Keywords

1 Introduction

Theory of quasi-uniformity in completely distributive lattices was firstly introduced by Erceg [1] and Hutton [2]. Then it was developed into various forms and was extended into different topological spaces [39]. In [10], the author introduced the concept of \(\alpha \)-quasi uniform in \(\alpha \)-layer order-preserving operator spaces, and revealed the relations between \(\alpha \)-layer topological spaces and \(\alpha \)-quasi uniform spaces. In this chapter, firstly, we further study properties of \(\alpha \)-remote neighborhood mappings. Then we discuss some characterizations of \(\alpha \)-quasi uniformities. Secondly, we introduce the concept of \(\alpha \)-P.Q. metrics, and establish the relations between \(\alpha \)-quasi uniforms and \(\alpha \)-P.Q. metrics.

2 Preliminaries

In this chapter, \(X, Y\) will always denote nonempty crisp sets, A mapping \(A:X\rightarrow L\) is called an \(L\)-fuzzy set. \(L^X\) is the set of all \(L\)-fuzzy sets on \(X\). An element \(e\in L\) is called an irreducible element in \(L\), if \(p\vee q=e\) implies \(p=e\) or \(q=e\), where \(p, q\in L\). The set of all nonzero irreducible elements in \(L\) will be denoted by \(M(L)\). If \(x\in X\), \(\alpha \in M(L)\), then \(x_{\alpha }\) is called a molecule in \(L^X\). The set of all molecules in \(L^X\) is denoted by \(M^*(L^X)\). If \(A\in L^X\), \(\alpha \in M(L)\), take \(A_{[\alpha ]}=\{x\in X\mid A(x)\ge \alpha \}\) [3] and \(A^{\alpha }=\vee \{x_{\alpha }\mid x_{\alpha }\not \le A\}\) [11]. It is easy to check \((A_{[\alpha ]})^{\prime }= A^{\alpha }_{[\alpha ]}\).

Let \((L^X, \delta )\) be an \(L\)-fuzzy topological space, \(\alpha \in M(L)\). \(\forall A\in L^X\), \(D_{\alpha }(A)=\wedge \{G\in \delta ^{\prime }\mid G_{[\alpha ]}\supset A_{[\alpha ]}\}.\) Then the operator \(D_{\alpha }\) is a \(\alpha \)-closure operator of some co-topology on \(L^X\), denoted by \(D_{\alpha }(\delta )\). We called \(\alpha \)-layer topology. The pair \((L^X,D_{\alpha }(\delta ))\) is called \(\alpha \)-layer co-topological space [11]. An \(\alpha \)-layer topological space\((L^X,D_{\alpha }(\delta ))\) is called an \(\alpha \)-\(C_{II}\) space, if there is a countable base \(\fancyscript{B}_{\alpha }\) of \(D_{\alpha }(\delta )\).

A mapping \(F_{\alpha }: L^X\rightarrow L^Y\) is called an \(\alpha \)-mapping, if \(F_{\alpha }(A)_{[\alpha ]}=F_{\alpha }(B)_{[\alpha ]}\) whenever \(A_{[\alpha ]}=B_{[\alpha ]}\), and \(F_{\alpha }(A)=0_X\) whenever \(A_{[\alpha ]}=\emptyset \). The mapping \(F^{-1}_{\alpha }: L^Y\rightarrow L^X\) is called the reverse mapping of \(F_{\alpha }\), if for each \(B\in L^Y\), \(F^{-1}_{\alpha }(B)=\vee \{A\in L^X\mid F_{\alpha }(A)_{[\alpha ]}\subset B_{[\alpha ]}\}.\) Clearly, \(F^{-1}_{\alpha }\) is also an \(\alpha \)-mapping.

An \(\alpha \)-mapping \(F_{\alpha }: L^X\rightarrow L^Y\) is called an \(\alpha \)-order-preserving homomorphism (briefly \(\alpha \)-\(oph\)), iff both \(F_{\alpha }\) and \(F^{-1}_{\alpha }\) are \(\alpha \)-union preserving mappings.

An \(\alpha \)-mapping \(F_{\alpha }: L^X\rightarrow L^Y\) is called an \(\alpha \)-Symmetric mapping, if for every \(A,B\in L^X\), we have

$$\begin{aligned} \exists C_{[\alpha ]}\not \subset A_{[\alpha ]}^{\alpha }, B_{[\alpha ]}\not \subset F_{\alpha }(C)_{[\alpha ]} \Leftrightarrow \exists D_{[\alpha ]}\not \subset B_{[\alpha ]}^{\alpha }, A_{[\alpha ]}\not \subset F_{\alpha }(D)_{[\alpha ]}. \end{aligned}$$

An \(\alpha \)-mapping \(f_{\alpha }:L^X\rightarrow L^X\) is called an \(\alpha \)-remote neighborhood mapping, if for each \(A\in L^X\) with \(A_{[\alpha ]}\ne \emptyset \), we have \(A_{[\alpha ]}\not \subset f_{\alpha }(A)_{[\alpha ]}\). The set of all \(\alpha \)-remote neighborhood mappings is denoted by \(\fancyscript{F}_{\alpha }(L^X)\), (briefly by \(\fancyscript{F}_{\alpha }\)).

For \(f_{\alpha },g_{\alpha }\in \fancyscript{F}_{\alpha }\), let’s define

  1. (1)

    \(f_{\alpha }\le g_{\alpha } \Leftrightarrow \forall A\in L^X\), \(f_{\alpha }(A)_{[\alpha ]} \subset g_{\alpha }(A)_{[\alpha ]}\).

  2. (2)

    \((f_{\alpha }\vee g_{\alpha })(A)=f_{\alpha }(A)\vee g_{\alpha }(A)\).

  3. (3)

    \((f_{\alpha }\odot g_{\alpha })(A)= \wedge \{f_{\alpha }(B)\mid \exists B\in L^X\), \(B_{[\alpha ]}\not \subset g_{\alpha }(A)_{[\alpha ]}\}\).

An non-empty subfamily \(\fancyscript{D}_{\alpha }\subset \fancyscript{F}_{\alpha }\) is called an \(\alpha \)-quasi-uniform, if \(\fancyscript{D}_{\alpha }\) satisfies:

(\(\alpha \)-U1) \(\forall f_{\alpha }\in \fancyscript{D}_{\alpha },g_{\alpha }\in \fancyscript{F}_{\alpha }\) with \(f_{\alpha }\le g_{\alpha }\), then \(g_{\alpha }\in \fancyscript{D}_{\alpha }\).

(\(\alpha \)-U2) \(\forall f_{\alpha },g_{\alpha }\in \fancyscript{D}_{\alpha }\) implies \(f_{\alpha }\vee g_{\alpha }\in \fancyscript{D}_{\alpha }\).

(\(\alpha \)-U3) \(\forall f_{\alpha }\in \fancyscript{D}_{\alpha }\), then \(\exists g_{\alpha }\in \fancyscript{D}_{\alpha }\), such that \(g_{\alpha }\odot g_{\alpha }\ge f_{\alpha }\).

\((L^X,\fancyscript{D}_{\alpha })\) is called an \(\alpha \)-quasi-uniform space. A subset \(\fancyscript{B}_{\alpha }\subset \fancyscript{D}_{\alpha }\) is called a base of \(\fancyscript{D}_{\alpha }\), if \(\forall f_{\alpha }\in \fancyscript{D}_{\alpha }\), there is \(g_{\alpha }\in \fancyscript{B}_{\alpha }\), such that \(f_{\alpha }\le g_{\alpha }\). A subset \(\fancyscript{A}_{\alpha }\subset \fancyscript{D}_{\alpha }\) is called a subbase of \(\fancyscript{D}_{\alpha }\), if all of finite unions of the elements in \(\fancyscript{A}_{\alpha }\) consist a base of \(\fancyscript{D}_{\alpha }\). An \(\alpha \)-quasi-uniform \(\fancyscript{D}_{\alpha }\) is called an \(\alpha \)-uniform, if \(\fancyscript{D}_{\alpha }\) possesses a base whose elements are \(\alpha \)-symmetric. Usually, we call this base \(\alpha \)-symmetric base.

In [10], the author discussed the relation between an \(\alpha \)-quasi uniform space and an \(\alpha \)-layer co-topological space as following:

Let \(\fancyscript{D}_{\alpha }\) be an \(\alpha \)-quasi uniform on \(L^X\). \(\forall A\in L^X\), Let’s take \(c_{\alpha }(A)=\vee \{B\in L^X\mid \forall f_{\alpha }\in \fancyscript{D}_{\alpha }, A_{[\alpha ]}\not \subset f_{\alpha }(B)_{[\alpha ]}\}.\) Then \(c_{\alpha }\) is an \(\alpha \)-closure operator of some \(L\)-fuzzy co-topology, which is denoted by \(\eta _{\alpha }(\fancyscript{D}_{\alpha })\). Each \(\alpha \)-layer topological space \((L^X,D_{\alpha }(\delta ))\) can be \(\alpha \)-quasi uniformitale, i.e., there is an \(\alpha \)-quasi uniform \(\fancyscript{D}_{\alpha }\), such that \(D_{\alpha }(\delta )=\eta _{\alpha }(\fancyscript{D}_{\alpha })\).

Other definitions and notes not mentioned here can be seen in [12].

3 Properties of \(\alpha \)-Remote Neighborhood Mappings

Theorem 3.1

Let \(f_{\alpha },g_{\alpha }\in \fancyscript{F}_{\alpha }\). Then

  1. (1)

    \(f_{\alpha }\vee g_{\alpha }\in \fancyscript{F}_{\alpha }\), \(f_{\alpha }\odot g_{\alpha }\in \fancyscript{F}_{\alpha }\).

  2. (2)

    \(f_{\alpha }\odot g_{\alpha }\le f_{\alpha }, f_{\alpha }\odot g_{\alpha }\le g_{\alpha }\).

  3. (3)

    \((f_{\alpha }\odot g_{\alpha })\vee h_{\alpha }=(f_{\alpha }\vee h_{\alpha })\odot (g_{\alpha }\vee h_{\alpha })\),

\((f_{\alpha }\vee g_{\alpha })\odot h_{\alpha }=(f_{\alpha }\odot h_{\alpha })\vee (g_{\alpha }\odot h_{\alpha })\).

Theorem 3.2

Let \(f_{\alpha }\in \fancyscript{F}_{\alpha }\). If for each \(A\in L^X\),

$$\begin{aligned} f^{\nabla }_{\alpha }(A)=\wedge \{f_{\alpha }(B) \mid A_{[\alpha ]}\subset \bigcup \limits _{G_{[\alpha ]}\not \subset B^{\alpha }_{[\alpha ]}}f_{\alpha }(G)^{\alpha }_{[\alpha ]}\}, \end{aligned}$$

and

$$\begin{aligned} f^{\diamond }_{\alpha }(A)=\wedge \{f_{\alpha }(B) \mid \bigcup \limits _{G_{[\alpha ]}\not \subset B_{[\alpha ]}^{\alpha }} f_{\alpha }(G)_{[\alpha ]}^{\alpha }\not \subset f_{\alpha }(A)_{[\alpha ]}\}. \end{aligned}$$

Then

  1. (1)

    \(f^{\nabla }_{\alpha },f^{\diamond }_{\alpha }\in \fancyscript{F}_{\alpha }\).

  2. (2)

    \(f^{\diamond }_{\alpha }\le f^{\nabla }_{\alpha }\le f_{\alpha }\).

  3. (3)

    \(f^{\diamond }_{\alpha }(A)=\wedge \{f^{\nabla }_{\alpha }(B)\mid B_{[\alpha ]}\not \subset f_{\alpha }(A)_{[\alpha ]}\} =(f^{\nabla }_{\alpha }\odot f_{\alpha })(A)\).

  4. (4)

    \(f^{\nabla }_{\alpha }\) is \(\alpha \)-Symmetric.

Proof

(1) By \(A_{[\alpha ]}\subset \bigcup \limits _{G_{[\alpha ]}\not \subset A_{[\alpha ]}^{\alpha }}f_{\alpha }(G)_{[\alpha ]}^{\alpha }\), we have \(A_{[\alpha ]}\not \subset f^{\nabla }_{\alpha }(A)_{[\alpha ]}\). Thus \(f^{\nabla }_{\alpha }\in \fancyscript{F}_{\alpha }\). Again by \(A_{[\alpha ]}\not \subset f_{\alpha }(A)_{[\alpha ]}\), we get \(\bigcup \limits _{G_{[\alpha ]}\not \subset A_{[\alpha ]}^{\alpha }}f_{\alpha }(G)_{[\alpha ]}^{\alpha }\not \subset f_{\alpha }(A)_{[\alpha ]}\). Therefore, \(f^{\diamond }_{\alpha }\in \fancyscript{F}_{\alpha }\).

(2) The proof is obvious.

(3) For each \(B\in L^X\),

$$\begin{aligned} \bigcup \limits _{G_{[\alpha ]}\not \subset B_{[\alpha ]}^{\alpha }} f_{\alpha }(G)_{[\alpha ]}^{\alpha }\not \subset f_{\alpha }(B)_{[\alpha ]}&\Leftrightarrow \exists D_{[\alpha ]}\subset \bigcup \limits _{G_{[\alpha ]}\not \subset A_{[\alpha ]}^{\alpha }} f_{\alpha }(G)_{[\alpha ]}^{\alpha }, D_{[\alpha ]}\not \subset f_{\alpha }(B)_{[\alpha ]} \\&\Leftrightarrow \exists D_{[\alpha ]}\subset \bigcup \limits _{G_{[\alpha ]}\not \subset B_{[\alpha ]}^{\alpha }} f_{\alpha }(G)_{[\alpha ]}^{\alpha },D_{[\alpha ]}\not \subset f_{\alpha }(B)_{[\alpha ]}. \end{aligned}$$

So

$$\begin{aligned} f^{\diamond }_{\alpha }(A)=\wedge \{f^{\nabla }_{\alpha }(D)\mid D_{[\alpha ]}\not \subset f_{\alpha }(D)_{[\alpha ]}\} =(f^{\nabla }_{\alpha }\odot f_{\alpha })(A). \end{aligned}$$

(4) \(\forall D,E\in L^X\). If there is \( A_{[\alpha ]}\not \subset D_{[\alpha ]}^{\alpha }\), such that

$$\begin{aligned} E_{[\alpha ]}\not \subset f^{\nabla }_{\alpha }(A)_{[\alpha ]}=\cap \{f_{\alpha }(B)_{[\alpha ]} \mid A_{[\alpha ]}\subset \bigcup \limits _{G_{[\alpha ]}\not \subset B_{[\alpha ]}^{\alpha }}f_{\alpha }(G)_{[\alpha ]}^{\alpha }\}. \end{aligned}$$

Then there is \(B\in L^X\), satisfying \(E_{[\alpha ]}\not \subset f_{\alpha }(B)_{[\alpha ]}\) and \(A_{[\alpha ]}\subset \bigcup \limits _{G_{[\alpha ]}\not \subset (B_{[\alpha ]}^{\alpha }}f_{\alpha }(G)_{[\alpha ]}^{\alpha }\). Clearly, \(\bigcup \limits _{G_{[\alpha ]}\not \subset B_{[\alpha ]}^{\alpha }}f_{\alpha }(G)_{[\alpha ]}^{\alpha }\not \subset D_{[\alpha ]}^{\alpha }\), i.e., \(D_{[\alpha ]}\not \subset \bigcap \limits _{G_{[\alpha ]}\not \subset B_{[\alpha ]}^{\alpha }}f_{\alpha }(G)_{[\alpha ]}\). Thus, there is \(C_{[\alpha ]}\not \subset B_{[\alpha ]}^{\alpha }\), such that \(D_{[\alpha ]}\not \subset f_{\alpha }(C)_{[\alpha ]}\). Conclusively, we have

$$\begin{aligned} D_{[\alpha ]}\subset f_{\alpha }(B)_{[\alpha ]}^{\alpha }\subset \bigcup \limits _{G_{[\alpha ]}\not \subset B_{[\alpha ]}^{\alpha }}f_{\alpha }(G)_{[\alpha ]}^{\alpha }. \end{aligned}$$

and

$$\begin{aligned} D_{[\alpha ]}\not \subset \cap \{f_{\alpha }(C)_{[\alpha ]} \mid D_{[\alpha ]}\subset \bigcup \limits _{H_{[\alpha ]}\not \subset C_{[\alpha ]}^{\alpha }}f_{\alpha }(H)_{[\alpha ]}^{\alpha }\}= f^{\nabla }_{\alpha }(D)_{[\alpha ]}. \end{aligned}$$

Therefore, \(f^{\nabla }_{\alpha }\) is \(\alpha \)-Symmetric.

Theorem 3.3

Let \(f_{\alpha }\) be an \(\alpha \)-Symmetric remote neighborhood mapping, then

  1. (1)

    \(C_{[\alpha ]}\not \subset f_{\alpha }(A)_{[\alpha ]}\Rightarrow A_{[\alpha ]}\subset \bigcup \limits _{D_{[\alpha ]}\not \subset C_{[\alpha ]}^{\alpha }}f_{\alpha }(D)_{[\alpha ]}^{\alpha }\).

  2. (2)

    \(A_{[\alpha ]}\subset \bigcup \limits _{D_{[\alpha ]}\not \subset C_{[\alpha ]}^{\alpha }}f_{\alpha }(D)_{[\alpha ]}^{\alpha }\Rightarrow C_{[\alpha ]}\not \subset f_{\alpha }(A)_{[\alpha ]}\).

Proof

(1) Since \(f_{\alpha }\) is an \(\alpha \)-Symmetric mapping. \(\forall D_{[\alpha ]}\not \subset A_{[\alpha ]}^{\alpha }\), there is \(B_{[\alpha ]}\not \subset C_{[\alpha ]}^{\alpha }\), satisfying \(D_{[\alpha ]}\not \subset f_{\alpha }(B)_{[\alpha ]}\). Therefore,

$$\begin{aligned} A_{[\alpha ]}^{\alpha }\supset \bigcap \limits _{B_{[\alpha ]}\not \subset C_{[\alpha ]}^{\alpha }} f_{\alpha }(B)_{[\alpha ]}, ~~~i.e., A_{[\alpha ]}\subset \bigcup \limits _{D_{[\alpha ]}\not \subset C_{[\alpha ]}^{\alpha }}f_{\alpha }(D)_{[\alpha ]}^{\alpha }. \end{aligned}$$

(2) By \(A_{[\alpha ]}\subset \bigcup \limits _{D_{[\alpha ]}\not \subset C_{[\alpha ]}^{\alpha }}f_{\alpha }(D)_{[\alpha ]}^{\alpha }\), we have \(A_{[\alpha ]}^{\alpha }\supset \bigcap \limits _{D_{[\alpha ]}\not \subset C_{[\alpha ]}^{\alpha }}f_{\alpha }(D)_{[\alpha ]}\). So \(\forall x\not \in A_{[\alpha ]}^{\alpha }\), there is \(D_{[\alpha ]}\not \subset C_{[\alpha ]}^{\alpha }\), such that \(x\not \in f_{\alpha }(D)_{[\alpha ]}\). Since \(f_{\alpha }\) is \(\alpha \)-Symmetric. There is \(B^x_{[\alpha ]}\not \subset x_{[\alpha ]}^{\alpha }\), such that \(C_{[\alpha ]}\not \subset f_{\alpha }(B^x)_{[\alpha ]}\). Take \(E=\vee \{B^x\mid x\not \in A_{[\alpha ]}^{\alpha }\}\), then \(x\not \subset E_{[\alpha ]}^{\alpha }\). This implies \(E_{[\alpha ]}^{\alpha }\subset A_{[\alpha ]}^{\alpha }\), i.e., \(A_{[\alpha ]}\subset E_{[\alpha ]}\). Furthermore, we can conclude \(C_{[\alpha ]}\not \subset f_{\alpha }(A)_{[\alpha ]}\). Otherwise, if \(C_{[\alpha ]}\subset f_{\alpha }(A)_{[\alpha ]}\subset f_{\alpha }(E)_{[\alpha ]}\), then it contradicts with the statement: for each \(B^x\le E , C_{[\alpha ]}\not \subset f_{\alpha }(B^x)_{[\alpha ]}\).

Theorem 3.4

Let \(f_{\alpha }\in \fancyscript{F}_{\alpha }\). Then

$$\begin{aligned} (f^{\nabla }_{\alpha })_{\alpha }^{\nabla }\le f^{\nabla }_{\alpha }\odot f^{\nabla }_{\alpha } \le f^{\diamond }_{\alpha }\le f_{\alpha }\odot f_{\alpha }. \end{aligned}$$

Proof

\(\forall A\in L^X\),

$$\begin{aligned} (f^{\nabla }_{\alpha })_{\alpha }^{\nabla }(A)&= \wedge \{f_{\alpha }^{\nabla }(B) \mid A_{[\alpha ]}\subset \bigcup \limits _{G_{[\alpha ]}\not \subset B_{[\alpha ]}^{\alpha }}f_{\alpha }^{\nabla }(G)_{[\alpha ]}^{\alpha }\} \\&\le \wedge \{f_{\alpha }^{\nabla }(C) \mid C_{[\alpha ]}\not \subset f_{\alpha }^{\nabla }(A)_{[\alpha ]}\}\\&= (f_{\alpha }^{\nabla }\odot f_{\alpha }^{\nabla })(A). \end{aligned}$$

By Theorem 2 (2), \(f_{\alpha }^{\nabla }\le f_{\alpha }\), we have

$$\begin{aligned} (f_{\alpha }^{\nabla }\odot f_{\alpha }^{\nabla })(A)&= \wedge \{f_{\alpha }^{\nabla }(C)\mid C_{[\alpha ]}\not \subset f_{\alpha }^{\nabla }(A)_{[\alpha ]}\}\\&\le \wedge \{f_{\alpha }^{\nabla }(C) \mid C_{[\alpha ]}\not \subset f_{\alpha }(A)_{[\alpha ]}\}\\&= f^{\diamond }_{\alpha }(A). \end{aligned}$$

Therefore

$$\begin{aligned} f^{\diamond }_{\alpha }(A)=\wedge \{f_{\alpha }^{\nabla }(C) \mid C_{[\alpha ]}\not \subset f_{\alpha }(A)_{[\alpha ]}\} \le \wedge \{f_{\alpha }(C) \mid C_{[\alpha ]}\not \subset f_{\alpha }(A)_{[\alpha ]}\}=(f_{\alpha }\odot f_{\alpha })(A). \end{aligned}$$

Theorem 3.5

Let \(f_{\alpha }\in \fancyscript{F}_{\alpha }\). Then

  1. (1)

    \(f^{\nabla }_{\alpha }\le f_{\alpha }\odot f_{\alpha }\).

  2. (2)

    \(f_{\alpha }\odot f_{\alpha }\odot f_{\alpha }=f^{\diamond }_{\alpha }\).

Proof

(1) By Theorem 2, we have

$$\begin{aligned} f^{\nabla }_{\alpha }(A)&= \wedge \{f_{\alpha }(B) \mid A_{[\alpha ]}\subset \bigcup \limits _{G_{[\alpha ]}\not \subset B_{[\alpha ]}^{\alpha }}f_{\alpha }(G)_{[\alpha ]}^{\alpha }\}\\&\le \wedge \{f_{\alpha }(B) \mid A_{[\alpha ]}\not \subset f_{\alpha }(A)_{[\alpha ]}\} \\&= f_{\alpha }\odot f_{\alpha }(A). \end{aligned}$$

(2) By Theorem 3 (2), we have

$$\begin{aligned} \bigcup \limits _{D_{[\alpha ]}\not \subset C_{[\alpha ]}^{\alpha }}f_{\alpha }(D)_{[\alpha ]}^{\alpha }\not \subset f_{\alpha }(A)_{[\alpha ]}&\Rightarrow \exists B_{[\alpha ]}\subset \bigcup \limits _{D_{[\alpha ]}\not \subset C_{[\alpha ]}^{\alpha }}f_{\alpha }(D)_{[\alpha ]}^{\alpha }, B_{[\alpha ]}\not \subset f_{\alpha }(A)_{[\alpha ]}\\&\Rightarrow \exists B_{[\alpha ]}\not \subset f_{\alpha }(A)_{[\alpha ]}, C_{[\alpha ]}\not \subset f_{\alpha }(B)_{[\alpha ]}\\&\Rightarrow C_{[\alpha ]}\not \subset f_{\alpha }\odot f_{\alpha }(A)_{[\alpha ]}. \end{aligned}$$

This shows \(f_{\alpha }\odot f_{\alpha }\odot f_{\alpha }\le f^{\diamond }_{\alpha }\). On the other hand, by Theorem 2 (2) and (1) above, it is easy to find \(f^{\diamond }_{\alpha }\le f^{\nabla }_{\alpha }\odot f_{\alpha }\le f_{\alpha }\odot f_{\alpha }\odot f_{\alpha }\). Therefore, (2) holds.

4 Characterizations of \(\alpha \)-Quasi Uniformities

Theorem 4.1

An non-empty subfamily \(\fancyscript{D}_{\alpha }\subset \fancyscript{F}_{\alpha }\) is an \(\alpha \)-uniform, iff \(\fancyscript{D}_{\alpha }\) satisfies:

  1. (1)

    \(f_{\alpha }\in \fancyscript{D}_{\alpha },g_{\alpha }\in \fancyscript{F}_{\alpha }\) with \(f_{\alpha }\le g_{\alpha }\), then \(g_{\alpha }\in \fancyscript{D}_{\alpha }\).

  2. (2)

    \(f_{\alpha },g_{\alpha }\in \fancyscript{D}_{\alpha }\) implies \(f_{\alpha }\vee g_{\alpha }\in \fancyscript{D}_{\alpha }\).

  3. (3)

    \(f_{\alpha }\in \fancyscript{D}_{\alpha }\), then \(\exists g_{\alpha }\in \fancyscript{D}_{\alpha }\), such that \(g^{\diamond }_{\alpha }\ge f_{\alpha }\).

Proof

Necessity. Since \(\fancyscript{D}_{\alpha }\) is an \(\alpha \)-uniform, (1) and (2) hold. Furthermore, if \(\fancyscript{B}_{\alpha }\subset \fancyscript{D}_{\alpha }\) is an \(\alpha \)-symmetric base. So for every \(f_{\alpha }\in \fancyscript{D}_{\alpha }\), there is \(g_{\alpha }\in \fancyscript{B}_{\alpha }\), such that \(g_{\alpha }\odot g_{\alpha }\odot g_{\alpha }\odot g_{\alpha }\ge f_{\alpha }\). By Theorem 5 (2), \(g^{\diamond }_{\alpha }=g_{\alpha }\odot g_{\alpha }\odot g_{\alpha } \ge g_{\alpha }\odot g_{\alpha }\odot g_{\alpha }\odot g_{\alpha }\ge f_{\alpha }\).

Sufficiency. If \(\fancyscript{B}_{\alpha }=\{g^{\nabla }_{\alpha }\mid g_{\alpha }\in \fancyscript{D}_{\alpha }\}\). For every \(f_{\alpha }\in \fancyscript{D}_{\alpha }\), there is \(g_{\alpha }\in \fancyscript{D}_{\alpha }\), such that \(g^{\diamond }_{\alpha }\ge f_{\alpha }\). By Theorem 4, \(g_{\alpha }\odot g_{\alpha }\ge g^{\diamond }_{\alpha }\ge f_{\alpha }\). Then \(\fancyscript{D}_{\alpha }\) is an \(\alpha \)-quasi-uniform. By Theorem 2 (2)and (4), we know \(g^{\nabla }_{\alpha }\ge g^{\diamond }_{\alpha }\ge f_{\alpha }\). This shows \(\fancyscript{B}_{\alpha }\) is an \(\alpha \)-symmetric base of \(\fancyscript{D}_{\alpha }\). Therefore \(\fancyscript{D}_{\alpha }\) is an \(\alpha \)-uniform.

Theorem 4.2

An non-empty subfamily \(\fancyscript{D}_{\alpha }\subset \fancyscript{F}_{\alpha }\) is an \(\alpha \)-uniform, iff \(\fancyscript{D}_{\alpha }\) satisfies:

  1. (1)

    \(f_{\alpha }\in \fancyscript{D}_{\alpha },g_{\alpha }\in \fancyscript{F}_{\alpha }\) with \(f_{\alpha }\le g_{\alpha }\), then \(g_{\alpha }\in \fancyscript{D}_{\alpha }\).

  2. (2)

    \(f_{\alpha },g_{\alpha }\in \fancyscript{D}_{\alpha }\) implies \(f_{\alpha }\vee g_{\alpha }\in \fancyscript{D}_{\alpha }\).

  3. (3)

    \(f_{\alpha }\in \fancyscript{D}_{\alpha }\), then \(\exists g_{\alpha }\in \fancyscript{D}_{\alpha }\), such that \(g^{\nabla }_{\alpha }\ge f_{\alpha }\).

Proof

Necessity. Since \(\fancyscript{D}_{\alpha }\) is an \(\alpha \)-uniform, (1) and (2) hold. By Theorem 6, For every \(f_{\alpha }\in \fancyscript{D}_{\alpha }\), there is \(g_{\alpha }\in \fancyscript{D}_{\alpha }\), such that \(g^{\diamond }_{\alpha }\ge f_{\alpha }\). So according to Theorem 2 (2), \(g^{\nabla }_{\alpha }\ge g^{\diamond }_{\alpha }\ge f_{\alpha }\). Thus (3) holds.

Sufficiency. If \(\fancyscript{B}_{\alpha }=\{g^{\nabla }_{\alpha }\mid g_{\alpha }\in \fancyscript{D}_{\alpha }\}\). By (3), For every \(f_{\alpha }\in \fancyscript{D}_{\alpha }\), there is \(g_{\alpha }\in \fancyscript{D}_{\alpha }\), such that \(g^{\nabla }_{\alpha }\ge f_{\alpha }\). Again, there is \(h_{\alpha }\in \fancyscript{D}_{\alpha }\), such that \(h^{\nabla }_{\alpha }\ge g_{\alpha }\). By Theorem 4, we get

$$\begin{aligned} h_{\alpha }\odot h_{\alpha }\ge h^{\nabla }_{\alpha }\odot h^{\nabla }_{\alpha }\ge (h^{\nabla }_{\alpha })^{\nabla }_{\alpha }\ge g^{\nabla }_{\alpha }\ge f_{\alpha }. \end{aligned}$$

So \(\fancyscript{B}_{\alpha }\) is an \(\alpha \)-symmetric base of \(\fancyscript{D}_{\alpha }\). Therefore, \(\fancyscript{D}_{\alpha }\) is an \(\alpha \)-uniform.

5 \(\alpha \)-P.Q. Metric and its Properties

A binary mapping \(d_{\alpha }: L^X\times L^X\rightarrow [0,+\infty )\) is called an \(\alpha \)-mapping, if \(\forall (A,B),(C,D)\in L^X\times L^X\) satisfying \(A_{[\alpha ]}=C_{[\alpha ]}\) and \(B_{[\alpha ]}=D_{[\alpha ]}\), then \(d_{\alpha }(A,B)=d_{\alpha }(A,B)\).

Definition 5.1

An \(\alpha \)-mapping \(d_{\alpha }: L^X\times L^X\rightarrow [0,+\infty )\) is called an \(\alpha \)-P.Q metric on \(L^X\), if

(\(\alpha \)-M1) \(d_{\alpha }(A,A)=0\).

(\(\alpha \)-M2) \(d_{\alpha }(A,C)\le d_{\alpha }(A,B)+d_{\alpha }(B,C)\).

(\(\alpha \)-M3) \(d_{\alpha }(A,B)=\bigwedge \limits _{C_{[\alpha ]} \subset B_{[\alpha ]}}d_{\alpha }(A,C)\).

Theorem 5.1

Let \(d_{\alpha }\) be an \(\alpha \)-P.Q. metrics on \(L^X\). \(\forall r\in (0,+\infty )\), a mapping \(P_r: L^X\rightarrow L^X\) is defined by \(\forall A\in L^X\),

$$\begin{aligned} P_{\alpha }^r(A)=\vee \{B\in L^X\mid d_{\alpha }(A,B)\ge r\}. \end{aligned}$$

Then

  1. (1)

    \(P_{\alpha }^r\) is \(\alpha \)-symmetric mapping.

  2. (2)

    \(\forall A,B\in L^X\), \(B_{[\alpha ]}\subset P_{\alpha }^r(A)_{[\alpha ]} \Leftrightarrow d_{\alpha }(A,B)\ge r\).

  3. (3)

    \(\forall A\in L^X, r>0\), \(A_{[\alpha ]}\not \subset P_{\alpha }^r(A)_{[\alpha ]}\).

  4. (4)

    \(\forall r,s\in (0,\infty )\), \(P^r_{\alpha }\odot P^s_{\alpha }\ge P^{r+s}_{\alpha }\).

  5. (5)

    \(\forall A\in L^X, r>0\), \(P_{\alpha }^r(A)_{[\alpha ]}=\bigcap \limits _{s<r}P_{\alpha }^s(A)_{[\alpha ]}\).

  6. (6)

    \(\forall A\in L^X\), \(\bigcap \limits _{r>0}P_{\alpha }^s(A)_{[\alpha ]}=\emptyset \).

Proof

Since \(d_{\alpha }\) is an \(\alpha \)-mapping, (1), (5) and (6) are easy.

(2) Clearly, \(d_{\alpha }(A,B)\ge r\Rightarrow B_{[\alpha ]}\subset P_{\alpha }^r(A)_{[\alpha ]}\). Conversely. \(\forall x\in B_{[\alpha ]}\), \(\exists x\in D_x\in L^X\), such that \(d_{\alpha }(A,D_x)\ge r\). So \(d_{\alpha }(A,\{x_{\alpha }\})\ge d_{\alpha }(A,D_x)\ge r\). Thereby \(d_{\alpha }(A,B)=\bigwedge \limits _{x\in B_{[\alpha ]}} d_{\alpha }(A,\{x_{\alpha }\})\ge r\).

(3) Suppose \(A_{[\alpha ]}\subset P_{\alpha }^r(A)_{[\alpha ]}\). By (2), we get \(d_{\alpha }(A,A)\ge r\). This is a contradiction with (\(\alpha \)-M1).

(4) \(\forall A,B\in L^X\), if \(B_{[\alpha ]}\not \subset P_{\alpha }^r\odot P_{\alpha }^s(A)_{[\alpha ]}\), then there is \(D\in L^X\), such that \(D_{[\alpha ]}\not \subset P^s_{\alpha }(A)_{[\alpha ]}\) and \(B_{[\alpha ]}\not \subset P^r_{\alpha }(D)_{[\alpha ]}\). By (2), we have \(d_{\alpha }(A,D)<s,d_{\alpha }(D,B)<r\). Then by (\(\alpha \)-M2), we gain \(d_{\alpha }(A,B)<r+s\). Therefore \(B_{[\alpha ]}\not \subset P_{\alpha }^{r+s}(A)_{[\alpha ]}\). This means \(P^r_{\alpha }\odot P^s_{\alpha }\ge P^{r+s}_{\alpha }\).

Theorem 5.2

If a family of \(\alpha \)-mappings \(\{P^r_{\alpha }\mid P_r: L^X\rightarrow L^X,r>0\}\) satisfies the conditions (2)–(5) in Theorem 8. For each \(A,B\in L^X\), let’s denote

$$\begin{aligned} d_{\alpha }(A,B)=\wedge \{r\mid B_{[\alpha ]}\not \subset P_{\alpha }^r(A)_{[\alpha ]}\}. \end{aligned}$$

Then

  1. (1)

    \(d_{\alpha }(A,B)<r\Leftrightarrow B_{[\alpha ]}\not \subset P_{\alpha }^r(A)_{[\alpha ]}\).

  2. (2)

    \(d_{\alpha }\) is \(\alpha \)-P.Q. metric on \(L^X\).

Proof

(1) By Theorem 8 (2),(5), we have

$$\begin{aligned} d_{\alpha }(A,B)<r\Leftrightarrow \exists s<r, B_{[\alpha ]}\not \subset P^s_{\alpha }(A)_{[\alpha ]} \Leftrightarrow B_{[\alpha ]}\not \subset P^r_{\alpha }(A)_{[\alpha ]}. \end{aligned}$$

(2) \(\forall A,B\in L^X, r,s>0\), if \(d_{\alpha }(A,B)>r+s\), then

$$\begin{aligned} B_{[\alpha ]}\subset P^{r+s}_{\alpha }(A)_{[\alpha ]} \subset (P^r_{\alpha }\odot P^s_{\alpha }(A))_{[\alpha ]}. \end{aligned}$$

Thus \(\forall C\in L^X\), we have \(C_{[\alpha ]}\not \subset P^s_{\alpha }(A)_{[\alpha ]}\) and \(B_{[\alpha ]}\not \subset P^r_{\alpha }(C)_{[\alpha ]}\). this implies \(d_{\alpha }(A,C)>s\), and \(d_{\alpha }(A,B)>r\). Hence \(d_{\alpha }(A,B)+d_{\alpha }(A,C)>r+s\). Consequently, we obtain \(d_{\alpha }(A,B)+d_{\alpha }(A,C)\ge d_{\alpha }(A,B)\).

Theorem 5.3

An \(\alpha \)-mapping \(d_{\alpha }: L^X\times L^X\rightarrow [0,+\infty )\) satisfies (\(\alpha -M1\)),(\(\alpha -M2\)) and (\(\alpha -M3^{*}\)), then for each \(C_{[\alpha ]}\subset B_{[\alpha ]}\), \(d_{\alpha }(C,B)=0\).

(\(\alpha -M3^{*}) \forall A\in L^X , r>0, A_{[\alpha ]}\not \subset P_{\alpha }^r(A)_{[\alpha ]}\).

Proof

By (\(\alpha \)-M2), for each \(B,C\in L^X\), satisfying \(C_{[\alpha ]}\subset B_{[\alpha ]}\), we have \(d_{\alpha }(A,B)<d_{\alpha }(A,C)+d_{\alpha }(C,B)\). Here we can conclude \(d_{\alpha }(C,B)=0\). Otherwise, if \(d_{\alpha }(C,B)=s>0\), then \(B_{[\alpha ]}\subset P^s_{\alpha }(C)_{[\alpha ]}\). it contracts with \(C_{[\alpha ]}\not \subset P^s_{\alpha }(C)_{[\alpha ]}\) according to (\(\alpha \)-M3\(^{*}\)). Therefore \(d_{\alpha }(C,B)=0\).

Theorem 5.4

An \(\alpha \)-mapping \(d_{\alpha }: L^X\times L^X\rightarrow [0,+\infty )\) is an \(\alpha \)-P.Q metric on \(L^X\), iff  \(d_{\alpha }\) satisfies (\(\alpha \)-M1),(\(\alpha \)-M2) and (\(\alpha \)-M3\(^*\)).

Proof

We only need to prove (\(\alpha \)-M3)\(\Leftrightarrow \)(\(\alpha \)-M3\(^*\)). By Theorem 8 (2), it is easy to check (\(\alpha \)-M3)\(\Rightarrow \)(\(\alpha \)-M3\(^*\)). If the converse result is not true, then there are \(r,s>0\), such that

$$\begin{aligned} d_{\alpha }(A,B)<s<r\le \bigcap \limits _{C_{[\alpha ]}\subset B_{[\alpha ]}}d_{\alpha }(A,C). \end{aligned}$$

so for each \(C_{[\alpha ]}\subset B_{[\alpha ]}\),

$$\begin{aligned} r\le d_{\alpha }(A,C)\le d_{\alpha }(A,B)+d_{\alpha }(B,C)<s+d_{\alpha }(B,C). \end{aligned}$$

Thus, \(0<r-s<d_{\alpha }(B,C)\), which implies \(C_{[\alpha ]}\subset P^{r-s}_{\alpha }(B)_{[\alpha ]}\). As a result

$$\begin{aligned} B_{[\alpha ]}=(\vee \{C\mid C_{[\alpha ]}\subset B_{[\alpha ]}\})_{[\alpha ]}\subset P^{r-s}_{\alpha }(B)_{[\alpha ]}. \end{aligned}$$

However, it contradicts with (\(\alpha \)-M3\(^*\)). Therefore (\(\alpha \)-M3) holds.

Theorem 5.5

\(d_{\alpha }\) is \(\alpha \)-P.Q. metric on \(L^X\). Then \(\{P_{\alpha }^r\mid r>0\}\) satisfying (3)–(5) in Theorem 8 is an \(\alpha \)-base of some \(\alpha \)-uniform, which is called the \(\alpha \)-uniform induced by \(d_{\alpha }\).

Given an \(\alpha \)-quasi-uniform \(\fancyscript{D}_{\alpha }\), if we say \(\fancyscript{D}_{\alpha }\) is metricable, we mean there is an \(\alpha \)-P.Q. metric \(d_{\alpha }\), such that \(\fancyscript{D}_{\alpha }\) is induced by \(d_{\alpha }\).

Theorem 5.6

An \(\alpha \)-quasi-uniform spaces \((L^X,\fancyscript{D}_{\alpha })\) is \(\alpha \)-P.Q. metricable iff it has a countable \(\alpha \)-base.

Proof

By Theorem 12, the necessity is obvious. Let’s prove the sufficiency.

Let \(\fancyscript{D}_{\alpha }\) be an \(\alpha \)-uniformity on \(L^X\), which has a countable \(\alpha \)-base \(\fancyscript{B}_{\alpha }=\{P^n_{\alpha }\mid n\in N\}\). Let’s take \(g^1_{\alpha }=P^1_{\alpha }\), then there is \(g^2_{\alpha }\in \fancyscript{B}_{\alpha }\), such that \(g^2_{\alpha }\odot g^2_{\alpha }\odot g^2_{\alpha }\ge g^1_{\alpha }\vee P^2_{\alpha }\). In addition, there is \(g^3_{\alpha }\in \fancyscript{B}_{\alpha }\), such that \(g^3_{\alpha }\odot g^3_{\alpha }\odot g^3_{\alpha }\ge g^2_{\alpha }\vee P^3_{\alpha }\). The process can be repeated again and again, then \(\{g^n_{\alpha }\in n\in N\}\) is also an \(\alpha \)-base. Obviously, \(g^{n+1}_{\alpha }\odot g^{n+1}_{\alpha }\odot g^{n+1}_{\alpha } \ge g^n_{\alpha }\). Let’s take \(\varphi _{\alpha }:L^X\rightarrow L^X\), defined by: \(\forall A\in L^X\),

$$\begin{aligned} \varphi ^r_{\alpha }(A)=\left\{ \begin{array} {c@{ \quad }c} g^n_{\alpha }(A), &{}\frac{1}{2^n}<r\le \frac{1}{2^{n-1}},\\ 0_X, &{}r>1. \end{array}\right. \end{aligned}$$

Clearly, \(\forall r>0\), \(A_{[\alpha ]}\not \subset \varphi ^r_{\alpha }(A)_{[\alpha ]}\). And \(\forall \frac{1}{2^n}<r\le \frac{1}{2^{n-1}}\), we have

$$\begin{aligned} \varphi ^r_{\alpha }\odot \varphi ^r_{\alpha }\odot \varphi ^r_{\alpha } =g^n_{\alpha }\odot g^n_{\alpha }\odot g^n_{\alpha }\ge g^{n-1}_{\alpha }=\varphi ^{2r}_{\alpha }. \end{aligned}$$

Let’s define

$$\begin{aligned} f^r_{\alpha }(A)=\wedge \left\{ (\varphi ^{r_1}_{\alpha } \odot \varphi ^{r_2}_{\alpha }\odot \cdot \cdot \cdot \odot \varphi ^{r_k}_{\alpha }(A))\mid \sum \limits _{i=1}^k r_i=r\right\} . \end{aligned}$$

Then \(\fancyscript{B}_{\alpha }=\{f^r_{\alpha }\mid r>0\}\subset \fancyscript{D}_{\alpha }\).

Finally, let’s prove \(\fancyscript{B}_{\alpha }\) is an \(\alpha \)-base of \(\fancyscript{D}_{\alpha }\) satisfying (3)-(6) in Theorem 8.

Step 1. For \(f_{\alpha }\in \fancyscript{D}\), there is \(n\in N\), such that \(g^n_{\alpha }\ge f_{\alpha }\). So if \(r\in (\frac{1}{2^{n+1}},\frac{1}{2^{n}}]\), then \(\varphi ^{2r}_{\alpha }=g^n_{\alpha }\). Besides, it is easy to check, \(\varphi ^{r_1}_{\alpha } \odot \varphi ^{r_2}_{\alpha }\odot \cdot \cdot \cdot \odot \varphi ^{r_k}_{\alpha }\ge \varphi ^{2r}_{\alpha }\) whenever \(\sum \limits _{i=1}^k r_i=r\). Thus \(f^r_{\alpha }\ge \varphi ^{2r}_{\alpha }=g^n_{\alpha }\ge f_{\alpha }\). This means \(\fancyscript{B}_{\alpha }\) be an \(\alpha \)-base of \(\fancyscript{D}_{\alpha }\).

Step 2. Obviously, \(f_{\alpha }\in \fancyscript{B}\) satisfies (3) and (6) in Theorem 8. Furthermore, for \(r,s>0, A\in L^X\), if there is \(B_{[\alpha ]}\not \subset (f^r_{\alpha }\odot f^s_{\alpha }(A))_{[\alpha ]}\). Then there is \(C\in L^X\), such that \(B_{[\alpha ]}\not \subset f^r_{\alpha }(C)_{[\alpha ]}\) and \(C_{[\alpha ]}\not \subset f^s_{\alpha }(A)_{[\alpha ]}\). So there are \(\sum \limits _{i=1}^k r_i=r\) and \(\sum \limits _{i=1}^m s_i=s\), such that

$$\begin{aligned} B_{[\alpha ]}\not \subset (\varphi ^{r_1}_{\alpha } \odot \varphi ^{r_2}_{\alpha }\odot \cdot \cdot \cdot \odot \varphi ^{r_k}_{\alpha }(C))_{[\alpha ]} \end{aligned}$$

and

$$\begin{aligned} C_{[\alpha ]}\not \subset (\varphi ^{s_1}_{\alpha } \odot \varphi ^{s_2}_{\alpha }\odot \cdot \cdot \cdot \odot \varphi ^{s_m}_{\alpha }(A))_{[\alpha ]}. \end{aligned}$$

Thus

$$\begin{aligned} B_{[\alpha ]}\not \subset (\varphi ^{r_1}_{\alpha } \odot \varphi ^{r_2}_{\alpha }\odot \cdot \cdot \cdot \odot \varphi ^{r_k}_{\alpha })\odot (\varphi ^{s_1}_{\alpha } \odot \varphi ^{s_2}_{\alpha }\odot \cdot \cdot \cdot \odot \varphi ^{s_m}_{\alpha })(A)_{[\alpha ]}. \end{aligned}$$

As a result, \(B_{[\alpha ]}\not \subset f^{r+s}_{\alpha }(A)_{[\alpha ]}\). Consequently, \(f^{r+s}_{\alpha }\le f^r_{\alpha }\odot f^s_{\alpha }\). This is the proof of (4) in Theorem 8.

Step 3. for \(r>s>0\), \(A\in L^X\),

$$\begin{aligned} f^r_{\alpha }(A)&= \wedge \left\{ (\varphi ^{r_1}_{\alpha } \odot \varphi ^{r_2}_{\alpha }\odot \cdot \cdot \cdot \odot \varphi ^{r_k}_{\alpha }(A)\mid \sum \limits _{i=1}^k r_i=r\right\} \\&\le \wedge \left\{ (\varphi ^{s_1}_{\alpha } \odot \varphi ^{s_2}_{\alpha }\odot \cdot \cdot \cdot \odot \varphi ^{s_m}_{\alpha }\odot \varphi ^{r-s}_{\alpha }(A))\mid \sum \limits _{i=1}^m s_i=m\right\} \\&\le \wedge \left\{ (\varphi ^{s_1}_{\alpha } \odot \varphi ^{s_2}_{\alpha }\odot \cdot \cdot \cdot \odot \varphi ^{s_m}_{\alpha }(A))\mid \sum \limits _{i=1}^m s_i=m\right\} =f^s_{\alpha }(A). \end{aligned}$$

Hence \(f^r_{\alpha }\le \bigwedge \limits _{s<r}f^s_{\alpha }\).

Conversely. Let’s prove the reverse result.

If \(B\in L^X\), \(B_{[\alpha ]}\not \subset f^r_{\alpha }(A)_{[\alpha ]}\), then there is \(\sum \limits _{i=1}^k r_i=r\), such that \(B_{[\alpha ]}\not \subset \varphi ^{r_1}_{\alpha } \odot \varphi ^{r_2}_{\alpha }\odot \cdot \cdot \cdot \odot \varphi ^{r_k}_{\alpha }(A)_{[\alpha ]}\). So there is \(C\in L^X\), such that \(C_{[\alpha ]}\not \subset (\varphi ^{r_2}_{\alpha } \odot \varphi ^{r_2}_{\alpha }\odot \cdot \cdot \cdot \odot \varphi ^{r_k}_{\alpha }(A)_{[\alpha ]}\) and \(B_{[\alpha ]}\not \subset \varphi ^{r_1}_{\alpha } (C)_{[\alpha ]}\). By \(\varphi ^{r_1}_{\alpha }=\bigwedge \limits _{t<r_1}\varphi ^t_{\alpha }\), there is \(t<r_1\), such that \(B_{[\alpha ]}\not \subset \varphi ^{t}_{\alpha } (C)_{[\alpha ]}\), i.e., \(B_{[\alpha ]}\not \subset \varphi ^{t}_{\alpha }\odot \varphi ^{r_2}_{\alpha }\odot \cdot \cdot \cdot \odot \varphi ^{r_k}_{\alpha }(A)_{[\alpha ]}\). Let’s take \(s=t+\sum \limits _{i=2}^k r_i\), we have \(s<r\) and \(B_{[\alpha ]}\not \subset f^{s}_{\alpha }(A)_{[\alpha ]}\). Therefore \(f^r_{\alpha }\ge \bigwedge \limits _{s<r}f^s_{\alpha }\). Therefore (5) in Theorem 8 holds.

Theorem 5.7

Each \(\alpha \)-\(C_{II}\) \(\alpha \)-layer topological space is P.Q.-metriclizable.

Proof

Let \((L^X,D_{\alpha }(\delta ))\) be an \(\alpha \)-\(C_{II}\) space, \(\{P_n\mid n\in N\}\) be an \(\alpha \)-base. \(\forall n\in N\), \(f^{P_n}_{\alpha }:L^X\rightarrow L^X\) is defined as: \(\forall A\in L^X\),

$$\begin{aligned} f_{\alpha }^{P_n}(A)=\left\{ \begin{array}{ll} 0_X, &{}A_{[\alpha ]}\subset P_{n[\alpha ]}.\\ P_n, &{}A_{[\alpha ]}\not \subset P_{n[\alpha ]}. \end{array}\right. \end{aligned}$$

Let’s take \(\fancyscript{D}^*=\{f_{\alpha }^{P_n}\mid n\in N\}\) and

$$\begin{aligned} \fancyscript{B}_{\alpha }=\{f_{\alpha }\mid \exists f_{\alpha }^{P_{n_i}}\in \fancyscript{D}^*, i=1,2,\cdot \cdot \cdot ,m, f_{\alpha }=\bigvee \limits _{i=1}^m f_{\alpha }^{P_{n_i}}\}. \end{aligned}$$

Then \(\fancyscript{B}_{\alpha }\) is an \(\alpha \)-base of some uniform denoted by \(\fancyscript{D}_{\alpha }\) and clearly, \(\eta _{\alpha }=\eta _{\alpha }(\fancyscript{D}_{\alpha })\). Furthermore, since \(\fancyscript{B}_{\alpha }\) is countable, we know \((L^X,D_{\alpha }(\delta ))\) is P.Q.-metriclizable.

Theorem 5.8

An \(\alpha \)-layer co-topology \(D_{\alpha }(\delta )\) on \(L^X\) can be \(\alpha \)-P.Q. metriclizable iff there is a Sequence of \(\alpha \)-remote neighborhood mappings \(\{f^n_{\alpha }\}_{n\in N}\) satisfying

  1. (1)

    \(\forall n\in N, f^n_{\alpha }\le f^{n+1}_{\alpha }\odot f^{n+1}_{\alpha }\odot f^{n+1}_{\alpha }\),

  2. (2)

    \(\forall a\in M^*(L^X)\), \(\{f^{n}_{\alpha }(a)\}_{n\in N}\) is the \(\alpha \)-remote neighborhood family of \(a\).

Proof

Necessary. If \(D_{\alpha }(\delta )\) can be \(\alpha \)-P.Q. metriclizable, there is an \(\alpha \)-P.Q. metric, say \(d_{\alpha }\). Let’s take \(f^n_{\alpha }=P^{\frac{1}{3^n}}_{\alpha }\). By Theorem 8, it is clear that (1) and (2) hold.

Sufficiency. If \(\{f^n_{\alpha }\}_{n\in N}\) satisfies (1) and (2). Clearly, \(\{f^n_{\alpha }\}_{n\in N}\) is countable. So by Theorem 12, it is an \(\alpha \)-base of some \(\alpha \)-quasi uniform \(\fancyscript{D}_{\alpha }\). Therefore \(D_{\alpha }(\delta )=\eta _{\alpha }(\fancyscript{D}_{\alpha })\). This means \(D_{\alpha }(\delta )\) is \(\alpha \)-P.Q. metriclizable.

Theorem 5.9

An \(\alpha \)-layer co-topology \(D_{\alpha }(\delta )\) on \(L^X\) can be \(\alpha \)-P.Q. metriclizable iff there is a Sequence of \(\alpha \)-symmetric remote neighborhood mappings \(\{f^n_{\alpha }\}_{n\in N}\) satisfying

  1. (1)

    \(\forall n\in N, f^n_{\alpha }\le f^{n+1}_{\alpha }\odot f^{n+1}_{\alpha }\odot f^{n+1}_{\alpha }\),

  2. (2)

    \(\forall a\in M^*(L^X)\), \(\{f^{n}_{\alpha }(a)\}_{n\in N}\) is the \(\alpha \)-remote neighborhood family of \(a\).

Theorem 5.10

An \(\alpha \)-layer co-topology \(D_{\alpha }(\delta )\) on \(L^X\) can be \(\alpha \)-P.Q. metriclizable iff there is a Sequence of \(\alpha \)-symmetric remote neighborhood mappings \(\{f^n_{\alpha }\}_{n\in N}\) satisfying

  1. (1)

    \(\forall n\in N, f^n_{\alpha }\le (f^{n+1}_{\alpha })^{\diamond }\le f^{n+1}_{\alpha }\),

  2. (2)

    \(\forall a\in M^*(L^X)\), \(\{f^{n}_{\alpha }(a)\}_{n\in N}\) is the \(\alpha \)-remote neighborhood family of \(a\).

Proof

Necessity. It is similar to that of Theorem 14.

Sufficiency. If \(\{f^n_{\alpha }\}_{n\in N}\) satisfies (1) and (2). By Theorem 2, \(\forall n\in N\), \(f^n_{\alpha }\le (f^{n+1}_{\alpha })^{\diamond }\le (f^{n+1}_{\alpha })^{\nabla }\le f^{n+1}_{\alpha }\). By Theorem 4, \(\forall n\in N\), \(f^n_{\alpha }\le (f^{n+1}_{\alpha })^{\diamond }\le f^{n+1}_{\alpha }\odot f^{n+1}_{\alpha }\).

Therefore \(\forall n\in N\),

$$\begin{aligned} f^n_{\alpha }\le f^{n+1}_{\alpha }\odot f^{n+1}_{\alpha }\le (f^{n+2}_{\alpha })^{\nabla }\odot (f^{n+2}_{\alpha })^{\nabla }\le (f^{n+2}_{\alpha })^{\nabla }. \end{aligned}$$

Again, by Theorem 4,

$$\begin{aligned} f^n_{\alpha }&\le (f^{n+2}_{\alpha })^{\nabla }\odot (f^{n+2}_{\alpha })^{\nabla } \le ((f^{n+4}_{\alpha })^{\nabla })^{\nabla }\odot ((f^{n+4}_{\alpha })^{\nabla })^{\nabla } \\&\le (f^{n+4}_{\alpha })^{\nabla }\odot (f^{n+4}_{\alpha })^{\nabla }\odot (f^{n+4}_{\alpha })^{\nabla } \odot (f^{n+4}_{\alpha })^{\nabla } \\&\le (f^{n+4}_{\alpha })^{\nabla }\odot (f^{n+4}_{\alpha })^{\nabla }\odot (f^{n+4}_{\alpha })^{\nabla }. \end{aligned}$$

\(\forall n\in N\), \(g_{\alpha }^n=(f^{4n-3}_{\alpha })^{\nabla }\). Then \(\{g_{\alpha }^n\}_{n\in N}\) is a family of \(\alpha \)-symmetric remote neighborhood mappings. It is clear that \(\{g^{n}_{\alpha }(a)\}_{n\in N}\) is the \(\alpha \)-remote neighborhood family of \(a\).

Theorem 5.11

An \(\alpha \)-layer co-topology \(D_{\alpha }(\delta )\) on \(L^X\) can be \(\alpha \)-P.Q. metriclizable iff there is a Sequence of \(\alpha \)-remote neighborhood mappings \(\{f^n_{\alpha }\}_{n\in N}\) satisfying

  1. (1)

    \(\forall n\in N, f^n_{\alpha }\le (f^{n+1}_{\alpha })^{\nabla }\le f^{n+1}_{\alpha }\),

  2. (2)

    \(\forall a\in M^*(L^X)\), \(\{f^{n}_{\alpha }(a)\}_{n\in N}\) is the \(\alpha \)-remote neighborhood family of \(a\).