing gratitude to the Iranian Fuzzy Systems Society; Iranian
Operation Research Society; Fuzzy Information and Engineering Branch of
International Institute of General Systems Studies in China (IIGSS-GB), and
Guangzhou University for Co-sponsorships.

We wish to express our heart-felt appreciation to the Editorial Committee,
reviewers, and our students. In particular, we are thankful to Doctoral: Ren-jie Hu,
Hong Mai; Master: Zhi-ping Zhu, who have contributed a lot to the development
of this issue. We appreciate all the authors and participants for their great con-
tributions that made these conferences possible and all the hard work worthwhile.
Meanwhile, we are thankful to China Education and Research Foundation; China
Science and Education Publishing House, and China Charity Press Publishing and
its president Mr. Dong-cai Lai for sponsoring.
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Finally, we thank the publisher, Springer, for publishing the AISC (Notes: Our
series of conference proceedings by Springer, like Advances in Soft Computing
(ASC), AISC, (ASC 40, ASC 54, AISC 62, AISC 78, AISC 82 and AISC 147,
have been included into EI and all are indexed by Thomson Reuters Conference
Proceedings Citation Index (ISTP)), and thank the supports coming from inter-
national magazine Fuzzy Information and Engineering by Springer.

March, 2013 Bing-yuan Cao
Hadi Nasseri
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Programming and Optimization



Fuzzy Modeling of Optimal Initial Drug
Prescription

Mostafa Karimpour, Ali Vahidian Kamyad and Mohsen Forughipour

Abstract This paper focused on a fuzzy approach in migraineurs drug prescription.
There is no denying that medicine data records are mixed with uncertainty and prob-
ability so all methods concerning migraine drug prescription should be considered in
fuzzy environment and designed according to the knowledge of an expert specialist.
Overall it seems logical to propose fuzzy approach which could cover all uncertain-
ties. According to fuzzy rule base concepts which are obtained by co-operation of
an expert, fuzzy control has been used to model drug prescription system. Finally
clinical experiences are used to confirm efficacy of drug prescription model. It should
be considered that in most cases this disease may cause health social problems as
well as financial obstacle for the companies and in upper stage for governments as
a result of reduce work time among the employees. So prescribing optimal initial
drug to make the disease stable is obligatory. With the corporation of experts 25 rule
bases are introduced and tested on 50 different patient records, result shows that the
accuracy of model is 94 % ± 5.5 with r-square equal to 0.9148.

Keywords Fuzzy control · Mamdani’s inference approach · Migraine drug
prescription

M. Karimpour · A. V. Kamyad
Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
e-mail: m_karimpour@yahoo.com

A. V. Kamyad
e-mail: avkamyad@yahoo.com

M. Forughipour (B)

Department of Neurology, Mashhad University of Medical sciences, Mashhad, Iran
e-mail: ForoughipourM@mums.ac.ir

B.-Y. Cao and H. Nasseri (eds.), Fuzzy Information & Engineering and Operations 3
Research & Management, Advances in Intelligent Systems and Computing 211,
DOI: 10.1007/978-3-642-38667-1_1, © Springer-Verlag Berlin Heidelberg 2014



4 M. Karimpour et al.

1 Introduction

Migraine is a French term derived from Hemi crania, a Greek word that means
one side of the head [1]. But in practical migraine is a common type of headache
usually felt as a severe unilateral throbbing headache that lasts 4–72 h and sometimes
accompanied with nausea, vomiting and other symptoms [2]. Approximately 13
billion dollars in USA is lost as a result of reduced work productivity in migrainures
and nearly 27 billion euros in European community yearly [3]. Research shows that
only 56 % of people suffering migraine know that they have migraine [4].

International classification of headache disorders 2nd (ICHD) presented all types
of headaches and migraines with different criteria for diagnosing each one [5]. Med-
ical diagnosing could be done in a variety of classification methods to name a few
one could refer to the following: artificial neural networks, fuzzy control, support
vector machines, etc. Previously some research is done in migraine diagnosing and
migraine state to state rate of transition with drug. Mendes et al. [6] used artifi-
cial neural networks to classify headache into four different classes as tension type
headache, medication-overuse, migraine with aura and migraine without aura. Simić
et al. [3] Classified different types of migraine by employing rule-based fuzzy logic,
which is suitable for knowledge-based decision making.

Maas et al. [7] proposed markov models as a powerful way of nonlinear sys-
tem modeling in migraine drug response modeling. To get more insight into the
concentration-effect markov model is proposed to describe the course of headache
response to either placebo or sumatriptan. Figure 1 shows the structure of the markov
response model.

As it could be seen from Fig. 4 The model is consist of two layers: first, state layer
(hidden layer) which represents three different states of migraine (no relief, relief,
and pain free). Second score layer (open layer) which shows the headache score (no
pain, mild pain, moderate pain and severe pain).

The mentioned model is able to predict headache states and headache recurrence
in migraine patients who receive placebo or oral sumatriptan. Scientist showed that
sumtriptans are very effective in reducing migraine attacks. Oral doses of 50 or

Fig. 1 Structure of a markov model
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100 mg are usually prescribed to treat migraine attacks. The impression of sumatrip-
tan on forward transition rates was expected to follow (1).

Rate(t)x,y = Rate(0)x,y · exp

(
Emaxx,y · C(t)

EC50x,y + C(t)

)
(1)

In Eq. 3 Rate(t)x,y shows the rate of drug-induced in forward transitions, Rate(0)x,y

is the transmission rate from state x to y in the absence of sumtriptan. C(t) is the
sumtriptan plasma concentration. Emaxx,y reveals the maximum effect of sumatrip-
tan on forward transition rate. EC50x,y is the sumatriptan concentration related to
half of the maximum effect. Anisimov et al. [8] showed that if x>y

Rate(t)x,y = Rate(0)x,y (2)

Equations (1) and (2) were chosen based on the fact that the increase dose of sumtrip-
tan drug leads to the headache pain decrease. In this theory this observation can be
modeled as (a) Increasing forward transition rate is a function of drug concentration.
(b) Reducing backward transition rate is a function of drug concentration.

In migraine, headache severity depends on age so the effectiveness of medication
may also depend on age. Maas et al. [9] parameterized the interaction between age
and drug exposure. The proposed model also reveals the clinical observations such
as: (a) The rate which changes state pain relief to pain-free relates to age inversely.
(b) In placebo-treatment, the mean transition time from ‘no relief’ to ‘relief’ is 3 h
for young adolescents and 6 h for patients older than 30 years old. (c) Sumatriptan
reduces the transition time to 2 h, without considering age. In this case by considering
age Eq. (1) could be improved to Eq. (3).

Rate(t)x,y = Ratemin + Ratemax − Ratemin

1 + f (age,C(t))

f (age,C(t)) = E0 · exp

(
Emaxage · exp(age))

exp(E50age + exp(age)
− EmaxC(t) · exp(C(t))

exp(E50C(t))+ exp(C(t))

)

(3)

Ratemin and Ratemax represents the minimum and maximum values of transition
rate. f is the function that describes the association between patient age and suma-
triptan concentration (c(t)) to the transition rate. At t = 0 exp(C(t)) must be replaced
with zero.

Gradual titration of drugs used for treatment of migraine (like sodium valproate)
takes a long time to reach the best dosage and also starting with high range dosages
increases the side effect of the drug so choosing the best initial dosage plays an
important role in migraine treatment. In this paper a novel fuzzy modelling method
is proposed in which the best dosage of initial drug could be detected.
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2 Methods and Materials

Sodium valproate is the sodium salt of valproic acid. Sodium valproate can be used
to control migraine. In migraine sodium valproate drug prescription depends on
different factors but the most important factors are 1- pain intensity, 2- pain frequency
and 3- weight. So in this paper fuzzy rule bases are proposed through the help of
an expert specialist to find optimal initial sodium valproate drug prescription in
migraineurs to cure disease in the minimum time by considering drug side effects as
model constraints. A fuzzy questionnaire should be complete with these parameters
through the patients. This study is done in neurology ward of Ghaem hospital in
mashhad from Mar 2011 to Aug 2012.

The related questions are presented in Table 1.
There are some basic hypothesis used on this research which should be considered

in sodium valproate prescription system, presented as follows:

1. Patient should be diagnosed and detected as migrainures.
2. There are some restrictions such as low blood pressure, depression, drugs side

effects which is better for the patient to use sodium valproate.

Membership function of pain intensity and pain frequency are proposed as follows:
1. Pain intensity which is measured through using virtual analogue scaling (VAS),

can be described well with the following membership function shown in Fig. 2.

Table 1 Questioner

1- The intensity of pain
The answer referring to this question could be in the form of an integer number

between 1 (low pain) to 10 (The maximum imaginable pain) for parameters
2- Frequency of pain during one month. An integer number between 0 and 10 (upper

than 10 is considered as 10)
3- Patient’s weight (kg)

Fig. 2 Membership function of pain intensity
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Fig. 3 Membership function of attack frequency

At the first part as the pain intensity is not detectable correctly and declared
with the patient’s feeling, so it is considered as trapezoidal membership function for
slight in our approach, and a triangular membership function for the rest. It is divided
into five parts ‘Slight, Medium Slight, Medium, Medium Severe, Severe’ to get the
optimal decision making.

2. The frequency of migraine attacks which is presented in the form of number of
attack per month is well presented with the chart provided in Fig. 3.

Pain frequency is completely measurable so all the membership functions are con-
sidered as triangular. Pain frequency is also divided into five classes ‘Low, Medium
Low, Medium, Medium High, High’ which is really helpful in final decision making.
It should be considered that increasing these classes increase mathematical compu-
tation and curse of dimensionality. Attack frequency more than 10 times per month,
is considered as ‘High’.

The consequent part of each rule is the membership function of sodium valproate
dosage, the membership function is considered as Fig. 4.

Mamdani’s fuzzy inference system is employed in sodium valproate optimal
dosage calculation. As there are 2 different inputs with 5 different membership func-
tions assumed, 25 different rule bases are introduced. Fuzzy rule bases are proposes
through the consultation of expert specialists. The experimental results at the final
part of this paper proof that the fuzzy control result with the comparison to reality
(based on patient’s records) is acceptable.

Fuzzy rule bases are presented in Table 2.
In real systems as the partition of uncertainty increases the efficacy of fuzzy logic

rule bases increases. For complex systems usually knowledge exists and just few
numerical data is available.
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Fig. 4 Membership function of sodium valproate

Table 2 Rules developed for two inputs

Premises Consequent
Paint intensity Pain frequency Sodium valproate

Severe High Class 11
Severe Medium high Class 10
Severe Medium Class 09
Severe Medium low Class 08
Severe Low Class 01
Medium severe High Class 11
Medium severe Medium high Class 10
Medium severe Medium Class 09
Medium severe Medium low Class 04
Medium severe Low Class 01
Medium High Class 10
Medium Medium high Class 08
Medium Medium Class 07
Medium Medium low Class 04
Medium Low Class 01
Medium slight High Class 04
Medium slight Medium high Class 03
Medium slight Medium Class 03
Medium slight Medium low Class 02
Medium slight Low Class 01
Slight High Class 01
Slight Medium high Class 01
Slight Medium Class 01
Slight Medium low Class 01
Slight Low Class 01
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3 Results

Mamdani introduced a fuzzy inference system and developed a strategy which is
usually referred to as max-min method. Mamdani’s fuzzy inference system is a way
of linking linguistic inputs to the linguistic outputs with just using min and max
functions and allows gaining approximate reasoning [10]. Figure 5 represents model
flow chart of our approach.

50 different patients who recursed to Ghaem hospital of Mashhad were inserted to
the system. Data were gathered from Mar 2011 to Aug 2012 and were tested according
to the rule bases presented in part 2. The experimental results are as presented in
Table 3.

Fig. 5 Model block diagram

Table 3 Experimental results Parameters Test data

APE 5.9916
R square 0.9148
MSE 5229
RMSE 72.3561
Residual mean 44.6517
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Fig. 7 Plot of prescribed minus predicted dosage per prescribed dosage

Result shows that the system is able to predict the optimal initial dose with an
acceptable error. Data are taken from 50 patients who used certain initial dosage and
pain frequency is reduced and intensity of their pain is relieved.

Figure 6 shows predicted and prescribed dosage of sodium valproate. Figure 7
presents plot of prescribed dosage minus predicted dosage per prescribed dosage of
sodium valproate.
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4 Conclusion

Defining the patterns of migraine acute treatment in the population is an important
step in evaluating migraine treatment in relation to guiding principles, and improving
health care [11].

Research shows that migraine headaches are not often treated effectively in many
people who suffer from them. Preventive treatments are effective in about 38 %
of people suffering migraine. Less than one-third of those people currently use
these types of treatments. Fortunately, in many people the frequency and severity
of migraine attacks which are the important factors of this study can be reduced with
preventive treatment. In fact, some studies show that migraine attacks may be reduced
more than half. Some epilepsy drugs are useful in preventing migraine. Strong evi-
dence shows divalproex sodium, sodium valproate, and topiramate are helpful in
preventing migraine [12].

Research shows that extended-release divalproex sodium 500–1,000 mg per day
had an average reduction in 1 month migraine headache prevalence with a rate
(−1.2 attacks per week) from 4.4 per week (baseline) to 3.2 per week. In most
headache trials, patients taking divalproex sodium or sodium valproate reported no
adverse events [13]. According to what has been mentioned one of the most effective
and most widely used drugs in treating migraine is sodium valproate, but there are
two factors that force the optimal usage of this drug: the side effect and the cost [14]
but in Iran side effect is much more important because of the insurance cover on drug
price.

Gradual titration of sodium valproate is one way of avoiding side effects but it
takes a long time to reach the best dose. Recommended daily dosage ranges from
800 to 1,500 mg [15]. In Iran the start point could be 400 mg or lower [16].

In this paper for the first time a new method in optimal migraine drug prescription
system is proposed. Mamdani fuzzy inference system is developed in predicting
optimal sodium valproate initial dosage. Gradual titration of sodium valproate is
one way of avoiding side effects but it takes a long time to reach the best dosage.
So a mathematical model is proposed through the knowledge-driven from expert
specialists. Simulation result indicates that model is able to predict sodium valproate
optimal initial dosage with the accuracy of 94 % ±5.5.
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Decision Parameter Optimization of Beam
Pumping Unit Based on BP Networks Model

Xiao-hua Gu, Zhi-qiang Liao, Sheng Hu, Jun Yi and Tai-fu Li

Abstract Beam pumping unit is the most popular oil recovery equipment. One of
the most common problems of beam pumping unit is its high energy consumption
due to its low system efficiency. The main objective of this study is modeling and
optimization a beam pumping unit using Artificial Neural Network (ANN). Among
the various networks and architectures, multilayer feed-forward neural network with
Back Propagation (BP) training algorithm was found as the best model for the plant.
In the next step of study, optimization is performed to identify the sets of optimum
operating parameters by Strength Pareto Evolutionary Algorithm-2 (SPEA2) strategy
to maximize the oil yield as well as minimize the electric power consumption. Forty-
nine sets of optimum conditions are found in our experiments.

Keywords Modeling · Artificial neural network · Optimization · Strength pareto
evolutionary algorithm-2 · Beam pumping unit

1 Introduction

Beam pumping unit (BPU) is one of most important oil recovery equipments, the
occupancy of which reaches to 70 % [1]. However, because of the negative torque,
long gear train, poor working conditions and other reasons, the system efficiency of
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BPU is very low. So the research for energy saving of BPU is very important and
necessary [1, 2].

Currently, methods of BPU energy saving are mainly mechanical ones and elec-
trical ones [3]. In the first aspect, researchers focus on changing the structure of the
pumping unit, adjusting the balance of the pumping unit and so on [4]. Whereas,
electrical methods attempt to improve the motor control technology [5, 6]. In recent
years, intelligent algorithm used to BPU energy saving is a new trend [7]. In this
paper, we aim at building up an ANN for simulating the BPU, and then searching
the optimum operation parameters based on the trained model.

The process of BPU is very complicated in nature typically due to unknown
dynamic behaviors, nonlinear relations and numerous involved variables. Develop-
ing an accurate mathematical model are very hard even impossible. ANN modeling is
a new choice to manage the complexities mentioned since it only requires the input-
output data as opposed to a detailed knowledge of a system [8]. To identify optimum
operating parameters, optimization based on ANN model is also performed. In this
case, we consider to minimizing the electric power consumption and maximizing the
oil yield, which leads to a multi-objective problem (MOP). SPEA2 [9], which has
characteristics of stability, global search capability, nearest neighbor density estima-
tion and new truncation method, is an ideal choice. Consequently, in this paper, BP
networks is employed to model the BPU and SPEA2 is applied to the trained BP net-
work model to determine the parameter values to energy saving and yield increasing.

2 Method Study

2.1 BP Networks

Multilayer feed-forward neural network with Back Propagation (BP) training algo-
rithm is proposed by Rumelhart and Mcclalland [10] to solve the multi-layer network
learning algorithm problem in 1986. It consists of input layer, hidden layer, and out-
put layer. In BP networks training stage, the error between the experimental data
and the corresponding predicted data is counted and back-propagated through the
network. The algorithm adjusts the weights in each successive layer to reduce the
error. This procedure is circulated until the error between the experimental data and
the corresponding predicted data satiety certain error criterion. BPN models compute
the output value as a sum of non-linear transformations of linear combinations of the
inputs. The data predicted by BPN models were plotted against the corresponding
experimental data to visualize the modeling abilities of the BPN models.

2.2 SPEA2

SPEA2 which proposed by Zitzler [9] in 2001 is a multi-objective evolutionary algo-
rithm characterized by the concepts of strength and density. SPEA2 is an extension
of SPEA, it has an improved fitness assignment strategy and hence can search the
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global optimum of all objective functions. Consequently, SPEA2 becomes one of the
most popular optimization techniques in multi-objective combinatorial optimization
problems, as well as nonlinear ones.

3 BPU Modeling and Optimization Based on BPN-SPEA2

3.1 BPU

Beam pumping unit production system includes two parts: the ground part and the
underground part. The mainly ground devices include the dynamic force and the
balance of beam-pumping unit, while the underground part includes the oil pump
and the corresponding valve. With the in-depth study of the process, number of
punching as the decision parameter is proposed, which updates the optimum number
of punching that could response the change of status. Running in optimum number of
punching always saves more energy. But just number of punching as input parameter
to model of beam pumping unit production system is hardly approximation real
model as the amount information is lacking. In order to solve this problem, the
environment parameters are supplied as the input parameter to model. So the input
parameters include number of punching(NP), maximum load(MAXL), minimum
load(MINL), effective stroke(ES) and computational pump efficiency(CPE), while
the output parameters are electric power consumption(EPC) and oil yield(OY). All
the inputs and outputs of BP networks are show in Table 1.

3.2 BPU Modeling Based on BPN

BP networks algorithm is developed to model BPU. As shown in Fig. 1, the network
is three-layer. The input neurons node in the network is five and output neurons
node is two. Hidden layer’s neuron number t is determined by an empirical formula
t = √

n + m + α, where n is the number of input layer neurons, m is the number of
output layer neurons, and α is a constant between 1 and 10.

The training was executed systematically with different number of nodes in hidden
layer. Tan-sigmoid transfer function was used as the activation function for the hidden
layers, and linear transfer function was used for the output layer. The values of the
test data were normalized to within the range from −1 to 1.

Table 1 Input/output parameters of BP neural networks

Inputs Outputs

Decision parameter Number of punching (time/min) Electric power consumption
Maximum load (kN) (kw/h)

Environment Minimum load (kN)
parameters Effective stroke (m) Oil yield (t/d)

Computational pump efficiency (%)
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Fig. 1 BPN model of beam pumping unit production system

3.3 SPEA2 Optimization of Decision Parameter of BPU

Once the beam pumping unit production system process model based on BP networks
is developed, it can be used to determine its fitness value for optimization to obtain
the optimal values of the input variables that minimizing electric power consumption
and maximizing oil yield. Considering that SPEA2 always searches the minimize
fitness, hence the maximum objective is converted to minimum one by taking its
negative. Finally, the beam pumping system energy saving multi-objective problem
with 5 variables, 2 objectives is described as follow:

ŷ = min F(x̂) = min( f1(x̂), f2(x̂)) (1)

In which, x̂ = (x1, x2, · · · , xn) ∈ X , X = {
(x1, x2, · · · , xn)|li ≤ xi ≤ ui ,

i = 1, 2, · · · 5
}
, L = (l1, l2, · · · , l5), ŷ = (y1, y2, · · · , yn) ∈ Y , U = (u1,

u2, · · · , u5), where L is the lower boundary of optimal parameters and U is the
upper boundary of optimal parameters.

Obviously, in above model, the electric power consumption and the oil yield are the
two objectives of SPEA2, which means that the decision parameters are optimization
to response the change status.

4 Experimental Results and Analysis

4.1 The Training and Simulation of BP Networks

To build up a BP network for simulation BPU, necessary data is provided. Among
the available 3,234 data from DaGang oil field, three examples of the samples are
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Table 2 Examples of samples

NP MAXL MINL ES CPE EPC OY
NO. (time/min) (kN) (kN) (m) (%) (kw/h) (t/d)

1 3.01 97.2 44.7 3.074646 69.26006 11.97 31.05339
2 2.99 98.4 43.5 3.131836 71.01529 12.44 31.48944
… … … … … … … …
3,234 2.99 98.7 43.4 3.027187 69.71369 12.23 30.47277
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Fig. 2 The BP networks training process

shown in Table 2. The 3,234 samples are divided into two parts, 3,000 samples data
are used to build up the model of BPU, while the other 234 are applied to test the
generalization ability of trained model.

BP networks training was a supervisory learning process with cross validation. The
Levenberg-Marquardt (LM) algorithm is repeatedly applied until the error threshold
or the stop criterion is reached. Among many converged cases, the configuration
5-9-2 appeared the most optimal. Training started after setting BP network structure
and parameters. When the BPN training precision meet the error limit expectation,
as showed in Fig. 2, the training finished.

To evaluate the precision of the obtained model, the performance of the obtained
model on the test set is tested. The comparisons of the predicted objectives and the
real objectives are given in Fig. 3.

From the simulation results, we find that the predicted values and the real ones
are very close. In other words the simulated values match well with the measured
ones. It achieves a high prediction, and completely meets with the actual production
needs. This confirms that the BPN based beam pumping process model is stable
and reliable and could be regarded as a knowledge source for follow-up process
parameters optimization.
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Fig. 3 The BP networks prediction results

Table 3 The limits of parameters used in optimization

Parameters NP (time/min) MAXL (kN) MINL (kN) ES (m) CEP (%)

Limits 2.5–3.5 93.3–93.5 42.3–42.5 3.1–3.2 71–72

12.75 12.8 12.85 12.9 12.95 13 13.05 13.1 13.15 13.2
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Fig. 4 The Pareto optimal front of SPEA2

4.2 Decision Parameter Optimization by SPEA2

Using the designed network, the effect of the operating parameters of BPU, like the
number of punching, maximum load, minimum load, effective stroke, computational
pump efficiency, on electric power consumption and oil yield are studied. Table 3
shows domain of change for input parameters.

In the SPEA2 algorithm, initial population, evolutionary generation, offspring
individuals and parent individual are set to 80, 500, 40, and 40.The results of beam
pumping unit Pareto frontier are shown in Fig. 4. Three instances of solutions of
Pareto optimal set is shown in Table 4.
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Table 4 The Pareto optimal front of SPEA2

NO. NP MAXL MINL ES CPE EPC OY

1 3.5 93.4979 42.4996 3.10132 71.9995 12.90683 36.159
2 3.49999 93.3 42.4999 3.10004 71.7451 12.85295 35.973
… … … … … … … …
49 3.49999 93.3104 42.4998 3.10047 71.7582 12.82161 35.740

As shown in Table 4, different value of number of punching from Pareto optimal
set can be set according to corresponding status, the result shows that electric power
consumption is decreased above 5 % and oil yield is increased above 6 %.

5 Conclusion

In this paper, a hybrid BPN-SPEA2 strategy is proposed to achieve the optimum
decision parameters in the beam pumping unit production system for the aim of
saving energy. BPN is applied to build up the model of beam pumping unit, and
decision parameters are optimization by SPEA2 based on the trained BPN model.
The experiments are conducted on 3,234 real samples from DaGang oil field. The
results show that the system performance using the optimum parameters is improved
significantly. Specifically the electric power consumption decreases more than 5 %
and oil yield increases more than 6 %. It provided the proposed method is a alternative
effective solution for energy saving of oil field.

Acknowledgments The authors would like to acknowledge DaGang oil field for providing indus-
trial data. Thanks to the support by National Natural Science Foundation of China (No. 51075418
and No. 61174015), Chongqing Natural Science Foundation (cstc2013jcyA40044) and Project
Foundation of Chongqing Municipal Education Committee (KJ121402).

References

1. Bai, L.P., Ma, W.Z., Yang, Y.: The Discussing of Energy-saving of Motor for Beam balanced
Pump. Oil Machinery 27(3), 41–44 (1999)

2. Su, D.S., Liu, X.G., Lu, W.X.: Overview of Energy-saving Mechanism of Beam-balanced
Pump. Oil Machinery 19(5), 49–63 (2001)

3. Xu, J., Li, J., Chen, J., Han, M., Han, X.: Research on Power Saving Positive Torque and
Constant Power Pumping Unit and Tracking Technique System. Procedia Engineering 29,
1034–1041 (2012)

4. Zhu, J., Ruan, J.Q., Sun, H.F.: Comparative Test Study of Energy-saving Pumping and Their
Effect. Oil Field Equipment 35(3), 60–62 (2006)

5. Gu, Y.H., Xiao, W.S., Zhou, X.X., Zhang, S.C., Jin, Y.H.: Full Scale Test of ZXCY-Series
Linear Motor Pumping Units. Petroleum Exploration and Development 35(3), 366–372 (2008)

6. Li W., Yin Q., Cao J., Li L.: The Optimization Calculation and Analysis of Energy-saving Motor
used in Beam Pumping Unit based on Continuous Quantum Particle Swarm Optimization. Bio-
Inspired Computing: Theories an Applications: 1–8 (2010)



20 X. Gu et al.

7. Qi W., Zhu X., Zhang Y.: Study of Fuzzy Neural Network Control of Energy-saving of Oil
Pump. Proceedings of the CSEE: 137–140 (2004)

8. Zahedi, G., Parvizian, F., Rahimi, M.R.: An Expert Model for Estimation of Distillation Sieve
Tray Efficiency based on Artificial Neural Network Approach. Journal of Applied Science
10(12), 1076–1082 (2010)

9. Zitzler E., Laumanns M., Thiele L.: SPEA2: Improving the strength Pareto evolutionary algo-
rithm. (2001)

10. Rumelhart D. E., McClelland J. L.: Parallel Distributed Processing: Psychological and Biolog-
ical Models vol. 2: The MIT Press (1986)



Optimization Strategy Based on Immune
Mechanism for Controller Parameters

Xian-kun Tan, Chao Xiao and Ren-ming Deng

Abstract Control quality of the controller depends on correct tuning of control
parameter, and it is directly related to the control effect of whole control system.
Aimed at the puzzle that the parameter of controller has been difficult to tune, the
paper proposed a sort of optimization model based on immune mechanism for tuning
of controller parameters. Firstly it defined the antibody, antigen and affinity of tuning
parameter, and secondly explored the process of parameter tuning based on immune
mechanism in detail, then explained the tuning method by means of optimizing
parameters of PID controller as well as the seven parameters of HSIC controller.
Finally it took a high-order process control as the example, and made the simulation
to a large time delay process, and to a highly non-minimum phase process as well as
HSIC controller. The simulation experiment results demonstrated that it is better in
comparison with some other tuning methods for dynamic and steady performance.
The research result shows that the proposed method is more effective for controller
parameter tuning.

Keywords Immune mechanism · Genetic algorithm · Clone selection · Mutation ·
Parameter tuning
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1 Introduction

For recently several decade years,although lots of advanced control algorithms have
been continually presented, but until nowadays, the conventional control algorithm
of PID is always applied in process industrial control field widely, and also it has still
taken the most part in the actual engineering applications. The key puzzle in actual
engineering of industrial control fields is very difficult to tune the parameters of PID
controller so as to influence the control quality being not so good. Therefore it is
necessary to research the method of tuning parameter for PID controller. According
to the partition of development stage, it can be divided as the routine and intelligent
tuning method of PID parameters [1]. In terms of the partition of controlled object
number, it is generally divided as single-variable and multi-variable tuning method
of PID parameters. By means of combination form of control quantity, also it can
be divided as linear and non-linear parameter tuning method of PID controller, the
former is used to the classical PID controller, and the latter is used to the nonlinear PID
controller created by combination mode of non-linear track-differentiator and non-
linear combination. With the rapid development of intelligent control technology, in
order to improve the performance of PID controller, it has been come forth to lots
of intelligent PID controller. Those controllers fused the multi-aspect technologies
such as fuzzy control [2], NN [3], ant algorithm [4], genetic arithmetic [5, 6] and so
on. It made PID controller own the self-learning ability and therefore extended the
application bound of PID controller. Based on the enlightening of biology immunity
system, the paper proposed a sort of parameter tuning model of controller based on
the immune mechanism.

2 Process of Parameter Tuning for Controller

Due to the classical control algorithm of PID being conventional tuning manner, in
order to improve the system performance, for convenience, here it takes the PID
parameter tuning as an example, and makes the anatomy explain why it is the puzzle.
Therefore it is necessary to research the influence on control system characteristic
for each parameter in the control algorithm of PID. The following would respectively
explain the influence on dynamic and steady performance of the whole system for
each node parameter of PID.

1) The action of proportional node is to reduce the deviation of system. If the pro-
portional coefficient KP is enlarged then it would be expedited to the response
speed, and reduced to the steady error and enhanced to the control precision for
the whole system. But too large KP always results in overshoot, and leads to the
system being instable. And if KP is too small then the overshoot of the whole
system would be reduced so as to enlarge the steady-state abundant extent. But
the system precision would be reduced, and it would make the system precision
be reduced so as to result in time delay of transition process.
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2) The action of integral node is to eliminate steady-state deviation, and to reduce
the system error. But it would make that the system response speed becomes slow,
the system overshoot gets large, and the system results in bringing oscillation.
But it is propitious to reduce system error for increasing integral coefficient KI,
however too strong integral action is able to make the system bring overshoot so
as to bring system oscillation. Although reducing integral coefficient KI makes
the system improve the stability, and avoids the system bringing oscillation, and
reduces the system overshoot, but it is adverse for eliminating steady deviation.

3) The function of differential node can reflect the change trend of deviation signal.
It is able to introduce a early modifying signal that it redounds to reduce system
overshoot before deviation signal value going into too large. It redounds to reduce
the system error, to overcome the oscillation, to make the system going to stable
state fleetly, to enhance the system response speed, and to reduce the adjusting
time, therefore the dynamic characteristic of system is improved. The disadvan-
tages are poor in anti-jamming ability, and great in influence on process response.
If the differential coefficient KD gets large then it is propitious to expedite the
system response, to reduce the system overshoot, and to increase the system sta-
bility. But it would result in disturbance sensitive and weaken the restraining
disturbance ability, and if the KD gets too large then it would result in response
process advancing to apply the brake, and delay the adjusting time. And reversely,
if the differential coefficient KD gets too small then the speed-down of system
adjusting process would be delayed, and the system overshoot would be increased.
It makes system response speed slow-down, and finally it would result in system
stability being bad.

The above analysis shows that the tuning of PID parameter is very complicated,
and even it is very difficult to make adjusting and controlling in the complicated
system. It is the most difficult to select the three control parameters, KP, KI and KD
correctly. Therefore it is necessary to seek the new method of parameter tuning so
as to obtain the satisfactory control quality for whole system.

3 Description of Optimization for Control Parameter Tuning

Now consider a closed-loop negative feedback control system shown as in Fig. 1, in
which, Gp(s) is the controlled object model, Gc(s) is the controller, r is the input of
set value, e is the error signal, u is the controller output, y is the system output.

The aim of controller parameter tuning is to select a set of control parameter of
PID controller for given controlled object by means of a sort of tuning method. Aimed
at the given input, the tuning result of the system constituted by controlled object
and controller is to make the one or several performance indexes obtain optimization
under the condition of certain criteria. Therefore there are two main problems needed
solving in optimization design of the controller, they are the selection of performance
indexes and the choice of tuning method for seeking optimization parameters.
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Fig. 1 Control system with closed-loop negative feedback

There are three aspects of indexes to weigh the control system performance. They
are respectively the stability, precision and speediness. For example, the rising time
reflects the system speediness, the shorter the rising time is, the sooner the control
process response is, and the better the system control quality is.

If it only hankers for dynamic characteristic of system simply then it is very pos-
sible to make the gained parameter be too large for control signal. And therefore it
would result in system being instable because of connatural saturation character in
the system for actual engineering application. In order to get better control effect, it
proposes that the control quantity, system error and rising time should have certain
constraint condition. Because the accommodating function is related to the objective
function, after determining the objective function, it could directly be as accom-
modating function to make the parameter seek the optimization value. The optimal
parameter is the control parameter that is corresponding to x under the condition of
satisfying constraints, and it makes the function f(x) to reach the extremum.

In order to obtain the satisfactory dynamic character of transition process, it
adopted the performance index of error absolute time integral to be as selection
parameter for least objective function. To avoid the control energy to be too large,
it added a square item of control input in the objective function. The formula (1) is
chosen as the optimal index of parameter selection.

J =
⎡ √

0
(α1|e(t)| + α2u2(t))dt + α3 × tu (1)

In which, e(t) is the system error, u(t) is the control output, tu is the rising time,
α1, α2 and α3 is respectively the different weighting value.

To avoid the system bringing overshoot, the castigation function is adopted.
Namely, once the overshoot happens, the overshoot would be added an item of opti-
mal performance indexes, here the optimal performance index would be expressed
as formula (2).

If e(t) < 0, J =
⎡ √

0
(α1|e(t)| + α2u2(t) + α4|e(t)|)dt + α3 × tu (2)

In which, α1, α2 and α3 and α4 is respectively the weight value, and α4 ∈ α1.
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Table 1 Mapping between human-body immune and immune based tuning model

Human-body immune system Model of parameter tuning

Antigen Optimal solution
Antibody Feasible solution
Cell clone Antibody copy

Binding of antibody and antigen Value of antibody replacing the antigen
Cell B, Cell T Vector

Increase of antibody density Increase of approximate feasible solution

4 Design on Model Algorithm

In this paper, the proposed self-tuning algorithm of control parameter based on
immune mechanism is similar to the working process of human body immunity sys-
tem. The relationship between the human body immunity system and the proposed
method of parameter tuning model is shown as in Table 1.

In the candidate solution generated by random, through the affinity computing of
antigen and antibody, the superiority antibody is voted in, they hold the superiority
gene, and make the mutation in the clone process and therefore lots of new antibodies
are produced. Then it can reappraise for new antibody set and the new brought
antibody also renews the antibody set. The updating mechanism of antibody is that
the newly brought antibody, owned higher affinity, washes out the antibody that the
affinity is low in the antibody. The antibody in the set is ranked according to the
sort ascending of affinity. Through the specified evolution generation, the optimal
antibody can be distilled. Therefore the optimal solution is obtained.

4.1 Basic Conception

In order to solve the problems, it is necessary to find the optimal solution of the
problem needed by solving. The optimal solution is abstracted as the antigen, and
the feasible solution of the problem is abstracted as an antibody that represents a
candidate solution of the problem. For convenience to discuss the problem, here
some definitions would be given as the following.

Definition 1. The antigen is specified as the optimized objective function.
Definition 2. The antibody is specified as the candidate solution of objective func-

tion. In the real number encoding, usually the antibody is a multi-dimension vector,
X = vX1, X2, ...X N ), each antibody is represented by a point in n-dimension space.

Definition 3. The affinity of antibody-antigen is the value after computing antibody
to replace antigen (optimized objective function).
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4.2 Model of Clone Selection

In the human body immune system, when the antigen is in inbreak for human body, the
immune system of human body would bring lots of antibody to match the antigen.
Meanwhile, the antibody density, which affinity with antigen is large, would get
higher, and it is propitious to eliminate the antigen. When the antigen dies out, this
kind of antibody reproduction would be restrained. And at the same time, the antibody
density would be reduced so as to make the immune system keep the balance all the
time. In the antibody set, the superiority antibody, which is large in affinity with
antigen, is activated. In order to eliminate antigen carrying through large number of
clone, the encoding of clone selection process is designed as the following.

Procedure CloneSelect ( )
Begin
Assume antigen ag; /* s.t. min(J) */
Antibody set of random initialization;
While (evolution generation < m) / *m is the evolution generation * /
Begin
Computing f affinity (ag, ab) for each antibody until condition end,
Carrying through sort ascending array according to the affinity value
Selecting the front θ antibody brings new antibody ab new according to

the f num (ab(i))
Carrying through mutation for new brought antibody ab new
Joining N new antibody of random bringing into ab new
While (ab new non-empty)
Begin
Selecting the least affinity cell from the antibody set;
If (the affinity of selected cell > f affinity ( ag, ab new )
Then make replacing using new antibody;

End
End

End
Output the optimal solution from antibody set;
End

To make the new producing cell (come from clone selection process [7]) join
to antibody set, the antibody density would be increased. It shows that the amount
of approximate solution is increasing. But if this kind of antibody is excessively
centralized then it is very difficult to keep antibody diversity. And the antibody
owned better evolution potential would be lost, therefore it is able to go into the local
optimization [8].

To avoid getting in local optimization, it is restricted to the amount of cloned
memory cell in the clone selection process, shown as in formula (3).

fnum =
q⎣

i=1

≤γ · θ

i
∃ (3)
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In which, f num is the total clone number, the i th item represents the clone number
of i th cell, γ is a parameter factor of pre-enactment, θ is the amount of superiority
cell. It can know from formula (3), the large the cell affinity is, also the more the clone
amount is, and contrarily it would be less. For instance, γ= 2, θ= 100, because the
affinity magnitude of cloned memory cell is to arrange according to the sequence,
therefore the cloned amount of maximum antibody cell of the affinity is 200, the
cloned number is 100, the rest may be deduced by analogy method. Meanwhile in
order to prevent getting in local optimization, it introduces certain new antibody
produced by random in each generation evolution process.

The antibody cell updates dynamically in the evolutionary process. Each anti-
body cell always selects optimal antibody from the current antibody and new cloned
antibody. Accordingly the dynamic update of antibody cell set is realized, and the
antibody scale keeps the steady-state balance.

4.3 Selection for Mutation

The objective of mutation is to make change for encoding of filial generation antibody
so as to obtain the better solution than the father generation. Because the antibody
adopts real number encoding, so the mode of Gaussian mutation is used in the algo-
rithm. And also the mutation does not be acted on barbarism species. In order to
centralize search around high affinity antibody, and to guarantee the antibody diver-
sity, it is introduced to a sort of self-adaptive mutation, namely it acts on individual
component for each mutation operator shown as in formula (4).

Xi = |xi + Nm ∗ N (0, 1) ∗ xi | (4)

In which, N(0,1) is a random number subjected to the standard Gaussian distrib-
ution, | · | is to find absolute value because of control parameter being not able to be
negative, Nm is the mutation rate corresponding to the antibody, it is determined by
formula (5).

Nmi = ρ
f (xi )

max( f (xi ))
(5)

Obviously the mutation rate of the antibody is inversely proportional to its affinity,
the higher the affinity is, and the smaller the mutation rate is. The antibody adjusts
adaptively the mutation step-length in terms of affinity magnitude for each iterative
process. It makes search to be centralized around the high affinity antibody so as
to enhance the convergent speed and also it keeps the species diversity. The is the
mutation constant used as adjusting the mutation intensity, it is related to the search
space size and species scale.
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5 Simulation and Its Analysis

For the above algorithm, here we can take the parameter tuning of human simulated
intelligent controller (HSIC) as an examples to validate its correctness. For validating
the performance of algorithm proposed in this paper, the controlled object [6] is
selected as high order process, its transfer function is expressed by formula (7).

G1(s) = 1/(1 + s)8 (6)

By means of the proposed method as mentioned above, it can be used as the tuning
of HSIC algorithm [9]. The control algorithm is expressed as the formula (7).

μun =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sgn(en)Umax (e, ė)δΦ1
K p ∗ en (e, ė)δΦ2

K p ∗ ėn + Kd ∗ ėn (e, ė)δΦ3 ∪ Φ6

−K
⊂
p ∗ ėn + Kd ⊂ ∗ ėn (e, ė)δΦ4

K p ∗ ėn + Ki ∗ ⎫
e (e, ė)δΦ5

(7)

where:
un : The N th output of the controller,
en : The N th deviation,
ėn : The N th deviation change rate,
K p, K p⊂ : Proportional coefficient,
Kd , Kd ⊂ : Differential coefficient,
Ki : Integral coefficient,
Umax : The maximum output of the controller,
e1, e2 : The threshold of the deviation,
ė1 : The threshold of the deviation change rate
From the formula (7), it can be seen that there are seven parameters needed to

be tuned, they are respectively, K p, K ⊂
p, Kd , K ⊂

d , Ki and e1, e2. It is very difficult to
tune the seven parameters of HSIC. In this paper, it selects a high order process as
controlled plant [10] its transfer function is given in formula (6).

Firstly, the parameter needed to be optimized should be encoded, in the paper,
real value encoding is adopted. Encoding K p, K ⊂

p, Kd , K ⊂
d , Ki and e1, e2, ė1 as an

antibody, the antibody evolution generation is 100, population size is 50 the initial
range of parameter, K p and K ⊂

p are over interval [0, 30], Kd , K ⊂
d and K are over

interval [0, 5], e1, e2, ė1 are over interval [0, 1]. The others are respectively α1 =
0.999, α2 = 0.001, α4 = 100, α3 = 2.0, θ = 20, γ = 5, To increase global search
ability, the five antibodies are added in each generation.

The paper realized the simulation of optimization control in MATLAB by means of
optimization strategy based on immune mechanism, and we compared it with Chien-
Hrones-Reswick (CHR) , Refined Ziegler Nichols (RZN) and Genetic Programming
with ZN(GP) to tune controllers their control parameters come from Ref. [6].
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Table 2 Parameters and objective values obtained of G1(s)

Parameters and variables IHSIC GP RZN CHR

KP 0.68 0.35 1.48
Ti * 4.67 4.53 9.06
Td 1.47 1.14 2.02

ess (%) 0.00 0.00 0.00 0.00
mp (%) 0.00 4.40 0.00 48.54
ts (%) 13.59 10.02 30.04 23.22

∗ 0.43, 27.56, 1.59, 11.27, 0.01, 0.27, 0.25, 0.50

Fig. 2 Comparison curve for different algorithm

Table 2 is corresponding to the formula (7), for convenience contrast to the PID,
the parameters in the Table 2 is still to use KP, Ti, Td to express, but the parameters
of HSIC is expressed as “∗”, the actual value is under Table 2, they are respectively
the above seven parameters. In the Fig. 2 and Table 2, where ess represents steady
state error, mp represents overshoot, and ts is the settling time. From Fig. 2, it can
be concluded that IHSIC adjusting time is much better than CHR and RZN tuning
PID control method, and the overshoot is obvious less than CHR. Compare with GP
tuning PID, although the adjusting time is less than GP, but IHSIC has no overshoot.

6 Conclusion

Based on the clone selection mechanism of biology immune system, the paper pro-
posed a sort of immune based optimization method for controller parameter tuning,
and established the algorithm model that could solve the parameter tuning problems
of control system. And in this paper, it is realized to the parameter tuning of PID
and HSIC by the proposed immune model. The simulation experiment result shows
that it owns the generality and effectiveness in method, and also it is suitable for
parameter tuning of other algorithm such as optimal control etc.
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Preinvex Fuzzy-valued Function
and Its Application in Fuzzy Optimization

Zeng-tai Gong, Yu-juan Bai and Wen-qing Pan

Abstract Based on the ordering of fuzzy numbers proposed by Goetschel and
Voxman, in this paper, the representations and characterizations of semi-E-preinvex
fuzzy-valued function are defined and obtained. As an application, the conditions
of strictly local optimal solution and global optimal solution in the mathematical
programming problem are discussed.

Keywords Fuzzy numbers · semi-E-preinvexity · fuzzy optimization

1 Introduction

The concept of fuzzy set was introduced by Zadeh in [11]. Since then, many applica-
tions of fuzzy set have been widely developed. Just as many systems with parameter
uncertainty, the optimization theory with parameter uncertainty such as in objective
function, constraints, or both of objective function and constraints, is often dealt.
It is well known that the classical theory of convex analysis and mathematical pro-
gramming are closely linked each other. Some authors have discussed the convexity,
quasi-convexity and B−convex of fuzzy mappings [6, 8]. In 1994, Noor [5] intro-
duced the concept of preinvex fuzzy-valued functions over the field of real numbers
R, and obtained some properties of preinvex fuzzy-valued functions. After that, the
properties of preinvex fuzzy-valued functions have been developed and generalized
by many authors [7–10] and applied in fuzzy optimization problem [3]. The essence
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of preinvex fuzzy-valued functions is investigated and some judge theorems and a
characterization of preinvex fuzzy-valued functions are obtained by using the upper
(lower) semi-continuity [4]. In this paper, some representations and characteriza-
tions of semi-E-preinvex fuzzy-valued functions are obtained. As an application,
the conditions of strictly local optimal solution and global optimal solution in the
mathematical programming problem are discussed.

2 Preliminaries and Definitions

A fuzzy number is a mapping u: R √ [0, 1], with the following properties:

1. u is normal, i.e., there exists x0 ∈ R with u(x0) = 1;
2. u is convex fuzzy set;
3. u is semicontinuous on R and
4. x ∈ R : u(x) > 0 is compact.

Let F be the set of all fuzzy numbers on R. For u ∈ F , we write

[u]α = [u−(α), u+(α)],

then the following conditions are satisfied:

1. u−(α) is abounded left continuous non-decreasing function on (0, 1];
2. u+(α) is abounded left continuous non-increasing function on (0, 1];
3. u−(α) and u+(α) are right continuous at α = 0 and left continuous at α = 1.
4. u−(1) ≤ u+(1).

Conversely, if the pair of functions u−(α) and u+(α) satisfy conditions (1)− (4),

then there exists a unique u ∈ F such that

[u]α = [u−(α), u+(α)]

for each α ∈ [0, 1] (see, e.g.[1])
For brevity, we write

V = {(u−(α), u+(α),α)|0 ≤ α ≤ 1, u− : I √ R, u+ : I √ R are bounded
functions}; V̂ = {(u−(α), u+(α),α)|0 ≤ α ≤ 1, u−(α), u+(α) are Lebesgue
integrable}; F = {(u−(α), u+(α),α)|0 ≤ α ≤ 1, u−(α) is left continuous non-
decreasing function, u+(α) is left continuous non-increasing function and they are
right continuous at α = 0}.

The addition and scalar multiplication in V are defined as follows:
(u−(α), u+(α),α)+(v−(α), v+(α),α) = (u−(α)+v−(α), u+(α)+v+(α),α),

k(u−(α), u+(α),α) = (ku−(α), ku+(α),α).

Let x = (x1, x2, · · · xn) ∈ Rn, u = (u1, u2, · · · un) ∈ V̂ n, then scalar product of
x and u is defined by
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∃x, u∗ = x1u1 + x2u2 + · · · + xnun .

Assume that u, v ∈ V̂ ,

u = {(u−(α), u+(α),α)|0 ≤ α ≤ 1},

v = {(v−(α), v+(α),α) ∪0 ≤ α ≤ 1}

are members of V̂ , then u precedes v (u ≤ v) if

∫ 1

0
f (α)(u−(α) + u+(α))dα ≤

∫ 1

0
f (α)(v−(α) + v+(α))dα.

For a fuzzy-valued function

F(x) = {(F−(α, x), F+(α, x),α)|0 ≤ α ≤ 1},

we define

TF(x) =
∫ 1

0
f (α)[F−(α, x) + F+(α, x)]dα,

where f is monotone non-decreasing function and f (0) = 1,
∫ 1

0 f (α)dα = 1
2 .

f can be interpreted as weighting function, its nondecreasing ensure a closer level
of nuclear cuts and determine the relationship between the greater role. Especially,
if f (α) = α, then the ordering relation between two u, v ∈ V̂ could be found in [2]
which defined by Goetschel and Voxman.

Definition 2.1 [5] Let S ⊂ Rn be an open set, F : S √ F be a fuzzy-valued func-
tion. If ∂

∂xi
F−(α, x) and ∂

∂xi
F+(α, x) (i = 1, 2, . . . , n) are continuous, then F(x) is

said to be differentiable on S, and

∇F(x) =
[

∂

∂x1
F(x),

∂

∂x2
F(x), . . . ,

∂

∂xn
F(x)

]

is called the gradient of fuzzy-valued function F(x).

Let y ∈ (S ⊂ Rn), we say S is invex at y with respect to η : S × S √ Rn, if for
each x ∈ S,λ ∈ [0, 1], y + λη(x, y) ∈ S.

S is said to be an invex set with respect to η if S is invex at each y ∈ S.

In particular, when η(x, y) = x − y, invex set degrades a general convex set.
η : S × S √ Rn is called a skew mapping if

η(x, y) + η(y, x) = 0, x, y ∈ S, λ ∈ [0, 1].

Definition 2.2 A fuzzy-valued function F : S √ F is said to be preinvex on invex
set S with respect to η : S × S √ Rn, if for any x, y ∈ K ,λ ∈ [0, 1],
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TF(y+λη(x,y)) ≤ λTF(x) + (1 − λ)TF(y).

Definition 2.3 A set S(⊂ Rn) is said to be E-invex set with respect to η : S×S √ Rn

on S, if there is a mapping E : Rn √ Rn such that

E(y) + λη(E(x), E(y)) ∈ S,

for 0 ≤ λ ≤ 1.

Definition 2.4 A fuzzy-valued function F : S √ F is said to be semi-E-preinvex
respect to η : S × S √ Rn on S, if there is a mapping E : Rn √ Rn such that

E(y) + λη(E(x), E(y)) ∈ S

and
TF(E(y)+λη(E(x),E(y))) ≤ λTF(x) + (1 − λ)TF(y)

for each x, y ∈ S and 0 ≤ λ ≤ 1.

3 The Judgement and Characterization of Semi-E-preinvex
Fuzzy-valued Functions

Theorem 3.1 Let F : S √ F be a semi-E-preinvex fuzzy-valued function on E-invex
set S, then TF(E(y)) ≤ TF(y) for each x ∈ S.

Proof. Let F : S √ F be a semi-E-preinvex fuzzy-valued function on E-invex set
S and λ ∈ [0, 1]. Then

TF(E(y)+λη(E(x),E(y))) ≤ λTF(x) + (1 − λ)TF(y).

Thus for λ = 0, then TF(E(y)) ≤ TF(y) for each x ∈ S.

Theorem 3.2 Let F : S √ F be a semi-E-preinvex fuzzy-valued function on S iff

TF(E(y)+λη(E(x),E(y))) ≤ λTu + (1 − λ)Tv

for u, v ∈ F satisfying TF(x) ≤ Tu, TF(y) ≤ Tv, and x, y ∈ S, where 0 ≤ λ ≤ 1.

Proof. Note that TF(x) < Tu, TF(y) < Tv, and F is semi-E-preinvex on S, then

TF(E(y)+λη(E(x),E(y))) ≤ λTF(x) + (1 − λ)TF(y) < λTu + (1 − λ)Tv.

Conversely, write
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F(x) = (F−(α, x), F+(α, x),α), F(y) = (F−(α, y), F+(α, y),α)

for x, y ∈ S,λ ∈ (0, 1). ∀ε > 0, let

u = {(F−(α, x) + ε

2
, F+(α, x) + ε

2
,α)| 0 ≤ α ≤ 1},

v = {(F−(α, y) + ε

2
, F+(α, y) + ε

2
,α)| 0 ≤ α ≤ 1},

then

TF(x) =
∫ 1

0
α[F−(α, x)+ F+(α, x)]dα <

∫ 1

0
α[F−(α, x)+ F+(α, x)+ ε]dα=Tu,

TF(y)=
∫ 1

0
α[F−(α, y)+ F+(α, y)]dα <

∫ 1

0
α[F−(α, y)+ F+(α, y)+ε]dα = Tv.

That is,
TF(E(y)+λη(E(x),E(y)))

< λ

∫ 1

0
α[F−(α, x)+F+(α, x)+ε]dα+(1−λ)

∫ 1

0
α[F−(α, y)+F+(α, y)+ε]dα.

It follows that

TF(E(y)+λη(E(x),E(y))) ≤ λTF(x) + (1 − λ)TF(y)

when ε √ 0.

Theorem 3.3 Let F : S √ F be a semi-E-preinvex fuzzy-valued function on E-invex
set S. Then

Ku(F) = {x |x ∈ S, TF(x) ≤ Tu} ∀u ∈ F

is E-invex set.

Proof. For any x, y ∈ Ku(F), we have TF(x) ≤ Tu, TF(y) ≤ Tu . Since S is E-invex
set, i.e.

E(y) + λη(E(x), E(y)) ∈ S,

and F : S √ F is semi-E-preinvex on E-invex set S, i.e.

TF(E(y)+λη(E(x),E(y))) ≤ λTF(x) + (1 − λ)TF(y) ≤ Tu,

we have
E(y) + λη(E(x), E(y)) ∈ Ku(F).
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Hence Ku(F) is a E-invex set.
Given a mapping E : Rn √ Rn . Let the mapping

E × I : Rn × F √ Rn × F

to be
E × I (x, u) = (E(x), u), ∀(x, u) ∈ Rn × F .

Definition 3.1 Let S ⊂ Rn × F . S (⊂ Rn × F) is said to be a E × I -invex set if
there exists E : Rn √ Rn such that

E × I (y, v) + λη[E × I (x, u), E × I (y, v)]
= [E(y) + λη(E(x), E(y)),λu + (1 − λ)v] ∈ S,

for (x, u), (y, v) ∈ S (x, y ∈ Rn, u, v ∈ F) and λ ∈ [0, 1].
Theorem 3.4 Let {Si }i∈J (Si ⊂ Rn × F) be E × I -invex set. Then

⋂
i∈J Si (⊂

Rn × F) is a E × I -invex set.

Proof. Let (x, u), (y, v) ∈ ⋂
i∈J Si , λ ∈ [0, 1], then ∀i ∈ J, we have (x, u),

(y, v) ∈ Si . Since each Si (⊂ Rn × F) is E × I -invex, i.e. there exists a mapping
E : Rn √ Rn such that for (x, u), (y, v) ∈ Si and λ ∈ [0, 1], we have

E × I (y, v) + λη[E × I (x, u), E × I (y, v)]
= [E(y) + λη(E(x), E(y)),λu + (1 − λ)v] ∈ Si

for i ∈ J. It follows that

[E(y) + λη(E(x), E(y)),λu + (1 − λ)v] ∈
⋂
i∈J

Si .

That is,
⋂

i∈J Si (⊂ Rn × F) isa E × I -invex set.

Theorem 3.5 Let S be a E−invex set. Then F is a semi-E-preinvex fuzzy-valued
function on S iff

{(x, u)|x ∈ S , u ∈ F , TF(x) < Tu}

is a E × I− invex set.

Proof. Let S(F) = {(x, u)|x ∈ S , u ∈ F , TF(x) < Tu}. Since

E × I (y, v) + λη[E × I (x, u), E × I (y, v)]
= [E(y) + λη(E(x), E(y)),λu + (1 − λ)v] ∈ S(F),

i.e. for any x, y ∈ S, λ ∈ [0, 1] and u, v ∈ F satisfying TF(x) < Tu, TF(y) < Tv ,
thus
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TF(E(y)+λη(E(x),E(y))) < λTu + (1 − λ)Tv.

According to Theorem 3.2, F is semi-E-preinvex on S iff S(F) is a E × I− invex
set.

We define an epigraph of F as follows:

epi(F) = {(x, u)|x ∈ S , u ∈ F , TF(x) ≤ Tu}.

Theorem 3.6 Let S be an E−invex set. Then F : S √ F is a semi-E-preinvex
fuzzy-valued function on S iff

epi(F) = {(x, u)|x ∈ S , u ∈ F , TF(x) ≤ Tu}

is an E × I− invex set.

Proof. Let F be a semi-E-preinvex fuzzy-valued function on S. Then for any (x, u),

(y, v) ∈ epi(F) and λ ∈ [0, 1], we have

E(y) + λη(E(x), E(y)) ∈ S

and

TF(E(y)+λη(E(x),E(y))) ≤ λTF(x) + (1 − λ)TF(y) ≤ λTu + (1 − λ)Tv.

Hence

E × I (y, v) + λη[E × I (x, u), E × I (y, v)]
= [E(y) + λη(E(x), E(y)),λu + (1 − λ)v] ∈ epi(F).

i.e. epi(F) is an E × I− invex set.
Conversely, ∀(x, y) ∈ S, λ ∈ [0, 1], we have (x, F(x)) ∈ epi(F), (y, F(y)) ∈

epi(F). Since epi(F) is an E × I− invex set, we have

E × I (y, F(y)) + λη[E × I (x, F(x)), E × I (y, F(y))]
= [E(y) + λη(E(x), E(y)),λF(x) + (1 − λ)F(y)] ∈ epi(F).

Hence
TF(E(y)+λη(E(x),E(y))) ≤ λTF(x) + (1 − λ)TF(y).

Therefore, F is semi-E-preinvex on S.

Theorem 3.7 Let {Fi |i ∈ J } be a collection of semi-E-preinvex function on S, if for
any x ∈ S, sup{Fi (x)|i ∈ J } exists, then F(x) = sup{Fi (x)|i ∈ J } is semi-E-
preinvex on S.
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Proof. ∀i ∈ J, {Fi } is semi-E-preinvex on S, then

epi(Fi ) = {(x, u)|x ∈ S , u ∈ F , TFi (x) ≤ Tu}

is an E × I− invex set, Furthermore,

⋂
i∈J

epi(Fi ) = {(x, u)|x ∈ S , u ∈ F , TFi (x) ≤ Tu, i ∈ J }

is an E × I− invex set. Note that

(x, u) ∈
⋂
i∈J

epi(Fi )

⇔ x ∈ S , u ∈ F , TFi (x) ≤ Tu, i ∈ J

⇔ x ∈ S , u ∈ F , TF(x) ≤ Tu

⇔ (x, u) ∈ epi(F).

Hence
⋂

i∈J epi(Fi ) = epi(F) is an E × I− invex set. According Theorem 3.6, F
is semi-E-preinvex on S.

Theorem 3.8 Let Fi : S √ F (i = 1, 2, · · · , k) be a semi-E-preinvex fuzzy-valued
function on S with a mapping E : Rn √ Rn . Then

h(x) = αk
i=1ai Fi (x) (ai ≥ 0, i = 1, 2, · · · , k)

is semi-E-preinvex on S.

Proof. Since Fi : S √ F (i = 1, 2, · · · , k) is semi-E-preinvex on S with a mapping
E : Rn √ Rn, i.e. for any x, y ∈ S and λ ∈ [0, 1], then

TFi (E(y)+λη(E(x),E(y))) ≤ λTFi (x) + (1 − λ)TFi (y), i = 1, 2, · · · , k.

Hence
Tαk

i=1 Fi (E(y)+λη(E(x),E(y))) ≤ λTαk
i=1 Fi (x) + (1 − λ)Tαk

i=1 Fi (y).

Therefore
Th(E(y)+λη(E(x),E(y))) ≤ λTh(x) + (1 − λ)Th(y).

i.e. h is semi-E-preinvex on S.

Theorem 3.9 Let F be semi-E-preinvex on S. Then the following states are true:

1. If φ : F √ F is a nondecreasing convex function, then the composite function
φ ◦ F : S √ F is semi-E-preinvex on S;

2. If φ : F √ F is positively homogeneous nondecreasing additive function, then
the composite function φ ◦ F : S √ F is semi-E-preinvex on S.
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Proof. For any x, y ∈ S, λ ∈ [0, 1], we have E(y) + λη(E(x), E(y)) ∈ S and

TF(E(y)+λη(E(x),E(y))) ≤ λTF(x) + (1 − λ)TF(y),

1. When φ : F √ F is a nondecreasing convex function,

Tφ◦F(E(y)+λη(E(x),E(y)))

= Tφ(F(E(y)+λη(E(x),E(y))))

≤ Tφ(λF(x)+(1−λ)F(y))

≤ TλφF(x)+(1−λ)φF(y)

= Tλφ◦F(x)+(1−λ)φ◦F(y).

i.e. φ ◦ F : S √ F is semi-E-preinvex on S.

2. When φ : F √ F be positively homogeneous nondecreasing additive function,

Tφ◦F(E(y)+λη(E(x),E(y)))

= Tφ(F(E(y)+λη(E(x),E(y))))

≤ Tφ(λF(x)+(1−λ)F(y))

≤ Tφ(λF(x))+φ((1−λ)F(y))

≤ TλφF(x)+(1−λ)φF(y)

= Tλφ◦F(x)+(1−λ)φ◦F(y).

i.e. φ ◦ F : S √ F is semi-E-preinvex on S.

4 The Optimization of Preinvex Fuzzy-valued Function

Let F : S √ F be a fuzzy-valued function on S. We consider the following fuzzy
optimization problem.

(P) min F(x), s.t. x ∈ S = {x ∈ Rn|Gi (x) ≤ 0̃, i = 1, 2, . . . , m},

where F : Rn √ F and Gi : Rn √ F are semi-E-preinvex on S.

Theorem 4.1 Let F : Rn √ F and Gi : Rn √ F be semi-E-preinvex fuzzy-valued
functions on Rn . Then S is E−invex.

Proof. Let Gi : Rn √ F (i = 1, 2, . . . , m) be semi-E-preinvex fuzzy-valued
function on Rn,

Si = {x ∈ Rn|TGi (x) ≤ 0} (i = 1, 2, . . . , m).
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Then
TGi (E(y)+λη(E(x),E(y))) ≤ λTGi (x) + (1 − λ)TGi (y) ∈ Si .

Hence

S =
m⋂

i=1

Si = {x ∈ Rn|TGi (x) ≤ 0, i = 1, 2, . . . , m}

is E−invex.
Similarly to the proof of Theorem 4.1, we have the following theorem.

Theorem 4.2 Let F : Rn √ F and Gi : Rn √ F be semi-E-preinvex fuzzy-valued
function on Rn . Then F : Rn √ F is semi-E-preinvex on S.

Theorem 4.3 Let F : Rn √ F be semi-E-preinvex on S and x̄ a solution of the
following problem:

(PE ) min(F ◦ E)(x), x ∈ S.

Then E(x̄) is a solution of the problem P.

Proof. Let E(x̄) be a nonsolution of the problem P. Then there exists y ∈ S such
that

TF(y) < TF(E(x̄)).

Then according 4.1,we have TF(E(y)) ≤ TF(y). Hence

TF(E(y)) < TF(E(x̄)),

which contradicts the optimality of x̄ for the problem (PE ). Therefore E(x̄) be a
solution of problem P.

Theorem 4.4 Let F : Rn √ F be semi-E-preinvex fuzzy-valued function on S and
x̄ = E(x̄) ∈ S a local solution of the problem of (P). Then x̄ be a global solution of
problem P.

Proof. Let x̄ = E(x̄) ∈ S be a local solution of the problem of (P). Then there
exists δ > 0, such that ∀x ∈ U (x̄, δ)

⋂
S, we have

TF(x̄) < TF(x).

Suppose x̄ is a nonsolution of problem of (P), then there exists y ∈ S such that

TF(y) < TF(x̄) = TF(E(x̄)).

∀λ ∈ (0, 1), we have

λTF(y) + (1 − λ)TF(x̄) < TF(x̄).
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Since F is semi-E-preinvex on S and x̄ = E(x̄) ∈ S, we have

TF(E(x̄)+λη(E(y),E(x̄))) < λTF(y) + (1 − λ)TF(x̄).

Hence
TF(E(x̄)+λη(E(y),E(x̄))) < TF(x̄).

Since λ may be arbitrarily small, we have

E(x̄) + λη(E(y), E(x̄)) ∈ U (x̄, δ)
⋂

S.

which contradicts (1), therefore x̄ is a global solution of problem P.

Theorem 4.5 Let F : Rn √ F be semi-E-preinvex fuzzy-valued function on S and
x̄ ∈ S satisfy

TF(E(x̄)) = Tminx∈S F(E(x)),

if Tu = Tminx∈S F(E(x)). Then θ = {x ∈ S|TF(x) = Tu} is E−invex.

Proof. ∀x, y ∈ θ, 0 ≤ λ ≤ 1, then

x, y ∈ S, TF(x) = Tu, TF(y) = Tu .

Since F : Rn √ F is semi-E-preinvex on S, we have

E(y) + λη(E(x), E(y)) ∈ S,

and
Tu ≤ TF(E(y)+λη(E(x),E(y))) ≤ λTF(x) + (1 − λ)TF(y) = Tu .

Hence
TF(E(y)+λη(E(x),E(y))) = Tu .

i.e.
E(y) + λη(E(x), E(y)) ∈ θ,

therefore θ is E−invex.

5 Conclusions

In the real world there are many linear programming problems where all decision
parameters are fuzzy numbers. Many authors have considered various types of fuzzy
linear programming problems and proposed several approaches for solving these
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problems. One of the approaches for solving fuzzy linear programming problems is
based on the concept of comparison of fuzzy numbers by use of ranking functions.
In this paper, we used the ordering of fuzzy numbers proposed by Goetschel and
Voxman, obtained representations and characterizations of semi-E-preinvex fuzzy-
valued function. As an application, the conditions of strictly local optimal solution
and global optimal solution in the mathematical programming problem have been
discussed.
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Posynomial Geometric Programming
with Fuzzy Coefficients

Ren-jie Hu, Bing-yuan Cao and Guang-yu Zhang

Abstract In practice, there are many problems in which all decision parameters are
fuzzy numbers, and such problems are usually solved by either possibilistic program-
ming or multiobjective programming methods. Unfortunately, all these methods have
shortcomings. In this note, using the concept of comparison of fuzzy numbers, we
introduce a very effective method for solving these problems. Then we propose a
new method for solving posynomial geometric programming problems with fuzzy
coefficients.

Keywords Fuzzy number · Posynomial geometric programming · Fuzzy posyno-
mial geometric programming.

1 Introduction

Fuzzy geometric programming was first proposed by Cao Bingyuan in 1987 in Tokyo,
in the second session of the International Fuzzy Systems Association (IFSA) con-
ference held in Japan. The direct algorithm and dual algorithm of fuzzy geometric
programming were studied in references [1, 2]. By mainly utilizing original algo-
rithm and duality algorithm to the multi-objective fuzzy geometric programming, the
multi-objective fuzzy geometric programming has been solved in [3–5]. The refer-
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ences [6] studied the method for solving fuzzy posynomial geometric programming
based on comparison method of fuzzy numbers developed by Roubens. The refer-
ences [7] studied the method for solving fuzzy posynomial geometric programming
based on comparison method of fuzzy numbers developed by Renjie Hu. In this note,
we discuss the problem on how to solve the fuzzy posynomial geometric program-
ming with fuzzy coefficients. For solving this problem, we proposed a new method
on comparison of fuzzy numbers. By utilizing the concept of comparison of fuzzy
numbers; posynomial geometric programming with fuzzy coefficients is reduced to
a posynomial geometric programming with crisp coefficient. In other words, we get
a new method different from the method mentioned in [1, 2, 6, 7]. And the method
is testified to be effective by numerical examples.

2 Preliminaries

Definition 2.1 Let ⎡A √ F(X), ∈α √ [0, 1] , written down as Aα = ⎣
x √ X

⎧⎧μ⎡A
(x) ≤ α } , Aα is said to be α − cut set of a fuzzy set ⎡A.

Definition 2.2 Let ⎡A be a fuzzy number, i.e. a convex normalized fuzzy subset of the
real line in the sense that:

(a) ∃x0 √ R and μ⎡A(x0) = 1 , where μ⎡A(x) is the membership function specifying
to what degree x belongs to ⎡A.

(b) μ⎡A is a piecewise continuous function.

According definition 2.1 and definition 2.2, the α − cut of ⎡A is Aα = [AL
α , AR

α ],
AL

α = inf
⎣

x √ X
⎧⎧μ Ã(x) ≤ α

⎪
, AR

α = sup
⎣

x √ X
⎧⎧μ Ã(x) ≤ α

⎪
, where α √ [0, 1].

Definition 2.3 Fuzzy number ⎡A is said to be an trapezoidal number, Ã = (a1, a2,

a3, a4), if its membership function has the following form:

μ Ã(x) =

⎨⎩⎩⎩⎩⎫
⎩⎩⎩⎩⎬

x−a1
a2−a1

, a1 ∗ x ∗ a2,

1, a2 ∗ x ∗ a3,
x−a4
a3−a4

, a3 ∗ x ∗ a4,

0, others.

Definition 2.4 A fuzzy number ⎡A is said to be a triangular fuzzy number, ⎡A =
(a1, a2, a3), if its membership function has the following form

μ Ã(x) =

⎨⎩⎫
⎩⎬

x−a1
a2−a1

, a1 ∗ x ∗ a2,

x−a3
a2−a3

, a2 ∗ x ∗ a3,

0, others.

.
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Definition 2.5 A fuzzy number ⎡A is said to be a symmetry triangular fuzzy number,
Ã = (m, a), if its membership function has the following form,

μ Ã(x) =

⎨⎩⎫
⎩⎬

1
a x − m−a

a , m − a ∗ x ∗ m,

− 1
a x + m+a

a , m ∗ x ∗ m + a,

0, others.

3 Fuzzy Posynomial Geometric Programming

Definition 3.1 X̄(Aα) is said to be an α level mean of ⎡A , if it has the following
form,

X̄(Aα) = 2
1
a + 1

b

,

where, a = inf
⎣

x √ X
⎧⎧μ Ã(x) ≤ α

⎪
, b = sup

⎣
x √ X

⎧⎧μ Ã(x) ≤ α
⎪
.

Definition 3.2 Let F(A)
θ= ⎭ 1

0 X̄(Aα)dα, F(A) is called the mean of ⎡A , then

F(A) ≤ F(B) ∪ Ã ≤ B̃.

Lemma 3.1 Let a symmetry triangular fuzzy number Ã = (m, a), then F(⎡A) =
− a2

3m + m, that is ∈ Ã = (m, a), ∃ a real number A = − a2

3m + m corresponding to it.

Proof. ∈ Ã = (m, a), according to the definition 2.5 and definition 2.6,

F(⎡A) =
∫ 1

0
X̄(Aα)dα

= ⎭ 1
0

2
1

ax+m−a + 1
−ax+m+a

dα

= − a2

3m + m.

Lemma 3.2 Let symmetry triangular fuzzy number Ã = (m, a), ⎡B = (n, b) then,

⎡A ≤ ⎡B ∪ − a2

3m
+ m ≤ − b2

3n
+ n.

Proof. According to the Lemma 3.2,

F(⎡A) = − a2

3m
+ m, F(⎡B) = − b2

3n
+ n.

According to the comparison of fuzzy numbers based on the sense of Harmonic mean,



46 R. Hu et al.

F(⎡A) ≤ F(⎡B) ∪ ⎡A ≤ ⎡B.

Hence,

⎡A ≤ ⎡B ∪ − a2

3m
+ m ≤ − b2

3n
+ n.

We consider the following fuzzy posynomial geometric programming problem:

min g̃0(x)

s.t.g̃i (x) ∗ b̃i (1 ∗ i ∗ p),

x > 0.
(1)

Objectives and constraint function is: g̃i (x)(0 ∗ i ∗ p)

g̃i (x) =
Ji∑

k=1

c̃ik

m⎢
k=1

xrikl
l (0 ∗ i ∗ p),

where c̃ik and b̃i are positive symmetry triangular fuzzy number, rikl is a real
number.

Theorem 3.1 Problem (1) is equivalent to the following posynomial geometric pro-
gramming problem:

min g0(x)

s.t. 1
bi

gi (x) ∗ 1(1 ∗ i ∗ p),

x > 0.
(2)

Objectives and constraint function is: gi (x)(0 ∗ i ∗ p):

gi (x) =
Ji∑

k=1

cik

m⎢
k=1

xrikl
l (0 ∗ i ∗ p),

where, cik and bi are real number correspond to c̃ik and b̃i , and cik > 0, bi > 0, rikl

is a real number.

Proof. Let Q1 and Q2 be the feasible solution sets of (1) and (2), respectively.
Firstly, we prove Q1 = Q2, where 1 ∗ i ∗ p.

Then x √ Q1 if and only if:

Ji∑
k=1

c̃ik

m⎢
l=1

xrikl
l ∗ b̃i , i = 1, . . . , p,

if and only if:
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Ji∑
k=1

cik

m⎢
l=1

xrikl
l ∗ bi , i = 1, . . . , p,

if and only if:
x √ Q2.

Hence Q1 = Q2.
Now suppose that x0 is optimal solution for (1), then for all x √ Q1 we have:⎡g0(x) ≤ ⎡g0(x0),
if and only if:

J0∑
k=1

c̃0k

m⎢
l=1

xr0kl
l ≤

J0∑
k=1

c̃0k

m⎢
l=1

(x0
l )γ0kl ,

if and only if:
g0(x) ≤ g0(x0).

We conclude that x0 is an optimal solution for (2).

According to the duality theory of geometric programming, the duality of problem
(2) is:

max d(ρ) =
p⎢

i=0

Ji⎢
k=1

(
1

bi
)δi ρik (

cik

ρik
)ρik

p⎢
i=1

(ρi0)
ρi0

s.t.

⎨⎫
⎬

⎥J0
k=1 ρ0k = 1,⎥p
i=0

⎥Ji
k=1 riklρik = 0, 1 ∗ l ∗ m,

ρ ≤ 0,

, (3)

where, ρ = (ρ01, . . . , ρ0J0 , ρ11 . . . , ρ1J1 , . . . ρp1, . . . ρpJp , )
T , ρi0 = ⎥Ji

k=1 ρik ,
when ρik = 0, ( 1

ρik
)ρik = 1, when i = 0, δi = 0; when i ⊂= 0, δi = 1.

Theorem 3.2 If posynomial geometric programming (2) are super-compatible [8],
then,

(1) There exist maxima of the duality problem (3).
(2) The minimum of problem (2) is equal to the maxima of problem (3). That is

g0(X∇) = d(ρ∇), where X∇is the optimal solution to the problem (2), and ρ∇ is
an optimal solution to the problem (3).

(3) The relation between original variable X∇ and dual variable ρ∇ is:

ρ∇
ik =

⎨⎫
⎬

U0k (X∇)
g0(X∇) , (i = 0, 1 ∗ k ∗ J0),

μ∇
i Uik (X∇)
g0(X∇) , (i ⊂= 0, 1 ∗ i ∗ p, 1 ∗ k ∗ Ji ),

(4)
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where the Lagrange multiplier μ∇=(μ1, μ2, · · · , μp)
T satisfying μ∇

i (g(X∇) −
1) = 0, (1 ∗ i ∗ p).

Proof. See Reference [8]. Numerical example

min g̃0(x) = c̃01x−1
1 x−1

2 x−1
3 + c̃02x1x2

s.t.

{
g̃1(x) = c̃11x1x3 + c̃12x1x2 ∗ b̃1,

x1, x2, x3 > 0,
(5)

where, c̃01 = (50, 10
∀

15), c̃02 = (60, 60), c̃11 = (1,
∀

6
2 ), c̃12 = (1, 1.5), b̃1 =

(1,
∀

6).

Solution. Consider the corresponding posynomial geometric programming to prob-
lem (5):

min g0(x) = 40x−1
1 x−1

2 x−1
3 + 40x1x2

s.t.

{
g1(x) = 1

2 x1x3 + 1
4 x1x2 ∗ 1,

x1, x2, x3 > 0.
(6)

The dual programming of problem (6) is:

max d(ρ) = (
40

ρ01
)ρ01(

40

ρ02
)ρ02(

40

2ρ11
)ρ11(

1

4ρ12
)ρ12(ρ11 + ρ12)

ρ11+ρ12 (7)

s.t.

⎨⎩⎩⎩⎩⎫
⎩⎩⎩⎩⎬

ρ01 + ρ02 = 1,

−ρ01 + ρ11 + ρ12 = 0,

−ρ01 + ρ02 + ρ12 = 0,

ρ01 + ρ02 − ρ11 = 0,

ρ ≤ 0.

Solve problem (7) and we obtain: ρ∇
01 = 2

3 , ρ∇
02 = 1

3 , ρ∇
11 = 1

3 , ρ∇
12 = 1

3 d(ρ∇) =
60.

To acquire the optimal solution x∇, we try to solve the following equation set.

⎨⎩⎩⎩⎩⎫
⎩⎩⎩⎩⎬

40x−1
1 x−1

2 x−1
3 = ( 2

3 ) · 60,

40x2x3 = ( 1
3 ) · 60,

1
2 x1x3 = 1

3/ 2
3 ,

1
4 x1x2 = 1

3/ 2
3 ,

(8)

We obtain x∇
1 = 2, x∇

2 = 1, x∇
3 = 1

2 , x∇
1 = 2.

Hence, g̃0(x∇) = g0(x∇) = d(ρ∇) = 60
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4 Conclusion

According to the comparison of fuzzy numbers, this paper obtains the correspond-
ing relationship between fuzzy numbers and real numbers. Then we transform the
posynomial geometric programming with fuzzy coefficients into a normal posyno-
mial geometric programming and obtain two solutions of the posynomial geometric
programming with fuzzy coefficients. And the method is testified to be effective by
numerical examples
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Global Optimization of Linear Multiplicative
Programming Using Univariate Search

Xue-gang Zhou

Abstract We show that, by using suitable transformations and introducing auxiliary
variables, linear multiplicative program can be converted into an equivalent para-
metric convex programming problem, parametric concave minimization problem
or parametric D.C. programming. Then potential and known methods for globally
solving linear multiplicative program become available.

Keywords Linear multiplicative programming · Convex programming · Univariate
search.

1 Introduction

Consider linear multiplicative programming problems as follows:

(LMP)

⎡⎣
⎧

max
p⎪

i=1
(aT

i x + bi )(cT
i x + di ),

s.t. x √ X,
(1)

where p � 2, X ∈ Rn is a nonempty, compact convex set, for each i √ I, ai , ci are
n-dimension column vector. In general, the problem (LMP) is a special case of non-
convex programming problem, which is known to be NP-hard even when p = 1 [1].

Since from 1990s, there has been a resurgence of interest in problem (1). This
interest arises from two factors. First, multiplicative programming problems arise in
a variety of practical applications [2–6]. Second, encouraged by rapid advances in
high-speed computing, researchers in recent years have been developing and testing
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new methods for solving global optimization problems in practice, including problem
(1). Hence, it is very necessary to present good algorithm for (LMP) problem. In the
past 20 years, many solution algorithms have been proposed for globally solving the
problem (LMP). The methods can be classified as parameterization based methods
[7], outer-approximation and branch-and-bound methods [8, 9], vertex enumeration
methods [10], a method based on image space analysis [11], an outcome-space cutting
plane method [12], heuristic methods [13]. The article intends to show that, by using
suitable transformations, there is a potential to globally solve problem (LMP) by
techniques that are well know techniques.

The organization and content of this article can be summarized as follows. In
Sect. 2, we demonstrate the potential in at least cases to globally solve problem
(LMP) by standard parametric convex programming techniques.

2 Preliminary Result and Potential Approach

For convenience, for each x √ X and i √ I , let

fi (x) = (aT
i x + bi )(c

T
i x + di ),

and for each x √ X , let

f (x) =
p⎨

i=1

fi (x).

The potential approach and the test problem construction methos to be presented
rely upon the following result.

Theorem 1. Let i √ I and let

Z = {x √ X |α(aT
i x + bi ) + β(cT

i x + di ) = K },

where α,β, K are scalars and α,β are not both zero.

(a) If αβ > 0, then fi is a concave function on Z.
(b) If αβ < 0, then fi is a convex function on Z.
(c) If αβ = 0, then fi is a linear function on Z.

Proof. First, notice that, since X is a convex set, Z is a convex set. To prove parts
(a) and (b), we will derive a key inequality. Let λ be a scalar such that 0 � λ � 1
and suppose that x1, x2 √ X . It is not difficult to show

[λ(cT
i x1 + di ) + (1 − λ)(cT

i x2 + di )]2 − [λ(cT
i x1 + di )

2 + (1 − λ)(cT
i x2 + di )

2]
= −λ(1 − λ)(cT

i x1 − cT
i x2)

2 � 0.

Then, for any λ √ [0, 1], x1, x2 √ X ,
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[λ(cT
i x1 +di )+(1−λ)(cT

i x2 +di )]2 � [λ(cT
i x1 +di )

2 +(1−λ)(cT
i x2 +di )

2]. (2)

(a) Suppose that λ √ R satisfies 0 � λ � 1, and that x1, x2 √ Z . Since αβ > 0
and x1, x2 √ Z , it follows that, for each j = 1, 2,

aT
i x j + bi = K

α
− β

α
(cT

i x j + di ). (3)

We have that

fi [λx1 + (1 − λ)x2] = [aT
i (λx1 + (1 − λ)x2) + bi ][cT

i (λx1 + (1 − λ)x2) + di ]
= [λ(aT

i x1 + bi ) + (1 − λ)(aT
i x2 + bi )][λ(cT

i x1 + di ) + (1 − λ)(cT
i x2 + di )]

= { K

α
− β

α
[λ(cT

i x1 + di ) + (1 − λ)(cT
i x2 + di )]}[λ(cT

i x1 + di ) + (1 − λ)(cT
i x2 + di )]

= K

α
[λ(cT

i x1 + di ) + (1 − λ)(cT
i x2 + di )] − β

α
[λ(cT

i x1 + di ) + (1 − λ)(cT
i x2 + di )]2

� Kλ

α
(cT

i x1 + di ) + K (1 − λ)

α
(cT

i x2 + di ) − β

α
[λ(cT

i x1 + di )
2 + (1 − λ)(cT

i x2 + di )
2]

= λ(cT
i x1 + di )

⎩
K

α
− β

α
(cT

i x1 + di )

⎫
+ (1 − λ)(cT

i x2 + di )

⎩
K

α
− β

α
(cT

i x2 + di )

⎫

= λ(cT
i x1 + di )(a

T
i x1 + bi ) + (1 − λ)(cT

i x2 + di )(a
T
i x2 + bi )

= λ fi (x1) + (1 − λ) fi (x2).

where the second equation follows by substituting (3) in the first equation and gathering terms,
the inequality can be shown by using that αβ > 0 and (2). By the choices of λ, x1, x2, this
proves (a).

(b) Assume that λ √ [0, 1] and x1, x2 √ Z . The remainder of the proof of part (b) follows
by using the same steps as in the prof of part (a), but with the directions of the inequalities
reversed.

(c) Since αβ = 0, without loss of generality, we assume α = 0,β ≤= 0. Then Z is given
by

Z =
⎬

x √ X |cT
i x + di = K

β

⎭
. (4)

So, part (c) easily follows from (4).
From the proof of Theorem 1, notice that the theorem holds also without the assumption

that aT
i x + bi and cT

i x + di , i √ I = {i, 2, · · · , p}, are positively-value functions on X . For
i √ I , fi is neither convex nor concave on X . However, Theorem 1 shows that, on subsets of
appropriate hyperplanes in Rn , fi can be convex, concave, or linear. This result may allow us in
some cases to globally solve problems (LMP) by convex parametric programming techniques.
To illustrate this, consider the following result and example.

For all i √ I , assume that there exist αi ,βi √ R such that

α1(a
T
1 x + b1) + β1(c

T
1 x + d1)

= αi (a
T
i x + bi ) + βi (c

T
i x + di )

= aT x + b = K ,

(5)
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where aT = (α1aT
1 + β1cT

1 ) √ Rn, b = (α1b1 + β1d1) √ R, K √ R. Now we construct
problem (LMPK ) as follows:

(LMPK ) max
x√X

p⎪
i=1

(aT
i x + bi )(c

T
i x + di ),

s.t. aT x + b = K .

Let Kmax = max
x√X

(aT x + b), Kmin = min
x√X

(aT x + b). Since X is nonempty, compact convex

set, for each K √ [Kmin, Kmax], X0 = {x √ X |aT x + b = K } is nonempty, compact convex
set.

Proposition 1. For any i √ I , let αi ,βi be not both zero.

(a) For all i √ I , if αi βi � 0, problem (LMPK ) is parametric convex programming problem
over convex set.

(b) For all i √ I , if αi βi < 0, problem (LMPK ) is parametric concave minimization problem
over convex set.

(c) Let I ∃ ∗ I and I − I ∃ ≤= ∪, If αi βi � 0 for all i √ I ∃, and αi βi < 0 for all x /√ I ∃,
problem (LMPK ) is parametric d.c. programming over convex set.

Proof. (a) On the basis of Theorem 1, for all i √ I , if αi βi � 0, fi (x) = (aT
i x + bi )

(cT
i x + di ) are concave function over convex set Z = {x √ X |aT x + b = K , K √

[Kmin, Kmax]}. Then f (x) = ⎪p
i=1 fi (x) is concave function over Z . Since max f (x) =

min − f (x), problem (LMPK ) is parametric convex programming over convex set.
(b) According to Theorem 1, for all i √ I , if αi βi < 0, fi (x) = (aT

i x + bi )(c
T
i x + di )

are convex function over convex set Z = {x √ X |aT x + b = K , K √ [Kmin, Kmax]}.
Then f (x) =

p⎪
i=1

fi (x) is convex function over Z . So problem LMPK is parametric concave

minimization problem over convex set.
(c) Without loss of generality, let I ∃ = {1, 2, · · · , k}, k < p. Since αi βi � 0 for all

i = 1, 2, · · · , k, f 1(x) =
k⎪

i=1
fi (x) is concave function over Z , and since αi βi < 0 for all

x /√ I ∃, f 2(x) =
p⎪

i=k+1
fi (x) is convex function over Z . Then f (x) = f 1(x)+ f 2(x) is d.c.

function over Z . This completes proof.

Example 1. Consider problem (LMP) with

max
x√X

f (x) = f1(x) + f2(x),

where f1(x) = (−2x1 +3x2 −6)(3x1 −5x2 +3), f2(x) = (4x1 −5x2 −7)(−3x1 +3x2 +4),
X = {x √ R2|x1 + x2 � 1.5, x1 − x2 � 0, x1, x2 � 0}.

Notice that
0.5(−2x1 + 3x2 − 6) + 0.5(3x1 − 5x2 + 3)
= 0.5(4x1 − 5x2 − 7) + 0.5(−3x1 + 3x2 + 4)
= 0.5x1 − x2 − 1.5.
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Let K = 0.5x1 − x2 − 1.5, then we obtain

Kmax = max
x√X

(0.5x1 − x2 − 1.5) = −1.5,

Kmin = min
x√X

(0.5x1 − x2 − 1.5) = −3

By part (a) of Theorem 1, this implies that, for any K √ [−3,−1.5], the parametric program-
ming problem

(LMPK ) max
x√X

f1(x) + f2(x),

s.t. 0.5x1 − x2 − 1.5 = K

involves maximizing a concave, continuous function over a nonempty, compact polyhedron.
This implies also that if, for each K √ [−3,−1.5], we let υ(K ) denote the optimal objective
function value of the parametric programming problem (LMP)K , then the global optimal value
of problem (LMP) is equal to the optimal value of the problem

(P1) max υ(K ),

s.t. − 3 � K � −1.5,

and that, if K ⊂ is an optimal solution for problem (P1), then any optimal solution for problem
(LMP)K ⊂ is a globally optimal solution for problem (LMP). Since the function υ(K ) is
pointwise maximum of the concave function f1 + f2 over convex set X , the function υ(K ) is
concave on K √ [−3,−1.5]. Thus, to globally solve problem (P1), we may use, for instance,
a simple bisection search for the maximum of υ(K ) over K √ [−3,−1.5]. In this search, each
evaluation of υ(K ) involves solving the convex programming (LMP)K . We have performed
this search and found, after 13 iterations, that K ⊂ is approximately equal to −1.87492 and
that the approximate globally optimal value υ(K ⊂) of problem (LMP) is −38.87628. From
the solution of the convex programming problem (LMP)K with K = K ⊂, we obtained the
approximate global optimal solution (x⊂

1 , x⊂
2 ) = (0.74984, 0.74984) for problem (LMP).

Remark 1. If problem (P) is the following form:

(LMP∃)

⎡⎣
⎧

min
p⎪

i=1
(aT

i x + bi )(c
T
i x + di ),

s.t. x √ X,

On the basis of part (b) of Theorem 1, we may also convert (LMP∃) to the parametric pro-
gramming problem that can involve a convex, concave, or d.c. continuous function over a
nonempty, compact polyhedron. Then we may use well-known techniques, such as bisection
search, to globally solve problem (LMP∃).

3 Conclusion

In this paper, we show that, by using suitable transformations, there is a potential to globally
solve problem (LMP) by techniques that are well know techniques.



56 X. Zhou

Acknowledgments Thanks to the support by National Natural Science Foundation of China
(No.70771030 and No.70271047) and Project Science Foundation of Guangdong University of
Finance(No.11XJ02-12 and No.2012RCYJ005).

References

1. Matsui, T.: NP-Hardness of Linear Multiplicative Programming and Related Problems. J. of
Global Optimization. 9, 113–119 (1996)

2. Maranas, C.D., Androulakis, I.P., Floudas, C.A., Berger, A.J., Mulvey, J.M.: Solving long-
term financial planning problems via global optimization. Journal of Economic Dynamics and
Control. 21, 1405–1425 (1997)

3. Quesada I., Grossmann I.E.: Alternative bounding approximations for the global optimization
of various engineering design problems, in: I.E. Grossmann (Ed.), Global Optimization in
Engineering Design, Nonconvex Optimization and Its Applications, Vol. 9, Kluwer Academic
Publishers, Norwell, MA,pp. 309–331 (1996).

4. Mulvey, J.M., Vanderbei, R.J., Zenios, S.A.: Robust optimization of large-scale systems. Oper-
ations Research. 43, 264–281 (1995)

5. Dorneich, M.C., Sahinidis, N.V.: Global optimization algorithms for chip design and com-
paction. Engineering Optimization. 25(2), 131–154 (1995)

6. Bennett, K.P., Mangasarian, O.L.: Bilinear separation of two sets in n-space. Computational
Optimization and Applications. 2, 207–227 (1994)

7. Konno, H., Kuno, T., Yajima, Y.: Global optimization of a generalized convex multiplicative
function. Journal of Global Optimization. 4, 47–62 (1994)

8. Benson, H.P.: An outcome space branch and bound-outer approximation algorithm for convex
multiplicative programming. Journal of Global Optimization. 15, 315–342 (1999)

9. Zhou, X.G., Wu, K.: A accelerating method for a class of multiplicative programming with
exponent. Journal of Computational and Applied Mathematics 223, 975–982 (2009)

10. Bennett, K.P.: Global tree optimization: a non-greedy decision tree algorithm. Computing
Sciences and Statistics. 26, 156–160 (1994)

11. Falk, J.E., Palocsa, S.W.: Image space analysis of generalized fractional programs. Journal of
Global Optimization. 4(1), 63–88 (1994)

12. Benson, H.P., Boger, G.M.: Outcome-space cutting-plane algorithm for linear multiplicative
programming. Journal of Optimization Theory and Applications. 104(2), 301–322 (2000)

13. Benson, H.P., Boger, G.M.: Multiplicative programming problems: analysis and efficient point
search heuristic. Journal of Optimization Theory and Applications. 94(2), 487–510 (1997)



Affine SIFT Based on Particle Swarm
Optimization

Xue-lian Cao, Guo-Rong Cai and Shui-li Chen

Abstract As for ASIFT, ASIFT has been proven to be invariant to image scaling and
rotation. Specially, ASIFT enables matching of images with severe view point change
and outperforms significantly the state-of-the-art methods. It accomplished this by
simulating several views of the original images. However, we found that the simulated
parameters are continuous, namely, transformations acquired by ASIFT cant express
the real relationship between reference and input images. Therefore, a particle swarm
optimization based sample strategy is presented in this paper. The basic idea is to
search the best transform in continuous parameter space. Experimental results show
that the proposed PSO-ASIFT algorithm could get more matches compared with the
original ASIFT and SIFT.

1 Introduction

Image matching is the process of aligning different images of the same scene acquired
at different periods of time, different viewing angles or different sensors [1]. Typi-
cally, feature-based image matching processes are made of the following four steps
[2]: 1) feature detection, 2) feature matching, 3) mapping function design, 4) image
transformation and re-sampling.

Some feature detectors, including Harris points [3], Harris-Laplace [4] and
Hessian-Laplace detectors [4],have been proven to be invariant to rotation. On the
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other hand, to achieve viewpoint invariant, Hessian-Affine [5] and MSER (maximally
stable extremal region) [6] have been proposed. The most widely used feature point
detection and extraction method is the Scale-Invariant Feature Transform (SIFT)
[7], which has been shown to be robust to image scaling and rotation and partially
invariant to viewpoint changes. As pointed out in [8], SIFT descriptor is superior to
many descriptors such as the distribution-based shape context [9], derivative-based
complex filters [10], and moment invariants [11]. In recent years, a number of SIFT
descriptor variants and extensions have been proposed including PCA-SIFT [12],
GLOH (gradient location-orientation histogram) [13] and SURF (speeded up robust
features) [14].

In 2009, Yu and Morel proposed a new variant of SIFT called Affine-SIFT (ASIFT)
[15]. Mathematical proof reveals that ASIFT method is fully affine invariant. Also,
experimental results obtained on multi-view images show that AISFT can be a robust
tool for image matching. It is worth noting that AISFT uses discrete setting for image
sampling. As a result, the more samples ASIFT generated, the more good matches
will get. This strategy, although efficient, is a brute force strategy to find out the
best transform between images to be matched. Since the sampling parameters t and
φ are continuous in ASIFT, optimization method can be used to find out the best
combination of t and φ. Therefore, in this paper, particle swarm optimization (PSO)
has been introduced in parameter searching. Particularly, PSO algorithm is used
to optimize the sampling parameters of ASIFT by searching the best matching in a
continuous space. The purpose is to extract the best transformation between reference
and input images. Experimental results show that the proposed method outperforms
significantly the state-of-the-art ASIFT and SIFT.

2 Affine Scale Invariant Feature Transform (ASIFT)

2.1 The Affine Camera Model

Theorem 1 [15]: Any affine map A =
(

a b
c d

)
with strictly positive determinant

which is not a similarity has a unique decomposition:

A = Hλ R1(ψ)Tt R2(φ) = λ

(
cosψ −sinψ
sinψ −cosψ

)(
t 0
0 1

) (
cosφ −sinφ
sinφ −cosφ

)
, (1)

where λ > 0 and λ2t is the determinant of A, Ri (i=1, 2) are rotations matrices,
φ ∈ [0,π], Tt is a tilt, namely a diagonal matrix with first eigenvalue t > 1 and the
second one equal to 1.

Fig. 1(a) is the geometrical interpretation of the affine decomposition Eq. (1).
The angles φ and θ are respectively the camera optical axis longitude and latitude.
The other angle ψ denotes the camera spin, and λ is a zoom parameter. The tilt t is
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(a) (b)

Fig. 1 Basic idea of ASIFT. a Geometric interpretation of the affine mapping; b Simulated images
of reference image A and B. These images are used for feature extraction and matching

correlate with the latitude θ, namely t =1/cosθ. Since SIFT is invariant to rotation
and scaling, only φ and t are sampled.

The parameter t in Eq. (1) is absolute tilt, which measures the tilt between the
frontal view and a slanted view. The amount of tilt between two slanted images is
quantified by the transition tilt τ . The tilt goes up when the transition tilt τ increases.

2.2 The Procedure of ASIFT Algorithm

In ASIFT, the author proposed a two-resolution strategy to speed up ASIFT. The ref-
erence images are sub-sampled by a 3 × 3 factor in the low-resolution phase. Then,
the high-resolution ASIFT simulates the 5 best affine transforms from among all
simulated images that yield most matches in the low-resolution process. Specially,
the low resolution stage is conducted via the following two steps. 1) Each image
to be matched is transformed by simulating many distortions caused by the change
of camera optical axis orientation from a frontal position. The images undergo φ
-rotations followed by tilts with parameter t =|1/cosθ| as shown in Fig. 1(b). The
square image A and B represent the compared images. The parallelograms repre-
sented the simulated images. 2) As shown in Fig. 1(b), all simulated affine images
are feature extracted by the SIFT method and features are compared by the KD-Tree
algorithm [16].
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3 ASIFT Based on PSO

3.1 The Particle Swarm Optimization Algorithm

Particle swarm optimization (PSO) [17] is one of the most powerful searching tools
which has been proposed by Kennedy and Eberhart in 1995. Typically, PSO is ini-
tialized with a population of candidate solutions, called particles, and the activities
of the population are guided by some rules. For example, supposed that the total
number of the particles is M, the dimension of searching space is d. The position of
the ith particle in the nth iteration is given as: Xn

i = (xn
i1, xn

i2, . . . , xn
id ), where i=1,

2, …, M, Moreover, the speed of the ith particle denotes the moving distance of
the particle and be expressed as: V n

i = (vn
i1, v

n
i2, . . . , v

n
id ). Then the position and the

speed of the j(j =1, 2,…,d) dimension of the ith partical in the n+1 iteration are given
as the following equations:

V n+1
i j = ωvn

i j + c1r1(pi j − xn
i j ) + c2r2(g j − xn

i j )), (2)

Xn+1
i j = xn

i j + vn+1
i j , (3)

where, ω denote the inertia weight, c1 and c2 stand for the acceleration factors, r1
and r2 are two random numbers in the ranges of [0, 1], the constant vmax is used
to control the searching range. pi j and g j are respectively the best position of the
current particle and the whole population.

3.2 ASIFT Algorithm Based on PSO

It is pointed out that the mutating particle swarm optimization (MPSO) [18] has been
proven to be an efficient tool for parameter searching. Therefore, in this paper, MPSO
is employed to optimize the sampling of the latitude and the longitude. We define a
global parameter R and a random parameter ri for each particle. During the iteration,
the ith particle will mutate if its random parameter ri is bigger than R. Otherwise the
particle will update normally. Experiments show that PSO with the mutation factor
is not only increased the diversity of the population but also prevented the algorithm
converging untimely.

The coding strategy of each particle is given as follows:

ti1 φi1 ti2 φi2

where ti1 and ti2 are respectively the tilt parameters corresponding the reference and
the input images of the ith particle, φi1 and φi2 are the camera optical axis longitude
of two images, respectively.
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(a) (b)

Fig. 2 Geometric interpretation of the a Absolute tilt tests, and b Transition tilt tests

With the code value of each particle, affine sample can be extract and then SIFT
is used to extract feature points. Therefore, the fitness value is defined as the number
of good matches achieved by affine samples.

In short, PSO-ASIFT can be summarized by the following five steps.

Step 1: Initialize the population of particles (randomly initialize M particles). Ran-
domize the positions and velocities for entire population. Record the global
best location pg and the local best locations pi of the ith particle, regarding
to their fitness values.

Step 2: Updating the best position of each particle and the whole group according
to Eq. (2) and Eq. (3).

Step 3: Check up the value of random number ri of each particle, if ri is bigger than
the R, then turn to Step5, otherwise, turn to Step 4.

Step 4: Randomize the position for the current particle.
Step 5: If the stopping conditions are satisfied then stop iterating, otherwise, return

to Step 2.

4 Experimental Results and Discussions

4.1 Description of the Experiments

In our experiments, PSO-ASIFT will be compared with the state-of-the-art method
SIFT and original ASIFT. As for PSO-ASIFT, the population size is M =10 and the
maximal iterations are 100. To evalute the performance of PSO-ASIFT, the exper-
imental content setting and the testing images of the literature [15] are used in this
paper. Fig. 2 explain the testing set, and the resolution of these images is 600 ×
450. The Fig. 2(a) illustrates the setting of the absolute tilt tests by the image be
photographed with a latitude angle θ varying from 0◦ (frontal view) to 80◦, from dis-
tances varying between 1 and 10. The Fig. 2(b) illustrates the setting of the transition
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Table 1 Number of matches achieved by SIFT, ASIFT and PSO-ASIFT (Z × 10)

θ2/ t2 −80◦/5.8 −75◦/3.9 −65◦/2.3 −45◦/1.4 45◦/1.4 65◦/2.3 75◦/3.9 80◦/5.8

SIFT Total mathes 4 9 21 152 142 9 10 6

ASIFT Max mathes 23 110 193 284 267 247 67 26

Total mathes 149 354 771 1435 1506 631 313 116

PSO-ASIFT Max mathes 39 190 337 521 541 257 145 97

Total mathes 172 615 1137 2191 1808 826 560 219

Table 2 Number of matches achieved by SIFT, ASIFT and PSO-ASIFT (Z × 10)

φ2/τ2 10◦/1.9 20◦/3.3 30◦/5.3 40◦/7.7 50◦/10.2 60◦/12.4 70◦/14.3 80◦/15.6 90◦/16

SIFT Total mathes 27 23 2 1 11 2 0 0 0

ASIFT Max mathes 118 88 52 34 29 25 20 18 13

Final mathes 710 363 182 124 66 65 46 33 90

PSO-ASIFT Max mathes 150 117 61 44 38 33 22 19 22

Final mathes 1311 611 408 208 238 165 101 52 97

tilt tests by the images be photographed with a longitude angle φ that varied from 0◦
to 90◦, from a fixed distance.

4.2 Results and Discussions

Tables 1, 2 summarize the performance of three algorithms in terms of the max
number of good matches obtained via a single transformation, and the total number
of matches.

Table 1 show the results of the experiment performed with the images taken with
Zoom × 10 and the latitude angles range from 0◦ to 80◦. The latitude angles and the
absolute tilts are listed in the first row. In Table 1 we can see the performance of SIFT
decays considerably when the angle goes over 75◦, where ASIFT and PSO-ASIFT
are sitll robust in the angle of 80◦, and the performance of PSO-ASIFT exceed ASIFT.

Typical matching results are illustrated in Fig. 3 and Fig. 4, where Fig. 3 show the
matches with −65◦ angle (tilt t =2.3 ). The ASIFT and PSO-ASIFT find respectively
771 pairs and 1137 pairs matching. Note that SIFT only find 21 matches, this implies
that SIFT isn’t robust to large viewpoint change. The values of parameters of the best
transformation achieved by ASIFT and PSO-ASIFT are given in Table 3. Figure 4
show the matches with tilt t =5.8. The number of correspondences by ASIFT is 116
and PSO-ASIFT is 219. Note that the matching number achieved by PSO-ASIFT
is about twice that of ASIFT, while SIFT completely failed. The parameters for the
best transformation obtained by ASIFT and PSO-ASIFT are given in Table 3.

It is estimated the performance of the ASIFT and the PSO-ASIFT algorithms
with different absolute tilts under comparison in above experiments. The perfor-
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(a) (b) (c)

Fig. 3 Matches with Zoom× 10, θ1 = 0◦, t1 = 1, θ2 = −65◦, t2 = 2.3. PSO-ASIFT, ASIFT
and SIFT find respectively a 1137, b 771 and c 21 matches

(a) (b) (c)

Fig. 4 Matches with Zoom × 10, θ1 = 0◦, t1 =1, θ2 = 80◦, t2 =5.8. PSO-ASIFT, ASIFT and
SIFT find respectively a 219, b 116 and c 6 matches

mance of the two methods with different transition tilts is estimated by the following
experiments.

Table 2 compares the performance of three algorithms with the images taken with
the optimal Zoom × 4 and the absolute tilt t =4 while the longitude angle φ growing
from 0◦ to 90◦. φ1 = 0◦, φ2 and the transition tilts τ are listed in the first row. Fig. 5
(a) and (b) show respectively the matching results with the longitude angle φ2 = 20◦
(transition tilt τ =3.3 ) achieved by the SIFT, ASIFT and the PSO-ASIFT methods.
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Table 3 The parameters values of the best angles of two methods

z × 10 t1 φ1(◦) t2 φ2(◦) mathes

θ2 = −65◦ t2 =2.3 ASIFT 1.00 0 2.00 0 193
PSO-ASIFT 1.93 87.09 1.00 91.67 337

θ2 = 80◦ t2 =5.8 ASIFT 1.41 45.26 8.00 162.15 26
PSO-ASIFT 5.05 89.38 1.00 99.12 97

(a) (b) (c)

Fig. 5 Matches with φ1 = 0◦, φ2 = 20◦, τ =3.3. PSO-ASIFT, ASIFT and SIFT find respectively
a 611, b 363 and c 23 matches

The number of matches found by ASIFT is 363, PSO-ASIFT is 611. The SIFT
method only find 23 matches. The number of matches of ASIFT and PSO-ASIFT
with latitude angle φ2 = 50◦ (transition tilt τ =10.2 ) are respectively 66 and 238
as shown in Fig. 6 (b) and (c). Fig. 6 (a) show the matches found by SIFT, total 11
matches. The number of matches achieved by PSO-ASIFT is almost four times that
of ASIFT. In addition, the parameters values of the best angles obtained by ASIFT
and PSO-ASIFT are given in Table 4.

Under an absolute tilt t =4, SIFT method struggle at 1.9 transition tilt, but it
fail completely when the transition tilt gets bigger. ASIFT and PSO-ASIFT work
perfectly up to the 16 transition tilt. The above experiments show that the maximum
transition tilt, about 2 for SIFT, is by far insufficient. ASIFT outperforms significantly
the SIFT method, while PSO-ASIFT superior compared with ASIFT.
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(a) (b) (c)

Fig. 6 Matches with φ1 = 0◦, φ2 = 50◦, τ =10.2. PSO-ASIFT, ASIFT and SIFT find respectively
a 238, b 66 and c 11 matches

Table 4 The parameters values of the best angles of two methods

t1 φ1(◦) t2 φ2(◦) mathes

φ1 = 0◦ φ2 = 20◦ τ = 3.3 ASIFT 2.00 107.72 2.00 72.19 88
PSO-ASIFT 1.00 13.75 3.53 64.74 117

φ1 = 0◦ φ2 = 50◦ τ = 10.2 ASIFT 4.00 90.00 4.00 90.00 32
PSO-ASIFT 4.89 91.72 3.67 91.72 38

5 Conclusion

In this paper, we presented a powerful method for image matching. The proposed
PSO-SIFT algorithm employed PSO to optimize the sampling parameters of ASIFT
by searching the best transformation in the continuous space. Experimental results
demonstrated that the proposed PSO-ASIFT method achieved more matches com-
pared with ASIFT. However, the time complexity of PSO-ASIFT is higher than
ASIFT, since it generates more samples than ASIFT. Therefore, our future work will
focus on how to reduce the complexity of the optimization-based methods, such as
find out best transformation in an interpolated parameter space, rather than generate
samples for feature generation and feature matching.
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Genetic Quantum Particle Swarm
Optimization Algorithm for Solving
Traveling Salesman Problems

Wei-quan Yao

Abstract This paper presents a Genetic Quantum Particle Swarm Optimization
(GQPSO) algorithm to solve Traveling Salesman Problems (TSPs). This algorithm
is proposed based on the concepts of swap operator and swap sequence by intro-
ducing crossover, mutation and inverse operators in Genetic Algorithm (GA). Our
algorithm overcomes such drawbacks as low convergence rate and local optimum
when using Particle Swarm Optimization (PSO) or Quantum Particle Swarm Opti-
mization (QPSO) algorithm to solve TSP. The experiment result shows that GQPSO
algorithm has very powerful global search ability and its convergence rate is sharply
accelerated compared to that of QPSO algorithm. GQPSO algorithm will have very
good application prospects in solving combinational optimization problems.

Keywords TSP · PSO algorithm · GQPSO algorithm · Inverse operator ·
Combinational optimization.

1 Introduction

Particle Swarm Optimization (PSO) algorithm was firstly proposed by Kennedy
and Eberhart in 1995 [1]. Since PSO is simple and easy to be realized, with just
fewer control parameters to tune, it caught attentions from researchers from both
domestic and overseas. Theoretically, however, PSO is not an algorithm with global
convergence. To overcome disadvantages of PSO, Jun Sun et al. proposed a new
version of PSO, Quantum-behaved Particle Swarm Optimization (QPSO) algorithm
in 2004, which is global convergent and powerful in locating optimal solutions with
fewer control parameters and fast convergence rate. Since it was proposed, this algo-
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rithm has been used in solving many optimization problems [3]. Compared to other
intelligent algorithms, such as genetic algorithm (GA), simulated annealing (SA)
algorithm, etc., QPSO is more powerful on some function optimization problems.
QPSO was successfully applied in dealing with continues optimization problems,
but little attention was focused on discrete problems.

The travelling salesman problem (TSP) could be described as finding out a short-
est path that could visit each city once and only once. TSP is a famous and typical
NP problem, belonging to combinatorial optimization problems [4]. In literature [5],
a special PSO algorithm for TSP was proposed by introducing the concepts of swap
operator and swap sequence. But this PSO is slow in solving TSP, QPSO is employed
in [6] to overcome this shortcoming. However, there are few works that combine GA
and QPSO for travelling salesman problems. In this paper, we introduced crossover
and mutation operators into QPSO and proposed Genetic Quantum-behaved Particle
Swarm Optimization (GQPSO) algorithm for TSP. It was shown by the experimen-
tal results that GQPSO is faster than QPSO with higher efficiency. The proposed
algorithm in this paper is a new try for combinatorial optimization problems.

2 Particle Swarm Optimization Algorithm

2.1 The Standard PSO Algorithm

Just like genetic algorithm, PSO is also based on population and evolution mecha-
nism, which is specifically described as follows: In a D-dimensional target searching
space, M particles representing potential solutions form a population, denoted as
X = {X1; X2; · · · ; X M }. At t th generation, the position of particle i is Xi (t) =
[Xi,1(t), Xi,2(t), · · · , Xi,D(t)] and the velocity is Vi (t) = [Vi,1(t), Vi,2(t), · · · ,

Vi,D(t)], i = 1, 2, · · · , M . The personal best position of particle i is denoted as
pbesti (t) = [pbesti,1(t), pbesti,2(t), · · · , pbesti,D(t)], while the global best posi-
tion is gbesti (t) = [gbesti,1(t), gbesti,2(t), · · · , gbesti,D(t)] such that gbest(t) =
pbestg(t), where g √ {1, 2, · · · , M}is the subscript at which the global best position
locates among all the personal best positions. At t+1 th generation, the velocity and
position of particle i are updated by the following equations [3]:

Vi, j (t +1) = ωVi, j (t)+c1r1, j [pbesti, j (t)− Xi, j (t)]+c2r2, j [gbest j (t)− Xi, j (t)],
(1)

Xi, j (t + 1) = Xi, j (t) + Vi, j (t + 1), (2)

where subscript i(= 1, 2, · · · , M) means the i th particle in the population and
j (= 1, 2, · · · , D) is the j th dimension of this particle; D is the dimension of the
searching space and M is the population size. c1 and c2 are acceleration constants,
while r1, j and r2, j are two random numbers uniformly distributed over interval [0,1].
ω called inertia weight is used to balance global and local search ability. In order to
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control the flying velocity within a reasonable range, Vi, j is often restricted within
interval [−Vmax, Vmax], where Vmax is a positive value. If the searching area is limited
to Xi, j √ [lb, ub], where lb and ub are the lower and upper bounds of the searching
area respectively, then Vmax could be set to Vmax = k · (ub − lb), 0.1 ∈ k ∈ 1.

2.2 Quantum Particle Swarm Optimization Algorithm

Sun et al. [3] proposed a new PSO model which is based on DELTA potential well
from the viewpoint of quantum mechanics. They believed particles had quantum
behaviors, and put forward QPSO algorithm based on this model. In quantum space,
particle could search in the whole feasible solution space, so the global convergence
of QPSO is much better than that of standard PSO. In QPSO, particles only have
position vector without velocity vector, and the updating equations of position are :

pi, j = φ j (t) · pi, j (t) + [1 − φ j (t)] · G j (t) φ j (t) : U (0, 1), (3)

Xi, j (t, 1) = pi, j (t) ± α · |C j (t) − Xi, j (t)| · ln[1/ui, j (t)] ui, j (t) : U (0, 1), (4)

where

C(t) =(C1(t), C2(t), · · · , CN (t)) = 1

M

M∑
i=1

Pi (t)

(
1

M

M∑
i=1

Pi,1(t),
1

M

M∑
i=1

Pi,2(t), · · · ,
1

M

M∑
i=1

Pi,N (t)

)
. (5)

In formulas (3),(4) and (5), pi (t) is the local attractor of particle i, and C(t) denotes
the mean best position of the whole swarm defined as the mean value of all personal
best positions; φ j (t) and ui, j (t) are random numbers distributed on [0,1] uniformly.
α is called contraction-expansion (CE) coefficient, the only control parameter to be
tuned, and it is usually set to α = (1.0−0.5)≤(Gmax − t)/Gmax +0.5. The meanings
of G j (t),i, j, M and N are the same in Sect. 2.1

The pseudo code of QPSO algorithm is described as follows:
Initialize position vectors of particles by using certain strategy
While terminal condition is not met
for i=1:M

if f(Xi ) < f(Pi )

Pi = Xi

end
end for
Pg = min(Pi )

Calculate the mean best position C
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for i = 1 : M
for j = 1 : N

φ = rand(0, 1)

pi, j = φ ≤ Pi, j + (1 − φ) ≤ G j

u = rand(0, 1)

if rand(0,1) < 0.5
Xi, j = pi, j + α≤ |C j − Xi, j |≤ ln(1/u)

else
Xi, j = pi, j − α≤ |C j − Xi, j |≤ln(1/u)

end
end for

end for
end while

3 The Traveling Salesman Problems

Given the distances of each pair of cities among N cities, determine the shortest path
that visits each city one and only once. And this could be described as follows [7]:
Suppose the set of N cities is C = {c1, c2, · · · , cN }, and the distance of each pair of
cities is denoted by d(ci , c j ) √ R+, where ci , c j √ C(1 ∈ i, j ∈ N ). Our aim is to
find out a sequence of cities {cπ(1), cπ(2), · · · , cπ(N )} that would make the objective
function

Td =
N−1∑
i=1

d(cπ(i), cπ(i+1)) + d(cπ(N ),π(1) ), (6)

minimum, where π(1), π(2), · · · , π(N ) is a full permutation of 1, 2, · · · , N . Now
we give some definitions of TSP.

Definition 3.1 Suppose the solution of TSP with N cities is X = (xk), k = 1, 2,

· · · , N , define swap operator SO(i, j) as interchanging xi and x j in solution X.
Then X ∃ = X + SO(i, j) is a new solution after executing operator SO(i, j), and
here “+” indicates the implementation of operator.

Example 3.1 Let X = (354126) and SO(3, 4), then X ∃ = X + SO(i, j) =
(35412 6) + SO(3, 4) = (351426).

Definition 3.2 An ordered sequence made up of one or more swap operators is
called a swap sequence, denoted by SS, and it is defined as SS = (SO1, SO2, · · · ,

SOn). Difference swap sequences may result in the same new solution after executing
on a same solution. The set of swap sequences that product the same results is called
an equivalent set of swap sequences. In this equivalent set o, the swap sequence holds
the minimum number of swap sequences is basic swap sequence, whose construction
method is referred to literature [5].
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4 GQPSO Algorithm for TSP

4.1 The Design of GQPSO

The updating equations of QPSO, i.e. (3),(4) and(5), are for continuous optimization
problems. In order to apply QPSO algorithm in TSP, the updating equations should
be reconstructed as follows [8]:

pi (t) = φ(t) · Pi (t) + [1 − φ(t)] · G(t) φ(t) : U (0, 1), (7)

Xi (t + 1) = pi (t) ± α · |C(t) − Xi (t)| · ln[1/u(t)] u(t) : U (0, 1), (8)

where φ(t) and u(t) are random numbers uniformly distributed over [0,1]; pi in
(7) can be obtained by crossover operation as in genetic algorithm, i.e. generate two
offspring with Pi and G, and randomly select one as pi . The mean best position C(t)
in (8) could be got by the following method: first, calculate the mean value faverage
of paths corresponding toPi , then the one that is closest to faverage among all Pi s
is chosen as C(t). |C(t) − Xi (t)| means the basic swap sequence of C(t) and Xi (t),
and α · |C(t) − Xi (t)| · ln[1/u(t)] indicates that the swap operator in |C(t) − Xi (t)|
is kept as the probability of α ln[1/u(t)]. If α ln[1/u(t)] > 1, then it set to 1.

Based on the reconstructed equations, this paper introduces crossover, mutation
and inverse operators as in genetic algorithm and proposes GQPSO algorithm. The
details are described as follows [9, 10].

4.1.1 Coding Scheme and Initialization of Particles

Just like GA, chromosomes in GQPSO are also coded as the order of visited cities.
This coding scheme implies the legal constraint condition of TSP, that is there is
no repeated emergence of any city. This paper modifies the initialization method of
particles using greedy algorithm. Specifically, first randomly select a starting city,
then pick out a city that is closest to this starting city. Don’t stop this operation until
all cities are visited. In this paper, 20 % particles are generated by this greedy method,
and the remaining are randomly produced.

4.1.2 The Design of Local Attractor Pi

The local attractor Pi of particle i is obtained by crossing Pi and G. The crossover
operator is Partially Matched Crossover (PMX) that randomly selects a section in
parents and uses elements in this section to define a series of swaps. By executing
these swaps on each parent string independently, the offspring chromosomes will
be generated. For example, suppose Pi = [6 3 7

...8 5 1 2
...4 9 10], G =

[6 1 7
...4 9 5 8

...3 10 2], then the swaps in the selected section are 8 ∗
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4|5 ∗ 9|1 ∗ 5|2 ∗ 8. Please notice that 8 and 5 are linking elements of 4,2 and
9,1 respectively, so the merged swaps are 4 ∗ 2|9 ∗ 1. By using these swaps,
the generated offspring strings are q1 = [6 3 7 8 5 9 4 2 1 10],
q2 = [6 9 7 2 1 5 8 3 10 4]. Pi is randomly selected among q1 and q2.

4.1.3 Mutation and Inverse Operators

In this paper, the swap mutation is chosen: randomly select two points in strings and
swap their values. For example, for p = [5 4 10 1̄ 8 6 9̄ 3 2 7], if the two ran-
domly selected points are 4 and 7, then we get p = [5 4 10 ¯̄9 8 6 ¯̄1 3 2 7]after
swap. In order to improve the local search ability, we introduce evolutionary inverse
operator. The so called inverse is randomly selecting two points and inserting word
strings between the above two points in the original positions in inverted sequence
[3]. For example, suppose p = [3 4 9 7 8 6 10 5 2 1], the new string after
inverse is p∃ = [3 10 6 8 7 9 4 5 2 1] if the inverse points are 2 and 7
respectively. In this paper, we adopt a one-way and multi-time inverse operator [3].

4.2 The Flowchart of GQPSO for TSP

The flowchart of GQPSO for TSP is described as follows in pseudo-code form [11].
Use greedy strategy initializing particles
t = 0

while t < Gmax
α = (1.0 - 0.5)*(Gmax - t)/Gmax + 0.5;

for i=1:M
if f(Xi) < f(Pi)

Pi = Xi
end

end for
Pg = min(Pi )

Calculate the mean best position C
for i=1:M

pi = crossover(Pi , G)
Get basic swap sequence v = |C(t) − Xi(t)|
u = rand(0,1), w = α* ln(1/u)
Xi = change(pi,v, w) % Keep the swap operators in v with probability w

and execute it on pi

Xi = mutation(Xi, Pm) % Mutate Xi with probability Pm
Xi = inverse(Xi) % Inverse Xi

end for
t = t + 1
end while
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Table 1 Performance comparison between algorithms

This paper Literature [6] Literature [5]

Particle swam size 14 14 100
Mean iterations 278 4,000 20,000
Mean searching space 14×278=3892 14×4000=56000 100×20,000=2000000

Searching space/ 3892/(13!/2) % 56000/(13!/2) 2000, 000/(13!/2)

solution space = 0.000125 % = 0.0018 % = 0.064 %

5 Experimental Results

We use 14-cities TSP benchmark problem to test and verify the effectiveness of our
GQPSO. The coordinates of 14 cities are: CP = [16.47 96.10; 16.47 94.44; 20.09
92.54; 22.39 93.37; 25.23 97.24; 22.00 96.05; 20.47 97.02; 17.20 96.29; 16.30
97.38; 14.05 98.12; 16.53 97.38; 21.52 95.59; 19.41 97.13; 20.09 94.55]. And
the real minimum value of this problem is d*=30.8785. We have the following
experimental parameters: mutation probabilityPm=0.4, particle swarm size N =
14, max number of iterations Gmax = 4000, the inverse length decrease from
(1/5)*n to 2 progressively, where n is the length of the code. The testing envi-
ronment is : Pentium(R) Dual-Core CPU T4500 @2.30GHz 2.29 GHz, 1.99GB
RAM. Among 20 runs, there are 15 runs that convergent the optimal solution:
7∪13∪8∪11∪9∪10∪1∪2∪14∪3∪4∪5∪6∪12. And the mean itera-
tions are 278. From the above results we could see that GQPSO can find the known
optimal solution in a very short time. Now we compare our algorithm to the algo-
rithms in [5] and [6], and the results are listed in Table 1.

From Table 1 we can see that the mean iterations of GQPSO is 7/100 times of
that of QPSO, and the mean searching space of our algorithm is 0.000125 % of the
whole solution space. Therefore, GQPSO obviously overmatches QPSO in terms of
efficiency.

6 Conclusion

To overcome the shortcomings of PSO and QPSO when solving TSP, this paper
proposed GQPSO based on the concepts of swap operator and swap sequence by
introducing crossover, mutation and inverse operators in Genetic Algorithm. One 14
cities benchmark problem was used to test GQPSO. It was shown by the experimental
results that GQPSO could find the real minimum in very short time whose conver-
gence speed was obviously faster than that of QPSO. GQPSO has wide application
prospect for combinatorial optimization problems.
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An Improved Optimization Algorithm
for Solving Real Eigenvalue and Eigenvector
of Matrixes

Wei-quan Yao

Abstract In this paper, aiming to papers [1], [2]’s deficiency, we propose a method
which changes to use the Excel’s single variable equations and regional operations
with the Excel VBA programming. Finally, we get a method to solve the matrix
eigenvalues and the eigenvectors by using Excel. The facts show that the method in
this paper is better than the references’ methods.

Keywords Excel VBA · Matrix · Eigenvalue · Eigenvector · Iteration.

1 Introduction

Due to the visible then output characteristics, it has unique advantages to sort data and
management data by using Excel. But if we want to do a further deepen processing on
the data, it often require complex mathematical calculations, for instance, to solve
the matrix eigenvalues and eigenvectors. About in Excel how to solve the matrix
eigenvalues and eigenvectors, paper [1] and paper [2] show us different methods. But
those methods have shortages, for example, it is difficult to determine the initial value
or unable to solve multiple linear independence eigenvectors of a same eigenvalue.
They even have defect.

For convenience, in this paper we put the method of solving matrix eigenvalues
and eigenvectors in paper [1], and the method of solving matrix eigenvalues in paper
[2] respectively called paper [1] method and paper [2] method. Below let’s first
discuss their shortages.

Paper [1] method is through the given initial value of an eigenvalue, and then using
the method of solving single variable equations in Excel, to obtain the eigenvalue
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which is the most close to the initial value; then we take an approximate value of
the eigenvalue and a nonzero initial eigenvector, iteration solving the eigenvectors
by using inverse power method.

In this method, there are four shortages: (1) It didn’t give a method for deter-
mining the initial value of an eigenvalue; (2) We can not find out the multiple root
of a characteristic equation. (3) Are the eigenvector initial values corresponding to
different eigenvalues the same? How to solve it if its corresponding eigenvalue has
multiple linear independence eigenvectors? (4) This method does not conducive to
the application for further deepening because it is using step-by-step “manual” to
solve and the last result at the end of the iteration when seeking eigenvectors is also
by the people subjective judgment [3–5].

Paper [2] method is transforming the QR algorithm which is calculating the
real symmetric matrix eigenvalues into a VBA program, and then to achieve auto-
complete solving the real symmetric matrix eigenvalues.

This method has three shortages: (1) For a real non-symmetric matrix, the solution

obtained by this method may be wrong, for example, the solving results of

⎡
⎣ 3 1 0

1 3 2
1 1 2

⎧
⎪

is 5, 2, 1, but 5 and 1 are not the eigenvalues of original matrix. (2) It does not give a
method to solve the eigenvectors, which makes its application at a discount. (3) The
algorithm has defects, for example, in the process wilkinsonQR we would use the
value d = (v(1, 1) − v(2, 2)) / 2 as the denominator, if this value is zero, it would
appear error interrupt, such as solving the eigenvalues of real symmetric matrix⎡
⎣ 3 0 3

0 1 3
3 3 1

⎧
⎪. Here aim at the shortages of paper [1] method and paper [2] method, we

change to use the Excel’s single variable equations and regional operations, propose
an improved method and demonstrate the efficiency of this algorithm through the
practical examples. Below we will introduce the theory and the application of this
improved method [6–10].

2 The Design of the Improved Optimization Algorithm

2.1 Solving the Eigenvalue Initial Value

Here we modify the QR algorithm of paper [2] to calculate the eigenvalue initial
values of an order phalanx A preliminarily, and make λ1 √ λ2 √ · · · √ λn .

(1) Insert a command line
If d = 0 Then d = 1E − 13
after the command line d = (v(1, 1) − v(2, 2)) / 2 in the process wilkinsonQR( ).
This makes us can solve the approximations for real matrix eigenvalue(s) even
the denominator is zero.
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(2) In the process QR( ), in order to sort and checkout the operational results of 1)
and to finish the subsequent calculations, we add local variables and add program
segments after command line Loop Until q = 1.

The VBA macro code of added program segments is as follows:
.Cells(1, 0).Value = "eigenvalue"
For I = 1 To n
.Cells(1, I).Value = .Cells(I, I).Value
Next I
Range(.Cells(1, 1), .Cells(1, n)).Select
Selection.Sort Key1:=.Cells(1, 1), Order1:=xlDescending, Header:=xlGuess _
, OrderCustom:=1, MatchCase:=False, Orientation:=xlLeftToRight, _
SortMethod:=xlPinYin, DataOption1:=xlSortNormal
Range(.Cells(2, 1), .Cells(n + 1, n)).Clear
For I = 1 To n
For J = 1 To n
rngI.Cells(I, J).Value = 0
Next J
rngI.Cells(I, I).Value = 1
Next I
For I = 1 To n
Cells(0,I).Formula = "=MDETERM("+rng0.Address+"-"+.Cells(1,I).Address_
+ "*" + rngI.Address + ")"
d = .Cells(0, I).Value
.Cells(0, I).Clear
If Abs(d) > 1E-6 Then
Rd1 rng0
Exit For
End If
Next I
rngI.Clear
Ru rng0
.Cells(3, 0).Value = " eigenvector "

2.2 To Checkout the Eigenvalue Initial Value

We checkout the eigenvalue initial value λi (i = 1, 2, · · · , n), if it satisfy the
characteristic equation, we turn to solve the eigenvectors or else we use λ0i =
λi (i = 1, 2, · · · , n) as the initial value to implement iteration solving eigenvalues.

(1) To establish the equation |A − λE | = 0;
The VBA macro code which is calculating characteristic equation determinant
corresponding to i-th eigenvalue is as follows:
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.Cells(0, I).Formula = "=MDETERM(" + rng0.Address + "-" + .Cells(1, I).
Address + "*" + rngI.Address + ")"

(2) To test and to verify the eigenvalue λ0i (i = 1, 2, · · · , n), if all the eigenvalues
satisfy equation, turn to 4, or else implement 3.

2.3 Solving Eigenvalues Iteratively

To initialize λ0i (i = 1, 2, · · · , n) into λ∈
i (i = 1, 2, · · · , n), establish single variable

equations, solve the true solution λi (i = 1, 2, · · · , n) of eigenvalues iteratively.

(1) To establish single equation |A − λE | = 0;
(2) Do initialization processing on real eigenvalues obtained previously. Make

λ0i = λi (i = 1, 2, · · · , n), λ1 = λ01 + 2|λ01| and λn = λ0n − 2|λ0n|. If
λ0i = λ0i+1 = · · · = λ0i+ j (i = 1, 2, · · · , n − j − 1, j > 1), when i>1, then
λi = λ0i + |λ0i − λ0i−1|/3 and λi+ j = λ0i+ j − |λ0i+ j − λ0i+ j+1|/3. This
makes the distribution of initial value more reasonable.

(3) Process the real eigenvalues initial value dynamically, to solve eigenvalues by
using VBA macro code to program through the method of solving single variable
equation. Make λ0i = λi (i = 1, 2, · · · , n), λ0i (1 ≤ i ≤ n) is the initial value,
solving the equation |A − λE | = 0, the solution denoted as λi (1 ≤ i ≤ n). If
λ0i √ λi−1 (i = 2, 3, · · · , n), then we make λ0i = λi−1 − 2|λi−1 −λi |/3 as the
initial value to solve the equation |A − λE | = 0.

The VBA code of solving single variable equations is as follows:
Cells(0, I).Formula = "=MDETERM(" + rng.Address + "-" + _
rngRd.Cells(1, I).Address + "*" + .Address + ")"
.Cells(0, I). Select
.Cells(0, I).GoalSeek Goal:=0, ChangingCell:=rngRd.Cells(1, I)

(4) Make verification and validation on the results of iteration once again and mark
λi (i = 1, 2, · · · n) which is not satisfy|A − λi E | = 0, so that it does not partic-
ipate in the subsequent corresponding eigenvectors calculations, and then com-
plete the iterative operation.

In order to make the iterated results more accurate, at the beginning of this
process, we set the most iterations and maximum error value through below
VBA code:
With Application

.MaxIterations = 1000 ’The most iterations

.MaxChange = 0.000001 ’ The maximum error value
End With
ActiveWorkbook. PrecisionAsDisplayed = False
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2.4 Solving the Eigenvectors Corresponding to Eigenvalue
λi (i = 1, 2, · · · , n)

We take eigenvector initial values X0i = (1, 1, · · · , 1)T for eigenvalues which are
not equal, iterative solving eigenvectors. We take eigenvector initial values X0i =
(1, 1, · · · , 1, 10000000000, 1, · · · , 1)T (i = 2, 3, · · · , n) for eigenvalues which are
equal, iterative solving eigenvectors. The process is designed as follows:

(1) For each eigenvalue λi , i = 1, 2, · · · , m, perform 2) to 5);

(2) Setting the approximate value
∃
λi = λi + 0.001 of eigenvalue λi , make

|A − ∃
λi E | ∗= 0;

(3) Setting eigenvector initial value X0i = (1, 1, · · · , 1)T corresponding to λi ,
if λi = λi−1 (i = 2, 3, · · · , n), then X0i = (1, 1, · · · , 1, 10000000000, 1,

· · · , 1)T (i = 2, 3, · · · , n);
(4) Calculating Yk, Xk, k = 1, 2, 3, · · · according to the formula⎨

A − ∃
λi E

⎩
Yk = Xk−1

X K = YK / ||YK ||∪

⎫⎬
⎭ , k = 1, 2, 3, · · · until k>1000 or Max

1≤i≤n
{xki/xk−1,i }

− Min
1≤i≤n

{xki/xk−1,i } < 1E −13 (if xk−1,i = 0, xk−1,i−1 ∗= 0, then xki/xk−1,i =
sgn(xki−1/xk−1,i−1));

(5) Record the result(s) of 4): Xi = Xki (i ≤ m).

The VBA macro code of solving eigenvectors is as follows:
KK = 0
Do
rngX0.Value = rngX1.Value
rngY.FormulaArray = "=mmult(minverse(" + rng.Address + ")," + rngX0.Address

+ ")"
rngY1.FormulaArray = "=max(abs(" + rngY.Address + "))"
For J = 1 To n

rngX1.Cells(J, 1).Value = rngY.Cells(J, 1).Value / rngY1.Cells(J, 1).Value
If Abs(rngX0.Cells(J, 1).Value) > 0 Then

rngL.Cells(J, 1).Value = rngX1.Cells(J, 1).Value / rngX0.Cells(J, 1).Value
sgnL = Sgn(rngL.Cells(J, 1).Value)

Else
rngL.Cells(J, 1).Value = sgnL

End If
Next J
Range(rngL.Cells(1, 1), rngL.Cells(n, 1)).Select
Selection.Sort Key1:=rngL.Cells(1, 1), Order1:=xlDescending, Header:=xlGuess _

, OrderCustom:=1, MatchCase:=False, Orientation:=xlTopToBottom, _
SortMethod:=xlPinYin, DataOption1:=xlSortNormal
d = rngL.Cells(1, 1).Value - rngL.Cells(n, 1).Value

KK = KK + 1
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Loop Until KK > 1000 Or d < 0.0000000000001 ’1E-13
rngRu.Value = rngX0.Value

2.5 Unitize the Eigenvectors

(1) For each eigenvector Xi , i = 1, 2, · · · , m, perform (2) to (4);
(2) If|xi j | < 9.9E − 6 ( j = 1, 2, · · · , n), then xi j = 0 ( j = 1, 2, · · · , n);

(3) Calculating the modulus d =
√∑n

j=1 x2
i j of eigenvector Xi ;

(4) Use modulus d multiplied by eigenvector Xi .

3 The Simulation and Operation of Optimization Algorithm

Below we use solving matrix eigenvalues and eigenvectors as an example to make
simulation and operation on the new method.

As shown in Fig. 1. input matrix in Excel worksheet cell A1 : D4, obtained the
eigenvalues and eigenvectors of matrix A after performing the macro process. The
simulation of its operation process is as follows:

(1) Using QR algorithm to calculate, appear d = (v(1, 1) − v(2, 2))/2 = 0 when
calling procedure wilkinsonQR( ) in the calculation, to give d a small nonzero
value d = 1E − 13, preliminary to figure out the eigenvalues 4, 2, 2, −2;

Fig. 1 Input matrix A and its operation results
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(2) Due to 4 is not the eigenvalue of matrix A, so the initial value 4, 2, 2, −2 is
adjusted for 12, 2.6667, 0.6667, −6;

(3) With adjusted value for initial value, we obtain all the eigenvalues of matrix A are
6.562817, 2, 1.33062, −3.89344 by using the single variable equation solving
method;

(4) Because the four eigenvalues each are not identical, we take vector quantity X0 =
(1 , 1 , 1 , 1)T for initial vector, to solve the eigenvectors of each eigenvalue,
and get below results:

⎡
⎢⎢⎣

−0.65749
−0.65749
−0.5393

−1

⎧
⎥⎥⎪ ,

⎡
⎢⎢⎣

1
−1

0
0

⎧
⎥⎥⎪ ,

⎡
⎢⎢⎣

−0.4939
−0.4939

1
0.11021

⎧
⎥⎥⎪ ,

⎡
⎢⎢⎣

0.509041
0.509041
0.613066

−1

⎧
⎥⎥⎪ .

(5) Make standardization on the above vectors, we obtain

⎡
⎢⎢⎣

−0.44784
−0.44784
−0.36733
−0.68114

⎧
⎥⎥⎪ ,

⎡
⎢⎢⎣

0.70711
−0.7071

0
0

⎧
⎥⎥⎪ ,

⎡
⎢⎢⎣

−0.40328
−0.40328

0.816477
0.089982

⎧
⎥⎥⎪ ,

⎡
⎢⎢⎣

0.369872
0.369872
0.445457

−0.72661

⎧
⎥⎥⎪

We get the same results by using the special mathematical software MATLAB to
take operations.

We also use the optimization algorithm to calculate the eigenvalues and eigen-

vector of matrix B =

⎡
⎢⎢⎣

4 0 2 3
0 4 0 3
0 0 1 3
0 0 3 1

⎧
⎥⎥⎪, and the results are shown in Fig. 2.

The results obtained by making operation on MATLAB are: the eigenvalue are
4, 4, 4,−2, the corresponding eigenvectors are

(1, 0, 0, 0)T, (0, 1, 0, 0)T, (−8575, −0.5145, 0, 0)T, (−0.1104,−0.3313,−0.6626, 0.6626)T

4 Analysis of Results

The algorithm which is optimized can solve matrix real eigenvalues and eigenvectors
by using the most commonly used office software–Excel. This algorithm but also
has the following advantages:

(1) It can solve all real eigenvalues of a real matrix, and it is able to figure out the
multiple root of a characteristic equation;

(2) It can calculate all real eigenvalues of the corresponding eigenvectors;
(3) The results of the operation are highly accurate. It can rival professional mathe-

matical software;
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Fig. 2 Input the matrix B and the operation results

(4) The advantage is based on Excel sorting data. It is easier for data processing;
(5) It is based on VBA programming, all the calculation done automatically without

the need of more intermediate to operation, and this is convenient to application
promotion.

5 Conclusion

In this paper, results the optimization algorithm in sovling the general matrix real
eigenvalues and eigenvectors with specialized mathematical software MATLAB-run
results fit together well. And by adjusting the relevant parameters, it can make the
accuracy improved.

In programming, the choice of some parameters is the results of repeated exper-
iments. As among the initialization vectors of the same eigenvalues iteration eigen-
vectors, we make i-th component displacement into10000000000, and we found that
the greater the absolute value of this number, the higher the accuracy of the results.
This is more consistent with the results of MATLAB running.
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Fuzzy Diameter Approximate Fixed Point
in Normed Spaces

S. A. M. Mohsenialhosseini and H. Mazaheri

Abstract We define fuzzy diameter approximate fixed point in fuzzy norm spaces.
We prove existence theorems, we also consider approximate pair constructive map-
ping and show its relation with approximate fuzzy fixed point.

Keywords Fuzzy norm space · Fz−approximate fixed point · Fuzzy diameter
approximate fixed point.

1 Introduction

Chitra and Mordeson [6] introduce a definition of norm fuzzy and thereafter the
concept of fuzzy norm space has been introduced and generalized in different ways
by Bag and Samanta in [1–3]. The definitions are as follows:

Definition 1.1. Let U be a linear space on R. A function N : U × R √ [0, 1] is
called fuzzy norm if and only if for every x, u ∈ U and every c ∈ R the following
properties are satisfy:

(FN1) N (x, t) = 0 for every t ∈ R− ≤ {0},
(FN2) N (x, t) = 1 if and only if x = 0 for every t ∈ R+,
(FN3) N (cx, t) = N (x, t

|c| ) for every c ∃= 0 and t ∈ R+,

(FN4) N (x + u, s + t) ∗ min{N (x, s), N (u, t)} for every s, t ∈ R+,
(FN5) the function N (x, .) is nondecreasing on R, and limt√∪ N (x, t) = 1.
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A pair (U, N ) is called a fuzzy norm space. Sometimes, We need two additional
conditions as follows:

(FN6) ⊂t ∈ R+ N (x, t) > 0 ∇ x = 0.

(FN7) function N (x, .) is continuous for every x ∃= 0, and on subset

{t : 0 < N (x, t) < 1}

is strictly increasing.
Let (U, N ) be a fuzzy norm space. For all α ∈ (0, 1), we define α norm on U as
follows:

∀x∀α = ⇔{t > 0 : N (x, t) ∗ α} for every x ∈ U.

Then {∀x∀α : α ∈ (0, 1)} is an ascending family of normed on U and they are
called α − norm on U corresponding to the fuzzy norm N on U. Some notation,
lemmas and example which will be used in this paper are given below:

Lemma 1.2. Bag and Samanta [1] Let (U, N )be a fuzzy norm space such that satisfy
conditions FN6 and FN7. Define the function N ≥ : U × R √ [0, 1] as follows:

N ≥(x, t) =
{◦{α ∈ (0, 1) : ∀x∀α ≤ t} (x, t) ∃= (0, 0)

0 (x, t) = (0, 0)

Then

(a) N ≥ is a fuzzy norm on U.
(b) N = N ≥.

Lemma 1.3. Bag and Samanta [1] Let (U, N ) be a fuzzy norm space such that
satisfy conditions FN6 and FN7. and {xn} ⊆ U, Then limn√∪ N (xn − x, t) = 1 if
and only if

lim
n√∪ ∀xn − x∀α = 0

for every α ∈ (0, 1).
Note that the sequence {xn} ⊆ U converges if there exists a x ∈ U such that

lim
n√∪ N (xn − x, t) = 1 f or every t ∈ R+.

In this case x is called the limit of {xn}.
Example 1.4. Bag and Samanta [1] Let V be the Real or Complex vector space and
let N define on V × R as follows:

N (x, t) =
{

1 t > |x |
0 t ≤ |x |
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for all x ∈ V and t ∈ R. Then (N , V ) is a fuzzy norm space and the function N
satisfy conditions FN6 and ∀x∀α = |x | for every α ∈ (0, 1).

Notation 1.5. Let (U, N ) be a fuzzy norm space and {∀.∀α : α ∈ (0, 1)} be the set
of all α−norms on U. For two subset A and B of U , we consider:

θ(A, B) = ⇔{∀x − y∀α : x ∈ A, y ∈ B, α ∈ (0, 1)}.

Definition 1.6. Mohsenalhosseini et al. [12] Let (U, N ) be a fuzzy norm space
satisfy condition FN6 and FN7 and {∀.∀α : α ∈ (0, 1)} the set of α−norms defined
on U. Suppose A and B are nonempty subsets of U and T : A ≤ B √ U.

For some γ > 0 and for any x ∈ A ≤ B is said to be a Fz-approximate fixed point
for T if for some α ∈ (0, 1)

∀x − T x∀α ≤ θ(A, B) + γ.

Proposition 1.7. Mohsenalhosseini et al. [12] Let (U, N ) be a fuzzy norm space
such that satisfy conditions FN6 and FN7 and {∀.∀α : α ∈ (0, 1)} be the set of
α−norms defined on U. Suppose A, B are nonempty subsets of U and T : A ≤ B √
U. If for x ∈ A ≤ B and α ∈ (0, 1)

Limn√∪∀T n x − T n+1x∀α = θ(A, B),

then there exists a Fz-approximate fixed point in A ≤ B.

Definition 1.8. Mohsenalhosseini et al. [12] let (U, N ) be a fuzzy norm space such
that satisfy conditions FN6 and FN7 and {∀.∀α : α ∈ (0, 1)} be the set of α−norms
defined on U. Suppose A and B are nonempty subsets of U and T : A ≤ B √ U
and S : A ≤ B √ U. A point (x, y) in A × B is said a Fz-approximate fixed point
for (T, S), if for some α ∈ (0, 1) there exists an γ > 0 such that

∀(T x, Sy)∀α ≤ θ(A, B) + γ.

In this paper we will denote the set of all Fz-approximate fixed points of T and
(T, S), for a given γ > 0, by
Fz

T (A, B) = {x ∈ A ≤ B : ∀x − T x∀α ≤ θ(A, B) + γ, f or some α ∈ (0, 1)}, and
Fz

(T,S)(A, B) = {(x, y) ∈ A×B : ∀T x−Sy∀α ≤ θ(A, B)+γ f or some α ∈ (0, 1)},
respectively.

Proposition 1.9. Mohsenalhosseini et al. [12] let (U, N ) is a fuzzy norm space such
that satisfy conditions FN6 and FN7 and {∀.∀α : α ∈ (0, 1)} be the set of α−norms
defined on U. Suppose A and B are nonempty subsets of U and T : A ≤ B √ U
and S : A ≤ B √ U. If for a (x, y) ∈ A × B and for some α ∈ (0, 1)

Limn√∪∀T n x − Sn y∀α = θ(A, B),
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then there exists a Fz-approximate fixed point in A × B.

2 Fuzzy Diameter and Fuzzy Radius Approximate in Fixed Point

In this section, we give the definitions of fuzzy diameter and fuzzy radius. Also, we
will obtain the theorems and result about fuzzy diameter and fuzzy radius approxi-
mate fixed point.

Definition 2.1. Let (U, N ) be a fuzzy normed linear space and Fz
T (A, B)( ∃=) ⊂

A ≤ B. We define fuzzy diameter of Fz
T (A, B) as

diam(Fz
T (A, B)) =

∨
α∈(0,1)

[
∧

{t > 0 : N (u − v, t) ∗ α ⊂ u, v ∈ Fz
T (A, B)}]

and it is denoted by T − ρ(Fz
T (A, B)).

Notation 2.2. Let (U, N ) be a fuzzy normed linear space satisfying FN6 and
Fz

T (A, B) ( ∃=) ⊂ A ≤ B. Then
∨{∀x − y∀α : x, y ∈ Fz

T (A, B)} is denoted by
α − ρ(Fz

T (A, B)) (∀∀α is the α−norm of N ), 0 < α < 1.

Proposition 2.3. Let (U, N ) be a fuzzy normed linear space satisfying FN6 and
Fz

T (A, B)( ∃=) ⊂ A≤B. Then T −ρ(Fz
T (A, B)) = ∨{α−ρ(Fz

T (A, B)) : α ∈ (0, 1)}.
Proof: If Fz

T (A, B) is singleton then clearlyα−ρ(Fz
T (A, B)) = T −ρ(Fz

T (A, B)) =
0 for all α ∈ (0, 1). So we suppose that Fz

T (A, B) is not singleton.
Now k > T − ρ(Fz

T (A, B))

∇ k >
∨

α∈(0,1)

[
∧

{t > 0 : N (u − v, t) ∗ α ⊂ u, v ∈ Fz
T (A, B)}]

∇ k >
∧

{t > 0 : N (u − v, t) ∗ α ⊂ u, v ∈ Fz
T (A, B)} ⊂α ∈ (0, 1).

∇ N (u − v, k) ∗ α ⊂ u, v ∈ Fz
T (A, B)} ⊂α ∈ (0, 1).

∇ N (u − v, k) ∗ α ⊂ u, v ∈ Fz
T (A, B).

∇ ∀u − v∀α ≤ k ⊂ u, v ∈ Fz
T (A, B)} and ⊂α ∈ (0, 1).

∇
∨

{∀x − y∀α : x, y ∈ Fz
T (A, B)} ≤ k ⊂α ∈ (0, 1).

∇ α − ρ(Fz
T (A, B)) ≤ k ⊂α ∈ (0, 1).

∇ T − ρ(Fz
T (A, B)) ∗ α − ρ(Fz

T (A, B)) ⊂α ∈ (0, 1).

∇ T − ρ(Fz
T (A, B)) ∗

∨
{α − ρ(Fz

T (A, B)) : α ∈ (0, 1)}.

Thus
T − ρ(Fz

T (A, B)) ∗
∨

{α − ρ(Fz
T (A, B)) : α ∈ (0, 1)}. (1)
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Now k < T − ρ(Fz
T (A, B))

∇
∨

α∈(0,1)

[
∧

{t > 0 : N (u − v, t) ∗ α ⊂ u, v ∈ Fz
T (A, B)}] > k

∇ ≡α0 ∈ (0, 1) such that
∧

{t > 0 : N (u − v, t) ∗ α0 ⊂ u, v ∈ Fz
T (A, B)} > k

∇ ≡u0, v0 ∈ Fz
T (A, B) such that N (u0 − v0, k) < α0. (2)

Now ∀u0 − v0∀α0 = ∧{t > 0 : N (u − v, t) ∗ α0} ∗ k by Eq. (2).
So α0 − ρ(Fz

T (A, B)) = ∨{∀u − v∀α0 : ⊂ u, v ∈ Fz
T (A, B)} ∗ ∀u0 − v0∀α0 ∗ k.

Thus
∨{α − ρ(Fz

T (A, B)) : α ∈ (0, 1)} ∗ α0 − ρ(Fz
T (A, B)) ∗ k, i.e.

∨{α −
ρ(Fz

T (A, B)) : α ∈ (0, 1)} ∗ k. Thus

∨
{α − ρ(Fz

T (A, B)) : α ∈ (0, 1)} ∗ T − ρ(Fz
T (A, B)). (3)

Now from Eqs. (1) and (3) we get T − ρ(Fz
T (A, B)) = ∨{α − ρ(Fz

T (A, B)) :
α ∈ (0, 1)}.
Definition 2.4. Let (U, N ) be a fuzzy normed linear space and Fz

1 T (A, B), Fz
2 T

(A, B) ⊂ A ≤ B. We define fuzzy radius of Fz
1 T (A, B) as

T − rA≤B(Fz
1 T (A, B)) =

∨
α∈(0,1)

[
∧

{t > 0 : N (u − v, t)

∗α ⊂ v ∈ Fz
1 T (A, B)}] (u ∈ Fz

2 T (A, B))

Notation 2.5. Let (U, N ) be a fuzzy normed linear space satisfying FN6. For any
non-empty subsets Fz

1 T (A, B), Fz
2 T (A, B) of A ≤ B and α ∈ (0, 1), we denote

α − rA≤B(Fz
1 T (A, B)) = ∨{∀u − v∀α : v ∈ Fz

1 T (A, B)} (u ∈ Fz
2 T (A, B).

Proposition 2.6. Let (U, N ) be a fuzzy normed linear space satisfying FN6. Then
For any subsets Fz

1 T (A, B)of A≤B, α ∈ (0, 1)and u ∈ A≤B, T −ru(Fz
1 T (A, B)) =∨{α − ru(Fz

1 T (A, B)) : α ∈ (0, 1)}.
Proof: If Fz

1 T (A, B) is singleton then clearly

α − ru(Fz
1 T (A, B)) = T − ru(Fz

1 T (A, B)) = 0

for all α ∈ (0, 1). So we suppose that Fz
1 T (A, B) is not singleton.

Now k > ru(Fz
1 T (A, B))
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∇ k >
∨

α∈(0,1)

[
∧

{t > 0 : N (u − v, t) ∗ α ⊂ u, v ∈ Fz
T (A, B)}]

∇ k >
∧

{t > 0 : N (u − v, t) ∗ α ⊂ v ∈ Fz
1 T (A, B)} ⊂α ∈ (0, 1).

∇ N (u − v, k) ∗ α ⊂ v ∈ Fz
1 T (A, B)} ⊂α ∈ (0, 1).

∇ N (u − v, k) ∗ α ⊂ v ∈ Fz
1 T (A, B).

∇ ∀u − v∀α ≤ k ⊂ v ∈ Fz
1 T (A, B)} and ⊂α ∈ (0, 1).

∇ k ∗
∨

{∀u − v∀α : ⊂v ∈ Fz
1 T (A, B)} = α − ru(Fz

1 T (A, B)) ⊂α ∈ (0, 1).

∇ α − ru(Fz
1 T (A, B)) ≤ k ⊂α ∈ (0, 1).

∇ T − ru(Fz
1 T (A, B)) ∗ α − ru(Fz

1 T (A, B)) ⊂α ∈ (0, 1).

∇ T − ru(Fz
1 T (A, B)) ∗

∨
{α − ru(Fz

1 T (A, B)) : α ∈ (0, 1)}.

Thus
T − ru(Fz

1 T (A, B)) ∗
∨

{α − ru(Fz
1 T (A, B)) : α ∈ (0, 1)}. (4)

Now T − ru(Fz
1 T (A, B)) > k

∇
∨

α∈(0,1)

[
∧

{t > 0 : N (u − v, t) ∗ α ⊂ v ∈ Fz
1 T (A, B)}] > k

∇ ≡α0 ∈ (0, 1) such that
∧

{t > 0 : N (u − v, t) ∗ α0 ⊂ v ∈ Fz
1 T (A, B)} > k

∇ ≡v0 ∈ Fz
1 T (A, B) such that N (u − v0, k) < α0. (5)

Now ∀u − v0∀α0 = ∧{t > 0 : N (u − v0, t) ∗ α0} ∗ k by Eq. (8).
So α0 − ru(Fz

1 T (A, B)) = ∨{∀u − v∀α0 : ⊂ v ∈ Fz
T (A, B)} ∗ ∀u − v0∀α0 ∗ k.

Thus
∨{α − ru(Fz

1 T (A, B)) : α ∈ (0, 1)} ∗ α0 − ru(Fz
1 T (A, B)) ∗ k. Therefore

∨
{α − ru(Fz

1 T (A, B)) : α ∈ (0, 1)} ∗ T − ru(Fz
1 T (A, B)). (6)

Now from Eqs. (4) and (6) we get T −ru(Fz
1 T (A, B)) = ∨{α−ru(Fz

1 T (A, B)) :
α ∈ (0, 1)}.
Definition 2.7. Let (U, N ) be a fuzzy normed linear space and Fz

(T,S)(A, B)( ∃=) ⊂
A × B. We define fuzzy diameter of Fz

(T,S)(A, B) as

diam(Fz
(T,S)(A, B)) =

∨
α∈(0,1),δ∈(0,1)

[
∧

{t > 0 : N ((u, v) − (u1, v1), t)

∗(α, δ) ⊂ (u, v), (u1, v1) ∈ Fz
(T,S)(A, B)}]

and it is denoted by (T, S) − ρ(Fz
(T,S)(A, B)).
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Notation 2.8. Let (U, N ) be a fuzzy normed linear space satisfying FN6 and Fz
(T,S)

(A, B)( ∃=) ⊂ A × B. Then

∨
{∀(x, y) − (x1, y1)∀α : (x, y), (x1, y1) ∈ Fz

(T,S)(A, B)}

is denoted by (α, δ) − ρ(Fz
(T,S)(A, B)) (∀∀α and ∀∀δ are the of N ), 0 < α < 1 and

0 < δ < 1.

Proposition 2.9. Let (U, N ) be a fuzzy normed linear space satisfying FN6 and
Fz

(T,S)(A, B)( ∃=) ⊂ A × B. Then

(T, S) − ρ(Fz
(T,S)(A, B)) =

∨
{(α, δ) − ρ(Fz

(T,S)(A, B)) : α, δ ∈ (0, 1)}.

Proof: If Fz
(T,S)(A, B) is then clearly (α, δ) − ρ(Fz

(T,S)(A, B)) = (T, S) −
ρ(Fz

(T,S)(A, B)) = 0 for all α, δ ∈ (0, 1). So we suppose that Fz
(T,S)(A, B) is not

singleton.
Now k > (T, S) − ρ(Fz

(T,S)(A, B))

∇ k >
∨

α∈(0,1),δ∈(0,1)

[
∧

{t > 0 : N ((u, v) − (u1, v1), t)

∗ ⇔{α, δ} ⊂ (u, v), (u1, v1) ∈ Fz
(T,S)(A, B)}]

∇ k >
∧

{t > 0N ((u, v) − (u1, v1), t)

∗ ⇔{α, δ} ⊂ (u, v), (u1, v1) ∈ Fz
(T,S)(A, B)} ⊂α, δ ∈ (0, 1).

∇ N ((u, v) − (u1, v1), k) ∗ ⇔{α, δ} ⊂ (u, v), (u1, v1) ∈ Fz
(T,S)(A, B) ⊂α, δ ∈ (0, 1).

∇ N ((u, v) − (u1, v1), k) ∗ ⇔{α, δ} ⊂ (u, v), (u1, v1) ∈ Fz
(T,S)(A, B).

∇ ∀(u, v) − (u1, v1)∀⇔{α,δ} ≤ k ⊂ (u, v), (u1, v1) ∈ Fz
(T,S)(A, B) and ⊂α, δ ∈ (0, 1).

∇
∨

{∀(x, y) − (x1, y1)∀⇔{α,δ} : (x, y), (x1, y1) ∈ Fz
(T,S)(A, B)} ≤ k ⊂α, δ ∈ (0, 1).

∇ ⇔{α, δ} − ρ(Fz
(T,S)(A, B)) ≤ k ⊂α, δ ∈ (0, 1).

∇ (T, S) − ρ(Fz
(T,S)(A, B)) ∗ ⇔{α, δ} − ρ(Fz

(T,S)(A, B)) ⊂α, δ ∈ (0, 1).

∇ (T, S) − ρ(Fz
(T,S)(A, B)) ∗

∨
{⇔{α, δ} − ρ(Fz

(T,S)(A, B)) : α, δ ∈ (0, 1)}.

Thus

(T, S)−ρ(Fz
(T,S)(A, B)) ∗

∨
{⇔{α, δ}−ρ(Fz

(T,S)(A, B)) : α, δ ∈ (0, 1)}. (7)

Now k < (T, S) − ρ(Fz
(T,S)(A, B))
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∇
∨

α∈(0,1),δ∈(0,1)

[
∧

{t > 0 : N ((u, v) − (u1, v1), t) ∗

⇔{α, δ} ⊂ (u, v), (u1, v1) ∈ Fz
(T,S)(A, B)}] > k

∇ ≡α0, δ0 ∈ (0, 1) such that
∧

{t > 0 : N ((u, v) − (u1, v1), t) ∗
⇔{α0, δ0} ⊂ (u, v), (u1, v1) ∈ Fz

(T,S)(A, B)} > k

∇ ≡(x, y), (x1, y1) ∈ Fz
(T,S)(A, B) such that N ((x, y)− (x1, y1), k) < ⇔{α0, δ0}. (8)

Now ∀(x, y) − (x1, y1)∀⇔{α0,δ0} = ∧{t > 0 : N (u − v, t) ∗ ⇔{α0, δ0}} ∗ k by
Eq. (5). So

⇔{α0, δ0} − ρ(Fz
(T,S)(A, B)) =

∨
{∀(u, v) − (u1, v1)∀

⇔{α0, δ0} : ⊂ (u, v) − (u1, v1) ∈ Fz
(T,S)(A, B)} ∗

∀(x, y) − (x1, y1)∀⇔{α0,δ0} ∗ k.

⇔{α0, δ0} − ρ(Fz
(T,S)(A, B)) =

∨
{∀(u, v) − (u1, v1)∀

⇔{α0, δ0} : ⊂ (u, v) − (u1, v1) ∈ Fz
(T,S)(A, B)} ∗

∀(x, y) − (x1, y1)∀⇔{α0,δ0} ∗ k.

Thus

∨
{⇔{α, δ}−ρ(Fz

(T,S)(A, B)) : α ∈ (0, 1)} ∗ ⇔{α0, δ0}−ρ(Fz
(T,S)(A, B)) ∗ k,

i.e.
∨{⇔{α, δ} − ρ(Fz

(T,S)(A, B)) : α, δ ∈ (0, 1)} ∗ k. Thus

∨
{⇔{α, δ} − ρ(Fz

T (A, B)) : α, δ ∈ (0, 1)} ∗ (T, S) − ρ(Fz
T (A, B)). (9)

Now from Eqs. (4) and (6) we get (T, S) − ρ(Fz
(T,S)(A, B)) = ∨{⇔{α, δ} −

ρ(Fz
(T,S)(A, B)) : α, δ ∈ (0, 1)}.

3 Conclusion

The theory of fuzzy approximate fixed points is not less interesting than that of
fuzzy fixed points and many results formulated in the latter can be adapted to a less
restrictive framework in order to guarantee the existence of the fuzzy approximate
fixed points. We proved results about fuzzy diameter and fuzzy radius approximate
on fuzzy norm spaces. we think that this paper could be of interest to the researchers
working in the field fuzzy functional analysis in particular, fuzzy approximate fixed
point theory are used.
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Cascade and Wreath Products of Lattice-Valued
Intuitionistic Fuzzy Finite State Machines and
Coverings

Li Yang and Zhi-wen Mo

Abstract The concepts of the cascade products and the wreath products of lattice-
valued intuitionistic fuzzy finite state machines, homomorphisms and weak cover-
ings are given. At the same time, the covering relations of two homomorphisms
lattice-valued intuitionistic fuzzy finite state machines are studied. The covering
relations among the full direct products, cascade products, wreath products are diss-
cussed. Some transitive properties of covering relations are obtained in the product
machines.Therefore,it is an important step to study lattice-valued intuitionistic fuzzy
finite state machines.

Keywords Cascade product · Wreath product · Homomorphism · Covering

1 Introduction

The theory of fuzzy sets proposed by Zadeh in [1]. The mathematical formulation of
a fuzzy automaton was first proposed by Wee in [2]. Afterwards,out of several higher
order fuzzy sets, intuitionistic fuzzy sets introduced by Atanassov [3, 4] which have
been found to be highly useful to deal with vagueness. Using the notion of intuition-
istic fuzzy sets, Jun [5–7] introduced the concepts of intuitionistic fuzzy finite state
machines as a generalization of fuzzy finite state machines, intuitionistic successors,
intuitionistic subsystems, intuitionistic submachines, intuitionistic q-twins and so on.
Intuitionistic fuzzy recognizers was introduced by Zhang and Li [8]. The theory of
lattice-valued intuitionistic fuzzy sets was introduced by Atanassov [9]. Thus, on the
basis of lattice-valued intuitionistic fuzzy sets, the present authors [10] introduced
the concepts of lattice-valued intuitionistic fuzzy finite state machines, the full direct
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products, the restricted direct products and coverings. In this thesis, the concepts of
the cascade products and the wreath products of lattice-valued intuitionistic fuzzy
finite state machines, homomorphisms and weak coverings are given.

2 Preliminaries

Definition 2.1. [9] Let X be a nonempty set, a complete lattice L with involutive
order reversing unary operation’ : L −√ L . A lattice-valued intuitionistic fuzzy set
A in a set X is an object of the form

A = {∈x, μA(x), αA(x)≤|x ∃ X},

where μA and αA are functions μA : X −√ L , αA : X −√ L , such that for all
x ∃ X , μA(x) ∗ (αA(x))∪. For the sake of simplicity, we shall use the notation
A = (μA, αA) instead of A = {∈x, μA(x), αA(x)≤|x ∃ X}.
Definition 2.2. [10] A lattice-valued intuitionistic fuzzy finite state machine (LIFFSM,
for short) is a triple M = (Q, X, A), where Q and X are finite nonempty sets, called
the set of states and the set of input symbols, respectively, and A = (μA, αA) is a
lattice-valued intuitionistic fuzzy set in Q × X × Q.

Let X⊂ denote the set of all words of elements of X of finite length. Let θ denote
the empty word in X⊂ and |x | denote the length of x for every x ∃ X⊂.

Definition 2.3. [10] Let Mi = (Qi , Xi , Ai ) be a LIFFSM, i = 1, 2. Then M1 ×
M2 = (Q1 × Q2, X1 × X2, A1 × A2) is called the full direct product of M1 and M2,

μA1×A2((q1, q2), (x1, x2), (p1, p2)) = μA1(q1, x1, p1) ∇ μA2(q2, x2, p2),

αA1×A2((q1, q2), (x1, x2), (p1, p2)) = αA1(q1, x1, p1) ∀ αA2(q2, x2, p2),

where μA1×A2 : (Q1× Q2)×(X1× X2)×(Q1× Q2) −√ L , αA1×A2 : (Q1× Q2)×
(X1×X2)×(Q1×Q2) −√ L , ⇔(q1, q2), (p1, p2) ∃ Q1×Q2, ⇔(x1, x2) ∃ X1×X2.

Definition 2.4. [10] Let Mi = (Qi , X, Ai ) be a LIFFSM, i = 1, 2. Then M1∇M2 =
(Q1 × Q2, X, A1 × A2) is called the restricted direct product of M1 and M2,

μA1∇A2((q1, q2), a, (p1, p2)) = μA1(q1, a, p1) ∇ μA2(q2, a, p2),

αA1∇A2((q1, q2), a, (p1, p2)) = αA1(q1, a, p1) ∀ αA2(q2, a, p2),

where μA1∇A2 : (Q1 × Q2) × X × (Q1 × Q2) −√ L , αA1∇A2 : (Q1 × Q2) × X ×
(Q1 × Q2) −√ L ,⇔(q1, q2), (p1, p2) ∃ Q1 × Q2,⇔a ∃ X .
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Theorem 2.1 [10] Let Mi = (Qi , Xi , Ai )be a LIFFSM, i = 1, 2. Then the following
assertions hold.

(1) M1 × M2 be a LIFFSM,
(2) M1 ∇ M2 be a LIFFSM, where X1 = X2 = X.

Definition 2.5. [10] Let Mi = (Qi , X, Ai ) be a LIFFSM, i = 1, 2. Let γ : Q2 −√
Q1 be a surjective partial function and ρ : X1 −√ X2 be a function. Then the
ordered pair (γ, ρ) is called a covering of M1 by M2, written M1 ∗ M2, if

μA1(γ(p), x1, γ(q)) ∗ μA2(p, ρ(x1), q),

αA1(γ(p), x1, γ(q)) ≥ αA2(p, ρ(x1), q),

for all x1 ∃ X1 and p, q belong to the domain of γ.

Theorem 2.2 [10] Let Mi = (Qi , Xi , Ai ) be a LIFFSM, i = 1, 2, 3. If M1 ∗ M2
and M2 ∗ M3, then M1 ∗ M3.

Theorem 2.3 [10] Let Mi = (Qi , X, Ai ) be a LIFFSM, i = 1, 2. Then M1 ∇ M2 ∗
M1 × M2.

Theorem 2.4 [10] Let Mi = (Qi , Xi , Ai ) be a LIFFSM, i = 1, 2, 3. If M1 ∗ M2,
then

(1) M1 × M3 ∗ M2 × M3 and M3 × M1 ∗ M3 × M2,
(2) M1 ∇ M3 ∗ M2 ∇ M3 and M3 ∇ M1 ∗ M3 ∇ M2, where X1 = X2 = X3 = X.

Corollary 2.1 [10] Let Mi = (Qi , Xi , Ai ) be a LIFFSM, i = 1, 2, 3. If M1 ∗ M2,
then

(1) M1 ∇ M3 ∗ M2 × M3, where X1 = X3 = X,
(2) M3 ∇ M1 ∗ M3 × M2, where X1 = X3 = X.

Corollary 2.2 [10] Let Mi = (Qi , Xi , Ai ) be a LIFFSM, i = 1, 2, 3, 4. If M1 ∗ M2
and M3 ∗ M4, the following assertions hold.

(1) M1 × M3 ∗ M2 × M4,
(2) M1 ∇ M3 ∗ M2 ∇ M4, where X1 = X2 = X3 = X4 = X,
(3) M1 ∇ M3 ∗ M2 × M4, where X1 = X3 = X.

3 Cascade and Wreath Products of Lattice-Valued Intuitionistic
Fuzzy Finite State Machines

Definition 3.1. Let Mi = (Qi , Xi , Ai ) be a LIFFSM, i = 1, 2. Then M1δM2 =
(Q1 × Q2, X2, A1δA2) is called the cascade product of M1 and M2,
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μA1δA2((q1, q2), b, (p1, p2)) = μA1(q1, δ(q2, b), p1) ∇ μA2(q2, b, p2),

αA1δA2((q1, q2), b, (p1, p2)) = αA1(q1, δ(q2, b), p1) ∀ αA2(q2, b, p2),

where μA1δA2 : (Q1 × Q2) × X2 × (Q1 × Q2) −√ L , αA1δA2 : (Q1 × Q2) ×
X2 × (Q1 × Q2) −√ L , δ : Q2 × X2 −√ X1 be a function, ⇔(q1, q2), (p1, p2) ∃
Q1 × Q2,⇔b ∃ X2.

Definition 3.2. Let Mi = (Qi , Xi , Ai ) be a LIFFSM, i = 1, 2. Then M1 ◦ M2 =
(Q1 × Q2, X Q2

1 × X2, A1 ◦ A2) is called the wreath product of M1 and M2,

μA1◦A2((q1, q2), ( f, b), (p1, p2)) = μA1(q1, f (q2), p1) ∇ μA2(q2, b, p2),

αA1◦A2((q1, q2), ( f, b), (p1, p2)) = αA1(q1, f (q2), p1) ∀ αA2(q2, b, p2),

where μA1◦A2 : (Q1 × Q2) × (X Q2
1 × X2) × (Q1 × Q2) −√ L , αA1◦A2 :

(Q1 × Q2) × (X Q2
1 × X2) × (Q1 × Q2) −√ L , X Q2

1 = { f | f : Q2 −√
X1},⇔((q1, q2), ( f, b), (p1, p2)) ∃ (Q1 × Q2) × (X Q2

1 × X2) × (Q1 × Q2).

Theorem 3.1 Let Mi = (Qi , Xi , Ai ) be a LIFFSM, i = 1, 2. Then

(1) M1δM2 be a LIFFSM,
(2) M1 ◦ M2 be a LIFFSM.

Proof. By the same method of Theorem 3.1 in Ref. [10], it is easy to proof that the
result is true.

4 Coverings Properties of Products

Definition 4.1. Let M1 = (Q1, X1, A1) and M2 = (Q2, X2, A2) be LIFFSM. Let
γ : Q2 −√ Q1 be a surjective partial function and ρ : X1 −√ X2 be a partial
function. Then the ordered pair (γ, ρ) is called a weak covering of M1 by M2,
written M1 ∗w M2, if

μA1(γ(p), x1, γ(q)) ∗ μA2(p, ρ(x1), q),

αA1(γ(p), x1, γ(q)) ≥ αA2(p, ρ(x1), q),

for all x1 in the domain of X1 and p, q in the domain of γ.

A weak covering differs from a covering only in that ρ in Definition 4.1 is a
partial function, while ρ in Definition 2.5 is a function. Thus every covering is a
weak covering.
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Definition 4.2. Let M1 = (Q1, X1, A1) and M2 = (Q2, X2, A2) be LIFFSM.
A pair (Φ, β) of mappings, Φ : Q1 −√ Q2 and β : X1 −√ X2, is called a
homomorphism, written (Φ, β) : M1 −√ M2, if

μA1(q, a, p) ∗ μA2(Φ(q), β(a), Φ(p)),

αA1(q, a, p) ≥ αA2(Φ(q), β(a), Φ(p)),

⇔q, p ∃ Q1 and ⇔a ∃ X1.
The pair (Φ, β) is called a strong homomorphism, if

μA2(Φ(q), β(a), Φ(p)) = ∀{μA1(q, a, t)|t ∃ Q1, Φ(t) = Φ(p)},

αA2(Φ(q), β(a), Φ(p)) = ∇{αA1(q, a, t)|t ∃ Q1, Φ(t) = Φ(p)},

for all q, p ∃ Q1 and ⇔a ∃ X1.
A homomorphism(strong homomorphism) (Φ, β) : M1 −√ M2 is called an

isomorphism(strong isomorphism) if Φ and β are both one-one and onto.

Theorem 4.1 Let M1 = (Q1, X1, A1) and M2 = (Q2, X2, A2) be LIFFSM. Let
(Φ, β) : M1 −√ M2 be a homomorphism. If (Φ, β) is a strong homomorphism with
Φ one-one, then

μA2(Φ(q), β(x1), Φ(p)) = μA1(q, x1, p),

αA2(Φ(q), β(x1), Φ(p)) = αA1(q, x1, p),

for all q, p ∃ Q1, x1 ∃ X1.

Proof. Since (Φ, β) is a strong homomorphism, we have

μA2(Φ(q), β(x1), Φ(p)) = ∀{μA1(q, x1, t)|t ∃ Q1, Φ(t) = Φ(p)},

αA2(Φ(q), β(x1), Φ(p)) = ∀{αA1(q, x1, t)|t ∃ Q1, Φ(t) = Φ(p)},

for all q, p ∃ Q1, x1 ∃ X1. Since Φ is an one-one and Φ(t) = Φ(p), we have t = p.
Thus

μA2(Φ(q), β(x1), Φ(p)) = μA1(q, x1, p),

αA2(Φ(q), β(x1), Φ(p)) = αA1(q, x1, p).

Theorem 4.2 Let M1 = (Q1, X1, A1) and M2 = (Q2, X2, A2) be LIFFSM. Let
(Φ, β) : M1 −√ M2 be a homomorphism, then

(1) If this homomorphism be an onto strong homomorphism and Φ is an one-one,
then M2 ∗ M1,
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(2) If Φ be an one-one, then M1 ∗ M2.

Proof. (1) Since (Φ, β) : M1 −√ M2 be an onto strong homomorphism, there
exist surjective functions Φ : Q1 −√ Q2 and β : X1 −√ X2. Let γ : Q1 −√
Q2 and ρ : X2 −√ X1, γ = Φ. Since β be a surjective function. Hence there
exists at least one original image a ∃ X1 such that β(a) = a∪ for ⇔a∪ ∃ X2. Let
ρ(a∪) = a. (Φ, β) be a strong homomorphism with Φ one-one. Then

μA2(Φ(q), β(a), Φ(p)) = μA1(q, a, p),

αA2(Φ(q), β(a), Φ(p)) = αA1(q, a, p),

⇔q, p ∃ Q1, a∪ ∃ X2. If ρ(a∪) = a, we can view

μA2 (γ(q), a∪, γ(p)) = μA2 (Φ(q), β(a), Φ(p)) = μA1 (q, a, p) = μA1(q, ρ(a∪), p),

αA2 (γ(q), a∪, γ(p)) = αA2 (Φ(q), β(a), Φ(p)) = αA1(q, a, p) = αA1(q, ρ(a∪), p).

Hence the ordered pair (γ, ρ) is a covering of M2 by M1, M2 ∗ M1.
(2) Since (Φ, β) : M1 −√ M2 be a homomorphism, there exist functions Φ :

Q1 −√ Q2 and β : X1 −√ X2, such that

μA1(q1, a1, p1) ∗ μA2(Φ(q1), β(a1), Φ(p1)),

αA1(q1, a1, p1) ≥ αA2(Φ(q1), β(a1), Φ(p1)),

⇔q1, p1 ∃ Q1 and ⇔a1 ∃ X1. Let γ : Q2 −√ Q1. If Φ(q1) = q2, then
γ(q2) = q1. Since Φ be an one-one, we can view q1 is determined uniquely.
Thus γ be a surjective partial function. Let ρ : X1 −√ X2, ρ = β, then

μA1(γ(q2), a1, γ(p2)) ∗ μA2(q2, ρ(a1), p2),

αA1(γ(q2), a1, γ(p2)) ≥ αA2(q2, ρ(a1), p2).

Hence the ordered pair (γ, ρ) is a covering of M1 by M2, M1 ∗ M2.

Corollary 4.1 Let M1 = (Q1, X1, A1) and M2 = (Q2, X2, A2) be LIFFSM. Let
(Φ, β) : M1 −√ M2 be a homomorphism, then

(1) If this homomorphism be an strong homomorphism and Φ is a both one-one and
onto, then M2 ∗w M1,

(2) If Φ be an one-one, then M1 ∗w M2.

Proof. (1) The proof is similar to that of Theorem 4.2(1).
(2) we can know M1 ∗ M2 by Theorem 4.2(2). Since every covering is a weak

covering. Thus M1 ∗w M2.
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Theorem 4.3 Let Mi = (Qi , Xi , Ai ) be a LIFFSM, i = 1, 2, 3. If M1 ∗w M2 and
M2 ∗ M3, then M1 ∗w M3.

Proof. Since M1 ∗w M2, there exists a partial surjective function γ1 : Q2 −√ Q1
and a partial function ρ1 : X1 −√ X2 such that

μA1(γ1(p1), x1, γ1(q1)) ∗ μA2(p1, ρ1(x1), q1),

αA1(γ1(p1), x1, γ1(q1)) ≥ αA2(p1, ρ1(x1), q1),

for all x1 belong to the domain of ρ1 and p1, q1 belong to the domain of γ1.

Since M2 ∗ M3, there exists a surjective partial function γ2 : Q3 −√ Q2 and a
function ρ2 : X2 −√ X3 such that

μA2(γ2(p2), x2, γ2(q2)) ∗ μA3(p2, ρ2(x2), q2),

αA2(γ2(p2), x2, γ2(q2)) ≥ αA3(p2, ρ2(x2), q2),

for all x2 ∃ X2 and p2, q2 belong to the domain of γ2.
Let γ = γ1 ◦γ2 : Q3 −√ Q1, ρ = ρ2 ◦ ρ1 : X1 −√ X3. Clearly, γ is a surjective

partial function and ρ is a partial function. If ⇔x1 ∃ domain(ρ) = domain(ρ1) and
p, q ∃ domain(γ) ⊆ domain(γ2), then

μA1(γ(p), x1, γ(q)) = μA1(γ1 ◦ γ2(p), x1, γ1 ◦ γ2(q))

= μA1(γ1(γ2(p)), x1, γ1(γ2(q)))

∗ μA2(γ2(p), ρ1(x1), γ2(q))

∗ μA3(p, ρ2(ρ1(x1)), q)

= μA3(p, ρ2 ◦ ρ1(x1), q)

= μA3(p, ρ(x1), q).

Similarly, we can prove αA1(γ(p), x1, γ(q)) ≥ αA3(p, ρ(x1), q). Clearly, (γ, ρ) is a
required weak covering of M1 by M3.

Theorem 4.4 Let Mi = (Qi , Xi , Ai ) be a LIFFSM, i = 1, 2. Then

(1) M1δM2 ∗ M1 ◦ M2,
(2) M1 ◦ M2 ∗ M1 × M2,
(3) M1δM2 ∗ M1 × M2.

Proof. (1) Let δb : Q2 −√ X1 be a function defined by δb(p2) = δ(p2, b) for
all p2 ∃ Q2 and b ∃ X2. Define ρ : X2 −√ X Q2

1 × X2 by ρ(b) = (δb, b) and
let γ be an identity map on Q1 × Q2.

(2) Define ρ : X Q2
1 × X2 −√ X1 × X2 by ρ( f, b) = ( f (p2), b) and let γ be an

identity map on Q1 × Q2.
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(3) Since M1δM2 ∗ M1 ◦ M2 and M1 ◦ M2 ∗ M1 × M2. We have M1δM2 ∗
M1 × M2 by Theorem 2.2.

Theorem 4.5 Let Mi = (Qi , Xi , Ai ) be a LIFFSM, i = 1, 2, 3. If M1 ∗ M2, then

(1) Given δ1 : Q3 × X3 −√ X1, there exists δ2 : Q3 × X3 −√ X2 such that
M1δ1 M3 ∗ M2δ2 M3. If (γ, ρ) is a covering of M1 by M2 and ρ is a surjective,
then for all δ1 : Q1 × X1 −√ X3, there exists δ2 : Q2 × X2 −√ X3 such that
M3δ1 M1 ∗ M3δ2 M2,

(2) M1 ◦ M3 ∗ M2 ◦ M3 and M3 ◦ M1 ∗w M3 ◦ M2.

Proof. Since M1 ∗ M2, there exists a surjective partial function γ1 : Q2 −√ Q1
and a function ρ1 : X1 −√ X2 such that

μA1(γ1(p2), x1, γ1(q2)) ∗ μA2(p2, ρ1(x1), q2),

αA1(γ1(p2), x1, γ1(q2)) ≥ αA2(p2, ρ1(x1), q2),

for all x1 ∃ X1 and p2, q2 belong to the domain of γ1.

(1) Given δ1 : Q3 × X3 −√ X1, set δ2 = ρ1 ◦ δ1 and ρ2 as an identity mapping
on X3. Define γ2 : Q2 × Q3 −√ Q1 × Q3 by γ2((q2, q3)) = (γ1(q2), q3).
Clearly, we can prove (γ2, ρ2) is a required covering, M1δ1 M3 ∗ M2δ2 M3.
Given δ1 : Q1 × X1 −√ X3, set δ2 : Q2 × X2 −√ X3 such that
δ2(q2, ρ1(x1)) = δ1(γ1(q2), x1). Since ρ1 is a surjective and X1 is finite, such
δ2 exists. Clearly, δ2 is not unique. Define γ2 : Q3 × Q2 −√ Q3 × Q1 by
γ2((q3, q2)) = (q3, γ1(q2)) and set ρ2 = ρ1. Clearly, we can prove (γ2, ρ2) is a
required covering, M3δ1 M1 ∗ M3δ2 M2.

(2) Define γ2 : Q2 × Q3 −√ Q1 × Q3 by γ2((q2, q3)) = (γ1(q2), q3) and ρ2 :
X Q3

1 × X3 −√ X Q3
2 × X3 by ρ2( f, x3) = (ρ1 ◦ f, x3). Obviously, γ2 is a

surjective partial function and ρ2 is a function.
Define γ2 : Q3 × Q2 −√ Q3 × Q1 by γ2((q3, q2)) = (q3, γ1(q2)) and ρ2 :
X Q1

3 × X1 −√ X Q2
3 × X2 by ρ2( f, x1) = ( f ◦ γ1, ρ1(x1)). Obviously, γ2 is a

surjective partial function and ρ2 is a partial function.

Corollary 4.2 Let Mi = (Qi , Xi , Ai ) be a LIFFSM, i = 1, 2, 3. If M1 ∗ M2, then

(1) M1δM3 ∗ M2 ◦ M3 and M3δM1 ∗w M3 ◦ M2,
(2) M1 ◦ M3 ∗ M2 × M3 and M3 ◦ M1 ∗ M3 × M2,
(3) M1δM3 ∗ M2 × M3 and M3δM1 ∗ M3 × M2.

Proof. By Theorems 4.4, 4.5 and 2.2, we can prove M1δM3 ∗ M2◦M3. According
to Theorems 4.4, 2.4 and 2.2, we can prove (2), (3) is true. Now we will prove
M3δM1 ∗w M3 ◦ M2.

M3δM1 = (Q3 × Q1, X1, A3δA1), M3 ◦ M2 = (Q3 × Q2, X Q2
3 × X2, A3 ◦ A2).

Since M1 ∗ M2, there exists a surjective partial function γ1 : Q2 −√ Q1 and a
function ρ1 : X1 −√ X2 such that
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μA1(γ1(p2), x1, γ1(q2)) ∗ μA2(p2, ρ1(x1), q2),

αA1(γ1(p2), x1, γ1(q2)) ≥ αA2(p2, ρ1(x1), q2),

for all x1 ∃ X1 and p2, q2 belong to the domain of γ1.

Define γ2 : Q3 × Q2 −√ Q3 × Q1 by γ2((q3, q2)) = (q3, γ1(q2)) and ρ2 :
X1 −√ X Q2

3 ×X2 by ρ2(x1) = ( fx1 , ρ1(x1)). Define fx1 : Q2 −√ X3 by fx1(p2) =
δ(γ1(p2), x1). Clearly γ2 be a surjective partial function and ρ2 be a partial function.
⇔(p3, p2), (q3, q2) in the domain of γ2 and x1 in the domain of ρ2,

μA3δA1(γ2((p3, p2)), x1, γ2((q3, q2)))

= μA3δA1((p3, γ1(p2)), x1, (q3, γ1(q2)))

= μA3(p3, δ(γ1(p2), x1), q3) ∇ μA1(γ1(p2), x1, γ1(q2))

= μA3(p3, fx1(p2), q3) ∇ μA1(γ1(p2), x1, γ1(q2))

∗ μA3(p3, fx1(p2), q3) ∇ μA2(p2, ρ1(x1), q2)

= μA3◦A2((p3, p2), ( fx1 , ρ1(x1)), (q3, q2))

= μA3◦A2((p3, p2), ρ2(x1), (q3, q2)).

Similarly, we can prove

αA3δA1(γ2((p3, p2)), x1, γ2((q3, q2))) ≥ αA3◦A2((p3, p2), ρ2(x1), (q3, q2)).

Hence (γ2, ρ2) is the required weak covering.

Corollary 4.3 Let Mi = (Qi , Xi , Ai ) be a LIFFSM, i = 1, 2, 3, 4. If M1 ∗ M2 and
M3 ∗ M4, then

(1) M1 ◦ M3 ∗δ M2 ◦ M4,
(2) M1δM3 ∗δ M2 ◦ M4,
(3) M1 ◦ M3 ∗ M2 × M4,
(4) M1δM3 ∗ M2 × M4.

Proof. By Theorems 4.5 and 4.3, we can prove M1 ◦ M3 ∗δ M2 ◦ M4. Similarly,
we can prove (2), (3), (4) are true.

5 Conclusion

It is well known that product is a basic operation in automata theory. In this
paper,we have investigated the products of lattice-valued intuitionistic fuzzy finite
state machines and coverings.
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Attribute Reduction of Lattice-Value
Information System Based on L-Dependence
Spaces

Chang Shu, Zhi-wen Mo, Xiao Tang and Zhi-hua Zhang

Abstract Lattice is a wide concept. All different kinds of information systems come
down to lattice-value information system. Attribute reduction of different kinds of
information systems could be boiled down to that of lattice-value information sys-
tems. In this paper, L-dependence space is established on lattice-value information
system. Then attribute reduction of theory and algorithm is put forward and the
effectiveness and feasibility of algorithm are explained by an example. Finally, the
result of attribute reduction is compared with other algorithms by computational
complexity.

Keywords Lattice-value · Information system ·Attribute reduction ·L-dependence
space

1 Introduction

One of the fundamental goals of artificial intelligence (AI) is to build artificially
computer-based systems which make computer simulate, extend and expand human’s
intelligence and empower computers to perform tasks which are routinely performed
by human beings. Due to the fact that human intelligence actions are always involved
with uncertainty in information processing, one important task of AI is to study how
to make the computer simulate human being to deal with uncertain information.
Among major ways in which human being deal with uncertainty of information, the
uncertainty reasoning becomes an essential mechanism in AI.

C. Shu (B) · Z. Mo
College of Mathematics and Software Science, Sichuan Normal University, Chengdu
610066, Sichuan, China
e-mail: yaroer2002@tom.com

X. Tang · Z. Zhang
School of Mathematical Science, University of Electronic Science and Technology of China,
Chengdu 6111731, Sichuan, China

B.-Y. Cao and H. Nasseri (eds.), Fuzzy Information & Engineering and Operations 107
Research & Management, Advances in Intelligent Systems and Computing 211,
DOI: 10.1007/978-3-642-38667-1_12, © Springer-Verlag Berlin Heidelberg 2014



108 C. Shu et al.

A general model of many finite structures is introduced and investigated in com-
puter science. The model is referred as dependence space. The main feature of the
model is that it enables us to deal with the indiscernibility-type incompleteness of
information that a modeled structure might be burdened with. The model provides
a general framework for expressing the concept of independence of sets and the
concept of dependency between sets with respect to a dependence space. It is shown
that these concepts are the foundation on which many applied structures rest. The
theory of dependence spaces is developed aimed at providing tools for studying the
problems relevant to the theory of mod reduction and algorithm is put forward.

Lattice is a widely used concept. All different kinds of information system come
down to lattice-value information system. Attribute reduction of all different kinds
of information system come down to that of lattice-value information system. In
this paper, the concept dependence space is established on lattice-value information
system. Then effectiveness and feasibility of algorithm are explained by an exam-
ple. Finally, the result of attribute reduction is compared with other algorithms by
computational complexity [1–3].

2 Lattice-value Information System and Properties

Lattice is a widely concept. All sorts of different information systems can attribute to
lattice-value information systems, so reduction of all sorts of different information
systems can attribute to one of lattice-value information systems [4–11].

Definition 1. Data is represented as an lattice-value information system (U, A, F),
where U = {

x1,x2, · · · xn
}

is an object set, A = {a1, a2, · · · an} is an attribute set
and F = { fl : l √ m} is a set of object attribute value mappings (also is information
function) fl : U ∈ Vl (l √ m), where Vl is the domain of the attribute al and a finite
lattice with the maximum element 1 and the minimum element 0. For convenience,
let the same symbols ≤ explain order relation of Vl .

Definition 2. Let (U, A, F) be an lattice-value information system, given a binary
relation RB = {(x, y) ∃ U × U : fl (x) ≤ fl (y) (∗al ∃ B)} for any attribute sub-
set B ∪ A , we define [x]B = {y ∃ U : (x, y) ∃ RB} = {y ∃ U : fl (x) ≤ fl (y)
(∗al ∃ B)} , x ∃ U.

Theorem 1. Let (U, A, F) be an lattice-value information system, given the follow-
ing properties:

1. RB is reflexive and transitive, but it is not symmetrical. In general, RB is not an
equivalence relation.

2. When B1 ∪ B2 ∪ A, there holds RB1 ⊂ RB2 ⊂ RA.
3. When B1 ∪ B2 ∪ A, the relation [x]B1 ⊂ [x]B2 ⊂ [x]RA exists.
4. ∇ = {[x]B : x ∃ U } is a cover of U.
5. When y ∃ [x]B, there is [y]B ∪ [x]B.
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Theorem 2. Let (U, A, F)be an lattice-value information system and R is a relation
on L-lattice. We have Rl = {(x, y) ∃ U × U : ( fl (x) , fl (y)) ∃ R}, then there have
the following properties:

1. R{Rl } = R∀{Rl } = Rl .
2. RB = ⇔ {Rl : al ∃ B} , R∀

B = ≥ {Rl : al ∃ B} .
3. Rφ = U × U, R∀

φ = φ.

4. RB≥C = RB ⇔ RC , R∀
B≥C = R∀

B ≥ R∀
C .

5. If B ∪ C,then RB ⊂ RC ,R∀
B ∪ R∀

C .

6. If B ◦= φ, then RB ∪ R∀
B .

7. ∼ RB = R∀−B,∼ R∀
B = R−B .

Proof. It is clear to prove by definitions.

Theorem 3. Let (U, A, F)be an lattice-value information system and R is a relation
on L-lattice. If B ∪ A, and B ◦= φ, then

1. If R is reflexive, then RB and R∀
B are also reflexive.

2. If R is symmetrical, then RB and R∀
B are also symmetrical.

3. If R is transitive, then RB and R∀
B are also transitive.

Proof. It is immediate by definitions.

3 L-Dependence Spaces Based on Lattice-Value Information
Systems

Definition 3. Let (U, A, F) be an lattice-value information system, R is an equiv-
alence relation of P (A).

1. Let (B1,C1) ∃ R, (B2,C2) ∃ R. If (B1 ≥ B2,C1 ≥ C2) ∃ R, R is a consistent
relation.

2. If R is a consistent relation, (A, R) is defined as an L-dependence space.

Theorem 4. Let (U, A, F) be an lattice-value information system, S is a binary
relation on L. Note:

RB = {(
xi,x j

) ∣∣( fl (xi ) , fl
(
x j

)) ∃ S (al ∃ B)
}
,

R = {(B,C) |RB = RC } .

Then (A, R) is an L-dependence space.
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Table 1 Lattice-value information system

U a1 a2 a3

x1 {22, 23, . . . 26} {48, 49, . . . 54} {154, 155, . . . 157}
x2 {26, 27, . . . 33} {73, 74, . . . 78} {170, 171, 175}
x3 {24, 25, . . . 29} {51, 52, . . . 58} {159, 160, . . . 162}
x4 {31, 32, . . . 37} {75, 76, . . . 82} {157, 158, . . . 165}

Proof. It is easy to prove that R is an equivalence relation. If it is noted Rl = R{al },
then RB = ⇔

al∃B
Rl and RB≥C = RB ⇔ RC . If (B1,C1) ∃ R,

(
B2,C2

) ∃ R, then

RB1 = RC1 , RB2 = RC2 , and then RB1≥B2 = RB1 ⇔ RB2 = RC1 ⇔ RC2 = RC1≥C2 .
Thus, we prove that (B1 ≥ B2,C1 ≥ C2) ∃ R and R is a consistent relation. This
means that (A, R) is an L-dependence space.

Theorem 5. Let (U, A, F) be an lattice-value information system and H ∪ P (A).
We have T (H) = {

(B,C) ∃ P (A)2 |∗D ∃ H, B ∪ D ⇔ C ∪ D
}
, and then

(A, T (H)) is an L-dependence space.

Proof. Clearly, T (H) is an equivalence relation.

Let (B1,C1) ∃ T (H) , (B2,C2) ∃ T (H).
Then the following relations hold: ∗D ∃ H, B1 ∪ D ⇔ C1 ∪ D, B2 ∪ D ⇔

C2 ∪ D, B1 ≥ B2 ∪ D ⇔ B1 ∪ D B2 ∪ D ⇔ C1 ∪ DandC2 ∪ D ⇔
C1 ≥ C2 ∪ D. Therefore, (B1 ≥ B2,C1 ≥ C2) ∃ T (H), and T (H) is a consistent
relation.

Definition 4. Let (A, R) is an L-dependence space. If there exists H ∪ P (A), then
T (H) = R holds, therefore we call that H is dense in R.

Theorem 6. Let (U, A, F) be lattice-value information system and S is a binary
relation on L. Note:

RB = {(
xi , x j

) ∣∣( fl (xi ) , fl
(
x j

)) ∃ S, (al ∃ B)
}
,

R = {(B,C) |RB = RC } ,
Ci j = {

al ∃ A
∣∣( fl (xi ) , fl

(
x j

)) ∃ S
}
(i, j √ n) .

We denote coordination matrix of R on lattice-value information system as follows:
MR = (

Ci j : i, j √ n
)
. Therefore MR is dense in R and that is T (MR) = R.

Proof. Clearly, R and T (MR) are all consistent relations on P (A).

If (B,C) ∃ R, then RB = RC .
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Hence, B ∪ Ci j ⇔ (
xi,x j

) ∃ RB ⇔ (
xi , x j

) ∃ RC ⇔ C ∃ Ci j , for any
i, j √ n.

That is (B,C) ∃ T (MR). Hence R ∪ T (MR).
In turn, if (B,C) ∃ T (MR), then B ∪ Ci j ⇔ C ∪ Ci j (i, j √ n).
Furthermore,

(
xi,x j

) ∃ RB ⇔ B ∪ Ci j ⇔ C ∪ Ci j ⇔ (
xi , x j

) ∃ RC .
Therefore, RB = RC and that is (B,C) ∃ R. Hence, T (MR) ∪ R.

Generally, T (MR) = R.
Clearly, MR has the properties as follows:

1. For any B ∪ A,
(
xi , x j

) ∃ RB ⇔ B ∪ Ci j .

2. For any B ∪ A,
(
xi , x j

) ∃ R∀
B ⇔ B ⇔ Ci j ◦= φ.

4 Attribute Reduction

Definition 5. Let (U, A, F) be an lattice-value information system and R is a rela-
tion of lattice L. If RB = RA and RB−{b} ◦= RB (∗b ∃ B), then B ∪ A is defined as
a reduction of A.

Theorem 7. Let (U, A, F) be an lattice-value information system. If (A, R) is a
L-dependence space and H is dense in R , then for B ∪ A, B is reduction of A if
and only if B is the minimal element of H0 = {

D∀ ∪ A : D∀ ⇔ D ◦= φ
(∗D ∃ H̄

)}
where H̄ = {D ◦= φ : −D ∃ H}.
Example 1. Let (U, A, F) be an lattice-value information system, where U ={
x1, x2,x3,x4

}
,

We denote L = P (V ) = {1, 2, · · ·, 200} and define a relation on L as follows:
R = {(E, F) ∃ P (V ) × P (V ) : E ⇔ F ◦= φ} . Then

RB = {
(xi, x j ) ∃ U × U : fl (xi ) ⇔ fl

(
x j

) ◦= φ (∗al ∃ B)
}
,

R∀
B = {(

xi, x j
) ∃ U × U : fl (xi ) ⇔ fl

(
x j

) ◦= φ (∃al ∃ B)
}

We put forward a coordination matrix of A, as shown in Table 2.

Table 2 A coordination matrix MR

U x1 x2 x3 x4

x1 A {a1}
{
a1, a2

} {a3}
x2 {a1} A {a1}

{
a1, a2

}
x3

{
a1, a2

} {a1} A {a3}
x4 {a3}

{
a1, a2

} {a3} A
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Thus H1 = {
Ci j : i, j √ n

} = {{a1} , {a3} ,
{
a1, a2

}
, A

}
is dense in R where

R = {(B,C) ∃ P (A) × P (A) : RB = RC }, H̄1 = {{
a2, a3

}
, {a1, a2} , {a3}

}
,

H1
0 = {{

a1, a3
}
, {a2, a3} , A

}
.

Obviously, both {a1, a3} and {a2, a3} are minimal elements in H1
0 . Therefore,

{a1, a3} and {a2, a3} are all reduction of A in relation of R.
Similarly, H2 = {−Ci j : i, j √ n

} = {
φ, {a3} ,

{
a1, a2

}
, {a2, a3}

}
is dense in R∀

where
R∀ = {

(B,C) ∃ P (A) × P (A) : R∀
B = R∀

C

}
, H̄2 = {{a1} {a3}, {a1, a2} , A},

H2
0 = {{

a1, a3
}
, A

}
. Obviously, {a1, a3} is a minimal element in H2

0 . Therefore,
{a1, a3} and {a2, a3} are all reduction of A in relation of R∀.

5 Conclusion

L-dependence space is established on lattice-value information system. Then attribute
reduction of theory and algorithm is put forward and effectiveness and feasibility of
algorithm are explained by an example. Finally, the result of attribute reduction is
compared with other algorithms by computational complexity.
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A New Similarity Measures on Vague Sets

Zheng-qi Cai, Ya-bin Shao, Shuang-liang Tian and Yong-chun Cao

Abstract Vague set is a valid tool for processing uncertain information. The sim-
ilarity measure of two uncertain patterns is important for intelligent reasoning. It
is also a key problem to measure the similarity of vague values or vague sets in
vague information processing systems. In this paper, according to the theory of sim-
ilarity measure between intervals, it is shown that four factors influencing vague
sets and vague values should be taken into account while calculating the similarity
degree. Some existing similarity measures are reviewed and compared. Some faults
of existed methods are pointed out. A new method for similarity measures between
vague sets (values) is put forward, and is proved to satisfy some rules. The validity
and advantage of this method are illustrated by an example.

Keywords Vague sets · Fuzzy sets · Similarity measure

1 Introduction

Zadeh [1] proposed fuzzy theory in 1965. The most important feature of a fuzzy set
is that a fuzzy set is a class of objects that satisfy a certain property. The membership
function of fuzzy set assigns each object a number which is on interval [0, 1] as its
membership degree. It not only includes the evidence that the element belongs to the
set, but also includes the evidence that the element does not belong to the set, but it
cannot represent both at the same time too.
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In order to deal with this problem, Gau and Buehrer [2] proposed the concept of
vague set in 1993, by replacing the value of an element in a set with a sub-interval of
[0, 1]. Namely, a truth-membership function tv(x) and a false-membership function
fv(x) are used to describe the boundaries of membership degree. These two bound-
aries form a sub-interval [tv(x), 1 − fv(x )] of [0, 1]. The vague set theory improves
description of the objective real world, becoming a promising tool to deal with inex-
act, uncertain or vague knowledge. Many researchers have applies this theory to
many situations, such as fuzzy control, decision-making, knowledge discovery and
fault diagnosis. And the tool has presented more challenging than that with fuzzy
sets theory in applications.

In intelligent activities, it is often needed to compare and couple between two fuzzy
concepts. That is, we need to check whether two knowledge patterns are identical or
approximately same, to find out functional dependence relations between concepts
in a data mining system. Many measure methods have been proposed to measure
the similarity between two vague sets (values). Each of them is given from different
side, having its own counterexamples.

In this chapter, existing similarity measures between vague sets are analyzed,
compared and summarized. Some faults of existed methods are pointed out. Accord-
ing to the theory of similarity measure between intervals, it is shown that four factors
influencing vague sets and vague values should be taken into account while calcu-
lating the similarity degree. A new method for similarity measures between vague
sets (values) is put forward, and is proved to satisfy some rules. The validity and
advantage of this method are illustrated by an example.

2 Preliminaries

In this section, we review some basic definitions and terms of vague values and vague
sets from [2, 3].

Definition 1 Let X be a space of points (objects), with a generic element of X
denoted by x, A vague set V in X is characterized by a truth-membership function
tv(x) and a false-membership function fv(x), tv(x) is a lower bound on grade of
membership of x derived from the evidence for x, and fv(x) is a lower bound on the
negation of x derived from the evidence against x, tv(x) and fv(x) both associate a
real number in the interval [0, 1] with each point in X, where 0 √ tv(x)+ fv(x) √ 1.
That is

tv : X ∈ [0, 1], fv : X ∈ [0, 1],≤x ∃ X.

The membership degree of vague set V is denoted by V (x) = [tv(x), 1 − fv(x)].
A vague set can be denoted by V = {(x, tv(x), fv(x))|x ∃ X}, [tv(x), 1 − fv(x)]

is called as the vague value of point x in V. Note: xv = [tv(x), 1 − fv(x)].
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In a voting model, the vague value x = [tA(x), 1 − f A(x)] = [0.5, 0.8], then
tA(x) = 0.5, f A(x) = 0.2, it can be interpreted as: The vote for a resolution is 3 in
favor, 3 against and 4 abstentions.

When X is continuous, a vague set V can be written as

V =
⎡

X
[tV (x), 1 − fV (x)]/x, x ∃ X. (1)

When X is discrete, a vague set V can be written as

V =
n⎣

i=1

[tV (xi ), 1 − fV (xi )]/xi , x ∃ X (2)

Definition 2 Let x and y be two vague values, where x = [tv(x), 1 − fv(x)] and
y = [tv(y), 1 − fv(y)]. If tv(x) = tv(y) and fv(x) = fv(y), then the vague values x
and y are called equal.

Definition 3 A vague set A is contained in the other vague set B, A ∗ B if and only
if ≤x ∃ X, tA(x) √ tB(x), f A(x) ∪ fB(x).

Definition 4 Two vague sets A and B are equal, written as A = B, if and only if
A ∗ B , and B ∗ A ; that is tA = tB and 1 − f A = 1 − fB . ≤x ∃ X, tA(x) =
tB(x), 1 − f A(x) = 1 − fB (x).

Definition 5 The complement of a vague set A is denoted by A and is defined by
tA(x) = f A(x), 1 − f A(x) = 1 − tA(x)

Definition 6 The union of two vague sets A and B with respective truth-membership
and false-membership function tA, f A, tB and fB is a vague set C, written as C =
A⊂ B, whose truth-membership and false-membership functions are related to those
of A and B by

tC (x) = max(tA(x), tB(x)), 1 − fC (x) = max(1 − f A(x), 1 − fB(x))

Definition 7 The intersection of two vague sets A and B with respective truth-
membership and false-membership function tA, f A, tB and fB is a vague set C,
written as C = A ∇ B, whose truth-membership and false-membership functions
are related to those of A and B by

tC (x) = min(tA(x), tB(x)), 1 − fC (x) = min(1 − f A(x), 1 − fB(x))

In the sequel, instead of writing tA(x) and f A(x) for all x in X, we sometimes
write more simply tA and f A.

Definition 8 Let A be a vague set on X, x = [tA(x), 1− f A(x)] is a vague value, this
approach bounds the grade of membership of x to a subinterval [tA(x), 1 − f A(x)]
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of [0,1], tA(x) is called the left end point of x, 1 − f A(x) is called the right end
point of x. Let S(x) = tA(x) − f A(x) called the score of x or degree of support of x,
φ(x) = (tA(x)+1− f A(x))/2 called the middle point of x, π(x) = 1− f A(x)−tA(x)

called the length(the interval length) of x. Use π(x) represent the unknowable degree
of vague set A. Correspondently, it knowable degree can be described by K (x) =
1 − π(x) = f (x) + t (x), it can also reflect the degree of supporting. Obviously, we
have the following properties:

(1) S(x) ∃ [−1, 1] ;
(2) |Φ(x) − Φ(y)| = |S(x) − S(y)|/2 ∃ [0,1];
(3) |π(x) − π(y)| = |K (x) − K (y)| ∃ [0,1];
(4) |K (x) − K (y)| = |Φ(x) − Φ(y)|/2 ∃ [0,1].

3 Some Main Factors of Vague Value Similarity Measure

In the similarity measure of vague set, people usually adopt the similarity measure
method of vague value of vague set.

In generally speaking the characteristic of interval has four important parameters:
the left (right) end point, the interval length and the middle point. Therefore, above
factors should be considered when we measure the similarity of interval. Since a
vague value is a subinterval of [0, 1], so similarity measure of vague values is equiv-
alent to similarity measure of intervals.

From the voting model, we can see that the vague value reflected three kinds
of information, namely “supporting number”, “against number” and “abstentions
number”. Therefore we should consider these information and the approve tendency
information when we have to measure the similarity of two vague values. In essen-
tial speaking, there are four characteristics should be considered in measuring the
similarity degree of vague sets (value).

(1) Distance of the interval end points. For two vague value x and y, the distance of
the left end point, right end point are respectively |tx − ty |, | fx − fy |. Intuitively,
the smaller distance of interval end points, then the bigger the similarity degree of
x and y. Therefore, the distance of the interval end points should be considered in
similarity measure. In fact, |tx − ty | is difference of supporting degree; | fx − fy |
is difference of opposing degree.

(2) Difference of interval length. For vague value x, it’s interval length is 1− fx − tx ,
namely is the unknowable degree π(x). π(x) is meaningful to measure the
similarity between two vague values. Under the same condition, if x has smaller
uncertainty degree, and y has bigger uncertainty, then the smaller the similarity
degree of x and y, which is adaptive to our intuition .So, |π(x)−π(y)| is a main
factor for the similarity measure.

(3) Distance of the interval middle point. If x and y have smaller distance of the
middle point, then the bigger the similarity degree of x and y. Therefore, the
distance of the interval middle point is an important factor to similarity measure
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between two vague values. For vague value x and y, the distance of the interval
middle point is |Φ(x) − Φ(y)|.
In addition, the background of uncertainty information processing should also
be considered. According to the voting model, besides the supporting number
and against number, the abstentions number and the effect of voted results on
abstentions should also to be considered. In fact, as soon as the publication
of the first voting result, the voter of voting abstain will reselect the second
voting. Therefore, the uncertainty degree should be considered in measuring the
similarity degree of vague sets (value). So, the fourth factor as follow.

4) The effect of uncertainty on supporting and against degree. In generally, the
effect of uncertainty on supporting and against degree is hard to determine.
From the voting model, the larger number of against and abstentions is, the
smaller effect of uncertainty on supporting and against degree should be. On the
contrary, the smaller number of against and abstentions is, the larger effect of
uncertainty on supporting and against degree should be. Based on the discussion,
while measure the difference of supporting degree and against degree, we adopt
weighting method to embody the effect of uncertainty on supporting and against
degree.

4 Researches into Similarity Measure

4.1 Analysis on Existing Similarity Measure between Vague Values

In this section, comprehensive analyses of similarity measures between vague values
are provided. Suppose that x = [t (x), 1 − f (x)] and y = [t (y), 1 − f (y)] are two
vague values over the discourse university U.

Chen [4, 5] considered the middle point, gave the following similarity measure
formula:

Mc(x, y) = 1 − |S(x) − S(y)|/2 = 1 − |Φ(x) − Φ(y)| (3)

From the definition of the Mc(x, y), we can see that the above similarity measure
only considering the interval middle point.

Hong and Kim [6] gave the similarity measure like below:

MH K (x, y) = 1 − |tx − ty | + | fx − fy |
2

(4)

Obviously, the MH K (x, y) similarity measure only considering the distance of
the interval end points. The MH K (x, y) pays equal attention both to the difference
of two truth-membership degrees and to the difference of two false-membership
degrees, between two vague values. Pairs of vague values, which have both the same
difference of truth-membership degrees and the same difference of false-membership



118 Z. Cai et al.

degrees, have the same similarity. But it does not distinguish the positive difference
and negative difference between true- and false-membership degrees.

Li and Xu [7] gave the formula of similarity measure based on interval end point:

ML X (x, y) = 1 − [|S(x) + S(y)| + |t (x) − t (y)| + | f (x) − f (y)|]/4 (5)

In fact,
ML X (x, y) = [Mc(x, y) + MH K (x, y)]/2 (6)

ML X (x, y) similarity measure only considers the distance of the interval end point
and the interval middle point. The ML X (x, y) model inherits the advantages of the
MC (x, y) and MH K (x, y) models, paying equal attentions to the support of vague
value, truth-membership degree, and false-membership degree, respectively.

Jiulun [8] colligated the formula mentioned above and gave the following simi-
larity measure formula:

MF (x, y) = 1 − |tx − ty | + | fx − fy | + |πx − πy |
2

(7)

M ∀
F (x, y) = 1 − |tx − ty | + | fx − fy | + |πx − πy | + |φx − φy |

3
(8)

MF (x, y) similarity measure paying equal attentions to the distance of the interval
end points and the interval middle point. Based on MF (x, y), M ∀

F (x, y) similarity
measure considering the difference of interval length, but which is not consider the
effect of uncertainty on support and opposite degree.

Wenbin and Yu [9] gave the formula of similarity measure based on true-
membership, false-membership, score and vague degree:

MZ (x, y) = 1− 1

28
{8|S(x)−S(y)|+5|tx −ty |+5| fx − fy |+2|tx + fx −ty − fy | (9)

MZ (x, y) similarity measure only considers interval end points, interval middle point
and uncertainty degree, but not considering the effect of uncertainty on support and
opposite degree.

Each similarity measure expression has its own measuring focus although they all
evaluate the similarities in vague sets. We think all existing similarity measures are
valuable. There exist two reasons behind this thought: First, a new similarity measure
is proposed, always accompanying with explanations of overcoming counter-intuitive
cases of other methods. Second, there are different selection criteria and requirements
during specific application procedure of similarity measure.
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4.2 Some Basic Rules of Similarity Measure Between Vague Values

Definition 9 Let x = [tx , 1− fx ], y = [ty, 1− fy], z = [tz, 1− fz] be three vague
values in vague set V, M(x, y) is said to be the degree of similarity between x and
y, if M(x, y) satisfies the properties condition (P1–P6).

P1 : 0 √M(x, y) √1
P2 : M(x, y) = M(y, x)

P3 : M(x, y) = M(1 − x, 1 − y)

P4 : M(x, x) = 1
P5 : M(x, y) = 0 if and only if x = [0, 0], y = [1, 1] or x = [1, 1], y = [0, 0]
P6 : I f x √ y √ z, then M(x, z) √ min {M(x, y), M(y, z)}

5 New Method for Similarity Measure

5.1 New Method for Similarity Measure Between Vague Values

Definition 10 Let x = [tx , 1 − fx ], y = [ty, 1 − fy] be two vague values in vague
set A, then the similarity degree of x and y can be evaluated by the function M(x, y):

M(x, y) = 1 − (2 − tx − ty)|tx − ty | + (2 − fx − fy)| fx − fy | + |φx − φy | + |πx − πy |
3

(10)

Since πx + πy + fx + fy = 2 − tx − ty , πx + πy + tx + ty = 2 − fx − fy ,
Coefficient (πx + πy + fx + fy) of |tx − ty | implies that the uncertainty and against
information of x and y have a very important effect on |tx − ty |. If 2 − tx − ty is
larger, the impact of |tx − ty | should be smaller, similarity should be smaller. If
2 − tx − ty is smaller, the impact of |tx − ty | should be larger, similarity should be
larger. Coefficient (2 − fx − fy) of | fx − fy | means that when | fx − fy | is the same,
similarity should be smaller if | fx − fy | is smaller.

Above similarity measure considering the distance of the interval end points, the
distance of the interval middle points, interval length and the effect of uncertainty
on supporting and against degree.

Theorem 1 M(x, y) satisfies the properties condition P1–P6.

Proof. (1)From the Definition 1, 0 √ |tx − ty | √ 1, 0 √ | fx − fy | √ 1, 0 √
|φx − φy | √ 1,

0 √ |πx − πy | √ 1, 0 √ 2 − tx − ty √ 2, 0 √ 2 − fx − fy √ 2.
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If |tx − ty | = 0, | fx − fy | = 0 ,then |φx − φy | = 0, |πx − πy | = 0,so M(x, y)
√ 1 − 0 = 1.

If |tx − ty | = 1, we have tx = 0, ty = 1 or tx =1, ty = 0. If | fx − fy | = 1, then fx =
0, fy=1 or fx =1, fy=0. Corresponding to the two cases, there are four combinatorial
forms. From the definition of Vague set, it is only tx =0,ty=1, fx =1, fy =0 and tx =1,
ty=0, fx =0, fy=1 holds. Hence, |φx − φy | + |πx − πy | = 1. So, if |tx − ty | = 1 and
| fx − fy | = 1 satisfy, then |φx − φy | + |πx − πy | = 1, M(x, y) ∪ 1 − 1+1+1

3 = 0.
Therefore, 0√ M(x, y) √ 1 holds.

(2) P2 and P3 are obviously.

(3) If x = y, it is clear that M(x, y) = 1. On the contrary, if M(x, y) 1, then (2 −
tx − ty)|tx − ty | + (2 − fx − fy)| fx − fy | + |φx − φy | + |πx − πy | = 0, we have:
tx = ty, fx = fy , namely x = y, therefore P4 holds.

(4) If x = [0,0], y = [1,1] or x = [1,1], y = [0,0], From above (1), we have M(x, y) =
0, On the contrary, if M(x, y)0,we can know |tx − ty | = 1 and | fx − fy | = 1, namely
x=[0,0],y=[1,1]or x=[1,1],y=[0,0]. Therefore, P5 holds.

(5) If x √ y √ z, then tx √ ty √ tz and fz ∪ fy ∪ fx ,
Since |φx − φy | = 1

2 (ty − tx + fx − fy), |πx − πy | = |(ty − tx ) − ( fx − fy)|,
Therefore, |φx − φy | + |πx − πy | = 3

2 max{(ty − tx ), ( fx − fy)}.
Let rx = 1 − tx , gx = 1 − fx , from the premise condition rx ∪ ry ∪ rz, gx √

gy √ tgz , we have

M(x, y) = 1− (rx + ry)(rx − ry) + (gx + gy)(gy − gx ) + 3 max{(rx − ry), (gy − gx )}/2

3

M(x, y) ∪ M(x, z) equivalent to

(r2
x − r2

y ) + (g2
y − g2

x ) + 3 max{(rx − ry), (gy − gx )}/2

3

√ (r2
x − r2

z ) + (g2
z − g2

x ) + 3 max{(rx − rz), (gz − gx )}/2

3

Let m = rx, n = ry, z = gy, w = gx, then 1 ∪ m ∪ n ∪ 0, 1 ∪ z ∪ w ∪ 0

Supposing k(m, n, z, w) =
⎧⎪
⎨

m2−n2+z2−w2+3(m−n)/2
3 m − n ∪ z − w

m2−n2+z2−w2+3(z−w)/2
3 m − n < z − w

If m − n ∪ z − w, ∂k
∂m = 1

3 (2m + 3
2 ) ∪ 0, ∂k

∂n = 1
3 (−2n − 3

2 ) √ 0

If m − n < z − w, ∂k
∂m = 2m

3 ∪ 0, ∂k
∂n = 1

3 (−2n) √ 0

From the monotonicity, M(x, y) ∪ M(x, z) holds. The same procedure may be
easily adapted to obtain M(y, z) ∪ M(x, z).
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5.2 New Method for Similarity Measure Between Vague Sets

Definition 11 Let A and B be two vague sets in X = {x1, x2, . . . , xn}. If VA(x) =
[tA(x), 1 − f A(x)], VB(x) = [tB(x), 1 − fB(x)] are vague value of point x in A
and B respectively. Then the similarity degree of A and B can be evaluated by the
function T.

T (A, B) = 1

n

n⎣
i=1

M(VA(xi ), VB(xi )) (11)

Theorem 2 In Definition 11, T (A, B) has the following properties:

(1) 0 √ T (A, B) √ 1
(2) T (A, B) = T (B, A)

(3) T (A, B) = T ( Ā, B̄)

(4) T (A, B) = 0 ⇔ {VA(xi ), VB(xi )} = {[0, 0], [1, 1]}
(5) T (A, B) = 1 ⇔ VA(xi ) = VB(xi ), πA(xi ) = πA(xi ) = 0, i = 1, 2, . . ., n
(6) If A ∗ B ∗ C ,then T (A, C) √ min{T (A, B), T (B, C)}

From the Theorem 1, it is easily to proving Theorem 2 by the same method.

6 Numerical Examples

In Table 1, six groups of vague values (x, y) are given. We compare our measure
method with others

From Table 1,we can see sometimes the similarity gained by formulae of MC (x, y)

and MZ (x, y) are counterintuitive. For example, for the first group data pair ([0, 1],
[0.5, 0.5]), x ≥= y, apparently we know the similarity of them is absolutely not 1, but
MC ([0, 1], [0.5, 0.5]) = 1. For the second data pair ([0, 0], [1, 1]), they are totally

Table 1 Comparisons of various similarity measures

1 2 3 4 5 6

x [0,1] [0,0] [0,1] [0.4,0.8] [0.4,0.8] [0,0.4]
y [0.5,0.5] [1,1] [0,0] [0.5,0.7] [0.5,0.8] [0.6,1]
MC (x, y) 1 0.5 0.5 1 0.95 0.7
MH K (x, y) 0.5 0 0.5 0.9 0.95 0.4
ML X (x, y) 0.75 0 0.5 0.95 0.95 0.4
MF (x, y) 0 0 0 0.86 0.92 0.4
M ∀

F (x, y) 0.33 0 0.17 0.8 0.9 0.4
MZ (x, y) 0.75 0.07 0.46 0.95 0.94 0.63
M(x,y) 0.33 0 0.17 0.85 0.91 0.24
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opposite,MC ([0, 0], [1, 1]) = 0.5, MZ ([0, 0], [1, 1]) = 0.07. M(x, y) can be accordant
with our intuition.

For the third group data pair ([0, 1], [0, 0]), intuitively, the support degree of them
are equal to zero, so, the similarity of them should not equal to zero. But MF ([0, 1],
[0, 0])=0,this is counterintuitive..

Then compare the similarity of the fourth group data pair ([0.4, 0.8], [0.5, 0.7])
with the fifth group data pair ([0.4, 0.8], [0.5, 0.8]). Intuitively, the similarity of the
fourth group and the fifth group should satisfy M([0.4, 0.8], [0.5, 0.7]) < M([0.4,0.8],
[0.5,0.8]), but from the above result we can see only MH K (x, y), MF (x, y), M ∀

F (x,
y) and M(x, y) can satisfy the limitation. However, ML X ([0.4, 0.8], [0.5, 0.7]) = ML X

([0.4, 0.8], [0.5, 0.8]), thus , ML X (x, y) can not distinguish them.
For the sixth group data pair ([0, 0.4], [0.6, 1]), intuitively, the similarity of them

should smaller, but we can see only M(x, y) are more accordant with our intuition,
the result of other method are bigger.

Through above example, Each similarity measure expression has its own measur-
ing focus as showed in Table 1 although they all evaluate the similarities in vague
sets.we can see MC , MH K , ML X , MF , M ∀

F and MZ are existing some defect of dif-
ferent extent. However, compare with other methods, numerical example show that
the method of this paper is more effective.

7 Conclusions

In this chapter, existing similarity measures between vague sets are analyzed, com-
pared and summarized. These methods of similarity measure can be used to solve
the problem of how to determine the similarity between two vague values in a cer-
tain extent. We think all existing similarity measures are valuable. But each of them
focuses on different aspects. Some faults of existed methods are pointed out. Accord-
ing to the theory of similarity measure between intervals, it is shown that four factors
influencing vague sets and vague values should be taken into account while calcu-
lating the similarity degree. A new method for similarity measures between vague
sets (values) is put forward, and is proved to satisfy some rules. The validity and
advantage of this method are illustrated by an example.
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Characterizations of α-Quasi Uniformity
and Theory of α-P.Q. Metrics
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Abstract In Wu Fuzzy Systems and Mathematics 3:94–99, 2012, the author intro-
duced concepts of α-remote neighborhood mapping and α-quasi uniform, and
obtained many good results in α-quasi uniform spaces. This chapter will further
investigate properties of α-remote neighborhood mapping, and give some charac-
terizations of α-quasi uniforms. Based on this, this chapter also introduces concept
of α-P.Q. metric, and establishes the relations between α-quasi uniforms and α-P.Q.
metrics.

Keywords α-Quasi uniform · α-Homeomorphism · α-P.Q. metric · α-Remote
neighborhood mapping

1 Introduction

Theory of quasi-uniformity in completely distributive lattices was firstly introduced
by Erceg [1] and Hutton [2]. Then it was developed into various forms and was
extended into different topological spaces [3–9]. In [10], the author introduced the
concept of α-quasi uniform in α-layer order-preserving operator spaces, and revealed
the relations between α-layer topological spaces and α-quasi uniform spaces. In this
chapter, firstly, we further study properties of α-remote neighborhood mappings.
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Then we discuss some characterizations of α-quasi uniformities. Secondly, we intro-
duce the concept of α-P.Q. metrics, and establish the relations between α-quasi
uniforms and α-P.Q. metrics.

2 Preliminaries

In this chapter, X, Y will always denote nonempty crisp sets, A mapping A : X √ L
is called an L-fuzzy set. L X is the set of all L-fuzzy sets on X . An element e ∈ L
is called an irreducible element in L , if p ≤ q = e implies p = e or q = e, where
p, q ∈ L . The set of all nonzero irreducible elements in L will be denoted by M(L).
If x ∈ X , α ∈ M(L), then xα is called a molecule in L X . The set of all molecules in
L X is denoted by M∃(L X ). If A ∈ L X , α ∈ M(L), take A[α] = {x ∈ X | A(x) ∗ α}
[3] and Aα = ≤{xα | xα ∪⊂ A} [11]. It is easy to check (A[α])∇ = Aα[α].

Let (L X , δ) be an L-fuzzy topological space, α ∈ M(L). ∀A ∈ L X , Dα(A) =
⇔{G ∈ δ∇ | G[α] ≥ A[α]}. Then the operator Dα is a α-closure operator of
some co-topology on L X , denoted by Dα(δ). We called α-layer topology. The pair
(L X , Dα(δ)) is called α-layer co-topological space [11]. An α-layer topological
space(L X , Dα(δ)) is called an α-CI I space, if there is a countable baseBα of Dα(δ).

A mapping Fα : L X √ LY is called an α-mapping, if Fα(A)[α] = Fα(B)[α]
whenever A[α] = B[α], and Fα(A) = 0X whenever A[α] = ◦. The mapping F−1

α :
LY √ L X is called the reverse mapping of Fα , if for each B ∈ LY , F−1

α (B) =
≤{A ∈ L X | Fα(A)[α] ⊂ B[α]}. Clearly, F−1

α is also an α-mapping.
An α-mapping Fα : L X √ LY is called an α-order-preserving homomorphism

(briefly α-oph), iff both Fα and F−1
α are α-union preserving mappings.

An α-mapping Fα : L X √ LY is called an α-Symmetric mapping, if for every
A, B ∈ L X , we have

∃C[α] ∪⊂ Aα[α], B[α] ∪⊂ Fα(C)[α] ⇔ ∃D[α] ∪⊂ Bα[α], A[α] ∪⊂ Fα(D)[α].

An α-mapping fα : L X √ L X is called an α-remote neighborhood mapping, if
for each A ∈ L X with A[α] ∪= ◦, we have A[α] ∪⊂ fα(A)[α]. The set of all α-remote
neighborhood mappings is denoted by Fα(L X ), (briefly by Fα).

For fα, gα ∈ Fα , let’s define

(1) fα ⊂ gα ⇔ ∀A ∈ L X , fα(A)[α] ⊂ gα(A)[α].
(2) ( fα ≤ gα)(A) = fα(A) ≤ gα(A).
(3) ( fα ≡ gα)(A) = ⇔{ fα(B) | ∃B ∈ L X , B[α] ∪⊂ gα(A)[α]}.

An non-empty subfamily Dα ⊂ Fα is called an α-quasi-uniform, if Dα satisfies:
(α-U1) ∀ fα ∈ Dα, gα ∈ Fα with fα ⊂ gα , then gα ∈ Dα .

(α-U2) ∀ fα, gα ∈ Dα implies fα ≤ gα ∈ Dα .
(α-U3) ∀ fα ∈ Dα , then ∃gα ∈ Dα , such that gα ≡ gα ∗ fα .
(L X ,Dα) is called an α-quasi-uniform space. A subset Bα ⊂ Dα is called a base
of Dα , if ∀ fα ∈ Dα , there is gα ∈ Bα , such that fα ⊂ gα . A subset Aα ⊂ Dα is
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called a subbase of Dα , if all of finite unions of the elements in Aα consist a base of
Dα . An α-quasi-uniform Dα is called an α-uniform, if Dα possesses a base whose
elements are α-symmetric. Usually, we call this base α-symmetric base.

In [10], the author discussed the relation between an α-quasi uniform space and
an α-layer co-topological space as following:

Let Dα be an α-quasi uniform on L X . ∀A ∈ L X , Let’s take cα(A) = ≤{B ∈
L X | ∀ fα ∈ Dα, A[α] ∪⊂ fα(B)[α]}. Then cα is an α-closure operator of some
L-fuzzy co-topology, which is denoted by ηα(Dα). Each α-layer topological space
(L X , Dα(δ)) can be α-quasi uniformitale, i.e., there is an α-quasi uniform Dα , such
that Dα(δ) = ηα(Dα).

Other definitions and notes not mentioned here can be seen in [12].

3 Properties of α-Remote Neighborhood Mappings

Theorem 3.1 Let fα, gα ∈ Fα . Then

(1) fα ≤ gα ∈ Fα , fα ≡ gα ∈ Fα .
(2) fα ≡ gα ⊂ fα, fα ≡ gα ⊂ gα .
(3) ( fα ≡ gα) ≤ hα = ( fα ≤ hα) ≡ (gα ≤ hα),

( fα ≤ gα) ≡ hα = ( fα ≡ hα) ≤ (gα ≡ hα).

Theorem 3.2 Let fα ∈ Fα . If for each A ∈ L X ,

f ∇
α (A) = ⇔{ fα(B) | A[α] ⊂

⋃
G[α] ∪⊂Bα[α]

fα(G)α[α]},

and
f �
α (A) = ⇔{ fα(B) |

⋃
G[α] ∪⊂Bα[α]

fα(G)α[α] ∪⊂ fα(A)[α]}.

Then

(1) f ∇
α , f �

α ∈ Fα .
(2) f �

α ⊂ f ∇
α ⊂ fα .

(3) f �
α (A) = ⇔{ f ∇

α (B) | B[α] ∪⊂ fα(A)[α]} = ( f ∇
α ≡ fα)(A).

(4) f ∇
α is α-Symmetric.

Proof (1) By A[α] ⊂ ⋃
G[α] ∪⊂Aα[α]

fα(G)α[α], we have A[α] ∪⊂ f ∇
α (A)[α]. Thus f ∇

α ∈
Fα . Again by A[α] ∪⊂ fα(A)[α], we get

⋃
G[α] ∪⊂Aα[α]

fα(G)α[α] ∪⊂ fα(A)[α]. Therefore,

f �
α ∈ Fα .

(2) The proof is obvious.
(3) For each B ∈ L X ,
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⋃
G[α] ∪⊂Bα[α]

fα(G)α[α] ∪⊂ fα(B)[α] ⇔ ∃D[α] ⊂
⋃

G[α] ∪⊂Aα[α]

fα(G)α[α], D[α] ∪⊂ fα(B)[α]

⇔ ∃D[α] ⊂
⋃

G[α] ∪⊂Bα[α]

fα(G)α[α], D[α] ∪⊂ fα(B)[α].

So
f �
α (A) = ⇔{ f ∇

α (D) | D[α] ∪⊂ fα(D)[α]} = ( f ∇
α ≡ fα)(A).

(4) ∀D, E ∈ L X . If there is A[α] ∪⊂ Dα[α], such that

E[α] ∪⊂ f ∇
α (A)[α] = ∩{ fα(B)[α] | A[α] ⊂

⋃
G[α] ∪⊂Bα[α]

fα(G)α[α]}.

Then there is B ∈ L X , satisfying E[α] ∪⊂ fα(B)[α] and A[α] ⊂ ⋃
G[α] ∪⊂(Bα[α]

fα(G)α[α].

Clearly,
⋃

G[α] ∪⊂Bα[α]
fα(G)α[α] ∪⊂ Dα[α], i.e., D[α] ∪⊂ ⋂

G[α] ∪⊂Bα[α]
fα(G)[α]. Thus, there is

C[α] ∪⊂ Bα[α], such that D[α] ∪⊂ fα(C)[α]. Conclusively, we have

D[α] ⊂ fα(B)α[α] ⊂
⋃

G[α] ∪⊂Bα[α]

fα(G)α[α].

and
D[α] ∪⊂ ∩{ fα(C)[α] | D[α] ⊂

⋃
H[α] ∪⊂Cα[α]

fα(H)α[α]} = f ∇
α (D)[α].

Therefore, f ∇
α is α-Symmetric.

Theorem 3.3 Let fα be an α-Symmetric remote neighborhood mapping, then

(1) C[α] ∪⊂ fα(A)[α] ⇒ A[α] ⊂ ⋃
D[α] ∪⊂Cα[α]

fα(D)α[α].

(2) A[α] ⊂ ⋃
D[α] ∪⊂Cα[α]

fα(D)α[α] ⇒ C[α] ∪⊂ fα(A)[α].

Proof (1) Since fα is an α-Symmetric mapping. ∀D[α] ∪⊂ Aα[α], there is B[α] ∪⊂ Cα[α],
satisfying D[α] ∪⊂ fα(B)[α]. Therefore,

Aα[α] ≥
⋂

B[α] ∪⊂Cα[α]

fα(B)[α], i.e., A[α] ⊂
⋃

D[α] ∪⊂Cα[α]

fα(D)α[α].

(2) By A[α] ⊂ ⋃
D[α] ∪⊂Cα[α]

fα(D)α[α], we have Aα[α] ≥ ⋂
D[α] ∪⊂Cα[α]

fα(D)[α]. So ∀x ∪∈
Aα[α], there is D[α] ∪⊂ Cα[α], such that x ∪∈ fα(D)[α]. Since fα is α-Symmetric.
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There is Bx[α] ∪⊂ xα[α], such that C[α] ∪⊂ fα(Bx )[α]. Take E = ≤{Bx | x ∪∈ Aα[α]}, then
x ∪⊂ Eα[α]. This implies Eα[α] ⊂ Aα[α], i.e., A[α] ⊂ E[α]. Furthermore, we can conclude
C[α] ∪⊂ fα(A)[α]. Otherwise, if C[α] ⊂ fα(A)[α] ⊂ fα(E)[α], then it contradicts with
the statement: for each Bx ⊂ E, C[α] ∪⊂ fα(Bx )[α].

Theorem 3.4 Let fα ∈ Fα . Then

( f ∇
α )∇α ⊂ f ∇

α ≡ f ∇
α ⊂ f �

α ⊂ fα ≡ fα.

Proof ∀A ∈ L X ,

( f ∇
α )∇α (A) = ⇔{ f ∇

α (B) | A[α] ⊂
⋃

G[α] ∪⊂Bα[α]

f ∇
α (G)α[α]}

⊂ ⇔{ f ∇
α (C) | C[α] ∪⊂ f ∇

α (A)[α]}
= ( f ∇

α ≡ f ∇
α )(A).

By Theorem 2 (2), f ∇
α ⊂ fα , we have

( f ∇
α ≡ f ∇

α )(A) = ⇔{ f ∇
α (C) | C[α] ∪⊂ f ∇

α (A)[α]}
⊂ ⇔{ f ∇

α (C) | C[α] ∪⊂ fα(A)[α]}
= f �

α (A).

Therefore

f �
α (A) = ⇔{ f ∇

α (C) | C[α] ∪⊂ fα(A)[α]} ⊂ ⇔{ fα(C) | C[α] ∪⊂ fα(A)[α]} = ( fα ≡ fα)(A).

Theorem 3.5 Let fα ∈ Fα . Then

(1) f ∇
α ⊂ fα ≡ fα .

(2) fα ≡ fα ≡ fα = f �
α .

Proof (1) By Theorem 2, we have

f ∇
α (A) = ⇔{ fα(B) | A[α] ⊂

⋃
G[α] ∪⊂Bα[α]

fα(G)α[α]}

⊂ ⇔{ fα(B) | A[α] ∪⊂ fα(A)[α]}
= fα ≡ fα(A).

(2) By Theorem 3 (2), we have
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⋃
D[α] ∪⊂Cα[α]

fα(D)α[α] ∪⊂ fα(A)[α] ⇒ ∃B[α] ⊂
⋃

D[α] ∪⊂Cα[α]

fα(D)α[α], B[α] ∪⊂ fα(A)[α]

⇒ ∃B[α] ∪⊂ fα(A)[α], C[α] ∪⊂ fα(B)[α]
⇒ C[α] ∪⊂ fα ≡ fα(A)[α].

This shows fα ≡ fα ≡ fα ⊂ f �
α . On the other hand, by Theorem 2 (2) and (1) above,

it is easy to find f �
α ⊂ f ∇

α ≡ fα ⊂ fα ≡ fα ≡ fα . Therefore, (2) holds.

4 Characterizations of α-Quasi Uniformities

Theorem 4.1 An non-empty subfamily Dα ⊂ Fα is an α-uniform, iff Dα satisfies:

(1) fα ∈ Dα, gα ∈ Fα with fα ⊂ gα , then gα ∈ Dα .
(2) fα, gα ∈ Dα implies fα ≤ gα ∈ Dα .
(3) fα ∈ Dα , then ∃gα ∈ Dα , such that g�

α ∗ fα .

Proof Necessity. Since Dα is an α-uniform, (1) and (2) hold. Furthermore, if Bα ⊂
Dα is an α-symmetric base. So for every fα ∈ Dα , there is gα ∈ Bα , such that
gα ≡gα ≡gα ≡gα ∗ fα . By Theorem 5 (2), g�

α = gα ≡gα ≡gα ∗ gα ≡gα ≡gα ≡gα ∗
fα .

Sufficiency. If Bα = {g∇
α | gα ∈ Dα}. For every fα ∈ Dα , there is gα ∈ Dα , such

that g�
α ∗ fα . By Theorem 4, gα≡gα ∗ g�

α ∗ fα . ThenDα is an α-quasi-uniform. By
Theorem 2 (2)and (4), we know g∇

α ∗ g�
α ∗ fα . This shows Bα is an α-symmetric

base of Dα . Therefore Dα is an α-uniform.

Theorem 4.2 An non-empty subfamily Dα ⊂ Fα is an α-uniform, iff Dα satisfies:

(1) fα ∈ Dα, gα ∈ Fα with fα ⊂ gα , then gα ∈ Dα .
(2) fα, gα ∈ Dα implies fα ≤ gα ∈ Dα .
(3) fα ∈ Dα , then ∃gα ∈ Dα , such that g∇

α ∗ fα .

Proof Necessity. Since Dα is an α-uniform, (1) and (2) hold. By Theorem 6, For
every fα ∈ Dα , there is gα ∈ Dα , such that g�

α ∗ fα . So according to Theorem 2
(2), g∇

α ∗ g�
α ∗ fα . Thus (3) holds.

Sufficiency. If Bα = {g∇
α | gα ∈ Dα}. By (3), For every fα ∈ Dα , there is

gα ∈ Dα , such that g∇
α ∗ fα . Again, there is hα ∈ Dα , such that h∇

α ∗ gα . By
Theorem 4, we get

hα ≡ hα ∗ h∇
α ≡ h∇

α ∗ (h∇
α )∇α ∗ g∇

α ∗ fα.

So Bα is an α-symmetric base of Dα . Therefore, Dα is an α-uniform.
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5 α-P.Q. Metric and its Properties

A binary mapping dα : L X × L X √ [0,+∞) is called an α-mapping, if
∀(A, B), (C, D) ∈ L X × L X satisfying A[α] = C[α] and B[α] = D[α], then
dα(A, B) = dα(A, B).

Definition 5.1 An α-mapping dα : L X × L X √ [0,+∞) is called an α-P.Q metric
on L X , if

(α-M1) dα(A, A) = 0.
(α-M2) dα(A, C) ⊂ dα(A, B) + dα(B, C).
(α-M3) dα(A, B) = ∧

C[α]⊂B[α]
dα(A, C).

Theorem 5.1 Let dα be an α-P.Q. metrics on L X . ∀r ∈ (0,+∞), a mapping Pr :
L X √ L X is defined by ∀A ∈ L X ,

Pr
α (A) = ≤{B ∈ L X | dα(A, B) ∗ r}.

Then

(1) Pr
α is α-symmetric mapping.

(2) ∀A, B ∈ L X , B[α] ⊂ Pr
α (A)[α] ⇔ dα(A, B) ∗ r .

(3) ∀A ∈ L X , r > 0, A[α] ∪⊂ Pr
α (A)[α].

(4) ∀r, s ∈ (0,∞), Pr
α ≡ Ps

α ∗ Pr+s
α .

(5) ∀A ∈ L X , r > 0, Pr
α (A)[α] = ⋂

s<r
Ps

α(A)[α].

(6) ∀A ∈ L X ,
⋂

r>0
Ps

α(A)[α] = ◦.

Proof Since dα is an α-mapping, (1), (5) and (6) are easy.
(2) Clearly, dα(A, B) ∗ r ⇒ B[α] ⊂ Pr

α (A)[α]. Conversely. ∀x ∈ B[α], ∃x ∈
Dx ∈ L X , such that dα(A, Dx ) ∗ r . So dα(A, {xα}) ∗ dα(A, Dx ) ∗ r . Thereby
dα(A, B) = ∧

x∈B[α]
dα(A, {xα}) ∗ r .

(3) Suppose A[α] ⊂ Pr
α (A)[α]. By (2), we get dα(A, A) ∗ r . This is a contradiction

with (α-M1).
(4) ∀A, B ∈ L X , if B[α] ∪⊂ Pr

α ≡Ps
α(A)[α], then there is D ∈ L X , such that D[α] ∪⊂

Ps
α(A)[α] and B[α] ∪⊂ Pr

α (D)[α]. By (2), we have dα(A, D) < s, dα(D, B) < r . Then
by (α-M2), we gain dα(A, B) < r + s. Therefore B[α] ∪⊂ Pr+s

α (A)[α]. This means
Pr

α ≡ Ps
α ∗ Pr+s

α .

Theorem 5.2 If a family of α-mappings {Pr
α | Pr : L X √ L X , r > 0} satisfies the

conditions (2)–(5) in Theorem 8. For each A, B ∈ L X , let’s denote

dα(A, B) = ⇔{r | B[α] ∪⊂ Pr
α (A)[α]}.

Then
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(1) dα(A, B) < r ⇔ B[α] ∪⊂ Pr
α (A)[α].

(2) dα is α-P.Q. metric on L X .

Proof (1) By Theorem 8 (2),(5), we have

dα(A, B) < r ⇔ ∃s < r, B[α] ∪⊂ Ps
α(A)[α] ⇔ B[α] ∪⊂ Pr

α (A)[α].

(2) ∀A, B ∈ L X , r, s > 0, if dα(A, B) > r + s, then

B[α] ⊂ Pr+s
α (A)[α] ⊂ (Pr

α ≡ Ps
α(A))[α].

Thus ∀C ∈ L X , we have C[α] ∪⊂ Ps
α(A)[α] and B[α] ∪⊂ Pr

α (C)[α]. this implies
dα(A, C) > s, and dα(A, B) > r . Hence dα(A, B) + dα(A, C) > r + s. Conse-
quently, we obtain dα(A, B) + dα(A, C) ∗ dα(A, B).

Theorem 5.3 An α-mapping dα : L X ×L X √ [0,+∞) satisfies (α−M1),(α−M2)
and (α − M3∃), then for each C[α] ⊂ B[α], dα(C, B) = 0.

(α − M3∃)∀A ∈ L X , r > 0, A[α] ∪⊂ Pr
α (A)[α].

Proof By (α-M2), for each B, C ∈ L X , satisfying C[α] ⊂ B[α], we have dα(A, B) <

dα(A, C)+dα(C, B). Here we can conclude dα(C, B) = 0. Otherwise, if dα(C, B) =
s > 0, then B[α] ⊂ Ps

α(C)[α]. it contracts with C[α] ∪⊂ Ps
α(C)[α] according to (α-

M3∃). Therefore dα(C, B) = 0.

Theorem 5.4 An α-mapping dα : L X × L X √ [0,+∞) is an α-P.Q metric on L X ,
iff dα satisfies (α-M1),(α-M2) and (α-M3∃).

Proof We only need to prove (α-M3)⇔(α-M3∃). By Theorem 8 (2), it is easy to
check (α-M3)⇒(α-M3∃). If the converse result is not true, then there are r, s > 0,
such that

dα(A, B) < s < r ⊂
⋂

C[α]⊂B[α]
dα(A, C).

so for each C[α] ⊂ B[α],

r ⊂ dα(A, C) ⊂ dα(A, B) + dα(B, C) < s + dα(B, C).

Thus, 0 < r − s < dα(B, C), which implies C[α] ⊂ Pr−s
α (B)[α]. As a result

B[α] = (≤{C | C[α] ⊂ B[α]})[α] ⊂ Pr−s
α (B)[α].

However, it contradicts with (α-M3∃). Therefore (α-M3) holds.

Theorem 5.5 dα is α-P.Q. metric on L X . Then {Pr
α | r > 0} satisfying (3)–(5) in

Theorem 8 is an α-base of some α-uniform, which is called the α-uniform induced
by dα .
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Given an α-quasi-uniform Dα , if we say Dα is metricable, we mean there is an
α-P.Q. metric dα , such that Dα is induced by dα .

Theorem 5.6 An α-quasi-uniform spaces (L X ,Dα) is α-P.Q. metricable iff it has a
countable α-base.

Proof By Theorem 12, the necessity is obvious. Let’s prove the sufficiency.
Let Dα be an α-uniformity on L X , which has a countable α-base Bα = {Pn

α | n ∈
N }. Let’s take g1

α = P1
α , then there is g2

α ∈ Bα , such that g2
α ≡ g2

α ≡ g2
α ∗ g1

α ≤ P2
α .

In addition, there is g3
α ∈ Bα , such that g3

α ≡ g3
α ≡ g3

α ∗ g2
α ≤ P3

α . The process
can be repeated again and again, then {gn

α ∈ n ∈ N } is also an α-base. Obviously,
gn+1
α ≡ gn+1

α ≡ gn+1
α ∗ gn

α . Let’s take ϕα : L X √ L X , defined by: ∀A ∈ L X ,

ϕr
α(A) =

{
gn
α(A), 1

2n < r ⊂ 1
2n−1 ,

0X , r > 1.

Clearly, ∀r > 0, A[α] ∪⊂ ϕr
α(A)[α]. And ∀ 1

2n < r ⊂ 1
2n−1 , we have

ϕr
α ≡ ϕr

α ≡ ϕr
α = gn

α ≡ gn
α ≡ gn

α ∗ gn−1
α = ϕ2r

α .

Let’s define

f r
α (A) = ⇔

{
(ϕr1

α ≡ ϕr2
α ≡ · · · ≡ ϕrk

α (A)) |
k∑

i=1

ri = r

}
.

Then Bα = { f r
α | r > 0} ⊂ Dα .

Finally, let’s prove Bα is an α-base of Dα satisfying (3)-(6) in Theorem 8.
Step 1. For fα ∈ D , there is n ∈ N , such that gn

α ∗ fα . So if r ∈ ( 1
2n+1 , 1

2n ],
then ϕ2r

α = gn
α . Besides, it is easy to check, ϕ

r1
α ≡ ϕ

r2
α ≡ · · · ≡ ϕ

rk
α ∗ ϕ2r

α whenever
k∑

i=1
ri = r . Thus f r

α ∗ ϕ2r
α = gn

α ∗ fα . This means Bα be an α-base of Dα .

Step 2. Obviously, fα ∈ B satisfies (3) and (6) in Theorem 8. Furthermore, for
r, s > 0, A ∈ L X , if there is B[α] ∪⊂ ( f r

α ≡ f s
α (A))[α]. Then there is C ∈ L X , such

that B[α] ∪⊂ f r
α (C)[α] and C[α] ∪⊂ f s

α (A)[α]. So there are
k∑

i=1
ri = r and

m∑
i=1

si = s,

such that
B[α] ∪⊂ (ϕr1

α ≡ ϕr2
α ≡ · · · ≡ ϕrk

α (C))[α]

and
C[α] ∪⊂ (ϕs1

α ≡ ϕs2
α ≡ · · · ≡ ϕsm

α (A))[α].

Thus
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B[α] ∪⊂ (ϕr1
α ≡ ϕr2

α ≡ · · · ≡ ϕrk
α ) ≡ (ϕs1

α ≡ ϕs2
α ≡ · · · ≡ ϕsm

α )(A)[α].

As a result, B[α] ∪⊂ f r+s
α (A)[α]. Consequently, f r+s

α ⊂ f r
α ≡ f s

α . This is the proof
of (4) in Theorem 8.

Step 3. for r > s > 0, A ∈ L X ,

f r
α (A) = ⇔

{
(ϕr1

α ≡ ϕr2
α ≡ · · · ≡ ϕrk

α (A) |
k∑

i=1

ri = r

}

⊂ ⇔
{

(ϕs1
α ≡ ϕs2

α ≡ · · · ≡ ϕsm
α ≡ ϕr−s

α (A)) |
m∑

i=1

si = m

}

⊂ ⇔
{

(ϕs1
α ≡ ϕs2

α ≡ · · · ≡ ϕsm
α (A)) |

m∑
i=1

si = m

}
= f s

α (A).

Hence f r
α ⊂ ∧

s<r
f s
α .

Conversely. Let’s prove the reverse result.

If B ∈ L X , B[α] ∪⊂ f r
α (A)[α], then there is

k∑
i=1

ri = r , such that B[α] ∪⊂ ϕ
r1
α ≡ϕ

r2
α ≡

· · · ≡ ϕ
rk
α (A)[α]. So there is C ∈ L X , such that C[α] ∪⊂ (ϕ

r2
α ≡ ϕ

r2
α ≡ · · · ≡ ϕ

rk
α (A)[α]

and B[α] ∪⊂ ϕ
r1
α (C)[α]. By ϕ

r1
α = ∧

t<r1

ϕt
α , there is t < r1, such that B[α] ∪⊂ ϕt

α(C)[α],

i.e., B[α] ∪⊂ ϕt
α ≡ ϕ

r2
α ≡ · · · ≡ ϕ

rk
α (A)[α]. Let’s take s = t +

k∑
i=2

ri , we have s < r

and B[α] ∪⊂ f s
α (A)[α]. Therefore f r

α ∗ ∧
s<r

f s
α . Therefore (5) in Theorem 8 holds.

Theorem 5.7 Each α-CI I α-layer topological space is P.Q.-metriclizable.

Proof Let (L X , Dα(δ)) be an α-CI I space, {Pn | n ∈ N } be an α-base. ∀n ∈ N ,
f Pn
α : L X √ L X is defined as: ∀A ∈ L X ,

f Pn
α (A) =

{
0X , A[α] ⊂ Pn[α].
Pn, A[α] ∪⊂ Pn[α].

Let’s take D∃ = { f Pn
α | n ∈ N } and

Bα = { fα | ∃ f
Pni
α ∈ D∃, i = 1, 2, · · ·, m, fα =

m∨
i=1

f
Pni
α }.

Then Bα is an α-base of some uniform denoted by Dα and clearly, ηα = ηα(Dα).
Furthermore, since Bα is countable, we know (L X , Dα(δ)) is P.Q.-metriclizable.
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Theorem 5.8 An α-layer co-topology Dα(δ) on L X can be α-P.Q. metriclizable iff
there is a Sequence of α-remote neighborhood mappings { f n

α }n∈N satisfying

(1) ∀n ∈ N , f n
α ⊂ f n+1

α ≡ f n+1
α ≡ f n+1

α ,
(2) ∀a ∈ M∃(L X ), { f n

α (a)}n∈N is the α-remote neighborhood family of a.

Proof Necessary. If Dα(δ) can be α-P.Q. metriclizable, there is an α-P.Q. metric,

say dα . Let’s take f n
α = P

1
3n

α . By Theorem 8, it is clear that (1) and (2) hold.
Sufficiency. If { f n

α }n∈N satisfies (1) and (2). Clearly, { f n
α }n∈N is countable. So

by Theorem 12, it is an α-base of some α-quasi uniform Dα . Therefore Dα(δ) =
ηα(Dα). This means Dα(δ) is α-P.Q. metriclizable.

Theorem 5.9 An α-layer co-topology Dα(δ) on L X can be α-P.Q. metriclizable
iff there is a Sequence of α-symmetric remote neighborhood mappings { f n

α }n∈N

satisfying

(1) ∀n ∈ N , f n
α ⊂ f n+1

α ≡ f n+1
α ≡ f n+1

α ,
(2) ∀a ∈ M∃(L X ), { f n

α (a)}n∈N is the α-remote neighborhood family of a.

Theorem 5.10 An α-layer co-topology Dα(δ) on L X can be α-P.Q. metriclizable
iff there is a Sequence of α-symmetric remote neighborhood mappings { f n

α }n∈N

satisfying

(1) ∀n ∈ N , f n
α ⊂ ( f n+1

α )� ⊂ f n+1
α ,

(2) ∀a ∈ M∃(L X ), { f n
α (a)}n∈N is the α-remote neighborhood family of a.

Proof Necessity. It is similar to that of Theorem 14.
Sufficiency. If { f n

α }n∈N satisfies (1) and (2). By Theorem 2, ∀n ∈ N , f n
α ⊂

( f n+1
α )� ⊂ ( f n+1

α )∇ ⊂ f n+1
α . By Theorem 4, ∀n ∈ N , f n

α ⊂ ( f n+1
α )� ⊂ f n+1

α ≡
f n+1
α .

Therefore ∀n ∈ N ,

f n
α ⊂ f n+1

α ≡ f n+1
α ⊂ ( f n+2

α )∇ ≡ ( f n+2
α )∇ ⊂ ( f n+2

α )∇ .

Again, by Theorem 4,

f n
α ⊂ ( f n+2

α )∇ ≡ ( f n+2
α )∇ ⊂ (( f n+4

α )∇)∇ ≡ (( f n+4
α )∇)∇

⊂ ( f n+4
α )∇ ≡ ( f n+4

α )∇ ≡ ( f n+4
α )∇ ≡ ( f n+4

α )∇

⊂ ( f n+4
α )∇ ≡ ( f n+4

α )∇ ≡ ( f n+4
α )∇ .

∀n ∈ N , gn
α = ( f 4n−3

α )∇ . Then {gn
α}n∈N is a family of α-symmetric remote neigh-

borhood mappings. It is clear that {gn
α(a)}n∈N is the α-remote neighborhood family

of a.

Theorem 5.11 An α-layer co-topology Dα(δ) on L X can be α-P.Q. metriclizable
iff there is a Sequence of α-remote neighborhood mappings { f n

α }n∈N satisfying

(1) ∀n ∈ N , f n
α ⊂ ( f n+1

α )∇ ⊂ f n+1
α ,
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(2) ∀a ∈ M∃(L X ), { f n
α (a)}n∈N is the α-remote neighborhood family of a.
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The Complex Fuzzy Measure

Sheng-quan Ma, Mei-qin Chen and Zhi-qing Zhao

Abstract In this paper, we define the concept of complex Fuzzy measure, which is
different from the concept of complex Fuzzy measure in [2], and discuss its properties
and theorems. On the basis of the concept of complex Fuzzy measurable function
in [2], we study its convergence theorem. It builds the certain foundation for the
research of complex Fuzzy integral.

Keywords Complex fuzzy measure · Complex fuzzy measurable function

1 Introduction

In 1990–1991, Buckley [1] proposed the concept of fuzzy complex numbers and
fuzzy complex-valued function. In 1997, Qiu Jiqing [2–5] firstly proposed the con-
cept of the complex fuzzy measure on the basis of classical measure theory method.
Since 2000, According to this issue, Ma shengquan [6] has done some exploratory
work, and made a series of achievement in this field. The theory of fuzzy com-
plex valued measure is an important part of fuzzy complex analysis, which has a
strong background of practical application [7]. For instance it can use in the fuzzy
system identification, fuzzy control, multi-classifier system design and other fields.
The development of theoretical research of fuzzy complex valued measure is slow,
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because it is much more complicated than Fuzzy real-valued measure. The complex
Fuzzy measure which defined in this paper is different from that in paper [2], the
concept of Fuzzy measure was redefined, which distinguished between the real and
imaginary parts in order to facilitate research.

2 Complex Fuzzy Measure

R̂+ denote positive real set, Ĉ+ denote the set of complex number on R̂+ [8].

Definition 2.1 Let X be a nonempty set, F be a α− algebra, comprising of the subset

of X, the mapping μ:F √ Ĉ
+

is set function, satisfying:

(1) μ(∈) = 0;
(2) (monotonicity) If A, B ≤ F and A ∃ B ,then Re(μ(A)) ∗ Re(μ(B)) and

I m(μ(A)) ∗ I m(μ(B)). Denote μ(A) ∗ μ(B)

(3) if An ≤ F(n = 1, 2, · · · ), A1 ∃ A2 ∃ · · · ∃ An ∃ · · · then

μ(

∪⋃
n=1

An) = lim
n√∪ μ(An)

(4) if An ≤ F(n = 1, 2, . . .), A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ · · · , and ∇n0 such that

Re(μ(An0)) < ∪, Im(μ(An0)) < ∪ then μ(
∪⋂

n=1
An) = lim

n√∪ μ(An). Then μ

is called as complex Fuzzy measure on F, (X,F,μ) is called as complex Fuzzy
measure space.

Definition 2.2 Fuzzy complex measure μ is said to be zero-additive, if for arbitrary
E, F ≤ F, μ(F) = 0 and E ∀ F = θ, then μ(E ⇔ F) = μ(E).

Theorem 2.1 (X, F, μ) is complex Fuzzy measure space, The following propositions
are equivalence.

(1) μ is zero-additive ;
(2) since μ(F) = 0, then for arbitrary E, F ≤ F, such that μ(E ⇔ F) = μ(E);
(3) since μ(F) = 0, then for arbitrary E, F ≤ F, such that μ(E\F) = μ(E):

Proof. (1)≥(2):
E ⇔ F = E ⇔ (F\E), since μ is nonnegative monotony, then for μ(F) = 0, such
that
μ(F\E) ∗ μ(F) = 0, therefore μ(F\E) = 0. Applying the zero-additive of
μ,μ(F\E) = 0 and E ∀ (F\E) = θ, then

μ(E ⇔ F) = μ(E ⇔ (F\E)) = μ(E).

(2)≥(3):
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Due to E = (E\F) ⇔ (E ∀ F), and μ(F) = 0, then μ(E ∀ F) = 0.
We know μ(E) = μ((E\F) ⇔ (E ∀ F)) = μ(E\F) from the proposition
(2).(3)≥(1):
Due to E ∀ F = θ, then E = (E ⇔ F)\F .
If μ(F) = 0 and E ∀ F = θ, we can know

μ(E) = μ((E ⇔ F)\F) = μ(E ⇔ F)

from the proposition (3).

Theorem 2.2 Suppose μ is complex Fuzzy measure of zero-additive, A ≤ F, there
is a descending sequence of {Bn} ◦ F, (B1 ⊂ B2 ⊂ · · · ), if μ(Bn) √ 0, then

(1) μ(A\Bn) √ μ(A);
(2) whereupon Re(μ(A)) < ∪, and Im(μ(A)) < ∪ , and if exists Re(μ(A ⇔

Bn0)) < ∪ and Im(μ(A ⇔ Bn0)) < ∪ , therefore μ(A ⇔ Bn) √ μ(A).

Proof. (1) since {A\Bn} is ascending sequence and if μ is lower-continuous, we

can know lim
n√∪ μ(A\Bn) = μ(

∪⋃
n=1

(A\Bn)) = μ(A\
∪⋂

n=1
Bn).

Applying μ is upper-continuous, lim
n√∪ μ(Bn) = μ(

∪⋂
n=1

Bn) = 0, since μ is zero-

additive, from the Theorem 1, then lim
n√∪ μ(A\Bn) = μ(A).

(2) {A ⇔ Bn} is descending sequence, Re(μ(A)) < ∪, and I m(μ(A)) < ∪, and
exist Re(μ(A⇔Bn0)) < ∪ and I m(μ(A⇔Bn0)) < ∪, due to μ is upper-continuous,

lim
n√∪ μ(A ⇔ Bn) = μ(

∪⋂
n=1

(A ⇔ Bn)) = μ(A ⇔ (

∪⋂
n=1

Bn)).

Since μ is zero-additive, and μ(
∪⋂

n=1
Bn) = 0, so we know

lim
n√∪ μ(A ⇔ Bn) = μ(A)

according to Theorem 1.

Definition 2.3 Let (X,F) be measurable space, the mapping μ:F √ Ĉ+ is set func-
tion, Complex fuzzy measure μ is upper-self-continuous, if for arbitrary A, Bn ≤ F,
and A ∀ Bn = γ, lim

n√∪ Bn = 0, then

lim
n√∪ μ(A\Bn) = μ(A).

Complex fuzzy measure μ is lower-self-continuous, if for arbitrary A, Bn ≤ F and
Bn ∃ A, lim

n√∪ Bn = 0, then lim
n√∪ μ(A\Bn) = μ(A).
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Complex fuzzy measure μ is self-continuous, if and only if μ is not only upper-self-
continuous but also lower-self-continuous.

Theorem 2.3 Suppose μ is complex Fuzzy measure on (X,F), then

(1) μ is upper-self-continuous if and only if lim
n√∪ μ(A⇔ Bn) = μ(A) if for arbitrary

A, Bn ≤ F and lim
n√∪ Bn = 0.

(2) μ is lower-self-continuous if and only if lim
n√∪ μ(A\Bn) = μ(A) if for arbitrary

A, Bn ≤ F and lim
n√∪ Bn = 0.

Proof. The necessity is easily proved from the definition.2.3

(1) Sufficiency: Let En = Bn\A, we know μ(En) ∗ μ(Bn), therefore En ∀ A =
θ, and lim

n√∪ μ(En) = 0, then lim
n√∪ μ(A ⇔ En) = μ(A), so μ is upper-self-

continuous.
(2) Sufficiency: Let En = Bn ∀ A, we know μ(En) ∗ μ(Bn), therefore En ∃ A, and

lim
n√∪ μ(En) = 0, then lim

n√∪ μ(A\En) = μ(A), so μ is lower-self-continuous

Definition 2.4 Let (X, F) be measurable space, the mapping μ:F √ Ĉ+ is set
function,

(1) Suppose for arbitrary ρi > 0, exists δi = δ(ρi ) > 0(i = 1, 2),
where ρ = ρ1 + iρ2, δ = δ1 + iδ2,
Complex fuzzy measure μ is uniform-upper-self-continuous, if for arbitrary
A, B ≤ F and μ(B) ∗ δ , then μ(A ⇔ B) ∗ μ(A) + ρ.

(2) Suppose for arbitrary ρi > 0, exists δi = δ(ρi ) > 0(i = 1, 2), where ρ = ρ1 +
iρ2, δ = δ1 + iδ2, Complex fuzzy measure μ is uniform-lower-self- continuous,
if for arbitrary A, B ≤ F and μ(B) ∗ δ, then μ(A) − ρ ∗ μ(A\B).

(3) Complex fuzzy measure μ is uniform-self-continuous, if and only if μ is not only
uniform-upper-self-continuous but also uniform-lower-self-continuous.

Theorem 2.4 Suppose set function μ is uniform-upper-self-continuous (uniform-
lower-self-continuous), then μ is upper-self-continuous (lower-self- continuous).

Proof. It is obvious.

Theorem 2.5 Suppose μ is complex Fuzzy measure on (X,F), The following propo-
sitions are equivalence.

(1) μ is uniform-self-continuous;
(2) μ is uniform-upper-self-continuous;
(3) μ is uniform-lower-self-continuous.

Proof. (1) ≥ (2) It is obvious.
(2) ≥ (3): Since μ is uniform-upper-self-continuous, so if for arbitrary ρi >

0, ∇δi = δ(ρi ) > 0(i = 1, 2), where ρ = ρ1 + iρ2, δ = δ1 + iδ2, and for arbi-
trary A′, B ′ ≤ F, μ(B ′) ∗ δ,then μ(A′) − ρ ∗ μ(A′ ⇔ B ′) ∗ μ(A′) + ρ. if for
arbitrary A, B ≤ F, μ(B) ∗ δ, LetA′ = A\B, B ′ = A ∀ B, μ(B ′) ∗ μ(B) ∗ δ,
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if μ(A\B)−ρ ∗ μ(A′ ⇔ B ′) ∗ μ(A\B)+ρ, then μ(A)−ρ ∗ μ(A\B) ∗ μ(A)+ρ.
It means μ is uniform-lower-self-continuous.
(3) ≥ (1): Since μ is uniform-lower-self-continuous, if for arbitrary
ρi > 0, ∇δi = δ(ρi ) > 0(i = 1, 2), where ρ = ρ1 + iρ2, δ = δ1 + iδ2, and for
arbitrary A′, B ′ ≤ F, μ(B ′) ∗ δ, then μ(A′) − ρ ∗ μ(A′\B ′) ∗ μ(A′) + ρ. if for
arbitrary
A, B ≤ F, μ(B) ∗ δ, LetA′ = A ⇔ B, B ′ = A ∀ B, μ(B ′) ∗ μ(B) ∗ δ,

therefore
μ(A′\B′) ≥ μ(A′) − ρ ≥ μ(A) − ρ.

Again let A′′ = (A ⇔ B)\(A ∀ B), B ′′ = B\A, then A′′\B ′′ = A\B, and μ(B ′′) ∗
μ(B) ∗ δ, so

μ(A′′) − ρ ∗ μ(A′′\B ′′) = μ(A\B) ≥ μ(A\B) + ρ ∗ μ(A) + ρ.

Again let A = E, B = F\E , then (A ⇔ B)\(A ∀ B) = E ⇔ F, μ(B) ∗ μ(F) ∗ δ,

so μ(E)−ρ ∗ μ(E ⇔ F) ∗ μ(E)+ρ. It means μ is uniform-upper-self-continuous.
So μ is uniform-self-continuous.

Definition 2.5 Let (X,F) be measurable space, the mapping μ:F √ Ĉ+ is set func-
tion, If for arbitrary {Bn} ∃ A, B1 ⊂ B2 ⊂ · · · , if ∇n0,∀n > n0, Re(μ(Bn)) < ∪,

I m(μ(Bn)) < ∪ and
∪⋂

n=1
Bn = θ, there must be lim

n√∪ μ(Bn) = 0, so μ is called

zero-upper-continuous.

Theorem 2.6 μ is nonnegative monotonic ascending set function, and zero-upper-
continuous, Then if μ is upper-self- continuous, then μ is upper- continuous;
if μ is limit and lower-self- continuous, then μ is lower- continuous.

Proof. (1) If {An} ∃ F, A1 ⊂ A2 ⊂ · · · , exist Re(μ(Bn)) < ∪, I m(μ(Bn)) < ∪,
let

A =
∪⋂

n=1
An, Bn = An\A (n = 1, 2, · · · ),then B1 ⊂ B2 ⊂ · · · , and

∪⋂
n=1

Bn = θ.if

for
arbitrary

n > n0, Re(μ(Bn)) ∗ Re(μ(Bn0)) ∗ Re(μ(An0)) < ∪,

Im(μ(Bn)) ∗ Im(μ(Bn0)) ∗ Im(μ(An0)) < ∪. Since μ is zero-upper-continuous,
we know lim

n√∪ μ(Bn) = 0. Due to An = A ⇔ Bn, A ∀ Bn = θ, and μ is upper-

self-continuous, if μ(An) = μ(A ⇔ Bn), then μ(A) = μ(
∪⋂

n=1
An).So μ is upper-

continuous.
(2)The proof is similar to (1) above.
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3 Complex Fuzzy Measurable Function

R denote real set, C denote the set of complex number on R.

Definition 3.1 [2] Suppose (X,F,μ) is complex Fuzzy measure space, the mapping
f̃ : X √ C is called complex Fuzzy measurable function, if for arbitrary a+bi ≤ C,

then {x ≤ X
∣∣∣Re[ f̃ (x)] ≥ a, I m[ f̃ (x)] ≥ b} ≤ F.

Definition 3.2 Suppose (X,F,μ) is complex Fuzzy measure space, f̃n(n = 1, 2, · · · ),
f̃ is complex fuzzy measurable function, for arbitrary A ≤ F,

(1) { f̃n} almost everywhere converge to f̃ on A, denote f̃n
a.e.√ f̃ , if there exists B ≤ F,

such that μ(B) = 0 , then { f̃n} with pointwise convergence to f̃ on A\B.

(2) { f̃n} pseudo-almost everywhere converge to f̃ on A, denote f̃n
p.a.e.√ f̃ , if there

exists B ≤ F, such that μ(A\B) = μ(A), then { f̃n} with pointwise convergence
to f̃ on A\B.

(3) { f̃n} almost everywhere uniformly converge to f̃ on A, denote f̃n
a.e.u.√ f̃ , if there

exists B ≤ F, such that μ(B) = 0, then { f̃n} with pointwise uniform convergence
to f̃ on A\B.

(4) { f̃n} pseudo-almost everywhere uniformly converge to f̃ on A, denote f̃n
p.a.e.u.√

f̃ , if there exists B ≤ F, such that μ(A\B) = μ(A), then { f̃n} with pointwise
uniform convergence to f̃ on A\B.

(5) { f̃n} almost uniformly converge to f̃ on A, denote f̃n
a.u.√ f̃ , if there exists set

sequence{Ek} on F, such that μ̃(Ek) √ 0 ,and for arbitrary k, then { f̃n} with
pointwise uniform convergence to f̃ on A\Ek.

(6) { f̃n} pseudo-almost uniformly converge to f̃ on A, denote f̃n
p.a.u.√ f̃ , if there

exists set sequence {Ek} on F, such that μ(A\Ek) √ μ(A), and for arbitrary
k, then { f̃n} with pointwise uniform convergence to f̃ on A\Ek.

(7) { f̃n} converge in complex fuzzy measure μ to f̃ on A, denote f̃n
u.√ f̃ , if for

arbitrary ρ = ρ1 + iρ2, ρ1, ρ2 > 0, such that

lim
n√∪ μ({x

∣∣∣Re
∣∣∣ f̃n − f̃

∣∣∣ ≥ ρ1, I m
∣∣∣ f̃n − f̃

∣∣∣ ≥ ρ2} ∀ A) = 0.

(8) { f̃n} converge in pseudo complex fuzzy measure μ̃ to f̃ on A, denote f̃n
p.u.√ f̃ ,

if for arbitrary ρ > 0, such that

lim
n√∪ μ({x

∣∣∣Re
∣∣∣ f̃n − f̃

∣∣∣ < ρ1, I m
∣∣∣ f̃n − f̃

∣∣∣ < ρ2} ∀ A) = μ(A).

Theorem 3.1 Suppose (X,F,μ) is complex Fuzzy measure space, f̃n(n = 1, 2, · · · ),
f̃ is complex fuzzy measurable function, for arbitrary A ≤ F,

(1) f̃n
a.e.√ f̃ if and only if { f̃n} converge to f̃ on A\Ek, if there exists set sequence

{Ek} on F, such that μ(Ek) √ 0, and for arbitrary k.
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(2) f̃n
p.a.e.√ f̃ if and only if { f̃n} converge to f̃ on A\Ek, if there exists set sequence

{Ek} on F, such that μ(A\Ek) √ μ(A), and for arbitrary k.

(3) f̃n
a.e.u.√ f̃ if and only if

∣∣∣Re( f̃ − f̃k)

∣∣∣ < ρ1 and
∣∣∣I m( f̃ − f̃k)

∣∣∣ < ρ2, if there

exists set sequence {Ek} on F, such that μ(Ek) √ 0, and for arbitrary ρi >

0, (i = 1, 2), where ρ = ρ1 + iρ2, ∇n0,∀n > n0,∀k,∀x ≤ A\Ek.

(4) f̃n
p.a.e.u.√ f̃ if and only if

∣∣∣Re( f̃ − f̃k)

∣∣∣ < ρ1 and
∣∣∣I m( f̃ − f̃k)

∣∣∣ < ρ2, if there

exists set sequence {Ek} on F, such that μ(A\Ek) √ μ(A), and for arbitrary
ρi > 0, (i = 1, 2), where ρ = ρ1 + iρ2, ∇n0,∀n > n0,∀k,∀x ≤ A\Ek.

Proof. (1) If f̃n
a.e.√ f̃ , then exists B ≤F, μ(B) = 0, such that f̃n √ f̃ on A\B. Let

Ek = B(k = 1, 2, · · · ), we know μ(Ek) √ 0, and { f̃n} converge to f̃ on A\Ek , for
arbitrary k.
Otherwise, if there exists {Ek} ∃F,μ(Ek) √ 0, such that f̃n √ f̃ on A\Ek . Let

Bk =
k⋂

i=1
Ei , B =

∪⋂
k=1

Bk =
∪⋂

k=1
Ek , so μ(Bk) ∗ μ(Ek) and B1 ⊂ B2 ⊂ · · · . Due

to μ(Ek) √ 0, there exists
Re(μ(Bk0)) ∗ Re(μ(Ek0)) < ∪,and Im(μ(Bk0)) ∗ Im(μ(Ek0)) < ∪.

Applying the upper-continuity of μ, we know that μ(B) = lim
k√0

μ(Bk) = 0. If for

arbitrary x ≤ A\B =
∪⋃

k=1
(A\Ek), ∇k0, x ≤ A\Ek0 , then f̃n √ f̃ , therefore { f̃n}

converge to f̃ on A\B, denote f̃n
a.e.√ f̃ .

The proof of (2),(3),(4) is similar to (1), we omit here.

Inference 3.1 If f̃n
a.e.u.√ f̃ , then f̃n

a.u.√ f̃ ;If f̃n
p.a.e.u.√ f̃ , then f̃n

p.a.u.√ f̃ .

Theorem 3.2 Suppose complex Fuzzy measure μ is lower-self- continuity, for A ≤F,

If f̃n
a.e.√ f̃ , then f̃n

p.a.e.√ f̃ .

If f̃n
a.e.u.√ f̃ , then f̃n

p.a.e.u.√ f̃ .

If f̃n
a.u.√ f̃ then f̃n

p.a.u.√ f̃ .

Proof. (1) If f̃n
a.e.√ f̃ on A, then there exists B ≤ F, μ(B) = 0, such that { f̃n}

converge to f̃ on A\B, therefore f̃n
p.a.e.√ f̃ on A.

The proof of (2),(3) is similar to (1), we omit here.

Theorem 3.3 Suppose for arbitrary A ≤F, and complex fuzzy measurable function

f̃ and f̃n(n = 1, 2, · · · ), if f̃n
u.√ f̃ , then f̃n

p.u.√ f̃ if and only if complex fuzzy
measure μ is lower-self- continuity.

Proof. (necessity) if f̃n
u.√ f̃ , then f̃n

p.u.√ f̃ , so lim
n√∪ μ(Bn) = 0, for arbitrary A ≤ F

and {Bn} ∃ F
Let

f̃n(x) =
{

1 x ≤ Bn

0 x /≤ Bn
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So

lim
n√∪ μ({x

∣∣∣∣∣∣Re( f̃n − 0)

∣∣∣ ≥ ρ1,

∣∣∣Im( f̃n − 0)

∣∣∣ ≥ ρ2} ∀ A) = lim
n√∪ μ(Bn) = 0,

where for arbitrary ρi > 0, (i = 1, 2), ρ = ρ1 + iρ2. So on A, if f̃n
u.√ 0, then

f̃n
p.u.√ 0.

Suppose for ρi < 1, then μ(A\Bn) = μ({x
∣∣∣∣∣∣Re( f̃n − 0)

∣∣∣ < ρ1,

∣∣∣Im( f̃n − 0)

∣∣∣ <

ρ2} ∀ A) = μ(A),
So μ is lower-self- continuity.

(Sufficiency): If f̃n
u.√ f̃ on A, then lim

n√∪ μ({x
∣∣∣∣∣∣Re( f̃n − 0)

∣∣∣ ≥ ρ1,

∣∣∣I m( f̃n − 0)

∣∣∣ ≥
ρ2} ∀ A) = 0, where for arbitrary ρi > 0, (i = 1, 2), ρ = ρ1 + iρ2. Let

Bn = {x
∣∣∣
∣∣∣Re( f̃n − f̃ )

∣∣∣ ≥ ρ1,

∣∣∣I m( f̃n − f̃ )

∣∣∣ ≥ ρ2} ∀ A,

then {Bn} ∃ A and lim
n√∪ μ(Bn) = 0. Due to μ is lower-self- continuity, so

μ(A ∀ {x
∣∣∣
∣∣∣Re( f̃n − f̃ )

∣∣∣ < ρ1,

∣∣∣I m( f̃n − f̃ )

∣∣∣ < ρ2}) = μ(A\Bn) √ μ(A).

Therefore f̃n
p.u.√ f̃ on A.

4 Conclusion

On the basis of the concept of complex Fuzzy measurable function in [2], we study
its convergence theorem. It builds the certain foundation for the research of complex
Fuzzy integral. Provide a strong guarantee for the complex fuzzy integral develop-
ment, enrichment and development of complex fuzzy Discipline.
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Fuzzy α-Ideals of BCH-Algebras

Ju-ying Wu

Abstract The aim of this paper is tointroduce the notions of fuzzy α-ideals of
BCH-algebras and to investigate their properties. The relations among various fuzzy
ideals are discussed as well. The upper and lower rough ideals of BCH-algebras are
defined. Then the properties of rough ideals are discussed. The left and the right rough
fuzzy ideals are defined and researched. Finally, we characterize well BCH-algebras
via fuzzy ideals.

Keywords BCH-algebra · Fuzzy ideal · Fuzzy α-ideals · Rough fuzzy ideals.

1 Introduction

BCK-algebras and BCI-algebras are two important classes of logical algebras intro-
duced by Y. Imai and K. Iséki in 1966. Since then, a great deal of literature has been
produced on the theory of BCK/BCI-algebras. The notion of BCH-algebras was
introduced by Hu and Li [1] which is a generalization of BCK-algebras and BCI-
algebras. The concept of a fuzzy set, which was introduced by Zadeh [2], provides
a natural framework for generalizing many of the concepts of general mathematics.
Since then, these fuzzy ideals and fuzzy subalgebras have been applied to other alge-
braic structures such as semigroups, groups, rings, ideals, modules,etc. the concept of
fuzzy sets is also applied to BCK/BCI/BCH-algebras [3–11]. Wang [12] introduced
the notions of fuzzy subalgebras and fuzzy ideals of BCH-algebras with respect to a
t-norm T , and studied some of their properties.

In 1982, Pawlak introduced the concept of a rough set. This concept is fundamental
for the examination of granularity in knowledge. It is a concept which has many
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applications in data analysis. The algebraic analysis is also an important branch in
rough sets. Iwinski [13] and Pomykala [14] studied algebraic properties of rough
sets. Biswas and Nanda [15] introduced the notions of rough subgroups. And then,
Kuroki [16] introduced the notion of rough ideals in a semigroup. Dubois and Prade
[17, 18] combined fuzzy sets and rough sets in a fruitful way by defining rough fuzzy
sets and fuzzy rough sets.

In this paper, we apply the fuzzy set and rough set theory to BCH-algebras. Fuzzy
α-ideals and rough fuzzy ideals of BCH-algebras are introduced and investigated.

2 Preliminaries

An algebra (X, √, 0) of type (2, 0) is called a BCH-algebra [1], if it satisfies the
following axioms:

(1) x √ x = 0;
(2) x √ y = y √ x = 0 =∈ x = y;
(3) (x √ y) √ z = (x √ z) √ y.

for all x, y, z ≤ X . In a BCH-algebra X , we can define a partial ordering ∃ by putting
x ∃ y if and only if x √ y = 0.

A BCH-algebra (X, √, 0) is called quasi-associative, if for all x, y, z ≤ X , (x √
y) √ z ∃ x √ (y √ z).

In this paper X always means a BCH-algebra unless otherwise specified. We recall
that a nonempty subset I of a X is called an ideal, if for any x, y ≤ X :

(I1) 0 ≤ I ,
(I2) x √ y ≤ I and y ≤ I imply x ≤ I .
A nonempty subset A of X is said to be a subalgebra if and only if for all x, y ≤ A

implies x √ y ≤ A.
An ideal I is called quasi-associative [9], if for each x ≤ I , 0 √ x = 0 √ (0 √ x).
In this paper X always means a BCH-algebra unless otherwise specified.
A mapping μ : X ∗ [0, 1], where X is an arbitrary nonempty set, is called a fuzzy

set in X . The complement of μ, denoted by μ̄, is the fuzzy set in X by μ̄(x) = 1−μ(x)

for all x ≤ X .

Definition 2.1 Let X be a BCH-algebra. A fuzzy subset μ in X is said to be a fuzzy
ideal, if it satisfies

(FI1) μ(0) ∪ μ(x),
(FI2) μ(x) ∪ min{μ(x √ y),μ(y)}, for any x, y ≤ X .
A fuzzy ideal μ of X is said to be a closed fuzzy ideal, if, for all x ≤ X , μ(0√ x) ∪

μ(x).
A fuzzy set μ of X is called a fuzzy subalgebra of X , if and only if for any

x, y ≤ X , μ(x √ y) ∪ min(μ(x),μ(y)).
A fuzzy ideal μ in X is called quasi-associative, if for all x, y, z ≤ X , μ((x √ y) √

z) ∪ μ(x √ (y √ z)).
Clearly, if X is quasi-associative, then every fuzzy ideal in X is quasi-associative.
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Definition 2.2 Let μ be a fuzzy set in a set S. For t ≤ [0, 1], the set μt = {s ≤
S|μ(s) ∪ t} is called a level subset of μ. The set μ̃t = {s ≤ S|μ(s) > t} is called a
strong level subset of μ.

Theorem 2.1 Let μ be a fuzzy ideal of X. Then μ is a closed fuzzy ideal if and only
if μ is a fuzzy subalgebra of X.

Proof If μ is a closed fuzzy ideal of X , then μ((x √ y) √ x) = μ(0 √ y) ∪ μ(y).
Since μ be a fuzzy ideal of X , we have μ(x √ y) ∪ min{μ((x √ y) √ x),μ(x)}. It
follows that μ(x √ y) ∪ min{μ(x),μ(y)}. Hence μ is a fuzzy subalgebra of X .

Conversely, if μ is a fuzzy subalgebra of X , then for any x ≤ X , μ(0 √ x) ∪
min{μ(0),μ(x)}. It follows that μ(0 √ x) ∪ μ(x) as μ be a fuzzy ideal of X . Hence
μ is a closed fuzzy ideal of X .

3 Fuzzy α-Ideals of BCH-Algebras

Definition 3.1 A nonempty subset I of X is called an α-ideal of X , if it satisfies
(I1) 0 ≤ I ,
(I3) (x √ z) √ (0 √ y) ≤ I and z ≤ I imply y √ x ≤ I .

Definition 3.2 A fuzzy subset μ in X is said to be a fuzzy α-ideal, if it satisfies
(FI1) μ(0) ∪ μ(x),
(FI3) μ(y √ x) ∪ min{μ((x √ z) √ (0 √ y)),μ(z)}, for any x, y, z ≤ X .

Example 3.1 Let X = {0, 1, 2, 3} be a BCH-algebra with Cayley table given by

√ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

Define μ : X ∗ [0, 1] by μ(0) = μ(1) = t0, μ(2) = μ(3) = t1, where t0 ∪ t1 and
t0, t1 ≤ [0, 1]. By routine calculation give that μ is a fuzzy α-ideal.

Theorem 3.1 Any fuzzy α-ideal of X is a closed fuzzy ideal of X, but the converse
is not true.

Proof Suppose that μ is a fuzzy α-ideal of X . Setting y = z = 0 in (FI3) and
combining (FI1), it follows that μ(0 √ x) ∪ μ(x) for all x ≤ X .

Setting x = z = 0 in (FI3) and combining (FI1), it follows that μ(y) ∪ μ(0 √ (0 √
y)) for all y ≤ X . We have

μ(x) ∪ μ(0 √ (0 √ x)) ∪ μ(0 √ x).



152 J. Wu

for all x ≤ X . Thus for any x, z ≤ X , from (FI3) we have

μ(x) ∪ μ(0 √ x) ∪ min{μ((x √ z) √ (0 √ 0)),μ(z)} = min{μ(x √ z),μ(z)}.

Hence μ satisfies (FI2) and combining (FI1), μ is a fuzzy ideal of X . Since μ(0√x) ∪
μ(x) for all x ≤ X , μ is a closed fuzzy ideal of X .

To show the last part we see Example 3.2.

Example 3.2 Let X = {0, 1, 2, 3} be a proper BCH-algebra with Cayley table
given by

√ 0 1 2 3
0 0 0 0 0
1 1 0 3 3
2 2 0 0 2
3 3 0 0 0

Define μ : X ∗ [0, 1] by μ(0) = μ(1) = t0, μ(2) = μ(3) = t1. Where t0 > t1 and
t0, t1 ≤ [0, 1]. By routine calculation give that μ is a fuzzy closed ideal of X , but not
a fuzzy α-ideal of X as follows:

μ(1 √ 2) = μ(3) = t1 < t0 = min{μ((2 √ 1) √ (0 √ 1)),μ(1)}.

The proof is complete.
The following theorem give the characterization of fuzzy α-ideals.

Theorem 3.2 Let μ be a fuzzy ideal of X. Then μ is a fuzzy α-ideal of X if and only
if, for all x, y, z ≤ X, μ(y √ (x √ z)) ∪ μ((x √ z) √ (0 √ y)).

Proof Assume that μ is a fuzzy α-ideal of X . By (FI3) we have

μ(y √ (x √ z)) ∪ min{μ((x √ z) √ 0) √ (0 √ y)),μ(0)} = μ((x √ z) √ (0 √ y)).

Note that (x √ (0 √ y)) √ ((x √ z) √ (0 √ y)) ∃ z. It follows that

μ(x √ (0 √ y)) ∪ min{μ((x √ z) √ (0 √ y)),μ(z)}.

If for all x, y, z ≤ X , μ(y√(x√z)) ∪ μ((x√z)√(0√y)), then μ(y√x) ∪ μ(x√(0√y)) ∪
min{μ((x √ z) √ (0 √ y)),μ(z)}. Hence μ satisfies (FI3) and combining (FI1), μ is a
fuzzy α-ideal of X . The proof is complete.

Theorem 3.3 Let μ be a fuzzy ideal of X. Then μ is a fuzzy α-ideal of X if and only
if, for all x, y ≤ X, μ(y √ x) ∪ μ(x √ (0 √ y)).

Proof Assume that μ is a fuzzy α-ideal of X . By (FI3) we have

μ(y √ x)) ∪ min{μ(x √ (0 √ y)),μ(0)} = μ(x √ (0 √ y)).
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Note that (x √ (0 √ y)) √ ((x √ z) √ (0 √ y)) ∃ z. It follows that

μ(x √ (0 √ y)) ∪ min{μ((x √ z) √ (0 √ y)),μ(z)}.

Thus, for all x, y, z ≤ X , μ(y √ x) ∪ μ(x √ (0√ y)) ∪ min{μ((x √ z)√ (0√ y)),μ(z)}.
Hence μ satisfies (FI3) and combining (FI1), μ is a fuzzy α-ideal of X . The proof is
complete.

By Theorem 3.2 and Theorem 3.3, we have

Theorem 3.4 Let μ be a fuzzy ideal of X. Then μ(y √ (x √ z)) ∪ μ((x √ z) √ (0 √ y))

if and only if μ(y √ x) ∪ μ(x √ (0 √ y)), for all x, y, z ≤ X.
Next we establish the relations between fuzzy α-ideals and α-ideals of X.

Theorem 3.5 A fuzzy set μ of X is a fuzzy α-ideal if and only if, for all t ≤ [0, 1],
the level ideal μt = {x ≤ X |μ(x) ∪ t} is either empty or an α-ideal of X.

Proof Let μ be a fuzzy α-ideal of X and μt ⊂= ∇, where t ≤ [0, 1]. If (x √ z) √
(0 √ y) ≤ μt and z ≤ μt , then μ((x √ z) √ (0 √ y)) ∪ t and μ(z) ∪ t . Since μ is a
fuzzy α-ideal of X , we have μ(y √ x) ∪ min{μ((x √ z) √ (0 √ y)),μ(z)} ∪ t . Thus
y √ x ≤ μt . It is clear 0 ≤ μt . Hence μt is an α-ideal of X .

Conversely, if μt is either empty or an α-ideal of X for all t ≤ [0, 1]. we show μ
satisfies (FI1) and (FI3).

If (FI1) is false, then there exists x ∀ ≤ X such that μ(0) < μ(x ∀). Taking t0 =
[μ(x ∀) + μ(0)]/2, then μ(0) < t0 < μ(x ∀). Thus x ∀ ≤ μt0 and so μt0 ⊂= ∇. As μt0 is
an α-ideal of X , we have 0 ≤ μt0 , then μ(0) > t0. This is a contradiction.

If (FI3) is false, then there exist x ∀, y∀, z∀ ≤ X such that μ(y∀ √ z∀) < min{μ((x ∀ √
z∀) √ (0 √ y∀)),μ(z∀)}. Setting

t1 = [μ(y∀ √ z∀) + min{μ((x ∀ √ z∀) √ (0 √ y∀)),μ(z∀)}]/2.

Then μ(y∀ √ z∀) < t1 < min{μ((x ∀ √ z∀) √ (0 √ y∀)),μ(z∀)}. Thus (x ∀ √ z∀) √ (0 √ y∀) ≤
μt1 and z∀ ≤ μt1 , but y∀ √ z∀ /≤ μt1 . It means that μt1 is not an α-ideal of X . This is a
contradiction. Hence μ be a fuzzy α-ideal of X . This completes the proof.

Corollary 3.1 A fuzzy set μ of X is a fuzzy α-ideal if and only if, for all t ≤ [0, 1],
the level ideal μ̃t = {x ≤ X |μ(x) > t} is either empty or an α-ideal of X.

Corollary 3.2 If μ is a fuzzy α-ideal of X, ⇔x0 ≤ X, the level ideal μx0 = {x ≤
X |μ(x) ∪ μ(x0)} is α-ideal of X.

Theorem 3.6 If μ is a fuzzy α-ideal of X, then the set μ0 = {x ≤ X |μ(x) = μ(0)}
is α-ideal of X.

Proof Let μ is a fuzzy α-ideal of X . If (x √ z) √ (0 √ y) ≤ μ0 and z ≤ μ0, then
μ((x √ z) √ (0 √ y)) = μ(z) = μ(0). Since μ is a fuzzy α-ideal of X , by (FI3) we
have μ(y √ x) ∪ min{μ((x √ z) √ (0 √ y)),μ(z)} = μ(0). But μ(y √ x) ∃ μ(0) by
(FI1). Thus μ(y √ x) = μ(0) and so y √ x ≤ μ0. It is clear 0 ≤ μ0. Hence μ0 is an
α-ideal of X . This completes the proof.
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Theorem 3.7 The intersection of any sets of fuzzy α-ideal of X is also a fuzzy
α-ideal.

Proof Let {νi } be a family of fuzzy α-ideals of X . Since

(≥νi )(0) = inf(νi (0)) ∪ inf(νi (x)) = (≥νi )(x).

(≥νi )(y √ x) = inf(νi (y √ x)) ∪ inf(min{νi ((x √ z) √ (0 √ y)), νi (z)}
= min{inf νi ((x √ z) √ (0 √ y)), inf(νi (z))}
= min{(≥νi )((x √ z) √ (0 √ y)), (≥νi )(z)}.

Hence ≥νi is a fuzzy α-ideals of X . This completes the proof.

Definition 3.3 Let μ and ν be fuzzy sets of S. The Cartesian product of μ and ν is
defined by for all x, y ≤ S, (μ × ν)(x, y) = min{μ(x), ν(y)}.
Theorem 3.8 Let μ and ν be two fuzzy α-ideals of X. Then μ × ν is also a fuzzy
α-ideals of X × X.

Proof For any x = (x1, x2), y = (y1, y2), z = (z1, z2) ≤ X × X , we have

(μ × ν)(0) = (μ × ν)(0, 0) = min{μ(0), ν(0)}
∪ min{μ(x1), ν(x2)} = (μ × ν)(x1, x2) = (μ × ν)(x).

(μ × ν)(y √ x) = (μ × ν)(y1 √ x1, y2 √ x2) = min{μ(y1 √ x1), ν(y2 √ x2)}
∪ min{min{μ((x1 √ z1) √ (0 √ y1)), μ(z1)}, min{ν((x2 √ z2) √ (0 √ y2)), ν(z2)}}
= min{min{μ((x1 √ z1) √ (0 √ y1)), ν((x2 √ z2) √ (0 √ y2))}, min{μ(z1), ν(z2)}}
= min{(μ × ν)((x √ z) √ (0 √ y)), (μ × ν)(z)}.

Thus μ × ν is also a fuzzy α-ideals of X × X . This completes the proof.

Theorem 3.9 Assume that X and Y be two BCH-algebras. Let f : X ∗ Y be an
onto homomorphism and ν is a fuzzy α-ideal of Y . Then μ the primage of ν under f
is also a fuzzy α-ideal of X.

Proof For any x ≤ X , we have ν( f (x)) = μ(x). As f (x) ≤ Y and ν is a fuzzy
α-ideal of Y , then ν(0∀) ∪ ν( f (x)) = μ(x) for every x ≤ X , where 0∀ is the zero
element of Y . But ν(0∀) = ν( f (0)) = μ(0), so μ(0) ∪ μ(x) for all x ≤ X . Hence μ
satisfies (FI1).

For any x, y, z ≤ X , since ν is a fuzzy α-ideal of Y , we have

μ(y √ x) = ν( f (y √ x)) = ν( f (y) √ f (x))

∪ min{ν(( f (x) √ f (z)) √ (0 √ f (y))), ν( f (z))}
= min{ν( f ((x √ z) √ (0 √ y)), ν( f (z))}
= min{μ((x √ z) √ (0 √ y)),μ(z)}.
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Hence μ satisfies (FI3). It follows that μ is a fuzzy α-ideal of X and completing the
proof.

We now give another characterization of fuzzy α-ideals of X .

Theorem 3.10 A fuzzy set μ of X is a fuzzy α-ideal, then, for all x, y ≤ X, μ(x) ∪
μ(0 √ (0 √ x)) and μ(x √ y) ∪ μ(x √ (0 √ y)).

Proof Let μ is a fuzzy α-ideal of X . Setting y = z = 0 in (FI3) and combining
(FI1), it follows that μ(0 √ x) ∪ μ(x) for all x ≤ X . Setting x = z = 0 in (FI3) and
combining (FI1), it follows that μ(y) ∪ μ(0 √ (0 √ y)) for all y ≤ X .

Now we show that μ(x √ y) ∪ μ(x √ (0 √ y)). Since (0 √ (0 √ (y √ (0 √
x)))) √ (x √ (0 √ y)) = ((0 √ (0 √ y)) √ (0 √ x)) √ (x √ (0 √ y)) ∃ 0, we have
μ(0 √ (0 √ (y √ (0 √ x)))) ∪ min{μ(x √ (0 √ y)),μ(0)} = μ(x √ (0 √ y)). Hence
μ(y √ (0 √ x)) ∪ μ(0 √ (0 √ (y √ (0 √ x)))) ∪ μ(x √ (0 √ y)). It follows that
μ(x √ y) ∪ μ(y √ (0 √ x)) ∪ μ(x √ (0 √ y)).

Theorem 3.11 Let I be an α-ideal of X. Then there exists a fuzzy α-ideal μ of X
such that μt = I for some t ≤ [0, 1].
Proof Define μ : X ∗ [0, 1] by

μ(x) :=
{

t, ifx ≤ I
0, ifx /≤ I

where t is a fixed number in (0, 1). It is obvious μ(0) ∪ μ(x) for all x ≤ X . If
(x √ z) √ (0 √ y) /≤ I or z /≤ I , then μ((x √ z) √ (0 √ y)) = 0 or μ(z) = 0 and so
μ(y √ x) ∪ 0 = min{μ((x √ z)√ (0√ y)),μ(z)}. If (x √ z)√ (0√ y) ≤ I and z ≤ I , then
y √ x ≤ I as I is an α-ideal and so μ(y √ x) = t = min{μ((x √ z) √ (0 √ y)),μ(z)}.
Hence μ is an fuzzy α-ideal of X . Clearly, μt = I . This completes the proof.

For a subset I of X , we call

χI (x) :=
{

1, ifx ≤ I
0, ifx /≤ I

the characteristic function of I . Clearly χI is a fuzzy set of X .

Theorem 3.12 Let I be a nonempty subset of X. χI is fuzzy ideal if and only if I is
a ideal of X.

Proof If χI is fuzzy ideal, then χI (0) ∪ χI (x) for all x ≤ I . Since I is nonempty,
thus χI (0) = 1 and so 0 ≤ I . If x √ y ≤ I and y ≤ I , then χI (x √ y) = 1 and
χI (y) = 1. By χI is fuzzy ideal, we have χI (x) ∪ min{χI (x √ y),χI (y)} = 1. It
follows that x ≤ I . Hence I is a ideal of X .

If I is a ideal of X , then 0 ≤ I and χI (0) = 1 ∪ χI (x) for all x ≤ X . If y ≤ X but
y /≤ I , then for all x ≤ X , we have χI (x) ∪ min{χI (x √ y),χI (y)} = 0. since I is a
ideal, If x √ y ≤ I and y ≤ I , then x ≤ I . Hence χI (x) ∪ min{χI (x √ y),χI (y)} = 1.
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That is, for all x, y ≤ X , χI (x) ∪ min{χI (x √ y),χI (y)}. Hence χI is fuzzy ideal.
The proof is complete.

Theorem 3.13 Let I be a nonempty subset of X. χI is closed fuzzy ideal if and only
if I is a closed ideal of X.

Theorem 3.14 Let I be a nonempty subset of X. χI is fuzzy α-ideal if and only if I
is a α-ideal of X.

Theorem 3.15 Let I be a nonempty subset of X. χI is quasi-associative fuzzy ideal
if and only if I is a quasi-associative ideal of X.

Theorem 3.16 Let I be a nonempty subset of X. χI is fuzzy subalgebra if and only
if I is a subalgebra of X.

4 Rough Fuzzy Ideals of BCH-Algebras

Let V be a set and E an equivalence relation on V and let P(V ) denote the power
set of V . For all x ≤ V , let [x]E denote the equivalence class of x with respect to
E . Define the functions E+(S) : P(V ) ∗ P(V ) and E−(S) : P(V ) ∗ P(V ) as
follows, for any S ≤ V ,

E−(S) = {x ≤ V |[x]E ◦ S}, E+(S) = {x ≤ V |[x]E ≥ S ⊂= ∇}.

The pair (V, E) is called an approximation space. Let S be a subset of V . Then S
is said to be definable if E−(S) = E+(S) and rough otherwise. E−(S) is called the
lower approximation of S while E+(S) is called the upper approximation. Obviously,
if x is in E+(S), then [x]E is contained in E+(S). Similarly, if x is in E−(S), then
[x]E is contained in E−(S).

Let E be a congruence relation on a BCH-algebra X , that is, E is an equivalence
relation on X such that (x √ y) ≤ E imply (x √ z, y √ z) ≤ E and (z √ x, z √ y) ≤ E
for all z ≤ X . We denote by X/E the set of all equivalence classes of X with respect
to E , that is, X/E := {[x]E |x ≤ X}. Throughout this section X is a BCH-algebra,
and E is a congruence relation on X .

A special role is played by relations determined by ideals, that is, relations α of
the form

(x √ y) ≤ α ⇔ x √ y ≤ U, y √ x ≤ U,

where U is an ideal.
For any nonempty subsets A and B of X , we define

A √ B = {x √ y|x ≤ A, y ≤ B}.
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Proposition 4.1 Let A and B be nonempty subsets of X. Then the following hold
[18]:

(1) E−(A) ◦ A ◦ E+(A),
(2) E+(A ∪ B) = E+(A) ∪ E+(B),
(3) E−(A ≥ B) = E−(A) ≥ E−(B),
(4) A ◦ B imply E−(A) ◦ E−(B), E+(A) ◦ E+(B),
(5) E+(E+(A)) = E+(A),
(6) E−(E−(A)) = E−(A),
(7) E+(A) √ E+(B) = E+(A √ B),
(8) E−(A) √ E−(B) ◦ E−(A √ B) whenever E−(A) √ E−(B) ⊂= ∇ and E−(A √

B) ⊂= ∇.

Definition 4.1 A nonempty subset S of X is called an upper (resp. a lower) rough
ideal of X if the upper (resp. lower) approximation of S is a ideal. If S is both an
upper and a lower rough ideal of X , it is said to be a rough ideal of X .

Definition 4.2 A nonempty subset S of X is called an upper (resp. a lower) rough
closed ideal of X if the upper (resp. lower) approximation of S is a closed ideal. If S
is both an upper and a lower rough closed ideal of X , it is said to be a rough closed
ideal of X .

Lemma 4.1 Let A be a subalgebra of X. Then A is a closed ideal of X if and only
if y √ x ≤ X\A whenever x ≤ A and y ≤ X\A.

Theorem 4.1 If A is a closed ideal of X, then the nonempty lower approximation
of A is a closed ideal of X, that is A is a lower rough closed ideal of X.

Proof Let A be a close ideal of X . Then A is a subalgebra of X , it follows from
Theorem 3.7 that E−(A) is a subalgebra of X .

Let x, y ≤ X be such that x ≤ E−(A) and y ≤ X\E−(A). If y √ x /≤ X\E−(A),
then y √ x ≤ E−(A), thus [y]E √ [x]E = [y √ x]E ◦ A. Let ay ≤ [y]E . Then for all
ax ≤ [x]E , we have ay √ ax ◦ A. Since ax ≤ [x]E ◦ A and A is an ideal of X , it
follows that ay ≤ A. Therefore y ≤ E−(A). This is a contradiction, and thus E−(A)

is a closed ideal of X . Hence A is a lower rough closed ideal of X .
Dubois and prade [17, 18] combined fuzzy sets and rough sets in a fruitful way by

defining rough fuzzy sets and fuzzy rough sets. In this section, we define and study
the rough fuzzy subalgebras and rough fuzzy ideals in BCH-algebras. First, we give
some basis definitions.

Definition 4.3 Let A be a fuzzy subset of X . A is called a fuzzy left [right, two-side]
ideal of X if for all λ ≤ [0, 1], Aλ is a left [right, two-side] ideal of X .

Definition 4.4 Let μ be a congruence relation on X , if A is a fuzzy subset of X , then
the upper approximation μ(A) and lower approximation μ(A) of A can define two
fuzzy subsets of X , and their member functions are defined as follows:

μ(A)(x) = sup{A(y)|y ≤ [x]μ}, x ≤ X, μ(A)(x) = inf{A(y)|y ≤ [x]μ}, x ≤ X.
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Definition 4.5 Let μ be a congruence relation on X , if A is a fuzzy subset of X . A
is called an upper [resp. lower] rough fuzzy subalgebra of X , if μ(A) [resp. μ(A)] is
a fuzzy subalgebra X .

Definition 4.6 Let μ be a congruence relation on X , if A is a fuzzy subset of X . A
is called an upper [resp. lower] rough fuzzy left [resp. right, two-side] ideal of X , if
μ(A) [resp. μ(A)] is a fuzzy left [resp. right, two-side] ideal of X .

Theorem 4.2 Let μ be a congruence relation on X, if A is a fuzzy subset of X, then
for every λ ≤ [0, 1], we have

(1) (μ(A))λ = μ(Aλ);
(2) (μ(A))λ = μ(Aλ).

Proof (1) x ≤ (μ(A))λ ⇔ μ(A)(x) ∪ λ ⇔ sup{A(y)|y ≤ [x]μ} ∪ λ. Then
x ≤ (μ(A))λ if and only if there exists y ≤ [x]μ and A(y) ∪ λ, that is, there exists
y ≤ [x]μ and y ≤ Aλ. This show that x ≤ μ(Aλ). Therefore (μ(A))λ = μ(Aλ).

(2) x ≤ (μ(A))λ ⇔ μ(A) ∪ λ ⇔ inf{A(y)|y ≤ [x]μ} ∪ λ ⇔ y ≤ [x]μ, then
A(y) ∪ λ ⇔ y ≤ [x]μ, then y ≤ Aλ ⇔ [x]μ ◦ Aλ ⇔ x ≤ μ(Aλ). This completes
the proof.

Lemma 4.2 Let μ be a congruence relation on X, if A and B are nonempty subsets
of X, then μ(A) √ μ(B) ◦ μ(A √ B)[17].

Lemma 4.3 Let μ be a complete congruence relation on X, if A and B are nonempty
subsets of X, then μ(A) √ μ(B) ◦ μ(A √ B) [17].

Theorem 4.3 Let μ be a congruence relation on X, if A is a fuzzy subalgebra of X,
then A is an upper rough fuzzy subalgebra of X.

Proof Let A be a fuzzy subalgebra of X , then for every λ ≤ [0, 1], Aλ be a sub-
algebra of X . By Theorem 4.2 and Lemma 4.1, we have (μ(A))λ √ (μ(A))λ =
μ(Aλ) √ μ(Aλ) ◦ μ(Aλ √ Aλ) ◦ μ(Aλ) = (μ(A))λ. That is, for every λ ≤ [0, 1],
(μ(A))λ is a subalgebra of X . Thus μ(A) is a fuzzy subalgebra of X . Therefore A is
an upper rough fuzzy subalgebra of X .

Theorem 4.4 Let μ be a complete congruence relation on X, if A is a fuzzy subal-
gebra of X, then A is a lower rough fuzzy subalgebra of X.

Proof Let A be a fuzzy subalgebra of X , then for every λ ≤ [0, 1], Aλ be a sub-
algebra of X . By Theorem 4.2 and Lemma 4.2, we have (μ(A))λ √ (μ(A))λ =
μ(Aλ) √ μ(Aλ) ◦ μ(Aλ √ Aλ) ◦ μ(Aλ) = (μ(A))λ. That is, for every λ ≤ [0, 1],
(μ(A))λ is a subalgebra of X . Thus μ(A) is a fuzzy subalgebra of X . Therefore A is
a lower rough fuzzy subalgebra of X .

From Theorem 4.2 and 4.3, we can know that the upper rough fuzzy subalgebra and
lower rough fuzzy subalgebra are the generalization of the general fuzzy subalgebra.

Theorem 4.5 Let μ be a congruence relation on X, if A is a fuzzy left [resp. right]
ideal of X, then A is an upper rough fuzzy left [resp. right] ideal of X.
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Proof Let A be a fuzzy left ideal of X , then for every λ ≤ [0, 1], Aλ be a left ideal
of X , that is X √ Aλ ◦ Aλ. Since μ(X) = X , then X √ (μ(A))λ = μ(X) √ μ(Aλ) ◦
μ(X √ Aλ) ◦ μ(Aλ) = (μ(A))λ. That is, for every λ ≤ [0, 1], (μ(A))λ is a left ideal
of X . Thus μ(A) is a fuzzy left ideal of X . Therefore A is an upper rough fuzzy left
ideal of X .

The other case can be seen in a similar way.

Theorem 4.6 Let μ be a congruence relation on X, if A is a fuzzy two-side ideal of
X, then A is an upper rough fuzzy two-side ideal of X.

Theorem 4.7 Let μ be a complete congruence relation on X, if A is a fuzzy left
[resp. right] ideal of X, then A is a lower rough fuzzy left [resp. right] ideal of X.

Proof Let A be a fuzzy left ideal of X , then for every λ ≤ [0, 1], Aλ be a left ideal
of X , that is X √ Aλ ◦ Aλ. Since μ(X) = X , then X √ (μ(A))λ = μ(X) √ μ(Aλ) ◦
μ(X √ Aλ) ◦ μ(Aλ) = (μ(A))λ. Hence for every λ ≤ [0, 1], (μ(A))λ is a left ideal
of X . Thus μ(A) is a fuzzy left ideal of X . Therefore A is a lower rough fuzzy left
ideal of X .

The other case can be seen in a similar way.

Theorem 4.8 Let μ be a complete congruence relation on X, if A is a fuzzy two-side
ideal of X, then A is a lower rough fuzzy two-side ideal of X.

From Theorem 4.7–4.8, we can know that the upper rough fuzzy left [resp. right,
two-side] ideal and lower rough fuzzy [resp. right, two-side] ideal are the general-
ization of the general fuzzy ideal.

5 Fuzzy Ideal Characterizations of Well BCH-Algebras

A BCH-algebra is called well BCH-algebra if every ideal of X is subalgebra of X .
Fuzzy ideal characterizations of associative BCH-algebras are given the following.

Theorem 5.1 If every fuzzy ideal of X is a fuzzy subalgebra of X, then X is well
BCH-algebra.

Proof Let X is a BCH-algebra and I is a ideal of X . It follows from Theorem 3.12
that χI is a fuzzy ideal. Then χI is a fuzzy subalgebra. By Theorem 3.16, I is a
subalgebra of X . Hence X is well BCH-algebra.

Theorem 5.2 If every fuzzy ideal of X is a closed fuzzy ideal of X, then X is well
BCH-algebra.

Theorem 5.3 If the zero fuzzy ideal χ{0} is fuzzy α-ideal of X, then X is a quasi-
associative BCH-algebra.

Proof Assume that the zero fuzzy ideal χ{0} is fuzzy α-ideal of X . Then {0} is a
α-ideal of X by Theorem 3.16 For any x ≤ X , as
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((0 √ (0 √ x)) √ 0) √ (0 √ (0 √ x)) = (0 √ (0 √ x)) √ (0 √ (0 √ x)) = 0 ≤ {0}

and 0 ≤ {0}. Since {0} is a α-ideal of X , we have (0 √ x) √ (0 √ (0 √ x)) = 0 and so

0 √ ((0 √ x) √ (0 √ (0 √ x))) = (0 √ (0 √ x)) √ (0 √ x) = 0.

Hence 0 √ x = 0 √ (0 √ x). Therefore X is a quasi-associative BCH-algebra.
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Lattice-Semigroups Tree Automation’s
Congruence and Homomorphism

Xiao-feng Huang and Zhi-wen Mo

Abstract The partial order of lattice elements in lattice-semigroup tree
automata(LSTA) is defined in this paper. We proved the existence of semilattices
and also lattices formed by different types of LSTA. Finally, we investigate the con-
gruence and homomorphism of lattice-semigroup by LSTA formed from the algebra
angle, Then we obtain homomorphism fundamental theorem of the LSTA.

Keywords Lattice-semigroup tree automata · Partial order · Congruence · Homo-
morphism

1 Introduction

As early as in the 1950s, automata, and in particular tree automata, played an impor-
tant role in the development of verification. Since Zadeh [1] created the theory of
fuzzy sets, it has been actively studied by both mathematicians and computer sci-
entists. Many applications of fuzzy set theory have arisen, for instance, fuzzy logic,
fuzzy cellular neural networks, fuzzy computer, fuzzy control system, etc. Fuzzy
automata on words have also long history. Fuzzy tree automata have already been
studied in Ref. [2]. At the same time, automata theory based on residuated lattices are
established in Refs. [3, 4]. Recently, Esik and Liu studied fuzzy tree automata with
membership in a distributive lattice and an equivalence between recognizability and
equationality of fuzzy tree language was established in Ref. [5]. Lu and Zheng [6]
studied three different types of Lattice-valued finite state quantum automata (LQA)
and four different kinds of LQA operations and proved the existence of semilattices
and also lattice formed by different types of LQA. In 1995, Guo and Mo discussed
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homomorphisms in lattices of quantum automata in Ref. [7]. However, the homomor-
phisms in lattices-semigroup of LSTA wasn’t given. This paper is a generalization
of Ref. [6, 7] on LSTA. The notion of lattice-semigroup tree automata (LSTA) is
introduced in Ref. [8], and we study the three different kinds of LSTA. we study the
LSTA form a lattice-semigroup and give some algebraic properties on LSTA. On the
basis of Theorem 2.1, we prove that LSTA defined on different lattice-semigroup l
forms all kinds of lattice-semigroup L-S(l, α,θ). Finally, we show the congruence
and homomorphism of L-S(l, α,θ), lattice-semigroup homomorphism fundamental
theorem is obtained.

2 Preliminaries

Definition 2.1 [8] Let l = (L ,
∨

, √) be a arbitrarily lattice-semigroup, α be a
finite ranked alphabet. θ be a finite state space. A lattice-semigroup tree automata
(LSTA) A defined on (l, α,θ) is a quadruple A = (A, α,∈,≤) consisting of

(1) A nonempty state set A ∃ θ.
(2) A ranked alphabet α such that α0 ∗= ∪.

(3) For each n ⊂ 0, ∈ is a set of l-valued predicates defined on An × A × α: for
arbitrary q1, q2, · · · qn ∇ A,and γ ∇ α,ρn((q1, q2, · · · qn), q, γ ) ∇ ∈ is an element
of l. The family of fuzzy sets ρ = (ρn)n⊂0 is called the transition, we usually write ρ

for ρn.
(4) ≤ is a set of l-valued predicates defined on A, ≤ is called final state transfor-

mation set. i.e. for arbitrary q ∇ A, δ(q) ∇ ≤ is an element of l, δ is called final
state transition.

Note that in ≤ only those ρ((q1, q2, · · · qn), q, γ ) ∗= 0 (least element of l) listed
in ≤.

Definition 2.2 [8] Let A1 = (A1, α,∈1,≤1) and A2 = (A2, α,∈2,≤2) be two
LSTA on (l, α,θ). The intersection A1

∧
A2 of A1 and A2 is also a LSTA defined

on (l, α,θ), called the intersection automata, with

A1

∧
A2 = A3 = (A3, α,∈3,≤3),

where

A3 = A1 ∀ A2

∈3 = {ρ3((q1, q2, · · · qn), q, γ )|q1, q2, · · · qn, q ∇ A3, γ ∇ α, ρ3((q1, q2, · · · qn), q, γ )

= ρA1
((q1, q2, · · · qn), q, γ ) ⇔ ρA2

((q1, q2, · · · qn), q, γ ) ∗= 0}
≤3 = {δ3(q)|q ∇ A3, δ3(q) = δA1

(q) ⇔ δA2
(q) ∗= 0}.
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Definition 2.3 [8] Let A1 = (A1, α,∈1,≤1) and A2 = (A2, α,∈2,≤2) be two
LSTA on (l, α,θ). The union A1

∨
A2 of A1 and A2 is also a LSTA defined on

(l, α,θ), called the union automata, with
A1

∨
A2 = A3 = (A3, α,∈3,≤3), where

A3 = A1 ≥ A2

∈3 = {ρ3((q1, q2, · · · qn), q, γ )|q1, q2, · · · qn, q ∇ A3, γ ∇ α,

ρ3((q1, q2, · · · qn), q, γ )

= ρA1((q1, q2, · · · qn), q, γ ) ◦ ρA2((q1, q2, · · · qn), q, γ ) ∗= 0}
≤3 = {δ3(q)|q ∇ A3, δ3(q) = δA1(q) ◦ δA2(q) ∗= 0}.

Definition 2.4 [8] Let A1 = (A1, α,∈1,≤1) and A2 = (A2, α,∈2,≤2) be two
LSTA on (l, α,θ). The union A1 √ A2 of A1 and A2 is also a LSTA defined on
(l, α,θ), called the union automata, with

A1 √ A2 = A3 = (A3, α,∈3,≤3), where

A3 = A1 × A2

Φ3 = Φ × Φ

∈3 = {ρ3(((q1, q1
′), (q2, q2

′), · · · (qn, qn
′)), (q, q ′), (γ, γ ′))

|q1, q2, · · · qn, q ∇ A1, q1
′, q2

′, · · · qn
′, q ′ ∇ A2, γ, γ ′ ∇ α,

ρ3(((q1, q1
′), (q2, q2

′), · · · (qn, qn
′)), (q, q ′), (γ, γ ′))

= ρA1((q1, q2, · · · qn), q, γ ) √ ρA2((q1
′, q2

′, · · · qn
′), q ′, γ ′) ∗= 0}

≤3 = {δ3(q, q ′)|q ∇ A1, q ′ ∇ A2, δ3(q, q ′) = δA1(q) √ δA2(q
′) ∗= 0}.

Theorem 2.1 [8] The lattice-semigroup finite-state tree automata defined on
(l, α,θ) form a lattice-semigroup. (we call it L-S(l, α,θ))

As usually,we can use the two operations⇔ and ◦ to define the partial order of
lattice elements in L-S(l, α,θ).

3 Main Conclusion

3.1 Different Types Lattice-Semigroup

Definition 3.5 For arbitrary LSTA A1 and A2, we define
A1 ≤ A2 if and only if A1 ⇔ A2 = A1

Corollary 3.1 “≤” is a partial order.

Proof Let A1,A2 and A3 be three arbitrary LSTA defined on (l, α,θ)

(1) Reflexive Since A1 ⇔ A2 = A1, hence A1 ≤ A2
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(2) Antisymmetric If A1 ≤ A2 and A2 ≤ A1, then from Definition 2.1 we know
that A1 = A1 ⇔ A2 = A2 ⇔ A1 = A2, i.e.A1 = A2

(3) Transitive If A1 ≤ A2,A2 ≤ A3, then A1 ⇔ A2 = A1,A2 ⇔ A3 = A2,
hence A1 ⇔ A3 = (A1 ⇔ A2) ⇔ A3 = A1 ⇔ (A2 ⇔ A3) = A1 ⇔ A2 = A1,
i.e.A1 ⇔ A3 = A1,

then A1 ≤ A3
Hence “≤” is a partial order.
It is easy to prove that Definition 3.5 is equivalent to the following form:

Definition 3.6 For arbitrary LSTA A1 and A2, we define A1 ≤ A2 if and only if
A1 ◦ A2 = A2 Similarly, we can prove “≤” is also a partial order.

Proposition 3.1 L-S(l, α,θ) is a lattice ordered semigroup.

Proof For arbitrary A ,B,C ∇ L-S(l, α,θ),if A ≤ B, then A ⇔ B = A .
(C √ A ) ⇔ (C √ B) = C √ (A ⇔ B) = C ⇔ A Then C √ A ≤ C √ B

Similarly, we can prove A √ C ≤ B √ C .
Hence L-S(l, α,θ) is a lattice ordered semigroup.

Proposition 3.2 L-S(l, α,θ) is a complete lattice-semigroup if and only if l is a
complete lattice-semigroup.

Proof Let A ,Ai , i = 1, 2, · · · , n be arbitrary LSTA defined on (l, α,θ), then

A √
( ∞∨

i=1

Ai

)
= (A √

( ∞⋃
i=1

Ai

)
,Φ × Φ, {ρ(((q1, q1

′), · · · (qn, qn
′)), (q, q ′),

(γ, γ ′))|q1, · · · qn, q ∇ A, q1
′, · · · qn

′, q ′ ∇
∞⋃

i=1

Ai , γ, γ ′ ∇ Φ,

ρ(((q1, q1
′), · · · (qn, qn

′)), (q, q ′), (γ, γ ′))

= ρA ((q1, · · · qn), q, γ ) √
( ∞∨

i=1

ρAi ((q1
′, · · · qn

′), q ′, γ ′)
)

},

{δ(q, q ′)|q ∇ A, q ′ ∇
( ∞∨

i=1

Ai

)
, δ(q, q ′)

= δA (q) √
( ∞∨

i=1

δAi (q
′)
)

}).

=
( ∞⋃

i=1

(A √ Ai ),Φ × Φ, {ρ(((q1, q1
′), · · · (qn, qn

′)), (q, q ′), (γ, γ ′))
)
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|q1, · · · qn, q ∇ A, q1
′, · · · qn

′, q ′ ∇
∞⋃

i=1

Ai , γ, γ ′ ∇ α,

ρ(((q1, q1
′), · · · (qn, qn

′)), (q, q ′), (γ, γ ′))

=
∞∨

i=1

(ρA ((q1, · · · qn), q, γ ) √ ρAi ((q1
′, · · · qn

′), q ′, γ ′))},

{δ(q, q ′)|q ∇ A, q ′′ ∇
( ∞⋃

i=1

Ai

)
, δ(q, q ′)

=
∞∨

i=1

(δA (q) √ δAi (q
′))}).

=
∞∨

i=1

(A √ Ai )

= A∞(A∞, α,∈∞,≤∞) = A∞

Note that:

(1) A∞ = A √ (
⋃∞

i=1 Ai ) = ⋃∞
i=1(A √ Ai )

(2) Since l is a complete lattice-semigroup, ρ(((q1, q1
′), · · · (qn, qn

′)),
(q, q ′), (γ, γ ′)) is also an element of l. Therefore, A∞ is an element of
L-S(l,Φ,θ). L-S(l,Φ,θ) is a complete lattice-semigroup.

(3) Similarly, we can prove (
∨∞

i=1 Ai ) √ A = ∨∞
i=1(Ai √ A ).

On the other hand, if L-S(l, α,θ) is a complete lattice-semigroup, then A∞ is
an element of L-S(l, α,θ). Thus, ρ(((q1, q1

′), · · · (qn, qn
′)), (q, q ′), (γ, γ ′)) must

be also an element of l. This shows l is a complete lattice-semigroup.

Proposition 3.3 L-S(l, α,θ) is a distributive lattice-semigroup if and only if l is
a distributive lattice-semigroup.

Proof Let Ai = (Ai , α,∈i ,≤i ), i = 1, 2, 3. be three LSTA defined on (l, α,θ).
Assume that l is distributive lattice-semigroup. Then

A1 ⇔ (A2 ◦ A3) = (A1 ∀ (A2 ≥ A3), α, {ρ((q1, q2, · · · qn), q, γ )

|q1, q2, · · · qn, q ∇ A1 ∀ (A2 ≥ A3), γ ∇ α, ρ((q1, q2, · · · qn), q, γ )

= ρA1
((q1, q2, · · · qn), q, γ ) ⇔ [ρA2

((q1, q2, · · · qn), q, γ )

◦ ρA3
((q1, q2, · · · qn), q, γ )]}, {δ(q)|q ∇ A1 ∀ (A2 ≥ A3), δ(q)

= δA1
(q) ⇔ [δA2

(q) ◦ δA3
(q)]})

= ((A1 ∀ A2) ≥ (A1 ∀ A3),Φ, {ρ((q1, q2, · · · qn), q, γ )

|q1, q2, · · · qn, q ∇ (A1 ∀ A2) ≥ (A1 ∀ A3), γ ∇ α,
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ρ((q1, q2, · · · qn), q, γ )

= [ρA1
((q1, q2, · · · qn), q, γ ) ⇔ ρA2

((q1, q2, · · · qn), q, γ )] ◦ [ρA1

((q1, q2, · · · qn), q, γ ) ⇔ ρA3

((q1, q2, · · · qn), q, γ )]}, {δ(q)|q ∇ (A1 ∀ A2) ≥ (A1 ∀ A3),

δ(q) = [δA1
(q) ⇔ δA2

(q)]
◦ [δA1

(q) ⇔ δA3
(q)]})

= (A1 ⇔ A2) ◦ (A1 ⇔ A3)

This chain of reasoning can be also done backwards.
Therefore A1 ⇔ (A2 ◦A3) = (A1 ⇔A2)◦ (A1 ⇔A3) if and only if a ⇔ (b ◦ c) =

(a ⇔ b) ◦ (a ⇔ c) for any element a, b and c of l.
Similarly we can prove that A1 ◦ (A2 ⇔ A3) = (A1 ◦ A2) ⇔ (A1 ◦ A3) if and

only if a ◦ (b ⇔ c) = (a ◦ b) ⇔ (a ◦ c) for any element a, b and c of l.
Thus we complete the proof.

Proposition 3.4 L-S(l, α,θ) is a modular lattice-semigroup if and only if l is a
modular lattice-semigroup.

Proof Let Ai = (Ai , α,∈i ,≤i ), i = 1, 2, 3. be three LSTA defined on (l, α,θ).
Assume that l is modular lattice-semigroup. Then

A1 ◦ (A2 ⇔ (A1 ◦ A3)) = (A1 ≥ (A2 ∀ (A1 ≥ A3)),Φ, {ρ((q1, q2, · · · qn), q, γ )

|q1, q2, · · · qn, q ∇ A1 ≥ (A2 ∀ (A1 ≥ A3)), γ ∇ Φ,

ρ((q1, q2, · · · qn), q, γ )

= ρA1((q1, q2, · · · qn), q, γ )

◦ [ρA2((q1, q2, · · · qn), q, γ ) ⇔ (ρA1

((q1, q2, · · · qn), q, γ ) ◦ ρA3((q1, q2, · · · qn), q, γ ))]},
{δ(q)|q ∇ A1 ≥ (A2 ∀ (A1 ≥ A3)), δ(q) = δA1(q)

◦ [δA2(q) ⇔ (δA1(q) ◦ δA3(q))]})
= ((A1 ≥ A2) ∀ (A1 ≥ A3),Φ, {ρ((q1, q2, · · · qn), q, γ )

|q1, q2, · · · qn, q ∇ (A1 ≥ A2) ∀ (A1 ≥ A3)), γ ∇ Φ,

[ρA1((q1, q2, · · · qn), q, γ ) ◦ ρA2

((q1, q2, · · · qn), q, γ )] ⇔ [ρA1

((q1, q2, · · · qn), q, γ ) ◦ ρA3

((q1, q2, · · · qn), q, γ )]}, {δ(q)|q ∇ (A1 ≥ A2)

∀ (A1 ≥ A3), δ(q) = [δA1(q) ◦ δA2(q)]
⇔ [δA1(q) ◦ δA3(q)]})

= (A1 ◦ A2 ⇔ (A1 ◦ A3)
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This chain of reasoning can be also done backwards.
ThereforeA1 ◦ (A2 ⇔ (A1 ◦ A3)) = (A1 ◦ A2) ⇔ (A1 ◦ A3) if and only if

a ◦ (b ⇔ (a ◦ c) = (a ◦ b) ⇔ (a ◦ c) for any element a, b and c of l.
Thus we complete the proof.

3.2 The Congruence and Homomorphism of L-S(l,λ,�)

Definition 3.7 [9] Let ≡ be both a semigroup congruence and lattice congruence
on lattice-semigroup S. Then ≡ is called a lattice-semigroup congruence.

Definition 3.8 [9] Let S and T be two lattice-semigroup. ϕ is a mapping from S
and T , if

ϕ(x √ y) = ϕ(x) √ ϕ(y)

ϕ(x ◦ y) = ϕ(x) ◦ ϕ(y)

ϕ(x ⇔ y) = ϕ(x) ⇔ ϕ(y)

Then ϕ is called a lattice-semigroup homomorphism of S into T . If ϕ is one-one,
then ϕ is called a monomorphism. If ϕ is onto T , then ϕ is called an epimorphism. If
ϕ is both a monomorphism and epimorphism, then ϕ is called an lattice-semigroup
isomorphism, and S and T are said to be isomorphic.

Note that let l be a lattice-semigroup, ≡ is a lattice-semigroup congruence. Let
[a] is a set of all element equivalent to a in l, then l/ ≡= {[a]|a ∇ L}. We define
[a] √ [b] = [a √ b], [a] ◦ [b] = [a ◦ b], [a] ⇔ [b] = [a ⇔ b] is validity, for arbitrary
[a], [b] ∇ l/ ≡.

Obviously, l/ ≡ still form a semigroup for binary operation √, and constitute a
lattice for ◦ and ⇔. Thus l/ ≡ is called a quotient semigroup.

Proposition 3.5 If ≡ is a lattice-semigroup congruence on LT =L-S(l,Φ,θ),
then quotient semigroup LT / ≡ is also a lattice-semigroup.

Proof Let LT = L-S(l, α,θ) be a set of LSTA defined on (l, α,θ). Since ≡ is a
lattice-semigroup congruence on LT , let [A ] is a set of all element equivalent to A
in LT . Then LT / ≡= {[A ]|A ∇ LT }.

Let arbitrary [Ai ] ∇ LT / ≡, i = 1, 2, 3, obviously, LT / ≡ is a lattice, hence,
([A1] ◦ [A2]) √ [A3] = [A1 ◦ A2] √ [A3] = [(A1 ◦ A2) √ A3] = [(A1 √ A3) ◦
(A2 √ A3)] = [A1 √ A3] ◦ [A2 √ A3] = ([A1] √ [A3]) ◦ ([A2] √ [A3])

Similarly, we can prove [A3] √ ([A1] ◦ [A2]) = ([A3] √ [A1]) ◦ ([A3] √ [A2])
Thus, quotient semigroup LT / ≡ is also a lattice-semigroup.

Proposition 3.6 Let LT = L-S(l, α,θ) and MT = L-S(l ′, α′,θ′), be two arbi-
trary lattice-semigroup set which is formed by LSTA defined on (l,Φ,θ) and
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(l ′,Φ ′,θ′), ϕ is a lattice-semigroup homomorphism from LT onto MT , define a
relation ≡ on LT by ∀A ,B ∇ LT ,A ≡ B if and only if ϕ(A ) = ϕ(B). Then ≡
is a lattice-semigroup congruence relation on LT .

Proof Clearly ≡ is an equivalence relation on LT . For ∀A ,B,C ∇ LT , ifA ≡ B,
then ϕ(A ) = ϕ(B). Since ϕ is a lattice-semigroup homomorphism from LT onto
MT . Then

ϕ(A √ B) = ϕ(A ) √ ϕ(B)

ϕ(A ◦ B) = ϕ(A ) ◦ ϕ(B)

ϕ(A ⇔ B) = ϕ(A ) ⇔ ϕ(B)

Hence ϕ(A √C ) = ϕ(A ) √ ϕ(C ) = ϕ(B) √ ϕ(C ) = ϕ(B √C ), then A √C ≡
B √ C .

Similarly, we can prove C √ A ≡ C √ B.
If arbitrary Ai ,Bi ∇ LT ,Ai ≡ Bi , i = 1, 2, Then ϕ(Ai ) = ϕ(Bi ).
Hence ϕ(A1 ◦A2) = ϕ(A1) ◦ ϕ(A2) = ϕ(B1) ◦ ϕ(B2) = ϕ(B1 ◦B2). Then

A1 ◦ A2 ≡ B1 ◦ B2. Similarly, we can prove A1 ⇔ A2 ≡ B1 ⇔ B2.
Thus ≡ is a lattice-semigroup congruence relation on LT .

Corollary 3.2 (1) Let LT = L-S(l,Φ,θ), MT = L-S(l ′,Φ ′,θ′), be two arbitrary
lattice-semigroup set which is formed by LSTA defined on (l,Φ,θ) and (l ′,Φ ′,θ′),
ϕ is a lattice-semigroup homomorphism from LT onto MT , ≡M is a congruence
relation on MT . Define a relation ≡L on LT by ∀A ,B ∇ LT ,A ≡L B if and only
if ϕ(A ) ≡M ϕ(B). Then ≡L is a lattice-semigroup congruence relation on LT .

(2) Let LT = L-S(l, α,θ), MT = L-S(l ′, α′,θ′), be two arbitrary lattice-
semigroup set which is formed by LSTA defined on (l, α,θ) and (l ′, α′,θ′), ϕ is a
lattice-semigroup homomorphism from LT onto MT , ≡L is a congruence relation
on LT . Define a relation ≡M on MT by ∀B1,B2 ∇ MT ,B1 ≡M B2 if and only
if there exists A2,A2 ∇ LT ,such that ϕ(A1) = B1, ϕ(A2) = B2, andA1 ≡L A2
Then ≡M is a lattice-semigroup congruence relation on MT .

Proof The proof is similar to that of Proposition 3.6

Proposition 3.7 Let LT = L-S (l,Φ,θ), MT = L-S(l ′,Φ ′,θ′), be two arbitrary
lattice-semigroup set which is formed by LSTA defined on (l, α,θ) and (l ′, α′,θ′), ϕ
is a lattice-semigroup epimorphism from LT onto MT , ≡L is a congruence relation
on LT . ≡M is a congruence relation on MT . Then LT / ≡L and MT / ≡M are
isomorphic as lattice-semigroup.

Proof Let LT / ≡L= {[A ]L |A ∇ LT }, MT / ≡M= {[B]M |B ∇ MT }. Define
ψ : LT / ≡L→ MT / ≡M by ψ([A ]L) = [ϕ(A )]M ,∀[A ]L ∇ LT / ≡L .
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If [A1]L = [A2]L for ∀[A1]L , [A2]L ∇ LT / ≡L , then A1 ≡L A2. Hence
ϕ(A1) ≡M ϕ(A2), then [ϕ(A1)]M = [ϕ(A2)]M . Thus ψ is a mapping.

Since ϕ is a epimorphism, then there exists A ∇ LT such that ϕ(A ) = B for
∀[B]M ∇ MT / ≡M . Hence there exists [A ]L ∇ LT / ≡Lsuch that ψ([A ]L) =
[ϕ(A )]M = [B]M .Thus ψ is a epimorphism.

If [A1]L ∗= [A2]L for ∀[A1]L , [A2]L ∇ LT / ≡L , then A1 and A2 is not
equivalence about ≡L , hence ϕ(A1) and ϕ(A2) is not equivalence about ≡M . Thus
[ϕ(A1)]M ∗= [ϕ(A2)]M .i.e.ψ([A1]L) ∗= ψ([A2]L), so ψ is monomorphism.

For ∀[A1]L , [A2]L ∇ LT / ≡L ,ψ([A1]L √ [A2]L) = ψ([A1 √ A2]L) = [ϕ(A1 √
A2)]M = [ϕ(A1) √ ϕ(A2)]M = [ϕ(A1)]M √ [ϕ(A2)]M = ψ([A1]L) √ ψ([A2]L).

ψ([A1]L ◦[A2]L) = ψ([A1◦A2]L) = [ϕ(A1◦A2)]M = [ϕ(A1)◦ϕ(A2)]M =
[ϕ(A1)]M ◦ [ϕ(A2)]M = ψ([A1]L) ◦ ψ([A2]L).

Similarly, we can prove ψ([A1]L ⇔ [A2]L) = ψ([A1]L) ⇔ ψ([A2]L).
Thus ψ is a isomorphic from LT / ≡L onto MT / ≡M .

Theorem 3.2 (lattice-semigroup homomorphism fundamental theorem) Let LT =
L-S(l,Φ,θ), MT = L-S(l ′,Φ ′,θ′), be two arbitrary lattice-semigroup set which is
formed by LSTA defined on (l,Φ,θ) and (l ′,Φ ′,θ′)

(1) Let ≡ is a lattice-semigroup congruence relation on LT = L-S(l,Φ,θ), then
≡
: LT → LT / ≡ be a lattice-semigroup homomorphism.

(2) Let ϕ be a lattice-semigroup homomorphism from LT = L-S(l,Φ,θ) onto
MT = L-S(l ′,Φ ′,θ′). Define ker ϕ = {(A ,B) ∇ LT × LT |ϕ(A ) = ϕ(B}. Then
ker ϕ is a lattice-semigroup congruence on LT and there exists a monomorphism
ψ : LT /kerϕ → MT such that ϕ = ψ ◦ (ker ϕ)
.

Proof (1) Define ≡
: LT → LT / ≡ by ≡
 (A ) = [A ],∀A ∇ LT , where
LT / ≡= {[A ]|A ∇ LT }.If A = B for ∀A ,B ∇ LT ,then A ≡ B,Hence[A ] =
[B] i.e.≡
 (A ) =≡
 (B). Thus ≡
 is a mapping.

For ∀A ,B ∇ LT

≡
 (A √ B) = [A √ B] = [A ] √ [B] =≡
 (A )√ ≡
 (B)

≡
 (A ◦ B) = [A ◦ B] = [A ] ◦ [B] =≡
 (A )◦ ≡
 (B)

≡
 (A ⇔ B) = [A ⇔ B] = [A ] ⇔ [B] =≡
 (A )⇔ ≡
 (B)

Thus ≡
 is a lattice-semigroup homomorphism from LT onto LT / ≡.
(2)Clearly ker ϕ is a equivalence relation. For ∀A ,B ∇ LT , Since ϕ is a lattice-

semigroup homomorphism from LT onto MT .Then

ϕ(A √ B) = ϕ(A ) √ ϕ(B)

ϕ(A ◦ B) = ϕ(A ) ◦ ϕ(B)

ϕ(A ⇔ B) = ϕ(A ) ⇔ ϕ(B)

For ∀(A ,B) ∇ ker ϕ, we have that ϕ(A ) = ϕ(B)
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Then ϕ(A √ C ) = ϕ(A ) √ ϕ(C ) = ϕ(B) √ ϕ(C ) = ϕ(B √ C ), hence (A √
C ,B √ C ) ∇ ker ϕ.

Similarly, we can prove (C √ A ,C √ B) ∇ ker ϕ.
If arbitrary (Ai ,Bi ) ∇∇ ker ϕ, i = 1, 2, we have that ϕ(Ai ) = ϕ(Bi ). Then

ϕ(A1 ◦ A2) = ϕ(A1) ◦ ϕ(A2) = ϕ(B1) ◦ ϕ(B2) = ϕ(B1 ◦ B2). Hence (A1 ◦
A2,B1 ◦ B2) ∇ ker ϕ. Similarly, we can prove(A1 ⇔ A2,B1 ⇔ B2) ∇ ker ϕ.

Thus, ker ϕ is a lattice-semigroup congruence on LT .
Define ψ : LT / ker ϕ → MT by ψ([A ]) = ϕ(A ),∀[A ] ∇ LT / ker ϕ. For

∀[A ], [B] ∇ LT / ker ϕ. If [A ] = [B], then (A ,B) ∇ ker ϕ, we can know that
ϕ(A ) = ϕ(B), i.e.ψ([A ]) = ψ([B]) from definition of ker ϕ. Thus ψ is a mapping.

For ∀[A ], [B] ∇ LT / ker ϕ, If [A ] ∗= [B], then (A ,B) ∃ ker ϕ,hence ϕ(A ) ∗=
ϕ(B), i.e.ψ([A ]) ∗= ψ([B]). Thus ψ is a monomorphism.

For ∀[A ], [B] ∇ LT / ker ϕ

ψ([A ]√[B]) = ψ([A √B]) = ϕ(A √B) = ϕ(A )√ϕ(B) = ψ([A ])√ψ([B])
ψ([A ] ◦ [B]) = ψ([A ◦ B]) = ϕ(A ◦ B) = ϕ(A ) ◦ ϕ(B) = ψ([A ]) ◦

ψ([B])
ψ([A ] ⇔ [B]) = ψ([A ⇔ B]) = ϕ(A ⇔ B) = ϕ(A ) ⇔ ϕ(B) = ψ([A ]) ⇔

ψ([B])
Thusψ is a lattice-semigroup homomorphism, andψ ◦ (ker ϕ)
(A ) = ψ([A ]) =

ϕ(A ) for ∀A ∇ LT .i.e.there exists a monomorphism ϕ = ψ ◦ (ker ϕ)
.

Corollary 3.3 If ϕ is a epimorphism from LT onto MT , then ker ϕ is a lattice-
semigroup congruence on LT and there exists a isomorphic. i.e. LT / ker ϕ ∼= ran(ϕ).

Definition 3.9 Let S be a lattice-semigroup, ρ is a lattice-semigroup congruence
on S. Then ρ is called a regular congruence if there exist a partial relation “≤” on
quotient semigroup such that

(1) (S/ρ, √,≤,◦,⇔) is a lattice ordered semigroup.
(2) ϕ : S → S/ρ|x → (x)ρ is a mapping which hold partial relation, i.e. there

exist a lattice-semigroup homomorphism from S onto S/ρ.

Proposition 3.8 Let L-S(l ′, α′,θ′) be a lattice-semigroup set which is formed by
LSTA defined on (l, α,θ), ≡ is a lattice-semigroup congruence relation. Then ≡ is
a regular congruence.

Proof Clearly LT / ≡ is a lattice-semigroup by Proposition 3.5. We define a binary
relation of similar Definition 3.5 on S/ρ:

≤:= {((A )≡, (B)≡)|(A )≡ = (A )≡ ⇔ (B)≡}
We know that “≤” is a partial relation by Corollary 3.1, for ∀A ,B,C ∇ LT , if

(A )≡ ≤ (B)≡,then (A )≡ = (A )≡ ⇔ (B)≡.
[(C )≡ √ (A )≡] ⇔ [(C )≡ √ (B)≡] = (C √ A )≡ ⇔ (C √ B)≡ = [(C √ A ) ⇔

(C √ B)]≡ = [C √ (A ⇔ B)]≡ = (C )≡ √ (A ⇔ B)≡ = (C )≡ √ (A )≡, then
(C )≡ √ (A )≡ ≤ (C )≡ √ (B)≡.

Similarly, we can prove (A )≡ √ (C )≡ ≤ (B)≡ √ (C )≡.
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Thus LT / ≡ is a lattice ordered semigroup, and ≡
: LT → LT / ≡ be a lattice-
semigroup homomorphism by Theorem 3.2, (1).

Thus≡ is a regular congruence on LT .

Proposition 3.9 L-S(l ′, α′,θ′) be a lattice-semigroup set which is formed by
LSTA defined on (l, α,θ), ≡ is a lattice-semigroup congruence relation. Then ≡ is
a regular congruence if and only if there exist a lattice ordered semigroup MT =
L-S(l ′, α′,θ′) and a homomorphism ϕ : LT → MT such that

≡= {(A ,B)|ϕ(A ) = ϕ(B)}.

Proof (⇒) Let ≡ is a regular congruence, there exist a lattice ordered semigroup
LT / ≡ such that ϕ : LT → MT |A → (A )≡ is a homomorphism by Definition 3.9,
clearly

≡= {(A ,B)|ϕ(A ) = ϕ(B)}.

(⇐) Let exist a lattice ordered semigroup MT = L-S(l ′, α′,θ′) and a homo-
morphism ϕ : LT → MT such that ≡= {(A ,B)|ϕ(A ) = ϕ(B)}. Then define
≡= ker ϕ, MT = LT / ker ϕ, clearly ≡ is a regular congruence.
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(∈, ∈ ∨q(λ,μ))-Fuzzy Completely Semiprime
Ideals of Semigroups

Zu-hua Liao, Li-hua Yi, Ying-ying Fan and Zhen-yu Liao

Abstract We introduce a new kind of generalized fuzzy completely ideal of a
semigroup called (√,√ ∈q(λ,μ))-fuzzy completely semiprime ideals. These gen-
eralized fuzzy completely semiprime ideals are characterized.

Keywords Fuzzy algebra · Fuzzy points · (√,√ ∈q(λ,μ))-fuzzy completely
semiprime ideals · Level subsets · Completely semiprime ideals

1 Introduction

Fuzzy semigroup theory plays a prominent role in mathematics with ranging appli-
cations in many disciplines such as control engineering, information sciences, fuzzy
coding theory, fuzzy finite state machines, fuzzy automata, fuzzy languages.

Using the notion of a fuzzy set introduced by Zadeh [1] in 1965, which laid the
foundation of fuzzy set theory, Rosenfeld [2] inspired the fuzzification of algebraic
structures and introduced the notion of fuzzy subgroups. Since then fuzzy algebra
came into being. Bhakat and Das gave the concepts of fuzzy subgroups by using the
“belongs to” relation (√) and “quasi-coincident with” relation (q) between a fuzzy
point and a fuzzy set, and introduced the concept of a (√,√ ∈q)-fuzzy subgroup
[3–6]. It is worth to point out that the ideal of quasi-coincident of a fuzzy point with
a fuzzy set, which is mentioned in [7], played a vital role to generate some different
types of fuzzy subgroups. In particular, (√,√ ∈q)-fuzzy subgroup is an important
and useful generalization of Rosenfeld’s fuzzy subgroup, which provides sufficient
motivation to researchers to review various concepts and results from the realm of
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abstract algebra in the broader framework of fuzzy setting. Zhan [8], Jun et al. [9]
introduced the notion of (√,√ ∈q)-fuzzy interior ideals of a semigroup. Davvaz [10–
13] defined (√,√ ∈q)-fuzzy subnear-rings and characterized Hν-fuzzy submodules,
R-fuzzy semigroups using the relation (√,√ ∈q).

Later, the definition of a generalized fuzzy subgroup was introduced by Yuan
[13]. Based on it, Liao [14] expanded common “quasi-coincident with” relationship
to generalized “quasi-coincident with” relationship, which is the generalization of
Rosenfeld’s fuzzy algebra and Bhakat and Das’s fuzzy algebra. And a series results
were gotten by using generalized “quasi-coincident with” relationship [15–18]. When
λ = 0 and μ = 1 we get common fuzzy algebra by Rosenfeld and When λ = 0 and
μ = 0.5 we get the (√,√ ∈q)-fuzzy algebra defined by Bhakat and Das and when
λ = 0 and μ = 0.5 we get the (√,√ ∈ q)-fuzzy algebra.

The concept of a fuzzy ideal in semigroups was developed by Kuroki. He stud-
ied fuzzy ideals, fuzzy bi-ideals and fuzzy semiprime ideals in semigroups [19–21].
Fuzzy ideals, generated by fuzzy sets in semigroups, are considered by Mo and Wang
[22]. After that Bhakat and Das [23] investigated fuzzy subrings and several types
of ideals, including fuzzy prime ideals and (√,√ ∈q)-fuzzy prime ideals. Jun et
al.[24–26] studied L-fuzzy ideals in semigroups, fuzzy h-ideals in hemirings,fuzzy
ideals in inclines. Besides, Bahushri [27] did some research on c-prime fuzzy ideals
in nearrings. It is now natural to investigate similar type of generalization of the
existing fuzzy subsystems of some algebraic structures. Our aim in this paper is to
introduce and study (√,√ ∈q(λ,μ))-fuzzy completely semiprime ideals, and obtain
some properties: an (√,√ ∈q(λ,μ))-fuzzy ideal is an (√,√ ∈q(λ,μ))-fuzzy completely
semiprime ideal, if and only if At ( ≤= ∃) is a completely semiprime ideal, ∗t √ (λ, μ).
This showed that (√,√ ∈q(λ,μ))-fuzzy completely semiprime ideals are generaliza-
tions of the existing concepts of two types of fuzzy ideals.

2 Preliminaries

Throughout the paper we always consider S as a semigroup.
A mapping from A to [0, 1] is said to be a fuzzy subset of S.

A fuzzy subset A of S of the form A(y) =
{

λ(≤= 0), y = x
0, y ≤= x

is said to be a fuzzy

point support x and value λ is denoted by xt .

Definition 2.1 Let A be a fuzzy subset of S, for all t, λ, μ √ [0, 1] and λ < μ, a
fuzzy point xt is called belonging to A if A(x) ∪ t , denoted by xt √ A; A fuzzy point
xt is said to be generalized quasi-coincident with A if t > λ and A(x) + t > 2μ,
denoted by xt q(λ,μ) A. If xt √ A or xt q(λ,μ) A, then denoted by xt √ ∈q(λ,μ) A.
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Definition 2.2 [15] A fuzzy subset A of S is said to be an (√,√ ∈q(λ,μ))-fuzzy
subsemigroup if for all x, y √ S, t1, t2 √ (λ, 1], xt1 , yt2 √ A implies (xy)t1⊂t2 √
∈q(λ,μ) A.

Theorem 2.3 [15] A fuzzy subset A of S is an (√,√ ∈q(λ,μ))-fuzzy subsemigroup
if and only if A(xy) ∈ λ ∪ A(x) ⊂ A(y) ⊂ μ, for all x, y √ S.

Definition 2.4 [15] A fuzzy subset A of S is an (√,√ ∈q(λ,μ))-fuzzy left (right)
ideal if (i) A is an (√,√ ∈q(λ,μ))-fuzzy subsemigroup of S;
(ii) For all xt √ A, y √ S, implies (yx)t √ ∈q(λ,μ) A ((xy)t √ ∈q(λ,μ) A).
If A is both an (√,√ ∈q(λ,μ))-fuzzy left ideal and an (√,√ ∈q(λ,μ))-fuzzy right ideal,
then A is said to be an (√,√ ∈q(λ,μ))-fuzzy ideal.

Theorem 2.5 [15] A fuzzy subset A of S is an (√,√ ∈q(λ,μ))-fuzzy ideal if and only
if for all t √ (λ, μ], the non-empty set At is an ideal.

Theorem 2.6 [15] A fuzzy subset A of S is an (√,√ ∈q(λ,μ))-fuzzy left (right) ideal
if and only if for all x, y √ S, (i) A(xy) ∈ λ ∪ A(x) ⊂ A(y) ⊂ μ; (ii)A(xy) ∈ λ ∪
A(y) ⊂ μ(A(x) ⊂ μ).

Definition 2.7 [15] An ideal I of S is said to be a completely semiprime ideal, if
for all x √ S, x2 √ I implies x √ I .

Based on [23], in a semigroup we have the following definitions and theorems:

Definition 2.8 A fuzzy ideal A of S is said to be a fuzzy completely semiprime
ideal,if for all x √ S, t √ (0, 1], (x2)t √ A implies xt √ A.

Theorem 2.9 A fuzzy ideal A of S is a fuzzy completely semiprime ideal, if and only
if A(x2) = A(x), for all x √ S.

Definition 2.10 An (√,√ ∈q)-fuzzy ideal A of S is said to be an (√,√ ∈q)-fuzzy
completely semiprime ideal, if for all x √ S, t √ (0, 1], (x2)t √ A implies xt √ ∈q A.

Theorem 2.11 An (√,√ ∈q)-fuzzy ideal of S is an (√,√ ∈q)-fuzzy completely
semiprime ideal if and only if A(x) ∪ A(x2) ⊂ 0.5, for all x √ S.

Lemma 2.12 Let {Ht |t √ I ∇ [0, 1]} be a family of completely semiprime ideals of
S such that for all s, t √ I, t < s, Hs ∇ Ht . Then ∀t√I Ht ,⇔t√I Ht are completely
semiprime ideals of S.

3 (∈,∈ ∨q(λ,μ))-Fuzzy Completely Semiprime Ideals

In this section, we give the new definition of an (√,√ ∈q(λ,μ))-fuzzy completely
semiprime ideal of semigroups. Then some equivalent descriptions and properties of
it are discussed.
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Definition 3.1 An (√,√ ∈q(λ,μ))-fuzzy ideal A of S is said to be an (√,√ ∈q(λ,μ))-
fuzzy completely semiprime ideal, if for all x √ S, t √ (λ, 1], (x2)t √ A implies
xt √ ∈q(λ,μ) A.

Theorem 3.2 An (√,√ ∈q(λ,μ))-fuzzy ideal of S is an (√,√ ∈q(λ,μ))-fuzzy com-
pletely semiprime ideal if and only if A(x) ∈ λ ∪ A(x2) ⊂ μ, for all x √ S.

Proof ≥Let A be an (√,√ ∈q(λ,μ))-fuzzy completely semiprime ideal of S.Assume
that there exists x0 such that A(x0) ∈ λ < A(x2

0 ) ⊂ μ. Choose t to satisfy
A(x0) ∈ λ < t < A(x2

0 ) ⊂ μ. Then we have A(x2
0 ) > t, λ < t < μ, A(x0) < t and

A(x0) + t < 2μ. So (x2
0 )t √ A. But (x0)t√ ∈q(λ,μ) A,a contradiction.

◦ For all x √ S, t √ (λ, 1] and (x2)t √ A, then A(x2) ∪ t and λ < t. So
A(x) ∈ λ ∪ A(x2) ⊂ μ ∪ t ⊂ μ. Since λ < μ, then A(x) ∪ t ⊂ μ.

If t ∪ μ, then A(x) ∪ μ, we have A(x) + t > μ + μ = 2μ, so xt q(λ,μ) A.

If t < μ, then A(x) ∪ t. So xt √ A.
Hence, xt √ ∈q(λ,μ) A. That is to say, A is an (√,√ ∈q(λ,μ))-fuzzy completely

semiprime ideal.

Theorem 3.3 A non-empty subset S1 of S is a completely semiprime ideal if and
only if χS1 is an (√,√ ∈q(λ,μ))-fuzzy completely semiprime ideal of S.

Proof ≥ Let S1 be a completely semiprime ideal, then χS1 is an (√,√ ∈q(λ,μ))-
fuzzy ideal of S. If (x2)t √ χS1 , then χS1(x2) ∪ t > 0, so x2 √ S1. Since S1 is a
completely semiprime ideal, we have x √ S1, then xt √ ∈q(λ,μ)χS1 . Thus χS1 is an
(√,√ ∈q(λ,μ))− fuzzy completely semiprime ideal.
◦ Let χS1 be an (√,√ ∈q(λ,μ))-fuzzy completely semiprime ideal, then S1 is an
ideal of S. Now x2 √ S1, then χS1(x2) = 1. Since χS1 is an (√,√ ∈q(λ,μ))-fuzzy
completely semiprime ideal, by the Theorem 3.2, we have χS1(x)∈λ ∪ χS1(x2)⊂μ

= μ Then χS1(x) ∪ μ > 0. So χS1(x) = 1,i.e.,x √ S1 . Therefore, S1 is a completely
semiprime ideal.

Remark When λ = 0, μ = 1, we can obtain the corresponding results in the sense
of Rosenfeld; When λ = 0, μ = 0.5, we can get the corresponding results in the
sense of Bhakat and Das.

Theorem 3.4 An (√,√ ∈q(λ,μ))-fuzzy ideal A of S is an (√,√ ∈q(λ,μ))-fuzzy com-
pletely semiprime ideal if and only if non-empty set At is a completely semiprime
ideal for all t √ (λ, μ].
Proof ≥ Let A be an (√,√ ∈q(λ,μ))-fuzzy completely semiprime ideal of S, then
the non-empty set At is an ideal, for all t √ (λ, μ]. Let x2 √ At , then A(x2) ∪ t. By
Theorem3.2,we have A(x) ∈ λ ∪ A(x2) ⊂ μ ∪ t ⊂ μ = t. So x √ At . Hence At is
a completely semiprime ideal.
◦ Let At be a completely semiprime ideal of S, by Theorem2.5, we have that A is an
(√,√ ∈q(λ,μ))-fuzzy ideal. Suppose that A is not an (√,√ ∈q(λ,μ))-fuzzy completely
semiprime ideal. By Theorem3.2, there exists x0 such that A(x0) ∈ λ < A(x2

0 ) ⊂ μ.

Choose t such that A(x0) ∈ λ < t < A(x2
0 ) ⊂ μ. Then we have A(x2

0 ) > t, A(x0) <
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t, λ < t < μ and x2
0 √ At . Since At is completely semiprime, we have x0 √ At , a

contradiction.
Therefore A is an (√,√ ∈q(λ,μ))-fuzzy completely semiprime ideal.

Corollary 3.5 A fuzzy set A of S is an (√,√ ∈q(λ,μ))-fuzzy completely semiprime,
ideal of S if and only if non-empty set At is a completely semiprime ideal, for all
t √ (λ, μ].
Theorem 3.6 Let I be any completely semiprime ideal of S. There exists an
(√,√ ∈q(λ,μ))-fuzzy completely semiprime ideal A of S such that At = I for some
t √ (λ, μ].
Proof If we define a fuzzy set in S by

A(x) =
{

t, i f x √ I
0, otherwise

for some t √ (λ, μ].

Then it follows that At = I .
For given r √ (λ, μ], we have

Ar =
{

At (= I ), i f r ≤ t
∃, i f t < r < μ

Since I itself is a completely semiprime ideal of S, it follows that every non-empty
level subset Ar of S is a completely semiprime ideal of S. By Corollary3.5, A is an
(√,√ ∈q(λ,μ))-fuzzy completely semiprime ideal of S, which satisfies the conditions
of the Theorem.

Theorem 3.7 Let A be an (√,√ ∈q(λ,μ))-fuzzy completely semiprime ideal of S
such that A(x) ≤ μ for all x √ S. Then A is a fuzzy completely semiprime ideal of S.

Proof Let x √ S, t √ (λ, 1] and (x2)t √ A. It follows that xt √ ∈q(λ,μ) A from
Definition3.1.

By known conditions, we have t ≤ A(x2) ≤ μ and t < μ. Thus A(x) + t ≤
μ + μ = 2μ, i.e., xt q(λ,μ) A. Hence xt √ A. Therefore A is a fuzzy completely
semiprime ideal of S.

Theorem 3.8 Let A be an (√,√ ∈q(λ,μ))-fuzzy ideal of S and B be an (√,√
∈q(λ,μ))-fuzzy completely semiprime ideal of S. Then A ⇔ B is an (√,√ ∈q(λ,μ))-
fuzzy completely semiprime ideal of Aμ.

Proof Let x √ Aμ and (x2)t √ A ⇔ B,then (A ⇔ B)(x2) ∪ t . So A(x2) ∪ t and
B(x2) ∪ t . Thus (x2)t √ A and (x2)t √ B. Since B is an (√,√ ∈q(λ,μ))-fuzzy
completely semiprime ideal of S, we have xt √ ∈q(λ,μ) B, so xt √ B or xt q(λ,μ) B.

Assume xt √ B which implies B(x) ∪ t . If t ≤ μ, then A(x) ∪ μ ∪ t . So
(A ⇔ B)(x) = A(x) ⊂ B(x) ∪ t . Therefore xt √ (A ⇔ B) and xt √ ∈q(λ,μ)(A ⇔ B);
If t > μ, then A(x) + t > μ + μ = 2μ and B(x) + t ∪ t + t > 2μ, then
(A ⇔ B)(x) + t = (A(x) ⊂ B(x)) + t > 2μ. So xt q(λ,μ)(A ⇔ B).
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Assume xt q(λ,μ) B which implies B(x) + t > 2μ. If t ≤ μ, then B(x) > 2μ −
t ∪ μ ∪ t and A(x) ∪ μ ∪ t , so xt √ A and xt √ B. Thus xt √ A ⇔ B and
xt √ ∈q(λ,μ)(A ⇔ B). If t > μ, then A(x) + t > 2μ and (A ⇔ B)(x) + t =
(A(x) ⊂ B(x)) + t > 2μ. So xt q(λ,μ)(A ⇔ B) and xt √ ∈q(λ,μ)(A ⇔ B).

Therefore,A ⇔ B is an (√,√ ∈q(λ,μ))-fuzzy completely semiprime ideal of Aμ.

Theorem 3.9 Let {Ai | i √ I } be a family of (√,√ ∈q(λ,μ))-fuzzy completely
semiprime ideals of S such that Ai ⊆ A j or A j ⊆ Ai for all i, j √ I . Then
A = ∀i√I Ai is an (√,√ ∈q(λ,μ))-fuzzy completely semiprime ideal of S.

Proof For all x, y √ S,

A(xy) ∈ λ = (∀i√I Ai ) (xy) ∈ λ = (∈i√I Ai (xy)) ∈ λ

= ∈i√I (Ai (xy) ∈ λ)

∪ ∈i√I (Ai (x) ⊂ Ai (y) ⊂ μ)

= (∈i√I Ai (x)) ⊂ (∈i√I Ai (y)) ⊂ μ

= (∀i√I Ai (x)) ⊂ (∀i√I Ai (y)) ⊂ μ

= A(x) ⊂ A(y) ⊂ μ

In the following we show that ∈i√I (Ai (x) ⊂ Ai (y) ⊂ μ)=(∈i√I Ai (x)) ⊂ (∈i√I

Ai (y)) ⊂ μ holds. It is clear that ∈i√I (Ai (x) ⊂ Ai (y) ⊂ μ) ≤ (∈i√I Ai (x)) ⊂
(∈i√I Ai (y)) ⊂ μ. If possible, let ∈i√I (Ai (x) ⊂ Ai (y) ⊂ μ) ≤= (∈i√I Ai (x)) ⊂
(∈i√I Ai (y)) ⊂ μ.

Then there exists t such that ∈i√I (Ai (x) ⊂ Ai (y) ⊂ μ) < t < (∈i√I Ai (x))

⊂ (∈i√I Ai (y))⊂μ. Since Ai ⊆ A j or A j ⊆ Ai for all i, j √ I , there exists k √ I such
that t < Ak(x)⊂ Ak(y)⊂μ. On the other hand, Ai (x)⊂ Ai (y)⊂μ < t for all i √ I , a
contradiction. Hence, ∈i√I (Ai (x) ⊂ Ai (y) ⊂ μ) = (∈i√I Ai (x))⊂(∈i√I Ai (y))⊂μ.
∗x, y √ S, A(xy) ∈ λ = (∀i√I Ai (xy)) ∈ λ = ∈i√I (Ai (xy) ∈ λ) ∪ ∈i√I (Ai (x)

⊂ μ)

= (∈i√I Ai (x)) ⊂ μ = A(x) ⊂ μ.

Similarly prove A(xy) ∈ λ ∪ A(y) ⊂ μ,for all x, y √ S.
A(x) ∈ λ = (∀i√I Ai (x)) ∈ λ = ∀i√I (Ai (x) ∈ λ) ∪ ∈i√I

(
Ai (x2) ⊂ μ

) =(∈i√I Ai (x2)
) ⊂ μ = A(x2) ⊂ μ.

By Theorem3.2, A is an (√,√ ∈q(λ,μ))-fuzzy completely semiprime ideal of S.

Theorem 3.10 Let {Ai | i √ I } be a family of (√,√ ∈q(λ,μ))-fuzzy completely
semiprime ideals of S such that Ai ⊆ A j or A j ⊆ Ai for all i, j √ I . Then
A = ⇔i√I Ai is an (√,√ ∈q(λ,μ))-fuzzy completely semiprime ideal of S.

Proof For any x, y √ S,
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A(xy) ∈ λ = (⇔i√I Ai ) (xy) ∈ λ = (⊂i√I Ai (xy)) ∈ λ

= ⊂i√I (Ai (xy) ∈ λ) ∪ ⊂i√I (Ai (x) ⊂ Ai (y) ⊂ μ)

∪ (⊂i√I Ai (x)) ⊂ (⊂i√I Ai (y)) ⊂ μ = A(x) ⊂ A(y) ⊂ μ

A(xy) ∈ λ = (⇔i√I Ai ) (xy) ∈ λ = (⊂i√I Ai (xy)) ∈ λ = ⊂i√I (Ai (xy) ∈ λ)

∪ ⊂i√I (Ai (x) ⊂ μ) = (⊂i√I Ai (x)) ⊂ μ = A(x) ⊂ μ

Similarly prove A(xy) ∈ λ ∪ A(y) ⊂ μ,∗x, y √ S.

A(x) ∈ λ = (⇔i√I Ai ) (x) ∈ λ

= (⊂i√I Ai ) (x) ∈ λ

= ⊂i√I (Ai (x) ∈ λ)

∪ ⊂i√I

(
Ai (x2) ⊂ μ

)

In the following we show that (⊂i√I Ai ) (x) ∈ λ =⊂i√I (Ai (x) ∈ λ) holds. It is
clear that ⊂i√I (Ai (x) ∈ λ) ∪ (⊂i√I Ai (x)) ∈ λ.

If possible, let ⊂i√I (Ai (x) ∈ λ) > (⊂i√I Ai (x)) ∈ λ. Then there exists t such
that ⊂i√I (Ai (x) ∈ λ) > t > (⊂i√I Ai (x)) ∈ λ. Since Ai ⊆ A j or A j ⊆ Ai for all
i, j √ I , there exists k √ I such that t > Ak(x)∈μ. On the other hand, Ai (x)∈μ > t
for all i √ I , a contradiction.

Hence, ⊂i√I (Ai (x) ∈ λ) = (⊂i√I Ai (x)) ∈ λ.
Here we finish the proof of the theorem.

Theorem 3.11 Let S and S′ be semigroups and f : S ≡ S′ be an onto homomor-
phism. Let A and B be (√,√ ∈q(λ,μ))-fuzzy completely semiprime ideals of S and
S′, respectively. Then

(i) f (A) is an (√,√ ∈q(λ,μ))-fuzzy completely semiprime ideal of S′;
(ii) f −1(B) is an (√,√ ∈q(λ,μ))-fuzzy completely semiprime ideal of S.

Proof (i) For any x ′ √ S, then

f (A)(x ′2) ∈ λ = ∈{A(z) | z √ S, f (z) = x ′2} ∈ λ

∪ ∈{A(x2) | x √ S, f (x) = x ′} ∈ λ

= ∈{A(x2) ∈ λ | x √ S, f (x) = x ′}
∪ ∈{A(x) ⊂ μ | x √ S, f (x) = x ′}
= f (A)(x ′) ⊂ μ.

Therefore f (A) is an (√,√ ∈q(λ,μ))-fuzzy completely semiprime ideal of S′.
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(ii) For all x, y √ S, f −1(B)(x2) ∈ λ = B( f (x2)) ∈ λ = B( f (x)2) ∈ λ ∪
B( f (x)) ⊂ μ. So f −1(B) is an (√,√ ∈q(λ,μ))-fuzzy completely semiprime
ideal of S.

4 Conclusion

In the study of fuzzy algebraic system, we notice that fuzzy ideals with special prop-
erties always play an important role. In this paper, we give the new definition of
(√,√ ∈q(λ,μ))-fuzzy completely semiprime ideals of semigroups. Using inequali-
ties, characteristic functions and level sets, we consider its equivalent descriptions.
Apart from those, the properties of the union, intersection, homomorphic image
and homomorphic preimage of (√,√ ∈q(λ,μ))-fuzzy completely semiprime ideal
of semigroups are investigated. Those results extend the corresponding theories of
fuzzy completely semiprime ideals and enrich the study of fuzzy algebra. At present,
although a series of work on this aspect have been done, there is much room for
further study.
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Duality Theorem and Model Based on Fuzzy
Inequality

Xin Liu

Abstract This article reports a study on duality theorem and model with fuzzy
approaches. The study focuses on the economical interpretation of duality theorem
as well as on solving duality problems in a fuzzy mathematical perspective. Besides
the regular duality concepts, this article puts forward the methods of drawing non-
symmetric fuzzy duality programming from that of symmetric fuzzy duality and
drawing symmetric fuzzy duality programming from that of non-symmetric fuzzy
duality. It sums up the general rules of forming fuzzy duality programming and
proves symmetric duality theorem of fuzzy inequality type.

Keywords Fuzzy linear programming · Dual fuzzy theorem · Symmetric fuzzy
duality model · Non-symmetric fuzzy duality model

1 Introduction

Fuzzy linear programming is such problems which objective function is linear and
constraints are “linear approximation” [1]. As in the actual mathematical program-
ming problems, most of the constraints or objectives are vague and, therefore, we
defined those problems which contained fuzzy constraints and objectives as fuzzy
linear programming. Recently, with the efforts of many scholars, fuzzy program-
ming, especially the fuzzy linear programming, have developed rapidly and a range
of methods for solving fuzzy linear programming have also been obtained [2]. But
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there are few studies of duality theorem and model with fuzzy approach, especially
those contained inequality. So it caused many scholars to pay a great deal of attention
to this issues [3].

Common fuzzy linear programming model can be summarized into the following
types [4]:
1.1FLP(I): Classic coefficients type, that is A, b,C constant type.
1.1.1FLP(I-a): √ Fuzzy type (fuzzy type√)

max Z = C X

s.t.

⎡
AX√̃b
X ∈ 0

1.1.2 FLP(I-b): Fuzzy objective and fuzzy type √

mãx Z = C X

s.t.

⎡
AX√̃b
X ∈ 0

1.2 FLP(II): Fuzzy coefficients type, that is A, b,C fuzzy type
1.2.1 FLP(II-a): Fuzzy right-side coefficients, that is b̃ type

max Z = C X

s.t.

⎡
AX √ b̃
X ∈ 0

1.2.2 FLP(II-b): Fuzzy objective function, that is C̃ type

max Z = C̃ X

s.t.

⎡
AX √ b
X ∈ 0

1.2.3 FLP(II-c): Fuzzy constraint coefficients, that is Ã, b̃ type

max Z = C X

s.t.

⎡
ÃX √ b̃
X ∈ 0

1.2.4 FLP(II-d): All coefficients are fuzzy, that is Ã, b̃, C̃ type

max Z = C̃ X

s.t.

⎡
ÃX √ b̃
X ∈ 0

where C̃ = (c̃1, c̃2, . . . , c̃n) Ã = (ãi j )m×n b̃ = (b̃1, b̃2, . . . , b̃m)
T
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We can use different methods to study the above fuzzy linear programming model
from the symmetric and non-symmetric. This paper only focuses on those program-
ming models which contain fuzzy inequalities and puts forward its dual models and
the related theorems.

2 The Proposal of Linear Programming Dual Problem of Fuzzy
Inequality type

E.g. Machine A can run a monthly maximum of about 400 hours while Machiine B
can run a monthly maximum of about 250 h , An hour’s work of A cost (maintenance,
depreciation, etc.) 3 yuan whit a net profit of 7 yuan, but B costs 2 yuan, whit a net
profit of 3 yuan. A and B’s cost per month may not exceed the sum of 1,500 yuan.
How to organize production in order to gain the maximum profit?

x1 and x2 are the run hours of A and B respectively [5], and this is fuzzy linear
programming problem ⎣⎧⎧⎧⎧⎪

⎧⎧⎧⎧⎨

max f = 7x1 + 3x2,

3x1 + 2x2√̃1500, (11)

x1√̃400, (12)

x2√̃250, (13)

x1 ∈ 0, x2 ∈ 0.

(1)

the flexible targets of the corresponding constraints (11), (12), (13) are 50 (yuan) and
5(hours), 5(hours) respectively. Now, we discuss this problem from another side. If
the factory does not arrange for the machine to produce, but rent it, how to price can
make the factory profit higher than the production gains and how can they make the
pricing competitive?

Assumes that rental machines designed to run about 1 hour, renting Machine
A priced at 2 yuan per working hour, B is 3 yuan, the profit under these pricing
arrangements should not be less than the gains from production, otherwise, the factory
would produce rather than to rent. Thus, the cost of this factory renting A and working
hours should be about the total value of not less than 7 yuan, in mathematical terms:

3y1 + y2∈̃7

for B
2y1 + y3∈̃3

and the rental income of two machines

w = 1500y1 + 400y2 + 250y3
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Table 1 The relationship between food amount and nutrients

Nutrients Food
x1 x2 …xn

1 2 …n Minimum requirements of various nutrients

y1 1 a11 a12 …a1n b1

y2 2 a21 a22 …a2n b2

… … … … …
ym m am1 am2 …amm bm

Unit price c1 c2 …cn

For the decision-makers, of course, the bigger w is, the better. But for the receiver,
the less his pay is, the better, therefore, in order to be competitive pricing, decision-
makers can only make the total income as small as possible, under the condition
of not less than the profits of all products, so the objective function can describe as
follow:

minw = 1500y1 + 400y2 + 250y3

Linking the above expression

⎣⎧⎧⎪
⎧⎧⎨

minw = 1500y1 + 400y2 + 250y3
3y1 + y2∈̃7 (21)

2y1 + y3∈̃3 (22)

y1 ∈ 0, y2 ∈ 0, y3 ∈ 0

(2)

the flexible targets of the corresponding constraints (21), (22) are 7/30 (yuan) and
1/10 (yuan) respectively.

In general, such as nutrition, there are n kinds of food, each containing m kinds
of nutrients, ai j represents the nutrient i of each unit j , bi represents the minimum
amount that each person in need of inutrients per day, c j is the price of j , how
should consumers buy food in order to satisfy their basic needs at the minimum cost?
x j ( j = 1, 2, . . . , n) is the amount of j , and their relationship show in Table 1 [6].

In general, one can only roughly estimate the need for nutrients, therefore, we
obtain the following forms of linear programming problems in the fuzzy constraint
conditions. ⎣⎪

⎨
min C X
AX∈̃b
X ∈ 0

(L)

where A =

⎩
⎫⎫⎬

a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn

⎭
, b =

⎩
⎫⎫⎬

b1
b2
. . .

bm

⎭
,
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C = ⎢
c1 c2 . . . cn

⎥
, X =

⎩
⎫⎫⎬

x1
x2
. . .

xn

⎭
.

the flexible targets of the corresponding constraints AX ∈̃ b may

d = (d1, d2, . . . , dm)
T ∈ 0

Now we raise a question from another side Manufacturer A want to produce m kinds
of pills to replace the above-mentioned n kinds of food, then how to determine the
price of each pill in order to benefit the most?
We still can use the above table, assuming yi is the price of pill i , and Y =
[ y1 y2 · · · ym ], in order to more sales, the price of pills generally should not exceed
the price of food equivalent. So, there should be Y A √̃ C , and this problem becomes

⎣⎪
⎨

max Y b
Y A√̃C
Y ∈ 0

(D)

The flexible targets of the corresponding constraints

Y A √̃ C and d ≤ = (d ≤
1, d ≤

2, . . . , d ≤
m)

T ∈ 0

Accordingly, we have the following definition:
We defined those fuzzy linear programming problems as (L) and (D) are required
as mutually dual problem . If one is called the original problem, the other is called
the dual problem, also known as a group of symmetric fuzzy dual programming.

Their relationship can be described in Table 2.

Table 2 The relationship of fuzzy dual programming

yi x j

x1 x2 … xn Original relation maxY b

y1 a11 a12 … a1n ∈̃ b1

y2 a21 a22 … a2n ∈̃ b2

…
ym … … … … …

am1 am2 … amm ∈̃ bm

Duality relation √̃ √̃ … √̃
Min C X c1 c2 … cn
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3 The Relationship Between Symmetric and Non-Symmetric
Fuzzy Dual Programming

3.1 Symmetric Fuzzy Dual Programming Models

We defined

⎣⎪
⎨

min C X
AX∈̃b
X ∈ 0

(L) and

⎣⎪
⎨

max Y b
Y A√̃C
Y ∈ 0

(D)

as symmetric fuzzy dual programming.

3.2 Non-Symmetric Fuzzy Dual Programming Models

Generally in fuzzy linear programming, when we experience constraints with fuzzy
equations constraints (adjust the parameters and make it into equations), its fuzzy
linear programming takes the following form:

⎣⎪
⎨

min C X
AX ∃ b
X ∈ 0

Then what about duality?
We defined

(L ≤)

⎣⎪
⎨

min C X
AX ∃ b
X ∈ 0

and (D≤)
⎡

max Y b
Y A√̃C

as a group of non- symmetric fuzzy dual programming. Symmetric and non-
symmetric fuzzy dual programming is introduced to each other, and it can be demon-
strated as follows.

3.3 Reduced Non-Symmetric Fuzzy Dual Programming Models
from Symmetric Fuzzy Dual Programming Models

Considering

AX ∃ b ∗
⎡

AX√̃b
AX∈̃b

now (L ≤) becomes
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⎣⎧⎧⎪
⎧⎧⎨

min C X(
A

−A

⎛
X∈̃

(
b

−b

⎛

X ∈ 0

and this is (L) style, according to the definition, its fuzzy dual programming models
can be described as follows:

⎣⎧⎧⎧⎧⎪
⎧⎧⎧⎧⎨

max (Y1,Y2)

(
b

−b

⎛

(Y1,Y2)

(
A

−A

⎛
√̃C

(Y1,Y2) ∈ 0

alternatively, it can be expressed as:

⎣⎪
⎨

max(Y1 − Y2)b
(Y1 − Y2)A√̃C
(Y1,Y2) ∈ 0

We defined Y ∪ = Y1 − Y2, and there has no non-negative restrictions for W ∪, the
above expression becomes: ⎡

max Y ∪b
Y ∪ A√̃C

and this is the form of (D≤), it shows that the fuzzy dual programming of (L ≤) is
(D≤).

3.4 Reduced Symmetric Fuzzy Dual Programming Models from
Non-Symmetric Fuzzy Dual Programming ones

If the duality of (L ≤) is (D≤), we also can certify that the duality of (L) is (D).
For (L), we introduce the remaining variables W,W = (w1, w2, . . . , wm)

T ∈ 0,
the form of (L) becomes: ⎣⎧⎧⎧⎧⎪

⎧⎧⎧⎧⎨

min(C 0)

(
X
W

⎛

( A −I )

(
X
W

⎛
∃ b

X ∈ 0, W ∈ 0

the form of its duality: ⎡
max Y b

Y ( A −I )√̃(C 0)
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it can also be expressed as: ⎣⎪
⎨

max Y b
Y A√̃C
Y ∈ 0

and this is (D).

4 Mixed Symmetric and Non-Symmetric Dual Programming
Model of the Fuzzy

Except the symmetric and non-symmetric fuzzy dual programming, there is another
form which mixed the two, for example, we assume that:

A =
⎜

A11 A12
A21 A22

⎝
, X =

(
X1

X2

⎛

Ai j is an mi by m matrix, i, j = 1, 2. m1 + m2 = m, n1 + n2 = n, X1 and X2

the n1 and n2 dimensional vector respectively.
If the original problem is

⎣⎧⎧⎪
⎧⎧⎨

min(C1 X1 + C2 X2)

A11 X1 + A12 X2∈̃b1

A21 X1 + A22 X2 ∃ b2

X1 ∈ 0

where X2 has no restricts, it’s duality is

⎣⎧⎧⎪
⎧⎧⎨

max(Y 1b1 + Y 2b2)

Y 1 A11 + Y 2 A12√̃C1

Y 1 A21 + Y 2 A22 ∃ C2

Y 1 ∈ 0

and Y 2 also has no limits.

5 The General Rules of Constituting the Dual Programming
Using Fuzzy Inequality

In summary, the rules of constituting a general fuzzy dual programming can be
summarized as follows:
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1. When constraints in the original problems is unified into ∈̃ and ∃ (or √̃ and ∃),
the objective function is minimize (or maximum).

2. A line constraint of the original problems corresponds to a variable yi , where
yi ∈ 0, if the line constraint is fuzzy inequality, otherwise, yi has no sign
restrictions.

3. Each variable of the original problem, x j corresponds to a line constraint, where
n⎞

i=1
yi ai j √̃ c j (or

n⎞
i=1

y j ai j ∈̃ c j ), if x j ∈ 0(if x j √ 0, we can rewrite it to

x j = −x ≤
j ); and

n⎞
i=1

y j ai j ∃ c j (c j is the coefficient of the objective function

in original problem), if x j has no restrictions.
4. If the Original objective function C X is minimum requirement, then it corre-

sponds to an objective function with maximum requirement, Y b. (where b is the
column of constant in the original problem constraints.)
e.g. the original problem

⎣⎧⎧⎧⎧⎪
⎧⎧⎧⎧⎨

x1 + 2x2 − x3 − x4 ∃ −7
6x1 − 3x2 + x3 − 7x4∈̃14

−28x1 − 17x2 + 4x3 + 2x4√̃ − 3
x1 ∈ 0, x2 ∈ 0

min(5x1 − 6x2 + 7x3 + 4x4)

where x3 and x4 has no restrictions, calculate its duality.
Unified the fuzzy in equality into ∈̃, and then described it in the Table 3.
So we can obtained its duality directly:

⎣⎧⎧⎧⎧⎧⎧⎪
⎧⎧⎧⎧⎧⎧⎨

y1 + 6y2 + 28y3√̃5
2y1 − 3y2 + 17y3√̃ − 6

−y1 + y2 − 4y3 ∃ 7
−y1 − 7y2 − 2y3 ∃ 4

y2, y3 ∈ 0
max(−7y1 + 14y2 + 3y3)

where y1 has no restrictions.

Table 3 Dual programming of fuzzy inequality

x1 x2 x3 x4

y1 1 2 −1 −1 ∃ −7
y2 6 −3 1 −7 ∈̃ 14
y3 28 17 −4 −2 ∈̃ 3

5 −6 7 4 = min f
x1 ∈ 0, x2 ∈ 0, x3, x4 with no restrictions
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6 Symmetric Theorem of DFLP

(L) is a FLP problem, and it duality is (D), then we know that (L) is the duality of (D).
And this can be demonstrated as follows:
Assumes that: the original problem (L):

⎣⎪
⎨

min W = C X
AX∈̃b
X ∈ 0

and its duality (D): ⎣⎪
⎨

max Z = Y b
Y A√̃C
Y ∈ 0

both sides of this expression becomes negative, knowing that max Z = − min(−W ),
this expression becomes: ⎣⎪

⎨
min(−W ) = −Y b

−Y A∈̃ − C
Y ∈ 0

according to the symmetry transformation, we obtained its duality as follows:

⎣⎪
⎨

max(−W ≤) = −C X
−AX√̃ − b

X ∈ 0

and because max(−W ≤) = − min(W ≤), so that Z = W ≤, and it becomes:

⎣⎪
⎨

− min(W ≤) = − min Z = −C X
AX∈̃b
X ∈ 0

this expression can also be expressed as:

⎣⎪
⎨

min Z = C X
AX∈̃b
X ∈ 0

this is just the original problem.
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7 Conclusions

This article summarized some common models of the fuzzy linear programming [7],
and then studied the fuzzy inequality-type linear programming problem of duality
theory and its models; given a general definition and the economic interpretation of
inequality-type fuzzy linear programming dual problem; constructs the symmetric
and non-symmetric model of the fuzzy dual problem; summarized the general rule of
how to construct a fuzzy dual programming model; and proved the symmetry duality
theorem for the fuzzy inequality-type.

There are many other theorem about fuzzy duality theory. Taking into account the
length of this paper, the remaining contents will be described in other papers.
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(∈,∈ ∨q(λ,μ))-Fuzzy Completely Prime Ideals
of Semigroups

Zu-hua Liao, Yi-xuan Cao, Li-hua Yi, Ying-ying Fan and Zhen-yu Liao

Abstract We introduce a new kind of generalized fuzzy completely prime ideal of
a semigroup called (√,√ ∈q(λ,μ))-fuzzy completely prime ideals. These generalized
fuzzy completely prime ideals are characterized. We also discuss the equivalence
relationship between (√,√ ∈q(λ,μ))-fuzzy completely prime ideals and At∈q(λ,μ) .

Keywords (√,√ ∈q(λ,μ))-fuzzy completely prime ideals · Completely prime
ideals · Level subsets · Homomorphism

1 Introduction

Fuzzy semigroup theory plays a prominent role in mathematics with wide applica-
tions in many disciplines such as control engineering, information sciences, fuzzy
coding theory, fuzzy finite state machines, fuzzy automata and fuzzy languages.

Using the notion of a fuzzy set introduced by Zadeh [1] in 1965, which laid the
foundation of fuzzy set theory, Rosenfeld [2] inspired the fuzzification of algebraic
structures and introduced the notion of fuzzy subgroups. Since then fuzzy algebra
came into being. Bhakat and Das gave the concepts of fuzzy subgroups by using the
“belongs to” relation (√) and “quasi-coincident with” relation (q) between a fuzzy
point and a fuzzy set, and introduced the concept of a (√,√ ∈q)-fuzzy subgroup
[3–6]. It is worth to point out that the ideal of quasi-coincident of a fuzzy point with
a fuzzy set, which is mentioned in [7], played a vital role to generate some different
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types of fuzzy subgroups. In particular, (√,√ ∈q)-fuzzy subgroup is an important
and useful generalization of Rosenfeld’s fuzzy subgroup, which provides sufficient
motivation to researchers to review various concepts and results from the realm
of abstract algebra in the broader framework of fuzzy setting. Zhanjianming [8],
Young Bae Jun [9] et al. introduced the notion of (√,√ ∈q)-fuzzy interior ideals of a
semigroup. Bavvaz [10–12] defined (√,√ ∈q)-fuzzy subnear-rings and characterized
Hν-fuzzy submodules, R-fuzzy semigroups using the relation (√,√ ∈q).

Later, the definition of a generalized fuzzy subgroup was introduced by Yuan
Xuehai [13]. Based on it, Liao Zuhua [14] expanded common “quasi-coincident
with” relationship to generalized “quasi-coincident with” relationship, which is the
generalization of Rosenfeld’s fuzzy algebra and Bhakat and Das’s fuzzy algebra.
And a series of results were obtained by using generalized “quasi-coincident with”
relationship [15–18]. When λ = 0 and μ = 1 we get common fuzzy algebra by
Rosenfeld and when λ = 0 and μ = 0.5 we get the (√,√ ∈q)-fuzzy algebra defined
by Bhakat and Das.

The concept of a fuzzy ideal in semigroups was developed by Kuroki. He studied
fuzzy ideals, fuzzy bi-ideals and fuzzy semiprime ideals in semigroups [19–21].
Fuzzy ideals, generated by fuzzy sets in semigroups, were considered by Mo and
Wang [22]. After that Bhakat and Das [23] investigated fuzzy subrings and several
types of ideals, including fuzzy prime ideals and (√,√ ∈q)-fuzzy prime ideals.
Young Bae Jun et al. [24–26] studied L-fuzzy ideals in semigroups, fuzzy h-ideals
in hemirings, fuzzy ideals in inclines. Besides, Bahushri [27] did some research on
c-prime fuzzy ideals in nearrings. It is now natural to investigate similar type of
generalization of the existing fuzzy subsystems of some algebraic structures. Our
aim in this paper is to introduce and study (√,√ ∈q(λ,μ))-fuzzy completely prime
ideals, and obtain some properties: an (√,√ ∈q(λ,μ))-fuzzy ideal is an (√,√ ∈q(λ,μ))-
fuzzy completely prime ideal, if and only if At ( ≤= ∃) is a completely prime ideal,
∗t √ (λ,μ]. This showed that (√,√ ∈q(λ,μ))-fuzzy completely prime ideals are
generalizations of the existing concepts of two types of fuzzy ideals. We also discuss
the equivalence relationship between (√,√ ∈q(λ,μ))-fuzzy completely prime ideals
and At∈q(λ,μ) .

2 Preliminaries

Throughout the paper we always consider S as a semigroup.

A mapping from A to [0, 1] is said to be a fuzzy subset of S.

A fuzzy subset A of S of the form A(y) =
{

λ( ≤= 0), y = x
0, y ≤= x

is said to be a fuzzy

point supporting x and value λ, denoted by xt .

Definition 2.1 Let A be a fuzzy subset of S, for all t,λ,μ √ [0, 1] and λ < μ, a
fuzzy point xt is called belonging to A if A(x) ∪ t , denoted by xt √ A; A fuzzy point
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xt is said to be generalized quasi-coincident with A if t > λ and A(x) + t > 2μ,
denoted by xt q(λ,μ)A. If xt √ A or xt q(λ,μ)A, then denoted by xt √ ∈q(λ,μ)A.

Definition 2.2 [15] A fuzzy subset A of S is said to be an (√,√ ∈q(λ,μ))-fuzzy
subsemigroup if for all x, y √ S, t1, t2 √ (λ, 1], xt1 , yt2 √ A implies (xy)t1⊂t2 √
∈q(λ,μ)A.

Theorem 2.3 [15] A fuzzy subset A of S is an (√,√ ∈q(λ,μ))-fuzzy subsemigroup if
and only if A(xy) ∈ λ ∪ A(x) ⊂ A(y) ⊂ μ, for all x, y √ S.

Definition 2.4 [15] A fuzzy subset A of S is an (√,√ ∈q(λ,μ))-fuzzy left (right) ideal
if (1) A is an (√,√ ∈q(λ,μ))-fuzzy subsemigroup of S;

(2) For all xt √ A, y √ S, implies (yx)t √ ∈q(λ,μ)A ((xy)t √ ∈q(λ,μ)A).
If A is both an (√,√ ∈q(λ,μ))-fuzzy left ideal and an (√,√ ∈q(λ,μ))-fuzzy right ideal,
then A is said to be an (√,√ ∈q(λ,μ))-fuzzy ideal.

Theorem 2.5 [15] A fuzzy subset A of S is an (√,√ ∈q(λ,μ))-fuzzy ideal if and only
if for all t √ (λ,μ], the non-empty set At is an ideal.

Theorem 2.6 [15] A fuzzy subset A of S is an (√,√ ∈q(λ,μ))-fuzzy left (right) ideal
if and only if for all x, y √ S, (1) A(xy) ∈ λ ∪ A(x) ⊂ A(y) ⊂ μ; (2) A(xy) ∈ λ ∪
A(y) ⊂ μ(A(x) ⊂ μ).

Definition 2.7 An ideal I of S is said to be a completely prime ideal, if for all
x, y √ S, xy √ I implies x √ I or y √ I.

Based on [23], in a semigroup we have the following definitions and theorems:

Definition 2.8 A fuzzy ideal A of S is said to be a fuzzy completely prime ideal, if
for all x, y √ S, t √ (0, 1], (xy)t √ A implies xt √ A or yt √ A.

Theorem 2.9 A fuzzy ideal A of S is a fuzzy completely prime,if and only if A(xy) =
A(x) or A(xy) = A(y), for all x, y √ S.

Definition 2.10 An (√,√ ∈q)-fuzzy ideal A of S is said to be an (√,√ ∈q)-fuzzy
completely prime ideal, if for all x, y √ S, t √ (0, 1], (xy)t √ A implies xt √ ∈q A
or yt √ ∈q A.

Theorem 2.11 An (√,√ ∈q)-fuzzy ideal of S is an (√,√ ∈q)-fuzzy completely
prime ideal if and only if A(x) ∈ A(y) ∪ A(xy) ⊂ 0.5, for all x, y √ S.

3 (∈,∈ ∨q(λ,μ))-Fuzzy Completely Prime Ideals

In this section, we give the new definition of an (√,√ ∈q(λ,μ))-fuzzy completely
prime ideal of semigroups. Then some equivalent descriptions and properties of it
are discussed.
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Definition 3.1 An (√,√ ∈q(λ,μ))-fuzzy ideal A of S is said to be an (√,√ ∈q(λ,μ))-
fuzzy completely prime ideal, if for all x, y √ S, t √ (λ, 1], (xy)t √ A implies
xt √ ∈q(λ,μ)A or yt √ ∈q(λ,μ)A.

Theorem 3.2 An (√,√ ∈q(λ,μ))-fuzzy ideal of S is an (√,√ ∈q(λ,μ))-fuzzy com-
pletely prime ideal if and only if A(x) ∈ A(y) ∈ λ ∪ A(xy) ⊂ μ, for all x, y √ S.

Proof: ∇ Let A be an (√,√ ∈q(λ,μ))-fuzzy completely prime ideal of S. Assume
that there exist x0, y0 such that A(x0) ∈ A(y0) ∈ λ < A(x0 y0) ⊂ μ. Choose t to
satisfy A(x0)∈ A(y0)∈λ < t < A(x0 y0)⊂μ. Then we have A(x0 y0) > t,λ < t <
μ, A(x0) < t, A(y0) < t , A(x0) + t < 2μ and A(y0) + t < 2μ. So (x0 y0)t √ A.
But (x0)t√ ∈q(λ,μ)A and (y0)t√ ∈q(λ,μ)A, a contradiction.
∀ For all x, y √ S, t √ (λ, 1) and (xy)t √ A, then A(xy) ∪ t and λ < t. So
A(x) ∈ A(y) ∈ λ ∪ A(xy) ⊂ μ ∪ t ⊂ μ. Since λ < μ, then A(x) ∈ A(y) ∪ t ⊂ μ.

If t ∪ μ, then A(x) ∈ A(y) ∪ μ, so A(x) ∪ μ or A(y) ∪ μ.
Case 1: Suppose A(x) ∪ μ, we have A(x) + t > μ + μ = 2μ, so xt q(λ,μ)A.
Case 2: Suppose A(y) ∪ μ, we have A(y)+ t > μ+μ = 2μ, so yt q(λ,μ)A. Then

xt q(λ,μ)A or yt q(λ,μ)A.
If t < μ, then A(x) ∈ A(y) ∪ t. So xt √ A or yt √ A.
Hence, xt √ ∈q(λ,μ)A or yt √ ∈q(λ,μ)A, that is to say, A is an (√,√ ∈q(λ,μ))-fuzzy

completely prime ideal.

Theorem 3.3 A non-empty subset S1 of S is a completely prime ideal if and only if
χS1 is an (√,√ ∈q(λ,μ))-fuzzy completely prime ideal of S.

Proof: ∇ Let S1 be a completely prime ideal, then χS1 is an (√,√ ∈q(λ,μ))-fuzzy
ideal of S. If (xy)t √ χS1 , then χS1(xy) ∪ t > 0, so xy √ S1.Since S1 is a completely
prime ideal, we have x √ S1 or y √ S1, then xt √ ∈q(λ,μ)χS1 or yt √ ∈q(λ,μ)χS1 .

Thus χS1 is an (√,√ ∈q(λ,μ))−fuzzy completely prime ideal.
∀ Let χS1 be an (√,√ ∈q(λ,μ))-fuzzy completely prime ideal, then S1 is an ideal of
S. Now xy √ S1, then χS1(xy) = 1. Since χS1 is an (√,√ ∈q(λ,μ))-fuzzy completely
prime ideal. By the Theorem 3.2, we have χS1(x)∈χS1(y)∈λ ∪ χS1(xy)⊂μ = μ.
Then χS1(x) ∈ χS1(y) ∪ μ > 0. So χS1(x) = 1 or χS1(y) = 1, i.e., x √ S1 or
y √ S1.

Therefore, S1 is a completely prime ideal.

Remark When λ = 0,μ = 1, we can obtain the corresponding results in the sense
of Rosenfeld; When λ = 0,μ = 0.5, we can get the corresponding results in the
sense of Bhakat and Das.

Theorem 3.4 An (√,√ ∈q(λ,μ))-fuzzy ideal A of S is an (√,√ ∈q(λ,μ))-fuzzy com-
pletely prime ideal if and only if non-empty set At is a completely prime ideal for all
t √ (λ,μ].
Proof: ∇ Let A be an (√,√ ∈q(λ,μ))-fuzzy completely prime ideal of S, then the
non-empty set At is an ideal, for all t √ (λ,μ]. Let xy √ At , then A(xy) ∪ t. By
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Theorem 3.2,we have A(x) ∈ A(y) ∈ λ ∪ A(xy) ⊂ μ ∪ t ⊂ μ = t. So x √ At or
y √ At .

Hence At is a completely prime ideal.
∀ Let At be a completely prime ideal of S, by Theorem 2.5, we have that A is an
(√,√ ∈q(λ,μ))-fuzzy ideal. Suppose that A is not an (√,√ ∈q(λ,μ))-fuzzy completely
prime ideal. By Theorem 3.2, there exist x0, y0 such that A(x0) ∈ A(y0) ∈ λ <

A(x0 y0) ⊂ μ. Choose t such that A(x0) ∈ A(y0) ∈ λ < t < A(x0 y0) ⊂ μ. Then we
have A(x0 y0) > t, A(x0) < t, A(y0) < t,λ < t < μ and x0 y0 √ At . Since At is a
completely prime ideal, we have x0 √ At or y0 √ At , a contradiction.

Therefore A is an (√,√ ∈q(λ,μ))-fuzzy completely prime ideal.

Corollary 3.5 A fuzzy set A of S is an (√,√ ∈q(λ,μ))-fuzzy completely prime ideal
of S if and only if non-empty set At is a completely prime ideal, for all t √ (λ,μ].
Theorem 3.6 Let I be any completely prime ideal of S. There exists an (√,√
∈q(λ,μ))-fuzzy completely prime ideal A of S such that At = I for some t √ (λ,μ].

Proof: If we define a fuzzy set in S by

A(x) =
{

t, if x √ I
0, otherwise

for some t √ (λ,μ].

Then it follows that At = I .
For given r √ (λ,μ], we have

Ar =
{

At (= I ), if r ⇔ t
∃, if t < r < μ

Since I itself is a completely prime ideal of S, it follows that every non-empty
level subset Ar of S is a completely prime ideal of S. By Corollary 3.5, A is an
(√,√ ∈q(λ,μ))-fuzzy completely prime ideal of S, which satisfies the conditions of
the theorem.

Theorem 3.7 Let A be an (√,√ ∈q(λ,μ))-fuzzy completely prime ideal of S such
that A(x) ⇔ μ for all x √ S. Then A is a fuzzy completely prime ideal of S.

Proof: Let x, y √ S, t √ (λ, 1] and (xy)t √ A. It follows that xt √ ∈q(λ,μ)A or
yt √ ∈q(λ,μ)A from Definition 3.1.

Without loss of generality ,we assume that xt √ ∈q(λ,μ)A holds. By known
conditions, we have t ⇔ A(xy) ⇔ μ and t < μ. Thus A(x) + t ⇔ μ + μ =
2μ, i.e., xt q(λ,μ)A. Hence xt √ A . Therefore A is a fuzzy completely prime ideal of
S.

Theorem 3.8 Let A be an (√,√ ∈q(λ,μ))-fuzzy ideal of S and B be an (√,√ ∈q(λ,μ))-
fuzzy completely prime ideal of S. Then A ≥ B is an (√,√ ∈q(λ,μ))-fuzzy completely
prime ideal of Aμ.
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Proof: Let x, y √ Aμ and (xy)t √ A ≥ B, then (A ≥ B)(xy) ∪ t . So A(xy) ∪ t
and B(xy) ∪ t . Thus (xy)t √ A and (xy)t √ B. Since B is an (√,√ ∈q(λ,μ))-fuzzy
completely prime ideal of S, we have xt √ ∈q(λ,μ)B or yt √ ∈q(λ,μ)B.

Case 1: If xt √ ∈q(λ,μ)B, then xt √ B or xt q(λ,μ)B.
Assume xt √ B implies B(x) ∪ t . If t ⇔ μ, then A(x) ∪ μ ∪ t . So (A ≥ B)(x) =

A(x) ⊂ B(x) ∪ t . Therefore xt √ (A ≥ B) and xt √ ∈q(λ,μ)(A ≥ B); If t > μ, then
A(x) + t > μ + μ = 2μ and B(x) + t ∪ t + t > 2μ, then (A ≥ B)(x) + t =
(A(x) ⊂ B(x)) + t > 2μ. So xt q(λ,μ)(A ≥ B) and xt √ ∈q(λ,μ)(A ≥ B).

Assume xt q(λ,μ)B implies B(x)+ t > 2μ. If t ⇔ μ, then B(x) > 2μ− t ∪ μ ∪ t
and A(x) ∪ μ ∪ t , so xt √ A and xt √ B. Thus xt √ A≥ B and xt √ ∈q(λ,μ)(A≥ B).
If t > μ, then A(x) + t > 2μ, then (A ≥ B)(x) + t = (A(x) ⊂ B(x)) + t > 2μ. So
xt q(λ,μ)(A ≥ B) and xt √ ∈q(λ,μ)(A ≥ B).

Case 2: Suppose yt √ ∈q(λ,μ)B, then similarly prove yt √ ∈q(λ,μ)(A ≥ B).
Hence A ≥ B is an (√,√ ∈q(λ,μ))-fuzzy completely prime ideal of Aμ.

Theorem 3.9 Let {Ai | i √ I } be a family of (√,√ ∈q(λ,μ))-fuzzy completely prime
ideals of S such that Ai ◦ A j or A j ◦ Ai for all i, j √ I . Then A = ≥i√I Ai is an
(√,√ ∈q(λ,μ))-fuzzy completely prime ideal of S.

Proof: For any x, y √ S,

A(xy) ∈ λ = (≥i√I Ai ) (xy) ∈ λ = (⊂i√I Ai (xy)) ∈ λ

= ⊂i√I (Ai (xy) ∈ λ) ∪ ⊂i√I (Ai (x) ⊂ Ai (y) ⊂ μ)

∪ (⊂i√I Ai (x)) ⊂ (⊂i√I Ai (y)) ⊂ μ = A(x) ⊂ A(y) ⊂ μ

A(xy) ∈ λ = (≥i√I Ai ) (xy) ∈ λ = (⊂i√I Ai (xy)) ∈ λ = ⊂i√I (Ai (xy) ∈ λ)

∪ ⊂i√I (Ai (x) ⊂ μ) = (⊂i√I Ai (x)) ⊂ μ = A(x) ⊂ μ

Similarly prove A(xy) ∈ λ ∪ A(y) ⊂ μ,∗x, y √ S.

A(x) ∈ A(y) ∈ λ = (≥i√I Ai ) (x) ∈ (≥i√I Ai ) (y) ∈ λ

= (⊂i√I Ai ) (x) ∈ (⊂i√I Ai ) (y) ∈ λ

= ⊂i√I (Ai (x) ∈ Ai (y) ∈ λ) (1)

∪ ⊂i√I (Ai (xy) ⊂ μ)

= A(xy) ⊂ μ

In the following we show that Eq. (1) holds. It is clear that ⊂i√I (Ai (x)∈ Ai (y)∈
λ) ∪ (⊂i√I Ai (x)) ∈ (⊂i√I Ai (y)) ∈ λ.
If possible, let ⊂i√I (Ai (x) ∈ Ai (y) ∈ λ) > (⊂i√I Ai (x)) ∈ (⊂i√I Ai (y)) ∈ λ. Then
there exists t such that⊂i√I (Ai (x) ∈ Ai (y) ∈ λ) > t > (⊂i√I Ai (x))∈(⊂i√I Ai (y))∈
λ. Since Ai ◦ A j or A j ◦ Ai for all i, j √ I , there exists k √ I such that
t > Ak(x) ∈ Ak(y) ∈ μ. On the other hand, Ai (x) ∈ Ai (y) ∈ μ > t for all i √ I , a
contradiction.
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Hence, ⊂i√I (Ai (x) ∈ Ai (y) ∈ λ) = (⊂i√I Ai (x)) ∈ (⊂i√I Ai (y)) ∈ λ.
Here we finish the prove of the theorem.

Theorem 3.10 Let {Ai | i √ I } be a family of (√,√ ∈q(λ,μ))-fuzzy completely prime
ideals of S such that Ai ◦ A j or A j ◦ Ai for all i, j √ I . Then A = ∪i√I Ai is an
(√,√ ∈q(λ,μ))-fuzzy completely prime ideal of S.

Proof: For all x, y √ S,

A(xy) ∈ λ = (∪i√I Ai ) (xy) ∈ λ = (∈i√I Ai (xy)) ∈ λ

= ∈i√I (Ai (xy) ∈ λ)

∪ ∈i√I (Ai (x) ⊂ Ai (y) ⊂ μ)

= (∈i√I Ai (x)) ⊂ (∈i√I Ai (y)) ⊂ μ (2)

= (∪i√I Ai (x)) ⊂ (∪i√I Ai (y)) ⊂ μ

= A(x) ⊂ A(y) ⊂ μ

In the following we show that Eq. (2) holds. It is clear that ∈i√I (Ai (x)⊂ Ai (y)⊂
μ) ⇔ (∈i√I Ai (x)) ⊂ (∈i√I Ai (y)) ⊂ μ. If possible, let ∈i√I (Ai (x) ⊂ Ai (y) ⊂ μ) ≤=
(∈i√I Ai (x))⊂ (∈i√I Ai (y))⊂μ. Then there exists t such that ∈i√I (Ai (x)⊂ Ai (y)⊂
μ) < t < (∈i√I Ai (x)) ⊂(∈i√I Ai (y)) ⊂ μ. Since Ai ◦ A j or A j ◦ Ai for all
i, j √ I, there exists k √ I such that t < Ak(x) ⊂ Ak(y) ⊂ μ. On the other hand,
Ai (x)⊂Ai (y)⊂μ < t for all i √ I , a contradiction. Hence, ∈i√I (Ai (x)⊂Ai (y)⊂μ) =
(∈i√I Ai (x)) ⊂ (∈i√I Ai (y)) ⊂ μ.

∗x, y √ S, A(xy) ∈ λ = (∪i√I Ai (xy)) ∈ λ = ∈i√I (Ai (xy) ∈ λ) ∪ ∈i√I

(Ai (x) ⊂ μ)= (∈i√I Ai (x)) ⊂ μ = A(x) ⊂ μ.
Similarly prove A(xy) ∈ λ ∪ A(y) ⊂ μ, for all x, y √ S.
A(x)∈A(y)∈λ = (∪i√I Ai (x))∈(∪i√I Ai (y))∈λ = ∪i√I (Ai (x) ∈ Ai (y) ∈ λ) ∪

∈i√I (Ai (xy) ⊂ μ) = (∈i√I Ai (xy)) ⊂ μ = A(xy) ⊂ μ.
By Theorem 3.2, A is an (√,√ ∈q(λ,μ))-fuzzy completely prime ideal of S.

Theorem 3.11 Let S and S′ be semigroups and f : S → S′ be an onto homomor-
phism. Let A and B be (√,√ ∈q(λ,μ))-fuzzy completely prime ideals of S and S′,
respectively. Then

(1) f (A) is an (√,√ ∈q(λ,μ))-fuzzy completely prime ideal of S′;
(2) f −1(B) is an (√,√ ∈q(λ,μ))-fuzzy completely prime ideal of S.

Proof: For any x ′, y′ √ S, then

f (A)(x ′y′) ∈ λ = ∈{A(z) | z √ S, f (z) = x ′y′} ∈ λ

∪ ∈{A(xy) | x, y √ S, f (x) = x ′, f (y) = y′} ∈ λ

= ∈{A(xy) ∈ λ | x, y √ S, f (x) = x ′, f (y) = y′}
∪ ∈{A(x) ⊂ A(y) ⊂ μ | x, y √ S, f (x) = x ′, f (y) = y′}
∪ {A(x) ⊂ A(y) ⊂ μ | x, y √ S, f (x) = x ′, f (y) = y′}
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then f (A)(x ′y′) ∈ λ ∪ ∈ f (x)=x ′ {A(x) ⊂ A(y) ⊂ μ | x, y √ S, f (x) = x ′,
f (y) = y′} = {(∈ f (x)=x ′ A(x)) ⊂ A(y) ⊂ μ | y √ S, f (y) = y′}.

So f (A)(x ′y′) ∈ λ ∪ ∈ f (y)=y′ { f (A)(x ′) ⊂ A(y) ⊂ μ | y √ S, f (y) = y′}
= f (A)(x ′) ⊂ (∈ f (y)=y′ A(y)) ⊂ μ

= f (A)(x ′) ⊂ f (A)(y′) ⊂ μ.

f (A)(x ′y′) ∈ λ = ∈{A(z) | z √ S, f (z) = x ′y′} ∈ λ

∪ ∈{A(xy) | x, y √ S, f (x) = x ′, f (y) = y′} ∈ λ

= ∈{A(xy) ∈ λ | x, y √ S, f (x) = x ′, f (y) = y′}
∪ ∈{A(x) ⊂ μ | x √ S, f (x) = x ′}
∪ ∈{A(x) | x √ S, f (x) = x ′} ⊂ μ

= f (A)(x ′) ⊂ μ.

Similarly prove f (A)(x ′y′) ∈ λ ∪ f (A)(y′) ⊂ μ, for all x ′, y′ √ S′.

f (A)(x ′) ∈ f (A)(y′) ∈ λ = {∈{A(x) | x √ S, f (x) = x ′}}
∈ {∈{A(y) | y √ S, f (y) = y′}} ∈ λ

= ∈{A(x) ∈ A(y) ∈ λ | x, y √ S, f (x) = x ′, f (y) = y′}
∪ ∈{A(xy) ⊂ μ | f (xy) = x ′y′, x, y √ S}
= ∈{A(xy) | f (xy) = x ′y′, x, y √ S} ⊂ μ

= f (A)(x ′y′) ⊂ μ.

Therefore f (A) is an (√,√ ∈q(λ,μ))-fuzzy completely prime ideal of S′.
(2) For all x, y √ S,

f −1(B)(xy) ∈ λ = B( f (xy)) ∈ λ = B( f (x) f (y)) ∈ λ ∪ B( f (x)) ⊂ B( f (y)) ⊂ μ

= f −1(B)(x) ⊂ f −1(B)(y) ⊂ μ

f −1(B)(xy) ∈ λ = B( f (xy)) ∈ λ = B( f (x) f (y)) ∈ λ

∪ B( f (x)) ⊂ μ = f −1(B)(x) ⊂ μ.

Similarly prove f −1(B)(xy) ∈ λ ∪ f −1(B)(y) ⊂ μ, for all x, y √ S.

f −1(B)(x) ∈ f −1(B)(y) ∈ λ = B( f (x)) ∈ B( f (y)) ∈ λ ∪ B( f (x) f (y)) ⊂ μ

= B( f (xy)) ⊂ μ = f −1(B)(xy) ⊂ μ.

So f −1(B) is an (√,√ ∈q(λ,μ))-fuzzy completely prime ideal of S.

Theorem 3.12 Let A be a fuzzy subset of S, t √ (λ, 1] and 2μ − λ > 1, then the
following statements are equivalent:
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(1) A is an (√,√ ∈q(λ,μ))-fuzzy completely prime ideal;
(2) At∈q(λ,μ) := {x √ S|A(x) ∪ t or A(x)+ t > 2μ} is a completely prime ideal.

Proof: (1)∇ (2) (a) Let xy √ At∈q(λ,μ) , we claim x √ At∈q(λ,μ) or y √ At∈q(λ,μ) . In
fact, we have A(xy) ∪ t or A(xy) + t > 2μ. Since A is an (√,√ ∈q(λ,μ))-fuzzy
completely prime ideal of S. Then A(x) ∈ A(y) ∈ λ ∪ A(xy) ⊂ μ.

Case 1: Suppose A(xy) ∪ t . Then A(x) ∈ A(y) ∈ λ ∪ t ⊂ μ. If t > μ, then
A(x) > μ or A(y) > μ. We get A(x)+ t > μ+μ = 2μ or A(y)+ t > μ+μ = 2μ.
If t ⇔ μ, then A(x) ∪ t or A(y) ∪ t . So x √ At∈q(λ,μ) or y √ At∈q(λ,μ) .

Case 2: Suppose A(xy) + t > 2μ. If t > μ and 2μ − λ > 1, then 2μ − t < μ
and λ < 2μ − t , A(x) ∈ A(y) ∈ λ ∪ A(xy) ⊂ μ > 2μ − t . So A(x) + t > 2μ or
A(y)+ t > 2μ. If t ⇔ μ then A(x)∈ A(y)∈λ ∪ μ ∪ t, i.e., A(x) ∪ t or A(y) ∪ t .
Hence x √ At∈q(λ,μ) or y √ At∈q(λ,μ) .

Similarly prove the following:
(b) If x, y √ At∈q(λ,μ) , then xy √ At∈q(λ,μ) ;
(c) If x √ At∈q(λ,μ) , y √ S, then xy √ At∈q(λ,μ) ;
(d) If x √ S, y √ At∈q(λ,μ) , then xy √ At∈q(λ,μ) .
(2)∀(1) (a1) We will prove A(x) ∈ A(y) ∈ λ ∪ A(xy) ⊂ μ. If the (a1) does not

hold, then there exist x0, y0 √ S such that A(x0)∈ A(y0)∈λ < A(x0 y0)⊂μ. Choose t
to satisfy A(x0)∈ A(y0)∈λ < t < A(x0 y0)⊂μ. Note that λ < t < μ, A(x0) < t and
A(y0) < t . Then A(x0)+ t < t + t < 2μ and A(y0)+ t < t + t < 2μ. This implies
x0√At∈q(λ,μ) and y0√At∈q(λ,μ) . Since A(x0 y0) ⊂ μ > t , we have A(x0 y0) > t . Thus
we get x0 y0 √ At∈q(λ,μ) . But x0√At∈q(λ,μ) and y0√At∈q(λ,μ) . This is a contradiction
to the fact that At∈q(λ,μ) is a completely prime ideal.

Similarly for all x, y √ S, we can prove the following:
(b1) A(xy) ∈ λ ∪ A(x) ⊂ A(y) ⊂ μ
(c1) A(xy) ∈ λ ∪ A(x) ⊂ μ
(d1) A(xy) ∈ λ ∪ A(y) ⊂ μ
Using (a1)(b1)(c1)(d1), A is an (√,√ ∈q(λ,μ))-fuzzy completely prime ideal of S.

4 Conclusion

In the study of fuzzy algebraic system, we notice that fuzzy ideals with special
properties always play an important role. In this paper, we give the new definition
of (√,√ ∈q(λ,μ))-fuzzy completely prime ideals of semigroups. Using inequalities,
characteristic functions and level sets, we consider its equivalent descriptions. Apart
from those, the properties of the intersection, union, homomorphic image and homo-
morphic preimage of (√,√ ∈q(λ,μ))-fuzzy completely prime ideal of semigroups are
investigated. The equivalence relationship between (√,√ ∈q(λ,μ)))-fuzzy completely
prime ideals and At∈q(λ,μ) is also discussed. Those results extend the corresponding
theories of fuzzy completely prime ideals and enrich the study of fuzzy algebra. At
present, although a series of work on this aspect have been done, there is much room
for further study.
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Soft Relation and Fuzzy Soft Relation

Yu-hong Zhang and Xue-hai Yuan

Abstract Molodtsov introduced the concept of soft sets as a general mathematical
tool for dealing with uncertainties. Research on soft set theory has been made progress
in recent years. This paper firstly introduce the concept of soft relation and fuzzy
soft relation; secondly we propose the concept of the projection and the section of
fuzzy soft relation and study some properties; finally we give the concept of fuzzy
soft linear transformation and get some conclusions.

Keywords Soft set · Soft relation · Fuzzy soft relation · Fuzzy soft linear transfor-
mation

1 Introduction

Soft set theory was initiated by Molodtsov [1] in 1999 as a general mathematical tool
for dealing with uncertainty, fuzzy, not clearly defined objects. Since then,several
special soft sets such as the fuzzy soft set [2], the generalized fuzzy soft set [3], the
interval-valued fuzzy soft sets [4], the interval-valued intuitionistic fuzzy soft set [5],
the bijective soft set [6] and the exclusive disjunctive soft set [7] have been proposed.
In recent years, great progress, both in theory and in application, has been made by
many authors. For example, the theoretical aspect of operations on soft sets [8–10],
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the soft topology on a soft set [11–13], the algebraic structure of soft set [14–18],
soft set relations and functions [19, 20] and the applications of soft sets in decision
making problem [21, 22].

Majumdar et al. [23] gave an idea of soft mapping. Based on that mapping and
relation are intimately connected, we introduce the notion of soft relation which is
the main purpose of this paper.

The organization of this paper is as follows: In Sect. 2, some preliminaries are
given. In Sect. 3, the definitions of soft relation and fuzzy soft relation are given and
some properties are studied. Section 4 present some conclusions from the paper.

2 Preliminaries

Definition 2.1. [1] Let U be an initial universe set and E be a set of parameters.
Let P(U ) denote the power set of U and A √ E. A pair (F, A) is called a soft set
over U iff F is a mapping given by F : A ∈ P(U ).

Example 2.2. Suppose a soft set (F, E) describes the attractiveness of the shirts
which the authors are going to wear.

U = the set of all shirts under consideration = {x1, x2, x3, x4, x5}
E ={colorful,bright,cheap,warm} = {e1, e2, e3, e4}
Let F(e1) = {x1, x2}, F(e2) = {x1, x2, x3}, F(e3) = {x4}, F(e4) = {x2, x5}

So, the soft set (F, E) is a family {F(ei ), i = 1, 2, 3, 4} of P(U ).

Definition 2.3. [23] Let A, B be two non-empty set and E be a parameter set. Then
the mapping F : E ∈ P(B A) is called a soft mapping from A to B under E, where
B A is the collection of all mappings from A to B.

Actually a soft mapping F from A to B under E is a soft set over B A.
The next definitions and results are from [24].
Let R ≤ F(X × Y ), x ≤ X, y ≤ Y , we set

(R |x )(y) = R(x, y), (R |y)(x) = R(x, y).
(R |[x])(y) = 1 − R(x, y), (R |[y])(x) = 1 − R(x, y).

(RX )(x) = ∨
y≤Y

R(x, y), (RY )(y) = ∨
x≤X

R(x, y).

(R[X ])(x) = ∧
y≤Y

R(x, y), (R[Y ])(y) = ∧
x≤X

R(x, y).

Property 2.4.

1. R[X ] ∃ RX .
2. R |[x] = Rc |x , Rc |[x] = (R |[x])c, Rc |x = (R |x )c.
3. R[X ] = ((Rc)X )c.
4. (R ∗ S)X = RX ∗ SX , (R ∪ S)X ∃ RX ∪ SX

(
⋃
t≤T

Rt )X = ⋃
t≤T

(Rt )X , (
⋂
t≤T

Rt )X ∃ ⋂
t≤T

(Rt )X .
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5. (R ∗ S)[X ] ⊂ R[X ] ∗ S[X ], (R ∪ S)[X ] = R[X ] ∪ S[X ].
(
⋃
t≤T

Rt )[X ] ⊂ ⋃
t≤T

(Rt )[X ], (
⋂
t≤T

Rt )[X ] = ⋂
t≤T

(Rt )[X ].

6. (
⋃
t≤T

Rt ) |x = ⋃
t≤T

(Rt ) |x , ( ⋂
t≤T

Rt ) |x = ⋂
t≤T

(Rt ) |x .

7. (
⋃
t≤T

Rt ) |[x] = ⋂
t≤T

(Rt ) |[x], (
⋂
t≤T

Rt ) |[x] = ⋃
t≤T

(Rt ) |[x].

Let R, S, T and Q be fuzzy relations, then we have that

1. (R ∇ S) ∇ T = R ∇ (S ∇ T ).
2. (R ∗ S) ∇ T = (R ∇ T ) ∗ (S ∇ T ), T ∇ (R ∗ S) = (T ∇ R) ∗ (T ∇ S).

(
⋃
t≤T

Rt ) ∇ T = ⋃
t≤T

(Rt ∇ T ), S ∇ (
⋃
t≤T

Rt ) = ⋃
t≤T

(S ∇ Rt ).

3. (λR) ∇ S = λ(R ∇ S) = R ∇ (λS) (λ ≤ [0, 1])
(
⋃

r≤Γ

λr R(r)) ∇ T = ⋃
r≤Γ

λr (R(r) ∇ T ), S ∇ (
⋃

r≤Γ

λr R(r)) = ⋃
r≤Γ

λr (S ∇ R(r)).

4. Q ∃ R ∀ Q ∇ T ∃ R ∇ T, S ∇ Q ∃ S ∇ R, Qn ∃ Rn ,
(
⋂

r≤Γ

R(r)) ∇ T ∃ ⋂
r≤Γ

(R(r) ∇ T ).

3 Soft Relation and Fuzzy Soft Relation

In this section we introduce the notion of soft relation and fuzzy soft relation and
study their properties. Let X be the universal set and E be a parameter set. Then the
pair (X, E) will be called a soft universe. Throughout this section we assume that
(X, E) is our soft universe.

Definition 3.1. Let A, B be two non-empty set and E be a parameter set. Then the
mapping

F : E ∈ P(A × B)

is called a soft relation from A to B under E, where P(A × B) is the set of all
relations from A to B.
Note: Actually a soft relation F from A to B under E is a soft set over A × B,
which is different from the definition of soft set relation in [19]. In fact, let (F, A)

and (G, B) be two soft sets over U, then a soft set relation from (F, A) to (G, B)

is a soft subset of (F, A) × (G, B), where (F, A) × (G, B) = (H, A × B),where
H : A × B ∈ P(U × U ) and H(a, b) = F(a) × G(b), where (a, b) ≤ A × B.

Example 3.2. Let R : A × B ∈ [0, 1] is a fuzzy relation on A and B. Then the
mapping

F : E = [0, 1] ∈ P(A × B)

α ⇔∈ Rα = {(x, y) ≤ A × B | R(x, y) > α}

is a soft relation from A to B under E .
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Definition 3.3. Let A, B be tow non-empty set and E be a parameter set. Then the
mapping

F : E ∈ F(A × B)

is called a fuzzy soft relation from A to B under E, where F(A × B) is the set of all
fuzzy relations from A to B.

Example 3.4. Let E = {e1, e2}, A = {a1, a2}, B = {b1, b2, b3}.
Let R1, R2 ≤ F(A × B) be defined as follows:

R1 =
(

0.3 0.7 0.5
0.6 1 0

)
, R2 =

(
0.7 1 0.6
0.5 0 0.4

)

Let F : E ∈ F(A × B) be defined as follows:

F(e1) = R1, F(e2) = R2

Then F is a fuzzy soft relation from A to B under E .

Definition 3.5. Let F be a fuzzy soft relation from A to A under E, we say that

1. F is reflexive≥ F(e) is reflexive,◦e ≤ E
2. F is symmetric≥ F(e) is symmetric,◦e ≤ E
3. F is transitive≥ F(e) is transitive,◦e ≤ E

A fuzzy soft relation F on A is called a fuzzy soft equivalence relation if it is
reflexive,symmetric and transitive.

Definition 3.6. Let F1 be a fuzzy soft relation from A to B under E,F2 be a fuzzy
soft relation from B to C under E.Then a new fuzzy soft relation,the composition of
F1 and F2 expressed as F1 ∇ F2 from A to C under E is defined as follows:

(F1 ∇ F2)(e) = F1(e) ∇ F2(e)

Let F and G be fuzzy soft relations from A to B under E,we set
F ≤ G ≥ ◦e ≤ E, F(e) ∃ G(e); F = G ≥ ◦e ≤ E, F(e) = G(e);
Fc(e) = (F(e))c; (F ∗ G)(e) = F(e) ∗ G(e);
(F ∪ G)(e) = F(e) ∪ G(e); (λF)(e) = λF(e).

Property 3.7. Let F, G and S be fuzzy soft relations,

1. (F ∇ G) ∇ S = F ∇ (G ∇ S).
2. (F ∗ G) ∇ S = (F ∇ S) ∗ (G ∇ S), S ∇ (F ∗ G) = (S ∇ F) ∗ (S ∇ G).

(
⋃
t≤T

Ft ) ∇ G = ⋃
t≤T

(Ft ∇ G), S ∇ (
⋃
t≤T

Ft ) = ⋃
t≤T

(S ∇ Ft ).

3. (λF) ∇ G = λ(F ∇ G) = F ∇ (λG) (λ ≤ [0, 1])
(
⋃

r≤Γ

λr F (r)) ∇ G = ⋃
r≤Γ

λr (F (r) ∇ G), S ∇ (
⋃

r≤Γ

λr F (r)) = ⋃
r≤Γ

λr (S ∇ F (r)).
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4. F1 ≤ F2 ∀ F1 ∇ G ≤ F2 ∇ G, S ∇ F1 ≤ S ∇ F2, Fn
1 ≤ Fn

2 ,

(
⋂

r≤Γ

F (r)) ∇ G ≤ ⋂
r≤Γ

(F (r) ∇ G).

Definition 3.8. Let F be a fuzzy soft relation from A to B under E. For a ≤ A and
b ≤ B, we set

F |a : E ∈ P(B)

e ⇔∈ F |a (e) = F(e) |a
F |b: E ∈ P(A)

e ⇔∈ F |b (e) = F(e) |b
F |[a]: E ∈ P(B)

e ⇔∈ F |[a] (e) = F(e) |[a]
F |[b]: E ∈ P(A)

e ⇔∈ F |[b] (e) = F(e) |[b]
FA : E ∈ P(A)

e ⇔∈ FA(e) = (F(e))A

FB : E ∈ P(B)

e ⇔∈ FB(e) = (F(e))B

F[A] : E ∈ P(A)

e ⇔∈ F[A](e) = (F(e))[A]
F[B] : E ∈ P(B)

e ⇔∈ F[B](e) = (F(e))[B]

Property 3.9. Let F be a fuzzy soft relation from A to B under E, then we have that

1. F[A] ≤ FA.
2. F |[a] = Fc |a, Fc |[a] = (F |[a])c, Fc |a = (F |a)c.
3. F[A] = ((Fc)A)c.
4. (F ∗ G)A = FA ∗ G A, (F ∪ G)A ≤ FA ∪ G A.

(
⋃
t≤T

Ft )A = ⋃
t≤T

(Ft )A, (
⋂
t≤T

Ft )A ≤ ⋂
t≤T

(Ft )A.

5. (F ∗ G)[A] ≥ F[A] ∗ G[A], (F ∪ G)[A] = F[A] ∪ G[A].
(
⋃
t≤T

Ft )[A] ≥ ⋃
t≤T

(Ft )[A], (
⋂
t≤T

Ft )[A] = ⋂
t≤T

(Ft )[A].

6. (
⋃
t≤T

Ft ) |a = ⋃
t≤T

(Ft ) |a, (
⋂
t≤T

Ft ) |a = ⋂
t≤T

(Ft ) |a.

7. (
⋃
t≤T

Ft ) |[a] = ⋂
t≤T

(Ft ) |[a], (
⋂
t≤T

Ft ) |[a] = ⋃
t≤T

(Ft ) |[a].
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Definition 3.10. Let F : E ∈ F(A × B) and T : E ∈ F(A), we set

T ∇ F : E ∈ F(B)

e ⇔∈ (T ∇ F)(e) = T (e) ∇ F(e)

Let T1 : E ∈ F(A) and T2 : E ∈ F(A),we set

T1 ∗ T2 : E ∈ F(A)

e ⇔∈ (T1 ∗ T2)(e) = T1(e) ∗ T2(e)

Let T : E ∈ F(A),we set

λT : E ∈ F(A)

e ⇔∈ (λT )(e) = λT (e)

Let F : E ∈ F(A × B) and T : E ∈ F(A),we set

λ(T ∇ F) : E ∈ F(B)

e ⇔∈ [λ(T ∇ F)](e) = λ(T (e) ∇ F(e))

Theorem 3.11. Let T1 : E ∈ F(A),T2 : E ∈ F(A) and F : E ∈ F(A × B),
then

(1) (T1 ∗ T2) ∇ F = (T1 ∇ F) ∗ (T2 ∇ F).
(2) (λT ) ∇ F = λ(T ∇ F).
(3) T1(e) ∃ T2(e) ∀ T1 ∇ F ≤ T2 ∇ F.

Proof. 1. [(T1 ∗ T2) ∇ F](e) = (T1 ∗ T2)(e) ∇ F(e) = [T1(e) ∗ T2(e)] ∇ F(e)
= [T1(e) ∇ F(e)] ∗ [T2(e) ∇ F(e)] = [(T1 ∇ F)(e)] ∗ [(T2 ∇ F)(e)] = [(T1 ∇ F) ∗
(T2 ∇ F](e). 2. [(λT )∇F](e) = (λT )(e)∇F(e) = λ[T (e) ∇ F(e)] = [λ(T ∇ F)](e).
Definition 3.12. Let FA = {TA | TA : E ∈ F(A)}, FB = {TB | TB : E ∈
F(B)}.
Let Γ : FA ∈ FB is a mapping. If for λt ≤ [0, 1], TA

(t) ≤ FA (t ≤ T ), we have
that

Γ (
⋃
t≤T

λt TA
(t)) =

⋃
t≤T

λtΓ (TA
(t))

then Γ is called a fuzzy soft linear transformation from A to B.
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Property 3.10. (1) Γ (TA
(1) ∗ TA

(2)) = Γ (TA
(1)) ∗ Γ (TA

(2)).
(2) Γ (λTA) = λΓ (TA).
(3) TA

(1) ≤ TA
(2) ∀ Γ (TA

(1)) ≤ Γ (TA
(2)).

i.e.TA
(1)(e) ∃ TA

(2)(e) ∀ Γ (TA
(1))(e) ∃ Γ (TA

(2))(e).

Theorem 3.13. Let Γ : FA ∈ FB be a fuzzy soft linear transformation from A
to B, then there is an unique fuzzy soft relation FΓ : E ∈ F(A × B) such that
Γ (TA) = TA ∇ FΓ ; On the contrary, let F : E ∈ F(A × B) be a fuzzy soft relation,
then there is an unique fuzzy soft linear transformation ΓF : FA ∈ FB such that
ΓF (TA) = TA ∇ F.

Proof. We first show that {TA(e) | TA ≤ FA} = F(A), for any e ≤ E .
In fact,for H ≤ F(A), we set TA

H : E ∈ F(A) and TA
H (e) ≡ H . Then

F(A) ⊂ {TA(e) | TA ≤ FA} ⊂ {TA
H (e) | H ≤ F(A)} = F(A). It follows that

{TA(e) | TA ≤ FA} = F(A),◦e ≤ E .
Let e ≤ E and fe : F(A) ∈ F(B) be a mapping such that fe(TA(e)) =

Γ (TA)(e), then
fe(

⋃
t≤T

λt TA
(t)(e)) = fe((

⋃
t≤T

λt TA
(t))(e)) = Γ (

⋃
t≤T

λt TA
(t))(e)

= (
⋃
t≤T

λtΓ (TA
(t)))(e) = ⋃

t≤T
λtΓ (TA

(t))(e) = ⋃
t≤T

λt fe(TA
(t)(e)).

Then fe is a fuzzy linear transformation from A to B.
Let FΓ : E ∈ F(A × B) be a mapping and
FΓ (e)(x, y) = Γ (TA

{x})(e)(y) = fe(TA
{x}(e))(y) = fe({x})(y).

Then Γ (TA)(e) = fe(TA(e)) = fe(
⋃

x≤A
λx

e{x}), where λx
e = TA(e)(x).

Then Γ (TA)(e) = ⋃
x≤A

λx
e fe({x}) = ⋃

x≤A
λx

e fe(TA
{x}(e)).

Then Γ (TA)(e)(y) = ∨
x≤A

(λx
e ≡ fe(TA

{x}(e))(y))

= ∨
x≤A

(TA(e)(x) ≡ FΓ (e)(x, y)) = (TA(e) ∇ FΓ (e))(y).

It follows that Γ (TA)(e) = TA(e) ∇ FΓ (e) and consequently Γ (TA) = TA ∇ FΓ .
We need to prove that FΓ is unique.
In fact, if the soft relation F : E ∈ F(A × B) satisfy Γ (TA) = TA ∇ F , then
FΓ (e)(x, y) = Γ (TA

{x})(e)(y) = (TA
{x}(e) ∇ F(e))(y)

= ({x} ∇ F(e))(y) = ∨
x ′≤A

({x}(x ′) ≡ F(e)(x ′, y)) = F(e)(x, y)

Hence,F(e) = FΓ (e).It follows that F = FΓ .
On the country, let F : E ∈ F(A × B) be a soft relation.
Let ΓF : FA ∈ FB

TA ⇔∈ ΓF (TA) = TA ∇ F
then ΓF is a fuzzy soft linear transformation. In fact,

Γ (
⋃
t≤T

λt TA
(t))(e) = (

⋃
t≤T

λt TA
(t))(e) ∇ F(e) = (

⋃
t≤T

λt TA
(t)(e)) ∇ F(e)

= ⋃
t≤T

(λt TA
(t)(e)) ∇ F(e) = ⋃

t≤T
λt (TA

(t) ∇ F)(e) = (
⋃
t≤T

λt (TA
(t) ∇ F))(e)
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= (
⋃
t≤T

λtΓ (TA
(t)))(e).

It follows that Γ (
⋃
t≤T

λt TA
(t)) = ⋃

t≤T
λtΓ (TA

(t)).

Since ΓF (TA) = TA ∇ F , ΓF is unique.

4 Conclusion

In this paper, we first introduced the concept of soft relation and fuzzy soft relation;
In the second, we proposed the concept of the projection and the section of fuzzy
soft relation and study their properties; Finally, we gave the concept of fuzzy soft
linear transformation and get some conclusions.
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Existence of Solutions for the Fuzzy Functional
Differential Equations

Ya-bin Shao, Huan-huan Zhang and Guo-liang Xue

Abstract In this paper, we consider the existence theorems of solution for fuzzy
functional differential equations under the compactness-type conditions and dissipa-
tive type conditions, via the properties of the embedding mapping from fuzzy number
to Banach space.

Keywords Fuzzy number · Fuzzy functional differential equations · Initial value
problems · Compactness-type conditions · Dissipative-type conditions

1 Introduction

The fuzzy differential equation was first introduced by Kandel and Byatt [1]. Since
1987, the Cauchy problems for fuzzy differential equations have been extensively
investigated by several authors [2–11] on the metric space (En, D) of normal fuzzy
convex set with the distance D given by the maximum of the Hausdorff distance
between the corresponding level sets. In particular, Kaleva [2] studied the initial
value problem

x
√
(t) = f (t, x(t)), x(t0) = x0

where f : T × En ∈ En is a continuous fuzzy mapping, T = [a, b], En is a fuzzy
number space and x0 ≤ En . The result was obtained as follows

Theorem 1. Let f : T × En ∈ En be continuous and assume that there exist a
k > 0 such that

D( f (t, x), f (t, y)) ∃ k D(x, y)

for all t ≤ T, x, y ≤ En. Then the above initial value problem has a unique solution
on T .
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Since then, many authors studied the existence and uniqueness of solutions for
the initial value problem for fuzzy differential equations under kinds of conditions
and obtained several meaningful results. However, those research findings were not
satisfactory. Until 1997, Nieto [3] proved the initial value problem for fuzzy dif-
ferential equations has solutions if f is a continuous and bounded function. It is
well known that the Lipschtz conditions can not be educed if f is a continuous
and bounded function. That is to say, the results in [3] were perfect complement
for the Theorem 1. What’s more, Wu and Song [5, 6] and Song, Wu and Xue [7]
changed the initial value problem of fuzzy differential equations into a abstract dif-
ferential equations on a closed convex cone in a Banach space by the operator j that
is the isometric embedding from (En, D) onto its range in the Banach space X . They
established the relationship between a solution and its approximate solutions to fuzzy
differential equations. Furthermore, they obtained the local existence theorem under
the compactness-type and dissipative-type conditions. Park and Han [8] obtained
the global existence and uniqueness of fuzzy solution of fuzzy differential equation
using the the properties of Hasegawa’s function and successive approximation.

There exists an extensive theory for function differential equations with includes
qualitative behavior of classes of such equations and application to biological and
engineering processes, for details, see [12, 13]. However, the concrete example is
the radio-cardiogram, where the two compartments correspond to the left and right
ventricles of the pulmonary and systematic circulation. Pipes coming out from and
returning into the same compartment may represent shunts, and the equation rep-
resenting this model is a nonlinear neutral Volterra integrodifferential equation in
[14]. This classes of equations also arise, for example, in the study of problems such
as heat conduction in materials with memory or population dynamics for spatially
distributed populations, see [15, 16]. It was well known that fuzzy functional differ-
ential equations are more exactly describe the objective worlds than fuzzy differential
equations, so the deeply researching of fuzzy functional equations is needed. In [18],
the existence and uniqueness of a fuzzy solution for the nonlinear fuzzy neutral func-
tional differential equation are established via Banach fixed point analysis approach.

In this paper, we investigate the Cauchy problems for fuzzy functional differential
equation

x √(t) = f (t, xt ), x(t0) = ϕ0

in fuzzy number space (En, D) by using the Radstorm embedding results [19].

2 Preliminaries

Let Pk(Rn) denote the family of all nonempty compact convex subset of Rn and
define the addition and scalar multiplication in Pk(Rn) as usual. Let A and B be
two nonempty bounded subset of Rn . The distance between A and B is defined by
the Hausdorff metric [20]:
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dH (A, B) = max{sup
a≤A

inf
b≤B

∗ a − b ∗, sup
b≤B

inf
a≤A

∗ b − a ∗}.

Denote En = {u : Rn ∈ [0, 1]|u satisfies (1)–(4) below } is a fuzzy number
space. where

1. u is normal, i.e. there exists an x0 ≤ Rn such that u(x0) = 1,
2. u is fuzzy convex, i.e. u(λx + (1 − λ)y) ∪ min{u(x), u(y)} for any x, y ≤ Rn

and 0 ∃ λ ∃ 1,
3. u is upper semi-continuous,
4. [u]0 = cl{x ≤ Rn|u(x) > 0} is compact.

For 0 < α ∃ 1, denote [u]α = {x ≤ Rn|u(x) ∪ α. Then from (1)–(4), it follows
that the α-level set [u]α ≤ Pk(Rn) for all 0 ∃ α < 1.

According to Zadeh’s extension principle, we have addition and scalar multipli-
cation in fuzzy number space En as follows: [u +v]α = [u]α +[v]α, [ku]α = k[u]α,

where u, v ≤ En and 0 ∃ α ∃ 1.

Define D : En × En ∈ [0,⊂)

D(u, v) = sup{dH ([u]α, [v]α) : α ≤ [0, 1]},

where dH is the Hausdorff metric defined in Pk(Rn). Then it is easy to see that D is
a metric in En . We know that [20]:

1. (En, D) is a complete metric space,
2. D(u + w, v + w) = D(u, v) for all u, v, w ≤ En ,
3. D(λu,λv) = |λ|D(u, v) for all u, v, w ≤ En and λ ≤ R.

The metric space (En, D) has a linear structure, it can be imbedded isomorphically
as a cone in a Banach space of function u∇ : I × Sn−1 −∈ R, where Sn−1 is the
unit sphere in Rn , with an imbedding function u∇ = j (u) defined by u∇(r, x) =
sup

α≤[u]α
∀α, x⇔ for all ∀r, x⇔ ≤ I ×Sn−1 [20]. For more detailed results about embedding,

we refer the read to [21]. For a development, see Ma [22].

Theorem 2. [19] There exist a real Banach space X such that En can be imbedding
as a convex cone C with vertex 0 into X. Furthermore the following conditions hold
true:

1. the imbedding j is isometric,
2. addition in X induces addition in En,
3. multiplication by nonnegative real number in X induces the corresponding oper-

ation in En,
4. C − C is dense in X,
5. C is closed.

In the following, we recall some main concepts and properties of integrability and
H-differentiability for the fuzzy number function [2, 21, 23–25].
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Let x, y ≤ En . If there exist a z ≤ En such that x = y + z, z is called the
H-difference of x and y. That is denoted x − y. For brevity, we always assume that
it satisfies the H-difference when dealing with the operation of subtraction of fuzzy
numbers throughout this paper.

Definition 1. [23] Let T = [t0, t0 + p] ≥ R(p > 0) be compact interval. A
mapping F : T ∈ En is differentiable at t0 ≤ T , if there exist a F

√
(t0) ≤ En, such

that the limits

lim
h∈0+

F(t0 + h) − F(t0)

h
, lim

h∈0+
F(t0) − F(t0 + h)

h

exist and are equal to F
√
(t0).

Here the limits are taken in the metric space (En, D). At the endpoint of T , we
consider only one-side fuzzy derivatives. If F : T ∈ En is differentiable at t0 ≤ T ,
then we say that F

√
(t0) is the fuzzy derivative of F(t) at the point t0.

The fuzzy mapping F : T ∈ En is called strong measurable, if for all α ≤ [0, 1]
the set-valued mapping Fα : T ∈ Pk(Rn) defined by Fα(t) = [F(t)]α is Lebesgue
measurable, where Pk(Rn) is endowed with the topology generated by the Hausdorff
metric d.

A mapping Fα : T ∈ En is called integrable bounded, if there exist an integrable
function h such that ∗ x ∗∃ h(t) for all x ≤ F0(t).

Definition 2. [24] Let F : T ∈ En. The integral of F over T , denote by
⎡

T F(t)dt,
is defined level-wise by the equation

⎣⎧
T

F(t)dt

⎪α

=
⎧

T
Fα(t)dt

= {
⎧

T
f (t)dt | f is a measurable selection f or Fα}

for all 0 < α ∃ 1.

A strongly measurable and integrable mapping Fα : T ∈ En is said to be
integrable over T if

⎡
T F(t)dt ≤ En . From [23], we know that if Fα : T ∈ En is

continuous, then it is integrable.

Theorem 3. [25] If F, G : T ∈ En be integrable and λ ≤ R, then

1.
⎡

T (F(t) + G(t))dt = ⎡
T F(t)dt + ⎡

T G(t)dt,
2.

⎡
T λF(t)dt = λ

⎡
T F(t)dt ,

3. D(F(t), G(t)) is integrable,
4. D(

⎡
T F(t)dt,

⎡
T G(t)dt) ∃ ⎡

T D(F(t) + G(t))dt.

Furthermore, we go on to list the contents on the Kuratowski’s measure of non-
compactness and the Ascoli-Arzela theorem in [26] on Banach space.
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Definition 3. [26] Let S be an arbitrary bounded subset of real Banach space X,
the Kuratowski’s measure of non-compactness is defined as:

α(S) = inf{δ > 0 : S =
m⎨

i=1

Si , d(Si ) ∃ δ}.

For T = [t0, t0+ p](p > 0), C[T, X ] denotes the space of the abstract continuous
function from T to X, the norm ∗x(t)∗ < maxt≤T ∗x(t)∗, ◦x ≤ C[T, X ], we denote
H(t) = {x(t) : x ≤ H} ≥ X.

Theorem 4. [26] A set H ≥ C(T, X) is a relative compact set if and only if H is
equi- continuous and fo any t ≤ T , H(t) is relative compact set in X.

In the following we list several comparison theorems on classical ordinary differ-
ential equations as follows:

Theorem 5. [26] Let G ≥ R2 be an open set g ≤ C[G, R1], (t0, u0) ≤ G. Suppose
that the maximum solution of initial value problem

u
√
(t) = g(t, u), u(t0) = u0

and its largest interval of existence of right solution is [t0, t0 + a), If [t0, t1] ≥
[t0, t0 + a), then there exists an ε0 > 0 such that the maximum solution r(t, ε) to the
initial value problem

u
√
(t) = g(t, u) + ε, u(t0) = u0 + ε

exists on [t0, t1] whenever 0 < ε < ε0,and r(t, ε) uniformly converges to r(t) on
[t0, t1] as ε ∈ 0+.

3 Main Results

In this section, by using theorem of εn-approximate solutions and the embedding
results on fuzzy number space En , we give the existence and uniqueness theorems
under dissipative-type conditions for the initial problem of the functional differential
equations:

x
√
(t) = f (t, xt ), x(t0) = ϕ0 ≤ En . (1)

Assume that (En, D) is a fuzzy number space, there exists a real number τ > 0,
let C = C[[−τ , 0], En]. For ϕ ≤ C , we define

D(ϕ, 0̌)0 = sup
t≤[−τ ,0]

D(ϕ(t), 0̌),
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where D(·)0 denoted the metric in En . Let F is a nonempty closed subset of (En, D),
we assume that CF = {ϕ ≤ C |ϕ(0) ≤ F}, C̃F = {ϕ ≤ C |ϕ(0) ≤ F,ϕ(t)} for all
t ≤ [−τ , 0]}. Obviously CF and C̃F are the closed subset in C . Let f ≤ C[R+ ×
CF , En]. From [27], we can get that there exist b > 0 such that f is bounded in
C0(b) = ∪t≤[t0,t0+a]({t} × Ct

F (b)).
Firstly, we list the basic definition of dissipative-type conditions as follows:

Definition 4. [7] Assume that V : [t0, t0 + a] × B(x0, b) × B(x0, b) ∈ R+ is a
continuous function provided

1. V (t, x, x) = 0, V (t, x, y) > 0(x �= y) for all t ≤ [t0, t0 + a], x, y ≤ B(x0, b)

and that lim
n∈⊂ V (t, xn, yn) implies lim

n∈⊂ D(xn, yn) = 0 whenever {xn} ≥
B(x0, b), {yn} ≥ B(x0, b),

2.
|V (t, x, y) − V (t, x1, y1)| ∃ L · (D(x − x1) + D(y − y1))

for every t ≤ [t0, t0 + a], x, y, x1, y1 ≤ B(x0, b), where L > 0 is a constant.
Then V is called a function of L − D type.

Definition 5. [7] Assume that f ≤ C[R0, En] and there exist a function V of L − D
type such that

D+V (t, x, y) ∃ g(t, V (t, x, y))

for all t ≤ [t0, t0 + a], x, y ≤ B(x0, b), where

D+V (t, x, y) = lim
h∈0+

1

h
[V (t + h, x + h f (t, x),

y + h f (t, y)) − V (t, x, y)]

and g ≤ C[[t0, t0 + a] × R+, R], g(t, 0) = 0 and maximum solution of the scalar
differential equation

u√ = g(t, u), u(t0) = 0,

is u = 0 on [t0, t0+a]. Then f is said to satisfy Lyapunov dissipative-type conditions.

Next we listed the conditions for using in this paper:
(H1) f ≤ C[[t0, t0+a]×CF , En] is a fuzzy number value function. t0 ≤ R+,ϕ0 ≤

CF , a, b and M(M ∃ 1) satisfies D( f (t,ϕ), 0̌) ∃ M − 1 for any (t,ϕ) ≤ C0(b),
(H2) For all (t,ϕ) ≤ [t0, t0 + a] × CF , we have

lim
h∈0+

1

λ
inf
z≤F

D(ϕ0 + h f (t,ϕ), z) = 0,

(H3) For all t ≤ [t0, t0 + a] and φt ≥ Ct
F (b), if α( jφt (s)) ∃ α( jφt (0))(◦s ≤

[−τ , 0]) we have
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lim
h∈0+

1

h
[α( jφt (0)) − α{ jϕ(0) − jh f (t,ϕ)|ϕ ≤ φt ]

∃g(t,α( jφt (0)))

where α(·) is the Kuratowski’s measure of non-compactness and j is the embedding
mapping from fuzzy number space En to Banach space X ,

(H4)

D( f (t,ϕ), f (t,ψ)) ∃ D(ϕ(0),ψ(0)) (2)

for t ≤ [t0, t0 + a], where ϕ,ψ ≤ Ct
F , such that

D(ϕ(T ),ψ(T )) ∃ D(ϕ(0),ψ(0)), ◦T ≤ [−τ , 0]

(H5)g ≤ C[[t0, t0 + a] × [0, 2b], R+] and g(t, 0) = 0, the initial problems

u
√ = g(t, u), u(t0) = 0

has only solution u(t) = 0.

Theorem 6. [27] Let r = min{a, b
M } and satisfies conditions (H1), (H2), then for

all 0 < ε < 1, the initial problem (1) has such ε−approximate solution x(t):
[t0 − τ , t0 + r ] ∈ En satisfies:

(a) There exist {σi |i = 0, 1, · · ·} ≥ [t0, t0 + r ] such that σ0 = t0,σi < σi+1,σi <

t0 + r,σi+1 − σi ∃ ε and implies lim
i∈⊂ σi = t0 + r ,

(b) For all t ≤ [t0 − τ , t0], we have x(t) = ϕ0(t − t0) and

D(x(t), x(s)) ∃ M |t − s|, ◦t, s ≤ [t0, t0 + r),

(c) For all i ∪ 0, (σi , xσi ) ≤ C0(b), and it is linear on every intervals [σi ,σi+1],
(d) For all t ≤ (σi ,σi+1), we have ∗ j x √(t) − j f (σi , xσi )∗ ∃ ε.

Next, we give the main results of this section.

Theorem 7. Assume that F is a nonempty closed convex subset of En, and satis-
fies conditions (H1), (H2), (H3) and (H4), then the initial problem (1) has unique
solution x(t) ≤ F for ◦t ≤ [t0, t0 + r ], where r = min{a, b

M }.
Proof Let {εn} ≥ (0, 1), and εn is monotone converges decreasingly to 0. Let xm , xn

are the εm-approximate solution and εn−approximate solution of initial problem (1)
which satisfies properties in Theorem 6. Since F is the convex set we have

xn(t) ≤ F, xm ≤ F. (3)

for t ≤ [t0, t0 + r ]. We define m(t) by
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m(t) = D(xm(t) − xn(t)), t ≤ [t0, t0 + r ]

When t ≤ (σn
i ,σn

i+1) ∩ (σn
j ,σ

n
j+1), we get

D+m(t) ∃ ∗ j x √
n(t) − j x √

m(t)∗ ∃ ∗ j xn(t) − j f (σn
i , xn,σn

i
)∗

+ ∗ j x √
m(t) − j f (σm

j , xm,σm
i
)∗

+ ∗ j f (σn
i , xn,σn

i
) − j f (t, xn,t )∗

+ ∗ j f (σm
j , xm,σm

i
) − j f (t, xm,t )∗

+ ∗ j f (t, xn,t ) − j f (t, xm,t )∗. (4)

From Theorem 6, we can obtain

D( f (t,ϕ), f (σn
i , xn,σn

i
)) ∃ εn

when (t,ϕ) ≤ [σn
i ,σn

i+1] × CF , D(ϕ − xn,σn
i
) ∃ 2Mδn

i , |t − σn
i | ∃ δn

i . From the
properties (d) in Theorem 6 and Eq. (4), we have

D+m(t) ∃ 2(εn + εm) + ∗ j f (t, xn,t ) − j f (t, xm,t )∗.

If t satisfies D(xn,t (T ) − xm,t (T )) ∃ D(xm(t) − xn(t)), we apply condition (H4)

D+m(t) ∃ 2(εn + εm) + g(t, m(t)) (5)

is true. Then, m(t) : [t0 − τ , t0 + r ] ∈ R+ is continuous and satisfies Eq. (5) for
◦t ≤ [t0, t0 +r ]\S(where S is a at most countable set that consisted of t and t satisfies
mt (T ) ∃ m(t)). According to Theorem 5, we have

m(t) ∃ rn,m(t,t0,0), t ≤ [t0, t0 + r ],

where rn,m(t,t0,0) is the maximum solution of initial problem

u√ = g(t, u) + 2(εn + εm), u(t0) = 0.

According to Theorem 4, rn,m(t, t0) converges uniformly to r(t, t0, 0) for t ≤ [t0, t0+
r ], where r(t, t0, 0) is the maximum solution of initial problem

u√ = g(t, u), u(t0) = 0.

From (H4), we get r(t, t0, 0) = 0. This indicated that

lim
n,m∈⊂ D(xn, xm) = 0.
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In other words, {xn(t)} converges uniformly to x(t) on [t0 −τ , t0 +r ]. From Theorem
6, x(t) is the solution of initial problem (1). From Eq. (3), we know that x(t) ≤ F
for t ≤ [t0, t0 + r ].

Finally, we prove uniqueness. Suppose x̃(t) is another solution of initial problem
(1) such that

x(t), x̃(t) ≤ F ∩ B[ϕ0(0), b], ◦t ≤ [t0, t0 + r ],

where B[ϕ0(0), b] = {x ≤ En|D(x,ϕ0(0)) ∃ b}. Let m(t) = D(x(t), x̃(t)). Then
similar to the proof of Eq. (4), we have

D+m(t) ∃ D( f (t, xt ), f (t, x̃t )) ∃ g(t, m(t))

for t > t0, mt (T ) ∃ m(t). Since mt0 = 0, according to Theorem 5 and condition
(H4), we know m(t) = 0, that is to say x(t) = x̃t . The proof is completed.

At the last, we give the existence theorems under the compactness-type conditions
for fuzzy functional differential equations.

Theorem 8. Assume that condition (H1), (H2), (H3) and (H5) satisfied. f is con-
tinuous uniformly on [t0, t0 +a]×CF . Let r = min{a, b

M }. Then the initial problems
(1) has at least one solution x(t) on [t0 − τ , t0 + r ] and x(t) ≤ F,◦t ≤ [t0, t0 + r ].
Proof Let {εn} ≥ (0, 1), εn is monotonous decreasingly converges to 0. Let {εn} is
the εn-approximate solution sequence of initial problem (1) and satisfied the proper-
ties (a)–(d) in Theorem 6. In fact, we need to prove that {xn} has a subsequence and
it converges uniformly on [t0 − τ , t0 + r ]. In fact, applying to Theorem 4, we need
to prove that {xn} is a relative compact set in En for ◦t ≤ [t0, t0 + r ]. (According to
Theorem 6, we already know {xn} is uniformly bounded and equi-continuous.)

Define
p(t) = α( j{xn}) ◦t ≤ [t0, t0 + r ].

We easily know, for any natural number k,

p(t) = α( j{xn(t)|n ∪ k}) = α( j{xn(τn(t))|n ∪ k}), (6)

and

α( j{xn − h f (τn(t), xn,τn(t))}) = α( j{xn(τn(t)) − h f (τn(t), xn,τn(t))}). (7)

Let t ≤ [t0, t0 + r ]. Combining Eqs. (6) and (7) if t ≤ (σn
i ,σn

i+1), we get

p(t) − p(t − h)

h
= 1

h
[α( j{xn(τn(t))}) − α( j{xn(t − h)})]

∃ 1

h
[α( j{xn(τn(t))}) − α( j{xn(t) − h f (τn(t), xn,τn(t))})]
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+ 1

h
[α( j{xn(t) − xn(t − h) − h f (τn(t), xn,τn(t))})]

= 1

h
[α( j{xn(τn(t))}) − α( j{xn(τn(t)) − h f (τn(t), xn,τn(t))})]

+ 1

h
[α( j{xn(t) − xn(t − h) − h f (τn(t), xn,τn(t))})]. (8)

According to the properties (d) in Theorem 6, we have

D(xn(t), xn(t − h)+h f (τn(t), xn,τn(t))) ∃
⎧ t

t−h
D(x √

n(s), f (τn(s), xn,τn(s)))ds

+
⎧ t

t−h
D( f (τn(s), xn,τn(s)), f (τn(t), xn,τn(t)))ds

∃ εnh +
⎧ t

t−h
D( f (τn(s), xn,τn(s)), f (τn(t), xn,τn(t)))ds

(9)

Since f (t, x) is continuous uniformly, there exists δ = δ(η) > 0 such that

|tn(s) − τn(t)| < δ, D(xn,τn(s), xn,τn(t))0 < δ

for ◦η > 0. We could obtain

D( f (tn(s), xn,τn(s)), f (tn(t), xn,τn(t))) < η.

On the other hand, we have

|tn(s) − τn(t)| < |t − s| + εn ∃ h + εn,

and D(xn(τn(s) + T ), xn(τn(t) + T )) =
⎩⎫
⎬

M |τn(s) − τn(t)| ∃ M(h + εn), t0 ∃ τs + T
D(ϕ0(τn(s) + T − t0),ϕ0(τn(t) + T − t0)), τn(t) + T ∃ t0
D(ϕ(τn(s) + T − t0),ϕ0(0)) + D(xn(t0), xn(τn(t) + T )), t0 − τn(T ) < T < t0 − τn(s).

Since ϕ0 is continuous uniformly on [−τ , 0], there exists δ̄ > 0, such that τs ≤
[t0, t0 + r ], τn(t) ≤ [t0, t0 + r ], and |τn(s) − τn(t)| ∃ h + εn < δ̄. We have
D(ϕ0(τn(s),ϕ0(τn(t))0 < δ

2 .

Hence

D(xn(τn(s) + T ), xn(τn(t) + T )) ∃

⎩⎭⎭⎫
⎭⎭⎬

M(h + εn), T ∪ t0 − τn(s)

δ
2 , T ∃ t0 − τn(t)

δ
2 + M(h + εn), t0 − τn(t) ∃ T ∃ t0 − τn(s).
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We make m = m(δ) big enough and h̃ small enough. When n ∪ m(δ), and h < h̃,
we get

εn < η, h + εn < δ̄, M(h + εn) ∃ δ

2
.

Then
1

h
D(xn(t), xn(t − h) + h f (τn(t), xn,τn(t))) ∃ εn + η < 2η.

For this reason, we have

1

h
α( j{xn(t) − xn(t − h) − h f (τn(t), xn,τn(t))})

= α( j{ xn(t) − xn(t − h)

h
− f (τn(t), xn,τn(t))|n ∪ m(η)}) ∃ 2(2η).

We can obtain

lim
h∈0+

1

h
α( j{xn(t) − xn(t − h) − h f (τn(t), xn,τn(t))}) ∃ 4η.

From the arbitrariness of η, we know that

lim
h∈0+

1

h
α( j{xn(t) − xn(t − h) − h f (τn(t), xn,τn(t))}) = 0.

According to Eq. (8), we have

D− p(t) ∃ lim
h∈0+

1

h
[α( j{xn(τn(t))} − α( j{xn(τn(t)) − h f (τn(t), xn,τn(t))})].

For any natural number N , we define Φ t
N = {xn,τn(t)|n ∪ N }. Next, when N big

enough, we will prove
Φ t

N ≤ Ct
F (b). (10)

In fact, we have D(xn(τn(t) + T ), y(t + T )) =
⎩⎫
⎬

D(xn(τn(t) + T ), xn(t0)) ∃ Mr ∃ b, τn(t) + T ∪ t0
D(ϕ0(τn(t) + T − t0),ϕ0(t + T − t0)), t + T ∃ t0
D(ϕ0(τn(t) + T − t0),ϕ0(0)), τn(t) + T ∃ t0 ∃ t0 + T .

Let δϕ0(b) > 0, such that |t − τn(t)| < δϕ0(b), we can obtain D(xn,τn(t), yt )0 ∃ b.

We make N big enough, when n ∪ N , we get

|t − τn(t)| ∃ εn ∃ εN < δϕ0(b).
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Thus, D(xn,τn(t), yt )0 ∃ b, in other words, Eq. (10) holds.
From condition (H3), we can easily prove D− p(t) ∃ g(t, p(t)) hold true. So,

according to Theorem 5, we have p(t) ∃ r(t, t0, 0), where r(t, t0, 0) is the maximum
solution of

u√ = g(t, u), u(t0) = 0

From (H4), we know p(t) ≡ 0. This completes the proof.

4 Conclusion

In [18], the existence and uniqueness of a fuzzy solution for the nonlinear fuzzy
neutral functional differential equation

d

dt
[x(t) − f (t, xt )] = Ax(t) + g(t, xt )

where A is a fuzzy coefficient and f and g are continuous function, were established
via Banach fixed point analysis approach. In this paper, we investigate the Cauchy
problems for fuzzy functional differential equation

x √(t) = f (t, xt ), x(t0) = ϕ0

in fuzzy number space (En, D) by using the Radstorm embedding results [19]. Our
results improve and extend the fuzzy functional differential equations and some
relevant results in ordinary fuzzy differential equations.
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The Generalized Solution for Initial
Problems of Fuzzy Discontinuous
Differential Equations

Ya-bin Shao, Huan-huan Zhang and Zeng-tai Gong

Abstract In this paper, we generalized the existence theorems of Caratheodory solu-
tion for initial problems of fuzzy discontinuous differential equation by the definition
of the ω − ACG√ for a fuzzy-number-valued function and the nonabsolute fuzzy
integral and its controlled convergence theorem.

Keywords Fuzzy number · Fuzzy-number-valued function · Fuzzy Henstock inte-
gral · Controlled convergence theorem · Discontinuous fuzzy differential equation ·
Generalized solutions

1 Introduction

The Henstock integral is designed to integrate highly oscillatory functions which the
Lebesgue integral fails to do. It is known as nonabsolute integration and is a powerful
tool. It is well-known that the Henstock integral includes the Riemann, improper
Riemann, Lebesgue and Newton integrals [1, 2]. Though such an integral was defined
by Denjoy in 1912 and also by Perron in 1914, it was difficult to handle using
their definitions. But with the Riemann-type definition introduced more recently by
Henstock [1] in 1963 and also independently by Kurzweil [2], the definition is now
simple and furthermore the proof involving the integral also turns out to be easy. For
more detailed results about the Henstock integral, we refer to [3]. Since the concept
of fuzzy sets [4] was first introduced by Zadeh in 1965, it has been studied extensively
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from many different aspects of the theory and applications, especially in information
science, such as linguistic information system and approximate reasoning [5–8],
fuzzy topology [9], fuzzy analysis [10], fuzzy decision making, fuzzy logic [11,
12] and so on. Recently, Wu and Gong [13, 14] have combined the above theories
and discussed the fuzzy Henstock integrals of fuzzy-number-valued functions which
extended Kaleva [15] integration. In order to complete the theory of fuzzy calculus
and to meet the solving need of transferring a fuzzy differential equation into a fuzzy
integral equation, we [16, 17] has defined the strong fuzzy Henstock integrals and
discussed some of their properties and the controlled convergence theorem.

On the other hand, the characterization of the derivatives, in both real and fuzzy
analysis, is an important problem. Bede and Gal [18] have subsequently introduced
a more general definition of a derivative for fuzzy-number-valued function enlarg-
ing the class of differentiable fuzzy-number-valued functions. Following this idea,
Chalco-Cano and Roman-Flores [19] have defined the lateral H-derivative for a
fuzzy-number-valued function.

The Cauchy problems for fuzzy differential equations have been studied by sev-
eral authors [15, 20–24] on the metric space (En, D) of normal fuzzy convex set
with the distance D given by the maximum of the Hausdorff distance between the
corresponding level sets. In [22], the author has been proved the Cauchy problem
has a uniqueness result if f was continuous and bounded. In [15, 21], the authors
presented a uniqueness result when f satisfies a Lipschitz condition. For a gen-
eral reference to fuzzy differential equations, see a recent book by Lakshmikantham
and Mohapatra [25] and references therein. In 2002, Xue and Fu [26] established
solutions to fuzzy differential equations with right-hand side functions satisfying
Caratheodory conditions on a class of Lipschitz fuzzy sets.

However, there are discontinuous systems in which the right-hand side functions
f : [a, b] × En ∈ En are not integrable in the sense of Kaleva [15] on certain
intervals and their solutions are not absolute continuous functions. To illustrate, we
consider the following example:

Example 1. Consider the following discontinuous system

x ≤(t) = h(t), x(0) = Ã,

g(t) =
⎡

2t sin 1
t2 − 2

t cos 1
t2 , t ∃= 0,

0, t = 0.

Ã(s) =
⎣⎧
⎪

s, 0 ∗ s ∗ 1,

2 − s, 1 < s ∗ 2,

0, others.

h(t) = χ|g(t)| + Ã.

Then h(t) = χ|g(t)| + Ã is not integrable in sense of Kaleva. However, above system
has the following solution:
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x(t) = χ|G(t)| + Ãt,

where

G(t) =
⎡

t2 sin 1
t2 , t ∃= 0,

0, t = 0.

In this paper, according to the idea of [27] and using the concept of generalized
differentiability [18], we shall prove the controlled convergence theorems for the
fuzzy Henstock integrals, which will be foundational significance for studying the
existence and uniqueness of solutions to the fuzzy discontinuous systems. As we
know, we inevitably use the controlled convergence theorems for solving the numer-
ical solutions of differential equations. As the main outcomes, we will deal with the
Cauchy problem of discontinuous fuzzy systems as following:

⎡
x ≤(t) = f (t, x)

x(τ ) = ξ ∪ En,
(1)

where f : U ∈ En is a fuzzy Henstock integrable function, and

U = {(t, x) : |t − τ | ∗ a, x ∪ En, D(x, ξ) ∗ b}.

To make our analysis possible, we will first recall some basic results of fuzzy num-
bers and give some definitions of absolutely continuous of fuzzy-number-valued
function. In addition, we present the concept of generalized differentiability. In
Sect. 3, we present the concept of fuzzy Henstock integrals and we prove a con-
trolled convergence theorem for the fuzzy Henstock integrals. In Sect. 4, we deal
with the Cauchy problem of discontinuous fuzzy systems. And in Sect. 5, we present
some concluding remarks.

2 Preliminaries

Let Pk(Rn) denote the family of all nonempty compact convex subset of Rn and
define the addition and scalar multiplication in Pk(Rn) as usual. Let A and B be
two nonempty bounded subset of Rn . The distance between A and B is defined by
the Hausdorff metric [28]:

dH (A, B) = max{sup
a∪A

inf
b∪B

⊂ a − b ⊂, sup
b∪B

inf
a∪A

⊂ b − a ⊂}.

Denote En = {u : Rn ∈ [0, 1]|u satisfies (1)–(4) below} is a fuzzy number
space. where

(1) u is normal, i.e. there exists an x0 ∪ Rn such that u(x0) = 1,
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(2) u is fuzzy convex, i.e. u(λx + (1 − λ)y) ∇ min{u(x), u(y)} for any x, y ∪ Rn

and 0 ∗ λ ∗ 1,
(3) u is upper semi-continuous,
(4) [u]0 = cl{x ∪ Rn|u(x) > 0} is compact.

For 0 < α ∗ 1, denote [u]α = {x ∪ Rn|u(x) ∇ α}. Then from above (1)–(4), it
follows that the α-level set [u]α ∪ Pk(Rn) for all 0 ∗ α < 1.

According to Zadeh’s extension principle, we have addition and scalar multipli-
cation in fuzzy number space En as follows [28]:

[u + v]α = [u]α + [v]α, [ku]α = k[u]α,

where u, v ∪ En and 0 ∗ α ∗ 1.

Define D : En × En ∈ [0,∀)

D(u, v) = sup{dH ([u]α, [v]α) : α ∪ [0, 1]},

where d is the Hausdorff metric defined in Pk(Rn). Then it is easy see that D is a
metric in En . Using the results [29], we know that

(1) (En, D) is a complete metric space,
(2) D(u + w, v + w) = D(u, v) for all u, v, w ∪ En ,
(3) D(λu,λv) = |λ|D(u, v) for all u, v, w ∪ En and λ ∪ R.

A fuzzy-number-valued function f : [a, b] ∈ RF is said to satisfy the condition (H)

on [a, b], if for any x1 < x2 ∪ [a, b] there exists u ∪ RF such that f (x2) = f (x1)+
u. We call u is the H-difference of f (x2) and f (x1), denoted f (x2) −H f (x1) [15].

For brevity, we always assume that it satisfies the condition (H) when dealing
with the operation of subtraction of fuzzy numbers throughout this paper.

It is well-known that the H-derivative for fuzzy-number-functions was initially
introduced by Puri and Ralescu [23] and it is based in the condition (H) of sets. We
note that this definition is fairly strong, because the family of fuzzy-number-valued
functions H-differentiable is very restrictive. For example, the fuzzy-number-valued
function f : [a, b] ∈ RF defined by f (x) = C ·g(x), where C is a fuzzy number, · is
the scalar multiplication (in the fuzzy context) and g : [a, b] ∈ R+, with g≤(t0) < 0,
is not H-differentiable in t0 (see [18]). To avoid the above difficulty, in this paper we
consider a more general definition of a derivative for fuzzy-number-valued functions
enlarging the class of differentiable fuzzy-number-valued functions, which has been
introduced in [18].

Definition 1. [18] Let f : (a, b) ∈ RF and x0 ∪ (a, b). We say that f is differen-
tiable at x0, if there exists an element f ≤(t0) ∪ RF , such that

(1) for all h > 0 sufficiently small, there exists f (x0 + h) −H f (x0), f (x0) −H

f (x0 − h) and the limits (in the metric D)

lim
h∈0

f (x0 + h) −H f (x0)

h
= lim

h∈0

f (x0) −H f (x0 − h)

h
= f ≤(x0)
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or
(2) for all h > 0 sufficiently small, there exists f (x0)−H f (x0 + h), f (x0 − h)−H

f (x0) and the limits

lim
h∈0

f (x0) −H f (x0 + h)

−h
= lim

h∈0

f (x0 − h) −H f (x0)

−h
= f ≤(x0)

or
(3) for all h > 0 sufficiently small, there exists f (x0 + h)−H f (x0), f (x0 − h)−H

f (x0) and the limits

lim
h∈0

f (x0 + h) −H f (x0)

h
= lim

h∈0

f (x0 − h) −H f (x0)

−h
= f ≤(x0)

or
(4) for all h > 0 sufficiently small, there exists f (x0) −H f (x0 + h), f (x0) −H

f (x0 − h) and the limits

lim
h∈0

f (x0) −H f (x0 + h)

−h
= lim

h∈0

f (x0) −H f (x0 − h)

h
= f ≤(x0)

(h and −h at denominators mean 1
h · and − 1

h ·, respectively).

3 The Fuzzy Henstock Integral and Its Controlled
Convergence Theorem

In this section we shall give the definition of the Henstock integral for fuzzy-number-
valued functions [13, 14] on a finite interval, which is an extension of the usual fuzzy
Kaleva integral in [15]. In addition, we define the properties of ω − AC , ω − AC√
and ω − ACG√ for fuzzy-number-valued functions. In particular, we shall prove a
controlled convergence theorems for the fuzzy Henstock integrals.

Definition 2. [1, 3] Let δ(x) be a positive function defined on the interval [a, b]. A
division P = {[xi−1, xi ] : ξi } is said to be δ− fine if the following conditions are
satisfied:

(1) a − x0 < x1 < · · · < xn = b;
(2) ξi ∪ [xi−1, xi ] ⇔ (ξi − δ(ξi ), ξi + δ(ξi )).

For brevity, we write P = {[u, v]; ξ}
Definition 3. [13, 14] Let f : [a, b] ∈ En be a fuzzy-number-valued function.
Then f (x) is said to be Henstock integrable to A on the interval [a, b] if for every
ε > 0, there exists a function δ(ξ) > 0 such that for any δ− fine division P =
{[xi−1, xi ] : ξi }, we have
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D(

n⎨
i=1

f (ξi )(xi−1, xi ), A) < ε.

We write (F H)
⎩ b

a f (x)dx = A or f ∪ F H [a, b].
Definition 4. [16] A fuzzy-number-valued function F is said to be absolutely contin-
uous on [a, b] if for every ε > 0 such that for every finite sequence of non-overlapping
intervals {[ci , di ]}, with

⎫n
i=1 |bi − ai | < η we have

⎨
D(F(di ), F(ci )) < ε.

We write F ∪ AC[a, b].
Definition 5. Let X ⇔ [a, b]. A fuzzy-number-valued function f defined on X is
said to be ω − AC(X) if for every ε > 0 such that for every finite sequence of
non-overlapping intervals {[ai , bi ]}, with αn

i=1|bi − ai | < η we have

⎨
D( f (bi ), f (ai )) < ε

where the endpoints ai , bi ∪ X for all i .

Definition 6. A fuzzy-number-valued function f defined on X ⇔ [a, b] is said to
be ω − AC√(X) if for every ε > 0 there exists η > 0 such that for every finite
sequence of non-overlapping intervals {[ai , bi ]}, satisfying αn

i=1|bi −ai | < η where
ai , bi ∪ X for all i we have

⎨
O( f, [ai , bi ]) < ε

where O denotes the oscillation of f over [ai , bi ],i.e.,

O( f, [ai , bi ]) = sup{D( f (x), f (y)); x, y ∪ [ai , bi ]}.

Definition 7. A fuzzy-number-valued function f is said to be ω − ACG√ on X if X
is the union of a sequence of closed sets {Xi } such that on each Xi , f is AC√(Xi ).

Theorem 1. If f is fuzzy Henstock integrable on [a, b], then its primitive F is
ω − ACG√ on [a, b].
Proof For every ε > 0, there is a function δ(ξ) > 0 such that for any δ-fine partial
division P = {[u, v], ξ} in [a, b], we have

⎨
D(F([u, v]), f (ξ)(v − u)) < ε.

We assume that δ(ξ) ∗ 1. Let
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Xn,i = {x ∪ [a, b] : D( f (x), 0̃) ∗ n,
1

n
< δ(x) ∗ 1

n − 1
, x ∪ [a + i − 1

n
, a + i

n
)}

for n = 2, 3, · · · , i = 1, 2, · · · . Fixed Xn,i and let {[ak, bk]} be any finite sequence
of non-overlapping intervals with ak, bk ∪ Xn,i for all k. Then {([ak, bk], ak)} is
a δ -fine partial division of [a, b]. Furthermore, if ak ∗ uk ∗ vk ∗ bk , then
{([ak, uk], ak)}, {([ak, vk], ak)} are δ-fine partial division of [a, b]. Thus

⎨
D(F(uk), F(vk))

∗
⎨

D(F(ak), F(uk)) +
⎨

D(F(bk), F(vk)) +
⎨

D(F(ak), F(bk))

∗ 3ε +
⎨

D( f (ak)(uk − ak), 0̃) +
⎨

D( f (bk)(bk − vk), 0̃)

+
⎨

D( f (ak)(bk − ak), 0̃) ∗ 3ε + 3n
⎨

(bk − ak).

Choose η ∗ ε
3n and

⎫
(bk − ak) < η. Then

⎨
O(F, [ak, bk]) ∗ 3ε + ε.

Therefore, F is ω − AC√(Xn,i ). Consequently, F is ω − ACG√ on [a, b]. This
completes the proof.

Theorem 2. [14] If f is fuzzy Henstock integrable on [a, b], then its primitive F̃ is
differentiable a.e. and F̃ ≤(x) = f̃ (x) a.e. on [a, b].
Theorem 3. If there exists a fuzzy-number-valued function F is continuous and
ω − ACG√ on [a, b] such that F ≤(x) = f (x) a.e. in [a, b], then f is fuzzy Henstock
integrable on [a, b] with primitive F.

Proof Let F be the primitive of f and F ≤(x) = f (x) for x ∪ [a, b] \ S where S
is of measure zero. For ξ ∪ [a, b] \ S, given ε > 0 there is a δ(ξ) > 0 such that
whenever ξ ∪ [u, v] ⇔ (ξ − δ(ξ), ξ + δ(ξ)) we have

D(F([u, v]), f (ξ)(v − u)) ∗ ε|v − u|.

Since F is continuous and ω − ACG√ on [a, b], there is a sequence of closed sets
{Xi } such that ≥i Xi = [a, b] and F is ω − AC√(Xi ) for each i . Let Y1 = X1, Yi =
Xi \ (X1 ≥ X2 · · ·≥Xi−1) for i = 1, 2, · · · and Si j denote the set of points x ∪ S ◦Yi

such that j −1 ∗ D( f, 0̃) < j . Obviously, Si j are pairwise disjointed and their union
is the set S. Since F is also ω − AC√(Si j ), there is a ηi j < ε2−i− j j−1 such that
for any sequence of non-overlapping intervals {Ik} with at least one endpoint of Ik

belonging to Si j and satisfying
⎫

k |Ik | < ηi j we have
⎫

k D(F(Ik), 0̃) < ε2−i− j .
Again, F(I ) denotes F(v) −H F(u) where I = [u, v]. Choose Gi j to be the union
of a sequence of open intervals such that |Gi j | < ηi j and Gi j ⊃ Si j where |Gi j |
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denotes the total length of Gi j . Now for ξ ∪ Si j , put (ξ − δ(ξ), ξ + δ(ξ)) ⇔ Gi j .
Hence we have defined a positive function δ(ξ).

Take any δ−fine division P = {[u, v]; ξ}. Split the
⎫

over P into partial sums⎫
1 and

⎫
2 in which ξ∪̄S and ξ ∪ S respectively and we obtain

D( f (ξ)(v − u), F([a, b])) ∗
⎨

1

D( f (ξ)(v − u), F([a, b]))

+
⎨

2

D(F([a, b]), 0̃) +
⎨

2

D( f (ξ)(v − u), 0̃)

< ε(b − a) +
⎨
i, j

ε2−i− j +
⎨

2

jηi j

< ε(b − a) + 2ε.

That is to say, f is fuzzy Henstock integrable to F on [a, b].
Theorem 4. (Controlled Convergence Theorem) If a sequence of fuzzy Henstock
integrable { fn} satisfies the following conditions:

(1) fn(x) ∈ f (x) almost everywhere in [a, b] as n ∈ ∀;
(2) the primitives Fn(x) = (F H)

⎩ x
a fn(s)dx of fn are ω − ACG√ uniformly in n;

(3) the primitives Fn(x) are equicontinuous on [a, b],
then f (x) is fuzzy Henstock integrable on [a, b] and we have

lim
n∈∀(F H)

⎬ b

a
fn(x)dx = (F H)

⎬ b

a
f (x)dx .

If condition (1) and (2) are replaced by condition (4):
(4) g(x) ∗ f (x) ∗ h(x) almost everywhere on [a, b], where g(x) and h(x) are

fuzzy Henstock integrable.

Proof In view of condition (3), F(x) exist as the limit of Fn(x) and is continuous.
In fact, for ∀λ ∪ [0, 1], (Fn(x))−λ and (Fn(x))+λ is uniformly ACG√ on [a, b]. By
the Controlled Convergence Theorem of real valued Henstock integral ([3]Theorem
7.6), F(x) is continuous. Because F−

λ (x) and F+
λ (x) is Henstock integrable on [a, b],

it follows condition (2) that F is ω − ACG√. From Theorem 3.2, it remains to show
that F ≤(x) = f (x) almost everywhere. Hence we obtain f (x) is Fuzzy Henstock
integrable on [a, b].

Next, we put G(x) = (F H)
⎩ x

a F(t)dt , in view of condition (3), for ∀λ ∪ [0, 1],
we have

lim
n∈∀(Fn(x))−λ = G−

λ (x) = F−
λ (x)

and
lim

n∈∀(Fn(x))+λ = G+
λ (x) = F+

λ (x).

So, let x = b, we have
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lim
n∈∀(F H)

⎬ b

a
fn(x)dx = (F H)

⎬ b

a
f (x)dx .

This completes the proof.

4 The Generalized Solutions of Discontinuous Fuzzy
Differential Equations

In this section, let τ and ξ be fixed and let a fuzzy-number-valued function f (t, x)

be a Carathéodoy function defined on a rectangle U : |t − τ | ∗ a, D(x, ξ) ∗ b, i.e.,
f is continuous in x for almost all t and measurable in t for each fixed x .

Theorem 5. Let a fuzzy-number-valued function f (t, x) be a function as given
above, then there exist two fuzzy Henstock integrable functions h and g defined
on |t − τ | ∗ a such that g(x) ∗ f (x) ∗ h(x) for all (t, x) ∪ U.

Proof Note that f (t, x)be a Carathéodoy function. Thus, there exist two measurable
functions u(t) and v(t) defined on |t − τ | ∗ a with values in D(x, ξ) ∗ b such that

f (t, u(t)) ∗ f (t, x) ∗ f (t, v(t))

for all (t, x) ∪ U . Next, we shall show that f (t, u(t)) and f (t, v(t)) are fuzzy
Henstock integrable by using the Controlled Convergence Theorem 4. First, there
exists a sequence {kn(t)} of step functions defined on |t − τ | ∗ a with values in
D(x, ξ) ∗ b such that kn(t) ∈ u(t) almost everywhere as n ∈ ∀. Let

Fn(t) =
⎬ t

τ
f (s, kn(s))ds.

Then {Fn(t)} is ω − ACG√ uniformly in n and equicontinuous. By the Con-
trolled Convergence Theorem 4, f (t, u(t)) is fuzzy Henstock integrable. Similarly,
f (t, v(t)) is fuzzy Henstock integrable.

Theorem 6. Let a fuzzy-number-valued function f (t, x) be a Carathéodoy function
defined on a rectangle U : |t − τ | ∗ a, D(x, ξ) ∗ b. Suppose that there exist two
fuzzy Henstock integrable functions g(t) and h(t) on the interval |t − τ | ∗ a such
that

g(t) ∗ f (t, x) ∗ h(t)

for all x and all most t with (t, x) ∪ U. Then there exist a solution φ of x ≤ = f (t, x)

on some interval |t − τ | ∗ β,β > 0 satisfying φ(τ ) = ξ.

Proof Given g(t) ∗ f (t, x) ∗ h(t) for all x and almost all t with (t, x) ∪ U , we
get 0 ∗ f (t, x) −H g(t) ∗ h(t) −H g(t). Let
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F(t, x) = f (t, x +
⎬ t

τ
g(s)ds) −H g(t).

Then F is a Carathéodoy function. Furthermore, 0 ∗ F(t, x) ∗ h(t)H g(t) for all
(t, x) ∪ U ≤, where U ≤ is a subrectangle U , such that D(x + ⎩ t

τ g(s)ds, ξ) ∗ b for all
(t, x) ∪ U ≤. Then, there is a fuzzy-number-valued function ψ≤(t) = F(t,ψ(t)) a.e.
in this interval and ψ(τ ) = ξ. Letφ(t) = ψ(t) + ⎩ t

τ g(s)ds.Then for almost all t , we
have

φ≤(t) = ψ≤(t) + g(t) = F(t,ψ(t)) + g(t)

= f (t,ψ(t) +
⎬ t

τ
g(s)ds) −H g(t) + g(t)

= f (t,φ(t))

and

φ(τ ) = ψ(τ ) +
⎬ t

τ
g(s)ds = ξ.

The proof is complete.
Now we shall state another existence theorem. The hypotheses involved in this

theorem are motivated by Theorem 4.

Theorem 7. Let a fuzzy-number-valued function f (t, x) be a Carathéodoy function
defined on a rectangle U : |t −τ | ∗ a, D(x, ξ) ∗ b. Let f (t, u(t)) be fuzzy Henstock
integrable on |t − τ | ∗ a for any step function u(t) defined on |t − τ | ∗ a with
values in D(x, ξ) ∗ b. Denote

Fu(t) =
⎬ t

τ
f (s, u(s))ds.

If {Fu : u is a step function} is ω − ACG√ uniformly in u and equicontinuous on
|t −τ | ∗ a, then there exist a solution φ of x ≤ = f (t, x) on some interval |t −τ | ∗ β
with φ(τ ) = ξ.

Proof By Theorem 5, let g(t) = f (t, u(t)), h(t) = f (t, v(t)), then by the condition
(4) in Theorem, we have a solution φ of x ≤ = f (t, x) on some interval |t − τ | ∗ β
with φ(τ ) = ξ. The proof is completed.

5 Conclusion

In this paper, we give the definition of the ω − ACG√ for a fuzzy-number-valued
function and the nonabsolute fuzzy integral and its controlled convergence theorem.
In addition, we deal with the Cauchy problem of discontinuous fuzzy differential
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equations involving the fuzzy Henstock integral in fuzzy number space. The func-
tion governing the equations is supposed to be discontinuous with respect to some
variables and satisfy nonabsolute fuzzy integrablility. Our result improves the result
given in Refs. [15, 18, 26] and [27] (where uniform continuity was required), as well
as those referred therein.
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Forecasting, Clustering and Recongnition



A Revised Grey Model for Fluctuating Interval
Fuzzy Series Forecasting

Xiang-yan Zeng, Lan Shu and Gui-min Huang

Abstract Grey models are built on the basis of the real number series, not the fuzzy
number series. In this paper, GM (1, 1), a basic prediction model of grey models, is
generalized to the fuzzy number series. GM (1, 1) based on interval fuzzy number
series [IFGM (1, 1)] is proposed firstly, which is suitable for the prediction of interval
number series with weak fluctuation. In order to extend its applicable range, a revised
model is then proposed. Markov prediction theory is applied to revising IFGM (1, 1)
to make it suitable for the fluctuating interval number series. The general development
tendency of the raw series is embodied by grey model and the random fluctuation is
reflected by Markov prediction. The first practical example has shown IFGM (1, 1) is
effective for small sample and weak fluctuating series. The consumer price indexes
of China from 1996 to 2009 are taken as an example of fluctuating interval number
series. Revised IFGM (1, 1), IFGM (1, 1), double exponential smoothing method
and autoregressive moving average (ARMA) are all applied to it. Comparison of
the results has shown the revised IFGM (1, 1)has the best precision than the other
models.
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1 Introduction

The grey system is an uncertainty system focusing on small sample and deficient
information [1, 2]. GM (1, 1), a basic prediction model of grey models, can be
established with only four items of data. Some researches have presented that this
model has high simulation accuracy when it is applied in the small sample time
sequence [3, 4]. There are many applications with small sample, such as practical
examples in [5–10]. In addition, as circumstances change, some old information
should be removed in order to make the prediction more accurate. However, most
of the statistic prediction methods need a large sample [11]. Therefore, GM (1, 1)
model has been widely used in many fields since it was proposed.

GM (1, 1) is based on the real number series, not the fuzzy number series [1,
2]. In many applications, the acquired attribute values often change in an interval
or a vicinity of a core number, so that the data are presented by the fuzzy numbers.
Therefore, it is significant to study the prediction models based on the fuzzy number
series. In this chapter, the grey prediction model of the interval fuzzy number series
will be researched.

The modeling mechanism of GM (1, 1) model is to use an exponential type of
curve to fit the raw data [2, 3]. So, before establishing the model, the sequence of
raw data should meet the grey exponential law or pass the class ratio test. Otherwise,
the model should be revised. The geometric figure of the prediction results of GM
(1, 1) is a smooth curve, which describes the general development trend of the
raw series. The random fluctuation of the development, however, is not taken into
account. In reality, there are many non-stationary random processes, for example,
the annual airline plane crash toll, the road traffic safety accidents, the commodity
market demand and the consumer price index. In this chapter, the GM (1, 1) model
based on the interval fuzzy number series [IFGM (1, 1)] is proposed firstly. Then,
for the long-term and strongly fluctuating series, the Markov prediction theory is
applied to revise the model.

The Markov prediction can describe a dynamic variation of a random time series.
It suits the prediction of the strongly fluctuating series. The grey prediction and the
Markov prediction are mutually complementary. The general development tendency
of the series is embodied by the grey prediction and the random fluctuation of the
series is reflected by the Markov prediction. In this chapter, the two prediction meth-
ods are integrated. It makes full use of the information of the raw data and improves
the forecast precision of the fluctuating series.

2 Definition Equation of GM (1, 1)

Let a real-number sequence be x (0)(t) = {x (0)(1), x (0)(2), · · · , x (0)(n)}, where ti is

the corresponding time. Let x (1)(i) =
i⎡

k=1
x (0)(k), i = 1, 2, · · · , n, which is called

the accumulated generating operation series (AGO series) in the grey system theory.
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Based on the AGO series x (1)(t) = {x (1)(i)}, the following equation is called the

white differential equation of GM (1, 1): dx (1)(t)
dt + ax (1)(t) = b. Make a definite

integral on the interval: [i − 1, i], then

⎣ i

i−1
dx (1)(t) + a

⎣ i

i−1
x (1)(t)dt = b

⎣ i

i−1
dt (1)

where
⎧ i

i−1 dx (1)(t) = x (1)(i) − x (1)(i − 1) = x (0)(i). Let z(1)(i) be the white
background value of x (1)(t) in the interval: [i − 1, i]. It is often adopted as the mean
value: z(1)(i) = 0.5(x (1)(i −1)+ x (1)(i)), i = 2, 3, · · · , n. Then a

⎧ i
i−1 x (1)(t)dt =

az(1)(i). Thus, the white differential equation of GM (1, 1) becomes as follows:

x (0)(i) + az(1)(i) = b, i = 2, 3, · · · , n (2)

Equation (2) is called the grey differential equation (or definition equation) of GM
(1, 1), where a is called the developing coefficient and b is called the grey input.

3 Interval Fuzzy GM (1, 1) [IFGM (1, 1)]

The modeling process of GM (1, 1) based on interval fuzzy number series [IFGM
(1, 1)] is given as follows.

Let the interval fuzzy number series be x̃ (0) = {x̃ (0)(1), x̃ (0)(2), · · · , x̃ (0)(n)},
where x̃ (0)(i) = [x (0)

L (i), x (0)
R (i)].

Definition 3.1 The accumulated generating operation series (AGO series) of x̃ (0)

is x̃ (1) = {x̃ (1)(1), x̃ (1)(2), · · · , x̃ (1)(n)}, where

x̃(1)(i) =
i⎪

k=1

x̃(0)(k) =
⎨
⎩ i⎪

k=1

x(0)
L (k),

i⎪
k=1

x(0)
R (k)

⎫
⎬ =

⎭
x(1)

L (i), x(1)
R (i)

]
, i = 1, 2, · · · , n

(3)

Definition 3.2 The mean generating operation series of x̃ (1) is z̃(1) = {z̃(1)(2), z̃(1)

(3), · · · , z̃(1)(n)}, where

z̃(1)(i) = 0.5(x̃ (1)(i − 1) + x̃ (1)(i)) = [0.5

(
i−1⎪
k=1

x (0)
L (k) +

i⎪
k=1

x (0)
L (k)

⎢
,

0.5

(
i−1⎪
k=1

x (0)
R (k) +

i⎪
k=1

x (0)
R (k)

⎢
] = [z(1)

L (i), z(1)
R (i)], i = 2, 3, · · · , n (4)
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Definition 3.3 The grey differential equation of the interval fuzzy number GM (1,
1) model [IFGM (1, 1)] is

x̃ (0)(i) + az̃(1)(i) = b̃ (5)

where a is said to be the integral development coefficient and taken as an exact
number. b̃ is said to be the grey input and taken as an interval fuzzy number: b̃ =
[bL , bR].

The integral development coefficient (a) in Eq. (1) is taken as the weighted mean
of the development coefficients of the left and right boundary points of the interval
fuzzy number because it represents the integral development tendency of the interval
fuzzy number series, not the tendency of a single boundary point. Furthermore, if a
is taken as an interval fuzzy number and the development trends of the left and right
boundaries have big differences, the relative positions of the left and right boundaries
of the prediction values will be disordered, which will result in the failure of the
prediction. The grey input (b̃) is taken as a fuzzy number because it represents the
overlaying of information of the fuzzy number series. That meets the connotative
definition of it.

Next, the parameter estimation of IFGM (1, 1) is given. Firstly, values (x̃ (0) and
z̃(1) ) are put into (1).

x̃ (0)(2) + az̃(1)(2) = b̃, x̃ (0)(3) + az̃(1)(3) = b̃, · · · , x̃ (0)(n) + az̃(1)(n) = b̃.

According to the computing criterion of the interval fuzzy number, the above equa-
tions are equal to the following two equations sets.

x (0)
L (2) + a√z(1)

L (2) = bL , x (0)
L (3) + a√z(1)

L (3) = bL , · · · , x (0)
L (n) + a√z(1)

L (n) = bL .

x (0)
R (2)+a√√z(1)

R (2) = bR, x (0)
R (3)+a√√z(1)

R (3) = bR, · · · , x (0)
R (n)+a√√z(1)

R (n) = bR .

By the least square method, we have

⎥
a√
bL

)
= (AT A)−1 AT YL ,

⎥
a√√
bR

)
= (BT B)−1 BT YR, (6)

where

A =

⎛
⎜⎜⎜⎝

z(1)
L (2) −1

z(1)
L (3) −1
· · · · · ·

z(1)
L (n) −1

⎞
⎟⎟⎟⎠, YL =

⎛
⎜⎜⎜⎝

−x (0)
L (2)

−x (0)
L (3)

· · ·
−x (0)

L (n)

⎞
⎟⎟⎟⎠, B =

⎛
⎜⎜⎜⎝

z(1)
R (2) −1

z(1)
R (3) −1
· · · · · ·

z(1)
R (n) −1

⎞
⎟⎟⎟⎠, YR =

⎛
⎜⎜⎜⎝

−x (0)
R (2)

−x (0)
R (3)

· · ·
−x (0)

R (n)

⎞
⎟⎟⎟⎠ .

The integral development coefficient (a) in IFGM (1, 1) is taken as the weighted
mean of a√ and a√√, i.e. a = (1 − β)a√ + βa√√, where if β > 0.5, the decision maker
prefers to the development trend of the upper limit of the interval fuzzy number
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series. If β < 0.5, the decision maker prefers the development trend of the lower
limit of the interval fuzzy number series.

After the parameter estimation, the time response of IFGM (1, 1) is given as
follows.

Theorem 3.1 The time response series of IFGM (1, 1) are

ˆ̃x (0)(i) = 2(2 − a)i−2(b̃ − ax̃ (0)(1))

(2 + a)i − 1
, i = 2, 3, · · · , n. (7)

Let predicted values be ˆ̃x (0)(i) = [x̂ (0)
L (i), x̂ (0)

R (i)], then

x̂ (0)
L (i) = 2(2 − a)i−2(bL − ax (0)

L (1))

(2 + a)i−1 , x̂ (0)
R (i) = 2(2 − a)i−2(bR − ax (0)

R (1))

(2 + a)i−1

Proof Due to Eq. (1) and z̃(1)(i) = 0.5(x̃ (1)(i − 1) + x̃ (1)(i)), we have

x̃ (0)(i) + 0.5a(x̃ (1)(i − 1) + x̃ (1)(i)) = b̃,

x̃ (1)(i) =
i⎡

k=1
x̃ (0)(k), we obtain x̃ (0)(i) + 0.5a(2x̃ (1)(i − 1) + x̃ (0)(i)) = b̃. Then

x̃ (0)(i) = b̃ − ax̃ (1)(i − 1)

1 + 0.5a
= b̃ − a(x̃ (0)(i − 1) + x̃ (1)(i − 2))

1 + 0.5a

= b̃ − ax̃ (1)(i − 2)

1 + 0.5a
− ax̃ (0)(i − 1)

1 + 0.5a
= x̃ (0)(i − 1) − ax̃ (0)(i − 1)

1 + 0.5a

= 2 − a

2 + a
x̃ (0)(i − 1) =

⎥
2 − a

2 + a

)i−2

x̃ (0)(2) =
⎥

2 − a

2 + a

)i−2 b̃ − ax̃ (0)(1)

1 + 0.5a

Thus

x̃ (0)(i) = 2(2 − a)i−2(b̃ − ax̃ (0)(1))

(2 + a)i−1 , i = 2, 3, · · · , n.

After the parameter estimation and taking ˆ̃x (0)(1) = x̃ (0)(1), Eq. (3) becomes the
time response of IFGM (1, 1) directly.

4 Modeling Condition for IFGM (1, 1)

Due to the modeling mechanism of GM (1, 1), the grey differential equation of GM
(1, 1): x (0)(i) + az(1)(i) = b, where z(1)(i) = 0.5(x (1)(i − 1) + x (1)(i)), is the
difference form of the white differential equation of GM (1, 1): dx (1)

dt + ax (1) = b,
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where x (1) is the accumulated generating operation series (AGO series) of the raw

series x (0). The solution of dx (1)

dt +ax (1) = b is x (1)(t) = (x (0)(1)− b
a )e−a(t−1) + b

a ,
which is an exponential type of curve. Therefore, the modeling mechanism of GM
(1, 1) model is to use an exponential type of curve to fit the AGO series. So we have
the modeling condition for GM (1, 1) is that the AGO series should meet the grey
exponential law or pass the class ratio test.

Definition 4.1 Let a non-negative sequence be x = {x(1), x(2), · · · , x(n)}. The
class ratio of x at point k is

σ(k) = x(k)

x(k − 1)
, k = 2, 3, · · · , n. (8)

Definition 4.2 Let a non-negative sequence be x = {x(1), x(2), · · · , x(n)}. Then

• If ∈k, σ (k) ≤ (0, 1), then x is said to have negative grey exponential law;
• If ∈k, σ (k) ≤ (1, b), then x is said to have positive grey exponential law;
• If ∈k, σ (k) ≤ (a, b), b − a = δ, then x is said to have grey exponential law with

absolutely grey degree δ;
• If δ < 0.5, then x is said to have quasi-exponential law.

For common non-negative sequences, by the accumulated generating operation
(AGO), the quasi-exponential law will appear. The smoother the sequence, the more
obvious the exponential law is. Then the precision of GM (1, 1) is better. This is the
theoretical basis for GM (1, 1) establishing.

From the above analysis, we have the modeling condition for IFGM (1, 1). It
is that the AGO series of the left and right boundary point series both have the
quasi-exponential law, namely,

x (1)(i + 1)

/
x (1)(i) =

i+1⎪
k=1

x (0)(k)

/ i⎪
k=1

x (0)(k) ≤ [a, b]

where b − a = δ < 0.5.

5 Revised IFGM (1, 1)

The geometric figure of the prediction results of GM (1, 1) is a smooth curve, which
describes the general development trend of the raw data. The random fluctuation
of the development is not taken into account. Therefore, for the strongly fluctuating
series, which normally can not meet the quasi-exponential law, the forecast precision
of GM (1, 1) is not high. The Markov prediction can describe a dynamic variation
of a random time series. It is suitable for the prediction of the strongly fluctuating
series. In this paper, the two prediction methods are integrated. The grey prediction



A Revised Grey Model for Fluctuating Interval Fuzzy Series Forecasting 249

is applied to indicate the general development tendency of the raw series and the
Markov prediction is applied to reflect the random fluctuation of the series. In this
way, the forecast precision of the fluctuating series is improved.

The simulated values of IFGM (1, 1) are ˆ̃x (0)(t) = [x̂ (0)
L (t), x̂ (0)

R (t)], t =
1, 2, · · · , n, including the left and right boundaries (i.e. x̂ (0)

L (t) and x̂ (0)
R (t)). Next,

the revised process for the left boundary point (x̂ (0)
L (t)) is proposed. It is similar for

the right boundary point (x̂ (0)
R (t)).

Step 1: (Status partition) According to the relative ratios of initial values against

simulation values of IFGM (1, 1), i.e. x (0)
L (t)

/
x̂ (0)

L (t), the system is divided into m

statuses, which is denoted as Ei ≤ [Ai , Bi ], i = 1, 2, · · · , m. The number of statuses
depends on the actual situation. The more raw data, the more statuses needed in order
to get proper transition frequencies between statuses.
Step 2: (Establish the transition probability matrix) Let Mi j (k) be the number of
raw data transferred from Ei to E j by k steps. Let Mi be the occurrence number

of Ei . Then the transition probability from Ei to E j by k steps is Pi j (k) = Mi j (k)

Mi
,

i, j = 1, 2, · · · , m. The transition probability matrix is P(k) = (Pi j (k))m×m . In
practice, only the one-step transition probability matrix (P(1)) is considered.
Step 3: (Predicted statuses identification) Let the predicted value at the (n + 1)th

moment of IFGM (1, 1) be x̂L(n + 1). If x̂L(n) is in the status of Ek . From the kth

row of P(1), the revised prediction value at the (n + 1)th moment ( x̂ √
L(n + 1) ) is

taken as:

x̂ √
L(n + 1) = x̂L(n + 1) ×

m⎪
j=1

1

2
Pkj (A j + B j ) (9)

Step 4: (Multi-step prediction) If the predicted value at the (n+1)th moment (x̂ √
L(n+

1)) is added into the raw series and step 1-4 are repeated, we can obtain the predicted
value at the (n + 2)th moment (x̂ √

L(n + 2)).

6 Practical Examples

Example 1 [10] From 1998 to 2002, a change sequence of a sort of energy price in
a region is: x̃ (0)={[1.05, 1.09], [1.05, 1.10], [1.09, 1.15], [1.10, 1.20], [1.15, 1.25]}.
Based on this series we establish the IFGM (1,1) model. By the software MATLAB,
the simulating process is as follows.

Step 1: From Eq. (3), the AGO series of x̃ (1) is:

x̃ (1) = {[1.05, 1.09], [2.10, 2.19], [3.19, 3.34], [4.29, 4.54], [5.44, 5.79]}.

Step 2: Quasi-exponential law test is made for x̃ (1). From Eq. (8), we have, for
k ∃ 3, σ

(1)
L (k) = {1.52, 1.34, 1.27}, σ

(1)
R (k) = {1.52, 1.36, 1.28}, then δL = 0.25,
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Table 1 Simulation results of IFGM (1, 1)

Raw data Simulation data Relative errors (%)

[1.05, 1.10] [1.0628, 1.0892] 1.22, 0.98
[1.09, 1.15] [1.1011, 1.1285] 1.02, 1.87
[1.10, 1.20] [1.1408, 1.1692] 3.71, 2.57
[1.15, 1.25] [1.1819, 1.2113] 2.78, 3.09
Average relative error 2.15

δR = 0.26. So x̃ (1) has the quasi-exponential law and the smoothness is good. IFGM
(1, 1) can be established.

Step 3: The mean generating operation series is:

z̃(1) = {[1.575, 1.64], [2.645, 2.765], [3.74, 3.94], [4.865, 5.165]}.

Step 4: From Eq. (6), the parameter estimation is:

⎥
a√
bL

)
=

⎥−0.0283
1.0068

)
,

⎥
a√√
bR

)
=

⎥−0.0425
1.0313

)
.

The integral developing parameter is taken as: a = 0.5a√ + 0.5a√√ = −0.0354.

Step 5: From Eq. (7), the data of simulation are obtained. Let the relative errors are
e(i) = ∣∣(x (0)(i) − x̂ (0)(i))/x (0)(i)

∣∣, i = 2, 3, 4, 5. The results are shown in Table 1.
The relative errors of the left and right bounds of the simulation data have respec-

tively been shown in Table 1. The average relative error of all is 2.15 %. In [10],
the average relative error is 2.52 % and the method of forecasting is more complex
than IFGM (1, 1). In addition, because the sample size is very small, the forecasting
methods of statistics are normally unsuitable.

Example 2 The Consumer Price Index (CPI) is the price change index of goods and
services bought by consumers. It is one of important indexes related to the inflation.
The State Statistics Bureau of China provides the CPI records of each month from
1996 to 2011. From the data of twelve months, the interval of the CPI in one year is
obtained. The values from 1996 to 2009 are taken as the raw series to establish the
revised IFGM (1, 1) and the value of 2010 will be predicted.

Through the class ratio test, we get

σL(k) ≤ [1.0750, 1.4752], σR(k) ≤ [1.0753, 1.4586], f or k ∃ 3.

Then δL = 0.4002, δR = 0.3833. From the test, we know the smoothness of the
raw series is not very good. The series has fluctuation.
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Table 2 The simulation data of IFGM (1, 1) and the relative ratios (%) of raw data against simulation
data

Year 1996 1997 1998

Raw data [106.9, 109.8] [100.4, 105.9] [98.5, 100.7]
Simulation data [106.9, 109.8] [99.23, 101.12] [99.47, 101.36]
Ratios (%) 100,100 101.18,104.73 99.03, 99.35

1999 2000 2001 2002
[97.8, 99.4] [99.7, 101.5] [99.4, 101.7] [98.7, 100.0]
[99.70, 101.59] [99.93, 101.83] [100.17, 102.07] [100.41, 102.31]
98.09, 97.84 99.76, 99.67 99.23, 99.64 98.30, 97.74

2003 2004 2005 2006
[100.2, 103.2] [102.1, 105.3] [100.9, 103.9] [100.8, 102.8]
[100.64, 102.55] [100.88, 102.79] [101.11, 103.03] [101.35, 103.28]
99.56, 100.63 101.21, 102.44 99.79, 100.84 99.46, 99.54

2007 2008 2009 2010
[102.2, 106.9] [101.2, 108.7] [98.2, 101.9] [101.5, 105.1]
[101.59, 103.52] [101.83, 103.76] [102.07, 104.01]
100.60, 103.27 99.38, 104.76 96.21, 97.98

Firstly, the IFGM (1, 1) is established. The parameter estimation of IFGM (1,
1) is: a√ = −0.0015, a√√ = −0.0032, bL = 98.8664, bR = 100.7415. The integral
development coefficient (a = (1 − β)a√ + βa√√, where let β = 0.5) is calculated as:
a = −0.0023. Thus the prediction formula of IFGM (1, 1) is as follows:

ˆ̃x (0)(i) = 2(2 + 0.0023)i−2([98.8664, 100.7415] + 0.0023 × [106.9, 109.8])
(2 − 0.0023)i−1 ,

i = 2, 3, · · · , n.

Next, the simulation data of IFGM (1, 1) ([x̂ (0)
L (t), x̂ (0)

R (t)]) and the relative ratios

of raw data against simulation data (x (0)
L (t)

/
x̂ (0)

L (t) and x (0)
R (t)

/
x̂ (0)

R (t)) are shown
in Table 2. The results show that the prediction result of IFGM (1, 1) is a smooth
curve, which indicates the general development tendency of the raw series. But the
fluctuation is not shown. Next, the revised process is as follows.

From Table 2, the ratio of x (0)
L against x̂ (0)

L , i.e. x (0)
L (t)

/
x̂ (0)

L (t), changes in the

interval: [96.21, 101.21 %]. The ratio of x (0)
R against x̂ (0)

R is in [97.74, 104.76 %].
Based on these, we give the status partitions of left bounds and right bounds respec-
tively in Table 3.

Due to the status partition, the 1-step transition probability matrixes of left and
right bounds are respectively as follows.
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Table 3 Status partitions

Left bounds Right bounds
Status Relative ratios (%) Status Relative ratios (%)

E1 96–98.5 E1 97–99.6
E2 98.5–100.5 E2 99.6–102.4
E3 100.5–102 E3 102.4–105

PL(1) =
⎛
⎝ 0 1 0

3/8 2/8 3/8
0 1 0

⎞
⎠, PR(1) =

⎛
⎝ 1

/
4 2

/
4 1

/
4

2/5 1/5 2/5
2
/

4 1
/

4 1
/

4

⎞
⎠

In 2009, the left and right boundaries are both in the status of E1. The forecast
value of IFGM (1, 1) in 2010 are x̂L(n +1) = 102.0682 and x̂R(n +1) = 104.0061.
Due to the first row of PL(1) and PR(1), we calculate the forecast value in 2010
according to (9).

x̂ √
L(n + 1) =102.0682 × 1

2
× (98.5 + 100.5 %) = 101.7965,

x̂ √
R(n + 1) =104.0061 × 1

2
× [1

4
× (97 + 99.6 %) + 2

4
× (99.6 + 102.4 %)

+ 1

4
× (102.4 + 105 %)] = 105.2930

Next, we will apply the exponential smoothing method and the autoregressive
moving average model (ARMA) to the example in order to show the compares of
these models with grey models. These models can not be established based on the
two bounds of the interval number directly because it destroys the integrity of the
fuzzy number and may cause the lower and upper bounds of the interval number
disordered. Therefore, we establish these models based on two transformed series
and then deduce the forecast values of the interval number series through simple
calculations. The two transformed series are the mid-point and length series of the
raw interval number series, denoted respectively as (x (0)

L + x (0)
R )/2 and x (0)

R − x (0)
L ,

which are

(x (0)
L + x (0)

R )/2 ={108.35, 103.15, 99.6, 98.6, 100.6, 100.55, 99.35,

101.7, 103.7, 102.4, 101.8, 104.55, 104.95, 100.05}
x (0)

R − x (0)
L ={2.9, 5.5, 2.2, 1.6, 1.8, 2.3, 1.3, 3, 3.2, 3, 2, 4.7, 7.5, 3.7}

By applying the software EVIEWS, we draw the correlograms of the two series and
make the model order estimation. Then we establish ARMA (2, 2) for (x (0)

L +x (0)
R )/2

and ARMA (2, 1) for x (0)
R − x (0)

L . For the exponential smoothing method, we adopt
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Table 4 Forecast results of 2010

Revised IFGM (1, 1) IFGM (1, 1)
Forecast data Relative errors (%) Forecast data Relative errors (%)

[101.7965, 105.2930] 0.29, 0.18 [102.3080, 104.2505] 0.80, 0.81
Double exponential smooth ARMA
[99.7944, 104.5905] 1.68, 0.48 [100.5146, 104.0258] 0.97, 1.02

double exponential smoothing method for the two series. The results of four models
are shown in Table 4.

From Table 4, we can see the relative errors of the left and right forecast bounds
of the revised IFGM (1, 1) (0.29 and 0.18%) are smaller than the ones of IFGM (1,
1) and is the smallest of the four models, which indicates that the revised IFGM (1,
1) model is effective as for the fluctuating series.

7 Conclusion

In this paper, we improved the definition equation of GM (1, 1) to make it suitable for
the interval fuzzy number series. IFGM (1, 1) and revised IFGM (1, 1) have been pro-
posed. The models have generalized the applicable range of grey prediction. IFGM
(1, 1) is suitable for interval fuzzy number series with weak fluctuation. Revised
IFNGM (1, 1) has integrated advantages of grey prediction and Markov prediction.
For the fluctuating series, the prediction precision has been improved. The prediction
of the fuzzy number series is a new issue in applications. There are many problems
needed to be studied. We will research further.

Acknowledgments This research is supported by the National Science Foundation of China
(No.11071178 and No.11162004) and the Research Foundation of Humanity and Social Science of
Ministry of Education of China (No.11YJAZH131). Authors would like to thank referees for their
helpful comments.

References

1. Deng, J.L.: Introduction to grey system theory. J. Grey Syst. 1(1), 1–24 (1989)
2. Deng, J.L.: Basis of Grey Theory. Huazhong University of Science and Technology Press,

Wuhan (2002)
3. Yao, T.X., Liu, S.F., Xie, N.M.: On the properties of small sample of GM(1,1) model. Appl.

Math. Model. 33, 1894–1903 (2009)
4. Liu, S.F., Deng, J.L.: The range suitable for GM (1,1). J. Grey Syst. 11(1), 131–138 (1999)
5. Wang, Y.F.: Predicting stock price using fuzzy grey prediction system. Expert Syst. Appl. 22(1),

33–38 (2002)



254 X. Zeng et al.

6. Xie, N.M., Liu, S.F.: Discrete grey forecasting model and its optimization. Appl. Math. Model.
33(1), 1173–1186 (2009)

7. Tan, G.J.: The structure method and application of background value in grey system GM (1,
1) model. J. Syst. Eng. Theory Pract. 5, 126–127 (2000)

8. Zhang, X.X., Xiao, X.P.: Study on the connotation of parameters in GM (1, 1) model. J. Grey
Syst. 18, 26–32 (2006)

9. Zeng, X.Y., Xiao, X.P.: Study on generalization for GM (1, 1) model and its application. Control
Decis. 24(7), 1092–1096 (2009)

10. Fang, Z.G., Liu, S.F.: Study on GM(11) model based on interval grey number (GMBIGN (11)).
Chin. J. Manage. Sci. 12(10), 130–134 (2004)

11. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)



Exponential Forecasting Model with Fuzzy
Number in Long-Distance Call Quantity

Bing-yuan Cao

Abstract An exponential forecasting model, in this paper, is established with fuzzy
numbers in long-distance call quantity, and a determining method is given in com-
parison with examples mentioned in the paper. Besides, the model is verified by
example comparison, and the effectiveness of its method.

Keywords Fuzzy number · Exponential model · Call quantity · Forecast.

1 Introduction

It proves by practice that the technical features of the long distance call quantity
meets index law, at the same time, the long distance call quantity statistics is quite
complex because there exists a lot of uncertainty. In this paper, we consider fuzzy
uncertainty, put forward the phone quantity forecasting model with fuzzy numbers. In
Sect. 2, we introduce the concept of triangular fuzzy numbers. In Sect. 3, we establish
an exponential forecasting model containing fuzzy numbers in the call quantity, and
give a method to determine it. In Sect. 4, through examples, we testify the model and
effectiveness of the proposed method. In Sect. 5, in comparison with the examples
and judgment, we obtain some regularity of results.
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2 Concept of Triangular Fuzzy Numbers

Definition 1 [1, 2] Suppose ⎡A ∈ F(X), As for α ∈ [0, 1], we write

Aα = ⎣
x ∈ X

⎧⎧μ⎡A(x) ≥ α
⎪
,

calling Aα the α-cut sets of ⎡A, while calling α a threshold or a confidence level.
Again we write down

Aα = ⎣
x ∈ X

⎧⎧μ⎡A(x) > α
⎪
,

calling Aα the α-strong cut sets of ⎡A.

Definition 2 [2, 3] Suppose ⎡A to be a fuzzy set in a real axis R, if it meets

1. ∃x0 ∈ R, such that Ã(x0) = 1;
2. ∀θ ∈ [0, 1], Aθ represents a finite closed interval in R,

we said Ã to be a fuzzy number in R.
By Definition 1 and 2, we know that α-cut sets of fuzzy number ⎡A can be expressed

in Aα = [AL
α , AR

α ], where

AL
α = inf

⎣
x ∈ X

⎧⎧μ Ã(x) ≥ α
⎪
,

AR
α = sup

⎣
x ∈ X

⎧⎧μ Ã(x) ≥ α
⎪
, α ∈ [0, 1].

Definition 3 [3, 4] Call fuzzy sets in real axis R a fuzzy number written down as

Ã =
⎨

x∈R

Ã(x)

x
or Ã ⇔ Ã(x) ∈ [0, 1],

where Ã(x) is a membership function in Ã.

Definition 4 [5, 6] Call fuzzy number Ã a triangular fuzzy number, if its membership
function μ Ã(x) meets

μ Ã(x) =

⎩⎫⎫⎫⎫⎬
⎫⎫⎫⎫⎭

x − aL

aM − aL
, aL ≤ x ≤ aM ,

0, others,
x − aR

aM − aR
, aM ≤ x ≤ aR,

where [aL , aR] is a supporting interval and point [aM , 1] is a peak value.

Definition 5 [5, 6] Call fuzzy number Ã a symmetric triangular fuzzy number in
the center, if its membership function μ Ã(x) meets
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μ Ã(x) =

⎩⎫⎬
⎫⎭

2 x−aL

a R−aL aL ≤ x ≤ aL+a R

2 ,

0, others,

2 x−a R

aL−a R
aL+a R

2 ≤ x ≤ aR .

Write Ã a symmetric triangular fuzzy number as (m, a), where m represents the
median value of three fuzzy numbers; a represents width of the left and right of the
triangular fuzzy number.

In particular, at a = 0, Ã degenerates to ordinary real numbers.

Definition 6 [4] We define

E( Ã) =
⎨

x∈R

x
μ Ã(x)∫

x∈R
μ Ã(x)dx

dx

as expectation value of fuzzy number Ã, where
μ Ã(x)∫

x∈R
μ Ã(x)dx

is a relative member-

ship degree of fuzzy number Ã.

Definition 7 [4] Suppose Ã = (a1, a2, a3) to be a triangular fuzzy number, then its
expectation value is defined as

E( Ã) = a1 + a2 + a3

3
. (1)

3 Exponential Model with Fuzzy Numbers

Due to a variety of uncertain factors, telephone traffic often produces a certain fluc-
tuation. If a backlog of fuzzy parameter in Eq. (1) is a fuzzy number, the model
will contain more information. Following that , we will fuzzify coefficients in Model
Eq. (1), and establish an exponential prediction model containing fuzzy coefficient.

We consider
Ỹ = Ã1 Ãt

2, (2)

where A1, A2 is triangular fuzzy numbers, Ãi = (aL
i , ai , aR

i ), calling Eq. (2) an
exponential model containing triangular fuzzy numbers. They are parameters to be
estimated, Ŷ (t) denotes the evaluation in telephone quantity during t years, and
telephone quantity fluctuates with various indeterminable factors.

Theorem 1 Problem Eq. (1) is equivalent to

E(Y ) = E(A1)E(At
2). (3)
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Proof Obviously.
1. Non-fuzzify Eq. (2) by use of Theorem 1 and we obtained Eq. (3). Linearize Eq. (3)
by taking logarithm and we can get

ln E(Y ) = ln E(A1) + t ln E(A2).

Coming next, we estimate parameters A1 and A2.
As for the given sample set {Y (t1), Y (t2), . . . , Y (tn)} ∈ [0, 1], we take any two

adjacent sample points tk, tk+1(k = 1, 2, . . . , N − 1), the least square estimations
for parameters A1, A2 are

ln E(Ŷ (tk)) = ln E(A1) + tk ln E(A2), (4)

ln E(Ŷ (tk+1)) = ln E(A1) + tk+1 ln E(A2). (5)

(4) × tk+1 − (5) × tk, and then we have

(tk+1 − tk) ln E(A1) = tk+1 ln E(Ŷ (tk)) − tk ln E(Y (tk+1)). (6)

2. Applying the least square method, we build an objective function by Eq. (6) as

J1 =
N−1∑
k=1

[tk+1 ln E(Ŷ (tk)) − tk ln E(Y (tk+1)) − (tk+1 − tk) ln E(A1)]2.

Again, applying the method, we build an objective function by Eq. (4) as

J2 =
N∑

k=1

[ln E(Y (tk)) − ln E(Ŷ (tk))]2 =
N∑

k=1

[ln E(Y (tk)) − (ln E(A1) + tk ln E(A2))]2.

Let
γ J1

γ ln A1
= 0,

γ J2

γ ln A2
= 0. Write down ρtk = tk+1 − tk , and we obtained

N−1∑
k=1

[tk+1 ln E(Ŷ (tk)) − tk ln E(Y (tk+1))]ρtk =
N−1∑
k=1

ρt2
k ln E(A1), (7)

2
N∑

k=1

[ln E(Y (tk)) − ln E(A1) − tk ln E(A2))]tk = 0. (8)

Solve Eqs. (7 and 8) and we get
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A = exp

⎩⎫⎫⎫⎬
⎫⎫⎫⎭

N−1⎢
k=1

[ρtk ln E(Ŷ (tk)) −
N−1⎢
k=1

tk ln
E(Y (tk+1))

E(Y (tk))
N−1⎢
k=1

ρt2
k

⎥⎫⎫⎫
⎫⎫⎫⎛

, (9)

B = exp

⎩⎫⎫⎫⎬
⎫⎫⎫⎭

N−1⎢
k=1

tk ln E(Y (tk)) − ln E(A1)
N⎢

k=1
tk

N⎢
k=1

t2
k

⎥⎫⎫⎫
⎫⎫⎫⎛

. (10)

Especially, at tk = k(k = 1, 2, . . . , N ), we have E(Y (tk)) = E(Y (k)), where
ρtk = 1, and we change Eqs. (9), (10) into

A = exp

⎩⎫⎫⎫⎬
⎫⎫⎫⎭

N−1⎢
k=1

[ln E(Ŷ (k)) −
N−1⎢
k=1

k ln
E(Y (k + 1))

E(Y (k))

N − 1

⎥⎫⎫⎫
⎫⎫⎫⎛

, (11)

B = exp

⎩⎫⎫⎫⎬
⎫⎫⎫⎭

6
N⎢

k=1
k ln E(Y (k)) − 3N (N + 1) ln E(A1)

N (N + 1)(2N + 1)

⎥⎫⎫⎫
⎫⎫⎫⎛

. (12)

Its deterministic model refers to

E(Y (k)) = E(A1)E(Ak
2). (13)

Again by formula

S =

⎜⎝⎝⎝⎞
N⎢

k=1
[E(Y (tk)) − E(Ŷ (tk))]2

N
, (14)

e % = 1

N

N∑
k=1

|1− E(Y (tk))

E(Ŷ (tk))
| × 100 %, (15)

after finding a standard deviation S in a forecasting error and an average relative error
percentage e %, we determine a fitting degree for forecasting models.

Its deterministic model refers to

Ŷ (k) = Â1 Âk
2, (16)
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Therefore, the fuzzy exponential model corresponding to Eq. (2) is

Ỹ (k) = Ã1 Ãk
2. (17)

4 Practical Example

Example 1 Long-distance call in China during 2000–2010 as follows (Table 1):
Forecast time for telephone by applying an exponential Model Eq. (16) and we

have (Table 2)
If we use Eqs. (11) and (12), we can get parameters A1 = 12,380, A2 = 1.2069,

then
E(Y (k)) = 12,380 × 1.2069k . (18)

By a standard deviation formula (14)

S =

⎜⎝⎝⎝⎞
11⎢

k=1
[E(Y (k)) − E(Ŷ (k))]2

11
,

we can obtain S = 4019. Again, from formula (15) of a percentage error

Table 1 Quantity of long-distance call

Year No Practical date Year No Practical date

2000 1 [21000, 21404, 21808] 2006 7 [42200, 42303, 42402]
2001 2 [18000, 22049, 22080] 2007 8 [51000, 51525, 52046]
2002 3 [21000, 23574, 24334] 2008 9 [64000, 64617, 65232]
2003 4 [26200, 26556, 26618] 2009 10 [78000, 78462, 78920]
2004 5 [31500, 31553, 51602] 2010 11 [97832, 106291, 106391]
2005 6 [38000, 38254, 38504]

Table 2 Quantity of long-distance call

Year No Practical date Year No Practical date

2000 1 21404 2006 7 42303
2001 2 22049 2007 8 51525
2002 3 23574 2008 9 64617
2003 4 26556 2009 10 78462
2004 5 31553 2010 11 106291
2005 6 38254
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e % = 1

11

11∑
k=1

|1− E(Y (k))

E(Ŷ (k))
| × 100 %,

we can get an average relative error to be 8.21 %. While, by the aid of geometric
average, we obtain S = 9,405, e = 19.78 %, and S = 4,811, e = 9.74 %$ by average value
exponential curve. Therefore, the fuzzy exponential forecast method mentioned here
is superior to the above two [7].

Under the fiducial degree of 95 %, the long-distance call in China vary at the
following interval Ŷ ± S. Hence, their forecast quantity between 2000–2010 shows
below (Table 3):

Table 3 Forecast quantity of long-distance call in China

Year No Practical date Year No Practical date

2000 1 [21000, 21404, 21808] 2006 7 [42200, 42303, 42402]
2001 2 [18000, 22049, 22080] 2007 8 [51000, 51525, 52046]
2002 3 [21000, 23574, 24334] 2008 9 [64000, 64617, 65232]
2003 4 [26200, 26556, 26618] 2009 10 [78000, 78462, 78920]
2004 5 [31500, 31553, 51602] 2010 11 [97832, 106291, 106391]
2005 6 [38000, 38254, 38504]

5 Conclusion

The method in this paper is an extension of exponential forecast model. A forecasting
value is obtained for a linearized model respectively by adopting a two-step of the

least square method. Each forecast value
�
Y (t) fluctuates in the band region composed

of Y, which presents us more information. It is pointed out that the model here can
be still expanded to situation with various fuzzy coefficients and evens with fuzzy
variables. [1, 8–11].
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Contingent Valuation of Non-Market Goods
Based on Intuitionistic Fuzzy Clustering: Part I
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Abstract In order to value the non-market goods, we consider the uncertain prefer-
ence of the respondents for non-market goods, individual often have trouble trading
off the good or amenity against a monetary measure. Valuation in these situations
can best be described as fuzzy in terms of the amenity being valued. We move away
from a probabilistic representation of uncertainty and propose the use of intuitionistic
fuzzy contingent valuation. That is to say we could apply intuitionistic fuzzy logic
to contingent valuation. Since intuitionistic fuzzy sets could provide the information
of the membership degree and the nonmembership degree, it has more expression
and flexibility better than traditional fuzzy sets in processing uncertain information
data. In this paper, we apply intuitionistic fuzzy logic to contingent, developing an
intuitionistic fuzzy clustering and interval intuitionistic fuzzy clustering approach for
combining preference uncertainty. We develop an intuitionistic fuzzy random utility
maximization framework where the perceived utility of each individual is intuition-
istic fuzzy in the sense that an individual’s utility belong to each cluster to some
degree. Both the willingness to pay (WTP) and willingness not to pay (WNTP) mea-
sures we obtain using intuitionistic fuzzy approach are below those using standard
probability methods.
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1 Introduction

The contingent valuation method (CVM) is a widely used technique to estimate eco-
nomic values for all kinds of ecosystem and environmental services. It can be used
to estimate both use and non-use values, and it is the most widely used method for
estimating non-use values. Most CV surveys rely on a dichotomous choice question
to elicit willingness to pay (WTP) and willingness not to pay (WNTP). Calcula-
tion of the Hicksian compensating or equivalent welfare measure is based on the
assumption that the survey respondent knows her utility function with certainty [1].
The assumption of preference certainty is a strong one because CV seeks to elicit
values for environmental resources from respondents who may lack the experience
to make such assessments. While Hanemann [1] provide an explanation of what
preference uncertainty means in the context of the CV method, several authors have
adopted varying but complex approaches for dealing with preference uncertainty in
non-market valuation [2]. Apparent precision of standard WTP and WNTP estimates
faces the underlying uncertainty of preferences and may lead to bias outcomes. In
the random utility maximization (RUM) framework popularized by Hanemann [1],
an individuals utility is modeled as consisting of a deterministic component plus
an unobservable random error. However, there are some uncertain which is unsure
about a respondent’s preference [3]. In the tradition contingent valuation, response
have two choice take it or leave it, we only know that an individual’s compensating
surplus is greater or less than the offered payment, but not by how much. Attempts
have been made to hone in on the compensating surplus using a follow-up ques-
tion, as in the double-bounded approach that seeks to increase the confidence of the
estimated welfare measure. Our view is that the valuation can be best be described
as fuzzy in terms of perceptions about the property rights to be good, the amenity
being valued, and the actual tradeoffs between the amenity and money metric. In
the area of non-market valuation Cornelis Van Kooten [4] may have been the first
apply fuzzy logic to the context of non-market valuation, the researchers found that
fuzzy as fuzzy as opposed to conventional regression significantly improved the
mean squared error, fuzzy set theory [5] provides a useful alternative for interpreting
preference and analyzing willingness to pay respondences in the CV framework.
Fuzzy logic addresses both imprecision about what is to be valued and uncertainty
about values that are actually measured. In the article of sun and Van Kooten [6]
they use the fuzzy cluster approach to fuzzify respondent utility functions from the
beginning. Cluster analysis is commonly used for pattern recognition, soft learn-
ing, and other engineering applications. In economics, it is mainly used to segment
markets by incorporating heterogeneous preferences. Thus, in modeling choice of
shopping trips. In the context of non-market valuation, Boxall and Adamowicz [7]
applied latent segmentation to the choice of wilderness recreation sites, identifying
latent classes by incorporating motivation, perceptions and individual characteris-
tics. They found significant differences in welfare measures with the segment model.
Fuzzy clustering analysis provides an alternative to the latent segmentation model
that addresses non-linearity in a flexible way and avoids identification problems.
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Intuitionistic fuzzy sets are defined by Atanassov in 1986 just for deal with uncertainty
information. Since intuitionistic fuzzy sets could provide the information of the mem-
bership degree and the non-membership degree, it has more expression and flexibility
better than traditional fuzzy sets in processing uncertain information data.

In our article we apply intuitionistic fuzzy cluster and interval intuitionistic fuzzy
cluster approach to fuzzify respondent utility functions, from Takagi-Sugeno fuzzy
inference, we get Takagi-Sugeno [8] intuitionistic fuzzy inference. We develop a
intuitionistic fuzzy random utility maximization (IFRUM) framework for analyzing
follow-up certainty responses to a dichotomous valuation question. The intuitionistic
fuzzy results are compared with those obtained from a traditional RUM approach
and an intuitionistic fuzzy approach. The paper is organized as follows. In the next
section, we present the economic principle of contingent valuation, our empirical
model is described in Sects. 3, 4, 5 and 6. We introduce intuitionistic fuzzy clustering,
interval intuitionistic fuzzy clustering, Takagi-Sugeno intuitionistic fuzzy inference
and intuitionistic fuzzy random utility maximization principle.

2 The Economic Principle of Contingent Valuation

The individual’s preference across a bundle of market commodities c and environ-
ment quality q can be described by a utility function μ(c, q). In general the utility
function is assumed to be strictly increasing, continuous, and strictly quasi-concave.
Given income m prices p for market commodities c, and the environment quality q,
the maximum attainable utility function v(p, q, m). A dual problem is to solve for
the minimum expenditure that would sustain a certain utility level, given prices and
environment quality taking the inverse of v(p, q, m) with respect to m. We have the
expenditure function e(p, q, μ) = v−1(p, q, μ), at initial price p0, initial environ-
ment quality q0, and initial income m0, initial utility is μ0 = v(p0, q0, m0). At the
same price and environment quality, and it is obvious that initial income maintains
initial utility m0 = e(p0, q0, μ0), if the environment quality is changed to a new
level q1, the minimum expenditure required to restored the initial utility would be
e(p0, q1, μ0). By the definition, the expenditure difference constitutes the compen-
sating values of environment change y(q1, q0, m0) = m0 − e(p0, q1, μ0), since the
expenditure function is strictly decreasing and convex in the environment quality q,

given assumption on utility. The Hicksian value above is positive for an environment
improvement, and negative for an environment deterioration.

3 Intuitionistic Fuzzy Clustering

The theoretical foundations of fuzzy in [5] and intuitionistic fuzzy sets are described
in [9], and the section briefly outlines the related notions used in this paper.
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Definition 3.1 [5] Let X be a universe of discourse. A fuzzy set on X is an object A
of the form A = {(x, μA(x))|x √ X}, where μA : X ∈ [0, 1] defines the degree of
membership of the element x √ X to the set A ≤ X, for every element x √ X, and
0 ∃ μA(x) ∃ 1.

In real-life situations, when a person is asked to express his/her preference degree
to an object, there usually exists an uncertainty or hesitation about the degree, and
there is no means to incorporate the uncertainty or hesitation in a fuzzy set. To solve
this issue, Atanassov generalized Zadeh’s fuzzy set to intuitionistic fuzzy set (IFS)
by adding an uncertainty (or hesitation) degree. IFS is defined as follow.

Definition 3.2 [10]. An intuitionistic fuzzy set A is an object of the form A =
{x, μA(x), νA(x) | x √ X}, which is characterized by a membership degree
μA(x) and a non-membership degree νA(x), where

μA(x) : X ∈ [0, 1], x √ X ∈ μA(x) √ [0, 1],

νA(x) : X ∈ [0, 1], x √ X ∈ νA(x) √ [0, 1]

with the condition μA(x) + νA(x) ∃ 1 for all x √ X. For each IFS A in X, if write
πA(x) = 1 − μA(x) − νA(x), then πA(x) is called the degree of uncertainty (or
hesitation) of x to A. Especially, if πA(x) = 0, then the IFSA is reduced to a fuzzy
set, and it is obvious that 0 ∃ πA(x) ∃ 1.

Definition 3.3 [10] Let A = {xi , μA(xi ), νA(xi ), i = 1, 2, . . . , n}, B =
{xi , μA(xi ), νA(xi ), i = 1, 2 . . . n} be two intuitionistic fuzzy sets (IFS). The Euclid-
ean distance between two intuitionistic fuzzy sets is defined by

dI F S(A, B) =
⎡

1

2n

⎣ ⎡ n⎧
i=1

[μA(xi ) − μB(xi )]2 + [νA(xi ) − νB(xi )]2

+ [πA(xi ) − πB(xi )]2)
1
2 .

The distance between A and B fulfill the following conditions:

1. 0 ∃ dI F S(A, B) ∃ 1;
2. dI F S(A, B) = 0 if A=B;
3. dI F S(A, B) = dI F S(B, A);
4. if A ≤ B ≤ C , then dI F S(A, C) ∗ dI F S(A, B) and dI F S(A, C) ∗ dI F S(B, C).

In the following section, the algorithm of intuitionistic fuzzy clustering will be
investigated. To implement the concept of fuzzy inference and classify inputs
into c categories. We employ a fuzzy c-mean clustering (FCMC) algorithm pro-
posed by Bezdek [7], which is considered an improvement over an earlier ‘hard’
c-mean algorithm. In contrast to the crisp classification of ‘hard’ c-mean cluster-
ing, fuzzy c-mean clustering allows each date point belong to a cluster to a degree
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specified by a grade of membership and a single data point to be a member of
more that one cluster. Now we extend the fuzzy c-mean cluster to intuitionistic
fuzzy c-mean cluster, we called IFCMC. The objective of the IFCMC algorithm
is to partition a collective sets or clusters (A1, A2, . . . , Ac) in a way that best
fits the structure of the data. Let μAi (xk) be the degree of membership of data
point xk in cluster Ai , νAi (xk) the degree of nonmembership of data point xk, and
D = {D1, D2, . . . , Dn} a effective sample of the observation (every sample has
s attributes). D j = {(μD j (x1), νD j (x1)), (μD j (x2), νD j (x2)), . . . , (μD j (xs), νD j

(xs))} is an intuitionistic fuzzy set, j = 1, 2, . . . , n , P = {P1, P2, . . . , Pc}, P1,

P2, . . . , Pc are c cluster centers, c indicates the category of cluster. Every cluster
center has s attributes, then Pi is an intuitionistic fuzzy set described by

Pi = {(μPi (x1), νPi (x1)), (μPi (x2), νPi (x2)), . . . , (μPi (xs), νPi (xs))}.

For the partition matrix U = (ui j )c×n , ui j indicates the membership of the i th cluster
center of the j th sample. Then the partition matrix U can be indicated by

U =

⎪
⎨⎨⎩

u11 u12 . . . u1c

u21 u22 . . . u2c

. . . . . . . . . . . .

un1 un2 . . . unc

⎫
⎬⎬⎭.

The objective function is then to minimize the criterion function

Jm(U, P) =
c⎧

i=1

n⎧
j=1

(ui j )
m(dI F S(D j , Pi ))

2

satisfying the conditions ui j √ [0, 1], 0 ∃ ∑n
j=1 ui j ∃ n,

∑c
i=1 ui j = 1. The

Lagrange function can be constructed as:

F =
c⎧

i=1

n⎧
j=1

(ui j )
m(dI F S(D j , Pi ))

2 + λ(

c⎧
i=1

ui j − 1) (1)

where λ is the Lagrange multiplier. Differentiating (1) with respect to ui j , and setting
these partial derivatives to zero, the following equation is obtained.

ui j = 1∑c
h=1[ (dI F S(D j ,Pi ))

2

(dI F S(D j ,Ph))2 ] 1
m−1

.
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4 Interval Intuitionistic Fuzzy Clustering

Consider that, sometimes, it is not approximate to assume that the membership
degrees for certain elements to of an IFS are exactly defined, but a value range
can be given. In this situation, Atanassov [10] introduced the notion of IVIFS, which
is characterized by a membership function and a nonmembership function, whose
values are intervals rather than exact numbers.

Definition 4.1 [10] Let X be a fixed non-empty universe set. We call A = {x, μA(x),

νA(x) | x √ X} an interval intuitionistic fuzzy set (IIFS), which is characterized by a
membership degree μA(x) and a non-membership degree νA(x), with the condition
sup(μA) + sup(νA) ∃ 1 for all x √ X.

Furthermore, μA(x) and νA(x) are denoted by [μL
A(x), μU

A (x)], [νL
A(x), νU

A (x)],
respectively. There for an other equivalent ways to express IVIFS A is:

A = {x, ∪[μL
A(x), μU

A (x)], [νL
A(x), νU

A (x)] | x √ X},

where μU
A (x) + νU

A (x) ∃ 1, 0 ∃ μL
A(x) ∃ μU

A (x) ∃ 1, 0 ∃ νL
A(x) ∃ νU

A (x) ∃ 1.
For each IIFS A in X, if we write πA(x) = 1 − μA(x) − νA(x) then πA(x) is called
the degree of uncertainty (or hesitation) of x to A. Especially, if πA(x) = 0 then the
IIFS is reduced to a fuzzy set, and it is obvious that 0 ∃ πA(x) ∃ 1. In the contingent
valuation, we know that individual’s willingness to pay can be indicates by a interval
and willingness no to pay can be indicated by a interval also.

Definition 4.2 Let A, B be two interval intuitionistic fuzzy sets. The normalization
Euclidean distance between two interval intuitionistic fuzzy sets is defined by

dIIFS(A, B) = (
1

4n
)(

s⎧
i=1

[μL
A(xi ) − μL

B(xi )]2 + [μU
A (xi ) − μU

B (xi )]2

+ [νL
A(xi ) − νL

B (xi )]2 + [νU
A (xi ) − νU

B (xi )]2

+ [π L
A (xi ) − π L

B (xi )]2 + [πU
A (xi ) − πU

B (xi )]2)
1
2 .

The distance between two interval intuitionistic fuzzy sets fulfill the the following
conditions:

1. 0 ∃ dIIFS(A, B) ∃ 1;

2. dIIFS(A, B) = 0 if A = B;

3. dIIFS(A, B) = dIIFS(B, A);

4. if A ≤ B ≤ C , then dIIFS(A, C) ∗ dIIFS(A, B) and dIIFS(A, C) ∗ dIIFS(B, C).
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In the following section, the algorithm of intuitionistic fuzzy clustering will be inves-
tigated. Let D = D1, D2, . . . , Dn be a effective sample of observation. Every sam-
ple has s attributes. D j = ([μL

D j
(x1), μ

U
D j

(x1)], [νL
D j

(x1), ν
U
D j

(x1)], [μL
D j

(x2), μ
U
D j

(x2)], [νL
D j

(x2), ν
U
D j

(x2)], . . . , [μL
D j

(xs), μ
U
D j

(xs)], [νL
D j

(xs), ν
U
D j

(xs)]) is an intu-
itionistic fuzzy set, P = {P1, P2, . . . , Pc}, P1, P2, . . . , Pc are c cluster centers, c
indicates the category of cluster. Every cluster center has s attributes, then Pi can
be indicated by P = ([μL

Pi
(x1), μ

U
Pi

(x1)], [(νL
pi

(x1)), ν
U
Pi

(x1))], [μL
Pi

(x2), μ
U
Pi

(x2)],
[(νL

Pi
(x2)), ν

U
Pi

(x2))],…, [μL
Pi

(xs), μ
U
Pi

(xs)], [(νL
Pi

(xs)), ν
U
Pi

(xs))]. For the partition
matrix U = (ui j )c×n , ui j indicates the membership of the i th cluster center about
the attribute of j th. Then the partition matrix U can be indicated by

U =

⎪
⎨⎨⎩

u11 u12 . . . u1c

u21 u22 . . . u2c

. . . . . . . . . . . .

un1 un2 . . . unc

⎫
⎬⎬⎭.

The objective function is then to minimize the criterion function

Jm(U, P) =
c⎧

i=1

n⎧
j=1

(ui j )
m(dIIFS(D j , Pi ))

2

fulfilling the conditions ui j √ [0, 1], 0 ∃ ∑n
j=1 ui j ∃ n,

∑c
i=1 ui j = 1.

The Lagrange function can be constructed as:

F =
c⎧

i=1

n⎧
j=1

(ui j )
m(dIIFS(D j , Pi ))

2 + λ(

c⎧
i=1

ui j − 1) (2)

where λ is the lagrange multiplier, differentiating(2) with respect to ui j , and setting
these partial derivatives to zero, and the follow equation is obtained:

ui j = 1∑c
h=1[ (dIIFS(Di ,Pj ))

2

(dIIFS(Di ,Ph))2 ] 1
m−1

.

Since dIIFS(Di , Pj ) may be zero, so we should make some adjust, if
dIIFS(Di , Pj ) = 0 then ui j = 1. Differentiating (3) with respect to cluster cen-
ters P , attribute membership function and non-membership function, and setting
these partial derivatives to zero. That is, for

dIIFS(D, P) = (
1

4n
)(

s⎧
l=1

[μL
D j

(xl) − μL
Pi

(xl)]2 + [μU
D j

(xl) − μPi (xl)
U ]2

+ [νL
D j

(xl) − νL
Pi

(xl)]2 + [νU
D j

(xl) − νU
Pi

(xl)]2

+ [π L
D j

(xl) − π L
Pi

(xl)]2 + [πU
D j

(xl) − πU
Pi

(xl)]2) (3)
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we can get

uL
Pi (xl )

=
∑n

j=1 um
i jμ

L
D j

(xl)∑n
j=1 um

i j
, uU

Pi (xl )
=

∑n
j=1 um

i jμ
U
D j

(xl)∑n
j=1 um

i j
,

vL
Pi (xl )

=
∑n

j=1 um
i jν

L
D j

(xl)∑n
j=1 um

i j
, vU

Pi (xl )
=

∑n
j=1 um

i jν
U
D j

(xl)∑n
j=1 um

i j
.

The IIFCMC algorithm consisting of iterations altertaing, it contain the following
steps:

1. Fix the number of cluster c (2 ∃ c ∃ n), and threshold level ε;
2. Initialize the cluster center Pi+1;
3. Computer the membership Matrix U ;
4. Update the cluster centers by calculating Pi+1;
5. Calculate the defect measure D = |ui+1 − ui |;
6. Stop if D ∃ ε;
7. Defuzzify the results by assigning every observation to that cluster for which it

has maximum membership value the ‘home’ cluster.

5 Takagi-Sugeno Intuitionistic Fuzzy Inference

Next consider Takagi-Sugeno fuzzy inference [8]. Suppose that we can classify inputs
x into c fuzzy sets, A1, A2, . . . , Ac with associated membership functions μA1(x),
μA2(x), . . . , μAc (x). Further, suppose that we can assign crisp functions to each of
the clusters such that, if x √ Ai , then y = fi (x). Then, according to Takagi-Sugeno
fuzzy inference, the combined effect is represented by:

y =
∑c

i=1 μAi (x) fi (x)∑c
i=1 μAi (x)

. (4)

Now we consider Takagi-Sugeno [8] intuitionistic fuzzy inference, suppose that we
can classify inputs x into c fuzzy sets, A1, A2, . . . , Ac with associated member-
ship functions μA1(x), μA2(x), . . . , μAc (x) and non-membership functions νA1(x),
νA2(x), . . . , νAc (x). Further, supposed that we can assign crisp functions to each of
the clusters such that, if x √ Ai , then y = fi (x), (4) well be get. If x ⊂√ Ai , then
y = gi (x). And according to Takagi-Sugeno fuzzy inference, the combined effect is
represented by:

y =
∑c

i=1 νAi (x)gi (x)∑c
i=1 νAi (x)

, (5)

we get Takagi and Sugeno intuitionistic fuzzy inference. The conjunction of the
intuitionistic fuzzy c means clustering method with Takai-Sugeno intuitionistic fuzzy



Contingent Valuation of Non-Market Goods Based on Intuitionistic Fuzzy Clustering 271

inference is enable to obtain the construction of models in a flexible way. In fact,
Giles and Draeseke [11] employ this method to model econometric relationships.

6 Intuitionistic Fuzzy Random Utility Maximization Principle

We share the sample observations into clusters based on information from the follow-
up certainty confidence question using the intuitionistic fuzzy c-mean clustering
method. That is, individual’s with similar certainty confidence are grouped into the
‘home’ cluster. These clusters have intuitionistic fuzzy boundaries because each
observation can, at the same time, belong to other clusters to some degree smaller
than their membership in the ‘home’ cluster. The intuitionistic fuzzy random utility
maximization model is in much the same way as the standard RUM model [1],
and individual k’s intuitionistic fuzzy utility function μk and νk can be specified
as a function of a fuzzy deterministic component ωk and a crisp additive stochastic
component εk .

μk(z, y, s) = ωk(z, y, s) + εz,k, (6)

νk(z, y, s) = ωk(z, y, s) + εz,k, (7)

where z √ {0, 1} is an indicator variable that takes on the value 1 if the individual
accepts the proposed change in the amenity and 0 otherwise, y is income, s is a vector
of the respondent attributes, and ε is the stochastic disturbance arising from uncer-
tainty on the part of the observer. Each individual’s utility function is intuitionistic
fuzzy in the sense that it belongs to every cluster to some degree. The probability of
saying ‘yes’ and saying ‘no’ for each observation is then,

Prk(yes) = Pr(ωk(1, y, s) + ε1k > ωk(0, y, s) + ε0k)

= Pr{(ε1k − ε0k) > −[ωk(1, y, s) − ωk(0, y, s)]}, (8)

replacing [ωk(1, y, s) − ωk(0, y, s)]/σ with ∇ωk and (ε1k − ε0k)/σ with εk ,
where εk is i.i.d, because ε1k and ε0k are i.i.d. Yields the intuitionistic fuzzy model:

Prk(yes) = Pr(εk > − ∇ ωk) = Fε(∇ω1
k ), (9)

Prk(no) = Pr(εk ∃ − ∇ ωk) = Fε(∇ω0
k ) = 1 − Fε(∇ω1

k ), (10)

where Fε is the cumulative distribution function. If εk ∀ N (0, 1), then (9) and (10)
would be probit models. Assuming a linear utility function, the change in thedeter-
ministic part of the utility function between the two states is then given as:

∇ ωz
k = αz

k + βz
k Pk + γ z

k sk, z √ {0, 1} (11)
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which is estimated based on the information from each cluster. Once the sample
observations are proportioned into c intuitionistic fuzzy clusters, we can use the data
for each fuzzy cluster separately and specify each individual’s utility at the ‘home’
cluster as

μ1
i j = ω1

i j + ε1
i j ; j = 1, . . . , ni ; i = 1, . . . , c, (12)

ν0
i j = ω0

i j + ε0
i j ; j = 1, . . . , ni ; i = 1, . . . , c. (13)

Note that an individual’s utility is intuitionistic fuzzy, since it is estimated from the
coefficient estimates for each cluster, but that utility is assumed to be crisp within
each cluster, so that it is possible to employ a standard probability framework within
each cluster. A linear specification of the indirect utility function can be assumed (as
in RUM) and the change in the deterministic parts of the utility functions between
the two states is then given as

ω1
i j = α1

i + β1
i Pi j + γ 1

i Si j + ε1
i j , (14)

ω0
i j = α0

i + β0
i Pi j + γ 0

i Si j + ε0
i j , (15)

where Pi j is the bid, Si j is a vector of observable attributes, ε1
i j and ε0

i j are random

components, and α1, α0, β1, β0 and γ 1, γ 0 constitute parameters to be estimated. A
standard probit (or logit) model can be estimated within each cluster. Using Takagi
and Sugeno intuitionistic fuzzy inference, the intuitionistic fuzzy indirect is then:

∇ω1
k = α1

k + β1
k Pk + γ 1

k sk

=
∑c

i=1 α1
i μAi (xk)∑c

i=1 μAi (xk)
+

∑c
i=1 β1

i μAi (xk)∑c
i=1 μAi (xk)

Pk +
∑c

i=1 γ 1
i μAi (xk)∑c

i=1 μAi (xk)
Sk, (16)

∇ω0
k = α0

k + β0
k yk + γ 0

k sk

=
∑c

i=1 α0
i νAi (xk)∑c

i=1 νAi (xk)
+

∑c
i=1 β0

i νAi (xk)∑c
i=1 νAi (xk)

Pk +
∑c

i=1 γ 0
i νAi (xk)∑c

i=1 νAi (xk)
Sk, (17)

where Pi j is the bid, Si j is a vector of observable attributes, εi j is a random component,
and α1, α0, β1, β0, γ 1 and γ 0 constitute parameters to be estimated, where k =
1, . . . , n. Probability of saying yes and saying no for each observation can be rewritten
as

Pr(yes) = Fε(α
1
k + β1

k Pk + γ 1
k sk) = Fε[

∑c
i=1(α

1
k + β1

k Pk + γ 1
k sk)μAi (xk)∑c

i=1 μAi (xk)
],
(18)

Pr(no) = Fε(α
0
k +β0

k Pk +γ 0
k sk) = Fε[

∑c
i=1(α

0
k + β0

k Pk + γ 0
k sk)νAi (xk)∑c

i=1 νAi (xk)
], (19)
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where k = 1, . . . , n and F(.) is the cumulative distribution function of the stochastic
term. The median of each individual based on FRUM is then given as

W T Pk = (−α1
i − γ 1

i sk)

β1
i

= −∑c
i=1 α1

i μAi (xk) − ∑c
i=1 γ 1

i μAi (xk)∑c
i=1 β1

i μAi (xk)
, (20)

W N T Pk = (−α0
i − γ 0

i sk)

β0
i

= −∑c
i=1 α0

i νAi (xk) − ∑c
i=1 γ 0

i νAi (xk)∑c
i=1 β0

i νAi (xk)
, (21)

k = 1, . . . , n. That is, based on the FRUM model, the predicted probability or
median WTP and median WNTP are certain form of weighted average information
for the intuitionistic fuzzy clusters, with weights varying continuously throughout
the sample. This is different from the traditional RUM model, where median WNTP
and median WTP is derived from a homogeneous model underlying assumption that
utility is crisp. With the contingent valuation question, respondents can choose to
answer an open-ended question by giving an interval. Interpretation of the resulting
valuation uncertainty is more straightforward with this type of question than other
types of valuation question. It is assumed that the intervals reflect the respondents’
uncertainty around a point value, i.e. that individuals state an interval because they
only know that their valuation is within the stated range. The observed relationship
between the different WTPs is encouraging in terms of the potential utility and valid-
ity of the new WTP estimates and we need to buttress this finding in future studies,
i.e. further investigation is needed to explain why some people express valuation
uncertainty.

7 Conclusion

We move away from a probabilistic representation of uncertainty and propose the
use of intuitionistic fuzzy contingent valuation. Extended the fuzzy clustering to
intuititonistic fuzzy clustering and interval intuitionistic fuzzy clustering, and pro-
posed Takagi and Sugeno intuitionistic fuzzy inference. Applied the intutionistic
fuzzy clustering and interval intuitionistic fuzzy clustering to contingent valuation
non-market goods.
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Forecasting Crude Oil Price
with an Autoregressive
Integrated Moving Average
(ARIMA) Model

Chun-lan Zhao and Bing Wang

Abstract In this chapter, an autoregressive integrated moving average (ARIMA)
model is proposed to predict world crude oil. Data from 1970 to 2006 is used for model
development. We find that the model is able to describe and predict the average annual
price of world crude oil with the aid of SAS software. The mean absolute percentage
error (MAPE) is 4.059 %. Experiment shows the model have the preferable approach
ability and predication performance, particularly for the short - term forecast.

Keywords Crude oil price forecast · ARIMA model · SAS software.

1 Introduction

Crude oil has been playing an increasingly important role in the world economy
since nearly two-third of the world’s energy demands is met from crude oil [1].
For example, central banks and private sector forecasters view the price of oil as
one of the key variables in generating macroeconomic projections and in assessing
macroeconomic risks.

Forecast of the price of oil, play a role in generating projections of energy use,
in modeling investment decisions in the energy sector, in predicting carbon emis-
sions and climate change, and in designing regulatory policies such as automotive
fuel standards or gasoline taxes [2]. However, crude oil price forecasting is a very
important topic, albeit an extremely hard one, due to its intrinsic difficulties and high
volatility [3]. The average annual price of world crude oil series can be considered as
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a nonlinear and non-stationary time series, which is interactively affected by many
factors, predicting it accurately is rather challenging.

In the past decades, traditional statistical and econometric techniques, such as
linear regression (LinR), co-integration analysis, GARCH models, naive random
walk, vector auto-regression (VAR) and error correction models (ECM) have been
widely applied to crude oil price forecasting [1].

In 1994, Huntington applied a sophisticated econometric model to predict crude
oil prices in the 1980s [4]. In 1995, Abramson and Finizza utilized a probabilistic
model for predicting oil prices [5]. In 2001, Morana suggested a semiparametric
statistical method for short-term oil price forecasting based on the GARCH properties
of crude oil price [6]. Similarly, in 1998, Barone-Adesi et al. suggested a semi-
parametric approach for oil price forecasting [7]. In 1988, Gulen used co-integration
analysis to predict the West Texas Intermediate (WTI) price [8]. In 2002, 2005 and
2006, Ye, M. et al presented a simple econometric model of WTI prices, using
OECD petroleuminventory levels, relative inventories, and high-inventory and low-
inventory variables [9–11]. In 2004, Mirmirani and Li used the VAR model to predict
U.S. oil price [12]. In 2005, Lanza et al. Investigated crude oil and oil products’ prices
[13]. However, until now, no one had been used the autoregressive integrated moving
average (ARIMA) model to predict world crude oil.

In this paper, we find that the ARIMA(4, 3, 0) model is able to describe and predict
the average annual price of world crude oil with the aid of SAS software. We also give
a practical example in the end. It is successfully solved, and the computational results
are presented. The rest of this chapter is organized as follows. Section 2 provides the
ARIMA model. In Sects. 3 and 4, we describe the proposed validity in predict oil
price and the experimental results are shown. We conclude our remarks in Sect. 5.

2 ARIMA Model

An autoregressive integrated moving average (ARIMA) model [14] generalization
of an autoregressive moving average (ARMA) model. These models are fitted to
time-series data either to better understand the data or to predict future points in the
series (forecasting). They are applied in some cases where data show evidence of
non-stationary, where an initial differencing step (corresponding to the "integrated"
part of the model) can be applied to remove the non-stationary.

The model is generally referred to as a ARIMA(p, d, q) model where p, d, and q
are non-negative integers that refer to the order of the autoregressive, integrated, and
moving average parts of the model respectively. ARIMA models form an important
part of the Box-Jenkins approach to time-series modeling.

Given a time series of data Xt where t is an integer index and theXt are real
numbers, then an ARMA(p, q) model is given by:
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(1 −
p∑

i=1

αi Li )Xt = (1 +
q∑

i=1

θi Li )εt

where L is the lag operator, the αi are the parameters of the autoregressive part of the
model, the θi are the parameters of the moving average part and the εt are error terms.
The error terms εt are generally assumed to be independent, dentically distributed
variables sampled from a normal distribution with zero mean.

Assume now that the polynomial:

1 −
p∑

i=1

αi Li

has a unitary root of multiplicity d. Then it can be rewritten as:

(1 −
p∑

i=1

αi Li )Xt = (1 −
p−d∑
i=1

φi Li )(1 − L)d

An ARIMA(p, d, q) process expresses this polynomial factorization property, and is
given by:

(1 −
p∑

i=1

φi Li )(1 − L)d Xt = (1 +
q∑

i=1

θi Li )εt

and thus can be thought as a particular case of an ARMA(p + d, q) process having
the auto-regressive polynomial with some roots in the unity. For this reason every
ARIMA model with d > 0 is not wide sense stationary. The main steps of the ARIMA
model is as follows [15].

Step1: Using the unit root test: to test whether a time series variable is non-
stationary, if not, though the mathematic, such as the differential transform
or logarithmic differential transform, to let it be the stationary;

Step2: Pattern Recognition: to calculate some statistic, such as the AIC and SBC
to make sure the APIMA model

Step3: Parameters estimation: the unknown parameters are needed to estimate with
the estimate model, and to test them with the T statistic, and to get to
rationality.

Step 4: Model test: to test residual sequence of the fitted value and the real value
whether white noise or not

Step 5: Forecasting: all processes have been done and then to have a predict time
series.
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3 ARIMA Model Used for Forecasting the Oil Price

In this section, we will establish an ARIMA model to forecast the average annual
price of world crude oil with the aid of SAS software.
A. Date Collection

The data from 1970 to 2004 are used to establish the model; the data from 2002 to
2006 are used to test. In the end, we use the model to forecast the oil price from 2007
to 2011. The world oil price in 2006 is 55.3 dollars a barrel. Table 1 and Fig. 1 show
the oil price from 1970 to 2005.
B. The Stationary Test in Oil Prices

Next, we test the autocorrelation and partial autocorrelation of the sample data by
SAS software, and the results are shown in Figs. 2 and 3.

Table 1 The oil price

Year Actual price Year Actual price Year Actual price
(s\barrel) (s\barrel) (s\barrel)

1970 17.37 1982 65.62 1994 21
1971 17.68 1983 58.06 1995 21.86
1972 18.95 1984 55.03 1996 25.92
1973 21.1 1985 49.75 1997 23.09
1974 37.64 1986 26.18 1998 14.53
1975 45.08 1987 31.05 1999 19.72
1976 47.21 1988 25.03 2000 31.61
1977 45.77 1989 29.38 2001 25.83
1978 47.21 1990 35.18 2002 25.19
1979 68.11 1991 29.49 2003 29.93
1980 90.39 1992 27.27 2004 39.61
1981 78.27 1993 23.06 2005 50.15

Fig. 1 The oil price figure
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Fig. 2 Autocorrelation analysis

Fig. 3 Partial autocorrelation analysis

From the Figs. 2 and 3, it is easily seen that the coefficients are decreasing and the
rapids deceleration with the increasing of lag phase. And the partial autocorrelations
have no cut off and tailing property.
C. Use the differential transform to change the time series
From the Fig. 4, it get a stationary time. To deepen the stationary time series, used
the unit root test.
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Fig. 4 The series figure of the three differences

Fig. 5 Unit root test

D. Unit root test

From Fig. 5, it is easy to see that P < 0.01, τ = −9.38, and the Null Hypothesis
need to be rejected under 99 % confidence level. Therefore, the series have no unit
root and is a stationary level.
E. White noise test

From the Fig. 6, it is seen that the probability P < 0.01 of the LB statics under

Let level a = 0.01 and DF = 6. Then it shows itself isn’t a white noise by Fig. 6.

Fig. 6 White noise test
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4 Build an ARIMA Model to Forecast World Oil Average Price

A. Identify the Model of oil price and order number
From the Figs. 7 and 8, we can set several models to forecast the world oil aver-
age price, and these models just as the first consideration, such as AR(1, 2, 4),
ARIMA((1, 2, 4), 3, 0), ARIMA(4, 3, 0), ARIMA(1, 3, 4), ARIMA(4, 3, 1).
B. Chose the best model as the oil price forecasting model
In this section, we will use the standards to balance the models such as, detect
its correlation, white noise and AIC and SBC Figs. 8, 9 and 10 are the models
AR(1, 2, 4), ARIMA((1, 2, 4), 3, 0)

Fig. 7 Autocorrelation analysis of the three difference oil average price

Fig. 8 Partial autocorrelation analysis of the three difference oil average price
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Fig. 9 Fitting process of the AR(1,2,4)

Fig. 10 White noise test of the ARIMA((1, 2, 4), 3, 0)

Figure 9 shows some coefficients are weak correlation, they are not all passed.
Figure 10 the estimate result of the model ARIMA((1, 2, 4), 3, 0) which its mean
is zero.

From the result of the Fig. 10, we can see that the coefficients are correlation.
Figure 11 the test result of the model ARIMA((1, 2, 4), 3, 0) which its mean is zero.

Fig. 11 Test result of the model ARIMA((1, 2, 4), 3, 0)



Forecasting Crude Oil Price with an Autoregressive 283

Table 2 The comparison of three models which are fitted

MODEL Fitting results AIC SBC Standard deviation

ARIMA All parameters 250.1847 256.0477 11.38
(4,3,0) are outstanding
ARIMA All parameters 251.5808 254.5123 11.96
(1,3,4) are outstanding
ARIMA One parameter 244.8771 252.2058 10.34
(4,3,1) is not outstanding

This shows us P < 0.05, and then it is a whit noise. Since it is not passed too, we
could give up this model.

Next, we use the same method to test the rest models. The following Table 2 shows
us the results.

From the Table 2, it is easily seen AIC and SBC from the ARIMA(4, 3, 1) are
the minimum. And by the SAS, we get that residual error series of ARIMA(4, 3, 1)

is a white noise and parameters are not outstanding. But the ARIMA(4, 3, 0) and
ARIMA(1, 3, 4) have passed the test. Especially, the standard deviation which is
from the ARIMA(4, 3, 0) is 11.38 and the minimum one. In conclude, we choose the
ARIMA(4, 3, 0) as the most reasonable model to forecast the world oil average price.
C. Estimate parameters of the ARIMA(4, 3, 0) MODEL

From the Figs. 12 and 13, we see the results of the estimation of parameters and get
that P < 0.01 after T-test. So we can conclude the parameters are outstanding.
D. Test the oil price model series

From Fig. 14, it is seen that the p>0.05 from all the lags 6, 12, 18 and 24. It is proved
that the residual error series are white noise and is good to forecasting.

Fig. 12 Estimate parameters of the ARIMA(4, 3, 0)
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Fig. 13 Fitting process of the ARIMA(4, 3, 0)

E. the world oil average price model —ARIMA(4, 3, 0), let:

Yt = ∇3 Xt

∇ Xt = Xt − Xt−1

Yt = ∇3 Xt = ∇2 Xt − ∇2 Xt−1

Yt = Xt − 3Xt−1 + 3Xt−2 − Xt−3

So the final model is:

Yt = −1.09398Yt−1 − 1.17673Yt−2 − 0.9015Yt−3 − 0.63844Yt−4 + εt

Check Fig. 15, it is easily seen that the outcome is good, when the predicted value
is under 95 % confidence level. The black dot is the real value and the red curve is
fitting value. We just see the black have a wave surround red one.

5 Forecast the Oil Price by Model

Now we use the data of the world oil average price from 2003 to 2006 to test the
model, if the outcome is perfect and we’ll use it to forecasting the price after the year
2006.

Based on the ARIMA model, the model’s result and the real value are given by
the following Table 3.

From the Table 3, the results of the average error rate is just 4.095 %, and the
relative error just close to 5 % in every year .so we think the model is good. We also
use the model to predict the oil price from 2007 to 2011. The results are given in the
following Table 4 and Fig. 14.

It is easy to see that the price is higher than the last year.
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Table 3 The error between the model and real value

Year Real value Prediction value Error Relative error

2003 29.93 27.34 2.59 0.0865
2004 39.61 39.43 0.18 0.0045
2005 50.15 49.47 0.68 0.0135
2006 55.3 52.02 3.28 0.0593

The average error rate 0.04095

Table 4 The predicted value in world oil average price

Year 2007 2008 2009 2010 2011

Predicted value 60.13 73.59 86.94 99.96 110.47

Fig. 14 White noise test of the ARIMA(4, 3, 0)

Fig. 15 The ARIMA(4, 3, 0) forecast chart
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6 Conclusion

The movement of oil price seems to be uncertain and arbitrary, since its influential
factors are complex. However, in this chapter, we use data from 1970 to 2006 to
develop a reasonable ARIMA model to describe and predict the average annual price
of world crude oil with the aid of SAS software by extracting the statistic features.
We also give a practical example. By comparison, the value of prediction is good to
worth with actual data. The model we established has the preferable approach ability
and predication performance, particularly for the short-term forecast.
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Use of Partial Supervised Model of Fuzzy
Clustering Iteration to Mid- and Long-Term
Hydrological Forecasting

Yu Guo and Xiao-qing Lai

Abstract Most operational hydrological forecasting systems produce deterministic
forecasts and most research in operational hydrology has been devoted to finding
the “best” forecasts rather than quantifying the predictive uncertainty. With the com-
plex non-linear relation between forecasting indicators and forecasting object, it’s
difficult to get forecasting results with high quality from satisfied forecasting model.
Therefore, based on fuzzy clustering algorithm, a partial supervised model of fuzzy
clustering iteration is presented with the history data supervised and the forecasting
precision is improved. The forecasting model is distinct in mathematic and physical
conception, and is of good dispersion. A case study of Yamadu station in Xinjiang,
China, is given to show the effectiveness of the model in mid-and long- term hydro-
logical forecasting.

Keywords Fuzzy pattern recognition · Fuzzy clustering iteration · Indicator
weights · Partial supervision

1 Introduction

Uncertainty about future events is the reason for forecasting. In general, a forecast
does not eliminate uncertainty; it only reduces uncertainty [1]. The scientific and
technological advances of the past century have been harnessed to increase the spatial
and temporal resolution, the accuracy, and the lead time of forecasts for all principal
hydrological varieties (precipitation, temperature, and runoff). Still, for many events,
especially for mid- and long- term hydrological forecasting, forecasts remain far
from perfect, and on occasions fall short of society’s rising expectations for timely
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and reliable warnings. There are theoretical, technological, and budgetary limits to
predictability. But there is also a largely untapped source of additional information,
and hence potential benefits, that hydrological forecast could bring to society. This
source is information about the predictive uncertainty. Research and development
efforts should be directed to quantify the predictive uncertainty and to communicate
that uncertainty to the users of forecasts.

Occurrence and development of hydrological phenomenon is a result worked
by multi-factors, and there are very complicated nonlinear relations between fore-
cast objectives and multi-factors, so if forecast models set up directly by relations
between forecast objectives and multi-factors, its forecast precision can’t satisfy
actual demand, which means that effective employing known knowledge to obtain
higher precision will be key point of forecast study. After Pedrycz et al. [2] devel-
oped fuzzy clustering method (FCM) to partial supervised FCM (SFCM), SFCM
algorithm applied widely in signal processing [3, 4], pattern recognition [5, 6] and
other fields. Then in this chapter, based on fuzzy clustering iterative model [7] that the
partial supervised item was introduced into the SFCM model and forecast clustering
process was supervised by clustering results of known data, the forecast precision is
effective improved and a new worthy groping approach is presented for improving
precision of mid- and long- term hydrological forecast.

2 Partial Supervised Model of Fuzzy Clustering Iteration

Assume that forecasting objective Y has n samples, viz., Y = {y1, y1, · · · , yn},
according to cause analysis and historical records that each sample has m forecast
factors, thus we have forecast factors vector X = {X1, X2, · · · , Xn} ∈ Rm . For
different physical dimensions of m forecast factors that the forecast factors should
be normalized to eliminate effect of dimensions difference, viz., normalize forecast
factors matrix into relative membership degree (RMD) matrix Rm×n = (ri j )m×n ,
here ri j refers to RMD and 0 ≤ ri j ≤ 1.

Generally, n samples recognize regarding to m forecast factors, so we set RMD
matrix of samples regarding grades is: U = (uhj )c×n , here uhj stands for RMD of j th
sample to hth grade and h = 1, 2, · · · , c, it satisfies conditions

⎡c
h=1 uhj = 1; 0 ≤

uhj ≤ 1;⎡n
j=1 uhj > 0;∀ j,∀h. Standard feature values matrix of hth grade to m

forecast factors is: S = (sih)m×c, here sih stands for standard feature values of hth
grade to i th forecast factor and 0 ≤ sih ≤ 1.

Taking different effects of different forecast factors on hydrological phenom-
ena into account that weights vector of forecast factors can be set as: W =
(w1, w2, · · · , wm), and it satisfies condition

⎡m
i=1 wi = 1, 0 < wi < 1. There-

fore difference of j th sample to hth grade can be expressed as generalized Euclid-

ean weight distance: dhj =
⎣⎡m

i=1 [wi (ri j − sih)]2. For completely describing
difference between j th sample and hth grade, we take RMD uhj of j th sample
to hth grade as weight of generalized Euclidean weight distance and we have:
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Dhj = uhj · dhj = uhj

⎣⎡m
i=1 [wi (ri j − sih)]2, then we can construct objective

function as follows:

J = min

⎧⎪
⎨F(U, S, W ) =

n⎩
j=1

c⎩
h=1

⎫
u2

h j

m⎩
i=1

⎬
wi (ri j − sih)

⎭2]
⎢
⎥ (1)

We introduce supervised item into objective function just like SFCM algorithm:

Jα = min

⎧⎪
⎨Fα(U, S, W ) =

n⎩
j=1

c⎩
h=1

⎫
(1 − α)u2

h j

m⎩
i=1

⎬
wi (ri j − sih)

⎭2

+α · (uhj − fh j )
2

m⎩
i=1

⎬
wi (ri j − sih)

⎭2]} (2)

It satisfies conditions :

⎧⎛⎛⎛⎛⎛⎛⎪
⎛⎛⎛⎛⎛⎛⎨

m⎩
i

wi = 1, 0 < wi < 1

0 ≤ sih ≤ 1
c⎩

h=1

uhj = 1
n⎩

j=1

uhj > 0 0 ≤ uhj ≤ 1

i = 1, 2, · · · ,m
h = 1, 2, · · · , c
j = 1, 2, · · · , n

,

(3)

where sih refers to grade center value of hth grade to i th index, uhj to RMD of
j th sample to hth grade, wi to weight of i th index; Supervised RMD matrix F =
( fh j )c×n , here

⎡c
h=1 fh j ≤ 1 and α(α ≥ 0) is supervised proportion factor.

And we have Lagrange function:

Lα(U, S, W,λw,λ j ) =⎡n
j=1
⎡c

h=1

⎜
(1 − α)u2

h j

⎡m
i=1

⎬
wi (ri j − sih)

⎭2
+α · (uhj − fh j )

2⎡m
i=1

⎬
wi (ri j − sih)

⎭2⎝
−λw

⎬⎡m
i=1 wi − 1

⎭− λ j
⎬⎡c

h=1 uhj − 1
⎭

Let

∂Lα

∂uhj
= 0,

∂Lα

∂wi
= 0,

∂Lα

∂λw

= 0,
∂Lα

∂λ j
= 0, j = 1, 2, · · · , n (4)

Therefore we can obtain partial supervised model of fuzzy clustering iteration as:

sih =
⎡n

j=1

⎜
(1 − α)u2

h j + α · ⎬uhj − fh j
⎭2⎝ · ri j

⎡n
j=1

⎜
(1 − α)u2

h j + α · ⎬uhj − fh j
⎭2⎝ (5)
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uhj = α fh j +
⎞

1 − α

c⎩
k=1

fk j

⎟⎫
c⎩

k=1

⎡m
i=1 [wi (ri j − sih)]2⎡m
i=1 [wi (ri j − sik)]2

]−1

(6)

wi =
⎧⎪
⎨

p⎩
k=1

⎡c
h=1

⎡n
j=1

⎠⎜
(1 − α)u2

h j + α · (uhj − fh j )
2
⎝
(ri j − sih)

2
}

⎡c
h=1

⎡n
j=1

⎠⎜
(1 − α)u2

h j + α · (uhj − fh j )2
⎝
(rk j − skh)2

}
⎢
⎥

−1

(7)
So we can take below steps to solve partial supervised model of fuzzy clustering

iteration (5), (6) and (7):

(a) Giving iteration precisions ε1,ε2,ε3 and grades number c.
(b) Setting initial weights vector

⎬
wl

i

⎭
, fuzzy standard feature matrix

⎬
sl

ik

⎭
and sam-

ples RMD matrix
(

ul
h j

)
, here l=1.

(c) Using Eqs. (5), (6) and (7) to calculate
(

sl+1
ik

)
,
(

ul+1
h j

)
and

(
wl+1

i

)
respectively.

(d) If results satisfy: max
∣∣∣wl

i − wl−1
i

∣∣∣ ≤ ε1, max
∣∣∣ul

h j − ul−1
h j

∣∣∣ ≤ ε2 and max∣∣∣sl
ih − sl−1

ih

∣∣∣ ≤ ε3, then iteration end, and matrixes
⎬
sl

ik

⎭
,
(

ul
h j

)
and

⎬
wl

i

⎭
can

be employed as optimal indexes weight vector (w∗
i ), optimal fuzzy clustering

matrix(u∗
h j ) and optimal fuzzy clustering center matrix(s∗

ih)that satisfy calculat-
ing precisionε1, ε2, ε3; else, let l ⇒ l +1 and turn to step (c) to continue iterated
calculation.

After iteration that the RMD matrix of samples set regarding to grades can be
obtained, and according to inapplicability principle of maximal RMD under grades
conditions [8], grade feature values of j th sample are:

Hj =
c⎩

h=1

h · uhj . (8)

3 Fuzzy Pattern Recognition Forecast

Assume that forecast objective Y has n0 known samplesY = {y1, y2, · · · , yn0}, so
we use known samples to recognize five grades of low, little low, medium, little
high and high and obtain RMD matrix Z = ⎬zhj

⎭
c×n0 , here zhj refers to RMD of

j th(1 ≤ j ≤ n0) sample to hth grade. Owing to single index recognition that the
fuzzy recognition model [7] can be simplified as:

zhj =
{

c⎩
k=1

(y j − vh)
2

(y j − vk)2

}−1

, (9)
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where c is number of clustering grades; vh is standard feature value of hth grade and
we often have

vh = min
j

y j + (h − 1) ·
max

j
y j − min

j
y j

c − 1
. (10)

From RMD matrix Z = ⎬
zhj
⎭

c×n0
of known forecast samples we get supervised

matrix:

F =




z11 z12 · · · z1n0 0 · · · 0
z21 z22 · · · z2n0 0 · · · 0
· · · · · · · · · · · · · · · · · · 0
zc1 zc1 · · · zcn0 0 · · · 0


 . (11)

Therefore we normalize vectorXof n forecast factors feature values and obtain cor-
responding RMD matrixR, then apply partial supervised model of fuzzy clustering
iteration to get RMD matrix U and grades feature values Hof forecast factors.

Accordingly the forecast values of forecast objective k are:

Yk = min
j

y j + (Hk − 1) ·
max

j
y j − min

j
y j

c − 1
k = n0 + 1, n0 + 2, · · · , n . (12)

4 Case Study

Observed annual runoff quantities of 23 years in Yamadu and its relevant 4 prophase
feature values of forecast factors are listed in Table 1 [9]. Where factor x1is aggregate
rainfall volume from last Dec. to this Mar. in Yili weather station; factor x2 is lunar
average zonal circulation index in last Aug. at Europe and Asia region; factorx3 is
meridianal index of Europe and Asia region in last May; factor x4 is 2,800 MHz sun
radio jet stream of last Jun.

According to necessary data number of clustering and forecast recognition test,
we take former 17 years data as clustering supervision, latter 6 years as forecast test.
Then we divide annual runoffs of former 17 years into five grades as low, little low,
medium, little high and high and obtain RMD matrix of 17 samples:

Z =




0.03 0.02 0.00 0.00 0.70 0.00 0.00 0.01 0.01 0.03 0.04 0.01 0.70 0.00 0.00 0.95 0.00
0.87 0.05 0.00 0.00 0.24 0.01 0.00 0.01 0.96 0.95 0.33 0.01 0.24 0.01 1.00 0.04 0.01
0.08 0.59 0.99 0.01 0.04 0.03 0.00 0.03 0.02 0.02 0.55 0.04 0.04 0.03 0.00 0.01 0.01
0.01 0.30 0.00 0.98 0.01 0.89 0.00 0.17 0.01 0.00 0.05 0.83 0.01 0.94 0.00 0.00 0.07
0.01 0.04 0.00 0.01 0.01 0.07 1.00 0.79 0.00 0.00 0.02 0.12 0.01 0.02 0.00 0.00 0.90




From matrix Z we have supervised matrix of 23 samples:
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Table 1 Observed annual runoff quantities and factors feature values of Yamadu Hydrographic
Sation at Yili River, Xijiang

No. x1 x2 x3 x4 Annual runoff y No. x1 x2 x3 x4 Annual runoff y

1 114.6 1.10 0.71 85 346 13 55.3 0.96 0.40 69 300
2 132.4 0.97 0.54 73 410 14 152.1 1.04 0.49 77 433
3 103.5 0.96 0.66 67 385 15 81.0 1.08 0.54 96 336
4 179.3 0.88 0.57 87 446 16 29.8 0.83 0.49 120 289
5 92.7 1.15 0.44 154 300 17 248.6 0.79 0.50 147 483
6 115.0 0.74 0.65 252 453 18 64.9 0.59 0.50 167 402
7 163.6 0.85 0.58 220 495 19 95.7 1.02 0.48 160 384
8 139.5 0.70 0.59 217 478 20 89.9 0.96 0.39 105 314
9 76.7 0.95 0.51 162 341 21 121.8 0.83 0.60 140 401
10 42.1 1.08 0.47 110 326 22 78.5 0.89 0.44 94 280
11 77.8 1.19 0.57 91 364 23 90.0 0.95 0.43 89 301
12 100.6 0.82 0.59 83 456

F =




0.03 0.02 0.00 0.00 0.70 0.00 0.00 0.01 0.01 0.03 0.04 0.01 0.70 0.00 0.00 0.95 0.00 0.0 0.0 0.0 0.0 0.0 0.0
0.87 0.05 0.00 0.00 0.24 0.01 0.00 0.01 0.96 0.95 0.33 0.01 0.24 0.01 1.00 0.04 0.01 0.0 0.0 0.0 0.0 0.0 0.0
0.08 0.59 0.99 0.01 0.04 0.03 0.00 0.03 0.02 0.02 0.55 0.04 0.04 0.03 0.00 0.01 0.01 0.0 0.0 0.0 0.0 0.0 0.0
0.01 0.30 0.00 0.98 0.01 0.89 0.00 0.17 0.01 0.00 0.05 0.83 0.01 0.94 0.00 0.00 0.07 0.0 0.0 0.0 0.0 0.0 0.0
0.01 0.04 0.00 0.01 0.01 0.07 1.00 0.79 0.00 0.00 0.02 0.12 0.01 0.02 0.00 0.00 0.90 0.0 0.0 0.0 0.0 0.0 0.0




After normalized forecast factors feature values we get RMD matrix:

R =




0.39 0.47 0.34 0.68 0.29 0.39 0.61 0.50 0.21 0.06 0.22 0.32 0.12 0.56 0.23 0.00 1.00 0.16 0.30 0.27 0.42 0.22 0.28
0.82 0.55 0.53 0.37 0.92 0.08 0.31 0.00 0.51 0.78 1.00 0.24 0.53 0.69 0.78 0.27 0.18 0.00 0.65 0.53 0.27 0.39 0.51
1.00 0.47 0.84 0.56 0.16 0.81 0.59 0.63 0.38 0.25 0.56 0.63 0.03 0.31 0.47 0.31 0.34 0.34 0.28 0.00 0.66 0.16 0.13
0.10 0.03 0.00 0.11 0.47 1.00 0.83 0.81 0.51 0.23 0.13 0.09 0.01 0.05 0.16 0.29 0.43 0.54 0.50 0.21 0.39 0.15 0.12




Taking supervised weight α = 0.5, i.e., subjective weights and objective weights
have same important, and using Eqs. (5), (6) and (7) that we have samples RMD
matrix:

U =




0.07 0.06 0.04 0.03 0.50 0.05 0.02 0.04 0.14 0.19 0.08 0.03 0.68 0.08 0.02 0.66 0.04 0.16 0.28 0.78 0.03 0.90 0.85
0.55 0.10 0.08 0.03 0.32 0.07 0.02 0.05 0.69 0.68 0.46 0.05 0.20 0.09 0.94 0.15 0.04 0.12 0.41 0.09 0.04 0.04 0.07
0.20 0.43 0.75 0.06 0.09 0.13 0.04 0.09 0.12 0.08 0.36 0.34 0.06 0.11 0.03 0.11 0.06 0.54 0.17 0.06 0.15 0.03 0.04
0.13 0.36 0.10 0.65 0.06 0.61 0.11 0.28 0.04 0.04 0.07 0.50 0.03 0.63 0.01 0.05 0.13 0.14 0.10 0.04 0.74 0.02 0.03
0.05 0.06 0.02 0.23 0.03 0.13 0.81 0.55 0.01 0.02 0.02 0.07 0.02 0.09 0.00 0.03 0.72 0.05 0.04 0.02 0.04 0.01 0.01




Weight vector of forecast factors is: W = (0.438 0.192 0.227 0.143).
Standard feature values matrix of forecast factors is:

S =




0.223 0.229 0.307 0.472 0.707
0.484 0.721 0.436 0.333 0.213
0.131 0.451 0.602 0.594 0.519
0.186 0.270 0.196 0.343 0.645


.

According to above samples RMD matrix we obtain grade feature values of sam-
ples from 18th to 23th are: H = (2.8 2.2 1.4 3.7 1.2 1.3), then forecast values
of annual runoff is: Y = (376.4 344.7 302.6 426.1 289.6 294.6), observed val-
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ues is:Yo =(402 384 314 401 280 301), and relative forecast error is:E(%) =
(6.4 10.2 3.6 6.2 3.4 2.1). The forecast results show that, forecast precision of
annual forecast in this chapter has great improved than E(%) = (10.0 7.8 7.3 3.7
14.6 12.3) in Chen et al. [7], and if taking complicacy and randomicity of mid- and
long- term hydrological forecast and shortage of hydrological data into account, the
chapter’s forecast results are reasonable and perfect.

5 Conclusion

The partial supervised model of fuzzy clustering iteration that presented in this
chapter can supervise clustering forecast process by known experience and data,
and in entire forecast process, the model need not qualitative analysis and judgment.
The model has clear concept in mathematical and physical, so it suitable for gen-
eral forecast and control system with multi-factor input-single index output, and it
also offers a new deserved groping approach for forecast and control of complicated
system and other fields.
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A Fuzzy Clustering Approach for TS Fuzzy
Model Identification

Mei-jiao Lin and Shui-li Chen

Abstract In this paper, a fuzzy clustering approach for TS fuzzy model identification
is presented. In the proposed method, the modified mountainx clustering algorithm
is employed to determine the number of clusters. Secondly, the fuzzy c-regression
model (FCRM) algorithm is used to obtain an optimal fuzzy partition matrix. As
a result, the initial parameters can be determined by the optimal fuzzy partition.
Finally, gradient descent algorithm is adopted to precisely adjust premise parameters
and consequent parameters simultaneously. The simulation results reveal that the
proposed algorithm can model an unknown system with a small number of fuzzy
rules.

Keywords Fuzzy modeling · FCRM algorithm · Modified mountain clustering
algorithm · Gradient descent method.

1 Introduction

In recent years, Takagi-Sugeno fuzzy model has attracted the most attention of the
fuzzy modeling community since TS-based method can express a highly nonlinear
functional relation with a few fuzzy rules than any other type of fuzzy models [1].
Fuzzy model identification consists of structure identification and parameter estima-
tion [2, 3]. Structure identification is concerned with the determination of the number
of rules, while parameter estimation concerns the calculation of the appropriate fuzzy
set parameters that provide a reliable system description [4, 5].
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At present there are many approaches for TS fuzzy model identification. These
approaches consist of two problems. On the one handfuzzy clustering algorithms
were used to extract fuzzy rules from available data. However, in order to obtain
optimal number of fuzzy rules, some algorithms need to process repeatedly by using
validity function, which increases the calculation. On the other hand fuzzy clustering
algorithms were used to obtain optimal fuzzy partition and the premise parameters,
and then the consequent parameters can be identify by some optimization algorithm.
Whereas, consequent parameters are optimized under the condition which premise
parameters are not optimal, which result in precision can no be improved [6].

In this paper, a fuzzy clustering approach for TS fuzzy model identification is
proposed to solve the aforementioned problems. Firstly, the number of fuzzy rules
can be determined automatically as long as the modified mountain clustering algo-
rithm is processed only once [7]. As a result, the time complexity has been reduced.
Secondly, it has been pointed out that the FCRM algorithm [8] develops hyper-
plane-shaped clusters and it is suitable for obtaining linear equations. Therefore,
FCRM is deployed to obtain the optimal fuzzy partition matrix. In the next step, the
initial values of system parameters can be obtained via the optimal fuzzy partition
matrix. Finally, the premise parameters and consequent parameters are fine adjusted
simultaneously by the gradient descent algorithm [9], which solve the problem of
parameters’ asynchronous optimization.

2 TS Fuzzy Model

TS fuzzy model is able to approximate a nonlinear system by using a number of
linear subsystems [2]. The TS fuzzy model discussed in this chapter is expressed as
the following form:

Ri : If x1 is A1
j and x2 is A2

j and · · · and xm is Am
j

T hen yi = ai
0 + ai

1x1 + · · · + ai
m xm .

(1)

The inferred output of the TS fuzzy model is calculated as:

ŷ = (

c⎡
i=1

wi yi )/(

c⎡
i=1

wi ), wi = M I N m
j=1 Ai

j (x j ). (2)

where c is the number of fuzzy rules, x is the m dimensionality input vector x =
[x1, x2, . . . , xm] and ŷ is the output of the model. Ai

j (1 √ i √ c, 1 √ j √ m)

are fuzzy sets, which in this paper have bell-typed membership functions Ai
j =

exp{−[(x − pi
j1)/pi

j2]2}, the parameters pi
j1 and pi

j2 denote the mean and standard

deviation of the j th membership function of the i th fuzzy rule, respectively. ai
j (1 √

i √ c, 0 √ j √ m) denote the consequent parameters.
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Fig. 1 The flow sheet of the proposed algorithm

3 The Proposed Algorithm

The proposed algorithm consists of four steps and the flow sheet is shown in Fig. 1.

3.1 Obtain the Number of Fuzzy Rules by the Modified
Mountain Clustering Algorithm

As a clustering tool to a grouped dataset, the modified mountain algorithm provides a
good cluster number estimate via the new proposed validity measure function [7, 10].

Step 1 Acquire the modified mountain function using the correlation self-
comparison algorithm.

(1) Set m0 = 1, ml = 5l, l = 1 and w = 0.99.
(2) Calculate P

m(l−1)

1 (zi ) and Pml
1 (zi ), 1 √ i √ n.

Pm0
1 (zi ) =

n⎡
j=1

e−m0αd(zi ,z j ), Pml
1 (zi ) =

n⎡
j=1

e−mlαd(zi ,z j ). (3)

where zk = (xk, yk), α = [(⎣n
j=1 ∈z j − z̄∈2)/n]−1, z̄ = (

⎣n
j=1 z j )/n. d(zi , z j )

is the Euclidean distance between zi and z j .
(3) Calculate the correlation between P

m(l−1)

1 and Pml
1 .
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(4) If the correlation is greater than or equal to the specified w, then choose P
m(l−1)

1
to be the modified mountain function; else let l = l + 1 and go to 2).

Step 2 Determine the center of each cluster using the modified revised mountain
function (4) and condition (5).

Pk(zi ) = Pk−1(zi ) − Pk−1(zi )e
−αd(vk−1,z j ). (4)

vk−1 = max{Pk−1(zi )}, k = 2, 3, · · · . (5)

Step 3 Calculate the validity function MV (c).

MV (c) =
c⎡

k=2

pot (k), c = 2, 3, . . . (n − 1). (6)

pot (k) = P1(vk)
P1(vk)

P1(v1)
− ne−m(dk/α)2

. (7)

dk = min{d(vk, vk−1), d(vk, vk−2), . . . , d(vk, v1)}. (8)

The function pot (k) is the potential of kth cluster center vk , dk is the minimum
distance among vk and all (k-1) previous identified cluster centers.

Step 4 Choose the cluster number estimate with maximum value of MV (c) and
select these c extracted cluster centers.

Step 5 Construct the initial input-output space fuzzy partition

u0
i j = 1/

n⎡
k=1

(d(z j , vi )/d(zk, vi ))
2, d(z j ), vi ≤= 0

u0
i j = 1, otherwise

1 √ i √ c, 1 √ j √ n.

(9)

3.2 Obtain the Optimal Input-Output Space Fuzzy
Partition Matrix by FCRM Algorithm

3.2.1 FCRM Algorithm

The FCRM algorithm was introduced by Hathaway and Bezdek [8] and belongs to
the range of clustering algorithms with linear prototype. It develops hyper-plane-
shaped clusters and is suitable to describe the structure of data space of TS fuzzy
model. Therefore, in this subsection, FCRM algorithm is adopted to obtain an optimal
input-output space fuzzy partition matrix.
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Suppose that a set of n sample data denoted by (xk, yk), 1 √ k √ n ,X =
[1, x1, . . . , xm]T ,Pi = [ai

0, ai
1, . . . , ai

m]. The representative of i th cluster is expressed
as follows:

yi = ai
0 + ai

1x1 + · · · + ai
m xm = X T Pi , i = 1, 2, . . . c. (10)

Step 1 Calculate initial cluster representatives Pi (1) by applying U 0 and WRLS
algorithm.

Step 2 At the lth iteration, assign fuzzily each sample data (Xk, yk), to each
cluster with the representative being yi = X T Pi (l), and then modify matrix U (l)
by Eq. (11).

Ik ∃ {i |1 √ i √ c, di
k ∃ ∈yk − X T Pi (l)∈ = 0}

Īk ∃ {1, 2, . . . , c} − Ik⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ui
k = 1/[

c⎡
j=1

(di
k, d j

k )2/(m−1)], i f Ik = θ

ui
k = 0i ∗ Īk and

⎡
i∗Ik

ui
k = 1, other

.

(11)

Step 3 If ∈U (l) − U (l − 1)∈ √ γ, (γ is equal to 10−5 in this chapter), then stop;
otherwise go to step 4.

Step 4 Using ui
k obtained by step 2 and WRLS algorithm to calculated new

representative Pi (l + 1) at the (l + 1) iteration.
Step 5 Let l = l + 1 and go to step 2.

3.2.2 Weighted Recursive Least Squared Algorithm

Step 1 Initial values of the algorithm are determined as follows:

Pi
0 = 0, S0 = ρ I, k = 0. (12)

where I is the identity matrix, ρ is a sufficiently large number and is equal to 106 in
this paper.

Step 2 Get new data (Xk+1, yk+1) and then Pi
k+1 is updated via Eqs. (13)–(15).

Kk = Sk Xk+1/[(1/ui
k+1) + X T

k+1Sk Xk+1]. (13)

Pi
k+1 = Pi

k + Kk[yk+1 − X T
k+1 Pi

k ]. (14)

Sk+1 = [I − Kk X T
k+1]Sk . (15)
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Step 3 Let k = k + 1, if k √ n, then go to step 2, otherwise stop. Then, the
representative for the i th cluster is given by Pi = Pi

n(i √ i √ c).

3.3 Initialization of System Parameters

The initial consequent parameters are equal to Pi and initial premise parameters can
be easily calculated by Eqs. (16)–(18).

Ai
j = exp{−[(x − pi

j1)/pi
j2]2}. (16)

pi
j1 = (

n⎡
k=1

ui
k xk j )/(

n⎡
k=1

ui
k). (17)

pi
j2/

∪
2 =

⎫⎬⎬⎭[
n⎡

k=1

ui
k(xk j − pi

j1)
2]/(

n⎡
k=1

ui
k). (18)

3.4 Parameter Tuning by Gradient Descent Algorithm

In this step, the system parameters are further adjusted by the well-known gradient
descent algorithm [9]. The objective function is given as the following equation:

eh = 0.5(yh − ŷh)2, 1 √ h √ n. (19)

The premise parameters and consequent parameters should be adjusted to mini-
mize eh and they are adjusted by Eqs.(20)–(22), respectively.

δPi
jk = −Φ

∂eh

∂ Pi
jk

= Φ(yh − ŷh)(yi
h − ŷh)

1⎣c
i=1 wi

h

∂wi
h

∂ Pi
jk

. (20)

δai
j = −ψ

∂eh

∂ai
j

= ψ (yh − ŷh)
1⎣c

i=1 wi
h

wi
h xh j . (21)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂wi
h

∂ Pi
j1

= 2

Pi
j2

xhj − pi
j1

pi
j2

exp{−(
xhj − pi

j1

pi
j2

)2}

∂wi
h

∂ Pi
j2

= 2

Pi
j2

(
xhj − pi

j1

pi
j2

)2exp{−(
xhj − pi

j1

pi
j2

)2}
,wi

h = M I N m
j=1 Ai

j (xhj )

∂wi
h

∂ Pi
j1

= ∂wi
h

∂ Pi
j2

= 0,otherwise

.

(22)
where yh is a desired output, ŷh is an output of model, Φ is a premise learning rate,
ψ is a consequent learning rate.In this chapter, Φ and ψ are equal to 0.3.

4 Simulation Examples

In this section, two examples are given to illustrate the validity of the proposed
algorithm. The famous Box-Jenkins data set is a benchmark example used to check
the effectiveness of nonlinear system modeling method, which consists of 296 input-
output measurements of a gas furnace process [11]. x(k), x(k-1), x(k-2), x(k), y(k-1),
y(k-2), y(k-3) are chose as the inputs and y(k) as the output of the system model. In
order to compare with other methods, two experimental cases(case1 and case 2) are
performed. The mean squared error (MSE) is used as a performance Index (PI).

P I = M SE = ē2 = 1

n

n⎡
i=1

[y(i) − ŷ(i)]2. (23)

In case 1, all the data are used as training data which has 293 valid data pairs.
By applying the proposed algorithm, three fuzzy rules are obtained and shows as
follows

R1: if x(k) is A1
1 and x(k − 1) is A1

2 and x(k − 2) is A1
3 and y(k − 1) is A1

4
and y(k − 2) is A1

5 and y(k − 3) is A1
6

then y1(k) = 1.5716 − 0.7824x(k) + 2.5580x(k − 1) − 1.8949x(k − 2)

+2.6203y(k − 1) − 2.5729y(k − 2) + 0.9193y(k − 3)

R2: if x(k) is A2
1 and x(k − 1) is A2

2 and x(k − 2) is A2
3 and y(k − 1) is A2

4
and y(k − 2) is A2

5 and y(k − 3) is A2
6

then y2(k) = 11.8985 − 0.5997x(k) + 0.9541x(k − 1) − 0.8401x(k − 2)

+1.1714y(k − 1) + 0.1651y(k − 2) − 0.5509y(k − 3)

R3: if x(k) is A3
1 and x(k − 1) is A3

2 and x(k − 2) is A3
3 and y(k − 1) is A3

4
and y(k − 2) is A3

5 and y(k − 3) is A3
6

then y3(k) = 2.5391 + 0.6820x(k) − 1.0932x(k − 1) + 0.0933x(k − 2)

+1.5006y(k − 1) − 1.0061y(k − 2) + 0.4517y(k − 3)
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Fig. 2 a Original and predicted outputs b the respective errors (case 1)

Table 1 Comparison of performance (case 1)

Model Number of inputs Number of rules MSE

Reference [2] 6 2 0.0598
Reference [12] 2 90 0.090
Reference [13] 2 4 0.123
Reference [14] 6 2 0.057
Reference [15] 2 4 0.148
Reference [16] 6 8 0.075
Reference [17] 6 9 0.055
Reference [18] 6 2 0.055
our model 6 3 0.055

Figure 2 gives the original and predicted output values for the training data and
the respective errors. In Table 1, the MSE and the number of rules of the suggested
fuzzy model are compared with those of prior models. The MSE of our model is
equal to 0.055.

In case 2, the first 148 input-output data are used as training data and the remaining
data as test data. By applying the proposed algorithm, 6 fuzzy rules are obtained and
given as follows

R1: if x(k) is A1
1 and x(k − 1) is A1

2 and x(k − 2) is A1
3 and y(k − 1) is A1

4
and y(k − 2) is A1

5 and y(k − 3) is A1
6

then y1(k) = 8.1083 + 0.1005x(k) − 0.1750x(k − 1) − 0.4588x(k − 2)

+1.1832y(k − 1) − 0.3169y(k − 2) − 0.0259y(k − 3)

R2: if x(k) is A2
1 and x(k − 1) is A2

2 and x(k − 2) is A2
3 and y(k − 1) is A2

4
and y(k − 2) is A2

5 and y(k − 3) is A2
6

then y2(k) = 5.6566 − 0.4220x(k) + 0.8714x(k − 1) − 0.7741x(k − 2)

+1.7127y(k − 1) − 1.0695y(k − 2) + 0.2471y(k − 3)

R3: if x(k) is A3
1 and x(k − 1) is A3

2 and x(k − 2) is A3
3 and y(k − 1) is A3

4
and y(k − 2) is A3

5 and y(k − 3) is A3
6
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Fig. 3 a Original and predicted outputs b the respective errors (training data)

Table 2 Comparison of performance (case 2)

Model Number of inputs Number of rules MSE (training) MSE (validation)

Reference [2] 6 2 0.0164 0.145
Reference [4] 3 12 0.5072 0.2447
Reference [13] 2 4 0.02 0.271
Reference [18] 6 2 0.034 0.244
Reference [19] 2 75 0.0374 0.0403
Reference [20] 6 8 0.6184 0.2037
our model 6 6 0.0163 0.1425

then y3(k) = 9.5591 − 0.0289x(k) + 1.0124x(k − 1) − 1.4921x(k − 2)

+1.3675y(k − 1) − 0.6457y(k − 2) + 0.1018y(k − 3)

R4: if x(k) is A4
1 and x(k − 1) is A4

2 and x(k − 2) is A4
3 and y(k − 1) is A4

4
and y(k − 2) is A4

5 and y(k − 3) is A4
6

then y4(k) = 9.1171 + 0.1487x(k) + 0.0603x(k − 1) − 0.7107x(k − 2)

+1.2994y(k − 1) − 0.6262y(k − 2) + 0.1596y(k − 3)

R5: if x(k) is A5
1 and x(k − 1) is A5

2 and x(k − 2) is A5
3 and y(k − 1) is A5

4
and y(k − 2) is A5

5 and y(k − 3) is A5
6

then y5(k) = 8.6447 − 0.1719x(k) + 0.6213x(k − 1) − 0.8157x(k − 2)

+1.3234y(k − 1) − 0.3809y(k − 2) − 0.1037y(k − 3)

R6: if x(k) is A6
1 and x(k − 1) is A6

2 and x(k − 2) is A6
3 and y(k − 1) is A6

4
and y(k − 2) is A6

5 and y(k − 3) is A6
6

then y6(k) = 12.2225 + 0.1729x(k) − 0.2575x(k − 1) − 0.8213x(k − 2)

+0.7859y(k − 1) + 0.1467y(k − 2) − 0.1627y(k − 3)

Figure 3a illustrates the original and predicted output values for the training data
and Fig. 3b shows the respective errors. Figure 4a depicts the original and predicted
output values for the test data and Fig. 4b shows the respective errors. Table 2 gives
the comparison of the results with those of prior models. In our model, the MSE for
training data and test data are equal to 0.0163 and 0.1425, respectively.
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Fig. 4 a Original and predicted outputs b the respective errors (test data)

From the given Tables 1 and 2, it is obvious that our model gives good perfor-
mances and have high precision.

5 Conclusion

In this chapter, a new fuzzy clustering approach for TS model identification is pro-
posed. Firstly, the optimal number of fuzzy rules can be obtained by the modified
mountain clustering algorithm. Secondly, the optimal fuzzy partition matrix can be
obtained via the FCRM algorithm. Finally, the gradient descent algorithm is used to
fine tune system parameters. Compared with other fuzzy modeling methods, the pro-
posed algorithm has the advantages of simplicity, high precision, high accuracy and
can be handled by an automatic procedure. But it may suffer from no convergence
and is very sensitive to noise.
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Model Recognition Orientated
at Small Sample Data

Jun-ling Yang, Yan-ling Luo and Ying-ying Su

Abstract System modeling is a prerequisite to understand object properties, while
the chances are that an industrial site may come along with restricted conditions, lead-
ing to less experimental data acquired about the objects. In this case, the application
of traditional statistical law of large numbers for modeling certainly will influence
the identification precision. Aiming at the problems in recognition of small samples
being not that high in precision, it is proposed to introduce the bootstrap-based re-
sampling technique, upon which the original small sample data are expanded in order
to meet the requirements of the statistical recognition method for sample quantity,
so as to meet the requirements of precision. The simulation results showed that the
extended sample model recognition accuracy is substantially higher than that of the
original small sample. This illustrates the validity of the bootstrap-based re-sampling
technique, working as an effective way for small sample data processing.

Keywords Small sample · Bootstrap method · Expansion · Data processing

1 Introduction

As a spurt of progress has been made in the development of information technique,
data modeling is getting increasingly important for us to research the method of
complex object. Abnormalities in certain condition, however, are complicated by the
industrial site condition that may result in fewer experimental data about the object.
Concerning the research of certain system objects, less number of process samples
may not be able to bring out accurate judgment and analysis for object models.
A better application of the law of large numbers in the typical statistical recognition

J. Yang (B) · Y. Luo · Y. Su
School of Electric and Information Engineering, Chongqing University of Science and
Technology, Chongqing 401331, China
e-mail: junlingyang@126.com

B.-Y. Cao and H. Nasseri (eds.), Fuzzy Information & Engineering and Operations 307
Research & Management, Advances in Intelligent Systems and Computing 211,
DOI: 10.1007/978-3-642-38667-1_30, © Springer-Verlag Berlin Heidelberg 2014



308 J. Yang et al.

method contributes to the establishment of small sample and improved recognition
accuracy. To do this, the research on the data processing method for small sample
data extension is viewed as a very important issue that requires special attention.

There are many commonly used methods being applied to look into the small
sample issue in industry, such as Bayes, Bootstrap and Bayes Bootstrap, BP neural
network, Monte Carlo, as well as the gray system, support vector machine, the fuzzy
analysis and physical simulation [1–5]. Bayes is a combination of a priori knowl-
edge of the system and the existing knowledge that conducts statistical inference
on the future actions of the system. It is a method proven to be effective in esti-
mating parameters in conformity with both the normal distribution and non-normal
distribution, thus being taken as a more reasonable statistical analysis method for
small samples or single simulation running. As one of the commonly used statisti-
cal inference methods, Bootstrap features non-priori and merely requires the actual
observation data in the calculation process, it is quite convenient when used in the
actual processing of the data, and also available for validation approximate con-
vergence of the data model. Relative to other methods rooted from the weighted
concept, this non-parametric statistical method does not involve any assumptions
about the distribution of the unknown population. Rather, it is performed by means
of the computer to complete the sampling of the original data, able to transform
the small sample issue into a large sample one to simulate unknown distribution.
The Bootstrap-based re-sampling technique works with computers in simulation to
replace the deviation, variance, and other statistics as a complex and not-so-accurate
approximate analysis method. Thus, the Bootstrap method for conducting statistical
inference on small samples is mainly used in the probabilistic model of unknown
parameters with too complex derivation being theoretically infeasible. It may also
be found present in optimizing the inference effect with inaccurate statistical models
or adequate statistical information.

In summary, this paper presents a bootstrap re-sampling technique for the expan-
sion of sample data, aiming to build a relatively large number of virtual samples. On
this basis, the use of the research methods for the traditional model recognition may
improve the accuracy of object recognition.

2 Bootstrap-Based Re-sampling Technique
for Small Sample Expansion

2.1 Principle

Let us set an unknown small sample population x(n) = (x1, x2, . . . , xn), n is
smaller, and then get the unknown parameter estimates, such as the expectation
of this unknown population (also known as the Mean). Traditionally, the mean of
such n samples 1

n

∑n
i=1 xi is used to estimate it. Yet with a very small n, such an
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Table 1 Distribution law of
discrete sample

Value x1 x1 x2 … xn

Probability 1/n 1/n … 1/n

expected value (mean) of unknown distribution shows a poor effect. Here, Bootstrap
provides an effective solution, which is completed in the following steps:

Step 1: Collect the small samples (x1, x2 . . . , xn), here n is smaller.
Step 2: Get the empirical distribution functions of this sample, which are discrete,

and then can be written by the following distribution law, as shown in Table 1.
Step 3: Select n samples from this empirical distribution. According to the above

distribution law, the successful selection of xi , i = 1, 2, . . . , n has an average prob-
ability of 1

n . And then there comes the successful selection of the following set of
samples (x1, x1 . . . , x1), i.e. all is x1, or (xn, xn . . . , xn); all is xn , or (x1, x1 . . . , xn),
that means there is individual repeat, but the total number of samples is n. In short,
the taken samples can be any combination of the original samples. This is because
the distribution law has every value to be shown in probability as 1

n . Here we might
as well have the picked n samples marked as (x√

1 , x√
2 , . . . , x√

n ).
Step 4: Calculate μ√ = 1

n

∑n
i=1 x√

i , the average value of the small samples picked
at step 3.

Step 5: Repeat step 3, step 4 for K times (K can be a very large figure, usually
K=100, 000 times), and then each time there can be obtained with an average, taken
as μ√

i , i = 1, 2, . . . , K .

Step 6: Calculate μ∈ = 1
K

∑K
i=1 μ√

i , hereμ√
i , i = 1, 2, . . . , K is the average of the

samples from the selected repetition at i times. Alternatively, the average of these K
samples obtained at K times is averaged one more time. μ∈ is the desired estimate of
the unknown population.

2.2 Re-sampling Technique Based on the Bootstrap Method

According to the principle of bootstrap methods as indicated in 2.1, the following
re-sampling technique was designed to obtain the expanded samples for research
need.

Step 1–2. Same as step 1–2 for the principle of the bootstrap methods
Step 3. The distribution law was obtained from step 2 as Table 1.
In turn, extraction was repeated B times from the discrete distribution (usually

B ≤ n, appropriate when meeting the needs of the sample size), ending up with
the obtained B samples that constitute the final expansion of the sample. As B was
larger, it is generally believed that the expanded B samples contain the original n
small samples. Based on the above analysis of USRC elements, according to the
establishment principles of index system [6–8], the evaluation index system can be
established, as shown in Table 1.
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3 Small Sample and the Simulation of Sample Model
Recognition After Expansion

Regarding the recognition problem on the small sample model, the traditional BP
neural network was placed to construct a classifier for the original small sample
and the sample after the expansion using the bootstrap-based re-sampling technique,
respectively, in order to verify its applicability.

3.1 Simulation Model Constructed for Small-Sample
Model Recognition

The simulation model for small-sample model recognition was constructed as a
Gaussian mixture model that generates "Swiss Roll":

the covariance matrix

α=

[
1 0
0 1

]
.

(1) Original small sample model

Based on the constructed Gaussian mixture model that features the Swiss Roll, 32
samples were randomly generated (8 samples each category, a total of 32 samples
for four categories), with the original small sample model in Fig. 1.

(2) Sample model after the expansion using the bootstrap-based re-sampling tech-
nique

With the help of the bootstrap-based re-sampling technique, the original 32 small
samples were expanded to hit 300 samples, as shown in Fig. 2.

Comparing Figs. 1 and 2, the expanded number of samples was increased
visually.
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Fig. 2 Sample model after the expansion using the bootstrap-based re-sampling technique

3.2 Classifier Designed for Small-Sample Model Recognition

Targeting at the original small sample of the model, while taking care of the char-
acteristics of Gaussian mixture model, a BP neural network structure was designed
to perform model recognition experiments in line with the pertinent guidelines, as
shown in Table 2.
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Table 2 Design of model classifier

Small sample BP neural network structure Function of the Guidelines
(Input layer nodes - hidden output layer
layer nodes - output layer nodes)

Original 2-5-1 Tangent Relative error
sample function less than 5 %

Small sample 2-5-1 Tangent Relative error
after expansion function less than 2 %

3.3 Experimental Methods and Results
on Small Sample Simulation

(1) Original small sample simulation:

The original model was given seven samples each category, a total of 32 small
samples, where the first 7 for each category, a total of 28 samples were selected as
the training samples. Of the remaining samples, one for each type, a total of four
were selected as test samples to obtain the output of the network training and the
relative error map, as shown in Fig. 3, with the relative test output and the error map
shown in Fig. 4.

(2) Expanded small sample based on the bootstrap re-sampling technique:

There were expanded 300 samples using the bootstrap re-sampling technique, of
which 270 samples were randomly selected as training samples, with the remaining
30 as test samples. The obtained output of the network training and the verified output
are shown in Figs. 5 and 6.
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4 Comparative Analysis

The above graphic is a visual display of the BP neural network, showing the effect
of diagram of a model classifier, respectively, for the original small sample size and
the expanded samples. To facilitate the data comparison, two types of BP neural
networks were compared on the mode recognition accuracy in terms of the original
small sample, providing the specific data with their predictive values and the errors
(relative errors), as shown in Table 3.

As can be seen from Table 2, the correct rate of the expanded training and testing
samples was greatly improved, indicating that after the expansion by adopting the
Bootstrap re-sampling technology, the classifier was better than that for the original
small sample.

The original small sample and the expanded sample in BP neural network showed
their output values and error conditions as shown in Table 4 below.

As can be seen from Table 3, the expanded training sample and test samples had
the output errors that were significantly reduced, indicating that after the expansion

Table 3 Classifier effect of the original small sample and expanded samples in BP neural network

Original small sample Expanded samples using
bootstrap

Mean square error of
training samples

0.006553567539420 2.834126992471895e-04

Recognition rate of
training samples

75 % 95.19 %

Number of training
samples category

Cat. 1: 7 Samp.; Cat. 2: 7
Samp.; Cat. 3: 7 Samp.;
Cat. 4: 7 Samp.

Cat. 1: 67 Samp.; Cat. 2:
71 Samp.; Cat. 3: 73 Samp.;
Cat. 4: 59 Samp.

Correct number of
training samples
category

Cat. 1: 2 Samp.; Cat. 2: 5
Samp.; Cat. 3: 7 Samp.;
Cat. 4: 7 Samp.

Cat. 1: 60 Samp.; Cat. 2:
65 Samp.; Cat. 3: 73 Samp.;
Cat. 4: 59 Samp.

Correct rate of training
samples category

Cat. 1: 28.57 %; Cat. 2:
71.43 %; Cat. 3: 100 %;
Cat. 4: 100 %

Cat. 1: 89.55 %; Cat. 2:
91.55 % Cat. 3: 100 %; Cat.
4: 100 %

Mean square error of
test samples

0.067451076534863 3.478027726935210e-04

Recognition rate of test
samples

50 % 93.33 %

Number of test samples
category

Cat. 1: 1 Samp.; Cat. 2: 1
Samp.; Cat. 3: 1 Samp.;
Cat. 4: 1 Samp.

Cat. 1: 9 Samp.; Cat. 2: 5
Samp.; Cat. 3: 8 Samp.; Cat.
4: 8 Samp.

Correct number of test
samples category

Cat. 1: 1 Samp.; Cat. 2: 0
Samp.; Cat. 3: 0 Samp.;
Cat. 4: 1 Samp.

Cat. 1: 9 Samp.; Cat. 2: 3
Samp.; Cat. 3: 8 Samp.; Cat.
4: 8 Samp.

Correct rate of test
samples category

Cat. 1: 100 %; Cat. 2: 0 %;
Cat. 3: 0 %; Cat. 4:
100 %

Cat. 1: 100 %; Cat. 2: 60 %;
Cat. 3: 100 %; Cat. 4: 100 %
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Table 4 The original small sample and the expanded sample in BP neural network showed their
output values and error conditions

The original small sample The expanded sample
Sequence
of samples

True
value

Output
values

Absolute
error
(10ˆ-2)

Sequence
of
samples

True
value

Output
values

Absolute
error
(10ˆ-2)

Training
sample

1 1 0.91876 8.12393 1 1 0.99221 0.77907

2 1 0.98089 1.91084 2 2 1.98055 1.94477
3 1 0.98599 1.40055 3 4 3.98072 1.92751
4 1 1.12220 12.21996 4 1 1.02538 2.53836

… … … … … … … …
25 4 4.03473 3.47282 267 3 2.99233 0.76750
26 4 4.11668 11.66820 268 1 0.99221 0.77907
27 4 4.00009 0.00936 269 3 2.99445 0.55490
28 4 3.97737 2.26296 270 4 4.02254 2.25426

Test
sample

29 1 0.95533 4.46721 271 1 4.02254 2.25426

30 2 2.12924 12.92396 272 2 0.98545 1.45501
31 3 2.50399 49.60053 … … … …
32 4 3.92869 7.13062 299 3 0.99449 0.55131

300 4 3.98918 1.08225

by adopting the Bootstrap re-sampling technology, the classifier was better than that
for the original small sample.

Through the above tabular data comparison, we can get the following conclusions:

(1) Original small sample expanded by using the bootstrap re-sampling method,
worked as the expanded small sample;

(2) The bootstrap-based re-sampling method to expand the original sample may
greatly improve the model classifier in the BP neural network on its recognition
accuracy.

5 Conclusion

As illustrated in the above analysis and simulation, this chapter presented the
bootstrap-based method of re-sampling techniques for the expansion of small sam-
ples, which effectively extracted more data from small samples. The resulting sam-
pling samples met the requirements of the traditional recognition method from the
statistical theory for the number of samples. And the expanded samples, compared
with the original small sample mode, showed higher recognition accuracy. This thus
proved the correctness of bootstrap re-sampling method for the expansion of the
original small sample.
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A New Fuzzy Clustering Validity Index
with Strong Robustness

Xiang-Jun Xie, Yong Wang and Li Zhong

Abstract Cluster validity has been widely used to evaluate the fitness of partitions
produced by fuzzy c-means (FCM) clustering algorithm. Many validity functions
have been proposed for evaluating clustering results. Most of these popular validity
measures do not work well for clusters with different fuzzy weighting exponent m
and data with outliers at the same time. In this paper, we propose a new validity index
for fuzzy clustering. This validity index is based on the compactness and separation
measure. The compactness is defined by fuzzy Z-membership function based on the
gold dividing point and separation is described by monotone linear function. The
contrasting experimental results show that the proposed index works well.

Keywords Clustering validity function ·Z-membership function ·Monotone linear
function

1 Introduction

Fuzzy c-means (FCM) clustering algorithm [1] proposed by Bezdek has become
the most popular fuzzy clustering approach in recent decades. But this algorithm
requires several parameters, and the most significant one affecting the performances
is known as the number of cluster c. These problems are cluster validity problems.
So, designing an effective validity function to find the best number of cluster c for a
given data set is quite important.

So far, many fuzzy cluster functions have been proposed for evaluating fuzzy
partitions. The first proposed fuzzy cluster validity functions are the partition coef-
ficient VPC [2] and partition entropy VP E [3] by Bezdek. The separation coefficient
proposed by Gunderson was the first validity index that explicitly takes into account
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the data geometrical properties. XB index was proposed by Xie and Beni [4] and
Fukuyama and Sugeno proposed FS index VF S [5]. The fuzzy hypervolume (FHV)
and partition density indices PD were proposed by Gath and Geva [5]. A new valid-
ity index for fuzzy clustering is introduced by Mohamed Bouguessa and Sheng-Rui
Wang in 2004 [6]. Kuo-Lung Wu and Miin-Shen Yang propose a new index for fuzzy
clustering called a partition coefficient and exponential separation (PCAES) index
in 2004 [5]. In 2010, a new cluster validity index (CS(c)) is proposed to evaluate the
fitness of clusters obtained by FCM by Horng-Lin Shieh and Po-Lun Chang [7].

Although so many indices have been proposed, almost no one has discussed the
robustness of parameter m and data sets with noisy points at the same time. Thus, we
present a new validity index for fuzzy clustering. The rest of this paper is organized
as follows. Section 2 provides the FCM clustering algorithm. In Sect. 3, we describe
the proposed validity index in detail. In Sect. 4, the experimental results are shown.
Sect. 5 is the conclusion.

2 Fuzzy C-Means Clustering

Fuzzy c-means is an unsupervised clustering algorithm that has been applied suc-
cessfully to a number of problems involving feature analysis, clustering and classifier
design. Let X = (x1, x2, · · ·, xn) be an n points data set in a p-dimensional Euclidean
space R p with its usual Euclidean norm √·√. The fuzzy c-means (FCM) algorithm
partitions X into c clusters by minimizing the following objective function (1):

Jm(U, V ) =
c⎡

i=1

n⎡
j=1

(ui j )
m

⎣⎣x j − vi
⎣⎣2
(m ∈= 1), (1)

where c is the number of cluster. V = {v1, v2, · · ·, vc} is a vector of unknown cluster
prototype vk ≤ R p. U (U = (ui j )c×n) is a fuzzy partition matrix composed of the
membership of each feature vector x j in each cluster i , where ui j should satisfy⎧c

i=1 ui j = 1( j = 1, 2, · · ·, n), 0 ∃ ui j ∃ 1( i = 1, 2, · · ·, c, j = 1, 2, · · ·, n), and
0 <

⎧n
j=1 ui j < n (i = 1, 2, · · ·, c). The exponent m(m > 1) is a fuzzifier, which

can control the fuzzy degree of the clustering result.
The steps for FCM based algorithm are as follows:

Step 1: Suppose a preselected number of cluster c, a chosen value of m, an initial
partition matrix U and a threshold value ε.

Step 2: Compute the cluster centers V for i = 1, 2, · · ·, c using (2),

vi =

n⎧
k=1

(uik)
m · xk

n⎧
k=1

(uik)m
, (2)
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Step 3: Update fuzzy membership matrix U according to following criterion. For
any of the j or k, if d jk > 0, U is updated according to Eq. (3); elseif dik = 0
for i and k, uik = 1; otherwise uik = 0.

uik = {
c⎡

j=1

[( dik

d jk
)

2
m−1 ]}−1, (3)

where dik is Euclidean distance between point xk and cluster center vi .
Step 4: Check the termination conditions, if they are satisfied, then halt; otherwise

go back to step 2.

The FCM algorithm has an important drawback that is FCM needs to know the
number of clusters before practical applications of the FCM algorithm. However,
the user usually does not know the exact number of clusters in the data set. The
performance of clustering algorithms in terms of the clustering results can be affected
significantly if the number of clusters given is not accurate. So, designing an effective
validity function to detect the best number of cluster c for a given data set is very
important.

The validation procedure used to find the best number of cluster c is as follows:
run FCM algorithm over the range c = 2, · · ·, cmax ∗ ∪

n and compute the validity
function for each partition (U, V ) generated by FCM. Choose the best cluster number
which has the optimal validity value.

3 Cluster Validity

3.1 Some Validities Which Have Been Proposed

Many cluster validity indices have been proposed for fuzzy clustering and are used
to establish what partition best explains the unknown cluster structure in a given data
set.

Bezdek proposed two cluster validity indices, the partition coefficient (PC) [2]
and partition entropy (PE) [3] as following (4) and (5). Both PC and PE possess
monotonic evolution tendency with c. In general, The optimal partition is obtained
by maximizing VPC (or minimizing VP E ) with respect to c = 2, · · ·, cmax.

VPC =

n⎧
j=1

c⎧
i=1

(u2
i j )

n
, (4)

VP E = −1

n

n⎡
j=1

c⎡
i=1

[ui j log(ui j )] (5)
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Xie and Beni [4] proposed a validity index that focused on two properties com-
pactness and separation, defined as (6). In general, an optimal c⊂ is found by solving
max (VX B) to produce a best clustering performance for the data set.

VX B =

n⎧
j=1

c⎧
i=1

u2
i j

⎣⎣x j − vi
⎣⎣2

n(min
i ∈=k

√vi − vk√)2 (6)

Bensaid et al. [8] gave a partition index VSC as (7) which is the ration of the sum
of compactness and separation of the clusters. VSC is very useful when different
partitions having equal number of clusters are compared. In general, an optimal c⊂ is
found by solving min (VSC ) to produce a best clustering performance for the data set.

VSC =
c⎡

i=1

n⎧
j=1

um
i j

⎣⎣x j − vi
⎣⎣2

ni

c⎧
k=1

(√vk − vi√)2
(7)

Then, a new cluster validity has been proposed by Fukayama and Sugno [5],
denoted by FS index as (8), for evaluating fuzzy c-partitions by exploiting the con-
cepts of compactness and separation. The optimal partition is obtained by minimizing
VF S with respect to c = 2, · · ·, cmax.

VF S =
n⎡

j=1

c⎡
i=1

um
i j

⎣⎣x j − vi
⎣⎣2 −

n⎡
j=1

c⎡
i=1

um
i j

⎣⎣vi − _
v
⎣⎣2

. (8)

3.2 A New Cluster Validity

Membership function is used to indicate whether an element belongs to fuzzy set.
So far, some important membership functions have been proposed, such as: triangle
membership function, bell membership function, trapezoidal membership function
[9].

Fuzzy clustering validity function is composed of two important factors: the com-
pactness and separation for the data structure. In order to reduce the outlier to affect
the clustering, Z-type membership function [9] wi j is used to depict the total com-
pactness and is the membership degree of x j belonging to center vi as (9). The total
separation of the data set is measured by monotone linear function mik as (10). It is
the separation degree between different center vi and vk .

At the same time, the gold dividing point has the strict proportionality, artistic
quality and harmonious quality, and carries rich aesthetic value. What is more, it has
been widely applied in many fields, especially in mathematic. So, we adopt the gold
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dividing point to establish the function wi j .

wi j =
⎪⎨
⎩

1, d ∃ 0.372dmin;
1 − d

dmax
, 0.372dmin < d ∃ 0.628dmin;

0, d > 0.628dmin.

(9)

mik = √vi − vk√
dmax

(10)

where, √·√ denotes Euclidean distance,

dmin = min
i ∈=k

(√vi − vk√)(i, k = 1, 2, · · ·, c),

dmax = max
i ∈=k

(√vi − vk√)(i, k = 1, 2, · · ·, c)

Thus, through the linearly combined
⎧n

j=1
⎧c

i=1 (wi j )
2and

⎧c−1
i=1

⎧c
k=i+1 (mik)

2

by parameter α, a robust validity index is defined as (11)

VZ L = α

n⎡
j=1

c⎡
i=1

(wi j )
2 + (1 − α)

c−1⎡
i=1

c⎡
k=i+1

(mik)
2. (11)

where, 0 ∃ α ∃ 1.
VZ L is a bounded function, 0 ∃ VZ L ∃ c(n +c−1), and it is very simple. A large

value of VZ L indicates that the fuzzy c-partition is characterized by well-separated
fuzzy clusters.

4 Experiments

The experiments are done to demonstrate the effectiveness and superiority of the new
index for noisy data and robustness of m. In this section, we implement the FCM
clustering algorithm on data set with the cluster number c = 2, · · ·, cmax ∗ ∪

n.
Three groups of experiments are carried out and their results show that the validity
index proposed in this paper outperforms other indices in the literature.

4.1 Robustness to Data Set with Noisy Points

Our purpose is to show the new index VZ L has strong robustness when faced with
some noisy points. Two artificial datasets and one real dataset are used in this experi-
ment. Data 1 is an artificial data set which contains 56 points with three noisy points,
as shown in Fig. 1. It is a two dimensional dataset consisting of 2 classes. Data 2
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Fig. 2 Synthetic data 2

is also an artificial data set which consisting of 5 classes with three noisy points, as
shown in Fig. 2. Its noisy points make validity index harder to determine the number
of clusters. Data 3 is the IRIS data set which has three classes (Iris Setosa, Iris Ver-
sicolor and Iris virginica) or two classes. And it is the representative data set with
some outliers.
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Table 1 The value of VZ L on different data sets

Data c = 2 c = 3 c = 4 c = 5 c = 6 c = 7

Data1 21.2865 13.6090 16.3630 16.5561 18.1044 19.2461
Data2 45.4083 70.1990 78.9861 96.5681 57.7550 59.0643
IRIS 55.0530 50.3896 44.8709 41.3916 29.1647 40.1474

Table 1 reports the results obtained for the new validity index on m = 2.0,
α = 0.6. The new validity index VZ L always gives the right number of clusters at
any given time.

4.2 Compared with Other Indices

Second, several numerical examples are presented to compare the proposed VZ L

index with four other validity indices: VPC ,VP E ,VX B and VC S . One artificial dataset
and four real datasets are used in this experiment. The artificial is data 2 and three
real datasets are respectively iris data, BENSAID data and seeds data set. BENSAID
data was described by Bensaid et al. [8], as shown in Fig. 3. It includes 49 data points
in two dimensional measurement spaces, and consists of three clusters [10]. Seeds
data set contains 210 data points with three classes (Kama, Rosa and Canadian). It
is from Machine Learning Repository.
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Fig. 3 BENSAID data
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Table 2 The cluster number obtained by different validity indices

Validity function BENSAID IRIS Seeds Data 2

VPC 2 2 2 2
VP E 2 2 2 2
VX B 7 12 14 10
VZ L 3 2,3 3 5
VC S 3 2 2 6

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
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52

Fig. 4 The value of VZ L on BENSAID data

As shown in Table 2, for BENSAID data, VPC index indicates that the optimal
is two, VP E is seven, VX B is two, VC S and VZ Lcan find the right cluster number
three. For IRIS data, VPC and VP E indices indicate that the optimal is two, VX B is
eleven, and VC S is also two. VZ L finds the cluster number that is two. For seeds data
set, VPC and VP E indices indicate that the optimal is two, VX B is fourteen, and VC S

is two. VZ L finds the right cluster number that is three. For data 2, VPC and VP E

indices indicate that the cluster number is two, VX B is ten, and VC S is six. VZ L finds
the right cluster number that is five. And the value of VZ L is shown in Figs. 4, 5, 6
and 7 on different data set. This experiment’s results have shown that validity index
proposed in this paper outperformed than the VPC ,VP E ,VX B and VC S indices.

4.3 Robustness for Exponent m

Last, our purpose is to show the new index VZ L has strong robustness for exponent
m. Seeds data and IRIS data are used in the experiments.
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Fig. 6 The value of VZ L on seeds data

As Tables 3 and 4 show, on various values of m(m = 1.2,m = 2,m = 3,m = 4,
m = 6,m = 8,m = 10,m = 12), VZ L can find the optimal number of cluster
three for seeds data and the optimal number of cluster two or three for IRIS data.

From these experiments, the proposed index VZ L can correctly recognize the
optimal c⊂ on different data set with noisy points. Furthermore, on various values of
m, VZ L can correctly recognize the optimal c⊂, even m = 12. Through the different
data sets, the proposed index VZ L has high ability to produce a good cluster number.
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Table 3 The value of VZ L on seeds data

c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c = 9

m = 1.2 70.6561 76.9277 62.2338 56.1791 58.9467 67.7101 71.4378 70.9161
m = 2 71.9818 75.8838 70.9837 46.3947 44.5817 49.6729 51.7318 56.0699
m = 3 71.2123 74.4536 64.6746 29.1977 28.9315 32.0267 31.9466 32.4741
m = 4 70.0373 72.1899 41.6797 16.1123 17.8263 10.9093 10.6767 8.7589
m = 6 65.3121 69.5245 20.0180 6.7783 7.5694 3.8843 8.8120 6.4058
m = 8 62.8408 67.8621 3.9431 7.4931 5.1337 2.5886 4.3199 4.2239
m = 10 61.3454 67.0459 10.6134 3.8756 1.7114 2.7537 4.8333 3.3796
m = 12 58.9493 66.7354 3.3065 13.9635 2.2590 2.9728 3.9464 6.2200

Table 4 The value of VZ L on IRIS data

c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c = 9

m = 1.2 68.7779 62.3513 56.5978 38.5257 51.1148 38.2301 40.2879 45.2736
m = 2 68.2835 61.5637 53.1354 35.9002 43.4019 34.7778 45.8766 32.5361
m = 3 68.1357 59.1015 24.2753 39.3635 26.4340 21.2548 17.0658 5.4151
m = 4 67.8236 56.3635 46.6811 17.7812 26.1044 20.1522 11.8655 6.1299
m = 6 67.7235 50.7925 43.4952 13.7001 3.2347 3.6853 4.3485 6.7215
m = 8 67.7004 47.2231 35.6833 16.7906 2.9151 3.4913 4.7591 6.6698
m = 10 67.6819 46.0136 6.2793 13.1404 2.5431 3.3387 4.1656 5.7321
m = 12 67.6653 42.5963 2.2489 2.0596 1.8784 4.0825 4.9803 4.7946
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5 Conclusion

The cluster validity index has been used to search for the optimal number of clusters
when the number of clusters is not known a priori. In this paper, a new cluster validity
index VZ L for the fuzzy c-means algorithm has been proposed. It is defined by Z-type
membership function and monotone linear function. Through the different data sets
and both fixed m and varying m, the results of experimental tests show that it has
stronger robustness of m than other indices, and it can correctly deal with some data
with outliers.
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Regional Economic Forecasting Combination
Model Based on RAR+SVR

Da-rong Luo, Kai-zhong Guo and Hao-ran Huang

Abstract Regional economy has become a critical part in national economy system.
Mastering its change is important for national economic decision-making. Yet many
economic variables in regional economy system have characteristics of nonlinearity
and instability, the result of forecasting achieved by traditional linear modeling and
predicting technology doesn’t reach the demand of accuracy. Thus, a combination
model based on Residual Auto-regressive and Support Vector Regression is proposed
in this chapter. In the model the linear part of time series will be fitted by means of
Residual Auto-regressive first, then the nonlinear part included in the residual will
be draw by means of Support Vector Regression. The combination model helps
to increase the accuracy of forecasting in regional economy system. At the end, a
prediction of GDP in Guangdong province shows the efficiency of the model.

Keywords Regional economy · Forecasting · Support vector regression · Time
series analysis.

1 Introduction

The regional economy is a kind of complex economic system. The prediction of its
developing trend has important guiding significance for the sustainable development
of the regional economy, and has become a hot area of economic research [1–4].
Compared with macro-economy, the variables of regional economy system have
characteristics of high nonlinearity and great fluctuation, lead to a lot of traditional
linear modeling and forecasting technology are difficult to be applicable.
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Time series analysis (TSA) [5–8] is an important forecasting method in complex
economic system, but usually TSA fits and estimates data on the basis of the linear
model, and seems unable to reach the need of fitting time series which has non-linear
characteristic. To make up for the deficiency that TSA has, a forecast method based
on TSA combining with neural network has been proposed [9]. The method fits the
linear part in a time series by TSA model and fits the non-linear part by neural network
that compensates the error from linear part fitting, thus has improved the accuracy
of the fitting. However, the method really has a stronger ability for portraying the
non-linear characteristic of a time series by using neural network, but it has defects of
over-estimated and local optimization, and also sets up on the principle of empirical
risk minimization, so as to lay particular emphasis on fitting but not its generalization
ability when forecasting.

On the other hand, Support Vector Regression (SVR) is a method of machine
learning with high generalization ability [1, 10, 11]. The method is an algorithm
based on structural risk minimization principle, overcoming the deficiency of neural
network method, having better ability for fitting non-linear part of time series, and
having higher generalization ability. For this reason, considering the characteristics of
high nonlinearity and great volatility that variables in regional economy system have,
this chapter proposes a regional economic forecasting combination model based on
RAR and SVR. The model adopts RAR fitting linear part of time series, SVR fitting
non-linear part of time series, thus compensates the error of fitting by RAR.

2 Residual Auto-Regressive Model

RAR model is a kind of common model in time series analysis. Compared with other
models in time series analysis, it has advantages that model can be interpreted easily
and visually and can make the most of the residual, the form of RAR is:

⎡⎣⎣⎧
⎣⎣⎪

xt = Tt + St + γt ,

γt =
p⎨

j=1
ϕ jγt− j + at ,

E (at ) = 0, V ar (at ) = σ 2, Cov (at , at−i ) = 0,√i ∈ 1,

(1)

where Tt means the fitting of the trend that time series has, St means the season
value given in advance, γt is the residual. If a trend exists in time series, Tt =
β0 + ⎨k

j=1 βi xt−i ; Otherwise, if a season period exists in time series, Tt = α0 +⎨k
j=1 αi xt−im , and is the constant period.
RAR model supposes that time series is composed of linear part Tt and non-linear

part γt . Tt is the main part of time series. γt represents the non-linear part. To improve
the accuracy of fitting, RAR extracts the information among γt again using similar
linear way.
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3 SVR Model

SVR is a kind of machine learning method based on statistical theory. It has very
strong ability of non-linear modeling and high performance generalization. The basic
thought [11] of SVR is that data in input space is mapped upon to the feature space of
high-dimensional through particular nonlinear function φ(·), thus the optimal classi-
fication hyperplane can be achieved to classify the transformed data in feature space
and the regression function f (x) = wT φ(x) + b can be obtained. If is insensitive
loss function, f (x) can be turned into the optimization problem as follows:

min
w,b,ξ,ξ ≤

⎩
1

2
∃w∃2 + C

n⎫
i=1

⎬
ξi + ξ ≤

i

⎭)
, (2)

s.t.

⎡⎧
⎪

< w,φ (xi ) > +b − yi ∗ ε + ξi , i = 1, 2, . . . , n,

− < w,φ (xi ) > −b + yi ∗ ε + ξi , i = 1, 2, . . . , n,

ξi ∈ 0, ξ ≤
i ∈ 0, i = 1, 2, . . . , n

(3)

where is the weight vector of the hyperplane, C is the penalty factor, b is the threshold
value, ε is a parameter value of insensitive loss function, is the amount of sample data,
ξi and ξi

≤ are slack variables, < x, y > means the inner product between vector x and
vector y. The optimization question can be transformed to a quadratic optimization
problem with Lagrangian [1]:

max
α,α≤


⎢−1

2

n⎫
i, j=1

⎬
α≤

i − αi
⎭ ⎥

α≤
j − α j

)
K

⎬
xi , x j

⎭ − ε

n⎫
i=1

⎬
α≤

i + αi
⎭ +

n⎫
i=1

yi
⎬
α≤

i − αi
⎭⎛⎜ , (4)

s.t.

⎡⎧
⎪

n⎨
i=1

⎬
α≤

i − αi
⎭ = 0,

0 < αi , αi ∗ C, i = 1, 2, . . . , n,

(5)

where the nuclear function K (x1, x j ) is < φ(xi ), φ(xi ) >. After solving the opti-
mization question mentioned above, αi and α≤

i can be achieved. Hence the optimum
solution of original problem can be obtained and the final regression function is as
follow:

f (x) =
n⎨

i=1

⎬
αi − α≤

i

⎭
K (xi , xi ) + b, (6)

when αi ∪ (0, C), b = yi − ⎨
j=1n

⎬
αi − α≤

i

⎭
K (xi , xi ) − ε; when αi

≤ ∪ (0, C),

b = yi − ⎨
j=1n

⎬
αi − α≤

i

⎭
K (xi , xi ) + ε.
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4 Forecasting Model and Algorithm Based on RAR and SVR

4.1 Forecasting Model

In traditional RAR model, the linear method is still adopted while fitting residual
series. Due to the residual series includes non-linear part of original time series
{xi−1, xi−2, . . . , xi−p}, it is obvious that the non-linear information of residual series
can’t be draw completely by linear fitting method. Therefore SVR that possesses
higher exploring non-linear information ability is adopted in place of the linear
fitting method. Supposing there is a time series, forecasting model combined with
RAR and SVR is set up as follow:

⎝
xt = Tt + St + γt ,

γt = γ
(
t SV R) + at ,

(7)

where is the fitting value at the moment t; If time series has obvious trend feature,

Tt = β0+
k⎨

i=1
βi xt−i ; If time series has season period feature, Tt = α0+

l⎨
j=1

αi xt−im ,

the value of the error, will be replaced by the fitting value obtained by SVR method :

γ
(SV R)
t =

t−1⎫
i=t−p

⎬
αi − α≤

i

⎭
K (xi , x) + b, (8)

where, if αi ∪ (0, C), b = yi −
t−1⎨

j=t−p

⎬
αi − α≤

i

⎭
K

⎬
x j , xi

⎭ − ε; and if α≤
i ∪ (0, C),

b = yi −
t−1⎨

j=t−p

⎬
αi − α≤

i

⎭
K

⎬
x j , xi

⎭ + ε.

4.2 Forecasting Algorithm Based on RAR and SVR

Supposing there is a time series
⎞

xi−1, xi−2, . . . , xi−p
⎟
, after sample data set⎞

xi−1, xi−2, . . . , xi−p
⎟

is input, the forecasting algorithm procedure can be described
as follows:

Step 1: Fit time series by RAR model using Maximum likelihood estimation and
initial model, ⎠xt = Tt + St + ⎠γt can be obtained, then calculate the residual {⎠γt };
Step 2: Examine de-noising of residual after first fitting, if the residual is white noise,
stop algorithms, output forecasting models; Otherwise, go to Step 3;
Step 3: Calculate residual fitting value using SVR method, update forecasting model
as ⎠xt = Tt + St + ⎠γ (SV R)

t .
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Fig. 1 Flow chart of the forecasting algorithm.

Export: Output the fitting value ⎠xt .
The flow chart of the algorithm is shown as in Fig. 1:

4.3 Performance Evaluation of Forecasting Model

To evaluate the performance of the forecasting model, mean absolute error (MAE)
is adopted while assessing, the definition of MAE is as follows:

M AE = 1

n

n⎫
i=1

|⎠xi − xi |, (9)

where is the actual value and ⎠xi is the fitting value. MAE reflects how big the error
value is. the more little its value , the more accurate the predicting result is.

5 Regional Economic Forecasting Model Empirical Analysis

In order to verify the efficiency of the forecasting model mentioned above, a pre-
diction of Guangdong Province GDP will be conducted in this chapter. Test data
includes GDP data from 1978 to 2011 in Guangdong Province is shown in Table 1.

5.1 Data Preprocessing

Usually a lot of time series in the field of regional economy are obviously non-
stationary. In order to avoid the non-stationary effect bringing more complexity of
model estimating and predicting, data will usually be tested and then be smoothed
by logarithmic or difference way.

According to Table 1, data map and autocorrelogram can be obtained in Figs. 2
and 3. On the basis of analyzing these two figures, we can conclude that the series does
not meet the conditions that values of mean and variance are constant, and its fluc-
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Table 1 GDP data of Guangdong Province from 1978 to 2011

Year GDP Year GDP Year GDP Year GDP Year GDP Year GDP

1978 185.85 1984 458.74 1990 1559.03 1996 6834.97 2002 13502.42 2008 36796.71
1979 209.34 1985 577.38 1991 1893.30 1997 7774.53 2003 15844.64 2009 39482.56
1980 249.65 1986 667.53 1992 2447.54 1998 8530.88 2004 18864.62 2010 46013.06
1981 290.36 1987 846.69 1993 3469.28 1999 9250.68 2005 22557.37 2011 52673.59
1982 339.92 1988 1155.37 1994 4619.02 2000 10741.25 2006 26587.76
1983 368.75 1989 1381.39 1995 5933.05 2001 12039.25 2007 31777.01

Unit: 100 million yuan
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Fig. 2 Data map of GDP data.

tuating range is relatively wide. So, logarithmic smoothing and then first difference
is adopted, the graph of the processed data {xt } is in Fig. 4. From autocorrelogram
of {xt } in Fig. 5, we can see that it possesses strong short time relevance and can be
thought to be stationary.

5.2 Predicting by Combination Model

We take datas from 1978 to 2007 as training data and datas from 2008 to 2011
as test data. Obviously GDP data has no season period feature, so St = 0. The
parameter Tt can be obtained by maximum likelihood method, thus the fitting model
is xt = 1.020175469xt−1 + γt .

The model can be intuitively interpreted that each logarithmic value of GDP is
1.020175469 times of last year. At the same time, influenced by a great deal of
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Fig. 3 Autocorrelogram of GDP data
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Fig. 4 GDP data after smoothing and difference

factors, logarithm series of GDP is autocorrelative. It can be proved by white noise
test of residual. Then, fitting residual by SVR method is the next step, the result is
as shown in Fig. 6. the final predicting value compensated with SVR is shown in
Fig. 7. In Fig.7, the full line shows the actual data, the asterisk shows the predicting

data. In this chapter radial basis function K
⎬
xi , x j

⎭ = exp

⎝
−|xi −x j |

σ 2

2
}

is used as

the nuclear function of SVR algorithm and parameters C and σ have the value of
100 and 0.001, respectively.
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Fig. 6 Fitting residual by SVR

5.3 Result Analysis

In order to further illustrate the efficiency of the algorithm, results of AR, RAR
and SVR model are compared, the logarithmic predicting value of each model and
logarithmic actual value are shown in Table 2.

From Table 2, we can know that the overall predicting accuracy of combination
model based on RAR and SVR is more than 98.8 %, higher than the accuracy that is
obtained simply by RAR or SVR model. And the predicting accuracy of 2010, 2011
is up to 99.8 %. By comparison of the results, when economic variable is of non-
linearity and fluctuation, predicting using traditional model doesn’t work anymore.



Regional Economic Forecasting Combination Model Based on RAR+SVR 337

0 5 10 15 20 25 30 35
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Fig. 7 Actual and predicting value

Table 2 MAE comparison between AR, RAR, SVR and SVR+RAR

Year Actual value AR RAR SVR SVR+RAR

2008 10.513 9.513 9.531 10.537 10.503
2009 10.584 9.705 9.723 10.681 10.621
2010 10.737 9.901 9.919 10.812 10.737
2011 10.872 10.101 10.119 10.944 10.872
MAE 0.8713 0.8532 0.0669 0.0119

This proves the efficiency and superiority of the combination model in this chapter.
Forecasting using the RAR+SVR combination model, GDP of Guangdong Province
from 2012 to 2014 will be 57414.2131, 62696.3207,68276.2933 respectively.

6 Conclusion

Considering the characteristics of strong nonlinearity and great fluctuation that a lot
of economic variables in regional economy field have, this chapter has proposed the
combination model based on SVR and RAR, keeping the advantage of RAR model
that can be explained easily and intuitively, improving the ability of fully excavating
non-linear information at the same time. Example and comparison shows that such
model has relatively higher predicting accuracy. In addition, this model is suitable
for not only short-term but also long-term forecasting. For combined with SVR, the
more nonlinearity series have, the more effectively the model predicts.

Acknowledgments Thanks to the support by Guangdong Provincial Natural Science Foundation of
China (No.S2011010006103) and 2012 Jiangmen Industrial Technology Research and Development
Projects (No.[2012]156).



338 D. Luo et al.

References

1. Xiao, J.H., Lin, J., Liu, J.: A SVR-based model for regional economy medium-term and long-
term forecast. Sys. Eng. Theory Practice 26(4), 97–103 (2006)

2. Zhou, Z.Y., Duan, J.N., Chen, X.: Research on regional economy prediction based on support
vector machines. Comput. Simul. 28(4), 375–378 (2011)

3. Fei, Z.H., Li, B., Chen, X.X.: Mathematic model and case analysis of strategy for regional
economic development. Math. Pract. Theory 37(15), 12–19 (2007)

4. Deng, H.Z., Chi, Y., Tan, Y.J.: The nonlinear modeling and simulation in economic system.
Comput. Eng. Appl. 37(18), 7–9 (2001)

5. Chakraborty, K., Mehrotra, K., Kmohan, C., Ranka, S.: Forecasting the behavior of multivariate
time series using neural networks. Neural Networks 5, 961–970 (1992)

6. Wang, Y.: Application time series analysis. China Renmin University Press, Beijing (2008)
7. Chen, X.J.: Application of TSA in GDP predicts in Guangdong Province. Sun Yat-sen Univer-

sity, Master Dissertation (2009)
8. Zhu, B.Z., Lin, J.: A novel nonlinear ensemble forecasting model incorporating ARIMA and

LSSVM. Math. Prac. Theory 39(12), 34–40 (2009)
9. Hu, S.S., Zhang, Z.D.: Fault prediction for nonlinear time series based on neural network. Acta

Automatica Sinica 33(7), 744–748 (2007)
10. Vapnik, V.: The nature of statistical learning theory. Springer, New York (1995)
11. Muller, K.R., Mika, S., Ratsch, G., et al.: An tntroduction to kernel-based learning algorithms.

IEEE Trans. on Neural Networks 12(2), 181–201 (2001)



Part V
Systems and Algorithm



On Cycle Controllable Matrices
over Antirings

Jing Jiang, Xin-an Tian and Lan Shu

Abstract In this paper, cycle controllable matrices are defined over an arbitrary
commutative antiring L . Some properties for cycle controllable matrices are estab-
lished, a necessary and sufficient condition for a cycle controllable matrix which
has a given nilpotent index is obtained. Finally, expressions for a cycle controllable
matrix as a sum of square-zero matrices are shown.

Keywords Antiring · Cycle controllable matrix · Nilpotent matrix

1 Introduction

In the field of applications, semirings are useful tools in diverse domains such as
design of switching circuits, automata theory, information systems, dynamic pro-
gramming, decision theory, and so on [1]. But the techniques of matrices over semi-
rings play a very important role in optimization theory, models, models of discrete
event networks, grapy theory, and so on. Therefore, the study of matrices over semi-
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rings has a long history. Especially, many authors have studied nilpotent matrix over
some special semirings such as antiring, path algebra, lattice and incline. Nilpotent
matrices represent acyclic fuzzy graphs used to represent consistent systems, and in
general, acyclic graphs are important in the representation of precedence relations
(see e.g. [2, 6, 7]). Thus, the study of the nilpotent matrix is valuable.

In [3, 4], Tan considered the nilpotency of matrices over commutative antir-
ings. From Tan‘s paper, many properties obtained were discussed in terms of the
property that ai1i2 ai2i3 . . . aimi1 is nilpotent for any positive integer m and any
i1, i2, · · · , im √ N . According to this, these matrices with the property are defined
as cycle controllable matrices in this chapter. Some properties for cycle controllable
matrices are established, a necessary and sufficient condition for a cycle controllable
matrix which has a given nilpotent index is obtained. Finally, expressions for a cycle
controllable matrix as a sum of square-zero matrices are shown.

2 Definitions and Preliminaries

In this section, we will give some definitions and lemmas. For convenience, we use
N to denote the set {1, 2, · · · , n} and use Z+ to denote the set of positive integers.

A semiring is an algebraic system (L ,+, •) in which (L ,+) is a commutative
monoid with identity element 0 and (L , •) is another monoid with identity element 1,
connected by ring-like distributivity. Also, 0r = r0 = 0 for all r √ L and 0 ∈= 1.
A semiring L is called an antiring if it is zerosumfree, that is, if the condition a+b = 0
implies that a = b = 0 for all a, b √ L . Antirings are abundant: for examples, every
Boolean algebra, every distributive lattice and any incline are commutative antirings.
An antirings is called entire if ab = 0 implies that either a = 0 or b = 0. For
example, the set Z+ of nonnegative integers with the usual operations of addition
and multiplication of integers is a commutative entire antiring.

In this paper, the semiring (L ,+, •) is always supposed to be a commutative
antiring. Let Mm×n(L) be the set of all m × n matrices over L . Especially, put
Mn(L) = Mn×n(L). For any A √ Mm×n(L), we denote by ai j or Ai j the element of
L which stands in the (i, j) -entry ofA. Also, we denote by E(A) the set that contains
all nonzero entries in matrix A and by |E(A)| the number of the setE(A).

For any A, B √ Mm×n(L) andC √ Mn×l(L), we define:

A + B = (ai j + bi j )m×n; (1)

AC =
⎡

n⎣
k=1

aikck j

⎧

m×l

. (2)

The (i, j)th entry of Al is denoted by a(l)
i j (l √ Z+), and obviously
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a(l)
i j =

⎣
1≤i1,i2,··· ,il−1≤n

aii1ai1i2 · · · ail−1 j . (3)

It is easy to see that (Mn(L),+, •) is a semiring. In particular, if L is a commutative
antiring then (Mn(L),+, •) is an antiring.

Let L be a semiring, an element a in L is said to be nilpotent if ak = 0 for
some positive integer k. Let A √ Mn(L), A is said to be nilpotent if there exists a
positive integer k such that Ak = 0. The least positive integer k satisfying Ak = 0
is called the nilpotent index of A, and denoted by h(A). For any A √ Mn(L), we
denote by det A the permanent of A (the definition of the permanent for A can be
seen in Definition 2.2 [3]) and by D(A) the directed graph of A (the definition of
the directed graph D(A) for A can be found in [5]). Also, some definitions about the
principal submatrix, the permanental adjoint matrix ad j A, the submatrix A(U/V ),
the submatrix A[U/V ] and A(i ∃ j) can be found in [4].

Definition 2.1. A matrix R = (ri j ) √ Mn(L) is said to be a cycle controllable

matrix, if r (k)i i is nilpotent for any i √ N and any k √ Z+.

Definition 2.2. A semiring L is called join-irreducible if a = a1 + a2 implies that
a1 = a and a2 = a for all a, a1, a2 √ L .

Remark. It is clear that if a semiring L is called join-irreducible then L is an
antiring.

Lemma 2.1 Let [4]. Let L be a commutative semiring, r, r1, r2, · · · , rm √ L . Then

(1) if r is nilpotent then kr and rk are nilpotent for any k in L;
(2) if L is a commutative antiring, then

⎪m
i=1 ri is nilpotent if and only if r, r1, r2,

· · · , rm are nilpotent.

Lemma 2.2 Let [4]. Let L be a commutative semiring and A, B √ Mn(L). Then

(1) A is nilpotent if and only if P APT is nilpotent for any n × n permutation matrix
P , and h(A) = h(P APT );

(2) if L is a commutative antiring and A+ B is nilpotent, then A and B are nilpotent.

3 Basic Properties of Cycle Controllable Matrices

In this section, some properties of cycle controllable matrices over a commutative
antiring L with nonzero nilpotent elements are posed.

Proposition 3.1. If R = (ri j ) √ Mn(L) is a cycle controllable matrix, then Ris
nilpotent.

Proof. Let T = rii1ri1i2 · · · rin−1 j be any term of r (n)i j , where 1 ≤ i, i1, i2, · · · , in−1,

j ≤ n. Since the number of indices in T is greater than n, there must be two
indices iu and iv such that iu = iv for some u, v(u < v), and so riuiu+1 · · · riv−1iv =
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riuiu+1 · · · riv−1iu . But riuiu+1 · · · riv−1iu is a term of r (v−u)
iu iu

and r (v−u)
iu iu

is nilpotent
(since R is a cycle controllable matrix), we have riuiu+1 · · · riv−1iu is nilpotent (by

Lemma 2.1(2)). Then T is nilpotent (by Lemma 2.1(1)), and so r (n)i j is nilpotent (by
Lemma 2.1(2)). Therefore, Rn is nilpotent, and so R is nilpotent. This proves the
proposition.

Proposition 3.2. If R = (ri j ) √ Mn(L) is a cycle controllable matrix, then all
principal submatrices of R are cycle controllable matrices.

Proof. By Proposition 3.1, R is nilpotent. Let B be any principal submatrix with
order k of R. Then, there exists an n × n permutation matrix P such that

P R PT =
⎨

B C
E D

⎩
=

⎨
B 0
0 0

⎩
+

⎨
0 C
E D

⎩

where C √ Mk×(n−k)(L), E √ M(n−k)×k(L) and D √ Mn−k(L). Since P R PT is

nilpotent (by Lemma 2.2(1)), the matrix

⎨
B 0
0 0

⎩
is nilpotent (by Lemma 2.2(2)), and

so B is nilpotent. Then, Bl = 0 for some positive integer l, and so (Bm)l = Bml = 0
for any positive integer m. Therefore, B(ml)

i i = 0 for any i √ N . But (Bm)
(l)
i i is some

term of B(ml)
i i , we have that (Bm)

(l)
i i = 0 (because L is a commutative antiring),

that is, B(m)
i i is nilpotent for any i √ N and any m √ Z+. Therefore, B is a cycle

controllable matrix. This proves the proposition.

Proposition 3.3. Let R = (ri j ) √ Mn(L). If every element of R is nilpotent, then
the matrix R is a cycle controllable matrix.

Proof. Since every element of R is nilpotent, we have r (k)i i is nilpotent for any i √ N
and any k √ Z+ (by Lemma 2.1). Thus, R is a cycle controllable matrix. This proves
the proposition.

Proposition 3.4. Let R = (ri j ) √ Mn(L) is a cycle controllable matrix. Then the
matrix Rad j R is a cycle controllable matrix.

Proof. Let B = Rad j R. Then bi j = ⎪
k√N rik det R( j/k) = det R(i ∃ j) for all

i, j √ N .
In the following, we will show that bi j is nilpotent.

(1) For any i √ N , we have bii = det R(i ∃ i) = det R, and we consider
any term Tσ = r1σ(1)r2σ(2) · · · rnσ(n) of det R, where σ √ sn and sn denotes
the symmetric group of the set N . Since σk(1) √ N for all positive inte-
ger k, there exist r, s √ {0, 1, · · · , n} such that σr (1) = σs(1)(r < s) and
σr (1),σr+1(1), · · · , σs−1(1) are mutually different (note that σ0(1) = 1).
Then rσr (1)σr+1(1) · · · rσs−1(1)σs(1) = rσr (1)σr+1(1) · · · rσs−1(1)σr (1)is a factor of
Tσ . But rσr (1)σr+1(1) · · · rσs−1(1)σr (1) is nilpotent (because R is a cycle control-
lable matrix), we have Tσ is nilpotent for any σ √ sn (by Lemma 2.1(1)). Thus,
det R = bii is nilpotent (by Lemma 2.1(2)).
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(2) For any i, j √ N with i ∈= j , we have bi j = det R(i ∃ j) = ⎪
σ√sn

r1σ(1)

· · · riσ(i) · · · riσ( j) · · · rnσ(n). For any σ √ sn , if σl(i) ∈= j for all l ∗ 1, then there
must be a k such that σk(i) = i with 1 ≤ k ≤ n and i,σ(i), · · · ,σk−1(i) are
pairwise different. Thus riσ(i)rσ(i)σ2(i) · · · rσk−1(i)i is nilpotent (because R is a
cycle controllable matrix). Since the product riσ(i)rσ(i)σ2(i) · · · rσk−1(i)i is a factor
of the product r1σ(1) · · · riσ(i) · · · riσ( j) · · · rnσ(n), we can get r1σ(1) · · · riσ(i) · · ·
riσ( j) · · · rnσ(n) is nilpotent (by Lemma 2.1(1)).
If there exists a positive integer l such that σl(i) = j , then there exists a pos-
itive integer k such that i = σk( j) with 1 ≤ k ≤ n and i,σ( j), · · · ,σk−1( j)
are pairwise different. Thus, riσ( j)rσ( j)σ2( j) · · · rσk−1( j)i is nilpotent (because
R is a cycle controllable matrix). But the product riσ( j)rσ( j)σ2( j) · · · rσk−1( j)i
is a factor of the product r1σ(1) · · · riσ(i) · · · riσ( j) · · · rnσ(n), again, we have
r1σ(1) · · · riσ(i) · · · riσ( j) · · · rnσ(n) is nilpotent (by Lemma 2.1(1)).
Consequently, we obtain bi j is nilpotent. Therefore, the matrix B = Rad j R is
a cycle controllable matrix (by Proposition 3.3). This proves the proposition.
In the following, a necessary and sufficient condition for a cycle controllable
matrix over a commutative antiring which has a given nilpotent index is obtained.

Theorem 3.1. If R = (ri j ) √ Mn(L) is a cycle controllable matrix, then Rm = 0 if
and only if Bm = 0 for any principal submatrix B of R.

Proof. “∃”. Let B be any principal submatrix of order r of R. Then there must be
an n × n permutation matrix P such that

P R PT =
⎨

B C
E D

⎩
=

⎨
B 0
0 0

⎩
+

⎨
0 C
E D

⎩

where C √ Mr×(n−r) (L), E √ M(n−r)×r (L) and D √ Mn−r (L). Since Rm = 0,

we have P Rm PT =
⎨

B C
E D

⎩m

= 0. But (Mn(L),+, •) is an antiring, we can get

Bm = 0.
“∪”. The proof is obvious. This completes the proof.

Theorem 3.2. If R = (ri j ) √ Mn(L) is a cycle controllable matrix, then h (R) = r
if and only if Br = 0 for any principal submatrix B ofR and Cr−1 ∈= 0 for some
principal submatrix Cof R.

Proof. “∃”. Since h (R) = r , we have Rr = 0 and Rr−1 ∈= 0. By Theorem
3.1, Br = 0 for any principal submatrix B of R and Cr−1 ∈= 0 for some principal
submatrix C of R.

“∪”. By the hypothesis and Theorem 3.1, we obtain Rr = 0 and Rr−1 ∈= 0, thus
h(R) = r . This completes the proof.

At the end of this section, expressions of a cycle controllable matrix are discussed.
In [5], for any n × n nilpotent matrix A √ Mn(L) over an entire antiring L without
nonzero nilpotent elements,A can be written as a sum of

⎫
log2 n

⎬
square-zero matri-

ces. So there must be two matrices Bi and B j such that Bi = B j for some matrix
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A. In the following, we develop further results on the case which these square-zero
matrices are pairwise different under some conditions. We use Dolzan‘s notation (see
[5]) and let L be always a commutative semiring without nonzero nilpotent elements
below. Then, for any cycle controllable matrix A √ Mn(L), the diagonal entry of A
must be equal to 0, and A is nilpotent.

Theorem 3.3. Let L be a join-irreducible and entire semiring. For any cycle con-
trollable matrix A = (ai j ) √ Mn(L) with |E(A)| = m, A can be written as⎪k

t=1 At , where At (t = 1, · · · , k) √ Mn(L) is a square-zero matrix (that is,
A2

t = 0), A1, A2, · · · , Ak are pairwise different, and χ(D(A)) ≤ k ≤ |E(A)|
(χ(D(A)) ≤ ⎫

log2 n
⎬
).

Proof. By Lemma 4.1 [3] and Proposition 3.1, we can assume that a cycle control-
lable matrix A √ Mn(L) is a strictly uppertriangular matrix. Let χ(D(A)) be the least
number of colors needed to color the edges of a graph D(A) such that every path in
D(A) has no two incident edges of the same color. Obviously, χ(D(A)) ≤ ⎫

log2 n
⎬

(the reason can be found in the proof of Theorem 11 [5]).
By Lemma 4 [5], all paths in the digraph corresponding to a square-zero matrix are

of length at most 1. Thus, by Lemma 10 [5], it follows that every cycle controllable
matrix can be written as a sum of at least χ(D(A)) square-zero matrices. Since the
semiring L is join-irreducible, and the most number of colors needed to color the
edges of a graph D(A) such that no vertex is a source and a sink of two edges of the
same color is |E(A)|, we have any cycle controllable matrix can be written as a sum
of at most |E(A)| square-zero matrices. This completes the proof.

Remark 3.1. For any controllable matrix A √ Mn(L) with L being a join-
irreducible and entire semiring, A cannot be written as a sum of t (t < χ(D(A)) ≤⎫

log2 n
⎬

or t > |E(A)|) square-zero matrices.

Example 3.1. Let A =
⎡

0 a b 0
0 0 c 0
0 0 0 d
0 0 0 0

⎧
be a 4 × 4 cycle controllable matrix over a join-

irreducible and entire semiring. Then χ(D(A)) = 2 and |E(A)| = 4, and so A can
be written as follows,

A =

⎭


0 a 0 0
0 0 0 0
0 0 0 d
0 0 0 0

⎢
⎥⎥ +

⎭


0 0 b 0
0 0 c 0
0 0 0 0
0 0 0 0

⎢
⎥⎥ or

A =

⎭


0 a 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎢
⎥⎥ +

⎭


0 0 b 0
0 0 0 0
0 0 0 0
0 0 0 0

⎢
⎥⎥ +

⎭


0 0 0 0
0 0 c 0
0 0 0 0
0 0 0 0

⎢
⎥⎥ +

⎭


0 0 0 0
0 0 0 0
0 0 0 d
0 0 0 0

⎢
⎥⎥

At last, expressions of an n × n trace-zero matrix are further investigated.
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Theorem 3.4. Let L be a join-irreducible semiring without nonzero nilpotent ele-
ments, and A = (ai j ) √ Mn(L) be an n × n trace-zero matrix. Then A can be
written as

⎪k
t=1 At , where At (t = 1, · · · , k) √ Mn(L) is a square-zero matrix (that

is, A2
t = 0), A1, A2, · · · , Ak are pairwise different, and χ(D(A)) ≤ k ≤ |E(A)|

(χ(D(A)) ≤ N (n)).

Proof. Similarly, let χ(D(A)) be the least number of colors needed to color the
edges of a graph D(A) such that every path in D(A) has no two incident edges of
the same color. Obviously, χ(D(A)) ≤ N (n) (the reason can be found in Theorem
13 [5]).

From the proof of Theorem 3, we also have every trace-zero matrix can be written
as a sum of at least χ(D(A)) square-zero matrices and at most |E(A)| square-zero
matrices.

Remark 3.2. For any trace-zero matrix A √ Mn(L) with L being a join-irreducible
and no nonzero nilpotent elements, A cannot be written as a sum of t (t < χ(D(A)) ≤
N (n) or t > |E(A)|) square-zero matrices.

Example 3.2. Let A =
⎭
 0 0 b

c 0 d
e f 0

⎢
be a 3×3 trace-zero matrix over a join-irreducible

semiring without nonzero nilpotent elements. Then χ(D(A)) = 3 and |E(A)| = 5.
Therefore, A can be written as follows,

A =
⎭
 0 0 0

c 0 d
0 0 0

⎢
 +

⎭
 0 0 b

0 0 0
0 0 0

⎢
 +

⎭
 0 0 0

0 0 0
e f 0

⎢
 or

A =
⎭
 0 0 b

0 0 0
0 0 0

⎢
 +

⎭
 0 0 0

c 0 0
0 0 0

⎢
 +

⎭
 0 0 0

0 0 d
0 0 0

⎢
 +

⎭
 0 0 0

0 0 0
e 0 0

⎢
 +

⎭
 0 0 0

0 0 0
0 f 0

⎢


4 Conclusion

In this paper, cycle controllable matrices are defined over an arbitrary commutative
antiring. Some properties for cycle controllable matrices are discussed. The main
results in the present chapter are the generalizations of the nilpotent matrices. There-
fore, the study of cycle controlla-ble matrices is valuable.
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Control Strategy of Wastewater Treatment
in SBR Method Based on Intelligence Fusion

Xian-kun Tan, Ren-ming Deng and Chao Xiao

Abstract To solve the puzzle of dissolved oxygen control for wastewater treatment
in SBR method, the paper proposed a sort of intelligence fusion control algorithm.
In the paper, it summarized up the main puzzles in control, proposed the intelligence
fusion based control strategy, constructed the structure of controller, discussed the
control algorithm, and made the simulation by means of intelligence fusion based
control algorithm. The simulation curve demonstrated that the proposed control strat-
egy would be stronger in robustness and suitable for the dissolved oxygen control
of wastewater treatment. The research result shows that it is feasible and reasonable
for wastewater treatment in SBR method.

Keywords Wastewater treatment · SBR · Dissolved oxygen · Intelligence fusion
based control strategy

1 Introduction

Along with high speed development of China economy, the treatment of polluted
water in city has become an important research subject in modern civilization
metropolis. If the polluted water is directly sluiced into the rivers then the wild
ecological environment would be suffered from serious destruction, and it would
seriously endanger the subsistence of the humanity and various species. The method

X. Tan (B)

School of Polytechnic, Chongqing Jiaotong University, Chongqing 400074, China
e-mail: txkcx11@163.com

R. Deng · C. Xiao
College of Automation, Chongqing University, Chongqing 400030, China
e-mail: dengrenming65106683@126.com

C. Xiao
e-mail: sngeet@163.com

B.-Y. Cao and H. Nasseri (eds.), Fuzzy Information & Engineering and Operations 349
Research & Management, Advances in Intelligent Systems and Computing 211,
DOI: 10.1007/978-3-642-38667-1_34, © Springer-Verlag Berlin Heidelberg 2014



350 X. Tan et al.

of sequencing batch reactor (SBR) is generally adopted in the process of polluted
water treatment, and in which the aeration is the most important key node [1, 2].
Its function is to supply the oxygen for polluted water, blow off the gaseous fluid,
make full agitation for polluted water, and enhance the mass transfer effect. In the
process of charging oxygen in aeration, if the polluted water quantity is more then
the needed oxygen quantity is always more, and therefore the aeration quantity is
more. And vice versa, if the aeration wind quantity is not enough then the time of
biochemistry processing would be postponed, and the quality of output water would
not be ensured. The too much wind quantity of aeration will result in lots of energy
waste, and therefore the correct control method is that the aeration wind quantity
is proportionally to track the change of polluted water quantity automatically. The
aeration control is the technical bottleneck and key technology node in the process of
polluted water treatment. In view of the polluted water treatment is a complex process
of biochemistry reaction, and it is very hard to be described by accurate mathematic
model [3, 4], so it is a puzzle in control engineering. The following makes a certain
exploration for control strategy.

2 Main Puzzles in Control Process

Because the sewerage bio-chemical disposing is a typical complex process, it is very
difficult to describe the bio-chemical process characteristic by strict mathematics
method, such as nonlinearity, time varying, randomness, fuzziness and instability. In
general speaking, the cybernetics characteristic of waste water disposal process can
be summarized up as the following [5, 6]. (1) unknown of time varying, randomness,
and decentralization in process parameter, (2) uncertainty of lag time process, (3)
serious nonlinearity in chemical reaction process, (4) correlativity among process
parameters, (5) disturbance of process environment being unknown, diversity and
randomness.

In the face of the characteristic mentioned above, the conventional control strategy
is difficult to carry through the effective control for waste water disposal process.
The conventional control method is the control based on mathematics model, but it
is hard to establish precise mathematic model for sewerage disposing. Because the
water quality and water quantity from sewerage disposing factory are variable and
random, therefore the needed oxygen quantity of sewerage disposing pool is also
variable. According to the technology demand, only the supplied oxygen quantity
put into sewerage disposing pool is equal to the needed consuming oxygen quantity
in the sewerage disposing pool in the same period, it can just ensure the water
quality of factory output water. The DO parameter control is very complicated in the
sewerage disposing process, therefore it is necessary to explore the control strategy
corresponding to the characteristic of treatment process in waste water.
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3 Control Strategy Based on Intelligence Fusion

By dint of conventional control strategy (such as classical control theory, PID con-
trol) and the method of modern control theory, it is hard to obtain better control
effect for waste water treatment. The existent main puzzles are centralized to rep-
resent as following aspects. First of all it is difficult to build accurate mathematical
model according to the cybernetics characteristic mentioned above, and the precon-
dition adopting classical control theory and modern control theory is to construct the
mathematical model, their analysis and design are based on the math model, and the
solution is quantitative. And for waste water treatment, due to the uncertainty it is
difficult to give the quantitative description, therefore it is good for nothing to adopt
the conventional control strategy. In addition, if the conventional control strategy
is adopted then there are other problems such as (1) system complexity, (2) semi-
structured and non-structured, (3) high nonlinearity, (4) uncertainty, (5) reliability.
The existent puzzle of characteristic mentioned above results in that the conventional
control strategy can not carry through the effective control for sewerage disposing
process, therefore it is necessary to research further the control strategy.

There are lots of control strategies those can be supplied to choose, but there
still are lots of puzzle needed to be solved. The expert control system is based on
the knowledge. Because it is difficult to collect the characteristic information, to
express the characteristic information, and to build the maturity repository, therefore
the expert control system is also difficult to realize the control of sewerage dispos-
ing process. NN control needs definite experiment samples. Due to the influence
of uncertainty, it is hard to obtain the experiment samples from the known experi-
ence and aforehand experiment. In view of the method limitation, it is also difficult
to realize effective control generally. The hominine control experience can carry
through the summarization and description by means of hominine language, it can
be depicted to fuzzy language by means of fuzzy set in fuzzy mathematics, and also
it can be realized by the sentence of "If condition Then action". But because the
uncertainty factors are too much the fuzzy control is unnecessarily a good choice for
sewerage disposing process. The basic property of HSIC (Human Simulated Intel-
ligent Controller) is to simulate the control behavior of control expert. Therefore
its control algorithm is multi-modal control, and the material method is to execute
alternate use among multi-modal control. Such a property can make contradictions
of control quality demand be perfectly harmonized for control system. Therefore it
is a sort of more wise choice [7]. Starting from strategy optimization in this paper, it
proposes a sort of fusion control strategy based on combination with expert control
system and human simulated intelligent controller. The intelligence fusion based
control strategy summarizes the control skill and experience of field operators, and it
can be concluded as the engineering control algorithm. All the simulation and field
debugging results show that the fusion control strategy is feasible and reasonable.
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Fig. 1 Structure of control model based on fusion strategy

4 Structure of Controller and Its Algorithm

4.1 Structure of Controller

Based on the fusion of human simulated intelligent control and expert system control
techniques, the structure of controller is shown as in Fig. 1.

After the expert system technique is introduced into control system, it can make the
structure of control model be simplified. The expert system is an intelligent program
system that can solve the problem only solved by expert in special field in terms of
knowledge base and inference machine. All the knowledge base, inference machine
and rule set could be integrated into the human simulated intelligent controller that it is
excellent in performance, and simple in system structure, therefore it can excellently
control the input in air amount (oxygen). The DO parameter system of intelligence
fusion based control strategy can realize multi-modal control by use of expert system
techniques in flexible mode because of the control strategy being based on the basic
characteristic combined open-loop with closed-loop control. Therefore it is enhanced
to the performance of the judge and inference. In fact, establishing knowledge set is
how to express the obtained known-knowledge. The control system always adopts
production rule to establish the knowledge set, its basic structure can be expressed
as "I f < condition > T hen < action > ". The outstanding advantages of system
structure of control model based on fusion strategy constituted by production rule
are that it is good in modularity, it can be independent in additions, deletions and
modifications for each piece of control rule, and it is not direct affiliation among
each piece of control rule. And also it is good in naturalness, and suitable for the
peculiarity of industrial process control.

4.2 Control Algorithms

In the theory of human simulated intelligent controller, a certain relation of spec-
ified operation, which consists of control error and change rate of control error in
the control system, is called as feature primitives, and it can be represented by qi

Combining with all the feature primitives forms the characteristic state of control
system, it is a both qualitative and quantitative description of dynamic characteristic
in intelligent control system, it can be expressed by ϕi . The characteristic model of
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control system is the set of characteristic state, and a sort of macro-control strategy
set after partitioned dynamic information space of system can be expressed by ϕ.

In the prototype algorithm of human simulated intelligent control, the feature
primitives are as the following.

q1 : e = 0;
q2 : ė = 0;
q3 : ė √= 0;
q4 : e · ė > 0;
q5 : e · ė < 0;
The characteristic states are as the following.
ϕ1 = {e · ė > 0 ∈ e = 0 ≤ ė √= 0}
ϕ2 = {e · ė < 0 ∈ ė = 0}
The characteristic states are as the following.
φ = {ϕ1,ϕ2} = {[e · ė > 0 ∈ e = 0 ∈ ė √= 0], [e · ė < 0 ∈ ė = 0]}
The memory quantity of characteristic is the following.
λ1 : em,i is ith extremum of error.
λ2 : u0(n−1) is the holding value of control output quantity in previous period.
The prototype algorithm of human simulated intelligent controller is the control

mode of alternate open loop and closed loop, and aimed at two sort of different char-
acteristic states it selects different control decision, the algorithm is as the following.

U =

⎡⎣⎣⎣⎣⎧
⎣⎣⎣⎣⎪

K p · e + k · K p ·
n−1⎨
i=1

em,i

k · K p ·
n⎨

i=1

em,i

The control algorithm adopts improved prototype algorithm of human simulated
intelligent controller based on semi-proportion adjustor.

u =

⎡⎣⎣⎣⎣⎧
⎣⎣⎣⎣⎪

K pe + kK p

n−1⎨
i=1

em,i (e · ė > 0 ∈ e = 0 ≤ ė √= 0)

kK p

n⎨
i=1

em,i (e · ė > 0 ∈ ė = 0)

In which, u is the control output, K p is the proportion coefficient, k is the restrain-
ing coefficient, e is the system error, ė is the system error change rate, em, j is ith
error peak value. The algorithm is an algorithm of running control unit level In the
control algorithm, firstly the controller identifies two sorts of simple relation char-
acteristic of error and error change rate, then it judges two sorts of different motion
state of dynamical system, finally the controller adopts respectively two sorts of dif-
ferent control modal. The output of quantitative control operation is decided by the
relation among error peak value of characteristic memory and experienced knowl-
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edge (proportion coefficient K p, restraining k) and current error value. Therefore the
algorithm not only has qualitative decision process (identification of motion state and
selection of corresponding control mode) but also has quantitative control (output of
material control mode). According to the algorithm of human simulated intelligent
controller based on semi-proportion adjustor, aimed at the particular situation it can
form simplified control algorithm and engineering control algorithm.

For simplification and fused the control expert experience, the simplified algo-
rithm can be described as the following.

Pattern 1 If en ·n > 0 or en = 0, |en| > 0,
Then un = un−1 + k+ ∃ en

Pattern 2 If en · ∗en < 0 and |en| ∪ M ,
Then un = un−1 + k− ∃ en

Pattern 3 If en · ∗en < 0 and |en| < M or en = 0,
Then un = un−1 + k ∃ em,n

In which, en is nth error, en = en − en−1, em·n is the error of nth extremum, k+
is a quickening scale coefficient and k+ > 1, k− is a suppression scale coefficient
and 0 < k− ⊂ 1, k is a hold scale coefficient and 0 < k < 1, M is the setting error
boundary, n represents the order number of control cycle, un is the amount of current
control output, un-1 is the amount of control output before the nth cycle.

5 Simulation Experiment

For convenience, here it only takes simplified control algorithm to make the simu-
lation. Ignoring the influence of various factors such as nonlinearity, time varying,
uncertainty and so on, the robust controller itself can ensure the control quality of
waste water, and therefore the simulated math model is not so important. If the
controlled system is considered as one order process with time lag, then its con-
trol process can adopt the model of inertia node with pure time lag to be described
approximately.

W (s) = K e−τs/(T s + 1)

In which, τ , T, K is respectively the pure lag time, time constant of rolling process,
gain coefficient. Generally three parameters in the formula can be determined by
means of unit step response method. For convenience, here it takes τ = 2, T =
1.2, K = 1, and therefore the model is

W (s) = K e−2s/(1.2s + 1)

Under the condition of MATLAB environment, adopting unit step input signal,
by means of Simulink tool box it can build system simulation model to make the
simulation of control process. The simulation adopts respectively the PID and intel-
ligence fusion based control algorithm (simplified as HSIC in the following figure)
to be in charge of the same process, and the simulation curve is shown as in Fig. 2.
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Fig. 2 Process response

In the Fig. 2, the curve 1 and curve 2 is respectively the response curve by PID and
HSIC, and from Fig. 2, it can be seen that both PID and HSIC can not be in overshoot,
but for the former the rising and regulating time is lower than later, therefore the later
owns better control effect.

In order to validate the advantages of fusion control strategy, here it gives a
comparison of robustness for parameter changing. the parameter of controller consists
of K , T and τ , and for simplification, here it would add an inertia node 1/(2s + 1)
in controlled object, namely when the transfer function of controlled object changes
from W (s) = e−2s/(1.2s + 1) to W1(s) = e−2s/(1.2s + 1)(2s + 1) the response
curve is shown as in Fig. 3. From the Fig. 3, it can be seen that it hardly changes in

Fig. 3 Response of two-order process with pure lag
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system response for HSIC control, and there is not any overshoot, but it has seriously
overshoot for PID control.

When the system parameter changes the HSIC has very strong robustness than
PID. In the controlled process of aeration, the PID control produces very obvious
overshoot, and the rising as well as regulating time get slow, but the HSIC is hardly
changing. The simulation mentioned above shows that control algorithm of HSIC is
better in control quality than PID.

6 Conclusion

The needed oxygen amount is continuously changed in the air input process. In order
to make the waste water after processing attain the specified output standard, the paper
proposed a kind of fusion control strategy based on HSIC and expert control system.
By means of the fusion control strategy, the DO parameter density can be controlled
within allowable index range in the waste water disposal tank. The simulation results
show that when the fusion control strategy is adopted the control system quality is
rather ideal than PID, and it is simpler in system structure, and better in real time
performance.

References

1. Lin, L., Tiecheng, D.: Application of intelligent control in sewerage disposing. Microcomput.
Inf. 34, 35–37 (2007)

2. Punal, A., Rocca, E.: An expert system for monitoring and diagnosis of anaerobic wastewater
treatment plants. Water Res. 16, 2656–2666 (2002)

3. Taijie, L., Lifeng, C., Zaiwen, L.: Development of intelligent control of wastewater treatment.
J. Beijing Technol. Bus. Univ. 23(3), 9–11 (2005)

4. Jiaquan, H., et al.: Application of adaptive neuro-fuzzy inference system on aeration control
of wastewater treatment. Autom. Instrum. 5, 34–36 (2004)

5. Taifu, L., Guoliang, F., Bianxiang, Z. A Kind of Control Strategy Analysis for uncertainty
complex system. J. Chongqing Univ. (Nature Science Edition) l, 26(1), pp. 4–7 (2003).

6. Taifu, L., Zhi, Y., Chaojian, S.: Analysis on correlated problem with control of uncertainty
system. J. Chongqing Univ. (Nature Science Edition) 25(2), 19–23 (2002)

7. Zhusu, L., Yaqing, T.: Human Simulated Intelligent Controller. National Industry Defence
Press, Beijing (2003)



Grey Bottleneck Transportation Problems

Guo-zhong Bai and Li-na Yao

Abstract In some real situations, such as transporting emergency goods when a
natural disaster occurs or transporting military supplies during the war, the transport
network may be destroyed, the transportation cost (time or mileage) from sources to
destinations may not be deterministic, but uncertain grey number. This paper inves-
tigated a new bottleneck transportation problem called the grey bottleneck trans-
portation problem, in which the transportation time (or mileage) from sources to
destinations may be uncertain, and introduces its mathematical model and algo-
rithms.

Keywords Bottleneck transportation problem, Natural disaster, Uncertain
transportation time, Grey number

1 Introduction

In all the transportation models, such as traditional transportation problem [1, 2],
bottleneck transportation problem [3, 4] and so on, the transportation cost/time from
every source (supply point) to every destination (demand point) has been considered
to be deterministic. However, in real life, it is not necessarily true. For example, trans-
porting emergency goods in the event of a natural disaster or transporting military
supplies in wartime, the transport network may be destroyed, the transportation time
(or mileage) from certain of the sources to certain of the destinations may be uncer-
tain, but a grey number [5, 6]. In these special cases, the transportation capacity often
is poor; the optimization of the transportation project becomes even more important;
the most important task is how to transport the emergency supplies (including emer-
gency squad and so on) from supply points to demand points as quickly as possible.
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In this paper, if the transportation time (or mileage) from supply points to demand
points be uncertain grey number, the bottleneck transportation problem is said to be
a Grey Bottleneck Transportation Problem. Because China is a developing country
and the transport network is also developing, traffic jams are frequent. The time
wasted by the traffic jam is uncertain. Thus studying such bottleneck transportation
problems will contribute to the society and economy.

2 Definitions and Theorems

The bottleneck transportation problem can be stated as follows: A set of supplies
and a set of demands are specified such that the total supply is equal to the total
demand. There is a transportation time (or mileage) associated between each supply
point and each demand point. It is required to find a feasible distribution (of the
supplies) which minimizes the maximum transportation time associated between a
supply point and a demand point such that the distribution between the two points
is positive. In this paper, we will consider only balanced transportation problems
because it is not difficult to convert an unbalanced transportation problem into a
balanced one [7].

It is assumption that there are m supply points A1, A2, . . . , Am and n demand
points B1, B2, . . . , Bn . Let ai be the supply of Ai , b j be the demand of B j , and the
transportation time from Ai to B j be ti j , all i and j , then the bottleneck transportation
model is

min z = max{ti j
∣∣xi j √= 0, i = 1, . . .m; j = 1, . . . n }

s.t.
n∑

j=1

xi j = ai , i = 1, 2, . . . ,m (1)

m∑
i=1

xi j = b j , j = 1, 2, . . . , n

xi j ∈ 0, i = 1, 2, . . . ,m; j = 1, 2, . . . , n

where
∑m

i=1 ai = ∑n
j=1 b j , ai ∈ 0, b j ∈ 0, all i and j .

In a grey bottleneck transportation problem, the transportation time from Ai to B j

may be uncertain, it is a grey number ≤i j [5, 6]. The grey bottleneck transportation
model is

min f = max{≤i j
∣∣xi j √= 0, i = 1, . . .m; j = 1, . . . n }

s.t.
n∑

j=1

xi j = ai , i = 1, 2, . . . ,m (2)
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m∑
i=1

xi j = b j , j = 1, 2, . . . , n

xi j ∈ 0, i = 1, 2, . . . ,m; j = 1, 2, . . . , n

where ≤i j be the grey transportation time [5] from Ai to B j , ai ∈ 0, b j ∈ 0,
i = 1, 2, . . . ,m; j = 1, 2, . . . , n.

The grey bottleneck transportation problem (2) is written as GBTP(≤i j ), or GBTP
for short.

If the grey number ≤i j ∃ [ai j , bi j ], the following transportation model (3) is said
to be a Lower Limit Transportation Problem of the grey transportation problem (2),
written as G BT P(≤i j )a or for short.

min fa = max{ai j
∣∣xi j √= 0, i = 1, . . .m; j = 1, . . . n }

s.t.
n∑

j=1

xi j = ai , i = 1, 2, . . . ,m (3)

m∑
i=1

xi j = b j , j = 1, 2, . . . , n

xi j ∈ 0, i = 1, 2, . . . ,m; j = 1, 2, . . . , n

The following transportation model (4) is said to be an Upper Limit Transportation
Problem of the grey transportation problem (2), written as or G BT Pa for short.

min f a = max{bi j
∣∣xi j √= 0, i = 1, . . .m; j = 1, . . . n }

s.t.
n∑

j=1

xi j = ai , i = 1, 2, . . . ,m (4)

m∑
i=1

xi j = b j , j = 1, 2, . . . , n

xi j ∈ 0, i = 1, 2, . . . ,m; j = 1, 2, . . . , n

Theorem 1. In the GBTY(≤i j ) (2), if the optimal values of lower limit transportation
problem G BT Pa and upper limit transportation problem G BT Pa are α and β
respectively, then α ∗ β.

Proof: Write the feasible solution set of the GBTP(≤i j ) as

D = {(x11, . . . , x1n, . . . , xmn)

∣∣∣∣∣∣
n∑

j=1

xi j = ai ,

m∑
i=1

xi j = b j , xi j ∈ 0}.
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Let X0 = (x0
11, . . . , x0

1n, . . . , x0
mn) be an optimal solution of the G BT Pa corre-

sponding to the optimal value α, then

fa(X0) = min max
X∃D

{ai j
∣∣xi j √= 0 } = max{ai j

∣∣∣x0
i j √= 0 } = α,

and for any Y ∃ D we have fa(Y ) ∈ α.
Let Y 0 = (y0

11, . . . , y0
1n, . . . , y0

mn) be an optimal solution of the G BT Pa corre-
sponding to the optimal value β, then

f a(Y 0) = min max
X∃D

{bi j
∣∣xi j √= 0 } = max{bi j

∣∣∣y0
i j √= 0 } = β.

Because of ≤i j ∃ [ai j , bi j ], 0 ∗ ai j ∗ bi j , for any X̄ =(x̄11, . . . , x̄1n, . . . , x̄mn) ∃ D
we have

max{ai j
∣∣x̄i j √= 0 } ∗ max{bi j

∣∣x̄i j √= 0 }. (5)

If α>β, then
fa(Y

0) ∈ α > β = f a(Y 0).

That is
max{ai j

∣∣∣y0
i j √= 0 } > max{bi j

∣∣∣y0
i j √= 0 }.

This is in contradiction with formula (5). Thus we have α ∗ β.

Definition 1. In the grey bottleneck transportation model (2), if the optimal values
of G BT Pa and G BT Pa are α and β respectively, then the grey number ≤ ∃ [α,β]
is said to be the Grey Optimal Value of the grey bottleneck transportation model (2).

Definition 2. Let X0 = (x0
11, . . . , x0

1n, . . . , x0
mn) and Y 0 = (y0

11, . . . , y0
1n,

· · · , y0
mn) be the optimal solutions of G BT Pa and G BT Pa respectively, if x0

i j = y0
i j ,

all i and j , then X0 is said to be a Synchronal Optimal Solution of the grey bottleneck
transportation model (2).

Theorem 2. Let α and β be the optimal values of G BT Pa and G BT Pa respec-
tively, if X0 = (x0

11, . . . , x0
1n, . . . , x0

mn) is a synchronal optimal solution of the grey
bottleneck transportation model (2), then for every t , 0 ∗ t ∗ 1, X0 is also an
optimal solution to the following bottleneck transportation problem (6):

min z = max{ai j + t (bi j − ai j )
∣∣xi j √= 0 }

s.t.
n∑

j=1

xi j = ai , i = 1, 2, . . . ,m (6)

m∑
i=1

xi j = b j , j = 1, 2, . . . , n
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xi j ∈ 0, i = 1, 2, . . . ,m; j = 1, 2, . . . , n

and the optimal value of the bottleneck transportation model (6) equals α+ t (β−α).

Proof: Because X0 is a synchronal optimal solution of the grey bottleneck trans-
portation problem (2), for any X ∃ D we have

α = max{ai j

∣∣∣x0
i j √= 0 } ∗ max{ai j

∣∣xi j √= 0 }
β = max{bi j

∣∣∣x0
i j √= 0 } ∗ max{bi j

∣∣xi j √= 0 }.

Since 0 ∗ t ∗ 1,0 ∗ ai j ∗ bi j , we have

α + t (β − α) = (1 − t)α + tβ

= (1 − t)max{ai j

∣∣∣x0
i j √= 0} + t max{bi j

∣∣∣x0
i j √= 0 }

∗ (1 − t)max{ai j
∣∣xi j √= 0} + t max{bi j

∣∣xi j √= 0 }
= max{(1 − t)ai j

∣∣∣x0
i j √= 0} + max{tbi j

∣∣∣x0
i j √= 0 }

= max{[(1 − t)ai j + tbi j ]
∣∣∣x0

i j √= 0}
= max{[(ai j + t (bi j − ai j )]

∣∣∣x0
i j √= 0}

Thus X0 is an optimal solution of the bottleneck transportation problem (6), and the
corresponding optimal value equals α + t (β − α).

Definition 3. Let the grey number ≤ ∃[α,β] be a grey optimal value of the grey
bottleneck transportation model (2). For m × n real numbers γi j , ai j ∗ γi j ∗ bi j ,

all i and j , there exists X0 ∃ D such that α ∗ max{γi j

∣∣∣x0
i j √= 0 } ∗ β, then X0

is said to be a Semi-optimal Solution of the grey bottleneck transportation problem

(2), and max{γi j

∣∣∣x0
i j √= 0 } is said to be the Semi-optimal Value corresponding to the

semi-optimal solution.

Because a balanced bottleneck transportation model always has optimal solutions
[1, 2], and both optimal solutions of the lower limit transportation problem G BT Pa

and the upper limit transportation problem G BT Pa may be regarded as the semi-
optimal solutions of the grey bottleneck transportation problem (2), we have the
following theorem.

Theorem 3. A balanced GBTP always has semi-optimal solutions and the grey
optimal values.
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3 The Methods for Solving GBTP

In the grey transportation problem (2), grey transportation time ≤i j fromith supply
point to jth demand point is not a definite real number, but a grey number. Some-
time, we cannot obtain an optimal value of GBTP in the mathematical significance.
According to Theorem 1 and Theorem 3, we can obtain the grey optimal value or
the semi-optimal value of GBTP. It is regretful that the grey optimal value is not
a definite real number. The following are some special methods for solving a grey
bottleneck transportation problem with the grey transportation time ≤i j . With these
we can obtain the whitened value [5, 6] of the grey optimal value of GBTP and the
semi-optimal value.

3.1 Time Sequence Grey Number

In the grey bottleneck transportation model (2), if the grey transportation time ≤i j

is given by the time sequence, say

≤i j : {ti j (1), ti j (2), . . . , ti j (n)} .

(1) Let the average number

ti j = 1

n

n∑
k=1

ti j (k),

then use ti j in place of ≤i j .
(2) Use the method of grey forecasting [6] to calculate the forecasting value ti j (n+1)

of the ≤i j , then use ti j (n + 1) in place of ≤i j .

Then solve the bottleneck transportation problem, and obtain an optimal solution.
The optimal solution is a semi-optimal solution to the grey bottleneck transportation
problem (2), and the corresponding optimal value is a semi-optimal value of (2).

It is easy to see that the GBTP not only suits to study static but also suits to study
dynamic bottleneck transportation problems.

3.2 Rational Grey Number

In the grey bottleneck transportation model (2), the grey transportation time is a
rational grey number [5] ≤i j∃ [ai j , bi j ].
(1) Let

ti j = ai j + t (bi j − ai j ), 0 ∗ t ∗ 1,
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then use ti j in place of ≤i j . Where t is said to be the risk coefficient. For each t ,
0 ∗ t ∗ 1, ti j is a definite real number. Specially, t = 0 is said to be the optimistic
coefficient; t=1 is said to be the pessimistic coefficient. Using this method to
determine the whitened value of the grey number ≤i j , the dependable degree
may be defined as

∪
2t when 0 ∗ t ∗ 0.5, or

∪
2(1 − t) when 0.5 ∗ t ∗ 1.

The reason why we make such a definition can be found in the reference [8].
(2) Let

ti j = ai j + λi j (bi j − ai j ), 0 ∗ λi j ∗ 1,

then use ti j in place of ≤i j . Where λi j is said to be the weighted risk coefficient.

Then solve the bottleneck transportation problem, and obtain an optimal solution.
The optimal solution is a semi-optimal solution of the grey bottleneck transportation
problem (2), and the corresponding optimal value is a semi-optimal value of (2).

3.3 Especial Grey Number

In the grey bottleneck transportation problem (2), determining the whitened value
of the grey transportation time ≤i j is difficult, and has no precedent to go by. Then
the following methods may be used to determine the whitened value of the grey
number ≤i j .

(1) Three-value-estimate. At first, the following three estimates are given by the
experienced policymakers, experts and concerned person: the minimal trans-
portation time αi j , the maximal transportation time βi j and the most possible
transportation time γi j . Let the weighted average

ti j = αi j + 4γi j + βi j

6
,

then use the weighted average ti j in place of the grey transportation time ≤i j .
(2) Two-value-estimate. If estimating the most possible transportation time is very

difficult, let the weighted average

ti j = 3αi j + 2βi j

5
,

then use ti j in place of ≤i j .

Then solve the bottleneck transportation problem, and obtain an optimal solution.
The optimal solution is a semi-optimal solution of the grey bottleneck transportation
problem (2), and the corresponding optimal value is a semi-optimal value of (2).



364 G. Bai and L. Yao

4 Conclusion

This paper investigated a new transportation problem called the grey bottleneck
transportation problem, in which the transportation time (or mileage) from sources to
destinations may be uncertain. The mathematical model is given, and some methods
for solving the grey bottleneck transportation problem are introduced.

If we regard a real number a (a ∃ R) as a special grey number, namely rational
grey number a = ≤ ∃ [a, a], then a traditional bottleneck transportation problem
can be considered as a special grey bottleneck transportation problem.

Many of the problems normally encountered in practice deal with grey number,
such as Grey Payoff Matrix Game [9], Grey Assignment Problems [10], and so on.
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A Simulated Annealing Genetic Algorithm
for Solving Timetable Problems

Yi-jie Dun, Qian Wang and Ya-bin Shao

Abstract The post-enrolment course timetabling (PE-CTT) is one of the most
studied timetabling problems, for which many instances and results are available. In
this paper, we design a metaheuristic approach based on Simulated Annealing to solve
the PE-CTT. We consider all the different variants of the problems that have been pro-
posed in the literature and perform a comprehensive experimental analysis on all the
public instances available. The outcome is that the solver, properly engineered and
tuned, performs very well in all cases. Thus we provide the new best known results
for many instances and state-of the-art values for the others. An algorithm SAGA for
solving timetable problem was presented by analyzing all kinds of restricting condi-
tions and special requirements in timetable arrangement of colleges and universities.
Moreover, the crossover and mutation operators in the simulated annealing genetic
algorithm were improved with adaptive strategy in order to enhance its searching
ability and efficiency of the algorithm. The numerical experiments showed that the
algorithm was efficient and feasible.

Keywords Course timetabling · Genetic algorithms · Simulated annealing ·
Metaheuristics

1 Introduction

The timetabling of events [1] (such as lectures, tutorials, and seminars) at universities
in order to meet the demands of its users is often a difficult problem to solve effec-
tively. As well as wanting a timetable that can actually be used by the institution,
users will also want a timetable that is “nice” to use and which doesn’t overburden
the people who will have to base their days’ activities around it. Timetabling is also
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a very idiosyncratic problem that can vary between different countries, different uni-
versities, and even different departments. From a computer- science perspective, it
is therefore a problem that is quite difficult to study in a general way. Educational
timetabling is a sub-field of timetabling that considers the scheduling of meetings
between teachers and students. In the middle of 1970s, the authors demonstrated that
the timetable problem is a NP complete problem [1] with other researchers. In the
1990s’, Colorni et al. [2] using genetic algorithms (GAs) to solve the timetable prob-
lems. Sigeru [3] using GAs to solve the problem of university timetable arrangements
by the way of adds control constraints. Zhang Chunmei [4] introduced the Adaptive
genetic algorithms for solving the university timetable problem, they divided the
university courses into Several categories such as compulsory, elective, minor and
Solving respectively, and have achieved good results. Ye Ning et al. [5], who industry
and presents an algorithm of automatically arranging courses in universities. They
used genetic algorithms to set up a data model and defined a four-dimensional chro-
mosome encoding scheme. Legierski [6] gave the application of simulated annealing
algorithm to optimize the arrangement of the curriculum program, and discussed the
various issues involved in the program. Schaerf et al. [7] applied one kind of mixed
simulation annealing algorithm [8] to solve the class schedule problem. A large num-
ber of variants of educational timetabling problems have been proposed in the litera-
ture, which differ from each other based on the type of institution involved (university,
school, or other), the type of meeting (course lectures, exams, seminars, . . . ), and the
constraints imposed. The university course timetabling (CTT) problem is one of the
most studied educational timetabling problems and consists in scheduling a sequence
of events or lectures of university courses in a prefixed period of time (typically a
week), satisfying a set of various constraints on rooms and students. Many formula-
tions have been proposed for the CTT problem over the years. Indeed, it is impossible
to write a single problem formulation that suits all cases since every institution has its
own rules, features, costs, and fixations. Nevertheless, two formulations have recently
received more attention than others, mainly thanks to the two timetabling competi-
tions, ITC 2002 and ITC 2007 [9] (McCollum et al. 2010), which have used them
as competition ground. These are the so-called curriculum-based course timetabling
(CBCTT) and post-enrolment course timetabling (PE-CTT). The main difference
between the two formulations is that in the CB-CTT all constraints and objectives
are related to the concept of curriculum, which is a set of courses that form the com-
plete workload for a set of students. On the contrary, in PE-CTT this concept is absent
and the constraints and objectives are based on the student enrolments to the courses.
However, for the curriculum schedule problem, the search ability of the algorithm is
not high and it is inefficient, what’s more, the initial parameters have a big influence
on it. Such as genetic algorithm, the parameters improperly is easy to fall into the
“premature”, and the simulated annealing algorithm is very harsh restrictions on the
“retire temperature” process conditions, and the time performance is poor. Therefore
this paper presents a method of using hybrid genetic algorithm–simulated annealing
genetic algorithm(SAGA) to optimize the curriculum arrangement, and effectively
combine genetic algorithms and simulated annealing genetic algorithm, and improve
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the genetic algorithms fitness function, crossover and mutation rate, so that can get
better optimization effect.

This paper is organized as follows. In Sect. 2 we will review the related definitions
of SAGA as the learning and inference. In Sect. 3 we will introduce our algorithm
learning framework, followed by the experimental evaluations in Sect. 4. The con-
clusions are given in Sect. 5.

2 Relational the Basic Principle of SAGA

As discussed, the genetic algorithm is search algorithms which is based on natural
selection and genetic theory, and combine the fittest rules of the process of biological
evolution survival with the random information exchange mechanism within group
chromosomes. It was first proposed by U.S.J. Holland. Its main characteristic is
exchange information between the search group strategy and individuals; however
the search does not require any prior knowledge when solving the problem itself. So
it is suitable to deal with traditional search methods which are difficult to solve and
complex nonlinear problems. The genetic algorithm is widely used in combinatorial
optimization, machine learning, adaptive control, planning and design, and artificial
life.

In the original timetabling competition, a problem model was used in which a
number of “events” had to be scheduled into rooms and “timeslots” in accordance
with a number of constraints. These constraints can be divided into two classes:
the hard constraints and the soft constraints. The former are mandatory in their
satisfaction and reflect constraints that need to be satisfied in order for the timetable
to be useable; the latter are those that are to be satisfied only if possible and are
intended to make a timetable “nice” for the people who were supposed to use it.

2.1 Simulated Annealing

The simulated annealing algorithm is a random optimization algorithm which is
based on the Monte Carlo iterative solution strategy, The starting point is based on
the similarity between the physical annealing process and the general combinatorial
optimization problems. The simulated annealing algorithm is in some or other initial
temperature, along with the falling of the problem parameters, combined with the
probabilistic jumping feature to find the optimal solution of the objective function
in the problem solution space randomly.

Paul L. Stoffa learned from the idea of simulated annealing simulated annealing
genetic algorithm SAGA. Use the following fitness stretching method, at a certain
temperature to adjust the individual fitness and overcome the "premature" and “stag-
nation” phenomenon in genetic algorithm:
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fi = e f i/T⎡M
i=1 e f i/T

and
T = T0(0.99g−1

)

where fi is the individual’s fitness, M is the population size, g is a hereditary algebra,
T is the temperature and T0 is the initial temperature.

2.2 General Definition of PE-CTT

In the PE-CTT problem it is given a set E = {1, …, E} of events, a set T = {1, …, T}
of timeslots, and a set R = {1, …, R} of rooms. It is also defined a set of days D =
{1, …, D}, such that each timeslot belongs to one day and each day is composed by
T/D timeslots.

It is also given a set of students S and an enrolment relation M √ E ×S, such that
(e, s) ∈ M if student s attends event e.

Furthermore, it is given a set of features F that may be available in rooms and
are required by events. More precisely, we are given two relations αR√R×F and
αE√E×F, such that (r, f) ∈ α R if room r has feature f and (e, f) ∈ α E if event e
requires feature f, respectively, Each room r ∈ R has a fixed capacity Cr, expressed
in terms of seats for students.

In addition, it is defined a precedence relation
⎣ √ θ×θ, such that if (e1, e2) ∈ ⎣

,
events e1 and e2 must be scheduled in timeslots t1 and t2 such that t1 < t2. Finally,
there is an availability relation A √ θ× T, stating that event e can be scheduled in
timeslot t only if (e, t) ∈ A.

3 The Model of the Timetable Problem

3.1 Description of the Problem

There are five mutual restraint factors are involved in the curriculum which is the
classroom, class, time, curriculum, teachers. The question solution process is to find a
suitable teachers and classrooms-time on any course. When arranges the curriculum,
meet the necessary constraints, as far as possible to meet some special optimization
requirements.

The existing constraints are: (1) A teacher can only be one course at the same
time; (2) a class can only be a course at the same time; (3) A classroom only for
a course at the same time; (4) Student numbers cannot be greater than the current
maximum capacity of the designated classroom.
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Special requirements: (1) Trunk courses or examination classes are arranged in
the morning, elective, or examine the lessons are arranged in the afternoon; (2) The
courses which have more hours in a week should arrange dispersed to facilitate
teachers in preparing lessons and students to review; (3) Keep some special time
periods, such as the class meeting activities, outdoor activities; (4) Which have many
hours of the same course within a week should be arranged in the same class room.

The curricula arrangement should defined as a four-group C, C = (teacher, class-
room, course, class), which representing teachers, classroom, course scheduling tasks
and classes. Among them, the Teacher (Tno, Tname, Cno) include the number of
teachers, teachers’ name and course code, the Classroom (class no, capability, type)
include a number of the classroom, classroom capacity and classroom type, the Class
(class no, nature_class, student no) include the class number, nature classes number,
students number, the Course (Cno, Cname, Stu_num, period, distribute) include the
course number, course name, number of who select it, how many hours per week
and its distribution codes.

The rules of hours per week distributed coding are: 1 stands for the week hours
is 2 and should take one class; 2 stands for the week hours is 3 and should take two
classes; 3 stands for should take one class in single week; 4 stands for should take
one class in double week; 0 shows that more than 24 hours interval between the two
classes of the course, and if there are no number 0 between two numbers. Course on
continuous, for example, 11 stands for 4 courses ranked in the continuous-time.

3.2 Coding and Chromosome Representation

Students should make choose courses online based on teaching plan, and collect it
so that can form the original data of course arrangement, it is Course (Cno, Cname,
Stu_num, period, distribute), from the course schedule we can get teacher’s infor-
mation: Teacher (Tno, Tname, Cno). From the database we can get the classroom’s
information: Classroom (classno, capability, type). From the teachers course sched-
ule we can get a series of constraint, such as dedicated classrooms, a multimedia
classroom and time requirements.

Uniform numbers of all courses in all classes of the school and can get the course
number Uniform coding of all available time periods within a week can get time
number; Uniform numbers of all classrooms can get the classroom number. Using
matrix encoding, a matrix Y represents the possibly timetabling. The matrix’s rows
and columns represent the number of classroom and time. If a course was arranged
in a classroom i and in time period j, yi j stands for it, 0 indicates no Timetable of
the classroom during that time period, −1 stands for go on class continuous. For
example, there are 4 classrooms and 15 available time periods (Within a week of five
days class, 3 large sections such every day). The corresponding matrix representation
is as follows:
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Y =

⎧
⎪⎪⎨

15 2 7 21 18 0 34 15 2 25 −1 23 17 2 0
9 12 −1 14 6 21 27 9 0 36 3 12 4 −1 0
5 6 0 24 16 0 13 6 −1 35 24 0 3 26 11

22 8 1 33 −1 0 30 28 0 8 29 31 33 0 1

⎩
⎫⎫⎬

3.3 Fitness Function

Definition:
F = {γ, ρ, δ, Φ, η, ψ} (1)

γ =
⎭

x .....(0 ≤ x < 1)

1...........(x ∃ 1)
(2)

Among them, x is the number of course in the timetable units divided by the capacity
of classroom. When ρ = 0, there is no conflict about teacher’s teaching time. When
ρ = 1, there have conflict about teachers’ teaching time. When δ = 0, there is no
conflict about class to class time. When δ = 1, there have conflict about class to
class time. When Φ = 0, the special courses is arranged in the designated classrooms.
When Φ = 1, the special courses is not arranged in the designated classrooms. When
η = 0, one class time interval is more than 3 segments in a week. When η = 1,
one class time interval is less than 3 segments in a week. ψ is the sum of fitness
which meet other special requirements. (Meet a requirement , and its value plus 0,
otherwise plus 1). For example, if the teachers ask to teaching in the morning, there
have conflicts with students’ course selection time.

According to the curriculum schedule and teacher curriculum schedule require-
ments, Calculate the value of fitness function after make corresponding weights based
on the the important degree of a variety of constraints and special requirements:

f (Y ) =
6∑

i=1

ωi F[i]. (3)

3.4 Genetic Operator

It can be randomly selected as parents in the two rows of the matrix of a single
chromosome, and can be exchange randomly part of the time. Its function is adjust
the conflict between the number of elective students and classroom capacity and also
can meet the special requirements of a course for classroom. However, it can also
choose from two different chromosomal matrixes in the same line as parents, and
using partially matched crossover method for cross operation.
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1. Mutation operator. When the operation result is close to the optimal solution,
using part random search capability of the mutation operator can accelerate the
convergence to the optimal solution. For the selected chromosome select a row
randomly, and then select a column value in the row randomly which correspond-
ing to a course number (its value is not 0 or −1), and then transform the course
number of some other time period arranged in the same day, so that can adjust
the time conflict of teachers and class.

2. Selection operators. According to the size of the individual fitness function, we
use the roulette selection strategy to choose the excellent course arrangement plan,
and to meet the various special requirements based on the constraint condition.

3. Filtration operator. When determine the initial solution, it must satisfy the con-
straint conditions, at the same tine, each of the solution in the annealing process
should satisfy this condition too. The filtering operation can be used to judge
whether a solution is the feasible solution. It is need to scan the entire chromo-
some to judge when initialize population, however, we can get result only by scan
the progeny of chromosome specific line of a part after cross and mutation.

3.5 Parameter Settings

1. The determination of the objective function

What the genetic algorithm’s search direction guidance based on is the fitness.
Because in the roulette selection, the chromosome with large fitness is more probably
to be selected, so the optimization direction of the objective function associated with
the direction of the fitness increased. However, the conflict of objective function
arranged by Curriculum schedule, it belongs to the minimum optimization problem,
so it should be adjusted and the transformation is as follows:

f (i) = exp(−( fi − fmin)/t) (4)

where fi denotes the fitness value which chromosome correspond; fmin is the small-
est fitness value in the current evolutionary population, t stands for temperature
parameters. This is a very good accelerating objective function, the acceleration is
not apparent when the temperature if high otherwise it is very apparent. Thus it can
achieve the fitness stretching.

2. The determination of initial temperature and the operations of retire temperature

The initial temperature choose T0 = K δ. Where K is a sufficiently large number,
you can choose K = 10, 20, 100, ... experimental values; and δ= fs,max − fs,min fs,max
is the largest objective function value in the initial population while fs,min is the
smallest. The retirement temperature function use the common form: TK+1 = γTK ,
with 0 < γ < 1.
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3. The probability of crossover and mutation

The crossover rate pc and mutation rate pm take a fixed value in accordance with
the experience during the optimization, pc ∈ [0.25, 0.95], pm ∈ [0.005, 0.100],
However, this method has a certain blindness. Srinivas et al. proposed that pc and pm

change automatically with adaptive, it’s main idea is adjust pc and pm dynamically
based on the population evolution in order to achieve the purpose of overcoming
premature convergence and to accelerate the search speed. According to its principle,
we can get the following expression:

pc =
{

k1( f − fmin)
favg − fmin

⎢
f < favg

⎥
k1

⎢
f ∃ favg

⎥

pm =
{

k2( f − fmin)
favg − fmin

⎢
f < favg

⎥
k2

⎢
f ∃ favg

⎥

where k1, k2 is a constant and the specific value is determined according to the
actual situation; favg is the average objective function value of the current generation
of evolutionary groups; f is the smaller objective function value in the two cross
individuals.

4. Discriminate criteria replication strategy based on the Metropolis

Adjustments made by crossover and mutation operation may make the new cur-
riculum after exchange doesn’t satisfy the constraint conditions. It means which will
produce infeasible solutions, so it is needed to withdraw the exchange back to the
original state. When the exchanges satisfy the constraints, we need to calculate the
difference of objective function in order to carry out the judgment of the metropolis
criterion. Metropolis criterion is: If �t < 0 accepted S∗ as new current solution S,
otherwise with the probability of exp(−∪t/T ).

4 Algorithm Descriptions

Type: teacher data, course data (including the course schedule Course), classroom
data. Output: a semester course schedule of the school

1. According to the classroom data and the available time in a week, generate a
blank course schedule, and put the course numbers into it randomly with the
requirements that satisfy the constraints. At the same time, it should be loaded n
groups in total to form the initial population consisted by n-dimensional table, n
is the number of chromosomes in the groups;

2. Choose the initial temperature coefficient K, annealing temperature coefficient
γ, the coefficient k1, k2 of crossover and mutation operations, the termination of
coefficient q, let the number of iterations L = 0;
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3. Calculate the objective function value of each chromosome in the population, and
determine the initial temperature, make the initial optimal solution s = fmin, and
p = 0;

4. Calculate the fitness of each chromosome, and using the roulette method for group
selection, and reserves the high Fitness value of the chromosome;

5. Recalculates the value for the objective function of the chromosome and follow
the crossover probability pc to run the crossover operation of genetic algorithm
to keep the target’s largest chromosomes;

6. Recalculates the value for the objective function of the chromosome and follow
the Mutation probability pm to run the crossover operation of genetic algorithm
to keep the target’s largest chromosomes;

7. Run the replication strategy based on the Metropolis criterion to produce the next
generation of population;

8. Executive temperature back operation with TK+1 = γTK and L = L + 1;
9. Calculate the objective function value of the chromosome in new populations,

and S∗ = fmin, the next judge the difference between S∗ and S to get �S, then
according to the Metropolis criterion to decide whether to accept the new value.
If it accept makes S = S∗, p = 0, otherwise makes p = p + 1;

10. Judge whether p is greater than or equal to q, if it is, output of the final solution
with S and stop the calculation; otherwise, return to the third step.

5 Analyses of Algorithm Results

According to the above algorithms, choose a spring semester curriculum of a uni-
versity in Lanzhou from 2001 to 2002 as an example, then use the software C++
Builder 6.0 compile the course arrangement program, after that, verify the algorithm
results. There are 21 weeks in this semester in total and each week have 27 available
time, and this university have 450 teachers and 183 classrooms which including 75
multimedia classrooms, 48 special classrooms, and it have 14,856 seats and 15,000
students in 96 classes.

The population size is n = 60 when calculating, and each coefficient of the algo-
rithm is determined as follows: the initial temperature coefficient K = 20, the anneal-
ing temperature coefficient γ = 0.8, the coefficient of Crossover and mutation oper-
ations is k1 = 0.8, k2 = 0, The judgment condition of algorithm terminates is q = 20.
The algorithm runs to end at the 2875th generation and it spend 2,455 s, the results
showed the conflict between the classrooms, teachers, classes and the time has been
solved perfectly. However, the same example shows if the programming using a sim-
ple genetic algorithm to deal with and compare the results of multiple runs, we can
get that the average time is about 1,967 s and the average operating algebra is 1,543.
Although the algorithm running time is short, it should be run multiple times to get
a more satisfactory solution.

Analysis of the proposed algorithm, the downside is that: Because it access to
the database frequently during the calculation, and to verify whether the solution is
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feasible, therefore the algorithm running time longer. So the future work is to improve
these deficiencies deeply in order to improve the efficiency of the algorithm.

6 Conclusions

This paper presents algorithms using simulated annealing genetic algorithm to solve
the curriculum arrangement optimization problem, it combines the characteristics of
genetic algorithms and simulated annealing genetic algorithm which makes the two
algorithms search capabilities complement each other, what’s more, it overcomes the
genetic algorithm easy to fall into the “premature” with the parameter choice is unde-
served and simulated annealing algorithm has very harsh restrictions to “Annealing
temperature”, and it also avoid the search process into a local minimum. In addition,
the algorithms change the genetic algorithm crossover and mutation probability adap-
tively in the problem solving process. Thus we improve the algorithm’s exploration
ability and efficiency in the solution space.
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Weighted Statistical Approximation
Properties of the q-Phillips Operators

Mei-ying Ren

Abstract In this paper, the q-Phillips operators which were introduced by I. Yüksel
are studied. By the means of the q-integral and the concept of the statistical conver-
gence, the weighted statistical approximation theorem of the operators is obtained.
Then a convergence theorem of Korovkin type is given. Finally, a Voronovskaja-type
asymptotic formulas is also investigated.

Keywords Weighted statistical approximation · q-Phillips operators · Korovich
type theorem · Voronovskaja type asymptotic formulas · q-integral

1 Introduction

After Phillips [1] introduced and studied q analogue of Bernstein polynomials, the
applications of q-calculus in the approximation theory become one of the main
areas of research, many authors studied new classes of q-generalized operators (for
instance, see [2–4]). In 2011, Yüksel [5] studied the approximation properties of
the q-Phillips operators. The main aim of this paper is to study weighted statistical
approximation the properties of the q-Phillips operators on the basis of [5].

Before, proceeding further, let us give some basic definitions and notations from
q-calculus. Details on q-integers can be found in [6–10].

Let q > 0,for each nonnegative integer k, the q-integer [k]q and the q-factorial
[k]q ! are defined by

[k]q :=
{

1−qk

1−q , q √= 1,

k, q = 1.
and [k]q ! :=

{ [k]q [k − 1]q . . . [1]q , k ∈ 1,

1, k = 0.
respectively.

M. Ren (B)

Department of Mathematics and Computer Science, Wuyi University, Wuyishan 354300, China
e-mail: npmeiyingr@163.com

B.-Y. Cao and H. Nasseri (eds.), Fuzzy Information & Engineering and Operations 375
Research & Management, Advances in Intelligent Systems and Computing 211,
DOI: 10.1007/978-3-642-38667-1_37, © Springer-Verlag Berlin Heidelberg 2014



376 M. Ren

Then for q > 0 and integers n, k, n ∈ k ∈ 0, we have [k + 1]q = 1 + q[k]q and
[k]q + qk[n − k]q = [n]q .

For the integers n, k, n ∈ k ∈ 0, the q-binomial coefficients is defined by

[
n
k

]
q

:= [n]q !
[k]q ![n − k]q ! .

The two q-analogue of the exponential function are defined as:

eq(x) =
≤∑

n=0

xn

[n]q ! = 1

(1 − (1 − q)x)≤q
, |x | <

1

1 − q
, |q| < 1 and

Eq(x) =
≤∑

n=0

qn(n−1)/2 xn

[n]q ! = (1 + (1 − q)x)≤q , |q| < 1,

where (1 + x)≤q = ∐≤
j=0 (1 + q j x).

Also, it is known that eq(x)Eq(−x) = eq(−x)Eq(x) = 1.

For 0 < q < 1, the q-Jackson integral in the interval [0, a] and the q-improper
integral are defined as:

∫ a
0 f (t)dq(t) = a(1 − q)

∑≤
n=0 f (aqn)qn, a > 0 and∫ ≤/A

0 f (t)dq(t) = (1 − q)
∑≤

n=−≤ f (
qn

A )
qn

A , A > 0, respectively, provided
where the sums converge absolutely.

For t > 0, q-Gamma function is defined as:

αq(s) = K (A, s)
∫ ≤/A(1−q)

0
t s−1eq(−t)dq(t),

where K (A, s) = As

1+A (1 + 1
A )s

q(1 + A)1−s
q . In particular, for s ∃ N , K (A, s)

= qs(s−1)/2, K (A, 0) = 1 and αq(s + 1) = [s]qαq(s), αq (1) = 1.

For f ∃ C[0,≤), q ∃ (0, 1), x ∃ [0,≤), n ∃ N , q-Phillips operators is defined
as (see [5]):

Pq
n ( f ; x) = [n]q

≤∑
k=1

pn,k(x, q)

∫ ≤/A(1−q)

0
qk(k−1) pn,k−1(t, q) f (t)dq(t)

+ eq(−[n]q x) f (0),

(1)

where

pn,k(x, q) = ([n]q x)k

[k]q ! eq(−[n]q x). (2)
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2 Some Lemmas

Lemma 1 (see [5]) For the operators Pq
n ( f ; x) given by (1) let em(t) = tm,

m = 0, 1, 2, 3, 4, then

(i) Pq
n (e0; x) = 1; (3)

(ii) Pq
n (e1; x) = x

q
; (4)

(iii) Pq
n (e2; x) = x2

q4 + [2]q

q3[n]q
x; (5)

(iv) Pq
n (e3; x) = x3

q9 + [2]qq + [4]q

q8[n]q
x2 + [2]q [3]q

q6[n]2
q

x;

(v) Pq
n (e4; x) = x4

q16 + [2]qq2 + [4]qq + [6]q

q15[n]q
x3

+ [2]q [3]qq2 + [2]q [5]qq + [4]q [5]q

q13[n]2
q

x2 + [2]q [3]q [4]q

q10[n]3
q

x .

Lemma 2 Let sequence {qn} satisfying qn ∃ (0, 1), lim
n∗≤ qn = 1and lim

n∗≤ qn
n =

c(c < 1). Then for any x ∃ [0,≤) , we have

(i) lim
n∗≤[n]qn Pqn

n ((t − x)2; x) = 2(1 − c)x2 + 2x;

(ii) lim
n∗≤[n]2

qn
Pqn

n ((t − x)4; x) = 12x2 + 28(1 − c)x3 + 12(1 − c)2x4.

Proof In view of [n]qn = 1−qn
n

1−qn
, by the linearity of the Pq

n ( f ; x) and Lemma 1, we
have

lim
n∗≤[n]qn Pqn

n ((t − x)2; x) = lim
n∗≤[n]qn [(

1

q4
n

− 2

qn
+ 1)x2 + [2]qn

q3
n [n]qn

x]

= 2(1 − c)x2 + 2x .

Pqn
n ((t − x)4; x) =[2]qn [3]qn [4]qn

q10
n [n]3qn

x

+ x2

[n]2qn

(
[2]qn [3]qn q2

n + [2]qn [5]qn qn + [4]qn [5]qn

q13
n

− 4[2]qn [3]qn

q6
n

)

+ x3

[n]qn

(
[2]qn q2

n + [4]qn qn + [6]qn

q15
n

− 4([2]qn qn + [4]qn )

q8
n

+ 6[2]qn

q3
n

)
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+ (
1

q16
n

− 4

q9
n

+ 6

q4
n

− 4

qn
+ 1)x4

= : An,qn + Bn,qn + Cn,qn + Dn,qn .

In view of qn ∃ (0, 1), lim
n∗≤ qn = 1, we have [n]qn ∗ ≤ as n ∗ ≤ (see [11]),

so, using [n]qn = 1−qn
n

1−qn
, it is clear that

lim
n∗≤[n]2

qn
An,qn = 0, lim

n∗≤[n]2
qn

Bn,qn = 12x2,

lim
n∗≤[n]2

qn
Dn,qn = lim

n∗≤(
1 − qn

n

1 − qn
)2 1 − 4q7

n + 6q12
n − 4q15

n + q16
n

q16
n

x4

= lim
n∗≤

(1 − qn
n )2

q16
n

(q14
n − 2q13

n − 5q12
n − 8q11

n − 5q10
n − 2q9

n

+ q8
n + 4q7

n + 7q6
n + 6q5

n + 5q4
n + 4q3

n + 3q2
n + 2qn + 1)x4

=12(1 − c)2x4.

By a similar calculation, we have lim
n∗≤[n]2

qn
Cn,qn = 28(1 − c)x3. So

lim
n∗≤[n]2

qn
Pqn

n ((t − x)4; x) = 12x2 + 28(1 − c)x3 + 12(1 − c)2x4.

3 Weighted Statistical Approximation

Let N denote a set of all natural numbers, K be a subset of N , θK is the characteristic
function of K , The density of K is defined by γ(K ) = lim

n∗≤
1
n

∑n
k=1 θK (k), provided

the limit exists (see [12]). A sequence x = {xn} is called statistically convergent to
a number L , if for every ρ > 0, γ{n ∃ N : |xn − L| ∈ ρ} = 0 (see [13]). This
convergence is denoted as st − lim

n∗≤ xn = L . Let A = {ank}, n, k = 1, 2, 3, . . . be

an infinite summability matrix. For a given sequence x = {xk}, the A-transform of x,
denoted by Ax = ((Ax)n), is defined as (Ax)n = ∑≤

k=1 ank xk , provided the series
converges for each n. A is said to be regular if lim

n∗≤(Ax)n = L whenever lim
k∗≤ xk = L

(see [14]) . Suppose that A = {ank} is nonnegative regular summability matrix. Then
x = {xn} is A-statistically convergent to L if for every ρ > 0, lim

n∗≤
∑

k:|xk−L|∈ρ

ank =
0, and we write stA − lim

n∗≤ xn = L (see [15]). If A = C1 is the Cesaro matrix
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of order one, then A-statistically convergence reduces to the statistical convergence
(see [16]).

Let R is a set of all real number. C(R) denotes the space of all functions f which are
continuous in R.δ(x)is called as weight function, if it satisfy δ(x) ∃ C(R), δ(x) ∈
1and lim|x |∗≤ δ(x) = ≤.

Let Bδ(R) = { f | f : R ∗ R, | f (x)| ∪ M f δ(x)},where δ(x) is weighted
function, M f is a positive constant depending only on f.Denoting Cδ(R) = { f | f ∃
Bδ(R) ⊂ C(R); || f ||δ = sup

x∃R

| f (x)|
δ(x)

}.
Currently, Duman and Orhan proved a weighted Korovkin type theorem via

A-statistical convergence. Now, we recall this theorem.

Theorem 1 (see [17]) Let A = {ank} be a nonnegative regular summability matrix,
{Tn} is a sequence of linear positive operators acting from Cδ1(R) to Bδ2(R), where

δ1 and δ2 are weighted functions, lim|x |∗≤
δ1(x)
δ2(x)

= 0 . Then for any f ∃ Cδ1(R), stA −
lim

n∗≤ ||Tn f − f ||δ2 = 0 if and only if stA − lim
n∗≤ ||Tn Fv − Fv||δ1 = 0, where

Fv(x) = xvδ1(x)

1+x2 , v = 0, 1, 2.

By Theorem 1, we can immediately get the following corollary.

Corollary 1 Let Φ > 0, em(t) = tm, m = 0, 1, 2.{Tn} is a sequence of lin-
ear positive operators acting from C1+x2(R) to B1+x2+Φ (R) . Then for any f ∃
C1+x2(R), st − lim

n∗≤ ||Tn f − f ||1+x2+Φ = 0 if and only if st − lim
n∗≤ ||Tnem

− em ||1+x2 = 0 .

Proof In Theorem 1, we take δ1 = 1 + x2, δ2 = 1 + x2+Φ , also let A = C1 be the
Cesaro matrix of order one, then we can get the desired conclusion.

Let sequence q = {qn}, 0 < qn < 1 satisfies the condition:

st − lim
n∗≤ qn = 1, st − lim

n∗≤ qn
n = a(a < 1) (6)

Let m > 0, denoting
B1+xm [0,≤) = { f | f : [0,≤) ∗ R, | f (x)| ∪ M ∇

f (1 + xm)}, where M ∇
f is

a positive constant depending only on f . Also let C[0,≤) denote the space of all
functions f which are continuous in [0,≤), denoting C1+xm [0,≤) = { f | f ∃
B1+xm [0,≤) ⊂ C[0,≤); || f ||1+xm = sup

x∃[0,≤)

| f (x)|
1+xm }, C∀

1+xm [0,≤) = { f | f ∃
C1+xm [0,≤), ⇔ lim

x∗≤
f (x)

1+xm < ≤}.
The next we give the weighted statistical approximation properties of the q-Phillips

operators.

Theorem 2 Let sequence q = {qn}, 0 < qn < 1 satisfy the condition (6) then for any
Φ > 0 and any f ∃ C1+x2 [0,≤), we have st − lim

n∗≤ ||Pqn
n ( f ; ·) − f ||1+x2+Φ = 0.
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Proof By Lemma 1 we have Pq
n (1 + t2; x) ∪ C(1 + x2), so, {Pqn

n ( f ; x)} is a
sequence of linear positive operators acting from C1+x2 [0,≤) to B1+x2+Φ [0,≤).

By (3), it is clear that st − lim
n∗≤ ||Pqn

n (e0; ·) − e0||1+x2 = 0.

By (4), we have ||Pqn
n (e1; ·) − e1||1+x2 = sup

x∃[0,≤)

|Pqn
n (e1;x)−e1|

1+x2 ∪ 1
qn

− 1.

For any ρ > 0, let U = {k : ||Pqk
k (e1; ·) − e1||1+x2 ∈ ρ}, U1 = {k : 1

qk
− 1 ∈ ρ}.

It is clear that U ≥ U1, thus

γ{k ∪ n : ||Pqk
k (e1; ·) − e1||1+x2 ∈ ρ} ∪ γ{k ∪ n : 1

qk
− 1 ∈ ρ}. (7)

Since st − lim
n∗≤ qn = 1, so st − lim

n∗≤( 1
qn

− 1) = 0. Thus, by (7) we have

st − lim
n∗≤ ||Pqn

n (e1; ·) − e1||1+x2 = 0.

By (5), we have

||Pqn
n (e2; ·) − e2||1+x2 = sup

x∃[0,≤)

|Pqn
n (e2;x)−e2|

1+x2 ∪ ( 1
q4

n
− 1) + [2]qn

q3
n [n]qn

.

For any ρ > 0, let
V = {k : ||Pqk

k (e2; ·) − e2||1+x2 ∈ ρ}, V1 = {k : 1
q4

k
− 1 ∈ ρ

2 },
V2 = {k : [2]qk

q3
k [k]qk

∈ ρ
2 }. It is clear that V ≥ V1 ◦ V2, so

γ{k ∪ n : ||Pqk
k (e2; ·) − e2||1+x2 ∈ ρ}

∪ γ{k ∪ n : 1

q4
k

− 1 ∈ ρ

2
} + γ{k ∪ n : [2]qk

q3
k [k]qk

∈ ρ

2
}. (8)

Since st − lim
n∗≤ qn = 1, st − lim

n∗≤ qn
n = a(a < 1), so st − lim

n∗≤( 1
q4

n
− 1) =

0, st − lim
n∗≤

[2]qn
q3

n [n]qn
= 0. Thus, by (8) we have st − lim

n∗≤ ||Pqn
n (e2; ·)−e2||1+x2 = 0.

So, by Corollary 1, Theorem 2 was got.

4 Korovkin Type Convergence Theorem

Theorem 3 Let qn ∃ (0, 1), then the sequence {Pqn
n ( f ; x)} converges to f uni-

formly on [0, A] for any f ∃ C∀
1+x2

[0,≤) if and only if lim
n∗≤ qn = 1.

Proof Assume that lim
n∗≤ qn = 1. Fix A > 0 and consider the lattice homomorphism

TA : C[0,≤) ∗ C[0, A] defined by TA( f ) = f[0,A], then for em(t) = tm, m =
0, 1, 2, by Lemma 1 we have TA(Pqn

n (em; x)) converges to TA(em(t)) uniformly on
[0, A]. {[18], Proposition 4.2.5 (6)} and its proof say that C∀

1+x2
[0,≤) is isomorphic

to C[0, 1] and that the set {1, t, t2} is a Korovkin set in C∀
1+x2

[0,≤). So the univer-
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sal Korovkin type property [see [18] Theorem 4.1.4 (vi)] implies that {Pqn
n ( f ; x)}

converges to f uniformly on [0, A], provided f ∃ C∀
1+x2

[0,≤) .

On the other hand, if we assume that for any f ∃ C∀
1+x2 [0,≤), the sequence

{Pqn
n ( f ; x)} converges to f uniformly on [0, A], then lim

n∗≤ qn = 1. Indeed, if {qn}
does not tend to 1, then it must contain a subsequence {qnk }, such that qnk ∃ (0, 1)

and qnk ∗ q0 ∃ [0, 1) as k ∗ ≤. Thus,

1

[nk]qnk

= 1 − qnk

1 − (qnk )
nk

∗ 1 − q0 as k ∗ ≤.

Taking n = nk, q = qnk in {Pqn
n (t2; x)}, by Lemma 1, we get lim

k∗≤(P
qnk
nk (t2; x)

− x2) = ( 1
q4

0
− 1)x2 + 1−q2

0
q3

0
x √= 0.

This leads to a contradiction, hence lim
n∗≤ qn = 1.

5 Voronovskaja Type Asymptotic Formulas

The last we give the Voronovskaja type asymptotic formulas of the q-Phillips oper-
ators.

Theorem 4 Assume that qn ∃ (0, 1), lim
n∗≤ qn = 1, lim

n∗≤ qn
n = c(c < 1). For

any f ∃ C∀
1+x2

[0,≤) such that f ∇, f ∇∇ ∃ C∀
1+x2

[0,≤). Then, we have lim
n∗≤[n]qn

(Pqn
n ( f ; x) − f (x)) = [(1 − c)x2 + x] f ∇∇(x) uniformly on any [0, A], A > 0.

Proof Let f, f ∇, f ∇∇ ∃ C∀
1+x2

[0,≤) and x ∃ [0,≤) be fixed. By the Taylor formula,

we have f (t) − f (x) = f ∇(x)(t − x) + f ∇∇(x)
2 (t − x)2 + ψ(t, x)(t − x)2, where

ψ(·, x) ∃ C∀
1+x2 [0,≤), ψ(t, x) ∗ 0(t ∗ x). So, by Lemma 1 we can get

[n]qn (Pqn
n ( f ; x) − f (x)) = f ∇∇(x)

2
[n]qn Pqn

n ((t − x)2; x)

+ [n]qn Pqn
n (ψ(t, x)(t − x)2; x). (9)

By the Cauchy-Schwartz inequality, we have

[n]qn Pqn
n (ψ(t, x)(t − x)2; x) ∪

√
Pqn

n (ψ2(t, x); x)

·
√

[n]2
qn

Pqn
n ((t − x)4; x) (10)
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Observe that ψ2(x, x) = 0 and ψ2(·, x) ∃ C∀
1+x2 [0,≤), then by Theorem 3

we have lim
n∗≤ Pqn

n (ψ2(t, x); x) = ψ2(x, x) = 0 uniformly with respect to x ∃
[0, A], A > 0. Thus, by (10) and Lemma 2, we can obtain lim

n∗≤[n]qn Pqn
n (ψ(t, x)

(t − x)2; x) = 0 uniformly with respect to x ∃ [0, A]. Hence, by (9) and Lemma
2, we can get immediately lim

n∗≤[n]qn (Pqn
n ( f ; x) − f (x)) = [(1 − c)x2 + x] f ∇∇(x)

uniformly on any [0, A].

6 Conclusion

In the paper, the weighted statistical approximation theorem of the q-Phillips opera-
tors which was given by (1) is obtained. Also a convergence theorem of Korovkin type
and a Voronovskaja-type asymptotic formulas are given. If we use King’s approach
to consider King type modification of the extension of the q-Phillips operators, we
will obtain better weighted statistical approximation (cf. [19, 20]).
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Consistency Adjustment Algorithm
of the Reciprocal Judgment Matrix

Wei-xia Li, Cheng-yi Zhang and Hua Yang

Abstract In this paper, firstly, according to the problem of the consistency of recip-
rocal judgment matrix, two kinds of consistency recursive iterative adjustment algo-
rithms were given. The algorithm is based on adjustment by order, and fixed value
randomly to adjust other value, then choose the matrix as consistency matrix which
is corresponding the minimum deviation value. Then give an example to adjust the
reciprocal judgment matrix to be consistency by using the two kinds of recursive
iterative adjustment algorithm.

Keywords Positive reciprocal judgment matrix · Consistency recursive iterative
adjustment algorithm · Analytic hierarchy process (AHP)

1 Introduction

Since 1980, analytic hierarchy process (AHP) [1] was applied widely, and it solved
many significant practical problems. The key problem of AHP is the consistency of
judgment matrix which is based on the comparison each other of the elements. The
inconsistency of judgment matrix imply the weight obtained of the elements is not in
conformity with the actual situation, ultimately, it can not give the accurate sorting of
each scheme. In recent years, there are many problems about the consistency checking
and adjustment of the positive reciprocal judgment matrix. For example, [2–4] gave
several consistency adjustment methods based on the relationship between the weight
vector derived from consistency positive reciprocal judgment matrix and eigenvec-
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tors of judgment matrix; [5–7] adjusted the elements of positive reciprocal judgment
matrix to be consistent based on probability theory and statistical knowledge; [8, 9]
introduced the concept of the perturbation matrix, and analyzed relationship among
the judgment matrix, the export matrix and measure matrix to adjust the judgment
matrix; Based on the optimization point of view, [10–12] established the optimization
model to adjust consistency of the positive reciprocal judgment matrix; [13] proposed
interactive analysis method for the adjustment of the judgment matrix. However, the
methods of the consistency judgment seemed more complex, and also was lack
of a theoretical basis, then the consistency adjustment method maybe incomplete
consistency, even the results appear serious inconsistency with the information con-
tained in the original judgment matrix. About the consistency adjustment method
of the reciprocal judgment matrix, two recursive iterations adjustment algorithm
were introduced, and its essence is starting reciprocal judgment matrix by order.
The two kinds of methods fixed elements values randomly of row vector to adjust
other elements, then made positive reciprocal judgment matrix to be consistency by
order. Then elect random element corresponding the minimal deviation value and
the corresponding consistency adjustment matrix of this order, when compared the
deviation value between the adjustment matrix and the original judgment matrix. So
give the consistency adjustments of the reciprocal judgment matrix such by-order.
The method avoids large deviation value between the adjusted consistency matrix
and the original judgment matrix information, and adjusted positive reciprocal judg-
ment matrix was complete consistency. It improves the awareness and understanding
of judge information, as well as the accuracy of the adjustment.

2 Preliminaries

Definition 2.1 Let A = (ai j )n×n be a judgment matrix, where ai j √ R (i, j √ N ),
if

1. ai j > 0, (i, j = 1, 2, . . . , n);
2. a ji = 1

ai j
, (i, j = 1, 2, . . . , n),

then A is called the positive reciprocal judgment matrix.

Definition 2.2 Let A = (ai j )n×n be an positive reciprocal judgment matrix for
(i, j = 1, 2, . . . , n), if for each k, ai j = aikak j , then A is called consistency positive
reciprocal judgment matrix.

Theorem 2.1 Let A = (ai j )n×n be an positive reciprocal judgment matrix where
(i, j = 1, 2, . . . , n), and w = (wi )1×n be the weight vector of A = (ai j )n×n , then
for ∈k = 1, 2, . . . , n, wi = aik/

⎡n
i=1 aik .
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3 Consistency Recursive Iterative Adjustment
Algorithm of Positive Reciprocal Judgment Matrix

3.1 Basic Definition and Theorem

Symbols are as follows:

1. Let A = (ai j )n×n be an positive reciprocal judgment matrix, then A(k)signify
the leading principal submatrix of order K of A.

2. Let A(k) be the leading principal submatrix of order K of A, then A(s)
k signify

the leading principal submatrix of order s of A(k) where 1 ≤ s ≤ k.
3. Let A(k) be the leading principal submatrix of order K of A, then B(k) signify

the consistency positive reciprocal judgment matrix of A(k).
4. Let A = (ai j )n×n be an positive reciprocal judgment matrix, then C (k−1)

k =
(c(k−1)

i j )k×k signify the leading principal submatrix of order K , which satisfied
the leading principal submatrix of order k − 1 is consistency positive reciprocal
judgment matrix B(k−1) and the elements in the kth row( column) are the same
as A.

Definition 3.3 Let A = (ai j )n×n be positive reciprocal judgment matrix, then A1 =
(a∃

i j )n×n is called as column normalized matrix of A, where a∃
i j = ai j⎡n

i=1 ai j
.

Definition 3.4 Let A1 = (a∃
i j )n×n and B1 = (b∃

i j )n×n be column normalized
matrix of positive reciprocal judgment matrixes of A = (ai j )n×n and B = (bi j )n×n ,
then E = (ei j )n×n is called the deviation matrix between A and B, where ei j =
a∃

i j − b∃
i j .

Definition 3.5 Let A = (ai j )n×n be positive reciprocal judgment matrix, C be the
consistency judgment matrix of A = (ai j )n×n , and W = (w1, w2, . . . , wn) be the
weight vector of C , then D = (di j )n×n is called the derived matrix of A = (ai j )n×n ,
such that di j = ai j

w j
wi

.

Theorem 3.2 Let A = (ai j )n×n be positive reciprocal judgment matrix, if A is
consistency positive reciprocal judgment matrix, then all the value of elements of its

derived matrix D are one, and that is D =

⎣
⎧⎧⎧⎪

1 1 . . . 1
1 1 . . . 1
...

...
...

...

1 1 . . . 1

⎨
⎩⎩⎩⎫.
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3.2 Consistency Recursive Iterative Adjustment Algorithm
of Positive Reciprocal Judgment Matrix 1

Let A = (ai j )n×n be positive reciprocal judgment matrix, then the consistent recur-
sive iterative adjustment algorithm is as follows:

Step 1: A1 = (1) and A2 =
⎬

1 a12
a21 1

⎭
that are consistency positive reciprocal

judgment matrix are the leading principal sub-matrix of order one and of order two
of A respectively;

Step 2: Suppose for each k > 2, ∈1 ≤ r ≤ k, C (k−1)
k = (c(k−1)

i j )k×k , let

t (km)
kr = akmc(k−1)

mr
and t (km)

rk = 1/t (km)
kr , that is T m

k = (t (km)
i j

)k×k (∈1 ≤ m < k);

Step 3: Calculate the deviate value Em
k = (e(km)

i j
)k×k of A(k)and T m

k ;

Step 4: Determine Jk = {lk |slk
k = min{sm

k }} such that sm
k = ⎡k

j=1
⎡k

i=1

∣∣∣e(km)
i j

∣∣∣,
and let B(k) = {T lk

k |lk = min{Jk}};
Step 5: Let k = k + 1. If k ≤ n, then go to Step 2. Otherwise, continue to Step 6.
Step 6: Let B = B(k), then output B.
Step 7: End.

Theorem 3.3 Let A = (ai j )n×n be positive reciprocal judgment matrix, and A(k−1)

is adjusted to B(k−1). If the elements of B(k) were recursive iterations adjusted such
that b(k)

k j = aklk b(lk )
lk j

, b(k)
jk = 1/b(k)

k j , then B(k) is consistency positive reciprocal
judgment matrix.

Proof. Firstly, since the elements of the kth row of B(k) satisfied b(k)
ks

= b(k)
klk

b(k)
lk s

,

b(k)
s j

= b(k)
slk

b(k)
lk j

for ∈1 ≤ s ≤ k and b(k)
k j

= b(k)
klk

b(k)
lk j

, then b(k)
k j

= b(k)
ks

b(k)
s j

.

Moreover, since b(k)
k j

= b(k)
klk

b(k)
lk j

, b(k)
lk j

= b(k)
lk i

b(k)
i j

for each 1 ≤ i, j ≤ k − 1,

then b(k)
i j

= b(k)
k j

b(k)
ik

. Hence, b(k)
i j

= b(k)
is b(k)

s j where ∈1 ≤ s ≤ k. Therefore, B(h) is
consistency positive reciprocal judgment matrix.

3.3 Consistency Recursive Iterative Adjustment Algorithm of
Positive Reciprocal Judgment Matrix 2

Let A = (ai j )n×n be positive reciprocal judgment matrix, then the consistent recur-
sive iterative adjustment algorithm is as follows:

Step 1: A1 = (1) and A2 =
⎬

1 a12
a21 1

⎭
that are consistency positive reciprocal

judgment matrix are the leading principal sub-matrix of order one and of order two
of A respectively;
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Step 2: Suppose for each k > 2, ∈1 ≤ r ≤ k, C (k−1)
k = (c(k−1)

i j )k×k , let t (km)
kr =

akmc(k−1)
mr

and t (km)
rk = 1/t (km)

kr , that is T m
k = (t (km)

i j
)k×k(∈1 ≤ m < k);

Step 3: Let A(k) = (a(k)
1

, a(k)
2

, . . . , a(k)
k

) and T m
k = (tkm

1
, tkm

2 , . . . , tkm
k

) where

∈1 ≤ h ≤ k, a(k)
h is the line vector of A(k) and tkm

h is the line vector of T m
k , then

calculate the value cos θ
(k)
mh = (a(k)

h
,tkm

h )∣∣∣a(k)
h

∣∣∣∣∣tkm
h

∣∣ ;

Step 4: Determine Jk = {lk | cos θ
(k)
lk

= max{cos θ
(k)
m }}such that cos θ

(k)
m =⎡k

h=1 cos θ
(k)
mh , and let B(k) = {T lk

k |lk = min{Jk}};
Step 5: Let k = k + 1; If k ≤ n, then go to Step 2. Otherwise, continue to Step 6;
Step 6: Let B = B(k), then output B;
Step 7: End.

4 Case

Let A =

⎣
⎧⎧⎪

1 1/9 3 1/5
9 1 5 2

1/3 1/5 1 1/2
5 1/2 2 1

⎨
⎩⎩⎫, then adjust A to be consistency positive reciprocal

judgment matrix by the two kinds of algorithm above and give the sorting weight
vector of A.

Table 1 The results from recursive iterations adjustment Algorithm 1

k m T m
k Sm

k lk B(k)

3 1

⎣
⎪ 1 1/9 3

9 1 27
1/3 1/27 1

⎨
⎫ 3.729 2

⎣
⎪ 1 1/9 5/9

9 1 5
1.8 1/5 1

⎨
⎫

2

⎣
⎪ 1 1/9 5/9

9 1 5
1.8 1/5 1

⎨
⎫ 2.933

1

⎣
⎧⎧⎪

1 1/9 5/9 1/5
9 1 5 1.8

1.8 0.2 1 0.36
5 5/9 5/18 1

⎨
⎩⎩⎫ 3.582 3

⎣
⎧⎧⎪

1 1/9 5/9 5/18
9 1 5 5/2

1.8 0.2 1 0.5
3.6 0.4 2 1

⎨
⎩⎩⎫

4 2

⎣
⎧⎧⎪

1 1/9 5/9 2/9
9 1 5 2

1.8 0.2 1 0.4
4.5 1/2 5/2 1

⎨
⎩⎩⎫ 3.446

3

⎣
⎧⎧⎪

1 1/9 5/9 5/18
9 1 5 5/2

1.8 0.2 1 0.5
3.6 0.4 2 1

⎨
⎩⎩⎫ 3.2
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Table 2 The results from recursive iterations adjustment Algorithm 2

k m T m
k cos θ

(k)
m lk B(k)

3 1

⎣
⎪ 1 1/9 3

9 1 27
1/3 1/27 1

⎨
⎫ 2.889 1

⎣
⎪ 1 1/9 5/9

9 1 5
1.8 1/5 1

⎨
⎫

2

⎣
⎪ 1 1/9 5/9

9 1 5
1.8 1/5 1

⎨
⎫ 2.962

1

⎣
⎧⎧⎪

1 1/9 5/9 1/5
9 1 5 1.8

1.8 0.2 1 0.36
5 5/9 5/18 1

⎨
⎩⎩⎫ 3.899

4 2

⎣
⎧⎧⎪

1 1/9 5/9 2/9
9 1 5 2

1.8 0.2 1 0.4
4.5 1/2 5/2 1

⎨
⎩⎩⎫ 3.905 2

⎣
⎧⎧⎪

1 1/9 5/9 2/9
9 1 5 2

1.8 0.2 1 0.4
4.5 1/2 5/2 1

⎨
⎩⎩⎫

3

⎣
⎧⎧⎪

1 1/9 5/9 5/18
9 1 5 5/2

1.8 0.2 1 0.5
3.6 0.4 2 1

⎨
⎩⎩⎫ 3.895

On the one hand, by using the recursive iterations adjustment Algorithm 1, we
can obtain the consistency positive reciprocal judgment matrix of A as follows:⎣
⎧⎧⎪

1 1/9 5/9 5/18
9 1 5 5/2

1.8 0.2 1 0.5
3.6 0.4 2 1

⎨
⎩⎩⎫. Then by the Theorem 1, we get the sorting weight vector

w = (0.0649, 0.5844, 0.1169, 0.2338)∃ and the results are in the Table 1 as following.
On the other hand, by using the recursive iterations adjustment Algorithm 2, we the

consistency positive reciprocal judgment matrix of A as follows:⎣
⎧⎧⎪

1 1/9 5/9 5/18
9 1 5 5/2

1.8 0.2 1 0.5
3.6 0.4 2 1

⎨
⎩⎩⎫. Then by the Theorem 1, we get the sorting weight vector

w = (0.0613, 0.5521, 0.1104, 0.2761)∃ and the results are in the Table 2 as following.

5 Conclusion

About the consistency of the reciprocal judgment matrix, two kinds of consistency
recursive iterative adjustment algorithm are given. These two kinds of algorithm were
complete consistency recursive iterative adjustment algorithm satisfying people’s
need. In the end the example was given to verify the practicality of the methods.
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Wavelet Frequency Domain Adaptive
Multi-Modulus Blind Equalization Algorithm
Based on Fractional Lower Order Statistics

Jun Guo, Xiu-zai Zhang and Ye-cai Guo

Abstract A wavelet frequency domain adaptive β multi-modulus blind equalization
algorithm based on Fractional lower order statistics (FLOS β FWTMMA) is pro-
posed in the α-stable distribution noise environment. This proposed algorithm uses
Fractional lower order statistics to restrain α-stable distribution noise, the equalizer
output signal energy is optimized adaptively to obtain a joint blind equalization algo-
rithm, its computational loads can be greatly reduced by using Fast Fourier Transform
(FFT) and overlapping retention law. In the proposed algorithm, orthogonal wavelet
transform is used to improve the convergence rate. The underwater acoustic channel
simulation results show that the proposed algorithm has better performance.

Keywords Fractional lower order statistics ·α-stable distribution noise ·Frequency
domain adaptive multi-modulus algorithm · Orthogonal wavelet transform

1 Introduction

In the blind equalization algorithm which has been studied, the channel noise is
assumed to be Gaussian noise. However, a lot of noise in actual performance has obvi-
ous peak pulse [1], such as underwater acoustics noise, low frequency atmospheric
noise. α-stable distribution can be used to describe this kind of impulse noise with
a significant peak pulse waveform, therefore, the traditional blind equalization algo-
rithm based on Gaussian noise model is no longer applicable in α-stable distribution
noise environment.

Orthogonal wavelet transform is used to reduce the autocorrelation of the input
signals, and the convergence rate of blind equalization algorithm is improved [2].
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Frequency domain blind equalization algorithm is to make the traditional time
domain blind equalization algorithm turn into the frequency domain equalization
algorithm, and the Fast Fourier Transform and overlapping retention law are used to
greatly reduce the amount of computation [3].

The energy of the equalizer output signals and Lagrangian multipliers are com-
bined in adaptive β multi-modulus blind equalization algorithm, a new cost function
is defined, and the optimal weight vector is obtained by seeking the most value of
cost function.

In this chapter, the adaptive β multi-modulus algorithm is applied to the wavelet
frequency domain blind equalization algorithm, and Fractional lower order

statistics [4] is used to restrain α-stable distribution noise, a wavelet frequency
domain adaptive β multi-modulus blind equalization algorithm based on Fractional
lower order statistics is proposed and its performance is tested by underwater acoustic
channels [5].

2 α-Stable Distribution Noise

α-stable distribution noise without the given probability density function is described
by following characteristic function, i.e.,

ϕ(t) =
⎡

exp
⎣

jat − γ |t |α ⎧
1 + jβsgn(t) tan

⎪
πα
2

⎨⎩⎫
, α √= 1,

exp
⎣

jat − γ |t |α ⎧
1 + jβsgn(t) 2

π
lg |t |⎩⎫, α = 1,

(1)

where, α ∈ (0, 2] is characteristic index and denotes α-stable distribution probability
density function tail thickness. γ is dispersion coefficient, which is similar to the
variance of Gaussian noise. β ∈ [−1, 1] is symmetric parameter. When β = 0,
α-stable distribution becomes symmetric α-stable distribution, which is regarded as
SαS. a ∈ (−≤,≤) is a location parameter and represents the mean or median of
the distribution.

3 Adaptive Multi-Modulus Blind Equalization Algorithm

The cost function of adaptive β multi-modulus blind equalization algorithm in liter-
ature [6] is defined as

JβM M A = E[|z(n)|2]. (2)

subject to ⎡
fmax(γ1, |zr (n)|) = γ1,

fmax(γ1, |zi (n)|) = γ1,
(3)
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where, z(n) denotes the equalizer output, zr (n) and zi (n) are the real component
and imaginary component of equalizer output signals, γ1 is the maximum module of
transmitted sequence, f is equalizer weight vector.

fmax is defined as

fmax(a, b) = |a + b| + |a − b|
2

=
⎡

a, a ∃ b ∃ 0
b, b ∃ a ∃ 0

(4)

where, a and b are constant. The constellations of an M-alphabet square-QAM are
contained in a square region ∗, if the equalizer output falls inside region ∗, then
constraints in Eq. (3) are satisfied, the energy of equalizer output signals stays close
to transmitted sequence energy.

For some a, b ∈ R, we have

∂

∂a
fmax(|a|, |b|) = sign[a]

2
(1 + sign[|a| − |b|]). (5)

where, sign[·] is a sign function. After the Lagrangian multipliers, λr and λi are
employed, we obtain

J = E[|zr (n)|2 + λr (fmax(γ1, |zr (n)|) − γ1)] (6)

+ E[|zi (n)|2 + λi (fmax(γ1, |zi (n)|) − γ1)].

According to stochastic gradient method, the weight vector iteration formula are
given by

f r (n + 1) = f r (n) + μ

4
[λr gr + 4zr (n)]∪yr (n), (7)

f i (n + 1) = f i (n) + μ

4
[λi gi + 4zi (n)]∪yi (n), (8)

gL = sign[zL(n)](1 + sign(|zL(n)|) − γ1). (9)

where, f r (n) and f i (n) represent the real part and imaginary part vector of weight
vectors, L denotes r or i , yr (n) and yi (n) are the real component and imaginary
component of equalizer input signals, μ is a step-size.

If |zL(n)| < γ1, then gL = 0; the constraints in Eq. (3) are satisfied. If |zL(n)| >

γ1, then gL = 2sign[zL(n)]; here, we suggest to compute λL in order that the
Bussgang condition is satisfied. This consideration leads to

E[(0.5λLsign[zL(n)] + zL(n))zL(n − i)]⎬ ⎭︷ ︸
|zL (n)|>γ1

+ E[zL(n)zL(n − i)]⎬ ⎭︷ ︸
|zL (n)|<γ1

= 0|⊂i ∈ Z ,

(10)

λL = −2(1 + β)|zL(n)|, (β > 0), (11)
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where

β = M − 2
∇

M + 3

3
∇

M − 3
. (12)

According to the above analyses, the weight vector iteration formula and the cost
function of adaptiveβmulti-modulus blind equalization algorithm (βMMA) can be
defined as

J = E[|cr | · |z2
r (n) − γ 2

1 |] + E[|ci | · |z2
i (n) − γ 2

1 |], (13)

f L(n + 1) = f L(n) + μcL zL(n)∪yL(n), (14)

cL =
⎢

1 |zL(n)| ∀ γ1,

−β |zL(n)| > γ1,
(15)

4 Wavelet Frequency Domain Adaptive Multi-Modulus Blind
Equalization Algorithm Based on Fractional Lower Order
Statistics

The frequency domain cost function of Eq. (6) can be written as

J = E[|Zr (n)|p + λr (fmax(γ1, |Zr (n)|) − γ1)] (16)

+ E[|Zi (n)|p + λi (fmax(γ1, |Zi (n)|) − γ1)].

where, Zr (n) and Zi (n) represent the real component and imaginary component of
frequency domain equalizer output signals, in the α-stable distribution noise, the α

order statistics of signals do not exit, so p < α. According to stochastic gradient
method [7], the weight vector iteration formula of frequency domain adaptive β

multi-modulus blind equalization algorithm based on Fractional lower order statistics
(FLOS β FMMA) can be written as

FL(n + 1) =

⎥⎛
⎜

FL(n) + μ|ZL(n)|p−1

·sign(ZL(n))Y∪
L(n)|zL(n)| ∀ γ1,

FL(n) + μ[|ZL(n)|p−1sign(ZL(n))

−(1+β)ZL(n)]Y∪
L(n)|zL(n)| > γ1,

(17)

where, FL(n) is equalizer frequency domain weight vector, Y L(n) are equalizer input
signal frequency domain vector.

The principle of FLOS β FWTMMA is shown in Fig. 1.
In Fig. 1, a(n) is input signal vector, c(n) is channel vector, w(n) is α-stable dis-

tribution noise, y(n) is the signals with noise, rr (n) and ri (n) are the real component
and imaginary component of signal vector after wavelet transform, Zr (n) and Zi (n)
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Fig. 1 The principle diagram of wavelet frequency domain adaptive β multi-modulus blind equal-
ization algorithm based on Fractional lower order statistics

are equalizer output frequency domain signals, z(n) is equalizer output vector after
IFFT.

According to wavelet transform theory and Fig. 1, we have

rr (n) = Vyr (n), ri (n) = Vyi (n). (18)

where, V is orthogonal wavelet transform matrix, the equalizer outputs are given by

Zr (n) = Fr (n)Rr (n), Zi (n) = Fi (n)Ri (n). (19)

For wavelet frequency domain adaptive β multi-modulus blind equalization algo-
rithm based on Fractional lower order statistics (FLOS β FWTMMA), its weight
vector iteration formula can be written as

FL(n + 1) =

⎥⎛
⎜

FL(n) + μR̂
−1

(n)|ZL(n)|p−1

·sign(ZL(n))R∪
L(n)|zL(n)| ∀ γ1,

FL(n) + μR̂
−1

(n)[|ZL(n)|p−1sign(ZL(n))

−(1+β)ZL(n)]R∪
L(n)|zL(n)| > γ1,

(20)

R̂
−1

(n) = diag[σ 2
j,0(n), σ 2

j,1(n), . . . , σ 2
J,kJ −1(n), σ 2

J+1,0(n), . . . σ 2
J+1,kJ −1(n)].

(21)
where,σ 2

j,kJ
andσ 2

j+1,kJ
(n)denote the average power estimation of r j,kJ and s j,kJ (n).

They can be given by the following recursive equations

σ 2
j,kJ

(n + 1) = βσ σ 2
j,kJ

(n) + (1 − βσ )|r j,kJ (n)|2, (22)

σ 2
j+1,kJ

(n + 1) = βσ σ 2
j+1,kJ

(n) + (1 − βσ )|s j,kJ (n)|2. (23)

where, r j,kJ (n) is wavelet transform coefficients, s j,kJ (n) is scale transform coeffi-
cients, βσ is smoothing factor and 0 < βσ < 1.

As the α-stable distribution noise has peak pulse, we use the modified method
proposed in literature [8] to suppress the abnormal value of the equalizer input.



398 J. Guo et al.

Its idea is to set a threshold value(equalizer input signal power estimated value), if
the equalizer input exceeds the given threshold value, the pretreatment is done.

5 Simulation Tests

We compared frequency domain constant modulus algorithm based on Fractional
lower order statistics (FLOSFCMA), frequency domain weighted multi-modulus
algorithm based on Fractional lower order statistics (FLOSFWMMA) and FLOS β

FMMA with FLOS β FWTMMA in order to verify the performance of FLOS β

FWTMMA, simulation experiment was done in α -stable distribution noise. In tests,
the impulse response of channel was given by c = [−0.35, 0, 0, 1], the characteristics
index of αstable distribution noise was 1.71, β = a = 0, the step-size of the
FLOSFCMA was set to 0.00003, the step-size of the FLOSFWMMA was set to
0.00013, the step-size of the FLOS β FMMA was set to 0.000012, the step-size of
the FLOS β FWTMMA was set to 0.000999, the length of equalizer was 16, the ninth
tap of FLOS β FMMA was initialized into 1, for FLOSFWMMA, FLOSFCMA and
FLOS β FWTMMA, their tenth tap were initialized into 1, the GSNR [9] (generalized
signal to noise ratio) was 28dB, GSNR = 10 log10(σ

2/γ ), σ 2 was the variance of
input signals. The 3000 Monte Carlo simulation results were shown in Fig. 2.

Figure 2a shows FLOS β FWTMMA has an improvement of about 2000 steps for
convergence speed comparison with FLOS β FMMA, respectively. Its steady-state
error has a drop of about 9 dB comparison with that of the FLOSFCMA, about 6 dB
comparison with that of the FLOSFWMMA, and about 3 dB comparison with that
of the FLOS β FMMA, respectively. Figure 2f shows the FLOS β FWTMMA’s con-
stellations are the clearest. Therefore, FLOS β FWTMMA has the best adaptability
in α-stable distribution noise.

6 Conclusion

A wavelet frequency domain adaptive β multi-modulus blind equalization algorithm
based on Fractional lower order statistics is proposed in this chapter. An adaptive β

multi-modulus blind equalization algorithm based on the optimization of the energy
of equalizer output signals is introduced into frequency domain blind equalization
algorithm and the proposed algorithm is simulated in α-stable distribution noise.
The simulation results show that the proposed FLOS β FWTMMA has favorable
performance.
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Fig. 2 Simulation results under the α -stable distribution noise. a Mean square error curves. b input
of equalizer. c FLOSFCMA. d FLOSFWMMA. e FLOS β FMMA. f FLOS β FWTMMA
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The Integrated Operator Base on Complex
Fuzzy Valued Intuitionist Fuzzy Sets and Its
Application in the Evaluation for Hospital

Xue-ping Zhang and Sheng-quan Ma

Abstract In this paper, based on intuitionist fuzzy sets, we firstly got the integrated
operator base on Complex Fuzzy valued Intuitionist Fuzzy Sets, and then applied to
the evaluation of the hospital in and got very good results.

Keywords Complex fuzzy numbers · The integrated operator of Complex Fuzzy
valued Intuitionist Fuzzy Sets

In 1989, Atanassov and De promote intuitionist fuzzy sets, intuitionist fuzzy sets
membership and non-membership are expressed by interval-valued, but due to the
uncertainty of objective things and the fuzziness of the human mind, the degree
of membership and non-memberships often difficult to express by real-valued and
interval-valued, so, in 2007, Chinese scholar Liu Feng, Yuan Xuehai based on the
form of triangular fuzzy number, interval-valued intuitionist fuzzy sets are extended
for triangular fuzzy number, finally, given the concept of fuzzy number intuitionist
fuzzy set, this paper, on the basis of previous work, to further promote it and its
ideological sources is:

If in a singing contest, the overall scores of the players is to design better rated
projects, assign certain subjective weights for each rated item, and then the judges
combine their experience and knowledge to evaluate the performance of the con-
testants, this is the more common method, which is simple to implement, but there
is insufficient, because there is no harm, if {√x, μA (x) , αA (x)∈ |x ≤ X} represents a
competitor, μA (x) support this player, αA (x) oppose this player, the degrees of the
support and the oppose with a lot of subjectivity, as some projects due to certain fac-
tors, it was generally score higher, and the weights are also great, the final result will
not be able to reflect the differences of each players, so, the single scoring method
sometimes cannot truly reflect the real level of the players, so, we give the concept
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of complex fuzzy number intuitionistic fuzzy sets base on fuzzy number intuitionist
fuzzy sets and the real problem,the idea of both subjective and objective support to
deal with this issue, to make sure its more reasonable and fair.

1 Complex Fuzzy Value Intuitionist Fuzzy Sets

Definition 1.1. Let the set E is non-empty and finite, the form

A =
{〈

x, M̃T A (x) + i M̃I A (x) , ÑT A (x) + i ÑT A (x)
〉
|x ≤ E

}

are called Complex fuzzy value intuitionist fuzzy sets on E, which

M̃T A (x) =
(

M1
T A (x) , M2

T A (x) , M3
T A (x)

)
≤ F (R)

M̃I A (x) =
(

M1
I A (x) , M2

I A (x) , M3
I A (x)

)
≤ F (R)

ÑT A (x) =
(

N 1
T A (x) , N 2

T A (x) , N 3
T A (x)

)
≤ F (R)

ÑI A (x) =
(

N 1
I A (x) , N 2

I A (x) , N 3
I A (x)

)
≤ F (R)

are Two triangular function in I = [0, 1], and satisfied the following:

M1
A (x) , M2

A (x) , M3
A (x) , N 1

A (x) , N 2
A (x) , N 3

A (x) ≤ [0, 1]

At the same time,

M3
T A (x) + N 3

T A (x) ∃ 1, M3
I A (x) + N 3

I A (x) ∃ 1,∗x ≤ E .

Complex number valued Intuitionist fuzzy set can be a good expression of the issues
raised in the introduction,

A =
{〈

x, M̃T A (x) + i M̃I A (x) , ÑT A (x) + i ÑT A (x)
〉
|x ≤ E

}

represents a competitor, M̃T A (x) + i M̃I A (x) support this player, which M̃T A (x) is
subjective support, M̃I A (x) is objective support, ÑT A (x) + i NI A (x) oppose this
player, which ÑT A (x) are subjective opposition, ÑI A (x) is objective opposition.
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Definition 1.2. Let X be a non-empty set,

A =
{〈

x, M̃T A (x) + i M̃I A (x) , ÑT A (x) + i ÑI A (x)
〉
|x ≤ E

}
,

B =
{〈

x, M̃T B (x) + i M̃I B (x) , ÑT B (x) + i ÑI B (x)
〉
|x ≤ E

}

Are Complex fuzzy value intuitionist fuzzy sets, then

A + B = {< x, [inf MT Aθ (x) + inf MT Bθ (x) − inf MT Aθ (x) inf MT Bθ (x),

sup MT Aθ (x) + sup MT Bθ (x) − sup MT Aθ (x) sup MT Bθ (x)] + i

[inf MI Aθ (x) + inf MI Bθ (x) − inf MI Aθ (x) inf MI Bθ (x),

sup MI Aθ (x) + sup MI Bθ (x) − sup MI Aθ (x) sup MI Bθ (x)],

The integrated operator base on Complex Fuzzy valued Intuitionist Fuzzy Sets and
its Application in the Evaluation for hospital

[inf NT Aθ (x) inf NT Bθ (x) , sup NT Aθ (x) sup NT Bθ (x)] + i

[inf NI Aθ (x) inf NI Bθ (x) , sup NI Aθ (x) sup NI Aθ (x)]}θ≤[0,1]

A∪B = {< x, [inf MT Aθ (x) inf MT Bθ (x) , sup MT Aθ (x) sup MT Bθ (x)]

+i[inf MI Aθ (x) inf MI Bθ (x) , sup MI Aθ (x) sup MI Bθ (x)],

[inf NT Aθ (x) + inf NT Bθ (x) − inf NT Aθ (x) inf NT Bθ (x),

sup NT Aθ (x) + sup NT Bθ (x) − sup NT Aθ (x) sup NT Bθ (x)]

+i[inf NI Aθ (x) + inf NI Bθ (x) − inf NI Aθ (x) inf NI Bθ (x),

2 Complex Fuzzy Valued Intuition Fuzzy Integrated Operator
Based on Complex Fuzzy Integral

For a multi-attribute decision-making problems, the assumptions Y = {Y1, Y2, . . . ,

Yn} is the program set, G = {G1, G2, . . . , Gn} is the set of attributes and

γ = {γT 1 + iγI 1,γT 2 + iγI 2, . . . ,γT n + iγI n}T

ρ = {ρT 1 + iρI 1, ρT 2 + iρI 2, . . . , ρT n + iρI n}T
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Weight vector for the property, which γT j ≤ [0, 1] ,γI j ≤ [0, 1] j = 1, 2, . . . , n,∑n
j=1 γT j = 1,

∑n
j=1 γI j = 1, ρT j ≤ [0, 1] , ρI j ≤ [0, 1] j = 1, 2, . . . , n,∑n

j=1 ρT j = 1,
∑n

j=1 ρI j = 1,γ = {γT 1 + iγI 1,γT 2 + iγI 2, . . . ,γT n +
iγI n}T is Subjective weight vector, and

ρ = {ρT 1 + iρI 1, ρT 2 + iρI 2, . . . , ρT n + iρI n}T

is objective weight vector, And the hypothetical Scenario Yi characteristic
information are expressed by complex fuzzy numerical intuition the fuzzy set, as
the following

Yi = {〈
Gi , MT Yi

(
G j

) + MI Yi

(
G j

)
, NT Yi

(
G j

) + NI Yi

(
G j

)〉 |Gi ≤ G
}

(i = 1, 2, . . . , n)

Which
MT Yi

(
G j

)
, MI Yi

(
G j

)
, NT Yi

(
G j

)
, NI Yi

(
G j

) ≤ [0, 1]

And

sup MT Yi

(
G j

) + sup MI Yi

(
G j

) ∃ 1, sup NT Yi

(
G j

) + sup NI Yi

(
G j

) ∃ 1

Option Yi about attribute G j ’ characteristic expressed by complex fuzzy val-
ues intuitionist fuzzy numbers di j = (

MT i j + MIi j , NT i j + NIi j
)
, which MT i j

denoted the degree of the Programs Yi subjectively satisfy the attributes G j , MIi j

denoted the degree of the Programs Yi objectively satisfy the attributes G j , NT i j

denoted the degree of the Programs Yi subjectively does not satisfy the attributes
G j , NIi j denoted the degree of the Programs Yi objectively does not satisfy
the attributes G j , All feature information of programs Yi (i = 1, 2, . . . , n) About
attribute G j ( j = 1, 2, . . . , m)can be expressed as a complex fuzzy number valued
intuitionist fuzzy decision matrix D = (

di j
)

m×n , which di j = (MT i j + i MI i j ,

NT i j + i NI i j ) to got the integration operator base on complex fuzzy number valued
intuition fuzzy sets, that is

ei = 〈∑m
j=1

(
MT i j + i MI i j

) (
γT j + iγI j

) ∑m
j=1

(
NT i j + i NI i j

) (
ρT j + iρI j

) 〉
i = 1, 2, . . . , n,

which
∑m

j=1

(
MT i j + i MI i j

) (
γT j + iγI j

)
are discrete integration operator. Cal-

culating the score as the following

S (ei ) =
(∑m

j=1

(
MT i j + i MI i j

) (
γT j + iγI j

)) −
(∑m

j=1

(
NT i j + i NI i j

) (
ρT j + iρI j

))
i = 1, 2, . . . , n

Then to sort the S (ei ) and to got the decisions.
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3 Application

Evaluation ranking of a city to carry out the city’s hospital, in accordance with the
priority requirements, evaluation process are as follows (Calculated data from the
literature [4])

e1 = √(0.555, 0.655, 0.755) + i(0.438, 0.559, 0.664),

(0.035, 0.125, 0.215) + i(0.374, 0.447, 0.650)∈
e2 = √(0.575, 0.675, 0.775) + i(0.205, 0.432, 0.582),

(0.025, 0.115, 0.205) + i(0.374, 0.476, 0.671)∈
e3 = √(0.515, 0.615, 0.719) + i(0.284, 0.394, 0.548),

(0.036, 0.126, 0.216) + i(0.43, 0.554, 0.741)∈
e4 = √(0.495, 0.595, 0.695) + i(0.298, 0.423, 0.548),

(0.073, 0.150, 0.227) + i(0.266, 0.380, 0.500)∈
e5 = √(0.495, 0.595, 0.695) + i(0.369, 0.513, 0.689),

(0.069, 0.159, 0.249) + i(0.399, 0.553, 0.705)∈
e6 = √(0.488, 0.588, 0.688) + i(0.161, 0.261, 0.424),

(0.056, 0.146, 0.236) + i(0.301, 0.414, 0.568)∈
e7 = √(0.449, 0.549, 0.649) + i(0.397, 0.497, 0.656),

(0.099, 0.189, 0.279) + i(0.286, 0.419, 0.583)∈

And obtained

S (e1) = (0.52, 0.53, 0.54) + i (0.064, 0.112, 0.014) = H1

S (e2) = (0.55, 0.56, 0.57) + i (0.169, 0.044, 0.089) = H2

S (e3) = (0.479, 0.489, 0.503) + i (0.146, 0.16, 0.193) = H3

S (e4) = (0.422, 0.445, 0.468) + i (0.032, 0.043, 0.048) = H4

S (e5) = (0.426, 0.436, 0.446) + i (0.03, 0.04, 0.016) = H5

S (e6) = (0.432, 0.442, 0.452) + i (0.14, 0.153, 0.144) = H6

S (e7) = (0.35, 0.36, 0.37) + i (0.111, 0.078, 0.073) = H7.

To sort the results and to got the decision-making program are as following

H2 > H1 > H3 > H4 > H6 > H5 > H7

The results illustrate the method with complex fuzzy integral as well as subjective
and objective support to deal with these problems, with the literature [4], the same
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result but more discrimination, such contest or decision-making on a more fair and
reasonable.

4 Summary

Comparison by the results of the examples and the result of literature [4], it is clear
that introduction of subjective and objective support and opposition to better deal
with such problems, the results of the data show that not only a greater degree of
distinction between individuals, but also with reality match. The used of the Complex
fuzzy valued intuitionist fuzzy set in the appraisal decision-making than the fuzzy
number intuitionist fuzzy sets even more of their superiority.
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Fuzzy Average Tree Solution for Graph
Games with Fuzzy Coalitions

Cui-ping Nie and Qiang Zhang

Abstract In this chapter, the model of graph games with fuzzy coalitions is pro-
posed based on graph games and cooperative games with fuzzy coalitions. The fuzzy
average tree solution of graph games with fuzzy coalitions is given, which can be
regarded as the generalization of crisp graph games. It is shown that the fuzzy aver-
age tree solution is equal to the fuzzy Shapley value for complete graph games with
fuzzy coalitions. We extend the notion of link-convexity, under which the fuzzy core
is non-empty and the fuzzy average tree solution lies in this core.

Keywords Graph game · Average tree solution · Imputation · Fuzzy coalition ·
Link-convexity

1 Introduction

In a cooperative game, cooperation is not always possible for the players. Cooperative
games with limited communication structure are called graph games introduced by
Myerson [1]. The best-known single-valued solution for graph games is the Myerson
value characterized by component efficiency and fairness. In [2, 3] the positional
value is proposed. The value for such games is characterized by component efficiency
and balanced total threats, see Slikker [4]. Herings et al. [5] defines the average tree
solution for cycle-free graph games. Moreover, he generalizes this solution to the
class of all graph games in [6].
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There are some situations where players do not fully participate in a coalition but
to a certain extent. A fuzzy coalition is introduced by Aubin [7]. Butnariu [8] defines
a Shapley value and shows the explicit form of the Shapley value on a limited class
of fuzzy games. Tsurumi et al. [9] gives a new class of fuzzy games with integral
form. The fuzzy core for fuzzy cooperative games has been researched in [10, 11].

This chapter is organized as follows. In Sect. 2 we give preliminary notions of
graph games. In Sect. 3 we discuss graph games with fuzzy coalitions represented
by an undirected graph. The fuzzy average tree solution is introduced. We prove that
the fuzzy average tree solution is equal to the fuzzy Shapley value for a complete
graph game with fuzzy coalitions. In Sect. 4 we give the relationship between the
fuzzy average tree solution and the fuzzy core.

2 Preliminaries

We consider a cooperative game with limited communication structure, called a
graph game. It is represented by (N , v, L) with N = {1, · · · , n} a node set of
players, v : 2N √ R a characteristic function and L ∈ {{i, j}| i ≤= j, i, j ∃ N } a
set of edges. Usually, a cooperative game(N , v) is thought as a complete graph game
(N , v, L), i.e. L = {{i, j}| i ≤= j, i, j ∃ N }.

The limited possibilities of cooperation can be represented by an graph (N , L) in
which cooperation is only possible if players are directly or indirectly connected. Let
P (N ) be the collection of all crisp coalitions. A coalition of players K ∃ P (N ) is a
network of a graph (N , L) if K is connected in the graph. Furthermore, if a network
K cannot form a larger network with any other player of N\K , then K is called a
component. For a graph (N , L) , we denote by C L (N ) the set of all networks and
Ĉ L (N ) the class of all components. (W, L (W )) is thought as a subgraph of the
graph (N , L), where W ∃ P (N ) and L (W ) = {{i, j} ∃ L|i, j ∃ W }.
Definition 2.1. For a graph (N , v, L) a sequence of nodes (i1, . . . , ik) is a cycle
when: 1) k ∗ 2; 2) ik+1 = i1; 3) {ih, ih+1} ∃ L , h = 1, . . . , k. A graph (N , L) is
said to be cycle-free if it does not contain any cycle.

Definition 2.2. Let (N , L) be a graph, then an n-tuple B = {B1, · · · Bn} of n subsets
of N is admissible if it satisfies:

(1) For all i ∃ N , i ∃ Bi , and for some j ∃ N , B j = N ;
(2) For all i ∃ N and K ∃ Ĉ L (Bi\ {i}), we get K = B j and {i, j} ∃ L for some

j ∃ N . Let BL be the collection of all admissible n-tuples B = {B1, · · · Bn} of
the graph (N , L).

Definition 2.3. For a graph game (N , v, L), the average tree solution AT (N , v, L)

is the payoff vector defined by
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ATi (N , v, L) = 1⎡⎡BL
⎡⎡
⎣
⎧ ⎪

B∃BL

⎣
⎧v (Bi ) −

⎪
K∃Ĉ L (Bi \{i})

v (K )

⎨
⎩

⎨
⎩ , i ∃ N . (1)

For a cooperative game (N , v) and W ∃ P (N ),the Shapley value Sh (v) (W ) is an
imputation given by

Shi (v) (W ) =
⎫⎬

T ∃P(W\{i})
|T |!(|W |−|T |−1)!

|W |! · [v (T ∪ {i}) − v (T )] , i ∃ W
0, i ∃ N\W

(2)

A fuzzy coalition U = (U (1) , . . . , U (n)) is a fuzzy subset of N , in which
U (i) ∃ [0, 1] and i ∃ N . U (i) is the degree that i takes part in the coalition U.

Let F (N ) be the class of all fuzzy coalitions and d (U ) be the cardinality of D (U ) .

We write the elements of D (U ) in the increasing order as r1⊂· · · ⊂rd(U ) and denote
r0 = 0.

Definition 2.4. Let (N , tv) be a cooperative game with fuzzy coalitions, U ∈
F (N ). If a function f : F (U ) √ Rn+ satisfies

(1) fi (U ) = 0,∇i /∃ Supp (U );
(2)

⎬
i∃Supp(U ) fi (U ) = tv (U );

(3) fi (U ) ∗ U (i) · tv ({i}) ,∇i ∃ Supp (U ). Then we call f an imputation of
(N , tv).

Note that the definition above is also applicable to crisp games. For a fuzzy game
(N , tv), the crisp game (N , v) corresponding to (N , tv) is called the associated crisp
game. Tsurumi et al. [9] gives the fuzzy Shapley value f (tv) (U ):

fi (tv) (U ) =
d(U )⎪
m=1

Shi (v)
⎭
[U ]rm

) · (rm− rm−1) , i ∃ N

where tv (U ) = ⎬d(U )
m=1 v

⎭
[U ]rm

) · (rm − rm−1) and [U ]rm = {i ∃ N : U (i) ∗ rm}.

3 The Fuzzy Average Tree Solution on Graph
Games with Fuzzy Coalitions

Now we will extend the average tree solution on the class of crisp graph games. The
average tree solution is introduced as a function which derives the value from a given
pair of a game and a coalition.

Definition 3.1. For a crisp graph game (N , v, L) and W ∃ P (N ), the average tree
solution AT (W, v, L (W )) is defined by
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ATi (W, v, L (W ))

=
⎫

1|BL(W )|
(⎬

B∃BL(W )

(
v (Bi ) − ⎬

K∃Ĉ L(W )(Bi \{i}) v (K ) , i ∃ W
⎢⎢

, i ∃ W,

0, i ∃ N\W.

(3)

When (N , v, L) is a cycle-free graph game, let W ∃ P (N ) and T i (W ) be the
spanning tree with i ∃ W as the root in the subgraph (W, L (W )). Obviously, we
have

ATi (W, v, L (W ))

=
⎫

1
|W |

(⎬
j∃W

(
v
(

K j
i (W )

⎢
− ⎬

{i ∀|(i,i ∀)∃T j (W )} v
(

K j
i ∀ (W )

⎢⎢⎢
, i ∃ W

0, i ∃ N\W
(4)

where K i
j (W ) is the set consisting of j ∃ W and all its subordinates in T i (W ).

Example 3.1 Let (N , v, L) be a crisp graph game with N = {1, 2, 3, 4}, L =
{{1, 2} , {2, 3} , {3, 4}} and v a characteristic function on N as follows: v ({1, 2}) =
v ({4}) = 1, v ({2, 3}) = v ({3, 4}) = 2, v ({1, 2, 3}) = 4, v (S) = 0, other-
wise.

Then the average tree solution of the coalition W = {1, 2, 3} is

AT1 (W, v, L (W )) = 1

3
((4 − 2) + 0 + 0) = 2

3
,

AT2 (W, v, L (W )) = 1

3
(2 + 4 + 1) = 7

3
,

AT3 (W, v, L (W )) = 1

3
(0 + 0 + (4 − 1)) = 1,

AT4 (W, v, L (W )) = 0,

AT (W, v, L (W )) =
⎥

2

3
,

7

3
, 1, 0

)
.

Lemma 3.1 For a crisp graph game (N , v, L) and W ∃ P (N ). Then the average
tree solution AT (W, v, L (W )) is an imputation.

Proof From Eq. (2), it is apparent that ATi (W, v, L (W )) = 0, ∇i /∃ W . Since
AT (W, v, L (W )) is component efficient, we have

⎪
i∃W

ATi (W, v, L (W )) =
⎪

K∃Ĉ L(W )(W )

⎪
i∃K

ATi (W, v, L (W ))

=
⎪

K∃Ĉ L(W )(W )

v (K ) = v (W ) .
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Because v (B) = v
((⎬

K∃Ĉ L(W )(Bi \{i}) K
⎢

∪ i
⎢

∗ v (i) + ⎬
K∃Ĉ L(W )(Bi \{i}) v (K )

where i ∃ W , it holds that v (B) − ⎬
K∃Ĉ L(W )(Bi \{i}) v (K ) ∗ v (i).

Thus

ATi (W, v, L (W )) = 1⎡⎡BL(W )
⎡⎡

⎪
B∃BL(W )

⎛
⎜v (Bi ) −

⎪
K∃Ĉ L(W )(Bi \{i})

v (K )

⎝
⎞

∗ v ({i}) , i ∃ W.

�
It is shown that the average tree solution AT (N , v, L)coincides with the Shapley

value Sh (v) (N ) for a complete graph game (N , v, L) in [7]. Thus, it is easy to see
that the average tree function AT (W, v, L (W )) is also equal to the Shapley value
Sh (v) (W ), where W ∃ P (N ).

A graph game with fuzzy coalitions is a triple (N , tv, L) where tv : F (N ) √ R+
is the fuzzy characteristic function . Next, We discuss the fuzzy average tree solution
of graph games with fuzzy coalitions.

Definition 3.2. Let (N , tv, L) be a graph game with fuzzy coalitions, U ∃ F (N )

and (N , v, L) be the associated crisp graph game of (N , tv, L). Then the fuzzy

average tree solution
⇔

AT (U, tv, L (U )) is defined by

⇔
ATi (U, tv, L (U )) =

d(U )⎪
m=1

ATi
⎭
[U ]rm

, v, L
⎭
[U ]rm

)) · (rm − rm−1), i = 1, . . . , n.

(5)

Theorem 3.1 Let (N , tv, L) be a complete graph game with fuzzy coalitions, U ∃
F (N ). Then the fuzzy average tree solution is equal to the fuzzy Shapley value, i.e.,

⇔
AT (U, tv, L (U )) = f (tv) (U ) .

Proof For any i ∃ N , ATi (W, v, L (W )) = Shi (v) (W ), where W ∃ P (N ) and v
is a characteristic function of the associated crisp graph game.

Due to [U ]rm ∃ P (N ), we get fi (tv) (U ) = ⎬d(U )
m=1 Shi (v)

⎭
[U ]rm

) ·
(rm − rm−1) = ⎬d(U )

m=1 ATi
⎭
[U ]rm , v, L

⎭
[U ]rm

)) · (rm − rm−1) = ⇔
ATi (U, tv,

L (U )).

Hence f (tv) (U ) = ⇔
AT (U, tv, L (U )) which completes the proof. �
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4 The Relation between The Fuzzy Average
Tree Solution and The Fuzzy Core

In this section, we study the relationship between the fuzzy average tree solution and
the fuzzy core. Firstly, we extend the notion of link-convexity in [7].

For a graph game with fuzzy coalitions (N , tv, L), tv (S)+ tv (T ) ≥ tv (S ∪ T )+⎬
K∃Ĉ L (S◦T )

tv (K ), ∇S, T ∃ F (N ) that satisfy: 1©S, T, S\T, T \Sand (S\T ) ∪
(T \S) are non-empty network; 2©N\SorN\T is a network. Then (N , tv, L) is link-
convex.

The fuzzy core on the game with fuzzy coalitions (N , tv) by Tsurumi is
⇔
c (tv)

(U ) = {x ∃ Rn+| ⎬i∃N xi = ⎬d(U )
m=1 v

⎭
[U ]rm

) · (rm− rm−1) ,
⎬

i∃Supp(SU )

xi ∗ ⎬d(U )
m=1 v

⎭
S[U ]rm

) · (rm − rm−1) ,∇S ∃ C L (N )}, where v is the associated crisp

game, Supp (SU ) = {i ∃ N |SU (i) � 0} and SU (i) =
⎟

U (i) , i ∃ S
0, i /∃ S

, for any

U ∃ F (N ).

Lemma 4.1 Let (N , tv, L) be a graph game with fuzzy coalitions and U ∃ F (N ).

Then the fuzzy average tree solution
⇔

AT (U, tv, L (U )) is an imputation.

Proof If i /∃ Supp (U ), then i /∃ [U ]rm , m = 1, 2, . . . , d (U ). Consequently,

ATi
⎭
[U ]rm

, v, L
⎭
[U ]rm

)) = 0, which implies that
⇔

ATi (U, tv, L (U )) =⎬d(U )
m=1 ATi

⎭
[U ]rm

, v, L
⎭
[U ]rm

)) · (rm − rm−1) = 0, where v is the associated crisp
game of tv.

Because AT (W, v, L (W )) is component efficient for any W ∃ P (N ), we get

⎪
i∃SuppK

⇔
ATi (U, tv, L (U )) =

⎪
i∃SuppK

(

d(U )⎪
m=1

ATi (Urm , v, L(Urm )) · (rm − rm−1))

=
d(U )⎪
m=1

(
⎪

i∃SuppK

ATi (Urm , v, L(Urm )) · (rm − rm−1))

=
d(U )⎪
m=1

v
⎭
Krm

)
(rm − rm−1)

= tv (K ) ,

i.e.,
⇔

AT (U, tv, L (U )) satisfies component efficiency. Further, we obtain that⎬
i∃Supp(U )

⇔
AT

i
(U, tv, L (U )) = ⎬

K∃Ĉ L(U )(U )

⎬
i∃Supp(K )

⇔
AT

i
(U, tv, L(U )) =

⎬
K∃Ĉ L(U )(U )

tv (K ) = tv (U ) . It remains to show that
⇔

AT (U, tv, L (U ))

∗ U (i) · tv ({i}),i ∃ Supp (U ).



Fuzzy Average Tree Solution for Graph Games with Fuzzy Coalitions 415

⇔
ATi (U, tv, L (U )) =

d(U )⎪
m=1

ATi
⎭
[U ]rm

, v, L
⎭
[U ]rm

)) · (rm − rm−1)

∗
d(U )⎪
m=1

v (i) (rm − rm−1) ∗ U (i) · tv ({i})

The proof is completed. �

Theorem 4.1 Let a graph game with fuzzy coalitions (N , tv, L) be link-convex and

U ∃ F (N ), then
⇔

AT (U, tv, L (U )) ∃ ⇔
c (tv) (U ).

Proof Let (N , v, L) be the crisp graph game corresponding to (N , tv, L). Because
⇔

AT (U, tv, L (U )) is an imputation on (N , tv, L), we have

⎪
i∃N

⇔
ATi (U, tv, L (U )) = tv (U ) =

d(U )⎪
m=1

v
⎭
[U ]rm

) · (rm − rm−1) .

Next, we will show that
⎬

i∃Supp
(

S[U ]rm

⎢ ⇔
ATi (U, tv, L (U )) ∗ ⎬d(U )

m=1 v
⎭
S[U ]rm

) ·
(rm − rm−1), for any S ∃ P (N ).

⎪
i∃Supp(SU )

⇔
ATi (U, tv, L (U ))

=
⎪

i∃Supp(SU )

⎛
⎜d(U )⎪

m=1

ATi
⎭
[U ]rm , v, L

⎭
[U ]rm

)) · (rm − rm−1)

⎝
⎞

=
d(U )⎪
m=1

⎪
i∃Supp(Su)

ATi
⎭
[U ]rm , v, L

⎭
[U ]rm

)) · (rm − rm−1) .

By the graph game with fuzzy coalitions (N , v, L) is link-convex, we can get⎬
i∃[U ]rm

ATi
⎭
[U ]rm , v, L

⎭
[U ]rm

)) ∗ v
⎭
[U ]rm

)
. Then

⎪
i∃Supp(S[U ]rm )

ATi
⎭
S[U ]rm , v, L

⎭
S[U ]rm

)) ∗ v
⎭
S[U ]rm

)
, ∇S ∃ P (N ) .

Consequently,
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d(U )⎪
m=1

⎪
i∃Supp(S[U ]rm )

ATi
⎭
S[U ]rm

, v, L
⎭
S[U ]rm

)) · (rm − rm−1)

∗
d(U )⎪
m=1

v
⎭
S[U ]rm

) · (rm − rm−1).

Thus,
⎬

i∃Supp(S[U ]rm )

⇔
ATi (U, tv, L (U )) ∗ ⎬d(U )

m=1 v
⎭
S[U ]rm

) · (rm − rm−1).
The proof is completed �.

By Theorem 4.1 we have conclusions that when a graph game with fuzzy coalitio-
ns (N , tv, L) is link-convex the fuzzy average tree solution must exist and the fuzzy

core
⇔
c (tv) (U ) is non-empty.

Example 4.1 Let (N , tv, L) be a graph game with fuzzy coalitions in which N =
{1, 2}, L = {{1, 2}}, U (1) = 0.4 0.4, U (2) = 0.6 and vis a characteristic function
of the crisp graph game corresponding to (N , tv, L):

v (φ) = v ({1}) = 0, v ({2}) = 1, v (φ) = v (φ) = v ({1}) = 0,

v ({2}) = 1, v ({1, 2}) = 2.

Then, tv (U ) = U (1) · v ({1, 2}) + (U (2) − U (1)) · v ({2}) = 1,

⇔
c (tv) (U )

=
⎠(

0.4x {1,2}
1 , 0.4x {1,2}

2 + 0.2
⎢

|x {1,2}
1 + x {1,2}

2 = 2, x {1,2}
1 ∗ 0, x {1,2}

2 ∗ 1
}

.

The fuzzy average tree solution of the game is

⇔
AT1 (U, tv, L (U )) = 0.4 × 1

2
= 0.2,

⇔
AT2 (U, tv, L (U )) = 0.4 × 3

2
+ 0.2 = 0.8.

Obviously, (0.2, 0, 8) ∃ ⇔
c (tv) (U ).

5 Conclusion

The fuzzy average tree solution has been proposed in graph games with fuzzy coali-
tions. Moreover, it coincides with the fuzzy Shapley function for complete graph
games with fuzzy coalitions. We have generalized the notion of link-convexity under
which the fuzzy average tree solution lies in the fuzzy core. However, the fuzzy
average tree solution is not unique. It will be interesting to find other kinds of fuzzy
average tree solutions.



Fuzzy Average Tree Solution for Graph Games with Fuzzy Coalitions 417

Acknowledgments Thanks to the support by the National Natural Science Foundation of China
(Nos.70771010,71071018, 70801064) and Specialized Research Fund for the Doctoral Program of
Higher Education (No. 20111101110036).

References

1. Myerson, R.B.: Graphs and cooperation in games. Math. Oper. Res. 2, 225–229 (1977)
2. Borm, P., Owen, G., Tijs, S.H.: On the position value for communication situations. SIAM J.

Discrete Math. 5, 305–320 (1992)
3. Meessen, R.: Communication games. University of Nijmegen, Nijmegen, Master thesis (1988)
4. Slikker, M.: A characterization of the position value. Int. J. Game Theory 33, 505–514 (2005)
5. Herings, P.J.J., Van der Laan, G., Talman, A.J.J.: The average tree solution for cycle-free graph

games. Games Econ. Behav. 62, 77–92 (2008)
6. Herings, P.J.J., Van der Laan, G., Talman, A.J.J., Yang, Z.: The average tree solution for

cooperative games with communication structure. Games Econ. Behav. 68, 626–633 (2010)
7. Aubin, J.P.: Mathematical Methods of Game and Economic Theory, Rev edn. North-Holland,

Amsterdam (1982)
8. Butnariu, D.: Stability and Shapley value for n-persons fuzzy game. Fuzzy Sets Syst. 4, 63–72

(1980)
9. Tsurumi, M., Tanino, T., Inuiguchi, M.: A Shapley function on a class of cooperative fuzzy

games. Eur. J. Oper. Res. 129, 596–618 (2001)
10. Tijs, S., Branzei, R., Ishihara, S., Muto, S.: On cores and stable sets for fuzzy games. Fuzzy

Sets Syst. 146, 285–296 (2004)
11. Yu, X.H., Zhang, Q.: The fuzzy core in games with fuzzy coalitions. J. Comput. Appl. Math.

230, 173–186 (2009)
12. Baron, R., Béal, S., Rémilla, E., Solal, P.: Average tree solutions and the distribution of Harsanyi

dividends. Int. J. Game Theory 40, 331–349 (2011)
13. Gillies, D.B.: Some Theorems on n-person Games. Princeton University Press, Princeton (1953)
14. Shapley, L.S.: A value for n-persons games. Ann. Math. Stud. 28, 307–318 (1953)
15. Talman, D., Yamamoto, Y.: Average tree solution and subcore for acyclic graph games. J. Oper.

Res. Soc. Jpn 51(3), 203–212 (2008)



Algorithm of Geometry-Feature Based
Image Segmentation and Its Application
in Assemblage Measure Inspect

Chao-hua Ao, Chao Xiao and Xiao-yi Yang

Abstract Aimed at the puzzle that the edge of industrial computerized tomogra-
phy image is difficult to realize accurate measure for nondestructive inspection in
work-piece, which is resulted from over-segmentation phenomenon when adopted
traditional watershed algorithm to segment the image, the chapter proposed a sort of
new improved image segmentation algorithm based fuzzy mathematical morphology.
In the paper, it firstly smoothed the image by means of opening-closing algorithm
based fuzzy mathematical morphology, and then it computed the gradient operators
based on the mathematical morphology, after that it segmented the gradient image
to get the result based on fuzzy mathematical morphology. And finally it made the
assemblage measure inspect for large-complex workpiece. The result of simulation
experiment shows that it is better in eliminating over segmentation phenomenon, and
more applicable in image recognition.

Keywords Fuzzy mathematical morphology ·Gradient operator · Image segmentation ·
Nondestructive inspection · Assemblage inspection.
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1 Introduction

In the pattern recognition of precision measurement in manufacturing, the image
segmentation is a key step of image analysis and processing, and also is a sort of
basic computer vision technology. Specially in assemblage measure inspection for
large-scale and complex metal components, the structural characteristics of an image
sometimes are very obvious, so that if the geometry features of the parts is seized
when the image is processed, then it not only can reduce a great of processing time,
but also can obtain a better processing result. In view of mathematical morphology
considering fully the image structural character, it provided with unique advantage of
structural character [1]. Watershed algorithm is an image segmentation technology
based mathematical morphology, and it may get smart image edge. However, it is too
sensitive to noise, and the weak noise will cause over-segmentation phenomenon.
This chapter proposed a new sort of improved image segmentation algorithm based
fuzzy mathematical morphology by means of technology method fusion so as to
enhance the quality of image segmentation.

2 Fuzzy Mathematical Morphology

Fuzzy mathematical morphology is a kind of mathematical tool of image analysis
based on morphology structural elements [2]. Its basis idea is to use morpholog-
ical structural elements to measure and distill corresponding shape of an image
to attain objective of analysis and recognition image, reduction image data, keep
basic shape character and eliminating non-correlative structure. Mathematical mor-
phology has four basic operations [3]. Those are the dilation, erosion, opening and
closing operator. Each operation has its trait respectively in binary and gray-degree
image processing. They can educe many other practical operations of mathematical
morphology.

If the basic idea of fuzzy set theory is introduced into the mathematical
morphology, then it is called as the fuzzy mathematical morphology. By means
of itself properties, it can be used to extend the application field from binary mathe-
matical morphology to the gray-degree image processing of pattern recognition, and
widens the definition of algorithm operators of classic mathematical morphology,
and therefore it obtains strong robustness in some degree, and holds good trait of
classic mathematical morphology operator. Especially, it is more effective in image
processing effect than by traditional morphological algorithm operator when the
image includes some noise. The main idea of processing image in fuzzy morphology
is to view an image as a fuzzy set because of fuzziness rooted in image itself charac-
teristic and in process of collection and processing, so the fuzzy arithmetic operator
can be introduced into the image process to make pattern recognition. Of course,
the operation is different according to the different definition in fuzzy arithmetic
operator. However a lot of operator can be transformed as Bloch operator to carry
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through each kind of operation. Before evaluating USRC, it’s necessary to analyze
science research capability elements of universities [4].

2.1 Fuzzy Subset

In the fuzzy theory, the fuzzy set can be educed when value range of a membership
eigenfunction in classic set theory for element x is extended from open interval 0, 1
to closed interval [0, 1]. The Fuzzy subset A can be expressed as formula (1)

μA : U −√ [0, 1], x −√ μA(x) (1)

In which, U is called as domain. The μA is called membership function, and
μA(x) is called as the value of membership function. Formula (1) is any map of U
over closed interval [0, 1]. Fuzzy subset A is fully described by μA of membership
function. The membership function represents the degree that belongs to A by a value
of element x over closed interval [0, 1].

2.2 Decomposition Theorem

Suppose A is a common set of domain X, ∈λ ≤ [0, 1], Fuzzy set λ ∃ A of X can be
defined, and its membership function is expressed by formula (2).

μλ∃A =
{

λ, x ≤ A
0, x /≤ A

(2)

For ∈ Ă ≤ F(X), the decomposition theory form of fuzzy set is expressed by
formula (3).

Ă =
⋃

λ≤[0,1]
λ ∃ A (3)

In which, Ă is reflection of A.

2.3 Extension Theorem

Extension theorem presents the image structure of f(A) of fuzzy subset A in X
under the common mapping relation f from domain X to domain Y. It also presented
mapping rules that extend map relation between element of X and element of Y
corresponding to subset or fuzzy subset element of X and subset or fuzzy subset
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element of Y. It can be expressed respectively by formula (4) and (5).

f : F(X) √ F(Y ); A √ f (A) (4)

f − 1 : F(Y ) √ F(X); B √ f −1(B) (5)

In which, X and Y are two domains. Their mapping relation is: f : X √ Y and it
can educe the mapping from F(X) to F(Y) and from F(Y) to F(X). The f (A) is called
image of A and f −1(B) is called inverse image of B. their membership function is
respectively expressed by formula (6) and formula (7).

μA(y) =
∨

y= f (x)

μA(x) ∈y ≤ Y (6)

μ f −1(B)(x) = μB( f (x)) ∈x ≤ X (7)

3 Improvement of Watershed Algorithm

3.1 Watershed Algorithm Based on Immersion Simulation

Watershed algorithm is a sort of image processing tool rooted in mathematical mor-
phology. It can be used to segment image, distill gradient image and so on. In the
numerous existing sequence watershed algorithms, it is the most representative and
the fastest algorithm that based on immersion simulation and its improved algo-
rithm proposed by Vincent [5]. In this algorithm, digital image can be expressed by
formula (8)

G = (D, E, I ) (8)

In which, (D,E) describes the image and I is the corresponding transform function
of D, Each pixel p.I(p). I(p) expresses the image gray-value of each pixel p and its
value range is from 0 to 255. If threshold h of image is T = p|I (p) ∗ h, in the
immersion process, then the point starts from set Thmin (I ) and the point in set is the
place that water reaches firstly. And these points form beginning point of iterative
formula, shown as in formula (9) and (10).

Xhmin = {p ≤ D|I (p) ∗ hmin} = Thmin (9)

Xh+1 = MINh+1 ∪ I ZTh+1(Xh), h ≤ [hmin, hmax ] (10)

In the above, hmin is the minimum and hmax is the maximum. And the Xhmin is
composed of point in set I. These points are located minimum region that its altitude
is the lowest. The MINh is union of all minimum region that their gray-values are
h. Gray-value h is iterative continuously from hmin to hmax . IZ is union of measure
infection region [6, 7]. In the iterative process, the minimum point district of image
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I will be extended gradually. Suppose Xh is the connected discreteness of threshold
set Th+1 under the value h of position for union of district sets started from plane
position, it may be a new minimum or be located the extension region of X (h). For
the latter, Xh+1can be renewed by computing Th+1. In the set D, supplementary set
of Xhmax is just the watershed of the image [4], expressed by formula (11).

Wastershed( f ) = D/Xhmax (11)

According to the definition above, the gradient-value of each point of the image
can be viewed as its height. Provided we drill many small holes on the bottom of
each minimum region M of the image and pour water into formed ground interface,
the water will be immerged gradually to the ground. So many lake-let can be formed
like a catchment basin. Starting from minimum region that the altitude is the lowest,
the water will immerge into all catchment basins. In the process above, if the water
comes from different catchment basins it will be converged, a dam will be built at
the converged edge. At the end of the immersion process, it is necessary that the dam
has to surround all catchment basins and the union of dams is just corresponding
watershed of the image.

3.2 Watershed Algorithm Based IFT

Image Foresting Transform (IFT) is a sort of image segmentation algorithm based
on graph theory [8] and it is the shortest path first algorithm of Dijkstra in essence.
It uses connectedness of graph to design image processing arithmetic operator. Its
main idea is that the image will be mapped into the picture and the marked image
will be obtained through computing shortest path of the picture. In the picture, the
IFT algorithm defined a shortest path forest, and the nodes of the forest are pixel. The
arcs between nodes are defined by adjacency relation of pixel, and the path costs are
determined by path cost function [9]. The IFT algorithm regards image as a picture
and its processing result is the adjacency relation of pixel. The common path cost
function has additive path cost function and maximum arc path cost function. The
catchment basin uses maximum arc path cost function [10], expressed by formula
(12) and (13).

fmax = (< t >) = h(t) (12)

fmax (π · < s, t >) = max{ fmax (π), I (t)} (13)

In the above, A is an adjacency relation of pixels, and (s, t), s is the end node, t
is the start node, h(t) is its initial value of path cost started from node t and I (t) is
the pixel-value of t .
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4 Improved Fusion Algorithm in Image Segmentation

4.1 Study on Algorithm

The idea of fusion algorithm is the following. Firstly, the optimal threshold-value
[11] must be determined by auto-recognition method based on image gray-degree
character for enhancing recognition efficiency and its judging criterion is to separate
the goal from background farthest. Secondly, it determines optimal threshold-value
of image segmentation by means of a sort of simple and nimble method based on
optimal auto-recognition threshold-value. Then it restricts further path cost function
of original IFT watershed algorithm according to the optimal threshold-value. In this
chapter, the algorithm is to constrict search scope of optimal path of original IFT
watershed in essence, so it can enhance the execution speed for operation.

Because of adding the restriction of threshold-value in the algorithm, the path
cost function needs to make corresponding adjustment. The new path cost function
is expressed by formula (14) and (15)

fmax = (< t >) = I (t) (14)

fnew(π · < s, t >) =
{

max{ fnew, I (t)} i f I (t) ⊂ T
+∇ otherwise

(15)

In the formula, T is the threshold-value. Suppose the image has N-degree gray-
grade value, the steps of improved IFT watershed algorithm are as the following.
Process input is respectively the image I and the template image L. Process output
is the result L of each catchment-basin transformed by watershed algorithm;

Auxiliary data structure is all the node cost C (cost map), and the initial values
will be set as infinite (∇);

Computing steps of algorithm are shown as the following.

(1) Do C(p) = I (p) for all nodes satisfying the condition(L(p) ∀= 0), then insert
node p into queue Q according to the value of C(p).

(2) Make use of auto-recognition technology to identify the threshold-value.
(3) Delete node p that its C(p) value is minimum if queue Q is not empty. For each

node satisfying the condition q ≤ N (p) and node q without inserting into the
queue Q, do the following operation.

Computing C = fnewπ · < p, q >

If C ∀= +∇, let C(q)= C and insert node q into queue Q according to value of
C(q). Then let L(p)= L(q). For the above algorithm steps, we can make the following
analysis.

(1) Restriction condition of path cost function, is readjusted according to threshold-
value.

(2) Seed set, any node belonged to objective.
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(3) Layered queue structure Q, if the image includes N-grade gray-grade value (
because there exists threshold-value restriction ), the number of bucket of queue
Q can be reduced to N − T +1 and storage space of algorithm can be contracted
to O(n+N-t+1). In the steps of original algorithm, the node inserted queue Q
must be never operated by current node, so operation for the queue is different
from the original algorithm.

(4) Because of adding restriction of threshold-value, the search process does not
traverses all the nodes, but some nodes that their threshold-values are over
threshold-value of target region of image will be visited in the target region
of image. This method reduced the search area and enhanced the execution effi-
ciency of algorithm

4.2 Implementation and Its Result Analysis for The Improved
Algorithm

1. Implementation of the improved algorithm
The algorithm can be realized under the software environment of Matlab.7.0. The
improved algorithm flowchart is shown as in Fig. 1.
The operation steps of improved algorithm are as the following.

Step 1. To smooth image
It adopts firstly opening-closing operation based on the fuzzy mathematical mor-
phology to smooth image, so it can eliminate noise, save important region edge,
and solve more perfectly the problems in the pretreatment process by means of
morphology erosion, dilation and opening-closing operation to filter image.

Step 2. To compute gradient
The algorithm secondly adopts the operator of basic morphological gradient algo-
rithm to compute gradient.

Step 3. To achieve image
It finally segments the image to gain the objective image by use of improved
algorithm.
It is specially worth to point out that it was chosen to the opening-closing filtering
based on fuzzy morphology to carry through the image filtering in the filter-
ing process. This kind of filtering method is based on set theory and has some
smart trait, such as keeping the image edge well, distilling the signal effectively,
retaining the image detail completely, and restraining noise and so on.

Fig. 1 Flowchart of algorithm
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(a) (b)

(d)(c)

(e) (f)

Fig. 2 Result comparison of various algorithms

2. Simulation verification In order to compare the effect of processing image, here
we take the grain defect detect of grain depot as an example to judge that whether
the rice is in completeness and not mixed other grain. Firstly it takes the grain
image. Then it makes image processing for the taken image. Based on the software
environment of Matlab.7.0, the Fig. 2 shows the results of numeric simulation of
the fusion algorithm.
In Fig. 2a, b, c, d, e and f is respectively the experiment simulation results in
which, (a) shows the contaminated image which includes salt and pepper noise,
(b) shows the result adopted fuzzy morphology opening-closing filtering to fil-
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ter contaminated image, (c) shows the gradient image computed morphological
gradient algorithm operator for filtered image, (d) shows the result adopted Pre-
witt algorithm to segment image, (e) shows the result used directly traditional
watershed algorithm to segment image, (f) shows result adopted new improved
algorithm to segment image.

3. Result analysis for experiment from the Fig. 2, it can be viewed that if it adopts
directly the watershed algorithm to segment image then the result will appear over-
segmentation phenomenon and if it adopts Prewitt algorithm to segment image
then the following problems will be happened that its contour line will not be
continuous and edge orientation is not precise. But if it adopts improved algorithm
based fusion algorithm technology to segment image then it will not only be
conquered to over-segmentation phenomenon produced by direct watershed in
the result and get continuous and close boundary line, but also can fully save
the image detail, and therefore obtain satisfactory segmentation effect and faster
operation speed.

5 Use Case in Scathe-less Detect of Metal Parts Assemblage

The nondestructive inspection of metal parts assemblage has been widely applied in
assemblage measure inspect for large-scale complex metal parts, and the algorithm
of geometry-feature based image segmentation can make the detail of image outline
of metal workpiece more clear so as to distinguish strictly the boundary of metal part
defect. For example, industrial computerized tomography images based on clear
image edge can make nondestructive inspection for each workpiece, and realize the
location of the same section position CT image using Hausdorff distance, and also
using the position information which the stencil image is located in the original image,
it can judge that the assemblage is right or not. For inspect of large-scale complex
metal parts, it can make image registration, image matching and localization and
so on. In Fig. 3a, b and c, they are the examples of image registration, in which,
(a) is original image of CT, (b) is rotating image and (c) is image with rotating and
translation, and it canco make accurate localization for each workpiece.

(a) (b) (c)

Fig. 3 Image registration
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6 Conclusion

From the above effect analysis of image processing, we can make such a useful
conclusion that it is a sort of method of image processing and analysis and also a
solution of image segmentation based morphological technology to the fusion image
segmentation algorithm based on fuzzy mathematical morphology. The method can
be applied to many practical engineering field, such as military objective detective,
agriculture pest image recognition, resource protection of the ocean, agriculture irri-
gation, environment monitoring and so on. So it has important practical engineering
application value and theoretic significance. However, there are still some problems
in the research process, for example, both choice of threshold-value and execution
speed of algorithm need to make further improving so that it can obtain better seg-
mentation effect and faster operation speed.
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The Application of GA Based on the Shortest
Path in Optimization of Time Table Problem

Zhong-yuan Peng, Yu-bin Zhong and Lin Ge

Abstract Time Table Problem (TTP) is a constraint Combinational Optimization
Problem (COP) with multi- objective. Based on the analysis of advantages and dis-
advantages of Genetic Algorithm (GA) and Kruskal Algorithm (KA), this chapter
put forward to a new hybrid algorithm—the Shortest path-based Genetic Algorithm
(SPGA), which has the advantages of both GA and KA. In this algorithm, fitness
function, selection operator, crossover operator and mutation operator are studied
deeply and improved greatly, so that the hybrid algorithm can be used in the actual
course arrangement. The simulation results show the effectiveness of this method.

Keywords Shortest path · Genetic algorithm · Time table Problem · Kruskal
algorithm

1 Introduction

GA, a self-adaptive iterative search algorithm with probability based on natural
selection and genetic variation, was mainly put forward by John Holland in 1975.
It includes three basic operations: selection, crossover and mutation. GA is parallel;
it doesn’t need derivative or other auxiliary knowledge, and it only needs object
function and the corresponding fitness function that can affect the search direction.
GA can be directly applied in combinational optimization, neural networks, machine
learning, automatic control, planning and design, artificial life and other fields [1].
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KA is a classic algorithm in solving Minimum Spanning Tree (MST ) in graph
theory. Compared to Prim algorithm, it is more suitable in solving MST in sparse
graph. Suppose a connected graph G = (V, {E}), then let the initial state of MST
be a non-connected graph T = (V, {}),which has n vertexes and no edge. In this
non-connected graph T , each vertex forms a connected component. Select the lowest
cost edge in E , if the vertexes to which lowest cost edge attached fall in different
connected components in T , then add this edge into T ; otherwise, discard this edge
and select next lowest cost edge. Do this by analogy until all the vertexes in T are in
the same connected component [2].

2 Principle of Hybrid Genetic Algorithm (HGA)

Given a weighted undirected connected graph G = (V, E, W ), wherew = ⎡
e√E we

is the sum of weights on each edge. If tree T = (V, ET , WT ) contains all vertices
in graph G , and makes WT = ⎡

e√ET
we the minimum, then tree T is called MST

of graph G. According to classic algorithms for solving MST in graph theory, MST
is unique. In practical problems, different forms of MST often represent different
implementations; sometimes Sub-minimum Spanning Tree (SMST ) may also be a
better solution. If only one can be chosen, it may ignore or discard a better solution.
Thus, in actual operation, we hope to choose one from a number of MSTs or SMSTs,
and weigh the pros and cons of various aspects in order to get a better solution
[2, 3].

In recent years, GA is applied to TTP by many researchers, and they got good
results [4–7]. However, for TTP, the search capability and efficiency of any single
search algorithm, including GA, is not high, and it is greatly influenced by the initial
parameters. Simple genetic algorithm needs a long time and it is very easy to fall into
"premature". Kruskal algorithm belongs to greedy algorithm. Although it is able to
reduce time complexity to achieve local optimization in some extents, the effect of
its solution is often unsatisfactory and the solution does not meet the principles of
global optimization in general conditions.

Therefore, combining advantages of GA and KA, this chapter tries to put forward
to a HGA–SPGA. Genetic algorithm based on the shortest path combine with Genetic
algorithm and Kruskal algorithm. To make best use of the advantages and bypass
the disadvantages. In this HGA, the fitness function, selection operator, crossover
operator and mutation operator are improved, so better optimization results are got
in the practical application of TTP.
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3 The Application of HGA in TTP

3.1 Representation of Graph in TTP

In TTP, V = {vi , i = 1, 2, 3, · · ·} denotes the set of factors, where vi indicates the
i th factor, which is represented by vertexes. If there is a relationship between vi and
v j , then they will be connected with edges (see Fig. 1). W = {wi , i = 1, 2, 3, · · ·}
denotes the set of weights of edges, where wi indicates i th weight of the edge. For
specific questions, wi has different meanings.

3.2 The Design of Fitness Function

For TTP, as long as we can get a MST or a SMST in Fig. 1, we can get a success-
ful selection scheme. Of course, different selection schemes have different effects.
And fitness value can be used for the measurement of different schemes. In GA, an
individual’s fitness determines the probability of being passed on: a greater fitness,
a greater probability. Therefore, we define the fitness function [8] as follows:

F(T ) =

⎣⎧⎧⎧⎧⎪
⎧⎧⎧⎧⎨

K −
n⎡

wi Zi

i = 1

0

Fig. 1 Representation of
graph in TTP
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where Zi =
⎩

1 ei √ T
0 ei ∈√ T

; T is a spanning tree of Fig. 1; K = (n − 1)max(w1,

w2, ···, wn) is a larger positive constant so that it can ensure that F(T ) is nonnegative;
wi is the weight of i th edge.

In the process of genetic evolution, generated individuals must be tested. If all
vertices can be searched, then the individual is a spanning tree of graph, an effective
individual whose fitness can be calculated by the defined fitness function; otherwise,
the successful selection is unable to be completed, and this individual is an invalid
one. Let its fitness be zero, and it will be eliminated.

3.3 The Improvement of Genetic Operator

3.3.1 Combining GA with KA

The Standard Genetic Algorithm (SGA) generates new offspring individuals mainly
through crossover and mutation operator; but for MST, the crossover operator and
mutation operator of SGA is very easy to disrupt the basic structure of spanning tree,
so it is difficult to obtain effective new individuals, namely, effective MST or SMST
can not be constructed, and the search capabilities are reducing. In order to improve
the efficiency of searching, combining the characteristics of MST, crossover operator
and mutation operator are improved.

Take i = 5 for an example to illustrate the operating process of SPGA. Give fixed
values to wi , and get a MST by using Kruskal algorithm. For example, let w1 = 1,
w2 = 0.5, w3 = 0.8, w4 = 1, w5 = 1, w6 = 0.2, then get a MST w2w3w4w6.
A selection scheme is completed (Shown in Fig. 2). We use edge encoding method.

Fig. 2 MST w2w3w4w6
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If the edge is selected, then let it be 1, otherwise let it be 0. For example, MST
w2w3w4w6 can be represented as 011101.

3.3.2 Selection Operator

Order new generated individuals with descending sequence according to their fitness,
and use random traversal sampling method as the selection strategy. Suppose S is
the number of individuals to be selected, and select individuals equidistantly. The
distance of selection pointer is 1

S; the position of the first pointer is determined by an
uniform random number in interval

⎫
0, 1

S

⎬
.

3.3.3 Crossover Operator

In gene of a selected individual in the initial colony, choose any position and ex-
change forward and backward, and then a new individual is got, such as 011101 ≤
011

...101 ≤ 101
...011 ≤ 101011. The received new individual is 101011 that corre-

sponds tow1w3w5w6, a SMST. It is another selection scheme, an effective individual.
Using such a crossover operator can greatly improve search efficiency in the feasible
solution space, and will avoid a large number of individuals that will be eliminated.

3.3.4 Mutation Operator

Choose any position in the gene of new individuals, then exchange one position

before and after this position, such as 101011 ≤ 10
...1011 ≤ 11

...0011 ≤ 110011.
The new individual after mutation is 110011, which is an invalid individual and will
be eliminated.

The improved crossover operator and mutation operator has a very prominent
characteristic: in the process of obtaining progeny colony, each individual has only
one parent, single-parent propagation from biological view. The advantage is that
the next generation can keep characteristics of parent by the greatest extent, and it
increases the possibilities of being a feasible solution as well as the search capabilities
of GA.

3.4 Conditions for Ending Algorithm

GA needs to set an ending condition, otherwise it will do an infinite loop and will never
terminate. For TTP, we define a generation number n as the condition of end. When
iteration times of GA equals to this generation number, the algorithm is terminated
and the present individual is the ultimate solution. Of course, n can not be too big or
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Fig. 3 Flow chart for HGA

too small: if too long, the computation time is also long, then efficiency reduces; if
too small, convergence effect can not reach, failing to find optimal solution.

3.5 Flow Chart for HGA

Improving crossover operator and mutation operator of SGA appropriately, we can
get SPGA. The flow chart is shown in Fig. 3.

4 Instance of Application

The arrangement of schedule is a multi-factor optimized decision problem, and a
typical problem in Combination Programming; it is mainly used to make rational
utilization of time and space resources and avoid conflicts while arranging courses.
A rational and scientific course schedule is very important to the work of teaching
in school [9, 10].
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4.1 Constraints in CSP

In the arrangement of schedule, some constraints should be met, and these constraints
can be divided into soft constraints and hard constraints [9] .

4.1.1 Hard Constraint

Hard constraint must be met while arranging schedule, otherwise, teaching work will
not continue normally.

(1) One teacher can not be arranged more than two different courses at the same
time;

(2) One classroom can not be arranged more than two different courses at the same
time;

(3) One class can not have more than two different courses at the same time;
(4) The classroom must be large enough to hold students attending classes;
(5) The type of classroom must match that of the courses.

4.1.2 Soft Constraint

Soft constraint can be met while arranging schedule and it is the standard for mea-
suring course arrangement.

(1) Courses that have more week periods should be staggered reasonably;
(2) If one class has two consecutive courses, then the probability of changing class-

room should be as small as possible, or arrange nearby classroom;
(3) A class’s one week courses should be evenly distributed;
(4) A teacher’s one week courses should be evenly distributed;
(5) Important courses should be arranged in a good time period as far as possible;
(6) Physical education class should be arranged in the third or fourth class, or in the

seventh or eighth class;
(7) Satisfy the special requirements of a certain teacher.

4.2 The Arrangement of Courses for a Class

It is assumed that there is a numerical control class. In one semester, the required
courses are: Advanced Mathematics (2 / week), Mechanical drafting and Tolerance
(4 / week), College English (4 / week), Engineering Mechanics ( 4 / week), Basis for
Information Application Technology (4 / week), Ideology Morality Accomplishment
Course and Legal Basis (2 / week) and PE (2 / week). Each day is divided into four
time periods, and two classes are a time period. Thursday afternoon is the learning
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time for teachers, so no courses are arranged. According to the steps of HGA, this
class’s courses are arranged to meet the hard constraints, and are optimized according
to soft constraints. The arrangement results are shown in Table 1.

From Table 1 and we can see that the optimized timetable using Improved Genetic
Algorithm (IGA) satisfies not only the hard constraints, but also soft constraints. From
practical view, feasibility of HGA is verified further, and IGA is a feasible method of
solving CSP.

4.3 Analysis of the Results

(1) Because of the thought of single-parent propagation, crossover operator and
mutation operator of SGA are made appropriate changes to effectively avoid the gen-
eration of invalid individuals. The running time of this algorithm reduces greatly, and
it is more efficient. (2) Both Initial Timetable Generated Randomly and Optimized
Timetable Using HGA meet the hard constraints, and there is no conflict. Namely,
one teacher, one classroom and one class are not arranged more than two different
courses at the same time; the classroom is large enough to hold all students; the type
of classroom matches that of the courses. (3) Optimized timetable can deal courses
that require special arrangements well, such as PE. In the initial timetable, PE is
arranged in 1st and 2nd class in the morning, which is not scientific. If students
have class in the 3rd and 4th, they will be tired, then it would certainly affect the
efficiency of class. In optimized timetable, PE is arranged in the 7th and 8th class
in the afternoon. Students can have a good rest after class, achieving the purpose
of physical exercise without influencing other courses. (4) The time interval must
be reasonable for courses that have four or more than four classes one week. It is
very necessary to maintain a certain degree of dispersion. On the one hand, teachers
must make good preparations before class, such as being familiar with teaching ma-
terials, designing teaching situation, choosing teaching methods, preparing teaching
plans, and correcting the exercises; if the class interval is too dense, it will affect
teacher’s preparation and classroom instruction. On the other hand, students need
time to digest, understand and consolidate knowledge after class, and they also need
some time to finish the course assignments. If the courses are too continuous, stu-
dents can only be struggling to accept, and there is no time to understand and master,
so the effect is bad. Optimized timetable handles reasonably at this. (5) Important
courses should be arranged in better time periods as far as possible, which is based
on a person’s physiological characteristics and teaching rules. It plays a significant
role in raising the overall classroom teaching effect. There is a clear manifestation
of the arrangements of important courses in optimized timetable.
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5 Conclusion

This chapter put forward a new hybrid algorithm - the Shortest path-based Genetic
Algorithm (SPGA), which has the advantages of both GA and KA. Combined with the
actual situation of Time Table Problem, fitness function, selection operator, crossover
operator and mutation operator are studied deeply and improved greatly in this al-
gorithm. And the algorithm is used to test the course scheduling problems. Practice
has shown that this is a simple, effective method. It can obtain a number of MST and
SMST in a short time with high efficiency, providing a variety of schemes for course
arrangement. And it is also a solid foundation for further optimization. To sum up,
good results are achieved.
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Monitoring System of Networked Gas Stations
Based on Embedded Dynamic Web

Wei Huang, Kai-wen Chen and Chao Xiao

Abstract The oil is a sort of strategic material, and therefore strengthening the man-
agement of oil material has very important significance. Aimed at the difference in
communication protocol among dispensers of gas stations, resulted in being difficult
to realize the integration of monitoring system, this paper proposed a sort of inte-
grated monitoring solution based on embedded Web. The core device of monitoring
system selected a sort of embedded Web server based on Intel Xscale IXP-422 RISC
CPU. The servers distributed in the industrial field of gas stations interconnected
through industrial Ethernet, and composed a wide area network system based on
Web service. The field bus of field device connected to Web server in the field local
area of gas stations to complete the integrated monitoring of field device. The system
adopted the architecture of distributed browser/server. By means of the approach of
Apache+Html+PHP, the monitoring and management of the gas stations could be
realized based on embedded Web, and the realization of dynamic Web browse could
be completed by control unit. The actual test data demonstrated that it could be high
in security level, stronger in anti-jamming, better in environment adaptability, and
higher in real time performance. The research result shows that the proposed solution
is feasible and reasonable.
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1 Introduction

Nowadays, The Web has been widely used into the extensive industrial applications
[1–3]. It has been become a hot topic to apply Web technology for industrial moni-
toring field. By means of running the embedded Web server of field control device in
the bottom layer of industrial control system, it can be accessed and monitored to all
control devices in industrial field through Internet in anywhere for using general Web
browser [4–6], and gets the aim of monitoring field device expediently. Through the
page layout of Web stored in the field control device, it can dynamically reflect the
running state of field device and feedback information after executing the monitoring
operation, and also it can collect field running real time data more accurately, make
various checking analysis, control the field devices, and carry through system main-
tenance easily and so on. This paper takes the monitoring system of gas stations in
oil product retail network as an example to explore a sort of realization of monitoring
system based on embedded dynamic Web.

2 Structure of Networked Monitoring System

2.1 System Structure

The Fig. 1 shows the structure of networked monitoring system in gas stations.
The field devices in forecourt of gas stations, such as dispensers, tank level gauges

and so on, are connected directly to the Intranet/Internet through embedded Web
server, then by means of Ethernet port or wireless port, and it can be connected to
the browsing monitoring station or moving browsing monitoring station based on
Web. It is propitious to realize the data communication and monitor in real time,

Fig. 1 Structure of networked monitoring system
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network security and encrypt system for this sort of architecture, and to adopt Web
with embedded technology for realizing dynamic monitoring and integrated man-
agement.The advantages mainly are incarnated as the following, such as that it is
more convenient in realizing intelligent communication, configurable and control-
lable in device on line, realizable in store-forward of real time data, and ensures the
integrality and security of data transfer.

2.2 Structure Block Diagram of Soft System

The structure block diagram is shown as in Fig. 2, and its implementation of soft
system is applied by embedded dynamic Web. The soft system based on embedded
dynamic Web consists of three parts which are operating system, Web server and
application software. The following is the rough explaining.

(1) Realization of intelligent communication
The front-end device can carry through processing various data of heteroge-
neous oil device so as to be convenient for system monitoring and extending. It
can adopt the embedded intelligent computer of industrial grade being suitable
for field scurvy environment, and carry through structured program develop-
ment of collectivity design and object oriented for communication software
from systematic hierarchy. And it can design different module in terms of data
communication protocol of different devices to realize the intelligent commu-
nication so as to carry through unification control and management for different
oil devices.

(2) Configuration and control of device on line
The mode of system development is used by dynamic Web based on Apache +
PHP + data file for Linux. Through the page layout of Web it can neatly realize
the device configuration and status setting for various forecourt devices, and
reflect dynamically the real time state of each device such as oil gun state of
dispensers, and look over the log file of forecourt controller running and analyze
the statistic log file to acquire the running statistic data that offers the base of
the first hand data for erratum and correcting fault. According to the access
content of purview enactment, each user owns different management purview.

Fig. 2 Structure of embedded
dynamic Web
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Only the supervisor has double purview among both read and writing. It can
ensure the data security transfer over network and offer the accessing function
of encrypt security renew and load the price list of oil plants and oil grade in real
time, realize the control for all forecourt devices such as dispensers and oil gun
being on or off, it can monitor manifold oil device that will be more complex in
instance and higher in control difficulty.

(3) Store-Forward of real time data
The inner ROM of front end control device is easily divided as four areas that
are Boot Loader, Linux Kernel, Mini Root File System and User Root File
System. When system results in breakdown rooted in user program reason, the
Mini Root File System can be used as emergency root file system. When User
Root File System in the Boot Loader is loaded to be failed, it can activate the
Mini Root File System and introduce a sort of inner embedded mechanism to
prevent system breakdown and ensure the steady reliability of system running.
Once the system fault occurs in background network, the data communication
of Store-Forward can be used. The data is stored into the file of JFFS2. After
the fault is eliminated, the collected data will be automatically transmitted into
the corresponding main computer. And it does not influence the normal work of
dispensers and related devices. Therefore it ensured the integrality and security
of system.

2.3 The Hardware Structure for Web Server

The Web server is an embedded computer of high performance in which a 32Mb
NOR Flash ROM and a 128MB SDRAM is configured. It has rich resource such as
with eight serial ports, double 10/100 Mbps Ether port, wireless communication of
PCMCIA, 8-channel data input and 8-channel data output, and extended interface of
CompactFlash.

3 Description of Software Function

The core part [7–9] of system is an embedded computer configured by embedded
system of Montavista Embedded Linux, shown as in Fig. 3.

By means of scheme of Apache+Html+PHP, it can realize dynamic browse and
modify the system configure of Web server dynamically. Also it adopts development
tool, such as GCC and so on, to develop user application program so as to realize
the monitoring for field device of gas stations. The Web server can implement the
following function. (1) Look over the state for various dispensers in real time, con-
figure the devices of gas stations, and set the work status of dispensers. (2) Look
over the log file of Web server running and make statistic and analysis for running
statistic data so as to offer the base for eliminating erratum. (3) Set accessing purview
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Fig. 3 System structure for Linux

so as to ensure the data being security transfers in network, and to offer the accessing
function of secret security. (4) Control the parameters such as dispensers work status,
setting oilcan and price brand under the condition of certain control of security level.

4 Conversion for Protocol

The function of protocol conversion is to realize information conversion from fore-
court device interface protocol to IFSF protocol [10] based on TCP/IP, and to imple-
ment the real time information processing of forecourt device in the embedded Web
server. The protocol conversion consists of two modules that are respectively the
IFSF interface module based on TCP/IP and the conversion module between fore-
court device interface protocol and IFSF protocol.

(1) IFSF protocol interface based TCP/IP
Shown as in Fig. 4, it consists of four modules. 1) Application module of IFSF
is used to control the implement of application program of forecourt device. 2)

Fig. 4 Structure of IFSF
based TCP/IP
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IP protocol stack module is used to implement the IP protocol connected by
network, it provides the function such as network connection management and
IP address parsing and so on. 3) DHCP server is used to connect the device
assigning address of Ethernet. 4) Conversion module between IFSF and IP is
used to implement the three functions that are to receive and send the Heartbeat
by use of Heartbeat Proxy, to manage all the link list connected, to send and
receive all the data through TCP connection.

(2) Protocol conversion between forecourt device interface and IFSF
It consists of two function modules. One is the protocol interface module of
forecourt device and another is proxy module of IFSF. The former realizes the
interface for idiographic forecourt device. Its main function is to parse commu-
nication frame of device, to monitor the oil process, and to make the response
for special case of dispenser. And the latter is used to respond the "write/read"
for each node request of IFSF. According to the protocol and frame format of
IFSF, it realizes the accessing among IFSF nodes. The communication is carried
through the database among the above modules. The proxy module accesses the
database that it represents to access the forecourt device. The database stored
all the information of dispenser and forecourt device, including oil gun state,
protocol version of dispenser, oil price version, trade record list and accumula-
tive total of trade statistic data and so on. In all the information, the data that has
higher demand of time effect is all with the time stamp. If the sent write/read
information from other IFSF node wants to access the data that is time sensitive,
then it can directly access the data through database. Otherwise it can send the
data request order forward to forecourt device protocol interface module through
another information transfer channel between device protocol interface module
and IFSF proxy module, and the device protocol interface module must make
response in a certain time. It can implement the monitoring and management for
the function in some data file such as oil quality file and general information of
gas stations of data base through integrated monitoring module. Once the mod-
ule of device protocol interface apperceives that the file variety is happened, it
will be automatically start up to general information query instruction in the
program and go into the information renewing stage. The function of control
and management is to transfer the trade record of all dispensers into the main
computer. If it is off line (for example, the signal interrupting rooted in line
fault) then the trade record can be directly stored in local area. When the fault
is eliminated, the data will be automatically transferred into the main computer
so as to ensure the data integrality of management system.

(3) Software design
For saving system resource and realizing share data, the conversion function is
implemented by means of creating thread mode. Each serial port creates a thread
to implement the communication between device and conversion so as to ensure
communication independent one another between device and conversion. In
addition, the sub-thread of Ethernet should be created. The forecourt controller
end is considered as server end, through creating connection with POS, it can
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Fig. 5 The system flowchart

realize the communication between protocol conversion and POS. The data
interaction of thread is implemented by means of sharing data storage.
The system flowchart is shown as in Fig. 5. The POS carries through control
and data transfer for field device of gas stations by forecourt controller. And
vice versa, the process is that the data in each forecourt device is packed in
format of IFSF frame to be transferred after data being parsed through forecourt
controller, finally the POS transfers data to background server.

(4) Module for serial communication
In terms of configure file, it carries through parameter needed setting for each
serial port. In the program, through read in configure file it makes the serial
port to complete initialization. For avoiding long time waiting, each serial port
assigns a thread so as to complete time-sharing operation. Each thread assigns
a private data buffer. When the data sets in, it is accepted into data buffer by
use of function of recv ( ), after right checkout of CRC16, parsing packet and
pick-up effective data, finally packed, and sent into the POS. When the net is
off line, the oil data will be stored temporarily. In main program, the oil data
stores by means of static structure array. It adopts the mutex storage of share
memory to prevent the producing conflict that different thread stores data at the
same time and after arriving delay time, it creates new thread to transfer data.

5 Realization for Monitoring and Its Performance Test

All the user interfaces of dynamic Web server can be implemented by the www
browser, shown as in Fig. 6. This mode is the direct access between Web server
and browser. The application program is put in the server, and it is unnecessary
to develop client end program. There are two sorts of development methods, CGI
(Common Gateway Interface) technology and embedded technology.
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Fig. 6 Structure mode of
PHP service.

Fig. 7 Interface of parameter setting

The system function test carries through the environment under the condition of
network. Using test signal resource being in place of analogue signal, the method is
to simulate the receiving & sending data and order of POS and dispenser respectively
by using two computers, by means of software server platform of Apache + PHP, after
completing compiling of protocol conversion of main program and related program,
it will be loaded into the development device. And at the same time, the compiling
of the Web page layout will also be entered into it. Then runs the development
device, we can directly view the testing results from display menu at client end. The
interface of parameter setting is shown as in Fig. 7. From the Fig. 7, we can modify
and look over port configuring file, and the POS can simulate to control the dispenser
to oil, to set oil parameters, and to control the oil card inserting and exiting. Also it
can simulate the operations of dispenser such as lifting the oil gun, hanging the oil
gun and making balance etc. The testing result shows that it can complete protocol
conversion of dispenser and POS, realize all the functions controlled by POS.

6 Conclusion

It is a necessary trend to integrating and communicating among different protocol
for industrial automation control development in future. Through the application
example above, it shows that it can better realize the monitoring in system and sharing
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in data information and make the maintaining easier for networked monitoring system
based on embedded dynamic Web.
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Research on Workflow Model Based
on Petri Net with Reset Arcs

Chi Zhang, Sakirin Tam, Kai-qing Zhou and Xiao-bo Yue

Abstract To satisfy the workflow modeling requirements in the ability of powerful
expression, a method by adding reset arc to extend the workflow model has been put
forward, and the formal representation is proposed in this paper. Then, the soundness
analysis of this method is researched by using an insurance claim model and reach-
ability graph. Therefore, this method improved the power of describing workflow
model of WF-net, especially cancellation feature which was not supported by most
Petri net models.

Keywords Petri net · Workflow net · Reachability graph · Reset arcs · Soundness

1 Introduction

The concept of workflow originates from the domain of production organization
and office automation, it is proposed with a fixed program activity for the routine.
The workflow is designed to segment the work into well-defined tasks and roles, to
perform, monitor and manage the tasks according to certain rules and procedures.
The workflow can improve the work efficiency, control the procedure better, and
manage business processes more effectively, etc.
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At present, there are a lot of workflow modeling methods. Such as: a directed
acyclic graph, process ontology, Petri net, etc [1–3]. Zhang [4] introduced the
existing workflow modeling technology and its current development situation, also
the existing problems, and the latest development. Among these modeling methods,
some focus on describing the control relations between the tasks, the others focus on
data flow description on the tasks. Petri net technology is a kind of modeling method
which can not only be used for structural modeling, but carry out quantitative and
qualitative analysis. It has become the main tool of workflow modeling.

Although the Petri net theory and workflow technology is mature enough, basic
workflow model is still unable to express all possible workflow because of the model
scale and the complexity in practical application. Therefore, it is essential to extend
the model to improve the modeling ability. The existing extension methods are hier-
archical, color, time, etc [5–7]. On the basis of summing up the classic Petri-net
modeling theory, this paper presented the extension methods of adding reset arcs,
soundness analysis of this method by using the reachability graph and an insurance
claim model. By analyzing the example, we can prove that the extended method can
improve workflow modeling ability.

2 Workflow Petri Net

2.1 The Definition of WFPN

Petri nets (PN) were first presented in August 1939 by Carl Adam Petri which
described concurrent and asynchronous model of computer system. PN is a directed
bipartite graph, in which the nodes represent transitions, places, and directed arcs.
Being considered as a type of automatic theory, PN has a well-developed mathemat-
ical theory for process analysis, which makes it become the main tool of workflow
modeling and analysis.

Workflow net is defined as follows:

Definition 1. A Petri net PN= (P, T, F, M0) is called a Workflow net [8] if and only
if it satisfies the following conditions:

1. There is a source place, i √ P|.i = φ;
2. There is a sink place, o √ P|o. = φ;
3. For all x √ P ∈ T are located a path from i to o.

where P = {p1 , p2 , ... , pn } is a finite set of places,T={t1,t2,…,tn} is a finite set of
transitions, and F ≤ (P×T)∈(T×P)is a set of arcs (flow relation). They satisfy the
following conditions:

1. P∃T=φ;
2. P�T∗= φ;
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Fig. 1 A simple workflow
model

Fig. 2 WFPN reachability
graph

3. dom(F)�cod(F)=P�T Where, Dom (F) = {x |�y : (x, y)�F}, cod(F) =
{y|�x : (x, y)�F}.

M0 is the initial identification, representation of the initial state of the system. In
Petri net, identification is used to indicate the token’s distribution in each place at a
certain hour. Place p (p�P) is called the input place of transition t (t�T), if and only
if there is at least one directed arc from p to t. Place p is called the output place of
transition t, if and only if there is at least one directed arc from t to p. Post (pre) set
of p is the set of output (input) transitions of p, denoted by p. and .p, respectively.
Symbols .t and t. have similar meaning.

Petri nets which meet the above conditions are called WFPN (Work Flow Petri
Net).

2.2 Reachability Analysis

The reachability of workflow net can be described as that whether there exists a
legitimate transition sequence from initial state M0 to target state, under the condition
of being given workflow net and target state. Reachability analysis can detect whether
there is dead task, by establishing WFPN reachability graph.

For example, a simple workflow model as shown in Fig. 1, it consists of six
places (p1, p2, p3, p4, the p5, p6) and five transitions (t1, t2, t3, t4, t5).According
to reachability graph generating algorithm, reachability graph can be established as
shown in Fig. 2. Reachability graph is a directed graph which consists of nodes and
directed arcs. Moreover the tag of each node represents a reachable state and each
directed arc connecting two nodes represents a possible change of state.
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Fig. 3 Reset arcs

2.3 The Soundness of Workflow Nets

A correct workflow should be sound, sound is defined as follows:

Definition 2. (soundness) A WFPN = (P, T, F, M0) modeling process is sound, if
and only if:

1. For every state M reachable from the initial state M0 (there is only one token in
place i), there exists a firing sequence leading from state M0 to o (there is only

one token in place o).Formally: ∪M(i
⊂−∇M) ∀ (M

⊂−∇o);
2. State o is the only state reachable from state M0 with at least one token in place

o.Formally: ⇔M(i
⊂−∇M ≥ M ◦ 0) ∀ (M = o);

3. There is no dead transitions in (PN,i).Formally:

∪t √ T, ⇔M, M ′i ⊂−∇M
t−∇M ′ (PN,i) represents a Petri net with initial state i.

where: x
⊂−∇y represents there is a reachable path from marker x to y in the reach-

ability graph of the model.

The reachability graph can be used to check if WFPN model can meet three
conditions of the soundness. By contrast the first two conditions, we can analyze
whether there is a node can correspond final state, and there is the only token in
place o.Refered to the third condition, we can judge whether each task in workflow
net corresponds with the state transition in reachability graph. If so, WFPN model
in each task can be executed.

3 Extended Workflow Net

3.1 Definition of Extended Workflow Net

The basic Petri net model is very simple and is unable to express all routing constructs
one may encounter in real-life workflows. Therefore, a method to extend workflow
model by adding reset arc has been put forward. This method can effectively improve
the modeling capabilities of workflow nets. The notion of reset arcs is illustrated in
Fig. 3. Here the double-headed arcs are reset arcs.

Definition 3. Five - tuple N=(P, T, F, M0, R) is a necessary and sufficient condition
of RWFPN:
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Fig. 4 An example reset
net before and after firing
transition t

1. (P, T, F, M0) is a basic Petri net,
2. R�T∇2P is a function defining reset arcs
3. There is no reset arc connected to the sink place.

Transition t is enabled at M, denoted as M [t>, if for all ∪p�.t, M(p)◦1.We denote

M
N ,t−∇M ′if M[t> and

M ′ =
{

M(p) − F(p, t) + F(t, p), i f p √ P\R(t)
F(t, p), i f p √ R(t)

In Fig. 4, transition t is enabled at marking p1and t may fire. When transition t fire,
it removes a token from its input places p1, removes all tokens from its reset place
p3, and puts one token in its output places p2. Moreover, reset arcs do not influence
enabling.

3.2 Workflow Model with Adding Reset Arcs

However, in many cases a rather simple model is used (WF-nets or even less expres-
sive) and practical features such as cancellation are missing. Many workflow lan-
guages have a feature of cancellation, e.g., Staffware has a withdraw construct, BPMN

Fig. 5 Insurance claim model
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Fig. 6 Insurance claim mode with the reset arc

has cancel, compensate, and error events, etc. Since many workflow languages have
cancellation features, a mapping to workflow nets is not always possible. Therefore,
the workflow net with reset arcs should be taken into account.

To illustrate the problem, we can look at the example of an insurance claim in
literature [8]. In order to show trigger process more intuitive, this case based on the
added ok and nok of the two transitions, as shown in Fig. 5. In this example there
are two review processes. The claim will be rejected if the application cannot pass
any one of review process. Some researchers [9] have pointed out that, the WF-net
showed in Fig. 5 is not sound. There are several deficiencies. If one check pass,
the other one won’t pass. The WF-net will not terminate properly because a token
gets stuck in p6 or p7. If the two checks are ok, claim rejection will be executed
twice because of the presence of two tokens in o with the moment of termination
unclearly. However, the added reset arc insurance claim model does not have the
similar situation. Added a reset arc and cancel functions of insurance claims model
as shown in Fig. 6. There are seven reset arcs from the places (p2, p3, p4, p5, p6, p7,
p8) to transition t9, also does not have token stuck questions in Fig. 6. When the two
checks does not ok, transition t9 consume a token and remove a token, then created
a token in place p9. So reject will only be executed once, end place is also only one
token.

The workflow net reachability graph as shown in Fig. 7 represents different pos-
sible states. The workflow states uses a ten tuple representation (p1, p2, p3, p4, p5,
p6, p7, p8, p9, p10). Each place has a corresponding token number, the initial state
is (1,0,0,0,0,0,0,0, 0,0). Only one token exists in initial place p1. In Fig. 7, there are
nineteen reachable states where each state does not necessarily occur. The corre-
spondence of a node which has no output arrow is the end state, and there is no
transitions trigging at the end of state. According to the reachability graph as shown
in Fig. 7, necessary and sufficient condition for the soundness of the workflow net
has the following analysis results: 1) from any one state can reach the final state
(0,0,0,0,0,0,0,0,0,1); 2) state (0,0,0,0,0,0,0,0,0,1) are the only end state (state o),
this state is reflected as a marker M = (0,0,0,0,0, 0,0,0,0,1), and M > 0; 3) Starting



Research on Workflow Model Based on Petri Net with Reset Arcs 455

Fig. 7 Reachability graph of RWFPN

from the initial state, each transition can reach the ready state(Each transition has the
opportunity to occur, there is no death transitions). Based on the above three points,
insurance claim model with reset arcs meet the requirements of WF-net soundness.
Therefore, the insurance claim model with adding reset arc is still sound.

4 Decidability

For a complex WF-nets, it is not easy to decide soundness, so it’s more complex
to decide the soundness of the extended WF-nets. Some scholars put forward that
classical soundness for time extended workflow model [10] is undecidable. Unfortu-
nately, classical soundness is undecidable for workflow models with reset arcs [11].
Therefore, for a common application, if you want to expand workflow model, you
can aim at the practical model to verify them one by one only in accordance with
three necessary and sufficient conditions of soundness (such as the example of 3.2
insurance claim in that way).

5 Conclusion

This article puts forward an idea of expanding WF-net with add reset arc by the
analysis of Petri net which based on workflow model and then make full use of
reachability graph to make a soundness analysis, so as to illustrate the validity under
the common circumstances. The model example in this article is a classical workflow
model. Meanwhile, we can know that it can improve the modeling ability after
adding reset arc by this model. Unfortunately, classical soundness is undecidable
for workflow models with reset arcs. Therefore, for a common application, if you
want to expand workflow model, you can aim at the practical model to verify them
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one by one only in accordance with the three necessary and sufficient conditions of
soundness. The workflow model with reset arc can make good modeling for many
specific process, so it still has practical meaning. The further research will focus
on the other structure’s expanding of RWFPN model which will further improve the
modeling ability of RWFPN model. As a result, it can meet the actual need of WF-net
better.
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The Closeness Centrality Analysis
of Fuzzy Social Network Based
on Inversely
Attenuation Factor

Ren-jie Hu, Guang-yu Zhang and Li-ping Liao

Abstract Fuzzy centrality analysis is one of the most important and commonly used
tools in fuzzy social network. This is a measurement concept concerning an actor’s
central position in the fuzzy social network, and it reflects the different positions
and advantages between social network actors. In this paper we extend the notion
of centrality and centralization to the fuzzy framework, propose fuzzy inversely
attenuation closeness centrality, and discussed fuzzy group closeness centralization
based on inversely attenuation factor in fuzzy social networks.

Keywords Fuzzy social network · Attenuation factor · Fuzzy closeness centrality ·
Fuzzy group closeness centralization

1 Introduction

A social network is a set of nodes representing people, groups, organizations, enter-
prises, etc., that are connected by links showing relations or flows between them.
Social network analysis studies the implications of the restrictions of different actors
in their communications and then in their opportunities of relation. The fewer con-
straints an actor faces, the more opportunities he/she will have, and thus he will be in
a more favorable position to bargain in exchanges and to intermediate in the bargains
of others that need him, increasing his influence.
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In social network analysis, the problem of determining the importance of actors
in a network has been studied for a long time [1]. It is in this context that the concept
of the centrality of a vertex in a network emerged. Social networks analysts consider
the closely related concepts of centrality and power as fundamental properties of
individuals, that inform us about aspects as who is who in the network, who is
a leader, who is an intermediary, who is almost isolated, who is central, who is
peripheral. Social networks researchers have developed several centrality measures.
Degree, Closeness and Betweenness centralities are without doubt the three most
popular ones.

Degree centrality focuses on the level of communication activity, identifying the
centrality of a node with its degree [2, 3]. Closeness centrality considers the sum of the
geodesic distances between a given actor and the remaining as a centrality measure
in the sense that the lower this sum is, the greater the centrality [4, 5]. Closeness
centrality is, then, a measure of independence in the communications, in the relations
or in the bargaining, and thus, it measures the possibility to communicate with many
others depending on a minimum number of intermediaries. Betweenness centrality
emphasizes the value of the communication control: the possibility to intermediate
in the relation of others [6, 7]. Here, all possible geodesic paths between pairs of
nodes are considered. The centrality of each actor is the number of such paths in
which it lies.

Centrality analysis is used extensively in social and behavioral sciences, as well as
in political science, management science, economics, biology, and so on. Stephenson
and Zelen [8] abandon the geodesic path as structural element in the definition of
centrality, to introduce a measure based on the concept of information as it is used
in the theory of statistical estimation. The defined measure uses a weighted combi-
nation of all paths between pairs of nodes, the weight of each path depending on the
information contained in it. Bonacich [9, 10] suggests another concept of centrality.
He proposes to measure the centrality of different nodes using the eigenvector asso-
ciated with the largest characteristic eigenvalue of the adjacent matrix. The ranking
of web sites as they appear in the web search engine Google was created from this
measure by Brin and Page [11]. Costenbader and Valente [12] studied the stability of
centrality measures when networks are sampled. A measure of betweenness central-
ity based on random walks can be found in Newman [13]. Zemljic and Hlebec [14]
evaluate the reliability of measures of centrality and prominence of social networks
among high school students. Kang [15] presents a measure of similarity between
connected nodes in terms of centrality based on Euclidean distances. Kolaczyk
et al. [16] provide an expansion for group betweenness in terms of increasingly
higher orders of co-betweenness, in a manner analogous to the Taylor series expan-
sion of a mathematical function in calculus. Everett and Borgatti [17] proposed a new
centrality called exogenous centrality. Sohn and Kim [18] develop a robust method-
ology for computing zone centrality measures in an urban area. Centrality measures
for complex biological networks can be found in Estrada [19]. Martı’n Gonza’ lez
et al. [20] discussed centrality measures and the importance of generalist species
in pollination network. Kermarrec et al. [21] introduce a novel form of centrality:
the second order centrality which can be computed in a distributed manner. Pozo
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et al. [22] define a family of centrality measures for directed social networks from
a game theoretical point of view. Wang et al. [23] used complex network theory to
examine the overall structure of China’s air transport network and the centrality of
individual cities. The research shows that the rapid development of the air transport
network in China has produced a distinctive pattern. In recent years, new and small
airports in China are inclined to supply direct links to the top hubs and so bypass the
regional ones, resulting in underdeveloped regional centers. Qi et al. [24] propose
a new centrality measure called the Laplacian centrality measure for weighted net-
works. Laplacian centrality is an intermediate measuring between global and local
characterization of the importance (centrality) of a vertex.

There is little paper about fuzzy social networks until now. Fan et al. [25, 26]
discuss structural equivalence and regular equivalence in fuzzy social networks.
Data mining through fuzzy social network analysis are discussed by Premchand
and Suseela [27]. Tseng [28] proposes FNBSC (fuzzy network balanced scorecard)
as a performance evaluation method when the aspects and criteria are dependent
and interaction is uncertain. Li-ping and Hu Ren-jie defined the concept of fuzzy
social network and explores some of its basic properties [28]. The definition and
relevant analysis provide the theoretical foundation for further study of the fuzzy
social network.

In fuzzy social network, links represent social relationships, for instance friend-
ships, between actors. These relationships offer benefits in terms of favors, infor-
mation, etc. Moreover, actors also benefit from indirect relationships. A “friend of
a friend” also results in some indirect benefits, although of a lesser value than the
direct benefits that come from a “friend”. The same is true of “friends of a friend of a
friend”, and so forth. The benefit deteriorates with the “distance” of the relationship.
For instance, in the fuzzy social network where actor 1 is linked to 2, 2 is linked to 3,
3 is linked to 4, and 4 is linked to 5 in Fig. 1. Obvious, the relationship between actor
1 and actor 2 is 0.8. However, how to calculate the relationship between “friend of
a friend”? How to calculate the fuzzy closeness centrality in fuzzy social network
based on attenuation factor? It has not been considered formally in the literature until
now, to the best of our knowledge.

Liao Li-ping and Hu Ren-jie describe the relationship between actors by fuzzy
relation matrix, and use quantitative technique to define the fuzzy social network
[28]. In this article, we propose some methods to calculate the relationship between
“friend of a friend”. In this paper we extend the notion of centrality and centralization
to the fuzzy framework, propose fuzzy inversely attenuation closeness centrality, and
discussed fuzzy group closeness centralization based on inversely attenuation factor
in fuzzy social networks.

1 2 3 4 5

0.8 0.5 0.2 0.7

Fig. 1 A fuzzy friend’s network of five actors
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The organization of this paper is as follows. Section 2 contains the notation and
some preliminary concepts. In Sect. 3, we propose fuzzy inversely attenuation close-
ness centrality, and discussed fuzzy group closeness centralization based on inversely
attenuation factor in fuzzy social networks. Finally a conclusion appears in Sect. 4.

2 Preliminaries

In social networks, the relation between actors are reduced “1” and “0”, 1 indi-
cates the presence of linkage between actors, and the “0” indicates the absence of
such a linkage. It can not make the relation between actors clear. Hence, how to
describe the relation between actors has come into greater prominence. Premchand
and Suseela [27] defined fuzzy social network as a fuzzy graph with the entities as
the nodes or actors and the relations among them as the edges or links. Liao Li-ping
and Hu Ren-jie defined fuzzy social network as follows:

Definition 2.1 Fuzzy social network is defined as a fuzzy relational structure ⎡G =
(V, ⎡E), where V = {v1, v2, . . . , vn} is a non-empty set of actors or nodes, and

⎡E =
⎣
⎧⎪

⎨e11 . . . ⎨e1n
...

. . .
...⎨en1 · · · ⎨enn

⎩
⎫⎬ is a fuzzy relation on V .

In definition 1, ⎨ei j is a fuzzy relation between vi and v j , ⎡E is called fuzzy adjacency
matrix on ⎡G .

We define intensity and connected intensity in ⎡G as follows:

Definition 2.2 Assume that ω = v0e1e2 . . . ekvk is a path of two actors v0 and vk

in ⎡G,

⎡s(ω) = k√
i=1

μ(ei ) (1)

s(ω) is defined as fuzzy intensity of path ω

Definition 2.3 If there are n path ωk, (k = 1, 2, . . . . . . , n) connecting actor u and
actor v,

⎡s(u, v) = n∈
k=1

⎡s(ωk), (2)

⎡s(u, v) is called fuzzy connected intensity between u and v in fuzzy social network ⎡G.

Further, we can define fuzzy connected intensity matrix ⎡R in ⎡G as follows:

⎡R =
⎣
⎧⎪

⎨s11 . . . ⎨s1n
...

. . .
...⎨sn1 · · · ⎨snn

⎩
⎫⎬, (3)
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where, ⎡si j =⎡s(vi , v j ), (i, j = 1, . . . . . . , n).
From fuzzy connected intensity matrix ⎡R for ⎡G, we can know the relation between

any of two actors in fuzzy social network.
However, in specific fuzzy social network, the fuzzy intensity and fuzzy connected

intensity between actor vi and actor v j are related to the total actor numbers between
vi andv j . The more actors between vi andv j , the fuzzy intensity and fuzzy connected
intensity will decrease more quickly. So, we further discuss fuzzy intensity, fuzzy
connected intensity, fuzzy connected intensity matrix, fuzzy closeness centrality and
fuzzy group closeness centralization based on attenuation factor in Sect. 3.

3 The Measures of Fuzzy Closeness Centrality About Fuzzy
Social Network

Fuzzy centrality analysis is one of the most important and commonly used tools of
concept in the analysis of fuzzy social network. This is a measurement concept which
reflects the different positions and advantages between different actors in a fuzzy
social network. Generally, according to the local difference and global difference,
centrality is classified into local fuzzy centrality and global fuzzy centrality. The
former, also known as fuzzy degree centrality, what it reflects is a person’s dominant
position in the fuzzy social network. The greater the centrality, that is, more associated
with more people, the more they are in the central position. The latter refers to
the relation between actors to other actors in the whole network. This reflects the
closeness between actors, which is measured by the relation between different actors.
Fuzzy centralization refers to the overall closeness, rather than the relative importance
of certain actors.

Definition 3.1.1 Assume that ω = v0e1e2 . . . ekvk is a path of two actors v0 and vk

in ⎡G,

⎡SI (ω) = 1

k

k√
i=1

μ(ei ), (4)

⎡SI (ω) is defined as fuzzy inversely attenuation intensity of path ω.

Here, 1/k is called inversely attenuation factor in path ω.

Definition 3.1.2 If there are n path ωk(k = 1, 2, . . . . . . , n) connecting actor u
and actor v, k j + 1 actors on ωk ,

⎡SI (u, v) = n∈
i=1

⎡SI (ωk) = n∈
j=1

[ 1

k j
(

k j√
i=1

μ(ei ))], (5)

⎡SI (u, v) is called fuzzy inversely attenuation connected intensity between actor u
and actor v in fuzzy social network ⎡G.
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Fig. 2 A fuzzy social network consisting of seven actors

Here, 1/k j is called inversely attenuation factor in ω j .
For instance, a fuzzy social network consisting of seven actors is shown in Fig. 2.
In Fig. 2, fuzzy inversely attenuation connected intensity between actor v1 and

actor v5 is

⎡s I (v1, v5) =
⎭

1

4
(0.8 √ 0.6 √ 0.9 √ 0.2)] ∈ [1

4
(0.8 √ 0.6 √ 0.3 √ 0.7)

]

∈ [1

4
(0.3 √ 0.5 √ 0.9 √ 0.2)] ∈ [1

4
(0.3 √ 0.5 √ 0.3 √ 0.7)]

= 0.075.

Further, we can define fuzzy inversely attenuation connected intensity matrix ⎡RI in⎡G as follows:

⎡RI =
⎣
⎧⎪

⎡s I
11 . . . ⎡s I

1n
...

. . .
...

⎡s I
n1 · · · ⎡s I

nn

⎩
⎫⎬. (6)

Here, ⎡SI
i j

= ⎡s I (vi , v j ), (i, j = 1, . . . . . . , n). From fuzzy inversely attenuation con-

nected intensity matrix ⎡RI for ⎡G, we can know the relation between any of two actors
in fuzzy social network.

In Fig. 2, the fuzzy inversely attenuation connected intensity matrix is

⎡RI =

⎣
⎧⎧⎧⎧⎧⎧⎧⎧⎪

1 0.3 0.3 0.1 0.075 0.2 0.8
0.3 1 0.5 0.15 0.1 0.25 0.25
0.3 0.5 1 0.3 0.15 0.9 0.6
0.1 0.15 0.3 1 0.7 0.15 0.15
0.075 0.1 0.15 0.7 1 0.2 0.1
0.2 0.25 0.9 0.15 0.2 1 0.3
0.8 0.25 0.6 0.15 0.1 0.3 1

⎩
⎫⎫⎫⎫⎫⎫⎫⎫⎬

.
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Definition 3.1.3 Fuzzy inversely attenuation closeness centrality is the sum of fuzzy
inversely attenuation connected intensity from actor vi to the other n − 1 actors:

⎡C I
C (vi ) = [

n∑
j=1

⎡s I (vi , v j )]−1. (7)

Here⎡s I (vi , v j ) is the fuzzy inversely attenuation connected intensity between vi

and v j .
In Fig. 2, ⎡C I

C (v1) ≤ 0.360, ⎡C I
C (v2) ≤ 0.392, ⎡C I

C (v3) ≤ 0.267, ⎡C I
C (v4) ≤ 0.392,⎡C I

C (v5) ≤ 0.430, ⎡C I
C (v6) ≤ 0.333, ⎡C I

C (v7) ≤ 0.313.⎡C I
C (vi ) grows with decreasing relation between vi and other actors; it is an inverse

of centrality for actor vi . Nevertheless, it is a simple measure and, since it is a sum
relation, ⎡C I

C (vi ) has a natural interpretation. It is, of course, only meaningful for
connected fuzzy social networks.

This measure is dependent upon the number of actors in the fuzzy social network
from which is calculated. We cannot, therefore, compare values of ⎡C I

C (vi ) for actors
drawn from fuzzy social networks of different sizes. So it would be useful to have a
measure from which the impact of fuzzy social network size was removed.

In this paper, the relative fuzzy inversely attenuation closeness centrality of an
actor vi is defined as:

⎡C ∃ I
C (vi ) =

⎢
⎥⎥⎥

n⎛
j=1

⎡s I (vi , v j )

n − 1

⎜
⎝⎝⎝⎞

−1

= n − 1
n⎛

j=1
⎡s I (vi , v j )

. (8)

The measures ⎡C I
C (vi ) and ⎡C ∃ I

C (vi ) are both closeness-based indexes of actor centrality.
Either may be used when measures based upon independence or efficiency is desired.

In Fig. 2, ⎡C ∃ I
C (v1) ≤ 16.667, ⎡C ∃ I

C (v2) ≤ 15.306, ⎡C ∃ I
C (v3) ≤ 22.472, ⎡C ∃ I

C (v4) ≤
15.306, ⎡C ∃ I

C (v5) ≤ 13.953, ⎡C ∃ I
C (v6) ≤ 18.018, ⎡C ∃ I

C (v7) ≤ 19.169.
From an alternative view, the centrality of an entire fuzzy social network should

index the tendency of a single actor to be more central than all other actors in fuzzy
social network. Measures of this type are based on differences between the central-
ity of the most central actor and that of all others. Thus, they are indexes of the
fuzzy group closeness centralization based on inversely attenuation factor of the
fuzzy social network. The measure of fuzzy inversely attenuation group closeness
centralization is

⎡C I
C =

n⎛
i=1

(⎡C ∃ I
C (v∗) − ⎡C ∃ I

C (vi ))

max
n⎛

i=1
(⎡C ∃ I

C (v∗) − ⎡C ∃ I
C (vi ))

=

n⎛
i=1

(⎡C ∃ I
C (v∗) − ⎡C ∃ I

C (vi ))

(n2 − 3n + 2)/(2n − 3)
. (9)
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Here, ⎡C ∃ I
C (v∗) = largest value of ⎡C ∃ I

C (vi ) for any actor in the fuzzy social network,

max
n⎛

i=1
(⎡C ∃ I

C (v∗) − ⎡C ∃ I
C (vi )) = the maximum possible sum of differences in relative

fuzzy closeness centrality based on inversely attenuation factor for a fuzzy social
network of n actors.

In Fig. 2, ⎡C I
C = 11.719.

4 Conclusion

Fuzzy centrality analysis is one of the most important and commonly used tools in
fuzzy social network. This is a measurement concept concerning an actor’s central
position in the fuzzy social network, and it reflects the different positions and advan-
tages between social network actors. In this article, we extend the notion of centrality
to the fuzzy framework, propose fuzzy inversely attenuation closeness centrality. In
this paper, we extend the notion of centralization to the fuzzy framework, discussed
fuzzy group closeness centralization based upon inversely attenuation factor in fuzzy
social networks.
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Enterprise Innovation Evaluation Based on
Fuzzy Language Field

Bing-ru Yang, Hui Li, Wen-bin Qian, Yu-chen Zhang and Jian-wei Guo

Abstract In this paper, we use fuzzy language field and the method of fuzzy integra-
tive evaluation algorithm that instead of the traditional method of Analytic Hierarchy
Process in the background of the enterprise innovation level rating. And develop a
system of computer-assisted innovation evaluation for evaluating the enterprise inno-
vation.

Keywords Enterprise innovation · Fuzzy language field · Fuzzy integrative
evaluation · Computer-assisted innovation evaluation system

1 Introduction

With the growth of economic globalization, all enterprises have to withstand more
competition. At same time, the market resource is excessive over-concentration and
even be saturated. By way of the long-time existing, the enterprises must adapt
with this market environment. Learning how to evolution and innovation is the best
way. Now more and more researchers do lots of work around innovation action
and innovation system [1–4]. The chapter designed an evaluation method based on
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fuzzy integrative evaluation to measure the enterprise innovation, and developed a
computer-assisted innovation evaluation system in form of web server.

2 Related Works about Fuzzy Language Field and Fuzzy
Language Value Structure

2.1 Related Conception

Let us review some conceptions about fuzzy language field [5–11].
Suppose the fuzzy language variable, which describes the state or changing state,

has the structure given in Fig. 1:

Definition 2.1 Given two real intervals L1 and L2 , if L1 and L2 do not contain
each other, and L1 √ L2 ∈= α, then we call L1 and L2 the overlapping interval pair.

Definition 2.2 Given a sequence of n real intervals, if every two adjacent intervals
are overlapping interval pair, then we call the sequence an overlapping interval
sequence.

Obviously, all the corresponding base variable intervals of fuzzy language valueX
(in real domain) compose an overlapping interval sequence.

Definition 2.3 To set D consisting of n real intervals that may compose an over-
lapping interval sequence, the binary relation ≤ is defined as: to any two intervals
[x1, x2] ∃ D and [y1, y2] ∃ D, we can get [x1, x2] ≤ [y1, y2] ∗ (x1 ∪ y1) ⊂
(x2 ∪ y2).

Theorem 2.1 The binary relation ≤ defined on D is a complete ordering relation.

The proof is omitted.

Definition 2.4 In the corresponding base variable region of fuzzy language variable,
the dots in the middle of every overlapping subinterval (like θ ) and its adjacent land γ

(γ is generally the allowed error value) are called standard samples (dots), the value
interval (θ − γ, θ + γ) taken is called standard values; any other dots are all called
nonstandard samples (dots); they make up standard sample space and nonstandard
sample space, respectively. The combination is called general sample space.

Fuzzy language 

Language value

Basic variable

X 

n1 n2 ntn3

Fig. 1 Fuzzy language variable structure
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Definition 2.5 ρ = ∇D, I, N ,∀N ⇔, if the following are satisfied:

(1) D is a set of all overlapping intervals of base variable region on R;
(2) N ∈= ≥ is a finite set of fuzzy language value;
(3) ∀N is a complete ordering relation on N;
(4) I : N ◦ D is a standard value mapping, and satisfies isotonicity.

Then L is called a fuzzy language field.

Definition 2.6 For the fuzzy language field ρ = ∇D, I, N ,∀N ⇔ , F =< ρ, W, K >

is a fuzzy language value structure of ρ, if

(1) ρ satisfies Definition 2.5;
(2) K is a natural number;
(3) W : N ◦ [0, 1]K , it satisfies the following, as in (1):

∀n1, n2 ∃ N (n1 ∀N n2 ◦ W (n1) ∀dic W (n2)), (1)

∀n1, n2 ∃ N (n1 ∈= n2 ◦ W (n1) ∈= W (n2)),

In which, ∀dic is a lexicographic order in [0, 1]K . In F, the K dimension vector
corresponding to the standard value in the subinterval of base variable region of
every language value is called standard vector; or else called nonstandard vector.

Definition 2.7 Given two fuzzy language fields ρ1 and ρ2, we say that ρ1 is an
expansion of ρ2, if there is a 1-1 mapping f : D1 ◦ D2,g : N1 ◦ N2, satisfying,
as in (2):

1) f is monotonous;
2) ∀n1 ∃ N1 ( f (I1 (n1)) = I2 (g (n1))) ; (2)

In which, L1=
⎡
D1, I1, N1 ∀N1

⎣
, L2=

⎡
D2, I2, N2 ∀N2

⎣
.

Definition 2.8 Given fuzzy language value structures F1 =< ρ, W1, K1 > and
F2 =< ρ, W2, K2 > of ρ = ∇D, I, N ∀N ⇔, if there is a 1-1 mapping h : [0, 1]K1 ◦
[0, 1]K2 , that satisfies, as in (3):

1) f is strictly monotonous in lexicography;
2) ∀n ∃ N (h (W1(n)) = W2 (n)) ;
3) (∃γ ∃ R)

⎧∀n.n′ ∃ N
⎪ ⎧

dis1
⎧
W1 (n) , W1

⎧
n′⎪⎪ = γ · dis2

⎧
W2 (n) , W2

⎧
n′⎪⎪⎪ .

(3)

In which,
dis1 : [0, 1]K1 × [0, 1]K1 ◦ [0, 1] ,

dis2 : [0, 1]K2 × [0, 1]K2 ◦ [0, 1] .

Then, we call F1 and F2 are (dis1, dis2) isomorphism (the abbreviation is
“dis-isomorphism”).
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Theorem 2.2 (Expansion theorem) Given two fuzzy language fields L1 and L2, L1
is an expansion of L2, if L1 and L2 are the same-type language field (it means|N1| =
|N2|).

The proof is omitted.

Theorem 2.3 (Dis-isomorphism theorem) Suppose that F is a fuzzy language value
structure of L, then F and Fdouble (the double-extension of F) are dis-isomorphic
under the weighting Hamming distance.

The proof is omitted.
From the above we can know that since the same type fuzzy language fields are not

distinguished from each other in the expansion sense, the language values of other
same type fuzzy language fields can be described based on the language value of nat-
ural number “large”, “small” so on, and it can be known that in the dis-isomorphism
sense, fuzzy language value structure can be built on different dimension space. The
selection of discrete type vector corresponding to each fuzzy language value has a
comparatively large free degree.

2.2 Establishment of Evaluation Index System

Based on the above analysis of USRC elements, according to the establishment
principles of index system [8] and based on many interrelated reference literatures
[9–11], the evaluation index system can be established, as shown in Table 1.

3 Hierarchical Structure for the Enterprise Innovation

The Fraunhofer Gesellschaft is a German research organization with 60 institutes
spread throughout Germany, each focusing on different fields of applied science.
They provide an excellence innovation model that classifies enterprise innovation
nine fields as Strategy, Core competencies and knowledge, Process, Culture, Orga-
nizational structure and partners’ network, Market development, Core Technology,
Project Management and Production and service field.

On the basis of Fraunhofer Gesellschaft’s research, which defines enterprise inno-
vation into 9 innovation fields (EIf), we break down them into 26 innovation factors
(EIFa) of more detailed as subcriterias, and then describe them into 77 innovation
indicators (EIIn) as sub-subcriterias as below.
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4 Language Field Description of Enterprise Innovation Degree

(1) From the angle of fuzzy language field, enterprise innovation degree can be
considered as fuzzy language variable. Its language value can be very non-
innovative, non-innovative, middle, innovative, very innovative. Every fuzzy
language value corresponds to a fuzzy subset and can also be expressed with
a corresponding vector in finite and discrete state. This enterprise innovation
degree language field ρ0 = ⎡

D0, I 0, N 0,∀N 0
⎣
is called standard language field,

in which N 0= {very non-innovative (R), non-innovative (P), middle (T), innov-
ative (Q), very innovative (S)}.
The fuzzy language value structure in L 0 is called standard language value struc-
ture, given F0 = ⎡

ρ0, W 0, K 0
⎣
. According to the dis-isomorphism theorem, we

might as well take K = 5 and can get enterprise innovation degree standard vector:

δR = (a1, a2, a3, a4, a5) ,

δP = (b1, b2, b3, b4, b5) ,

δT = (c1, c2, c3, c4, c5) ,

δQ = (d1, d2, d3, d4, d5) ,

δS = (e1, e2, e3, e4, e5) ,

in which the concrete value of ai , bi , ci , di , ei (i = 1, 2, 3, 4, 5) can be got one by
one by using fuzzy operator operation rules from the standard vector correspond-
ing to the alternative of “large” or “small” of natural number set {1, 2, 3, 4, 5}.

(2) There are many indicators, factors and fields influencing enterprise innovation
degree such as the A clear long-term innovation strategic aims indicator being
from the Basic goal of strategy factor, and this factor being from the Strategy
field, and so on. The indicators are the fundamental units. According to the
fuzzy language field theorem, every indicator is considered as an independent
fuzzy language variable for each has base (real) variable region in itself. We will
inspect A clear long-term innovation strategic aims (Acl) indicator as example
in the fuzzy language field in the following.

(i) Acl indicator fuzzy language field:

ρAcl =
⎨
DAcl , IAcl , NAcl ∀NAcl

⎩

in which DAcl is the region whose base variable is “having a clear or
unclear long-term aim for innovation strategic”. The overlapping subinterval
is divided according to its value.
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NM = {very unclear (R’), unclear (P’), middle (T’), clear (Q’), very clear
(S’) }.
The meanings of IAcl and ∀NAcl are the same as given by Definition 2.5.

(ii) The fuzzy language value structure in ρAcl is FAcl = ⎡
ρAcl , WAcl , K Acl

⎣
in

which the meaning ofρAcl , WAcl and K Acl are the same as given by Definition
2.6. Now take K Acl = 5; the standard vectors corresponding to each fuzzy
language value above are recorded as Φ ′

R, Φ ′
P , Φ ′

T , Φ ′
Q, Φ ′

S , respectively.

(iii) According to the expansion theorem, ρAcl can be expanded to ρ0 because
ρAcl andρ0 are the same type fuzzy language field; and the five-dimensional
vector in FAcl can be transformed to the five-dimensional vector in FAcl

directly as follows, as in (4):

Φ ′
R = δR, Φ ′

P = δP , Φ ′
T = δT , Φ ′

Q = δQ, Φ ′
S = δS . (4)

In nature, by way of the expansion above, the transformation from the state
description of the combustible degree to the one of the enterprise innovation
degree is realized. Meanwhile, each indicator fuzzy language field deduced
by the standard language field unitarily is to be discussed.

(3) We get corresponding conclusions completely describing and inspecting 77 inno-
vation indicators.

(4) Operation fuzzy language field ρ0 = ⎡
D0, I 0, N 0,∀N 0

⎣
and fuzzy language

value structure F0 = ⎡
ρ0, W 0, K 0

⎣
.

Since operation is distinguished from all the indicators above in quantifiable
aspect, each standard vector of enterprise innovation degree can be ascertained
directly according to the indicators entered by enterprise users.

5 Fuzzy Integrative Evaluation Algorithm

(1) Analyze the figure of hierarchy structure for the enterprise innovation and form
a level structure as Fig. 2:

(2) Ascertain Grade 1 fuzzy synthetic judging, in which the indicator is the evaluated
item.

(i) Build weight set: Grade l weight A = (a1, a2, a3, a4, a5); here 0 ∀ ai ∀ 1,⎫5
i=1 ai = 1(i = 1, 2, …,5 ). The ascertainment of ai can be got by the

following method. The experts give the marks and then take the average
value (or weighting average value) and at last converge it to get the result.
Obviously, one indicator corresponds to a weight A,
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EIS

EIf-1 EIf-2 EIf-3 EIf-9 

EIFa11 EIFa12 EIFa13 EIFa91 EIFa92 EIFa93

EIIn111 EIIn112 EIIn921 EIIn922 EIIn923 EIIn931 EIIn932

Innovation degree

Field

Factor

Indicator

Fig. 2 Hierarchy Structure for the Enterprise Innovation

(ii) Building judge matrix, as in (5):

M =

⎬
⎭⎭

a11 a12 . . . a15
a21 a22 . . . a25
. . . . . . . . . . . .

a51 a52 . . . a55


⎢⎢⎥ . (5)

The ascertainment of row vector i corresponding to the evaluated item in M
is as follows:
(a) When the real input data of each factor is standard sample data, put the

corresponding hazard degree standard vector into corresponding row of
matrix M.

(b) When the real input data of each factor is nonstandard sample data,
use the interpolation method to get the corresponding expression of
hazard degree nonstandard vector and then put into corresponding row
of matrix M.
The interpolation formula, as in (6):

δt = At · (l −
∣∣ti − t0

i

∣∣
li

) + Aa · (

∣∣ti − t0
i

∣∣
li

) (6)

in which ti is the real data of nonstandard sample in the interval NO·i ; t0
i

is the real data of standard sample in the interval NO·i ; li is the length of
the interval NO·i (when t is in the first or last interval, use 2 li instead of
li ); At is the corresponding hazard degree standard vector of the interval
NO·i ; Aa is the corresponding innovation degree standard vector of the
left or right adjacent interval according to t .
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(c) Concrete algorithm is as (iii) above.
(iii) Form result vector. Consider device li as an example. When the correspond-

ing weight is A and judge matrix is M, its hazard degree result vector is
TIi = A ≡ M (any other indicator is same).
For Factor I, given that innovation degree result vectors of P sets of devices,
respectively, are TI1 , TI2 , . . . TIp .

(3) Ascertain Grade 2 fuzzy synthetic judging, in which innovation factors are eval-
uated by indicators. Consider Factor I as an example. When the corresponding
grade 2 weight is A′ and judge matrix is M = TI1 , TI2 , ...TIp its innovation degree
(vector) is TI = A′ ≡ M ′. Other factors are similar, given that the innovation
degree of N sets of units, respectively, are TI , TI I , ...TN .

(4) Cluster analysis. For every level of innovation degree I-V (very innovative …
very non-innovative), choose the innovation degree standard vectors discussed
above as clustering centre, recorded as I0, II0, III0, IV0, V0 which is defined the
corresponding innovation level).
Calculate the distance from TI , TI I , ...TN to clustering centre I0, II0, … , V0,
respectively, according to the formula as follows, as in (7):

d(Ti , J0) =
5⎛

k=1

|μT i (uk ) − μJ0(uk )|(i = I, . . ., N ; J = I, . . ., V )(HimingDistance) (7)

For one unit Ti , according to the rule “choosing minimum”, it belongs to the
innovation level to that I0, II0, III0, IV0, V0 whose distance from itself (absolute
value) is minimal. So the result of unit fuzzy synthetic judge has been got.
Using the same algorithm we can get the judge result of grade 3 fuzzy synthetic
judge, in which the Fields can be evaluated by Factors. Then, get sum enterprise
innovation by grade 4 fuzzy synthetic judge that consisted of the Fields.

Enterprise 
Indicator of
inputted

Weight A

Evaluation
Matrix M

AT A M=

Grade i judge (i = 1,2..n) 

Clustering

Calculation 
distance 

Score of
enterprise
innovation

Fig. 3 System flow chat
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Fig. 4 Computer-assisted innovation evaluation system data input

Fig. 5 Evaluation of computer-assisted innovation evaluation system
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6 System and Example

(1) The enterprise user just need input enterprise information into Computer-assisted
innovation evaluation system in the light of own actual conditions, then system
will evaluate the degree of innovation according to above algorithm. The system
flow chat is shown in Fig. 3.

(2) The Computer-assisted innovation evaluation system has been developed in web
server. The procedure of evaluation is shown as above Fig. 4 and 5.

(3) The system advantage: Evaluate innovative capability of enterprise fully. From
Strategy, Core competencies and knowledge, Process, Culture, Organizational
structure and partners network, Market development, Core Technology, Project
Management and Production & service field, system can analyze the problem
precisely. On the other hand, the algorithm that this chapter proposed is more
suitable for human thinking and more accurate.

7 Conclusion

This paper, fuzzy language field and the method of fuzzy integrative evaluation algo-
rithm that instead of the traditional method of Analytic Hierarchy Process are used
by evaluating enterprise innovation level rating. And develop a system of computer-
assisted innovation evaluation for evaluating the enterprise innovation. The research
not only solves the tasks in the enterprise innovation, but also has general adaptability
to solve large classes of problems after scientific abstraction and become a powerful
method.
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Integration on Heterogeneous Data with
Uncertainty in Emergency System

Wei Huang, Kai-wen Chen and Chao Xiao

Abstract Aimed at the puzzle to realize the integration for heterogeneous data,
this paper proposed a sort of data exchange model of heterogeneous database based
on unified platform of middleware. Based on the mapping of model drive, the data
exchange could be realized by a concrete model. Its thought was to express XML
document being a tree composed by data object, in which each element type corre-
sponded to an object in object pattern, namely there was mapping among patterns.
The paper gave an example of power emergency processing system, the application
effect shows that the speed of emergency event processing can enhance five to ten
times and it is able to realize the exchange and integration for heterogeneous data
easily.

Keywords Heterogeneous data · Data integration · XML · Emergency system.

1 Introduction

Along with the swift increasing of net information, the network has become a great
information base composed by heterogeneous data source including being different
in content and format and quality of data. The different data comes from different
avenue provided by different user. Therefore it has been become a focus topic on how
to make the command department of emergency center, such as fire alarm system
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and electric power system, and to share data information on network better and
to deal with conjuncture emergency event fleetly. The emergency processing owns
great uncertainty, once it happens that a lot of heterogeneous data must be processed
in real time, therefore it needs higher processing performance. Under the above
background, the exchange and integration of heterogeneous data becomes more and
more important, currently it has been become a hot topic for fast speed processing
conjuncture emergence event.

2 Existent Puzzle of Conventional Data Integration

The essence of data integration is to realize the share of information and resource
among networks which include not only management information network but also
real time control network. It has essentially the following technologies to realize
integration between control and information management network.

(1) DDE, each application program can share the memory to exchange the informa-
tion and realize dynamic data exchange.

(2) Interconnection between control and information network implemented by gate-
way and router.

(3) Communication technology such as data communication by modem, and remote
communication based on TCP/IP.

(4) Data access, Intranet connects into the control network through browser.
(5) Aiming at the software function integration of heterogeneous industrial control

system group, the system can make seamless integration by OPC.

Now there exist two sorts of new data integration method, namely virtual data-
base and data warehouse [1]. In fact, virtual database does not store any own data,
the user’s query is translated into one or multi-data resource, after that it carries
through synthesis processing response of user query for those data resource, finally
the processing result is returned back to user. The data warehouse method means that
the data copy from several data resources is stored in the unitary database named
as data warehouse. Before the data is stored into the data warehouse, it has to make
pretreatment. It is difficult to adapt the situation in data happened neatly because of
the rule of data conversion and integration being fused in the customizing code. Due
to the offered information being always the past information, it is difficult to get the
accuracy real-time information. Also it is possible to make new data isolated island
because of the data integration only through making various system to form middle
database or centralized database. It has to pay more cost because of the frangibility in
data integration scheme, and therefore it has to solve a series of technical puzzle [2].
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Fig. 1 Position of middleware in system structure

3 Middleware Based Data Exchange

3.1 Middleware Technology

The middleware shown in Fig. 1 is located between the application and system soft-
ware. It can manage the computing resource over the operating system of client
server. Its function is that it provides the environment of running and development
for application software located in its upper-hierarchy, and helps user to develop and
integrate the more complicated application software in agility and high efficiency,
and provides the currency services located among system hardware, operating system
and applications.

The middleware screened the differences of network hardware platform, hetero-
geneous character of operating system and network protocol. Aimed at the difference
in operating system and hardware platform, it can provide lots of realization accord-
ing with interface and protocol criterion and satisfy a great lot of application demand.
Generally speaking, it makes the system running on various platform of hardware
and operating system, supports the distributed computing and standard protocol and
interface, and provides the transparence application or service interaction based on
the platform by cross-network, cross-hardware and cross-operating system.

3.2 XML Based Data Exchange for Heterogeneous Database

Two basic conditions must be satisfied for going heterogeneous data exchange of
non-structured database based on network application. One is compatible to variously
heterogeneous data format, whether it is structured or semi-structured data. The other
is easy to issue and exchange, after data exchanged it can be issued in multi-format
expediently. Just the technology of XML can satisfy the above demand, not only
become a sort of standard of data exchange among applications, but also be one
of representation technology and an important information exchange standard in
Internet [3].
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Fig. 2 System structure for
platform

4 Model for Data Exchange

For the convenience of discussion, now it takes an example of data exchange among
Oracle, SOL server and Access. The operating system of data exchange platform
applies the Windows 2000 SP4, the development environment selects ASP.NET and
Visual C, the platform structure is shown in Fig. 2.

4.1 Data Model of XML

XML is a sort of semi-structured data model. It can be used to describe anomalistic
data and integrate the data from different data resources. It can unlimitedly define
a set of marker, and provide independent of resolution in various feature, also it is
extensible and has higher efficiency. The data model of XML separates the data from
display, and modifying manner can only change the display mode. And it can display
in different mode in terms of different demand [4]. Generally the file of XML includes
a document type statement (DTD/Schema), the mode of representing data is truly
independent of application and platform, the document is viewed as the documental
database and data document. Due to being independent of platform, the document of
XML is a plain text and independent of platform and application, the other system
application can directly make operation for data in the file of XML described by
XML itself. It is a standard pattern bestraddle by platform for data exchange and
operation. And it is able to realize mutual operation of data in the heterogeneous
data integration.

4.2 Database and XML

Any document of XML has its logic and physical structure. From the viewpoint
of physical structure, the document is composed of entity that can quote the other
entity and make it be included in the document. Logically the document consists
of statement, element, notes, symbol citation and process instruction. It is needed
to own the start mark and end mark for all the elements in the document of XML.
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The document has to include a root element. From the viewpoint of logical structure,
the document of XML is a tree with hierarchy structure, and the root element is its
tree root which content is viewed as tree page [5]. Essentially the XML is the best
data model to describe semi-structure data. The relative database model consists of
three layer models those are the database, table (relation) and field (column). The
document of XML can be located as a tree in any hierarchy. It can be used to represent
the relative mode [6]. The data is always processed as the text to be treated, and the
data conversion middleware transforms the text in the document of XML into the
data type in the other database, and vice versa. In this way, the document of XML
can be considered as a text file of unified standard.

4.3 Mapping Between XML and Database

In the conversion process between document of XML and database, it deals with the
concepts such as element, sub-element, processing instruction, entity, entity citation
and name field and so on. Moreover in the database it involves the concepts such
as the table, record, field, keyword, main key, view and index and so on. Generally
speaking, there exists mutual mapping of template and mode between document
structure of XML and database. In the template, the mapping based on template
drive is to embed the command of SQL. It belongs to simple hierarchy mapping
based on the data result set. That is the result of the command being executed in the
SQL, and does not deal with the relative mode or object mode. It can only be used to
transfer data between relative database and document of XML. In the template, this
sort of mapping relation only embeds the database executing processed by database
conversion middleware. Therefore the template mapping provided a great agility.

When the data is transferred into the document of XML from database or into the
database from the document of XML, it is realized by the model to the mapping based
on model drive. The main idea is that a tree expresses the document of XML, and
each element type corresponds to an object in the object model. The new mainstream
database supports the technology of XML, and it includes the mode mapping of
data exchange of heterogeneous database based on XML and data format mapping
between the XML and relative database. But it has to pay attention that when practical
heterogeneous data exchange the data exchange rule dictionary is needed.

5 Case of Application in Emergency System

The importance of electric power is evident in the modern metropolis society. Once
the electric power meshwork goes wrong somewhere, it has to make emergency
processing. The originated unit of accident joins to the alarm system, and informs
the happened fault position. The module of alarm system will automatically create
data resource of XML in terms of alarm information. The data needs to pass a series
of command processing before it sends to GIS server end, including looking for
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Fig. 3 Data process flowchart

Fig. 4 Fault analysis of electric resource

the electric source, transformer load, influencing range of power supply, and best
emergency maintenance solution. The information processing flowchart is shown in
Fig. 3.

The electric resource analysis of fault point device can automatically switch to
server interface of GIS, the red line labels the path from nonce fault device to electric
resource, the path is shown in Fig. 4.

The end of GIS returns analysis data to the alarm system, and makes the space
analysis for meshwork load density, and then connects all load control system to the
net of GIS, the page of GIS directly displays the distribution of each load control
point. By means of querying and analyzing load information of each load control
point, it can analyze the singularity instance and make decision of optimal power-
down isolation in least power-down range. The result is shown in Fig. 5.

When the fault happens, the system offers optimal path analysis for patrol and
emergency maintenance vehicle from one point to multi-point and multi-point to one
point. It does not only display the graph but also gives the dispatch path table. The
emergency maintenance path is shown in Fig. 6.

The process of above interaction deals with lots of heterogeneous data system,
and the alarm system can utilize the analysis data of GIS system and generate the
report forms for emergency maintenance. Application of unified technical frame
can easily realize exchange and integration among various isolated heterogeneous
system. The better result is taken by this method for city emergency application, such
as fire protection and emergency maintenance of power fault and so on. For instance,
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Fig. 5 Analysis of load distribution

Fig. 6 Shortest path analysis

it can enhance the processing speed from five to ten times, to support dynamic
appending of application and dynamic modifying of configuration parameter. Under
the condition of no power-down for the whole system, it can extend the application
service provided by the system. By use of data transmission platform constituted
by bottom layer, it can make storing and sending data through the reliable message
queue. Due to encrypt and decrypt function of data, it ensured the data transmission
security. The client end can update the data without manual intervening, and be better
in real time.

6 Conclusion

The actual application result shows that it is an excellent choice to take middleware
system based on XML so as to realize the information exchange among heteroge-
neous systems. Being as a data exchange tool for XML, it has been widely used
in various aspects of heterogeneous systems integration, and will be a very good
application foreground in future.
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Random Fuzzy Unrepairable Warm
Standby Systems

Ying Liu, Lin Wang and Xiao-zhong Li

Abstract Usually, the lifetimes of components in operation and in warm standby are
assumed to be random variables. The probability distributions of the random variables
have crisp parameters. In many practical situations, the parameters are difficult to
determine due to uncertainties and imprecision of data. So it is appropriate to assume
the parameters to be fuzzy variables. In this paper, the lifetimes of components
in operation and in warm standby are assumed to have random fuzzy exponential
distributions, then reliability and mean time to failure (MTTF) of the warm standby
systems are given. Finally, a numerical example is presented.

Keywords Reliability · Mean time to failure · Random fuzzy variable · Random
fuzzy exponential distribution · Warm standby system.

1 Introduction

Warm standby is a technique widely used to improve system reliability and availabil-
ity. Warm standby means that the inactive component can fail at the standby state.
Warm standby systems have been investigated extensively in the past. In classical
reliability theory, the lifetimes of the components in operation or warm standby are
considered as random variables. For example, Dhillon and Yang [1], Li et al. [2],
Mokaddis et al. [10], Naidu and Gopalan [11], She and Pecht [12], Tan [13], Uematsu
and Nishida [14], Vanderperre [15], Wang and Ke [16], Yuan and Meng [17] and so
on.

In practice, the probability distribution is known except for the values of parame-
ters. For example, the lifetime of a component is exponentially distributed variable
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with parameter λ, in which λ is obtained by history data. But sometimes there is a
lack of sufficient data. So it is more suitable to consider λ as fuzzy variable. Random
fuzzy theory introduced by Liu [3] is one of the powerful tools to deal with this
kind of phenomena. But just some researchers have paid attention to the reliabil-
ity problems by using this theory. Zhao et al. [19] used random fuzzy theory into
renewal process, which was a very useful tool to deal with repairable systems. Zhao
and Liu [18] provided three types of system performances, in which the lifetimes of
redundant systems were treated as random fuzzy variables. The lifetimes and repair
times of components were assumed to have random fuzzy exponential distributions
in Liu et al. [8], then the limiting availability, steady state failure frequency, mean
time between failures, mean time to repair of the repairable series system were pro-
posed. Liu et al. [9] considered a random fuzzy shock model and a random fuzzy
fatal shock model, then bivariate random fuzzy exponential distribution was derived
from the random fuzzy fatal shock model.

The rest of this paper is organized as follows. Section 2 introduces basic concepts
related to random fuzzy reliability theory of unrepairable systems. Section 3 gives
the reliability analysis of random fuzzy unrepairable warm standby systems with
absolutely reliable conversion switches. Section 4 presents a numerical example.

2 Basic Concepts Related to Random Fuzzy Reliability
Theory of Unrepairable Systems

Let (Θ,P(Θ), Cr) be a credibility space, where Θ is a universe, P(Θ) the power
set of Θ and Cr a credibility measure defined on P(Θ). A fuzzy variable ξ defined
by Liu [4] is a function from the credibility space (Θ,P(Θ), Cr) to the set of real
numbers, its membership function is derived from the credibility measure by

μ(x) = (2Cr{ξ = x}) √ 1, x ∈ ≤,

and ξ is said to be positive if and only if μ(x) = 0 for all x ∃ 0.

Definition 1 (Liu [3]) Let ξ be a fuzzy variable and α ∈ (0, 1]. Then

ξ L
α = inf

⎡
x

⎣⎣ μ(x) ∗ α
⎧

and ξU
α = sup

⎡
x

⎣⎣ μ(x) ∗ α
⎧

are called the α-pessimistic value and the α-optimistic value of ξ , respectively.

Definition 2 (Liu and Liu [5]) Let ξ be a positive fuzzy variable. The expected value
E[ξ ] is defined as

E[ξ ] =
⎪ +∪

0
Cr{ξ ∗ r}dr

provided the integral is finite.



Random Fuzzy Unrepairable Warm Standby Systems 493

Proposition 1 (Liu and Liu [6]) Let ξ be a fuzzy variable with finite expected value
E[ξ ], then we have

E[ξ ] = 1

2

⎪ 1

0

⎨
ξ L
α + ξU

α

⎩
dα,

whereξ L
α and ξU

α are the α-pessimistic value and the α-optimistic value ofξ , respec-
tively.

Proposition 2 (Liu and Liu [6] and Zhao and Tang [19]) Let ξ and η be two inde-
pendent fuzzy variables. Then

(i) for any α ∈ (0, 1], (ξ + η)L
α = ξ L

α + ηL
α ;

(ii) for any α ∈ (0, 1], (ξ + η)U
α = ξU

α + ηU
α .

Furthermore, if ξ and η are positive, then
(iii) for any α ∈ (0, 1], (ξ · η)L

α = ξ L
α · ηL

α ;

(iv) for any α ∈ (0, 1], (ξ · η)U
α = ξU

α · ηU
α .

The concept of the random fuzzy variable was given by Liu [3]. Let (Ω , A, Pr)
be a probability space, F a collection of random variables. A random fuzzy variable
is defined as a function from a credibility space (Θ,P(Θ), Cr) to a collection of
random variables F .

Definition 3 ( Liu and Liu [6]) A random fuzzy variable ξ is said to be exponential
if for each θ , ξ(θ) is an exponentially distributed random variable whose density
function is defined as

fξ(θ)(t) =
⎫

X (θ) exp(−X (θ)t), if t ∗ 0
0, if t < 0,

where X is a positive fuzzy variable defined on Θ . An exponentially distributed
random fuzzy variables is denoted by ξ ⊂ EXP(X), and the fuzziness of random
fuzzy variable ξ is said to be characterized by fuzzy variable X.

Definition 4 (Liu and Liu [6]) Let ξ be a positive random fuzzy variable defined on
the credibility space (Θ,P(Θ), Cr). Then the expected value E[ξ ] is defined by

E[ξ ] =
⎪ +∪

0
Cr

⎡
θ ∈ Θ

⎣⎣ E[ξ(θ)] ∗ r
⎧

dr

provided that the integral is finite.

Definition 5 (Liu and Liu [7]) Let ξ be a random fuzzy variable. Then the average
chance, denoted by Ch, of random fuzzy event characterized by {ξ ∃ 0} is defined
as

Ch {ξ ∃ 0} =
⎪ 1

0
Cr

⎡
θ ∈ Θ

⎣⎣ Pr{ξ(θ) ∃ 0} ∗ p
⎧

d p.
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Remark 1 If ξ degenerates to a random variable, then the average chance degen-
erates to Pr {ξ ∃ 0} , which is just the probability of random event. If ξ degenerates
to a fuzzy variable, then the average chance degenerates to Cr {ξ ∃ 0} , which is just
the credibility of random event.

Consider the lifetime of an unrepairable system X be a random fuzzy variable on
the credibility space (Θ,P(Θ), Cr). We propose the following definitions.

Definition 6 Let X be the random fuzzy lifetime of a system, reliability of the system
is defined by

R(t) = Ch {X ∗ t} .

Definition 7 Let X be the random fuzzy lifetime of a system, MTTF of the system is
defined by

MTTF =
⎪ +∪

0
Cr{θ ∈ Θ | E[X (θ)] ∗ r}dr.

3 Random Fuzzy Unrepairable Warm Standby Systems
with Absolutely Reliable Conversion Switches

Consider a warm standby system composed by n same type components, the life-
time of components in operation have random fuzzy exponential distribution with
parameter λ defined on the credibility space (Θ1,P(Θ1), Cr). The lifetimes of com-
ponents in warm standby have random fuzzy exponential distribution with parameter
μ defined on the credibility space (Θ2,P(Θ2), Cr

∇
).

We assume one component is in operation at t = 0, the other components are in
warm standby state. When the operating component fails, another not failed compo-
nent is replaced. The failure state of system occurs only when there is no operative
component left. We also assume the conversion switch is absolutely reliable and the
conversion is instantaneous. The lifetimes of components are independent.

Let Si be the moment of i th failed component, i = 1, 2, . . . , n, and S0 = 0. So

Sn =
n⎬

i=1

(Si − Si−1)

is the moment of system failed. Since the random fuzzy exponential distribution has
the property of memoryless, Si − Si−1 has random fuzzy exponential distribution
with parameter λ+ (n − i)μ defined on the product credibility space (Θ,P(Θ), Cr),
where Θ = Θ1 × Θ2 and Cr = Cr1 √ Cr

∇
.
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Theorem 1 The reliability of random fuzzy warm standby system is

R(t) = 1

2

n−1⎬
i=0

⎪ 1

0

⎭



⎢ n−1⎥

k=0,k ∀=i

λL
α + kμL

α

(k − i)μL
α


⎛ e−(λL

α +iμL
α )t

+

⎢ n−1⎥

k=0,k ∀=i

λU
α + kμU

α

(k − i)μU
α


⎛ e−(λU

α +iμU
α )t

⎜
⎝ dα.

Proof. By Definition 5 and Definition 6, we have

R(t) = Ch{Sn ∗ t}
=

⎪ 1

0
Cr

⎡
θ ∈ Θ

⎣⎣ Pr{Sn(θ) ∗ t} ∗ p
⎧

d p

= 1

2

⎪ 1

0

⎞
PrL

α

⎡
ω ∈ Ω

⎣⎣ Sn(θ)(ω) ∗ t
⎧ + PrU

α

⎡
ω ∈ Ω

⎣⎣ Sn(θ)(ω) ∗ t
⎧⎟

dα.

(1)

Let A = ⎡
θ1 ∈ Θ1

⎣⎣ μ{θ1} ∗ α
⎧

and B = ⎡
θ2 ∈ Θ2

⎣⎣ μ{θ2} ∗ α
⎧
. For ⇔θ1 ∈ A

and ⇔θ2 ∈ B, we can arrive at

λL
α ∃ λ(θ1) ∃ λU

α

and
μL

α ∃ μ(θ2) ∃ μU
α .

We can construct three warm standby systems:

(1) The lifetime of components in operation have exponential distribution with para-
meter λL

α and the lifetimes of components in warm standby have exponential
distribution with parameter μL

α ;
(2) The lifetime of components in operation have exponential distribution with para-

meter λ(θ1) and the lifetimes of components in warm standby have exponential
distribution with parameter μ(θ2);

(3) The lifetime of components in operation have exponential distribution with para-
meter λU

α and the lifetimes of components in warm standby have exponential
distribution with parameter μU

α ;

It is easy to see that the system 1 and system 3 are two standard stochastic warm
standby systems. For any fixed θ1 and θ2, system 2 is also a stochastic warm standby
system. Let S1

n , S2
n , S3

n be the failed moment of system 1, system 2 and system 3, it
is easy to see that

Pr{S3
n > t} ∃ Pr{S2

n (θ) > t} ∃ Pr{S1
n > t}.

Since θ1 and θ2 are arbitrary points in A and B, we have
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PrL
α

⎡
ω ∈ Ω

⎣⎣ Sn(θ)(ω) ∗ t
⎧ = Pr{S3

n > t}

and
PrU

α

⎡
ω ∈ Ω

⎣⎣ Sn(θ)(ω) ∗ t
⎧ = Pr{S1

n > t}.

From the result in classical reliability theory, we can arrive at

Pr{S1
n > t} =

n−1⎬
i=0


⎢ n−1⎥

k=0,k ∀=i

λL
α + kμL

α

(k − i)μL
α


⎛ e−(λL

α +iμL
α )t

and

Pr{S3
n > t} =

n−1⎬
i=0


⎢ n−1⎥

k=0,k ∀=i

λU
α + kμU

α

(k − i)μU
α


⎛ e−(λU

α +iμU
α )t ,

Then we have

R(t) = Ch{Sn ∗ t}

= 1

2

⎪ 1

0

⎭
n−1⎬

i=0


⎢ n−1⎥

k=0,k ∀=i

λL
α + kμL

α

(k − i)μL
α


⎛ e−(λL

α +iμL
α )t

+
n−1⎬
i=0


⎢ n−1⎥

k=0,k ∀=i

λU
α + kμU

α

(k − i)μU
α


⎛ e−(λU

α +iμU
α )t

⎜
⎝ dα

= 1

2

n−1⎬
i=0

⎪ 1

0

⎭



⎢ n−1⎥

k=0,k ∀=i

λL
α + kμL

α

(k − i)μL
α


⎛ e−(λL

α +iμL
α )t

+

⎢ n−1⎥

k=0,k ∀=i

λU
α + kμU

α

(k − i)μU
α


⎛ e−(λU

α +iμU
α )t

⎜
⎝ dα.

The prove is completed.

Theorem 2 MTTF of the warm standby system is

MTTF =
n−1⎬
i=0

E

⎠
1

λ + iμ

]
.

Proof. By Definition 7 and Proposition 1, we have
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MTTF =
⎪ +∪

0
Cr{θ ∈ Θ | E[Sn(θ)] ∗ r}dr

= 1

2

⎪ 1

0

⎞
E [Sn(θ)]L

α + E [Sn(θ)]U
α

⎟
dα.

(2)

From the three warm standby systems constructed in the proof of Theorem 1, we
also can see that

E
⎨

S3
n

⎩
∃ E [Sn(θ)] ∃ E

⎨
S1

n

⎩
.

Since θ1 and θ2 are arbitrary points in A and B, we have

E [Sn(θ)]L
α = E

⎨
S3

n

⎩

and
E [Sn(θ)]U

α = E
⎨

S1
n

⎩
.

From the result in classical reliability theory, we can arrive at

E
⎨

S1
n

⎩
=

n−1⎬
i=0

1

λL
α + iμL

α

and

E
⎨

S3
n

⎩
=

n−1⎬
i=0

1

λU
α + iμU

α

.

So we have

MTTF = 1

2

⎪ 1

0

⎞
E [Sn(θ)]L

α + E [Sn(θ)]U
α

⎟
dα

= 1

2

⎪ 1

0

(
n−1⎬
i=0

1

λL
α + iμL

α

+
n−1⎬
i=0

1

λU
α + iμU

α

)
dα

=
n−1⎬
i=0

1

2

⎪ 1

0

(
1

λL
α + iμL

α

+ 1

λU
α + iμU

α

)
dα

=
n−1⎬
i=0

E

⎠
1

λ + iμ

]
.
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Fig. 1 The reliability of the warm standby system

4 A Numerical Example

Consider a warm standby system composed by two same type components, the
lifetime of components in operation have random fuzzy exponential distribution
with parameter λ and the lifetimes of components in warm standby have random
fuzzy exponential distribution with parameter μ, we assume λ = (1, 2, 3) and μ =
(2, 3, 4). We can arrive at

λL
α = 1 + α, λU

α = 3 − α,

and
μL

α = 2 + α, μU
α = 4 − α.

It follows from Theorem 1 that

R(t)= 1

2

⎪ 1

0

(
λL

α + μL
α

μL
α

e−λL
α t + λU

α + μU
α

μU
α

e−λU
α t − λL

α

μL
α

e−(λL
α +μL

α )t − λU
α

μU
α

e−(λU
α +μU

α )t
)

dα

= 1

2

⎪ 1

0

(
1 + α + 2 + α

2 + α
e−(1+α)t + 3 − α + 4 − α

4 − α
e−(3−α)t − 1 + α

2 + α
e−(1+α+2+α)t

−3 − α

4 − α
e−(3−α+4−α)t

)
dα

The Fig. 1 shows a plot of the reliability of the warm standby system, we can see the
reliability decrease of t .

It follows from Theorem 2 that

MTTF = E

⎠
1

λ

]
+ E

⎠
1

λ + μ

]

= 1

2

⎪ 1

0

(
1

1 + α
+ 1

3 − α

)
dα + 1

2

⎪ 1

0

(
1

1 + α + 2 + α
+ 1

3 − α + 4 − α

)
dα

= 1

2
ln3 − 1

4
ln

7

3
≥ 0.3375.
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5 Conclusion

As the systems become more and more complex, the probability theory is not suit-
able in many situations and random fuzzy methodology shows its advantages in
certain circumstance. In this paper, the lifetimes of components in operation and in
warm standby are assumed to have random fuzzy exponential distributions, then the
expressions of reliability and mean time to failure of the warm standby systems are
proposed. Further researches can pay attention to repairabe systems.
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Separation Axioms in ωα-opos

Xiu-Yun Wu, Li-Li Xie and Shi-Zhong Bai

Abstract In this paper, concepts of αθ-Ti , (i = 0, 1, 2, 3, 4) sets are introduced
in αθ-order preserving spaces and their characteristic properties are studied. They
consist a new complete system of separation axiom, which is proved to be a good
extension of both classical and fuzzy theories. Finally, their relationships are estab-
lished and their differences are discussed by some exact examples.

Keywords αθ-Order-preserving operator · αθ-Remote neighborhood · αθ-Ti set ·
αθ-Closed set · αθ-Homeomorphism.

1 Introduction

Separation axiom is one of the most important parts in fuzzy topology. A lot of
papers have devoted on it, There are various forms in fuzzy topological spaces
[1–9]. As the concept of L-fuzzy order-preserving operator spaces was introduced by
professor Chen in 2002 [10], a new type of separation axiom which can be regarded
as a summary of other separation axioms, especially, in L-fuzzy topological spaces
and L-fuzzy semi-topological spaces was introduced [11].

In [12], Meng introduced the concept of stratified topological space. Separation
axiom was naturally introduced in it [13]. However, there is not relevant theory yet
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has been established in stratified order-preserving spaces. In this paper, concepts of
αθ-Ti , (i = 1, 2, 3, 4) sets which are the more generalized form of stratified form
are introduced in αθ-order preserving spaces [14, 15], their characteristic properties
are studied. Then they’re proved to be good extensions. Finally, specific examples
are given to show their differences. The relationships among them are established as
well.

2 Preliminaries

In this paper, X, Y will always denote nonempty crisp sets, A mapping A : X √ L
is called an L-fuzzy set. L X is the set of all L-fuzzy sets on X . An element e ∈ L
is called an irreducible element in L , if p ≤ q = e implies p = e or q = e,
where p, q ∈ L . The set of all nonzero irreducible elements in L will be denoted
by M(L) (see. [12]). If x ∈ X , θ ∈ M(L), then xθ is called a molecule in L X .
The set of all molecules in L X is denoted by M∃(L X ). If A ∈ L X , θ ∈ M(L), take
A[θ] = {x ∈ X | A(x) ∗ θ}, A(θ∪) = {x ∈ X | θ ⊂∇ A(x)}. Clearly, A[θ] = (A(θ∪))∪.

The following are the concepts of L-fuzzy order-preserving operator in L-fuzzy
topological space and order-preserving operator in general topological space.

Let X be an nonempty set. An operator α : L X √ L X is called an L-fuzzy order
preserving operator in L X , if it satisfies: (1) α(1X ) = 1X , (2) ∀A, B ∈ L X and
A ∇ B implies α(A) ∇ α(B). A set A ∈ L X is called an α-set, if α(A) = A.
The set of all α-sets in L X is denoted by α. (L X , α) is called an order-preserving
operator space(briefly, L-opos). A molecule xθ ∈ M∃(L X ), P ∈ α, P is called an
α-remote neighborhood of xθ , if xθ ⊂∇ P . The set of all α-remote neighborhood of
xθ is denoted by αγ(xθ). Let xθ ∈ M∃(L X ), A ∈ L X , xθ is called an α-adherent
point of A, if ∀P ∈ αγ(xθ), A ⊂∇ P . The union of all α-adherent points of A is called
the α-closure of A, denoted by A−

α . A set A ∈ L X is called α-closed, if A−
α = A.

The set of all α-closed sets in L X is denoted by ρ−
α . ρ−

α is finite union and infinite
intersection preserving [10].

Let X be an nonempty set, P(X) be the family of all subsets of X . An operator
δ : X √ X is called an order preserving operator in X , if it satisfies: (1) δ(X) = X ,
(2) ∀A ⇔ B ⇔ X implies δ(A) ⇔ δ(B). A set A ⇔ X is called an δ -set, if
δ(A) = A. The set of all δ -sets in L X is denoted by Φ. And (X,Φ) is called an
order-preserving operator space on X (briefly, opos). Let x ∈ X, P ∈ Φ, P is called
an δ -remote neighborhood of x , if their is Q ⇔ X , such that x ⊂∈ Q, P ⇔ Q. The
set of all δ -remote neighborhood of x is denoted by δγ(x). Let x ∈ X, A ⇔ X , x is
called an δ -adherent point of A, if ∀P ∈ δγ(x), A ⊂⇔ P . The union of all δ -adherent
points of A is called the δ -closure of A, denoted by A−

δ . An set A ⇔ X is called
δ -closed, if A−

δ = A. The set of all δ -closed sets in X is denoted by Φ−
δ . Φ−

δ is
finite union and infinite intersection preserving [11].

Let (X,Φ) be an opos, L be an fuzzy lattice, ∀θ ∈ L . An fuzzy set A : L √ X
is called a lower continuous function, if {x ∈ X | A(x) ∇ θ} ∈ Φ−

δ . The set of all
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the lower continuous functions, denoted by αL(Φ) consists an L-fuzzy topology in
L X . The space (L X , αL(Φ)) is called the induced L-opos by (X,Φ) [11].

Considering the above definitions, if we say there is an L-opos (L X ,ρ) or an
opos (X,Φ), we mean there is an order-preserving operator ρ on L X , or δ on X .
The two spaces are generated by them, respectively.

Let (L X , δ) and (LY , ψ ) be two L-fuzzy topological spaces, f √ : L X √ LY

be induced by simple mapping f : X √ Y . If f √ and its reverse mapping f ≥
satisfies:

(1) ∀A ∈ L X , y ∈ Y , f √(A)(y) = ≤{A(x) | x ∈ X, f (x) = y};
(2) ∀B ∈ LY , x ∈ X , f ≥(B)(x) = B( f (x)).

Then f √ is called an L-fuzzy mapping.
An L-fuzzy mapping f √L X √ LY is called homomorphism, if it satisfies:

(1) f √ is union preserving. I.e., for {Ai ∈ L X , (i ∈ I )} ⇔ L X , f √(
∨
i∈I

Ai ) =∨
i∈I

f √(Ai );

(2) f √ is reserving involution preserving. I.e., for B ∈ LY , f ≥(B ∪) = ( f ≥(B))∪
[16].

Let (L X ,ρ) be an L-opos, θ ∈ M(L). An operator αθ : L X √ L X is called αθ

order-preserving operator, (briefly, αθ-opo), which is defined by: ∀A ∈ L X ,

αθ(A) = ◦{G ∈ ρ−
α | G[θ] ⊃ A[θ]}.

A set A ∈ L X is called αθ-closed, if αθ(A)[θ] = A[θ]. The set of all αθ-closed
sets in L X is denoted by αθ(ρ). (L X , αθ(ρ)) is called αθ-order-preserving operator
space, (briefly, αθ-opos) [14].

Let (L X , αθ(ρ)) be an αθ-opos, and e ∈ M∃(L X ). A ∈ αθ(ρ) is called an
αθ-remote neighborhood of e (briefly, αθ-RN of e), if e ⊂∇ αθ(A). The collection
of all αθ-RNs of e is denoted by γαθ (e). If B ∈ L X ,∀P ∈ γαθ (e), B[θ] ⊂⇔ P[θ],
then e is called an αθ-adherent point of B.

Lemma 2.1 Let (L X , αθ(ρ)) be an αθ-opos, A ∈ L X , e ∈ M∃(L X ). Then e is an
αθ-adherent point of A iff e[θ] ⇔ αθ(A)[θ].

Proof Necessity. Suppose e[θ] ⊂⇔ αθ(A)[θ], then αθ(A) ∈ γαθ (e). By A[θ] ⇔
αθ(A)[θ], we have e is not an αθ-adherent point of A. This is a contradiction.

Sufficiency. If e is not an αθ-adherent point of A, then there is P ∈ γαθ (e), such
that A[θ] ⇔ P[θ]. Since P ∈ αθ(ρ), we have αθ(A)[θ] ⇔ αθ(P)[θ] = P[θ]. By
e[θ] ⊂⇔ P[θ], we get e[θ] ⊂⇔ αθ(A)[θ]. This is a contradiction too.

Definition 2.1 Let (L X , αθ(ρ)) be an αθ-opos. ∅ ⊂= Y ⇔ X. A ∈ L X , take ρ|Y =
{A|Y | A ∈ ρ} be the restriction of ρ on Y , and (LY ,ρ|Y ) be a subspace of (L X ,ρ).
An operator (αθ)|Y : LY √ LY defined by: ∀B ∈ LY , (αθ)|Y (B) = αθ(B∃)|Y . The
set of all (αθ)|Y -closed sets is denoted by (αθ)|Y (ρ|Y ).
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Theorem 2.1 Let (L X , αθ(ρ))be anαθ-opos. (LY ,ρ|Y )be a subspace of (L X ,ρ).
Then

(1) ∀A ∈ αθ(ρ), A|Y ∈ (αθ)|Y (ρ|Y );
(2) ∀B ∈ (ρθ)|Y (ρ|Y ), there is D ∈ αθ(ρ), such that D|Y = B.

Definition 2.2 Let (X,Φ) be an opos, A ⇔ X. A is called a

(1) T0 set, if x, y ∈ A with x ⊂= y, there is P ∈ Φ, such that x ∈ X/P, y ∈ P. Or,
there is Q ∈ Φ, such that y ∈ X/Q, x ∈ Q.

(2) T1 set, if x, y ∈ A with x ⊂= y, there is P ∈ Φ, such that x ∈ X/P, y ∈ P.
(3) T2 set, if x, y ∈ A with x ⊂= y, there are P, Q ∈ Φ, such that A ⇔ P ∪ Q.
(4) T3 set, if x ∈ A, B ∈ Φ with x ⊂∈ B ⇔ A, there are P, Q ∈ Φ, such that

A ⇔ P ∪ Q.
(5) T4 set, if B, C ∈ Φ with B, C ⇔ A and B ≡ C = ∅, there are P, Q ∈ Φ, such

that A ⇔ P ∪ Q.

Specially, (X,Φ) is called a Ti space, if X is a Ti set, (i=0,1,2,3,4).

Definition 2.3 Let (L X , α1
θ(ρ1)), (LY , α2

θ(ρ2)) be α1
θ-opos and α2

θ-opos,
respectively. An L-fuzzy homeomorphism f √ : L X √ LY is called

(1) (α1
θ, α2

θ)-continuous, if ∀B ∈ α2
θ(ρ2), then f ≥(B) ∈ α1

θ(ρ1)

(2) (ρ1
θ,ρ2

θ)-homeomorphism, if f √ is both (α1
θ, α2

θ)-continuous and f ≥
is(α2

θ, α1
θ)-continuous.

Notes and symbols are not mentioned here can be found in [16].

3 ωα-T0, T1, T2 sets

Definition 3.1 Let (L X , αθ(ρ)) be an αθ-opos, A ∈ L X . Then A is called an

(1) αθ-T0 set, if ∀x, y ∈ A[θ] with x ⊂= y, then there is P ∈ γαθ (xθ), such that
yθ ∇ P, or there is Q ∈ γαθ (yθ), such that xθ ∇ Q.

(2) αθ-T1 set, if ∀x, y ∈ A[θ] with x ⊂= y, then there is P ∈ γαθ (xθ), such that
yθ ∇ P.

(3) αθ-T2 set, if ∀x, y ∈ A[θ] with x ⊂= y, then there are P ∈ γαθ (xθ), Q ∈ γαθ (yθ),
such that A[θ] ⇔ P[θ] ∪ Q[θ].
(L X , αθ(ρ)) is called an αθ-Ti space, if 1X is an αθ-Ti set, (i = 0, 1, 2).

Clearly, αθ-T2 ⇒ αθ-T1 ⇒ αθ-T0. However, the converse result is not true.

Theorem 3.1 Let (L X , αθ(ρ)) be an αθ-opos, A ∈ L X , ∀x, y ∈ A[θ] with x ⊂= y.
Then the following statements are equivalent.

(1) A is an αθ-T0 set.
(2) γαθ (xθ) ⊂= γαθ (yθ).
(3) αθ(xθ)[θ] ⊂= αθ(yθ)[θ].
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(4) xθ ⊂∇ αθ(yθ) or yθ ⊂∇ αθ(xθ).

Proof (1)⇒(2). Suppose A is an αθ-T0 set. If there is P ∈ γαθ (xθ), such that
yθ ∇ P . Then P ⊂∈ γαθ (yθ). Or, if there is Q ∈ γαθ (yθ), such that xθ ∇ Q. Then
Q ⊂∈ γρθ(xθ). Therefore γαθ (xθ) ⊂= γαθ (yθ).

(2)⇒(3). By (2), we get there is P ∈ γαθ (xθ) and P ⊂∈ γαθ (yθ), or, there is
Q ∈ γαθ (yθ), and Q ⊂∈ γαθ (xθ). Take the former for example, we get y ∈ P[θ] =
αθ(P)[θ]. Since αθ(P) ∈ ρ−

α , we have

αθ(yθ) = ◦{G ∈ ρ−
α | G[θ] ⊃ (yθ)[θ] = {y}} ∇ αθ(P).

Thus y ∈ αθ(yθ)[θ] ⇔ αθ(P)[θ] = P[θ]. On the other hand, as x ∈ αθ(xθ)[θ],
x ⊂∈ P[θ]. We have x ⊂∈ αθ(yθ)[θ]. Therefore, αθ(xθ)[θ] ⊂= αθ(yθ)[θ].

(3)⇔(4). By the proof of (2)⇒(3). Obvious.
(3)⇒(1). ∀x, y ∈ A[θ] with x ⊂= y. By (3), αθ(xθ)[θ]/αθ(yθ)[θ] ⊂= ∅, or

αθ(yθ)[θ]/αθ(xθ)[θ] ⊂= ∅. As for the former, we prove x ⊂∈ αθ(yθ)[θ].
In fact, if

x ∈ αθ(yθ)[θ] = ≡{G[θ] | G ∈ ρ−
α , G[θ] ⊃ (yθ)[θ] = {y}}.

This is to say, for any G ∈ ρ−
α , {y} ⇔ G[θ], then x ∈ G[θ]. So αθ(xθ)[θ] ⇔

αθ(yθ)[θ]. Hence, αθ(xθ)[θ]/αθ(yθ)[θ] = ∅. A contradiction. Besides, as αθ(yθ) ∈
ρ−

α , we have αθ(yθ) ∈ γαθ (xθ), and yθ ∇ αθ(yθ). Similarly, we can prove the later
case, therefore, A is an αθ-T0 set.

Theorem 3.2 Let (L X , αθ(ρ)) be an αθ-opos, θ ∈ M(L), A ∈ L X . Then A is an
αθ-T1 set iff ∀x, y ∈ A[θ] with x ⊂= y, there is P ∈ γαθ (xθ), such that yθ ∇ αθ(P).

Proof Suppose A is an αθ-T1 set. Then there is P ∈ γαθ (xθ), such that yθ ∇ P .
So y ∈ P[θ] = αθ(P)[θ]. Hence, yθ ∇ αθ(P).

Conversely. Suppose ∀x, y ∈ A[θ] with x ⊂= y, there is P ∈ γαθ (xθ), such that
yθ ∇ αθ(P). So x ⊂∈ P[θ] = αθ(P)[θ]. Thus xθ ⊂∇ αθ(P) and αθ(P) ∈ γαθ (xθ).
Besides, yθ ∇ αθ(P) is obvious.

Theorem 3.3 Let (L X , αθ(ρ)) be an αθ-opos, A ∈ L X . Then A is an αθ-T1 set iff
∀x ∈ A[θ], xθ ∈ αθ(ρ).

Proof Suppose A is an αθ-T1 set. ∀x ∈ A[θ], y ∈ αθ(xθ)[θ], if x ⊂= y, then there
is Q ∈ γαθ (yθ), such that xθ ∇ Q, and thus, αθ(xθ) ∇ αθ(Q). Thereby y ∈
αθ(xθ)[θ] ⇔ αθ(Q)[θ] = Q[θ]. It is a contradiction with Q ∈ γαθ (yθ). Therefore
αθ(xθ)[θ] = {x} = (xθ)[θ].

Conversely. If A is not an αθ-T1 set, then there are x, y ∈ A[θ] with x ⊂= y, such
that ∀P ∈ γαθ (xθ), yθ ⊂∇ αθ(P). So y ⊂∈ αθ(P)[θ] = P[θ]. Hence {y} = (yθ)[θ] ⊂⇔
P[θ]. It implies xθ ∇ αθ(yθ). Therefore x ∈ αθ(yθ)[θ] and (yθ)[θ] ⊂= αθ(yθ)[θ].
We get yθ ⊂∈ αθ(ρ).
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Theorem 3.4 Let (L X , αθ(ρ)) be an αθ-opos, A ∈ L X . Then A is an αθ-T2 set
iff every constant molecular net in A can not convergence to two different xθ, yθ at
same time, where x, y ∈ A[θ] with x ⊂= y.

Proof Let A be an αθ-T2 set, S = {x(n)θ | n ∈ D} be an constant value molecular
net in A. If x, y ∈ A[θ] with x ⊂= y, S √ αθ-xθ and S √ αθ-yθ . Then there are
P ∈ γαθ (xθ) and Q ∈ γαθ (yθ), such that A[θ] ⇔ P[θ] ∪ Q[θ]. Since S √ αθ-xθ ,
there is m1 ∈ D, such that xn

θ ⊂∇ P whenever, n ∗ m1. Similarly, by S √ αθ-
yθ , there is m2 ∈ D, such that xn

θ ⊂∇ Q whenever, n ∗ m2. Take m ∈ D, and
m ∗ m1, m2, so xm

θ ⊂∇ P ≤ Q. Therefore, (xm
θ )[θ] ⊂⇔ P[θ] ∪ Q[θ]. A contradiction

with (xm
θ )[θ] ⇔ A[θ].

Conversely. Suppose A is not an αθ-T1 set, then there are x, y ∈ A[θ] with
x ⊂= y, such that ∀P ∈ γαθ (e),∀Q ∈ γαθ (d), A[θ] ⊂⇔ P[θ] ∪ Q[θ]. Then there is
z(P,Q)
θ ∈ A[θ], such that z(P,Q)

θ ⊂∈ P[θ] ∪ Q[θ]. Take D = γαθ (xθ) × γαθ (yθ). For
(P1, Q1), (P2, Q2) ∈ D, define (P1, Q1) ∇ (P2, Q2) iff P1 ∇ P2, Q1 ∇ Q2. D is
a directed set. S = {z(P,Q)

θ | (P, Q) ∈ D}, then S is a constant molecular net in A,
Let’s prove S √ ρθ-xθ .

In fact, for each (P0, Q0) ∇ (P, Q), by (z(P,Q)
θ )[θ] ⊂⇔ P[θ] ∪ Q[θ], we have

(z(P,Q)
θ )[θ] ⊂⇔ P0[θ], so z(P,Q)

θ ⊂∇ P0. This means S √ αθ-xθ . Similarly, S √ αθ-
yθ . Therefore, S has two αθ-limit points xθ, yθ with x ⊂= y. It is a contradiction.

Theorem 3.5 Let (X,Φ) be an opos, and (L X , αL(Φ)) be an L-opos induced by
(X,Φ). (L X , αθ(ρL(Φ))) be αθ-opos. Then (L X , αθ(ρL(Φ))) is an αθ-Ti space
iff (X,Φ) is a Ti space, (i = 1, 2).

Proof We only prove the case of i = 2. Suppose (L X , αθ(ρL(Φ))) is an αθ-T2
space, x, y ∈ 1X [θ] = X with x ⊂= y. Then there are P ∈ γαθ (xθ), Q ∈ γαθ (yθ),
such that P[θ] ∪ Q[θ] = X . Since P are αθ-closed sets, we have P[θ] ∈ Φ, and
P ∪(θ∪) = (P[θ])∪ is an open set in (X,Φ). As x ⊂∈ P[θ], we get x ∈ P ∪(θ∪), so P ∪(θ∪)

is an neighborhood of x in (X,Φ). Similarly, we get Q∪(θ∪) is an neighborhood of y.
Clearly, P ∪(θ∪) ≡ Q∪(θ∪) = ∅. Hence, (X,Φ) is an T2 space.

Conversely. If (X,Φ) is an T2 space. x, y ∈ X , with x ⊂= y, then there are two
closed sets U, V ∈ Φ, such that x ∈ U ∪, y ∈ V ∪ and U ∪ ≡ V ∪ = ∅. Take P =
αθ(χU ), Q = ρθ(χV ), so P, Q ∈ αθ(ρ), and x ⊂∈ U, y ⊂∈ V . Since (L X ,ρL(Φ))

is induced by (X,Φ). We have P ∈ γαθ (xθ), Q ∈ γαθ (yθ). Besides,

P[θ] ∪ Q[θ] = αθ(χU )[θ] ∪ αθ(χV )[θ] = αθ(χU ≤ χV )[θ]
= αθ(χU∪V )[θ] = αθ(χX )[θ] = X.

Therefore (L X , αθ(ρL(Φ))) is an αθ-T2 space.

Theorem 3.6 Let (L X , αθ(ρ)) be an αθ-opos, (LY , αθ|Y (ρ|Y )) be its subspace.
A ∈ L X is an αθ-Ti set, (i = 0, 1, 2), χY ∈ αθ(ρ), then A|Y ∈ LY is an αθ|Y -Ti

set too.
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Proof We only prove the case of i = 1. If A ∈ L X is an ρθ-T1 set, and x ∈ (A|Y )[θ],
then x ∈ A[θ]. Since A is an αθ-T1 set and xθ ∈ M∃(L X ), we have xθ ∈ αθ(ρ). So
xθ|Y ∈ M∃(LY ), and xθ|Y ∈ αθ|Y (ρ|Y ). Consequently, A|Y is an αθ-Ti set.

Theorem 3.7 Let (L X , α1
θ(ρ1)), (LY , α2

θ(ρ2)) be α1
θ-opos, α2

θ-opos, respectively.
f √ : L X √ LY is (α1

θ, α2
θ)-homomorphism, A ∈ L X is an α1

θ-Ti set, (i = 0, 1, 2),
then f √(A) ∈ LY is an α2

θ-Ti set, too.

Proof Only to prove the case of i = 0.
∀y1, y2 ∈ f √(A)[θ] = f (A[θ]) with y1 ⊂= y2, then there are x1, x2 ∈ A[θ] with

x1 ⊂= x2, such that f (x1) = y1, f (x2) = y2. Since A ∈ L X is an α1
θ-T0 set, there

is P1 ∈ γα1
θ
(x1

θ), such that x2
θ ∇ P1, or there is Q2 ∈ γα1

θ
(x2

θ), such that x1
θ ∇ Q2.

As for the former case for example, P2 = f √(P1). By P1 ∈ α1
θ(ρ1), and f √ is

(α1
θ, α2

θ)-homomorphism, so P2 ∈ α2
θ(ρ2). Surely, P2 ∈ γα1

θ
(y2

θ), and y2
θ ∇ P2.

Therefore, f √(A) is an α2
θ-T0 set.

Example 1 Let X = {x, y}, L = {0, 1/3, 2/3, 1}, A ∈ L X with A(x) = a, A(y) =
b, we writer (a, b) instead of A. Take

δ∪ = {(0, 0), (1/3, 2/3), (1, 1)}.

It easy to check that δ is an L-fuzzy topology on L X . Take α be the interior operator
in δ, and θ = 2/3. Then αθ = Dθ [9]. Thus we have

αθ(ρ) = {(0, 0), (0, 1/3), (0, 2/3), (0, 1), (1/3, 0), (1/3, 1/3),

(1/3, 2/3), (1/3, 1), (2/3, 2/3), (2/3, 1), (1, 2/3), (1, 1)}.

Let A = (1, 2/3). So A[θ] = {x, y}, and

γαθ (xθ) = {(0, 0), (0, 1/3), (0, 2/3), (0, 1), (1/3, 0), (1/3, 1/3),

(1/3, 2/3), (1/3, 1)}.
γαθ (yθ) = {(0, 0), (0, 1/3), (1/3, 0), (1/3, 1/3)}.

Easily, there is P = (0, 2/3) ∈ Dθ(δ), such that xθ ⊂∇ P , and yθ ∇ P . Hence A is an
αθ-T0 set. However, ∀Q ∈ γαθ (yθ), yθ ⊂∇ Q. Thus A is not an αθ-T1 set. Besides,
there is not P ∈ γαθ (xθ), Q ∈ γαθ (yθ), such that A[θ] ⇔ P[θ] ∪ Q[θ], which means
A is not an αθ-T2 set, neither.

Example 2 Let X be an infinite set, L = [0, 1], θ ∈ (0, 1).

δ∪ = {A ∈ L X | A[θ] = X, or A[θ] is f ini te}.

It easy to check (L X , δ) is an L-fuzzy topology. Take α be the interior operator
in δ, then ρ = δ. αθ = Dθ . So αθ(ρ) = δ∪. If A ∈ L X and x ∈ A[θ]. Since
(xθ)[θ] = {x} is finite, we have xθ ∈ αθ(ρ). Thus by Theorem 3.3, we know A is an
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αθ-T1 set. However, for each A ∈ L X , which satisfies A[θ] is infinite and A[θ] ⊂= X .
Furthermore, ∀x, y ∈ A[θ]. Since ∀P ∈ αθ(ρ), P[θ] is finite, or P[θ] = X , then
there are not P ∈ γαθ (xθ), Q ∈ γαθ (yθ), such that A[θ] ⇔ P[θ] ∪ Q[θ]. Therefore,
A is not an αθ-T2 set.

4 ωα-T3, T4 sets

Definition 4.1 Let (L X , αθ(ρ)) be an αθ-opos. P ∈ αθ(ρ) is called an αθ-remote
neighborhood of A ∈ L X , if ∀x ∈ A[θ], we have x ⊂∈ P[θ]. The set of all αθ-remote
neighborhood of A is denoted by γαθ (A).

Definition 4.2 Let (L X , αθ(ρ)) be an αθ-opos. A ∈ αθ(ρ) is called an

(1) αθ-regular set,if ∀B ∈ αθ(ρ) with B[θ] ⇔ A[θ], x ∈ A[θ]/B[θ],there are
P ∈ γαθ (xθ) and Q ∈ γαθ (B), such that A[θ] ⇔ P[θ] ∪ Q[θ]. If A is both an
αθ-T1 and αθ-regular set, then A is called an αθ-T3 set.

(2) αθ-normal set, if ∀B, C ∈ αθ(ρ) with ∅ ⊂= B[θ], C[θ] ⇔ A[θ] and B[θ]≡C[θ] =
∅, there are P ∈ γαθ (B) and Q ∈ γαθ (C), such that A[θ] ⇔ P[θ] ∪ Q[θ].
If A is both an αθ-T1 and αθ-normal set, then A is called an weakly αθ-T4 set.

(L X , αθ(ρ)) is called αθ-Ti space, if 1X is an αθ-Ti (i = 3, 4) set.

Clearly, we have αθ-T4 ⇒ αθ-T3 ⇒ αθ-T2.
However, αθ-regular has no relation with αθ-normal. Besides, neither an αθ-

regular set or an αθ-normal set is an αθ-T0 set.

Example 3 Let X = {x, y, z}, L = {0, 1/2, 1}, A ∈ L X with A(x) = a, A(y) =
b, A(z) = c, we writer (a, b, c) instead of A. Take

δ∪ = {(0, 0, 0), (1, 0, 0), (0, 1, 1), (1, 1, 1)}.
It easy to check δ is an L-fuzzy topology on L X . Take θ = 1/2, A = 1X , so
A[θ] = {x, y, z} = X . It is easy to have

ρθ(ρ) ={(0, 0, 0), (1/2, 0, 0), (1, 0, 0), (1/2, 1/2, 1/2), (1/2, 1, 1/2),

(1/2, 1/2, 1), (1/2, 1, 1), (1, 1/2, 1/2), (1, 1, 1/2), (1, 1/2, 1), (0, 1/2, 1/2),

(0, 1/2, 1), (0, 1, 1/2), (0, 1, 1), (1, 1, 1)}.

The followings are the proofs of A is both an αθ-regular set and αθ-normal set.
(1) If x ∈ A[θ], B ∈ αθ(ρ) with x ⊂∈ B[θ] ⇔ A[θ], then B must be one of

{(0, 1/2, 1/2), (0, 1/2, 1), (0, 1, 1/2), (0, 1, 1)}. Thus, there are P = (0, 1, 1) ∈
γαθ (xθ), Q = (1, 0, 0) ∈ γαθ (B), such that A[θ] ⇔ P[θ] ∪ Q[θ].

(2) If y ∈ A[θ], B ∈ αθ(ρ) with y ⊂∈ B[θ] ⇔ A[θ], or If z ∈ A[θ], B ∈ αθ(ρ)

with z ⊂∈ B[θ] ⇔ A[θ], then B must be one of {(1/2, 0, 0), (1, 0, 0)}. Thus, there are
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P = (1, 0, 0) ∈ γαθ (yθ), Q = (0, 1, 1) ∈ γαθ (B), such that A[θ] ⇔ P[θ] ∪ Q[θ].
Hence, A is an αθ-regular set.

For each B, C ∈ ρθ(ρ), which satisfy B[θ] ≡ C[θ] = ∅. Then B and C must be
one of {(1/2, 0, 0), (1, 0, 0)} and {(0, 1/2, 1/2), (0, 1/2, 1), (0, 1/2, 1), (0, 1, 1/2),

(0, 1, 1)}, respectively. Then there are P = (0, 1, 1) ∈ γαθ (B) and Q = (1, 0, 0) ∈
γρθ(C), such that A[θ] ⇔ P[θ] ∪ Q[θ]. Hence, A is an αθ-normal set.

However, as y, z ∈ A[θ], on one hand, there is not P ∈ γαθ (yθ), such that zθ ∇ P ,
on the other hand, there is not Q ∈ γαθ (zθ), such that yθ ∇ Q. Hence, A is not an
αθ-T0 set. And therefore, A is not an αθ-T1 or αθ-T2 set, neither.

Example 4 Let X = {x, y}, L = {0, 1}, A ∈ L X , with A(x) = a, A(y) =
b, A(z) = c, we writer (a, b, c) instead of A. Take

δ∪ = {(0, 0, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (0, 0, 1), (1, 1, 1)}.

It easy to check δ is an L-fuzzy topology on L X . Take θ = 1, A = 1X , so A[θ] =
{x, y, z} = X . and clearly αθ(ρ) = δ∪.

For each B, C ∈ ρθ(ρ), satisfy B[θ] ≡ C[θ] = ∅. Then B must be (1, 0, 0)

and C must be {(0, 0, 1) or (0, 1, 1)}. Then there are P = (0, 1, 1) ∈ γρθ(B)

and Q = (1, 0, 0) ∈ γαθ (C), such that A[θ] ⇔ P[θ] ∪ Q[θ]. Hence, A is an
αθ-normal set. Let G = (0, 0, 1) ∈ αθ(ρ), y ∈ A[θ], and y ⊂∈ G[θ]. Clearly,
γαθ (yθ) = {(1, 0, 0), (1, 0, 1), (0, 0, 1)} and γαθ (G) = {(1, 0, 0)}. So there are
not P ∈ γρθ(yθ), and Q ∈ γρθ(G), such that A[θ] ⇔ P[θ] ∪ Q[θ]. There-
fore A is not an ρθ-regular set. y, z ∈ A[θ] and γαθ (zθ) = {(0, 0, 0), (1, 0, 0)}.
γαθ (yθ) = {(0, 0, 0), (1, 0, 0), (1, 0, 1), (0, 0, 1)}. Then ∀P ∈ γαθ (zθ), yθ ⊂∇ P .
This implies A is not an αθ-T1 set.

Theorem 4.1 Let (L X , αθ(ρ)) be an αθ-opos. Then A ∈ αθ(ρ) is an αθ-regular
set iff ∀x ∈ A[θ], P ∈ γαθ (xθ) with P[θ] ⇔ A[θ], there are Q ∈ γαθ (xθ), R ∈
γαθ (P), such that R[θ] ∪ Q[θ] ⊃ A[θ].

Proof If x ∈ A[θ], P ∈ γρθ(xθ) with P[θ] ⇔ A[θ]. So P ∈ αθ(ρ), and x ⊂∈ P[θ] ⇔
A[θ]. Since A ∈ αθ(ρ) is an αθ-regular set, there are Q ∈ γαθ (xθ), R ∈ γαθ (P),
such that A[θ] ⇔ Q[θ] ∪ R[θ].

Conversely. If x ∈ A[θ], B ∈ αθ(ρ) with x ⊂∈ B[θ] ⇔ A[θ]. This means B ∈
γαθ (xθ). So there are Q ∈ γαθ (xθ), R ∈ γαθ (B), such that A[θ] ⇔ R[θ] ∪ Q[θ].
Hence, A is an αθ-regular set.

Theorem 4.2 Let (L X , αθ(ρ)) be an ρθ-opos. Then A ∈ αθ(ρ) is an ρθ-normal
set iff ∀B ∈ αθ(ρ), with B[θ] ⇔ A[θ], ∀P ∈ γαθ (B) with ∅ ⊂= P[θ] ⇔ A[θ], there
are Q ∈ γαθ (B), R ∈ γαθ (P), such that Q[θ] ∪ R[θ] = A[θ].

Theorem 4.3 Let (L X , αθ(ρ)) be an αθ-opos, (LY , αθ|Y (ρ|Y )) be its subspace,
χY ∈ αθ(ρ). If A ∈ L X is an αθ-Ti set, (i = 0, 1, 2), then A|Y ∈ LY is an αθ|Y -Ti

set too.
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Proof We only prove the case of i = 3. If A ∈ L X is an αθ-T3 set and x ∈ (A|Y )[θ],
so A ∈ αθ(ρ), xθ ∈ M∃(L X ), x∃

θ ∈ M∃(L X ).
∀B ∈ αθ|Y (ρ|Y ) with x ⊂∈ B[θ] ⇔ (A|Y )[θ]. By Theorem 2.1, there is G ∈ αθ(ρ),

such that G |Y = B, Take H = G ◦ χY . Since χY ∈ αθ(ρ), we get H ∈ αθ(ρ)and
obviously, x ⊂∈ G[θ] = H[θ] ⇔ A[θ].

Since A is an αθ-T3 set, there are P ∈ γαθ (x∃
θ), and Q ∈ γαθ (H), such that

A[θ] ⇔ P[θ] ∪ Q[θ]. Again, by Lemma 2.1, we have P|Y , Q|Y ∈ αθ|Y (ρ|Y ), and
P|Y ∈ γαθ (xθ), Q|Y ∈ γαθ (B). Clearly, (A|Y )[θ] = A[θ] ≡ Y ⇔ (P[θ] ∪ Q[θ])≡ Y =
(P|Y )[θ] ∪ (Q|Y )[θ]. Therefore, A|Y is an αθ|Y -T3 set.

Theorem 4.4 Let (X,Φ) be an opos, (L X ,ρL(Φ)) be an L-opos induced by
(X,Φ). (L X , αθ(ρL(Φ))) be its αθ-opos. Then (L X , αθ(ρL(Φ))) is an αθ-Ti

space iff (X,Φ) is a Ti space, (i = 3, 4).

Proof We only prove the case of i = 3.
Suppose (L X , αθ(ρL(Φ))) is an αθ-T3 space, x ∈ X , E ∈ Φ, and x ⊂∈ E . So

χE ∈ αθ(ρL(Φ)). Since 1X is an αθ-T3 set, Then there are P ∈ γαθ (xθ), Q ∈
γρθ(χE ), such that P[θ] ∪ Q[θ] = X . Hence (P[θ])∪ ≡ (Q[θ])∪ = ∅, and x ∈
(P[θ])∪, E ⇔ (Q[θ])∪. This means (P[θ])∪, (Q[θ])∪ are the neighborhoods of x , and E ,
respectively. Therefore, (X,Φ) is a T3 space.

Conversely. If (X,Φ) is an T3 space. x ∈ X, E ∈ Φ, with x ⊂∈ E , then there
are two closed sets U, V ∈ Φ, such that x ∈ U ∪, E ⇔ V ∪, and U ∪ ≡ V ∪ = ∅. Take
P = αθ(χU ), Q = αθ(χV ), so P, Q ∈ αθ(ρL(Φ)). Since (L X ,ρL(Φ)) is induced
by (X,Φ). We have P ∈ γαθ (xθ), Q ∈ γαθ (χE ). Besides,

P[θ] ∪ Q[θ] = αθ(χU )[θ] ∪ αθ(χV )[θ] = αθ(χU ≤ χV )[θ]
= αθ(χU∪V )[θ] = αθ(χX )[θ] = X.

Therefore (L X , αθ(ρL(Φ))) is an αθ-T3 space.

Theorem 4.5 Let (L X , α1
θ(ρ1)), (LY , α2

θ(ρ2)) be α1
θ-opos, α2

θ-opos, respectively.
f √ : L X √ LY is (α1

θ, α2
θ)-homeomorphism, A ∈ L X is an α1

θ-Ti set, (i = 3, 4),
then f √(A) ∈ LY is an α2

θ-Ti set, too.

Proof We only prove the case of i = 3.
If y ∈ f √(A)[θ] = f (A[θ]), B ∈ α2

θ(ρ2) with y ⊂∈ B[θ] ⇔ A[θ]. Since
f √ is an (α1

θ, α2
θ)-homeomorphism, f ≥(B) ∈ α1

θ(ρ1) and there is x ∈ A[θ],
such that f (x) = y, x ⊂∈ f ≥(B)[θ] ⇔ A[θ]. Because A is an α1

θ-T3 set, there
are P1 ∈ γα1

θ
(xθ), Q1 ∈ γα1

θ
( f ≥(B)), such that A[θ] ⇔ P1[θ] ∪ Q1[θ]. Take

P2 = f √(P1), Q2 = f √(Q1), we have P2 ∈ γρ2
θ
(yθ), P2 ∈ γα2

θ
(B), and

f √(A)[θ] ⇔ P2[θ] ∪ Q2[θ]. Therefore, f √(A) ∈ LY is an α2
θ-T3 set.
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The Application of FHCE Based
on GA in EHVT

Ge Lin and Zhong-yuan Peng

Abstract Fuzzy Hierarchy Comprehensive Evaluation (FHCE) as a common
evaluation method of the combination of qualitative analysis and quantitative analysis
has been widely used in social life. At present, one of fuzzy comprehensive evalu-
ation research difficulties is how to reasonably determine the weight of evaluation
index. The main issue of analytic hierarchy process (AHP) in itself is to determine
the each elements weight of judgment matrix which is artificially assigned, so it has
highly subjective one-sidedness. In view of the above problems this paper attempts
to propose a new model of FHCE, that is to structure judgment matrix according
to interval scale of [1, 9] in AHP, and use the standard genetic algorithm (GA) to
calculate each elements weight of judgment matrix.

Keywords Genetic algorithm · Analytic hierarchy process · Fuzzy comprehensive
evaluation · Teaching evaluation.

1 Introduction

In recent years, our countrys higher vocational education has got rapid development,
and has accounted for half of the entire higher education, but in large scale devel-
opment at the same time has not been accompanied by the improvement of quality.
At present, many higher vocational colleges are in the exploration to improve the
quality of education, and to make scientific and objective evaluation on quality of
teaching is one of effective ways to improve the quality of education. Recently,
higher vocational teachers teaching quality evaluation encounters some problems,
for example, most of the higher vocational colleges still use the evaluation index
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system of ordinary colleges and universities. As the weights of this evaluation index
are often worked by small number experts according to experience directly, they
are lack of quantitative analysis. And this may has substantial deviation compared
to actual situation, which directly influences the qualitative accuracy of evaluation
results as well as quantitative accuracy, etc. To solve the above problem, this paper
tries to present a comprehensive evaluation model combining GA, AHP and fuzzy
comprehensive evaluation, and contact the practice of teaching quality evaluation to
have some discussions.

2 Fuzzy Hierarchy Comprehensive Evaluation Based
on Genetic Algorithm

2.1 Analytic Hierarchy Process

The Analytic Hierarchy Process (AHP) proposed by the United States Operations
Research professor T L Saaty. It is a design-making method to make qualitative analy-
sis and quantitative analysis on the basis of refer to the relevant elements of design-
making problem is decomposed into hierarchies of objectives, guidelines, programs,
and so on. The advantage of this method is qualitative and quantitative combined,
with a highly logical, systematic and practical, which is an effective decision-making
method aimed at the multi-level and multi-objective planning decision problem [1].

After set up a hierarchy model by using the AHP method, we can clearly see
that the upper factors are determined by the underlying factors. Aim at a certain
factor of the above level, to make pairwise comparisons in degrees of importance on
factors which are subject to of this level, and then get the corresponding judgment
matrix. Due to the complexity of the relationships among the criteria in the evaluation
system, and the evaluation criteria are various, it is easy to cause the inconsistency in
decision makers subjective judgment. In addition, the 1 to 9 scale of AHP method in
some cases can not exactly reflect the proportional relationship between alternative
schemes, and often leads judgment matrix to inconsistent. In order to better satisfy
the consistency of judgment matrix, this paper takes interval scale, shown in Table 1.

Table 1 The Interval scale of
judgment matrix and meaning

Scale value
interval

Meaning

[1, 1] ai and a j are equally important
[1, 3] ai is a little important than a j

[3, 5] ai is obvious important than a j

[5, 7] ai is strongly important than a j

[7, 9] ai is extremely important than a j

Reciprocal If the ratio of importance of ai and a j is ai j ,
then the ratio of importance of a j and ai is 1

ai j
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According to the interval scale of [1, 9], we established judgment matrix through
the comparison between every two indexes. This is a very crucial step. But the
uncertain judgment matrix represented by element through using interval, solving
its weight vector is complex, and the consistency of judgment matrix which is scaled
by interval has great impact on solving the weight vectors. Better consistency can
improve decision-making reliability. Only the weight vector gained in the premise
that the judgment matrix has consistency that can it be used as the basis for decision-
making, and to adapt to a variety of complex systems. For this reason, we need to
improve the method which is used to construct judgment matrix, eliminate the incon-
sistency data fundamentally, cancel the consistency test, to simplify the calculation
process, so that the calculation method is easier, the results are more accurate. Thus
this paper introduced a genetic algorithm to calculate the weight and then structure
judgment matrix. Using the genetic algorithm to calculate the weight of judgment
matrix, we can minimize the subjectivity of decision-makers to meet the consistency
of judgment matrix, to provide protection for the reasonable and fair judgment.

2.2 Genetic Algorithm

Genetic Algorithm (GA), is a kind of optimized search technology which is based on
the biological evolution process, and develop on the basis of optimal save bad dead
principle [2]. It is a kind of combination optimization algorithm which is adopted
statistical heuristic search technology. When we use genetic algorithm to solve prob-
lem, each possible solution of this problem would be encoded into a "chromosome",
namely the individual. Several individuals constitute the group. At the beginning of
the genetic algorithm, it begins with a group of randomly generated initial popula-
tion, according to the selected fitness function for each individual evaluation to make
evaluation, according to certain probability to select individuals with larger fitness as
parents to reproduce offspring. To make crossover, mutation on reproduced offspring
to form a new generation of groups, and make re-evaluation, selection, crossover,
mutation on this new generation of groups, and so on ad infinitum, so that the fitness
of the best individual in the population and the average fitness continues to improve,
until the fitness of the best individual to reach a certain limit or the fitness of the best
individual and the average fitness of groups is no longer increase, then the iterative
process convergence, the algorithm ends [3].

Thus, using genetic algorithm to calculate the index weights of each operator’s
design is as follows:

(1) The Generation of Initial Population
Suppose the judgment matrix that we want to obtain must satisfy:
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⎡
⎣⎣⎣⎧

[1, 1] [ 1
5 , 1

3 ] [ 1
3 , 1] [ 1

7 , 1
5 ]

[3, 5] [1, 1] [1, 3] [ 1
3 , 1]

[1, 3] [ 1
3 , 1] [1, 1] [ 1

5 , 1
3 ]

[5, 7] [1, 3] [3, 5] [1, 1]

⎪
⎨⎨⎨⎩

we can randomly generate several matrixes according to this requirement, make
its elements satisfy the corresponding requirements, that is take the value within a
predetermined range, such as matrix:

⎡
⎣⎣⎣⎧

1 1
3

1
2

1
5

3 1 3 1

2 1
3 1 1

4
5 1 4 1

⎪
⎨⎨⎨⎩,

⎡
⎣⎣⎣⎧

1 1
4

1
3

1
5

4 1 2 1
3

3 1
2 1 1

3
5 3 3 1

⎪
⎨⎨⎨⎩,

⎡
⎣⎣⎣⎧

1 4
15

2
3

1
5

15
4 1 3 1

4
3
2

1
3 1 1

5
5 4 5 1

⎪
⎨⎨⎨⎩ . . . . . .

They are all in line with the condition. And these matrixes can serve as the initial
population to make operation by using GA.

(2) Coding
Judgment matrix is square matrix, and aii = 1, ai j = 1

a ji
, precisely because of

judgment matrix special form of expression, in GA the coding of chromosome uses
real number coding mode. Namely the judgment matrix

A =

⎡
⎣⎣⎣⎣⎣⎧

1 a12 a13 · · · a1m

a21 1 a23 · · · a2m

a31 a32 1 · · · a3m
...

...
...

...
...

am1 am2 am3 · · · 1

⎪
⎨⎨⎨⎨⎨⎩

can be expressed as: a12a13 . . . a1ma23a24 . . . a2m . . . a(m−1)m .
(3) Selection Operator
In order to improve the efficiency of the algorithm, to ensure the effectiveness of

individual which is produced by subsequent crossover and mutation operation, the
algorithm takes random consistency ratio C R as the reference value. If generated
initial matrixs consistency ratio C R < 0.1, this individual will be selected; otherwise,
this individual would be eliminated. So it can ensure the judgment matrix satisfy
consistency to maximum extent. In the selected effective individual, the value of
consistency ratio is C R smaller, the greater the probability that the individual would
be selected.

(4) Crossover Operator
Take any two matrices in the initial group, arbitrarily choosing a location in

two individual genes, and then exchange, we can get two new individuals, such



The Application of FHCE Based on GA in EHVT 517

as:B1 =

⎡
⎣⎣⎣⎧

1 1
4

1
3

1
6

4 1 2 1
3

3 1
2 1 1

5
6 3 5 1

⎪
⎨⎨⎨⎩ is expressed as: 1

4 , 1
3 , 1

6 , 2, 1
3 , 1

5 , B2 =

⎡
⎣⎣⎣⎧

1 1
3

2
3

3
16

3 1 5
2

2
3

3
2

2
5 1 3

11
16
3

3
2

11
3 1

⎪
⎨⎨⎨⎩ is

expressed as: 1
3 , 2

3 , 3
16 , 5

2 , 2
3 , 3

11 .
The crossover operation of B1 and B2 is as follows:

B1 : 1

4

1

3

1

6

... 2
1

3

1

5
B1

√ : 1

3

2

3

3

16

... 2
1

3

1

5
∈ The location of cross ≤

B2 : 1

3

2

3

3

16

...
5

2

2

3

3

11
B2

√ : 1

4

1

3

1

6

...
5

2

2

3

3

11

That the new individuals after cross are:

B1
√ =

⎡
⎣⎣⎣⎣⎣⎣⎣⎣⎧

1
1

3

2

3

3

16
3 1 2

1

3
3

2

1

2
1

1

5
16

3
3 5 1

⎪
⎨⎨⎨⎨⎨⎨⎨⎨⎩

, B2
√ =

⎡
⎣⎣⎣⎣⎣⎣⎣⎣⎧

1
1

4

1

3

1

6
4 1

5

2

2

3
3

2

5
1

3

11

6
3

2

11

3
1

⎪
⎨⎨⎨⎨⎨⎨⎨⎨⎩

Such design of crossover operator can ensure that the individual produced after
cross satisfies the requirements of judgment matrix on this level. Namely the ele-
ments in the matrix satisfy established value range, the search efficiency can be
greatly improved in the feasible solution space, and it avoids the produce of a lot of
individuals which will be eliminated.

(5) Mutation Operator
Arbitrary select a location in new individual gene segments, use a random number

to substitute the elements on this position which in accordance with the value ranges.
Namely: chromosome is: 1

4 , 1
3 , 1

6 , 2, 1
3 , 1

5 , the value range of the element in the fourth
position is [1, 3], then inner [1, 3] randomly take a number (such as 2.5) to replace
2, the new chromosome after variation is: 1

4 , 1
3 , 1

6 , 2.5, 1
3 , 1

5 , and the corresponding
matrix also satisfies the requirement.

2.3 Fuzzy Comprehensive Evaluation

Fuzzy Comprehensive Evaluation (FCE) provide some evaluation method to the
actual comprehensive evaluation problems by the aid of the Fuzzy set theory [4]. To
be specific, fuzzy comprehensive evaluation is a method which is based on fuzzy
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mathematics, using the principle of fuzzy relation synthesis to make quantification
on some factors which have unclear border and are difficult to quantitative, and from
a number of factors to make comprehensive evaluation on the membership grade
condition of by evaluation of things. The comprehensive evaluation principle as
follows: to determine evaluation index theory field U = {u1, u2, . . . , um}, the fuzzy
set A = {a1, a2, . . . , am} of U is the weight set, the rating assignment constitute
a rating score set V = {v1, v2, . . . , vn}, R is the fuzzy relationship for U × V ,
μR(ui ,v j ) = ri j says the membership function of the index ui on the comment grade
vi , namely aims at the proportion of the number that the index ui is evaluated level vi ,
R is evaluation fuzzy matrix, to make matrix multiplication on matrix A and matrix
R, gain matrix G = (g1, g2. . . . , gn) , then introduce comment rating score matrix
V = {v1, v2, . . . , vn}, make S = G × V T , among them V T is the transposed matrix
of matrix V , S is the result of final evaluation [5].

2.4 The New Model of FHCE Based on GA (GA-FCE)

Without loss of general, the steps of mathematical modeling [6] for that fuzzy hier-
archy comprehensive evaluation which is based on GA evaluating higher vocational
teaching quality are as follows:

Step 1: determine evaluation index system and evaluation standards, and establish
a hierarchical structure model.

Step 2: establish the judgment matrix of each index layer through choosing [1, 9]
interval scale method by the AHP.

Step 3: calculate the weight value of each index in the judgment matrix by using
GA, to establish weight matrix A.

Step 4: get a fuzzy evaluation matrix by statistics through the questionnaire.
Step 5: build a model B = A ∃ R to make single factor FCE (level 1 compre-

hensive evaluation and secondary comprehensive evaluation), get the normalized
evaluation results; get comprehensive evaluation score by choosing the weighted
average method to deal with the evaluation results [7, 8].

3 The Specific Operation of GA-FCE in HVTE

3.1 Determine Evaluation Index System and Evaluation
Standards, to Establish a Hierarchical Structure Model

In this paper, we combine with the practical teaching of todays higher vocational
colleges, consult relevant literature, on the basis following the four principles of
objectivity and scientificalness, orientation and feasibility, structure the evaluation
index system [9] Table 2.
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Table 2 Quality evaluation index system of higher vocational teachers’ Teaching [10]

Level 1 index Secondary evaluation Evaluation standard

Impart knowledge Words and deeds,
and educate whether to conduct
people x11 students in education
Stand and Whether the teacher have

Professional deliver uncivilized behavior in the
ethics X1 x12 classroom and training spaces

Passionate in No late and leave early, do not do
one’s job things that have nothing to do
x13 with teaching in the classroom

Teaching Scientific and rational
organization organization of classroom teaching,
x21 better interact with students
Teaching The theoretical lectures moderate

Theory teaching content enough, combined with the production
ability X2 x22 of the actual implementation to teach

Teaching Classroom teaching easily understood,
method handle important and difficult
x23 points properly teach students in

accordance with their aptitude
Teaching Students can better master the
effect x24 classroom knowledge, reap is big

Teachers’ professional The teacher has strong
skills x31 professional practice skills
Practice Melt "teaching, learning
activity and doing" as a whole, and

Practical organization x32 strengthen training students’ ability
teaching Practice process Able to timely and effective
ability X3 guidance manner to guide students

x33 in practical activities
Skills Take employment
training as the guidance,
effect effective training
x34 post vocational ability

3.2 Establish the Judgment Matrix of Each Index Layer

According to the interval scale of [1, 9], we established judgment matrix through the
comparison between every two indexes such as Table 3.
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Table 3 The Judgment matrix of each index layer

U X1 X2 X3 C1 x11 x12 x13

X1 [1, 1] [ 1
5 , 1

3 ] [ 1
3 , 1] x11 [1, 1] [3, 5] [1, 3]

X2 [3, 5] [1, 1] [1, 3] x12 [ 1
5 , 1

3 ] [1, 1] [ 1
3 , 1]

X3 [1, 3] [ 1
3 , 1] [1, 1] x13 [ 1

3 , 1] [1, 3] [1, 1]
C2 x21 x22 x23 x24 C3 x31 x32 x33 x34

x21 [1, 1] [ 1
5 , 1

3 ] [ 1
3 , 1] [ 1

7 , 1
5 ] x31 [1, 1] [1, 3] [3, 5] [ 1

3 , 1]
x22 [3, 5] [1, 1] [1, 3] [ 1

3 , 1] x33 [ 1
3 , 1] [1, 1] [1, 3] [ 1

5 , 1
3 ]

x23 [1, 3] [ 1
3 , 1] [1, 1] [ 1

5 , 1
3 ] x23 [ 1

5 , 1
3 ] [ 1

3 , 1] [1, 1] [ 1
7 , 1

5 ]
x24 [5, 7] [1, 3] [3, 5] [1, 1] x34 [1, 3] [3, 5] [5, 7] [1, 1]

Table 4 The judgment matrix, weight and consistency of each Index

U X1 X2 X3 ω C1 x11 x12 x13 ω

X1 1 1
5

1
3 0.1120 x11 1 9

2
3
2 0.529

X2 5 1 3
2 0.5402 x12

2
9 1 1

3 0.1176

X3 3 2
3 1 0.3478 x13

2
3 3 1 0.3529

λmax = 3.0012, C.R. = 0.0010 < 0.1 λmax = 3.0000, C.R. = 0.0000 < 0.1

C2 x21 x22 x23 x24 ω C3 x31 x32 x33 x34 ω

x21 1 1
3

2
3

3
16 0.0914 x31 1 17

3
13
3

2
3 0.322

x22 3 1 2 2
3 0.3165 x32

3
7 1 3

2
3
11 0.129

x23
3
2

1
2 1 3

1 0.1230 x33
3

13
2
3 1 3

16 0.082

x24
16
3

3
2

11
3 1 0.4690 x34

3
2

13
3

16
3 1 0.465

λmax = 4.0044, C.R. = 0.0016 < 0.1 λmax = 4.0055, C.R. = 0.0020 < 0.1

3.3 Calculate the Weight Value of Each Index in the Judgment
Matrix by Using GA, and do a Consistency Test

To make operation on judgment matrix by using GA, we can get the judgment matrix
Table 4 that which has good consistency and its weight value is determined [11].

3.4 Structure Fuzzy Evaluation Matrix

Student questionnaire: we randomly select 100 students in participating class of
this teacher for the teachers teaching evaluation respectively. We collect the results
and make finishing statistical quantification treatment on them, combine with factor
weight of evaluation index by using GA, and construct FCE Table 5 of the teaching
quality evaluation.
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Table 5 The FCE table of the teaching quality evaluation

Level 1 index Weight Secondary Weight Evaluation results
evaluation A B C D E

Professional ethics 0.1120 Impart 0.5294 0.30 0.53 0.14 0.03 0
knowledge and
educate people

Stand 0.1176 0.76 0.20 0.04 0 0
and
deliver

Passionate 0.3529 0.72 0.25 0.02 0.01 0
in one’s
job

Theory teaching ability 0.5402 Teaching 0.0914 0.35 0.42 0.20 0.02 0.01
organization

Teaching 0.3165 0.23 0.36 0.28 0.08 0.05
content

Teaching 0.1230 0.34 0.32 0.10 0.18 0.06
method

Teaching 0.4690 0.26 0.42 0.20 0.05 0.07
effect

Practical teaching ability 0.3478 Teachers’ 0.3226 0.65 0.24 0.10 0.01 0
professional
skills

Practice 0.1294 0.46 0.22 0.15 0.11 0.06
activity
organization

Practice 0.0826 0.43 0.28 0.04 0.09 0.06

process

guidance

Skills 0.4654 0.38 0.26 0.24 0.04 0.08

training

effect
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3.5 FCE and Evaluation Grade Based on Model B = A ◦ R

3.5.1 Level 1 Fuzzy Comprehensive Evaluation

(1) The single factor evaluation result P1 of professional ethics layer is:

P1 = A1 ∃ R1 = ⎫
0.5294 0.1176 0.3529

⎬ ∃
⎡
⎧ 0.30 0.53 0.14 0.03 0

0.76 0.20 0.04 0 0
0.72 0.25 0.02 0.01 0

⎪
⎩

= ⎫
0.5023 0.3923 0.0859 0.0194 0

⎬

(2) The single factor evaluation result P2 of theory teaching ability layer is:

P2 = A2 ∃ R2=
⎫

0.0914 0.3165 0.1230 0.4690
⎬ ∃

⎡
⎣⎣⎧

0.35 0.42 0.20 0.02 0.01
0.23 0.36 0.28 0.08 0.05
0.34 0.32 0.10 0.18 0.06
0.26 0.42 0.20 0.05 0.07

⎪
⎨⎨⎩

= ⎫
0.2685 0.3887 0.2130 0.0727 0.0569

⎬

(3) The single factor evaluation result P3 of practice teaching ability layer is:

P3 = A3 ∃ R3 = ⎫
0.3226 0.1294 0.0826 0.4654

⎬ ∃

⎡
⎣⎣⎧

0.65 0.24 0.10 0.01 0
0.46 0.22 0.15 0.11 0.06
0.43 0.28 0.04 0.09 0.06
0.38 0.26 0.24 0.04 0.08

⎪
⎨⎨⎩

= ⎫
0.4816 0.25 0.1667 0.0435 0.05

⎬

3.5.2 The Secondary Fuzzy Comprehensive Evaluation

Known by 3.5.1, the result G of level 1 fuzzy comprehensive evaluation is:

G = A ∃ P = ( 0.1120 0.5402 0.3478 ) ∃
⎡
⎧ 0.5023 0.3923 0.0859 0.0194 0

0.2685 0.3887 0.2130 0.0727 0.0569
0.4816 0.25 0.1667 0.0435 0.05

⎪
⎩

= ⎫
0.3688 0.3409 0.1827 0.0566 0.0481

⎬

3.5.3 Normalized Processing

Because
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Table 6 Assignment Table of
Evaluation Grade

Grade Assignment

A(excellent) [90, 100]
B(good) [80, 89]
C(fair) [70, 79]
D(pass) [60, 69]
E(fail) [0, 59]

0.3688 + 0.3409 + 0.1827 + 0.0566 + 0.0481 = 0.9971 ∗=

1G must be carried out normalized processing, the processing result is:

G = (0.3699 0.3419 0.1832 0.0568 0.0482)

3.6 The Processing of Evaluation Results

In this paper we use the weighted average method to process evaluation result. When
we using the weighted average method, first of all we make quantification on evalu-
ation set, namely when each level of the evaluation set assigned to value, we usually
adopt expert scoring method. Here the five level of evaluation set assignment shown
in Table 6.

To measure by using the average value of each interval length in every level agv,
so the evaluation rating quantification matrix, thus the score obtained in the teaching
evaluation system is:

S = Ḡ · V = (0.3699 0.3419 0.1832 0.0568 0.0482) · (95 85 75 65 30)T = 83.0800

Therefore, the score of this teachers teaching evaluation is 83.08 points, evaluation
level is good.

4 Conclusion

This paper studies the GA-FCE new model to calculate the weight of each factor in
AHP by using the standard genetic algorithm, and apply it to the analysis of higher
vocational teaching evaluation. In the study we established evaluation index system
that including professional ethics, theoretical teaching ability and practice teaching
ability. We use actual data to take for instance analysis on this index system by using
FCE method which is based on GA, and we achieve the desired effect. However,
teaching evaluation is a dynamic process, it has the characteristic of instability and
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so on, therefore, for dynamic evolution of teaching evaluation, it needs to do more
in-depth.
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Theory and Practice of Cooperative Learning
in Mathematical Modeling Teaching

Yu-bin Zhong, Yi-ming Lei, Xu-bin Wang, Lei Yang and Gen-hong Lin

Abstract Against the problems such as that teamwork of mathematical modeling
is not strong enough, based on the characteristics and inherent laws of mathematical
modeling, combined with the characteristics of the students, this paper presents sev-
eral strategies. To the basic theory of cooperative learning as a guide, starting from
the connotation of cooperative learning of mathematical modeling, analyzing the
main factors that impacting the cooperative learning of mathematical modeling, this
paper makes several teaching strategies of the cooperative learning of mathematical
modeling for the research about the teaching strategies that the cooperative learning
improves the modeling interest in learning, academic performance and learning abil-
ity. Empirical students have shown that the implementation of cooperative learning
has a positive impact on improving student’s modeling interest in learning, academic
performance and learning ability and so on. In this way, we not only expand the
theory of cooperative learning from high school to college, but also achieve the com-
bine of theory and practice. It provides approach to improve student’s comprehensive
ability.

Keywords Mathematical modeling · Membership · Fuzzy clustering · Cooperative
learning · Teaching mode.

1 Introduction

Under the guidance of teachers, Cooperative learning is group activities as the main
body, peer cooperation and mutual assistance, team competition as the main forms.
It has played an active role in the teaching of various disciplines to make the learning
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process a “re-creation”process under the guidance of the teacher [1, 2]. There are
many relevant studies. As education critic Ellis and Fouts have asserted in the book,
“co-teaching, if not the largest education reform, then, it is at least one of the largest”
[3, 4]. There are few studies of Cooperative learning in the practice and teaching
of mathematical modeling. To address this issue, starting from the concept, pattern
and the theoretical basis of cooperative learning, this paper points out the purpose
and significance of cooperative learning, explores the characteristics of cooperative
learning, reveals the content of cooperative learning in the Mathematical Modeling
course, explores influencing factors of cooperation learning way. From five aspects,
the group choreography, timing, the choice and build of the problem, the promo-
tion and protection of the cooperation and exchange, the role of teachers, this paper
explores cooperative learning of undergraduate mathematical courses, respectively,
to propose three pronged strategy of cooperative learning in improving college stu-
dents interest, in mathematical modeling results and in the ability. So,we Introduce
Mathematical Modeling Teaching Model (MMTM).

2 Principles and Steps of MMTM

2.1 Principles of MMTM

Cooperative learning is usually based on the study group as the basic form, sys-
tematically uses the interaction between the dynamic factors in teaching to promote
students’ active learning, uses group performance as evaluation criteria, team mem-
bers together achieving the goal of teaching activities [5–7] . Higher mathematical
modeling cooperative learning not only has inherent characteristics of cooperative
learning, but also gives a new connotations.

2.1.1 Connotation of Cooperative Learning

In general, the focus of cooperative learning is interactive collaboration between
student peers.The students cooperation is the proper meaning of cooperative learn-
ing. The cooperative learning of mathematical modeling is not only built on the
basis of students cooperation, and has more for a wide range of areas of coopera-
tion. First, the teachers cooperation require the teachers’ behavior is no longer the
individual behavior, but mutual respect between teachers, discussion, the organic
integration, jointly improvement. This is also determined by mathematical model-
ing of the institutions of higher learning and teaching requirements of mathematical
modeling. For now, in institutions of higher learning, mathematical modeling plays
as a basic course aiming at specialized courses, which indicates that mathematical
modeling courses and professional courses have the same educational object, the
similar educational goal, the related educational content. This determines the pos-
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sibility and necessity of cooperation between the mathematical modeling teachers,
subjects and disciplines. Mathematical modeling teachers must participate in the stu-
dents’ application ability analysis, the development of applied learning projects, the
integration of mathematical modeling course, the overall instructional design, and
strive to do interdisciplinary communication and to improve students’ application
ability. Second, the teacher-student cooperation. Dialyses a new view of the teachers
and students, and a new teaching philosophy, which means that equal dialogue and
the initiative to participate in and build their own in the teaching of mathematical
modeling is not only a teaching and learning activities, but also a educational context
and spiritual atmosphere of a good spirit of worship of technology and focus on
humanistic care filling between teachers and students. Teachers and students expe-
rience the meaning and significance of the value of mathematical modeling in the
application of activities.

2.1.2 Cooperative Learning Penetrating the Modern Vocation

Faced with the challenges of science, technology, economic, social development,
vocational education is undergoing a process of conversion from traditional mechan-
ical Pedagogy to the modern evolutionary pedagogy. In mathematical modeling class
cooperative learning is not only a simple transplantation of cooperative learning the-
ory in the past, but also the emphasis on penetration of mathematical modeling from
the reality of the teaching of vocational education mathematical modeling. It brings
about the organic integration of the modern vocational learning theory and coop-
erative learning theory, constitutes a new type of vocational education strategiesin
teaching and learning [8–10].

2.1.3 Professional Scene of Cooperative Learning

Cooperative learning is a teaching group activities as the main activities, which is
often manifested in the mutual support among fellow. To a certain extent Mathemat-
ical modeling class cooperative learning is to expand the function of the professional
learning team, combining mathematical modeling cognitive learning process with
professional action, combining individual action and learning process of students
with action space requested by outside. By simulation or the real work study group
to improve the students’ role capability, in simulated or real professional environ-
ment, integrate the cooperative learning of many elements to the teaching elements,
and ultimately achieve the goals of mathematical modeling teaching.
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Fig. 1 Buffon random cast
needle test

2.2 Cooperative Learning Teaching Model Steps

2.2.1 Combined with Professional, Clever Introduction

With practice, from the perspective of mathematical modeling applications and pro-
fessional applications, we introduce the contents to be learned. For example, Buffon
random cast needle test. assuming that there are numerous parallel lines (pairwise
distance 2d) in the plane, Q: what is the probability of a needle with either a straight
line intersecting? Let students draw on white paper enough invest needle, and mea-
sured with a ruler and a protractor, record each needle every random test results,
and finally each group gives a lab report. If lsinθ > x (Set the length of the needle
2l),needle and parallel lines intersect (such as Fig. 1 (1)), otherwise do not intersect
(such as (2)) (Fig. 2).

2.2.2 Explore Independently with the Problem

Taking advantage of students’ interest and concerns during the introduction, we can
guide students to self-learn the related content, while decomposing the major and
difficult matter to design a self-thinking title, for students in the process self-thinking,
to solve the shortcomings of teachers fast experiencing and fast abstracting instead
of students’ own. Students themselves complete the learning process from the initial
introduction of the concept and expanding to establishing, making the mathematical

Fig. 2 point random
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modeling process has flesh and blood, with rich connotation [11, 12]. Questions are
originally raised by the teachers, after a period of time, by teachers and students
co-sponsored, entirely by students, and that noting on their name and the name of
the group after title can further stimulate the enthusiasm of students.

2.2.3 Cooperation and Discussion aiming at Questions

Mathematical modeling teaching will not be able to lead a thinking activity without
questions. The practice shows that the set of one or two questions of moderate dif-
ficulty is significant to stimulate students’ desire for knowledge, and fully mobilize
the enthusiasm of the students’ learning, lead students’ to participate in class think-
ing [13]. Discussion and cooperation aiming at the problem not only can find the
deficiencies of understanding and errors, and can also work together to construct a
new understanding.

For example, have finished the learning of the cross-sectional area formula of

prism
√

Sm =
√

Su+√
Sd

2 , we can guide students to think about if the cross-section
is not in the middle section, what is the relationship between

√
Ss,

√
Su,

√
Sd . We

can guide the students to observe the structure of the above formula. It’s not difficult
to find that this formula is very similar to the mid-point coordinate formula in the
analytic geometry, while midpoint coordinates formula is the special case of the given
fixed ratio coordinate formula, so we are interested whether

√
Ss,

√
Su,

√
Sd have

the similar formula. Assume that the height of the prism is divided into two sections
from top to bottom by the cross-section. Three situations (1) 1: 2, (2) 3: 2, (3) 5: 3,
let different study groups analyse the cross-section area formula and cooperate to
discuss one result of three. It’s easy to get the following results:

(1)
⎡

Ss =
√

Su + 1
2

√
Sd

1 + 1
2

(2)
⎡

Ss =
√

Su + 3
2

√
Sd

1 + 3
2

(3)
⎡

Ss =
√

Su + 5
3

√
Sd

1 + 5
3

.

The students were surprised to find that this formula are very similar to the fixed
ratio coordinate formula, which prove the conclusion: if the height of the prism is
divided into two sections from top to bottom by the cross-section and the ratio is ,

then we have
√

Ss =
√

Su+λ
√

Sd
1+λ

. Under the guidance of teachers, students found and
proved a general formula by their own. Thus by the students’ “re-creation ”process,
their desire to discover was enhanced and the learning of students are in the state
of active cooperation, experiencing the joy of discovery. The enthusiasm to learn
mathematical modeling is greatly enhanced.

In cooperative learning, the chairperson of cluster report the learning of his or her
group, and assess course content, group members can add. Argument are allowed if
groups have different views. Team members who are responsible for the interpretation
can present their own thinking, monitoring and adjustment process by explaining their
understanding and reasoning process to rivals. It not only avails operator to organize
their own thinking and cognitive monitoringis more clearly, more effectively, and
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also makes students can more clearly observe his thinking and monitoring process.
Thus students can evaluate and learn from others’ effective part, and then through
direct feedback so that students can recognize their own inadequacies, and under
the guidance and help of rivals to do adjustment and supplement timely, making the
cognitive structure completely.

2.2.4 Focus on Igration, Variations Innovation

More simply, the migration is to be able to use the things learned in new situations.
The one drawback of the traditional teachings: students in classroom hear more but
do less and have less time to solve the problem with the knowledge learned, can
not be flexibility in the use of the knowledge learned. Fundamentally learning not
just means to know a part of knowledge, but to use, enable it to function in the new
scenario. To learn but not use are equal to not learn. Learn but not able to use are
not very different from not learn. After students have obtained preliminary concepts,
skills, and did some basic exercises, exchanged and discussed with partners, deepen
the understanding of knowledge, got new ideas and methods, the part consolidates
or expands the contents learned through practice and training. Then timely we shall
guide the students to summarize the general conclusions of the new knowledge,
new ideas, and organize into the knowledge system of mathematical modeling, and
translate knowledge into the ability to cultivate students’ good habits, study habits,
innovation and practical ability. For example, we have state equation when learning
queuing theory ⎣

d Pn(t)
dt = −λPn−1(t) + λPn(t),

Pn(0) = 0(n ∈ 1),

Pn(t) indicates possibility of state that the amount of customers is n at moment t.
Generally we have Pn(t) = (λt)n

n! e−λt , (n = 0, 1, . . . , t > 0) follow Poisson
distribution.

Thus it’s available to get variants of single server queuing model:
Variant : M/M/1 (infinite source, customers arrive independently, the law of reach-

ing follows Poisson distribution: single desk, unlimited length of queue, first come
first served, service time are independent and follow negative exponential distribu-
tion), there are queuing state equation:

⎧⎪⎨
⎪⎩

d P0(t)

dt
= −λP1(t) + λPn(t),

d Pn(t)

dt
= −λPn−1(t) + μPn−1(t) − (λ + μ)Pn(t)(n > 1),

λ is the argument of Poisson distribution and μ is the one of negative exponential
distribution.
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3 An Empirical Study of Cooperative Learning

3.1 Experimental Research Object

The selection of our research objects applied a parallel selection to choose the lateral
school classes, a longitudinal selection to choose two different examinations, using
two sets of comparison. In 2010 Class A1 was the common class and Class A2
the experimental class. We applied cooperative learning mode to do the teaching of
mathematical modeling of experimental class ,while common class the traditional
teaching model. Each class and each period were given the same progress of teaching
and the teaching contents.

3.2 Survey Method, Survey Results and Analysis

In order to seek the breakthrough in the research, and how to have a more targeted
research, before the research of mathematical modeling cooperative learning model,
I conducted a questionnaire survey on students’ interest in learning and learning
conditions of mathematical contest, and applied percentage to indicate the degree of
membership.

The survey issued 120 questionnaires, 115 statistical, completed in March 2010,
before the starting of experimental research. The survey of students’ interest in learn-
ing mathematical modeling mainly applied the form of questionnaire.

Statistical methods: questionnaire as self-report questionnaire, of mainly 16 eval-
uation questions, sets the scores of a variety of answers for each question, cumulates
total scores of students in the 16 issues, as the characteristic of students’ interests
and attitudes of studying mathematical modeling. In these 16 questions, 10 “affir-
mative” narrative, 6 “negation” narrative, 5 alternative answers to each question for
each answer describing in a positive or negative degree of measuring students’ learn-
ing interest and attitude of learning mathematical modeling, A- agree very much (2
points); B - agree (1 point); C - can not tell clear (0 points); D- do not agree with
(-1 point); E - strongly disagree (-2 points).

The statistical results: Fig. 3 data show that: the experimental classes and common
classes were 42.5 % and 40.2 % of the students showing low interest in learning the
theme of the Mathematical Contest in Modeling, experimental classes and common
classes of no more than a third of the students showing the interest.Therefore, the
students’ weak knowledge base have a direct impact on students’ interest, giving out
obstacles in education and teaching (Fig. 4).

First of all, we speculated that students’ achievement follow a normal distribu-
tion, in order to prove this, we applied Jarque-Bera nonparametric normality test to
students’ achievement:

Calculate the test statistic:J B = n
6 (s2 + (k−3)2

4 ) s is sample unbiased variance. k
is sample kurtosis. Have known the critical value of JB statistic is CV = 5.0663, when
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Fig. 3 questionnaire results

Fig. 4 pretest data

the statistics is greater than the critical value to reject the null hypothesis, indicating
that the sample is not normal otherwise accept the null hypothesis. Calculate students’
midterm performance of Class A1 to obtain that JB statistic is 1.4264 < CV . Corre-
sponding significant probability p = 0.3729 is much larger than the significant level
of 0.05, indicating that the A1 class students’ achievement follows a normal distribu-
tion. The calculation of A2 classes have J B = 0.7016 < CV , and p = 0.50 > 0.05,
indicating that the A2 class results follow a normal distribution, too. With application
of this method we tested that the results of samples of all classes meet the normal
conditions.

In order to make sure the beginning of the experimental classes and common
classes have similar base, we have done testing of questionnaire, and done the analysis
of the difference of two normal populations: Under the situation that mean and
variance are both unknown,I appied F-test to the data of two samples: H0 : σ 2

1 =
σ 2

2 , H1 : σ 2
1 ≤= σ 2

2 . Introduce statistics:F = s2
1

s2
2
, s2

1 and s2
2 are unbiased variance of

samples.
From results, we can conclude that F = 1.0979 < F0.05(60, 60) = 1.65F0.05

(56, 56) , corresponding significance probability p=0.7315 so we accept the assump-
tion H0 . We can accept that the corresponding overall variance of two samples have
no significant difference.

After the variance homogeneity test, we test the difference of the two samples’
mathematical expectation. Have known that t test is always used to determine the
differences of means when variances are equal. We set assumptions: H0 : μ1 =
μ2, H1 : μ1 ≤= μ2, σ

2
1 = σ 2

2 . Introduce t statistic: t = x1−x2⎫
s2
1

n1
+ s2

2
n2

, x is mean value. s2

is unbiased variance. n is sample size.
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After calculation we can conclude that t = 0.4791 is less than the critical value,
given significant probability p = 0.6328 > 0.05 accepts null hypothesis H0 . We
can consider that the mathematical expectations of the two samples did not differ
much.

By the above two results we can assume that there are no significant difference
in the initial mathematical basis of the common classes and the experimental classes
.Standard deviation and the mean of the two classes are as follows:

4 Analysis of Results

4.1 Composition and Selection of the Measured Objects

The objects of this study are two classes’ students, the selection of study applied
parallel to select the lateral classes, longitudinal to choose two examinations which
are at different times, using two sets for comparison. Therefore the measured objects
are selected from the vertical angle randomly, with its representative.

4.2 Analysis of Students’ Achievement Data

4.2.1 Common and Experimental Classes Transverse Statistics

Results description and data analysis: before the experimental study, in the distribu-
tion of the scores section of the common classes and the experimental classes, almost
equal. But after the experimental study, in experimental classes the number of stu-
dents that have academic sense of accomplishment has increased, students with poor
academic accomplishment significantly reduced. Therefore the mathematical mod-
eling group cooperative learning model has improved students’ interest, stimulated
students’ motivation to learn.

4.2.2 Longitudinal Statistics of Common and Experimental Classes

Results’ description and data analysis: from the view of longitudinal analysis, the
academic performance of the common classes and the experimental classes both have
made progress. But in the experimental class the students that have good sense of aca-
demics made significant progress, while the number of students that have poor sense
of academics are decreased. Therefore, mathematical modeling group cooperative
learning model can better stimulate students, especially the students with poor acad-
emic accomplishment, and in the process of group cooperative learning,can improve
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Fig. 5 horizontal analysis

Fig. 6 longitudinal analysis

the learning and exchanges of students, being helpful for students’ academically
positive impact (Figs. 5 and 6).

4.2.3 Post-test Statistics of Students’ Learning Status

Results’ description and data analysis: First we applied difference test to pretest
and posttest data on the experimental class so that we can conclude that the per-
formance of experimental class have improved rather than the results of random
error resulting increase. Then we applied difference test to two classes’ post-
test data so that we can conclude that there are obvious differences of teach-
ing effectiveness between the experimental classes and common classes. Having
applied F-test to pretest and post-test data of experimental class, we can get results
F = 1.9014, p = 0.04995 < 0.05 . There are obvious difference between two
classes’ variance. Because the mean of post-test data is significantly greater than the
mean of the pretest data, we can conclude that the results of the experimental class
have been significantly improved. Have applied F-test to post-test data of the two
classes, we got F = 1.8366, p = 0.03873 < 0.05 ,rejecting the assumption that
the two normal population have same variance, which indicated that the results of
the two classes have shown a significant difference. From the aspect of mean and
standard deviation, we can obtain that the standard deviation of common class is
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Fig. 7 questionnaire results

Fig. 8 experimental class

13.4545, the one of experimental class is 11.7323. From the view of statistical, a
set of data, the greater the standard deviation is, the greater the degree of data dis-
persion is, the more serious students’ achievement polarization are. On the contrary,
the smaller the standard deviation is, the smaller the degree of data scatter is, the
more aggregation the students’ achievement is, the less obvious the differentiation is.
Therefore, experimental data indicated that the application of mathematical modeling
group cooperative learning model is helpful for students’ overall results stabilized.
The size of the analysis’s differences: by the comparison of the common classes and
experimental classes’ data, before the experimental study, the differences of the two
classes’ data Z value is 1.7178, while after the experimental study, the difference of
the data Z value is 8.3764. The bigger the differences Z value is, the greater the dif-
ferences of the two sets of data are. Therefore, experimental data indicated that with
the help of the teaching of mathematical modeling group cooperative learning mode,
the differences between students have decreased, the overall results have progressed
significantly.

4.2.4 Post-test Statistics of Students’ Interest

In the affective domain, among the aims’ evaluation activities of mathematical mod-
eling education , what have been studied more are about students’ mathematical mod-
eling learning interest and attitude. This is because students’ mathematical modeling
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learning interest and attitude have more direct and significant impact on students’
improving the ability of mathematical modeling. Thus as one of the situation variable
in the various elements of the mathematical modeling, it’s more and more important
for the theory of mathematical modeling teaching. Generally used for the evaluation
of students’ mathematical modeling learning interest and attitude is questionnaire
design, preparing a variety of issues on the students’ behavior, to enable students
to respond to these questions, then calculate the proportion of students’ a variety of
responses, do the analysis and get the conclusion. Results’ description and analysis:
The data show that: there are still 31.9 % of the common class’s students that have
little change of interest in learning mathematical modeling, while the proportion
of the experimental class’s students that have interest in learning the mathematical
modeling is 37.2 %. At the same time, by conducting a longitudinal comparison of
the experimental class itself, the proportion of students that have no interest in learn-
ing mathematical modeling has reduced from 42.5 % to 8 %, while the proportion
of students that have interest in mathematical modeling study has rose from 6.2 %
to 37.2 %. Therefore, the experimental data indicate that cooperative learning can
enhance students’ interest in learning to some extent, mobilize students’ learning
motivation and initiative to improve the quality of learning efficiency and effect.

5 Conclusion

The above empirical research indicated that in the institutions of higher the applica-
tion of cooperative learning strategies in mathematical modeling teaching are effec-
tive, which will help improve students’ interest in learning mathematical modeling,
improve students’ mathematical modeling performance, train students’ ability of
learning math modeling.So we can achieve the goal of improving students’ compre-
hensive ability.
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A Discrete-Time Geo/G/1 Retrial Queue
with Preemptive Resume, Bernoulli Feedback
and General Retrial Times

Cai-Min Wei, Yi-Yan Qin and Lu-Xiao He

Abstract In this work, we consider a discrete-time Geo/G/1 retrial queue with pre-
emptive resume, Bernoulli feedback and general retrial times. We analyze the Markov
chain underlying the considered queueing system and derive the generating functions
of the system state, the orbit size and the system size distribution. Using probability
generating function technique, some interesting and important performance mea-
sures are obtained. We also investigate the stochastic decomposition property and
present some numerical examples.

Keywords Discrete-time retrial queue · Preemptive resume · Bernoulli feedback ·
General retrial times · Stochastic decomposition

1 Introduction

Queueing models are widely and successfully used as mathematical models of com-
puter communications and manufacturing settings. Retrial phenomenon occurs when
a new arriving customer who can’t join the system decides to retry again after a ran-
dom time. Retrial queues are queueing systems which arise naturally in computer
systems and telecommunication networks and are characterized by the feature that
arriving customers who find all servers busy leave the server temporarily and join a
group of unsatisfied customers (which called orbit) in order to repeat their attempt
again after a random time period.
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Although many continuous-time queueing models with preferred or feedback
have been studied extensively in the past years [1–8], their discrete-time counterparts
received less attention in the literature. However, in practice, discrete-time queues
are more appropriate than their continuous-time counterparts for modelling computer
and telecommunication systems in which time is slotted. For more detailed discussion
and applications of discrete-time queues can be found in the books by Hunter [9],
Takagi [10] and Woodward [11].

Queueing models with preemptive resume phenomenon is characterized by the
fact that arriving customers have the priority to interrupt the customer in service to
commence his own service with LCFS preemptive resume discipline. It occurs in
many situations in our real life such as dealing with weather forecast information and
treating to emergency patient in hospital. Liu and Wu [12] considered an M AP/G/1
G-queue with possible preemptive resume service discipline and multiple vacations.
A GeoX/G/1 queue with preemptive resume priority have been studied by Lee [13].
Liu and Wu [14] investigated a discrete-time Geo/G/1 retrial queue with preemptive
resume and collisions.

Recently, there has been an increasing interest in the analysis of retrial queueing
systems with feedback. Feedback is present for example in after-sales service and
telecommunication systems where the messages with errors at the destination are
sent again. This has been proved to be very useful and appropriate to model some
situations where all the customers demand the main service and only some of them
demand an extra service in day-to-day life. Hellerstein, Diao, Parekh, and Tilbury
considered a good research of feedback control in the book [15] which investigates
a practical treatment of the design and application of feedback control of computing
system. Atencia and Moreno [16] studied a discrete-time GeoX//G H /1 retrial queue
with Bernoulli feedback.

This work is an extension of the retrial queueing theory on preemptive resume
and feedback into discrete-time retrial queues. We study a discrete-time Geo/G/1
retrial queue with preemptive resume, Bernoulli feedback and general retrial times.
The system under study in this chapter, apart from its applications described before
has theoretical interest because there is no same work in the previous.

The remainder of the chapter is organized as follows. In Sect. 2, we give the
mathematical description and Markov chain, and derive the probability generating
functions of the system state, the orbit size and the system size distribution. We
investigate the stochastic decomposition law in Sect. 3. In Sect. 4, we present some
numerical results to illustrate the impact of the collisions and impatience on the
performance of the system. Finally, we give a conclusion in Sect. 5.

2 Model Description and Markov Chain

We consider a discrete-time retrial queue where the time axis is segmented into slots
of equal length and all queueing activities occur around the slot boundaries, and may
occur at the same time. For mathematical clarity, let the time axis be marked by
0, 1, · · · , m, · · · . We suppose that the departures occur in the interval (m−, m), and
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the arrivals and the retrials occur in the interval (m, m+). we consider the model for
early arrival system (EAS) policy. For more details see on the EAS discipline and
related concepts can be found in Hunter [9].

New customers arrive the system according to a geometrical arrival process with
probability p. We suppose that there is no waiting space in front of the server, and
therefore, if an arriving customer finds the server idle, he commences his service
immediately. Otherwise, if the server is busy at the arrival epoch, the arriving cus-
tomer either interrupts the customer in service to commence his own service with
probability α or leaves the service area and enters the orbit by himself with prob-
ability ᾱ = 1 − α. The interrupted customer enters into the orbit. The service of
the interrupted customer resumes from the beginning. Because we have interest in
only distribution of the number of customers in the system and will not discuss the
waiting and sojourn time distributions, we have no need to illuminate what place the
interrupted customer will be in the orbit.

After service completion, the customer decides either to join the retrial group
again for another service with probability θ or leaves the system with complementary
probability θ̄ = 1 − θ .

When the server is idle and both an external arrival and a retrial occur at the same
time, the external customer is given higher priority over the returning customers.
Customers in the orbit are assumed to form a FCFS queue. It is only the customer at
the head of the queue who makes retrials.

Service times are governed by probability distribution {si }√i=1 with generating
function S1(x) = ∑√

i=1 si xi and the n-th factorial moment γn . Retrial times are
assumed to follow a general distribution. Successive interretrial times follow a general
distribution {ri }√i=0 with generating function R(x) = ∑√

i=0 ri xi .
The interarrival times, the service times and the retrial times are assumed to be

mutually independent. We will denote p̄ = 1 − p, r̄0 = 1 − r0. In order to avoid
trivial cases, it is also supposed 0 < p < 1, 0 ∈ α ∈ 1, 0 ∈ θ < 1. At time m+, the
system can be described by the Markov process

Xm = (Cm, ρ0,m, ρ1,m, Nm),

where Cm denotes the state of the server 0 or 1 according to whether the server is idle
or busy and Nm the number of repeated customers in the orbit. When Cm = 0 and
Nm > 0, ρ0,m represents the remaining retrial time. When Cm = 1, ρ1,m represents
the remaining service time of the customer currently being served.

It can be shown that {Xm, m ≤ 1} is the Markov chain of our queueing system,
whose state space is

{(0, 0); (0, i, k) : i ≤ 1, k ≤ 1; (1, i, k) : i ≤ 1, k ≤ 0}.
Our object is to find the stationary distribution of the Markov chain {Xm; m ≤ 1}

as follows:
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δ0,0 = lim
m∃√ P{Cm = 0, Nm = 0}, δ j,i,k = lim

m∃√ P{Cm = j, ρ j,m = i, Nm = k}.

The evolution of the chain is governed by the one-step transition probabilities

pyy∗ = P[Ym+1 = y∗|Ym = y].

When k = 0, we obtain

P(0,0)(0,0) = p̄, P(1,1,0)(0,0) = p̄θ̄ .

When i ≤ 1, k ≤ 1, we obtain

P(0,i+1,k)(0,i,k) = p̄, P(1,1,k−1)(0,i,k) = p̄θri , P(1,1,k)(0,i,k) = p̄θ̄ri .

When i ≤ 1, k ≤ 0, we obtain

P(0,0)(1,i,k) = Φ0,k psi , P(0,1,k+1)(1,i,k) = p̄si , P(0, j,k)(1,i,k) = (1 − Φ0,k)psi , j ≤ 1,

P(1,1,k−1)(1,i,k) = (1 − Φ0,k)pθsi , P(1,1,k)(1,i,k) = pθ̄si + p̄θr0si ,

P(1,1,k+1)(1,i,k) = p̄θ̄r0si , P(1,i+1,k−1)(1,i,k) = (1 − Φ0,k)pᾱ,

P(1,i+1,k)(1,i,k) = p̄, P(1, j,k−1)(1,i,k) = (1 − Φ0,k)pαsi , j ≤ 2.

The Kolmogorov equations for the stationary distribution of the system are:

δ0,0 = p̄δ0,0 + p̄θ̄δ1,1,0 (1)

δ0,i,k = p̄δ0,i+1,k + p̄θriδ1,1,k−1 + p̄θ̄riδ1,1,k, i ≤ 1, k ≤ 1, (2)

δ1,i,k = Φ0,k psiδ0,0 + p̄siδ0,1,k

+ (1 − Φ0,k)psi

√∑
j=1

δ0, j,k + (1 − Φ0,k)pθsiδ1,1,k−1

+ (pθ̄si + p̄θr0si )δ1,1,k + p̄θ̄r0siδ1,1,k+1

+ (1 − Φ0,k)pᾱδ1,i+1,k−1 + p̄δ1,i+1,k (3)

+ (1 − Φ0,k)pαsi

√∑
j=2

δ1, j,k−1, i ≤ 1, k ≤ 0,

where Φi, j is the Kronecker’s symbol, and the normalizing condition is

δ0,0 +
√∑

i=1

√∑
k=1

δ0,i,k +
√∑

i=1

√∑
k=0

δ1,i,k = 1.
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To solve Eqs. (1)–(3), we introduce the following probability generating functions
and auxiliary probability generating functions

ϕ j (x, z) =
√∑

i=1

√∑
k=b

δ j,i,k xi zk,

ϕ j,i (z) =
√∑

k=b

δ j,i,k zk, j = 0, b = 1, i ≤ 1; j = 1, b = 0, i ≤ 1.

Multiplying Eqs. (2), (3) by zk , summing over k and using the boundary condition
(1), we get

ϕ0,i (z) = p̄ϕ0,i+1(z) + (θ̄ + θ z) p̄riϕ1,1(z) − priδ0,0, (4)

ϕ1,i (z) = p̄

z
siϕ0,1(z) + [ ( p̄r0 + pz)(θ̄ + θ z)

z
− pαz]siϕ1,1(z) + ( p̄ + pᾱz)ϕ1,i+1(z)

+ psiϕ0(1, z) + pαsi zϕ1(1, z) + z − r0

z
psiδ0,0, i ≤ 1. (5)

Multiplying Eqs. (4), (5) by xi and summing over i, we get

x − p̄

x
ϕ0(x, z) = p̄(θ̄ +θ z)(R(x)−r0)ϕ1,1(z)− p̄ϕ0,1(z)− p(R(x)−r0)δ0,0, (6)

x − γ(z)

x
ϕ1(x, z) =

[
( p̄r0 + pz)(θ̄ + θ z) − pαz2

z
S(x) − γ(z)

]
ϕ1,1(z)

+ pS(x)ϕ0(1, z) (7)

+ p̄

z
S(x)ϕ0,1(z) + p̄

z
S(x)ϕ0,1(z) + pαzS(x)ϕ1(1, z)

+ z − r0

z
pS(x)δ0,0,

where
γ(z) = p̄ + pᾱz.

To solve for ϕ0(1, z) and ϕ1(1, z), we put x = 1 in Eqs. (6) and (7), we obtain

pϕ0(1, z) = p̄(θ̄ + θ z)r̄0ϕ1,1(z) − p̄ϕ0,1(z) − pr̄0δ0,0, (8)

pz(1 − z)ϕ1(1, z) = p̄(1 − z)ϕ0,1(z) + B(z)ϕ1,1(z) − pr0(1 − z)δ0,0, (9)
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where
B(z) = [z + p̄r0(1 − z)](θ̄ + θ z) − p̄z − pz2.

Substituting the above equation into (6), we obtain

x − γ(z)

x
ϕ1(x, z) ={[z + p̄r0(1 − z)](θ̄ + θ z)

z
S(x) + α[ p̄r0(θ̄ + θ z) − θ z]S(x)

− γ(z)}ϕ1,1(z)+ 1 − ᾱz

z
p̄S(x)ϕ0,1(z)− 1 − ᾱz

z
pr0S(x)δ0,0.

(10)

Setting x = p̄ in (6) and x = γ(z) in (10), we obtain

p(R( p̄) − r0)δ0,0 = p̄(θ̄ + θ z)(R( p̄) − r0)ϕ1,1(z) + p̄ϕ0,1(z), (11)

1 − ᾱz

z
pr0S(γ(z))δ0,0 = 1 − ᾱz

z
p̄S(γ(z))ϕ0,1(z)

+ {[z + p̄r0(1 − z)](θ̄ + θ z)

z
S(γ(z)) (12)

+ α[ p̄r0(θ̄ + θ z) − θ z]S(γ(z)) − γ(z)}ϕ1,1(z).

To solve for ϕ0,1(z) and ϕ1,1(z) by (11) and (12), we get

ϕ0,1(z) = pz(R( p̄) − r0)[γ(z) − (θ̄ + θ z − αθ z)S(γ(z))]
ψ(z)

· δ0,0

p̄
, (13)

ϕ1,1(z) = pR( p̄)(1 − ᾱz)S(γ(z)

ψ(z)
δ0,0, (14)

where

ψ(z) = {[(1 − ᾱz) p̄R( p̄) + z](θ̄ + θ z) − αθ z2}S(γ(z)) − γ(z)z.

In order to show that the above auxiliary probability generating functions are defined
for z ∪ [0, 1] and in z = 1 can be extended by continuity we give the following
lemma.

Lemma 1 For 0 ∈ z < 1, if

[1 − ᾱ p̄R( p̄) + θ(α p̄R( p̄) + 1) − 2αθ ]S(γ(1))

+[α p̄R( p̄) + 1 − αθ ]pᾱS∗(γ(1)) < p̄ + pᾱ(1 + z),

then ψ(z) > 0.
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Proof. Let us define the following functions

f (z) = [(1 − ᾱz) p̄R( p̄) + z](θ̄ + θ z) − αθ z2}S(γ(z)), g(z) = γ(z)z.

In order to study the slope of the tangent of f (z) and g(z) we calculate:

f
∗
(1) = [1 − ᾱ p̄R( p̄) + θ(α p̄R( p̄) + 1) − 2αθ ]S(γ(1))

+ [α p̄R( p̄) + 1 − αθ ]pᾱS∗(γ(1)),

g
∗
(1) = p̄ + 2pᾱ.

Due to the fact that f (z) and g(z) are convex functions, we observe that f ∗(1) <

g∗(1), we have f (z) > g(z) in 0 ∈ z < 1.
Applying L’Hopitals’ rule, we obtain

Lemma 2 The following limits exist if1 − pα < [α p̄R( p̄) + 1 − αθ ]S(1 − pα),

lim
z∃1

ϕ0,1(z) = p(R( p̄) − r0)[1 − pα − (1 − αθ)S(1 − pα)]
[α p̄R( p̄) + 1 − αθ ]S(1 − pα) + pα − 1

,

lim
z∃1

ϕ1,1(z) = pαR( p̄)S(1 − pα)

[α p̄R( p̄) + 1 − αθ ]S(1 − pα) + pα − 1
δ0,0.

We summarize the above results in the following theorem.

Theorem 1. The probability generating functions of the stationary distribution of
the chain are given by

ϕ0(x, z) = R(x) − R( p̄)

x − p̄
× pxz[γ(z) − (θ̄ + θ z − αθ z)S(γ(z))]

ψ(z)
δ0,0,

ϕ1(x, z) = S(x) − S(γ(z))

x − γ(z)
× px R( p̄)(1 − ᾱz)γ(z)

ψ(z)
δ0,0,

where

δ0,0 = ( p̄αR( p̄) + 1 − αθ)S(1 − pα) − (1 − pα)

αθ̄ R( p̄)S(1 − pα)
.

Proof. In order to complete the proof we only have to substitute (13) and (14) into
(6) and (10) and derive the probability generating functions ϕ0(x, z) and ϕ1(x, z) in
its explicit form enunciated in the theorem.

Using the normalization condition, we find the unknown constant

δ0,0 = ( p̄αR( p̄) + 1 − αθ)S(1 − pα) − (1 − pα)

αθ̄ R( p̄)S(1 − pα)
.

This completes the proof.
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In the following corollary, we calculate some important marginal probability gen-
erating functions and present their explicit expressions.

Corollary 1.

(1) The marginal generating function of the number of customers in the orbit when
the server is idle is given by

δ0,0 + ϕ0(1, z) = R( p̄){[ p̄(1 − ᾱz)(θ̄ + θ z) + (θ̄ + θ z − αθ z)z]S(γ(z)) − zγ(z)}
ψ(z)

δ0,0.

(2) The marginal probability generating function of the number of customers in the
orbit when the server is busy is given by

ϕ1(1, z) = [1 − S(γ(z))]R( p̄)γ(z)

ψ(z)
δ0,0.

(3) The probability generating function of the number of customers in the orbit (i.e.
of the variable N ) is given by

N (z) = δ0,0 + ϕ0(1, z) + ϕ1(1, z)

= R( p̄){ p̄(1 − ᾱz)(θ̄ + θ z) + (θ̄ + θ z − αθ z)z ] S(γ(z)) + [1 − z − S(γ(z))]γ(z)}
ψ(z)

δ0,0.

(4) The probability generating function of the number of customers in the system
(of the variable L) is given by

L(z) = δ0,0 + ϕ0(1, z) + zϕ1(1, z)

= R( p̄){ p̄(1 − ᾱz)(θ̄ + θ z) + (θ̄ + θ z − αθ z)z ] S(γ(z)) − S(γ(z))γ(z)z}
ψ(z)

δ0,0.

The following corollary presents some important performance measures.

Corollary 2.

(1) The system is idle with probability

δ0,0 = ( p̄αR( p̄) + 1 − αθ)S(1 − pα) − (1 − pα)

αθ̄ R( p̄)S(1 − pα)
.

(2) The system is occupied with probability

ϕ0(1, 1) + ϕ1(1, 1) = [(θ̄ − p̄)αR( p̄) + αθ − 1]S(1 − pα) + (1 − pα)

αθ̄ R( p̄)S(1 − pα)
.

(3) The server is idle with probability

δ0,0 + ϕ0(1, 1) = ( p̄α + 1 − αθ)S(1 − pα) − (1 − pα)

αθ̄ S(1 − pα)
.
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(4) The server is busy with probability

ϕ1(1, 1) = (1 − pα)[1 − S(1 − pα)]
αθ̄ S(1 − pα)

.

(5) The mean orbit size is given by

E[N ] = N ∗(z) |z=1 .

(6) The mean system size is given by

E[L] = L ∗(z) |z=1 .

(7) The mean time a customer spends in the system (including the service time) is
given by

WS = E[L]
P

.

Remark 1 (A Special Cases)

(1) When α = 1, θ = 0, L(z) reduces to

L(z) = (P̄ + P Z){[1 + P̄ R( p̄)]S( p̄) − p̄}
[z + p̄R( p̄)]S( p̄) − p̄z

,

this is the probability generating function of the number of customers in the
model Geo/G/1 with LCFS preemptive resume discipline and general retrial
times which according to the generating function of Remark 3.1 in Liu and Wu
[14].

(2) When r0 = 1 (i.e., R( p̄) = 1), L(z) reduces to

L(z) = p̄(1 − ᾱz)(θ̄ + θ z) + (θ̄ + θ z − αθ z)z]S(γ(z)) − S(γ(z))γ(z)z

{[(1 − ᾱz) p̄ + z](θ̄ + θ z) − αθ z2}S(γ(z)) − γ(z)z

× ( p̄α + 1 − αθ)S(1 − pα) − (1 − pα)

αθ̄ S(1 − pα)
,

which is the probability generating function for the number of customers in the
standard Geo/G/1/√ queueing system with preemptive resume and feedback.
Obviously, in this cases, the customer at the head of the orbit immediately get
his service whenever the server is idle.
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3 Stochastic Decomposition

The stochastic decomposition law for queueing systems was first given in Fuhrmann
and Cooper [17]. This section we will present the stochastic decompositions of the
system size distribution due to the fact that L(z) can be written in the following form:

L(z) = L ∗(z) × L ∗∗(z),

where

L ∗(z) = p̄(1 − ᾱz)(θ̄ + θ z) + (θ̄ + θ z − αθ z)z]S(γ(z)) − S(γ(z))γ(z)z

[ p̄(1 − ᾱz)(θ̄ + θ z) + (θ̄ + θ z − αθ z)z]S(γ(z)) − zγ(z)}
× ( p̄α + 1 − αθ)S(1 − pα) − (1 − pα)

αθ̄ S(1 − pα)
,

L ∗∗(z) = [ p̄(1 − ᾱz)(θ̄ + θ z) + (θ̄ + θ z − αθ z)z]S(γ(z)) − zγ(z)

ψ(z)

× ( p̄αR( p̄) + 1 − αθ)S(1 − pα) − (1 − pα)

p̄α + 1 − αθ)S(1 − pα) − (1 − pα)
= δ0,0 + ϕ0(1, z)

δ0,0 + ϕ0(1, 1)
.

We note that L ∗(z) is the probability generating function of the number of customers in
the standard Geo/G/1 queue with preemptive resume and feedback, as we obtained
in Remark 1(2). This result can be summarized in the following theorem.

Theorem 2. The total number of customers in the system (L) can be decomposed
as the sum of two independent random variables, one of which is the number of
customers in the Geo/G/1 queue system with preemptive resume and feedback (L ∗)
and the other is the number of repeated customers given that the server is idle (L ∗∗),
i.e., L = L ∗ + L ∗∗.

4 Numerical Results

In this section, we build up a numerical study to investigate some numerical examples
of the performance measures obtained in Sect. 3 in relation with the most specific
parameters of our model. We consider two performance measures: the free probability
δ0,0, the the probability ϕ1(1, 1) that the server is busy. We assume that the arrival
rate p = 0.1. Moreover, for the purpose of a numerical illustration, we assume that
the service time distribution function is geometric with parameter 0.8, i.e., S(x) =

4x
5−x , and the retrial times follow a geometric distribution with generating function
R(x) = r0

1−(1−r0)x . We assume that the parametric values are chosen under the
stability condition in all the below cases. We have presented three curves which
correspond to r0 = 0.1, 0.4 and 0.8 in Fig.1. In Fig. 1, we study the influence of
the values of θ on the free probability δ0,0 for different r0 = 0.1, 0.4 and 0.8. As
expected, the free probability decreases with increasing the value of θ , obviously,
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Fig. 1 The free probability δ0,0 versus θ for different r0
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Fig. 2 The busy probability ϕ1(1, 1) versus α for different θ

we obtain that the probability that the system is free decreases. With another view,
the parameter α is wiped off by simplifying the expression of δ0,0, that is to say, the
parameter α does not affect the free probability.

In Fig. 2, we plot the busy probability ϕ1(1, 1) versus α for different θ = 0.1, 0.4
and 0.8. As intuition tells us, the probability ϕ1(1, 1) (that the server is busy) is
increasing as function of θ , this is due to the fact that the server will be more congested
while the feedback probability increases. With another view, the parameter α is wiped
off by simplifying the expression of ϕ1(1, 1), that is to say, the parameter α does not
affect the busy probability. The same with α, the parameter r0 does not affect the
busy probability.
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5 Conclusions

In the foregoing disquisition, we considered a discrete time Geo/G/1 retrial queue
with preemptive resume, Bernoulli feedback and general retrial times. The system
has been analyzed to obtain the probability generating functions of the system state
distribution as well as those of the orbit size and the system size distributions. Hence,
we obtain analytical expressions for various performance measures of interest such
as idle and busy probabilities, mean orbit and system sizes.
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Stability Analysis of T-S Fuzzy Systems with
Knowledge on Membership Function Overlap

Zhi-hong Miao

Abstract A new approach for reducing the conservativeness in stability analysis
and design of continuous-time T-S fuzzy control systems is proposed in this paper.
Based on a fuzzy Lyapunov function together with knowledge on membership func-
tion overlap, previous stability and stabilization conditions are relaxed by the pro-
posed approach. Both the stability and the stabilization conditions are written as
linear matrix inequality (LMI) problems. Two examples are given to illustrate the
effectiveness of the proposed approach.

Keywords Fuzzy Lyapunov function · Parallel distributed compensation (PDC) ·
T-S fuzzy model · Linear matrix inequality (LMI) · Nonlinear system

1 Introduction

Recently, Takagi-Sugeno (T-S) fuzzy control system [1] has been receiving increasing
attention. The main reason is that this particular form can not only provides a general
framework to represent the nonlinear system, but also offers an effective platform to
facilitate the stability analysis and controller synthesis. Many beneficial results have
been obtained in this research field in the past decade [2–4].

Generality, stability and stabilization of the T-S fuzzy system are usually inves-
tigated by using the direct Lyapunov method and stability conditions derived can
be given in terms of linear matrix inequalities (LMIs). But this approach requires to
find a common positive definite matrix solution for all local linear systems, which
leads that the designed conditions are more conservative. The more the number of
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the fuzzy rules, the less the possibility of finding a common positive definite matrix
solution. Certainly, many results have been obtained for improving these designed
conditions [4–10].

Currently, an effective way to reduce the conservativeness has been proposed
by using the fuzzy Lyapunov function [3] or piecewise Lyapunov functions instead
of a common quadratic Lyapunov function. However, stabilization conditions for
fuzzy Lyapunov functions and piecewise Lyapunov functions are in terms of bilinear
matrix inequalities (BMIs) in general. Although, BMI conditions can be converted
into LMI conditions by the way of the well-known completing square technique, in
general such a conversion leads to conservative results. Another problem arising up
in fuzzy Lyapunov approach is that the conditions of stability depend on the time
derivative of the membership functions. To handle the difficulty, some strategies are
proposed, for instance, by taking into account upper bounds the time derivative of
the membership functions, then the stability conditions can be expressed as in terms
of LMIs. Nevertheless, this approach does not take advantage of the knowledge on
membership functions overlap. In [10] the stability condition is considered from the
knowledge on membership functions overlap, but not using fuzzy Lyapunov function.

In this paper, we further extend the works in [8, 9] and [10], an improved approach
which employs a fuzzy Lyapunov function is proposed to investigated the fuzzy con-
trol system. In this approach, taking advantage of the information of the derivatives
and the overlap properties of membership functions, more relaxed the stability analy-
sis and design conditions are achieved.

2 Takagi-Sugeno Fuzzy Model and Preliminaries

Consider the T-S fuzzy model described by the following rules:

Ri : IF z1(t) is Fi
1 and · · · and zs(t) is Fi

s THEN (1)

ẋ(t) = Ai x(t) + Bi u(t), (i = 1, 2, · · · , r)

where Fi
1, Fi

2, · · · , Fi
s are fuzzy sets, x(t) = [x1(t), x2(t), · · · , xn(t)]T is the state

vector, z(t) = [z1(t), z2(t), · · · , zs(t)]T √ Rs is the premise vector, u(t) √ Rm is
the control input vector, Ai and Bi the system matrices.

By using a singleton fuzzifier, product fuzzy inference and center-average defuzzi-
fier, the system dynamics are described by

ẋ(t) =
r⎡

i=1

hi (z(t))[Ai x(t) + Bi u(t)], (2)

with hi (z(t)) = wi (z(t))⎣r
i=1 wi (z(t))

, wi (z(t)) = ⎧s
j=1 Fi

j (z j (t)). where hi (z(t)) are the

normalized membership functions and the grade of membership of the premise
variables in the respective fuzzy sets Fi

j are given as Fi
j (z j (t)). The normalized
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membership functions satisfy the following properties

0 ∈ hi ∈ 1,

r⎡
i=1

hi = 1,

r⎡
i=1

ḣi = 0. (3)

Based on the parallel distributed compensation (PDC) [2] method, the fuzzy state
feedback controller as following is considered in this paper.

u(t) = −
r⎡

i=1

hi (z(t))Ki x(t) (4)

where Ki √ Rm×n are the local linear state feedback gains. Substituting (4) into (2)
yields

ẋ(t) =
r⎡

i=1

r⎡
j=1

hi (z(t))h j (z(t))(Ai − Bi K j )x(t) =
r⎡

i=1

r⎡
j=1

hi (z(t))h j (z(t))Gi j x(t)

=
⎪
⎨ r⎡

i=1

h2
i Gii + 2

r⎡
i=1

⎡
i< j

hi h j

⎩
Gi j + G ji

2

⎫⎬
⎭ x(t) (5)

where Gi j = Ai − Bi K j . when u(t) ≤ 0, then it becomes

ẋ(t) =
r⎡

i=1

hi (z(t))Ai x(t), (6)

In order to reduce the conservativeness of stability analysis and design, in [3],
fuzzy Lyapunov functions was proposed as a more general alternative to the use
of a common quadratic Lyapunov function, which can utilize some information of
membership functions. The following Lemma gives some results

Lemma 1. (Theorem 2 in [3]) Suppose that |ḣi | ∈ αi , (i = 1, 2, · · · , r − 1). The
T-S fuzzy system (6) is asymptotically stable if there exist symmetric matrices Pi > 0,
such that

Pi ∃ Pr , (i = 1, · · · , r − 1),
r⎡

i=1

αi (Pi − Pr ) + 1

2
(AT

i Pj + Pj Ai + AT
j Pi + Pi A j ) < 0, (1 ∈ i ∈ j ∈ r).

Recently, Mozelli et al. proposed a less conservative result in [8], which improves
above result.
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Lemma 2. (Theorem 6 in [8]) Suppose that |ḣi | ∈ αi , (i = 1, 2, · · · , r − 1). The
T-S fuzzy system (6)is asymptotically stable if there exist symmetric matrices Pi , such
that

Pi > 0, Pi + X ∃ 0, (i = 1, · · · , r)

P̃α + 1

2
(AT

i Pj + Pj Ai + AT
j Pi + Pi A j ) < 0, (1 ∈ i ∈ j ∈ r),

where P̃α = ⎣r
k=1 αk(Pk + X).

For a close-loop control system, to move forward a single step, the following
Lemma can be obtained.

Lemma 3. (Theorem 6 in [9]) Suppose that |ḣi | ∈ αi , (i = 1, 2, · · · , r − 1). The
T-S fuzzy system (6)is asymptotically stable if there exist symmetric matrices Qi , Z
and matrices N, such that

(1) Qi > 0, (i = 1, · · · , r), (2) Qi + Z ∃ 0, (i = 1, · · · , r)

(3) θi i < 0, (i = 1, · · · , r), (4) θi j + θ j i < 0, (i < j)

with

θi j =
⎪
⎨

γα − (Ai N + N T AT
i − Bi W j − W T

j BT
i ) Qi − μ(N T AT

i − S j BT
i ) + N

Qi − μ(Ai N − Bi W j ) + N T μ(N + N T )

⎬
⎭ .

where γα = ⎣r
k=1 αk(Qk + Z). in this case, the fuzzy controller gain matrices can

be given by Ki = Wi N−1.

The following Lemma set up a less conservative stability condition by taking
into account the knowledge of membership function overlap, but not using fuzzy
Lyapunov function.

Lemma 4. (Theorem 3 in [10]) Assume that 0 ∈ hi h j ∈ ρi j (i ∈ j), the T-S fuzzy
system (6) is asymptotically stable if there exist symmetric matrices P, Ri j , (i ∈ j),
and matrices Xi j = X T

ji , such that

P > 0, Ri j ∃ 0, (i ∈ j)

(GT
ii P + PGii ) − Rii + δ < Xii , (i = 1, · · · , r)

(GT
i j P + PGi j ) + (GT

ji P + PG ji ) − Ri j + 2δ < Xi j + X ji , (i < j)⎪
⎨

X11, · · · X1r
...

. . .
...

Xr1, · · · Xrr

⎬
⎭ < 0.

where δ = ⎣r
k=1

⎣
k∈l∈r ρkl Rkl .



Stability Analysis of T-S Fuzzy Systems 555

3 Main Results

In this section, some sufficient conditions on stability and stabilization of fuzzy
system are presented.

Firstly, for reducing the number of LMIs, we introduce matrices as follows

Ui j =
⎢

ρi i E − Eii , i = j
ρi j E − 1

2 Ei j , i ∗= j
(7)

here, E √ Rr×r , and each element of E is 1. Ei j √ Rr×r , and the i-th row and the
j-th column element of Ei j is 1, other elements are 0, i.e.

E =

⎪
⎨

1 · · · 1
...

. . .
...

1 · · · 1

⎬
⎭

r×r

, Ei j =

⎪
⎨

0 · · · 0
1

1
0 · · · 0

⎬
⎭

r×r

,

If the normalized membership functions satisfy: 0 ∈ hkhl ∈ ρkl ∈ 1, then when
k ∗= l, we have

ρkl − hkhl = ρkl (

r⎡
i=1

r⎡
j=1

hi h j ) − hkhl = ρkl (

r⎡
i=1

h2
i ) + 2ρkl

⎡
i< j

hi h j − hkhl

= ρkl

r⎡
i=1

h2
i + 2ρkl

i< j⎡
i ∗=k, j ∗=l

hi h j + 2(ρkl − 1

2
)hkhl ∃ 0.

With noting: h̄ = [h1, h2, · · · , hr ]T , above inequalities can be expressed as follows

h̄T Ukl h̄ ∃ 0. (8)

When k = l, that share same matrix inequalities.

3.1 Stability Analysis

Firstly, consider stability problem of the unforced T-S fuzzy system

ẋ(t) =
r⎡

i=1

hi (z(t))Ai x(t), (9)
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Theorem 1. Assume that |ḣi | ∈ αi , 0 ∈ hi h j ∈ ρi j , (i = 1, 2, · · · , r, i ∈ j), the
T-S fuzzy system (6) is asymptotically stable if there exist symmetric matrices Pi , X,
and matrices Yi j = Y T

ji , scalars Φi j > 0, (i ∈ j), such that

(1) Pi > 0, Pi + X ∃ 0, (i = 1, · · · , r)

(2) P̃α + (AT
i Pi + Pi Ai ) < Yii , (i = 1, · · · , r)

(3) P̃α + 1
2 (AT

i Pj + Pj Ai + AT
j Pi + Pi A j ) < Yi j + Y ji , (1 ∈ i ∈ j ∈ r).

(4)

⎪
⎨

Y11, · · · Y1r
...

. . .
...

Yr1, · · · Yrr

⎬
⎭ + ⎣

1∈i∈ j∈r Φi j Ũi j < 0.

where P̃α = ⎣r
k=1 αk(Pk + X), Ũi j = Ui j ∪ In (∪ is Kronecker product, In is an

identity matrix of order n).

Proof: Consider a candidate fuzzy Lyapunov function

V (t) = xT (t)
r⎡

i=1

hi Pi x(t).

The time derivative of (10) along the trajectories of (9) is

V̇ (t) = xT (t)
r⎡

i=1

ḣi Pi x(t) + 1

2

r⎡
i=1

r⎡
j=1

hi h j (AT
i Pj + Pj Ai + AT

j Pi + Pi A j ).

Note that
⎣r

i=1 ḣi X = 0, we have

V̇ (t) ∈ xT
r⎡

i=1

αi (Pi + X)x + 1

2
xT

r⎡
i=1

r⎡
j=1

hi h j (AT
i Pj + Pj Ai + AT

j Pi + Pi A j )x

= xT
r⎡

i=1

h2
i [P̃α + AT

i Pi + Pi Ai ]x

+ 2xT
r⎡

i=1

r⎡
i< j

hi h j [P̃α + 1

2
(AT

i Pj + Pj Ai + AT
j Pi + Pi A j )]x

< xT
r⎡

i=1

h2
i Yii x + 2xT

r⎡
i=1

r⎡
i< j

hi h j (Yi j + Y ji )x, (⊂x ∗= 0)

Set H = h̄ ∪ In , above inequality can be rewritten as
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V̇ (t) < xT H T

⎪
⎨

Y11, · · · Y1r
...

. . .
...

Yr1, · · · Yrr

⎬
⎭ Hx = xT H T

⎥⎛
⎜

⎪
⎨

Y11, · · · Y1r
...

. . .
...

Yr1, · · · Yrr

⎬
⎭ +

⎡
i∈ j

μi j Ũi j

⎝⎞
⎟Hx

− xT
⎡
i=1

⎡
i∈ j

μi j H T Ũi j Hx (⊂x ∗= 0)

From the condition (4) in this theorem, we have

V̇ (t) < −xT
⎡
i=1

⎡
i∈ j

μi j H T Ũi j Hx, (⊂x ∗= 0).

From the properties of Kronecker product, we obtain

H T Ũi j H = (h̄T ∪ In)(Ui j ∪ In)(h̄ ∪ In) = [(h̄T Ui j ) ∪ In](h̄ ∪ In)

= (h̄T Ui j h̄) ∪ In = (h̄T Ui j h̄)In .

Therefore
V̇ (t) < −

⎡
i=1

⎡
i∈ j

μi j h̄
T Ui j h̄xT x.(⊂x ∗= 0)

Note that the property (8), above inequality implies that fuzzy system is asymptoti-
cally stable. This completes the proof.

The following example illustrating the effectiveness of the proposed approach.

Example 1. Consider the same T-S fuzzy system give in [8]:

A1 =
⎠−5 −4

−1 a

]
, A2 =

⎠ −4 −4
3b−2

5
3a−4

5

]
, A3 =

⎠ −3 −4
2b−3

5
2a−6

5

]
, A4 =

⎠−2 −4
b −2

]
.

where a √ [−20, 0] and b √ [0, 600]. The membership function of the fuzzy sets Fi
j

are

αi (xi ) =
⎥⎛
⎜

(1 − sin(xi ))/2, |xi | ∈ ψ/2
0, xi > ψ/2,

1, xi < −ψ/2.

, ρi (xi ) = 1 − αi (xi ).

The normalized membership functions are

h1 = α1(x1)α2(x2), h2 = α1(x1)ρ2(x2), h3 = ρ1(x1)α2(x2), h4 = ρ1(x1)ρ2(x2).

After some calculating, we have

ρi i = 1, (i = 1, 2, 3, 4), ρ12 = ρ13 = ρ24 = ρ34 = 0.25, ρ14 = ρ23 = 0.0624.
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Fig. 1 The regions of feasible solution for Lemma 2(∇) and Theorem 1(∇, +)
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Fig. 2 The regions of feasible solution for Theorem 1((1):∀; (2): ∀,×;(3):∀,×,+)

The stability of this fuzzy system is checked by using Lemma 2(in ) and the pro-
posed approach in Theorem 1, respectively, with assuming αk = 0.85. Using Matlab
LMI toolbox, the feasible solutions are obtained. Figure 1 shows that the proposed
approach yields a larger stable region than Lemma 2. It implies that conservativeness
of stability condition is reduced by the proposed approach.

In next experiment, we change the upper bound of the normalized membership
functions, Fig. 2 shows the feasible regions for Theorem 1 with three sets of the upper
bound, i.e. (1) ρ14 = ρ23 = 0.0624, (2) ρ14 = ρ23 = 0.02; (3) ρ14 = ρ23 = 0.002.

From the Fig. 2, we know that if the fire degree of the overlap between the differ-
ence membership functions is lower, then conservativeness of the stability condition
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will be less. On the other hand, there are only r(r +1)/2 scalars μi j which represent
the knowledge of membership functions overlap in Theorem 1.

Moveover, the conditions (2), (3) and (4) in Theorem 1 can can be rewritten as

(2a) P̃α + (AT
i Pi + Pi Ai ) + δ < Yii , (i = 1, · · · , r)

(3a) P̃α + 1
2 (AT

i Pj + Pj Ai + AT
j Pi + Pi A j ) + 2δ < Yi j + Y ji , (1 ∈ i ∈ j ∈ r).

(4a)

⎪
⎨

Y11, · · · Y1r
...

. . .
...

Yr1, · · · Yrr

⎬
⎭ < 0.

where δ = ⎣r
k=1

⎣
k∈l∈r ρkl Rkl .

3.2 State Feedback Design

In this section, we will discuss the design condition of the PDC fuzzy controller for
the close-loop system (5).

Theorem 2. Assume that |ḣi | ∈ αi , 0 ∈ hi h j ∈ ρi j , (i = 1, 2, · · · , r, i ∈ j),
μ > 0 is a given scalar, the T-S fuzzy system (5) is asymptotically stable if there exist
symmetric matrices Qi , Z, and matrices Yi j = Y T

ji , N , W j , and scalars μi j > 0,
(i ∈ j)

(1) Qi > 0, Qi + Z ∃ 0, (i = 1, · · · , r)

(2) θi i ∈ Yii , (i = 1, · · · , r)

(3) θi j + θ j i ∈ Yi j + Y ji , (i < j),
(4) Ỹ + ⎣

1∈i∈ j∈r μi j Ũi j < 0.

with

θi j =
⎠

γα − (Ai N + N T AT
i − Bi W j − W T

j BT
i ), Qi + N − Φ(N T AT

i − W T
j BT

i )

Q j + N T − Φ(Ai N − Bi W j ) Φ(N + N T )

]
,

Ỹ =

⎪
⎨

Y11 · · · Y1r
...

. . .
...

Yr1 · · · Yrr

⎬
⎭ , γα =

r⎡
k=1

αk(Qk + Z), Ũi j = Ui j ∪ I2n .

In this case, the control gains are given by Ki = Wi N−1(i = 1, 2, · · · , r).

Proof: Consider a candidate fuzzy Lyapunov function as follows

V = xT
r⎡

i=1

hi Pi x. (10)
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Its time-derivative is

V̇ = xT
r⎡

k=1

ḣk Pkx + xT
r⎡

i=1

hi Pi ẋ + ẋT
r⎡

j=1

h j Pj x

Let X be a symmetric matrix, from the conditions |ḣi | ∈ αi ,
⎣r

i=1 hi = 1 and⎣
i=1 ḣi X = 0. Consider the following null product which is similar to the procedure

in [9].

2(xT M + ẋT μM)(ẋ −
r⎡

i=1

r⎡
j=1

hi h j Gi j x) = 0.

where M is a slack matrix variable, and μ > 0 is a scalar. Then, we have

V̇ ∈ xT
r⎡

k=1

αk(Pk + X)x + xT
r⎡

i=1

hi Pi ẋ + ẋT
r⎡

j=1

h j Pj x

+ 2(xT M + ẋT μM)(ẋ −
r⎡

i=1

r⎡
j=1

hi h j Gi j x)

After some operation, we have

V̇ ∈
r⎡

i=1

r⎡
j=1

hi h j [xT
r⎡

k=1

αk(Pk + X)x (11)

− xT (MGi j + GT
i j MT )x + xT (Pi + M − μGT

i j MT )ẋ

+ ẋT (Pj + MT − μMGi j )x + ẋT μ(M + MT )ẋ]

=
r⎡

i=1

r⎡
j=1

hi h j [xT , ẋT ]
⎠

P̃α − (MGi j + GT
i j MT ) Pi + M − μGT

i j MT

Pj + MT − μMGi j μ(M + MT )

] ⎠
x
ẋ

]

(12)

By introducing a new vector z =
⎠

MT

MT

] ⎠
x
ẋ

]
, The expression (11) can be

rewritten as

V̇ ∈
r⎡

i=1

r⎡
j=1

hi h j zT (13)

⎠
M−1 P̃α M−T − (Gi j M−T + M−1GT

i j ), M−1 Pi M−T + M−T − μM−1GT
i j

M−1 Pj M−T + M−1 − μGi j M−T μ(M−T + M−1)

]
z.

Let
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Qk = M−1 Pk M−T , Z = M−1 X M−T , W j = K j M−T , N = M−T ,

γα = M−1 P̃α M−T = M−1
r⎡

k=1

αk(Pk + X)M−T =
r⎡

k=1

αk(Qk + Z).

The expression (13) becomes

V̇ ∈
r⎡

i=1

r⎡
j=1

hi h j zT (14)

⎠
γα − (Ai N + N T Ai − Bi W j − W T

j BT
i ), Qi + N − Φ(N T AT

i − W T
j BT

i )

Q j + M − Φ(Ai N − Bi W j ) Φ(N + N T )

]
z

= zT
r⎡

i=1

r⎡
j=1

hi h jθi j z = zT
r⎡

i=1

[h2
i θi i +

r⎡
i=1

r⎡
i< j

hi h j (θi j + θ j i )]z.

Applying the conditions of this theorem to above expression

V̇ < zT
r⎡

i=1

[h2
i Yii +

r⎡
i=1

r⎡
i< j

hi h j (Yi j + Y ji )]z, (⊂z ∗= 0)

Let H = h̄ ∪ I2n , above inequality can be rewritten as

V̇ < zT H T Ỹ Hz = zT H T [Ỹ +
⎡
i=1

⎡
i∈ j

μi j Ũi j ]Hz −
⎡
i=1

⎡
i∈ j

μi j zT H T Ũi j Hz

< −
⎡
i=1

⎡
i∈ j

μi j zT H T Ũi j Hz.(⊂z ∗= 0)

After applying the property (8), we have

V̇ < −
⎡
i=1

⎡
i∈ j

μi j zT H T Ũi j Hz = −
⎡
i=1

⎡
i∈ j

μi j h̄
T Ui j h̄zT z < 0. (⊂z ∗= 0)

Then the fuzzy system is asymptotically stable. This completes the proof.

The conditions of Theorem 2 are formed as linear matrix inequalities with matrix
variables Qi , Wi , N , Z , and Yi j , scalars μi j , which can be efficiently solved by using
convex optimization techniques.



562 Z. Miao

4 Conclusion

For a class of continuous-time T-S fuzzy systems, the knowledge on membership
functions overlap has been considered in stability analysis via a fuzzy Lyapunov
function. The previous stability and stabilization conditions have been relaxed by
the proposed approach. Both the stability and the stabilization conditions have been
written as linear matrix inequality (LMI) problems.
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Application of T-S Fuzzy Model in
Candidate-well Selection for Hydraulic
Fracturing

Xie Xiang-jun and Yu Ting

Abstract Hydraulic fracturing (HF) is the key technology of increasing production
and injection for low permeable reservoirs. The candidate-well selection for HF
is essential to oil and gas wells stimulation potential evaluation, which is crucial
to improve fracturing operation efficiency and reduce HF investment risk. The
candidate-well selection model is a high dimension, nonlinear, strong coupling,
multi-input single-output system. However, the conventional methods, such as pro-
duction performance comparisons can not be easy to use for this nonlinear model.
As a solution, the advanced methods such as T-S models in this paper can be effec-
tively used in the candidate-well selection for HF. First, the subtractive clustering
(SC) algorithm is employed to partition the fuzzy space of the given input–output
data, which is adopted as the initial premise structure and parameters. Second, the
clusters obtained on the first stage are used to initialize the fuzzy c-means (FCM)
algorithm, which can obtain optimal cluster number and cluster centers. Third, the
consequent parameters are identified by using the orthogonal least-squares (OLS)
algorithm. Finally, the proposed approach is successfully applied to candidate-well
selection for HF in Hechuan gas field in Sichuan basin, and validation results have
demonstrated the effectiveness of the proposed method.

Keywords Hydraulic fracturing · T-S fuzzy model · Stimulation potential ·
Candidate-well selection.

1 Introduction

The formation of Hechuan in Sichuan basin is a typical gas reservoir with low per-
meability and low porosity. Since the geological condition is so complex, natural
flow yields low production. However, such reservoirs are capable of producing at
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commercial rates with the help of HF technology. The candidate-well selection for
HF is crucial. Therefore, it is evident that to adopt this technology, considerable
efforts have to be made in candidate-well selection. The model of candidate-well
selection is a high dimension, nonlinear, strong coupling, multi-input single-output
system. However, the conventional methods, including production performance com-
parisons, pattern recognition technology, production type curve matching [1–3], can
not be easy to use for this nonlinear model. On the other hand, advanced methods
such as T-S fuzzy systems have been proved to be useful in complex nonlinear sys-
tem [4], especially, showing excellent ability in describing complicated dynamic of
nonlinear behaviors of a process [5]. Therefore, T-S fuzzy model may be a good
choice to describe such systems.

In identification of fuzzy models, in order to obtain model structure and parameter
estimation, one of the most popular approaches is the widely used FCM algorithm.
However, the FCM algorithm could not guarantee unique clustering result because
initial cluster number and fuzzy c-partition matrix are chosen randomly. To solve the
problem, an initialization method for the FCM algorithm based on the SC algorithm
is proposed. In the paper, the OLS algorithm is proposed for the identification of the
consequent parameters.

The paper is organized as follows. In Section 2, T-S fuzzy model is proposed.
Section 3 figures obtainment of the initial clustering number and cluster centers of
the FCM algorithm through SC algorithm. Section 4 describes the identification of
the premise structure and parameter using FCM algorithm. Section 5 represents iden-
tification of the consequent parameter using OLS algorithm. Next, we deal with the
problem of candidate-well selection for HF in Hechuan region.

2 Fuzzy Model

T-S fuzzy model, proposed in [6], is described by several fuzzy If-Then rules which
locally represent linear relations of the input and output. Multi-input single-output
(MISO) model is of the following form:

Rk : If x1 is Ak1 and x2 is Ak2 and · · · and xm is Akm

Then yk = bk0 + bk1x1 + bk2x2 + · · · + bkm xm (1)

where k = 1, 2, 3, · · · , c, c is the number of fuzzy rules, xi (i = 1, 2, · · · , m)

is the i-th input variable, m is the dimension of input variables, Aki is a fuzzy set,
premise identification is to obtain the membership function of the fuzzy set, yk is the
i-th output, bki is the consequent parameters.

Given an input (x√
1 , x√

2 , · · · , x√
m), the final output is inferred by a weighted mean

defuzzification as follows:
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y =
c∑

k=1

(τk · yk) =
c∑

k=1

(τk · (bk0 + bk1x√
1 + · · · + bkm x√

m)) (2)

where the weight τk is the contribution degree function of the k-th rule of the premise
for the output of the overall model.

3 FCM Algorithm

The fuzzy c-means (FCM) algorithm [7] is one of the most popular fuzzy clustering
algorithms and it has widely been used in object segmentation [8], data preprocessing
[9] and pattern recognition [10], Which is applied in premise structure and parameter
identification in this paper.

Let X= {x1,x2, · · · ,xn} ∈ Rm , where n is the number of data points and m is the
dimension of each vector xk . Suppose c is the cluster number, the FCM algorithm is
an iterative optimization that minimizes the following objective function:

J (U, V ) =
c∑

j=1

n∑
h=1

(u jh)p(d jh)2 (3)

where:
P: the weighting exponent (typically p=2)
V: the cluster center vertor, V = {v1, v2, · · · , vc}
U : the fuzzy membership functions matrix, U = (u jh)c×n

u jh : the value of the membership function of the h-th data point belonging to the
j-th cluster center, u jh is defined by

u jh = 1∑c
t=1 (

≤v j −xh≤
≤vt −xh≤ )

2
p−1

, j = 1, 2, · · · , c (4)

which is constrained with the following:

u jh ∃ [0, 1],∗ j, h j = 1, 2, · · ·, c, h = 1, 2, · · ·, n (5)
c∑

j=1

u jh = 1,∗h h = 1, 2, · · ·, n (6)

0 <

n∑
h=1

u jh < n,∗ j j = 1, 2, · · ·, c (7)

dhj : dhj =
∥∥∥xh − vl

j

∥∥∥, where denotes the distance fromxh to the cluster centre vl
j

for the l-th iteration.
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The cluster centers and fuzzy membership functions matrix are updated through
an iterative process using Eqs. (8) and (9), respectively.

vl
j =

n∑
h=1

(ul
jh)pxk/

n∑
h=1

(ul
jh)p, j = 1, 2, · · · , c (8)

ul+1
jh = 1/

c∑
t=1

(
dhj

dht
)

2
p−1 , j = 1, 2, · · · , c (9)

4 SC Algorithm

However, the FCM algorithm is sensitive to the initial value, which could not guar-
antee the best clustering result because initial cluster number and fuzzy c-partition
matrix are chosen randomly. To solve the problem, an initialization method for the
FCM algorithm based on the subtractive clustering (SC) algorithm is proposed [11].
SC algorithm, proposed in the literature [12], is one of the automated data-driven
based methods for constructing the primary fuzzy models and has the benefit of
avoiding the explosion of the rule base. In this paper, SC algorithm is used to find
initial premise structure and parameters.

SC algorithm is an improved version of the mountain clustering method [13].
Consider a group of n data points(x̂1, x̂2, · · · , x̂n), where x̂i is a vector of the feature
space. SC algorithm labels each data point as a potential cluster center, the potential
function of each data point can be assigned as follows:

D(i) =
m∑

j=1

exp

(
−4||x̂(i) − x̂( j)||2

γ 2
α

)
, (i = 1, 2, · · · , n) (10)

whereγαis a positive constant, which defines the neighborhood radius of each cluster
center x̂(i). The density of surrounding data points is high, and these points have
also high potential values.

Potential for each data point is calculated by the using of this potential function
(10), and the one with the highest potential is selected as the first cluster center, after
the k-th cluster center is determined, Letx̂√(k)be the k-th cluster center andD√(k)be
its potential. Next, the potential of remaining data point is revised by Eqs. (11), which
quashes the potential for surrounding cluster centre points to be chosen as the next
cluster.

D(i) = D(i) − D√(k) exp

(
−4||x̂(i) − x̂√(k)||2

γ 2
β

)
(11)
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The new cluster center is chosen as the point having the highest potential. Whereγβ is
a positive constant. Typicallyγβ = 1.5γα , which is usually set to avoid obtaining
closely spaced cluster centers.

This iteration procedure continues until stopping criteria is reached.

5 OLS Algorithm

Given an input (x√
1 , x√

2 , · · · , x√
m), the final output of the model is calculated as follows:

y =
c∑

k=1

τk yk =
c∑

k=1

τk (bk0 + bk1x1 + bk2x2 + · · · + bkm xm )

= [τ1, τ1x1, · · · , τ1xm , · · · , τc, τcx1, · · · , τcxm ] × [b10, b11, · · · , b1m , · · · , bc0, bc1, · · · , bcm ]
(12)

Substituting n inputs into (12) yields matrix form (13).

Y = W B (13)

where B is the consequent parameter.
The OLS algorithm is proposed for the identification of the consequent parameter

B. This method can transform column vectors of matrixU into orthogonal columns ui ,
which could be completed through Gram-Schmidt orthogonalization [14] as follows:

The matrix W is decomposed into

W = UR (14)

whereU is a matrix with orthogonal columns ui , and R is an upper triangular matrix
with unity diagonal elements. Substituting (14) into (13) yields

Y = Ug (15)

where g=RB, R is an invertible matrix.
The consequent parameter can be calculated by the using of the matrix relation

B = R−1g (16)

6 Application in Candidate-well Selection

The proposed identification approach is applied to candidate-well selection for HF
in Hechuan region. In this paper, four attributes are given to forecast the wells deliv-
erability after fracturing in Hechuan region: x1: reservoir thickness, x2: porosity,
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Table 1 Clustering result of the FCM algorithm initialized by SC algorithm

Center cluster x1 x2 x3 x4

1 12.4990 8.9873 50.6060 4.6733
2 16.2270 6.5983 39.8570 3.8323
3 19.6670 9.2518 64.5250 4.1126
4 11.2000 9.7002 85.3740 4.9502
5 29.0550 8.9350 53.3180 4.5605
6 24.5270 6.9376 36.4940 3.6664
7 8.7713 7.4699 31.6870 3.8774

x3: gas saturation, x4: structural feature parameters. The data set contains input-
output data pairs of 45 fractured wells of Hechuan region, the number of data used
for identification and prediction are 35 fractured wells and remaining 10 fractured
wells, respectively. Table 1 show the center cluster by using a combination of FCM
algorithm an SA.

Eq.(17) shows the identification result, the fuzzy model consists of seven If-Then
rules.

R1 : If x1 is 12.499 and x2 is 8.9873 and x3 is 50.606 and x4 is 4.6733

Then y1 = 118.84 + 1.7828x1 − 16.753x2 − 0.4661x3 + 2.7655x4

R2 : if x1 is 16.227 and x2 is 6.5983 and x3 is 39.857 and x4 is 3.8323

Then y2 = −15.159 − 3.7744x1 + 37.589x2 − 3.4136x3 − 0.83067x4

R3 : if x1 is 19.667 and x2 is 9.2518 and x3 is 64.525 and x4 is 4.1126

Then y3 = 324.93 − 0.36133x1 − 12.463x2 − 2.63946x3 − 7.6535x4

R4 : if x1 is 11.2 and x2 is 9.7002 and x3 is 85.374 and x4 is 4.9502

Then y4 = 229.87 + 2.5752x1 + 6.6395x2 − 3.3085x3 + 6.3284x4

R5 : if x1 is 29.055 and x2 is 8.935 and x3 is 53.318 and x4 is 4.5605

Then y5 = −114.07 − 4.3485x1 + 41.419x2 − 4.574x3 + 16.823x4

R6 : if x1 is 24.527 and x2 is 6.9376 and x3 is 36.494 and x4 is 3.6664

Then y6 = −140.48 + 11.915x1 − 70.034x2 + 8.2184x3 − 10.153x4

R7 : if x1 is 8.7713 and x2 is 7.4699 and x3 is 31.687 and x4 is 3.8774

Then y7 = 54.793 − 1.0307x1 + 10.691x2 − 3.0819x3 − 0.1965x4 (17)

Where, contribution degree function of the k-th rule of the premise for the output of
the overall model is defined as follows:

τ h(i) = exp

(
−4||̂x(i) − x √ (h)||2

γ 2
α

)
, h = 1, 2, · · · , 7 (18)

where, x √ (h)is theh-th cluster center of fuzzy subspace.
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Table 2 Comparison of forecasting production and actual production

Well name y, 104m3/d y*, 104m3/d Error, %

H001-15-x1 4.8182 4.9000 -1.67
H001-3-x2 3.3604 3.4100 -1.45
H124 8.0654 8.2300 -2.00
H4 0.6651 0.5400 23.16
H6 2.0906 1.9200 8.89
H1 4.8006 3.8500 24.69
H101 0.8178 0.6900 18.52
H7 1.5157 1.3900 9.04
H121 0.4869 0.7100 -31.41
H001-9-x1 0.9546 1.3200 -27.68

Table 2 shows the forecasting production y, actual production y* and error values
of 10 fractured gas wells in Hechuan region based on the proposed model.

The forecasting production agrees with the actual production in engineering
accepting error, except H121 well, proving that the model in this paper is reasonable
and reliable.

If the postfrac flow of the gas well is less than 0.6×104m3/d, it is considered as
low producing well and fracturing becomes unnecessary. Considering the model of
precision, the low producing well is modified as 0.8×104m3/d. The H4 well was
suggested unfracturing since postfrac production forecast based on the model in this
paper is less than 0.8×104m3/d. However, the wells were still fracturing and the
postfrac production was consistent with the forecast results.

7 Conclusion

In this paper, we have proposed T-S fuzzy model for candidate-well selection for
HF in Hechuan region, which not only can conveniently realize the yield potential
evaluation of the candidate well, but also can accurately forecast production after
fracturing. It provides the theoretic basis for candidate-well selection in Hechuan
area and also can extends to other oil fields.
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