Skip to main content
  • 10k Accesses

Zusammenfassung

In diesem Kapitel werden auf der Basis des modifizierten hierarchischen Modells der visuellen Objekterkennung und -benennung von Riddoch und Humphreys (2001; ◘ Abb. 20.1) die einzelnen an höheren visuellen Leistungen beteiligten Komponenten sowie deren zugrunde liegende funktionelle Neuroanatomie behandelt. Störungen dieser Komponenten führen zu charakteristischen klinischen Syndromen, wie z. B. Prosopagnosie.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  • Andresen DR, Vinberg J, Grill-Spector K (2009) The representation of object viewpoint in human visual cortex. Neuroimage 45: 522–536

    Article  PubMed  Google Scholar 

  • Backus BT, Fleet DJ, Parker AJ, Heeger DJ (2001) Human cortical activity correlates with stereoscopic depth perception. J Neurophysiol 86: 2054–2068

    PubMed  CAS  Google Scholar 

  • Bar M, Tootell RBH, Schacter DL, Greve DN, Fischl B, Mendola JD, Rosen BR, Dale AM (2001) Cortical mechanisms specific to explicit visual object recognition. Neuron 29: 529–535

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp MS, Lee KE, Haxby JV, Martin A (2002) Parallel visual motion processing streams for manipulable objects and human movements. Neuron 34: 149–159

    Article  PubMed  CAS  Google Scholar 

  • Bruce V, Young AW (1986) Understanding face recognition. Brit J Psycholog 77: 305–327

    Article  Google Scholar 

  • Cantlon JF, Pinel P, Dehaene S, Pelphrey KA (2011) Cortical representations of symbols, objects, and faces are pruned back during early childhood. Cereb Cortex 21: 191–199

    Article  PubMed  Google Scholar 

  • Cardin YV, Friston KJ, Zeki S (2011) Top-down modulation in the visual form pathway revealed with dynamic causal modelling. Cereb Cortex 21: 550–562

    Article  PubMed  Google Scholar 

  • Cichy RM, Sterzer P, Heinzle J, Elliott LT, Ramirez F, Haynes JD (2012) Probing principles of large-scale object representation: category preference and location encoding. Hum Brain Mapp, DOI: 10.1002/hbm.22020

    Google Scholar 

  • Dehaene S, Cohen L (2011) The unique role of the visual word form area in reading. Trends Cogn Sci 15: 254–262

    Article  PubMed  Google Scholar 

  • Diamond R, Carey S (1986) Why faces are and are not special: An effect of expertise. J Exp Psychology: General 115: 107–117

    Article  CAS  Google Scholar 

  • Downing P, Chan A, Peelen M, Dodds C, Kanwisher N (2006) Domain specificity in visual cortex. Cereb Cortex 16: 1453–1461

    Article  PubMed  CAS  Google Scholar 

  • Ellis HD, Lewis MB (2001) Capgras delusion: a window on face recognition. Trends Cogn Sci 5: 149–156

    Article  PubMed  Google Scholar 

  • Ellis AW, Young AW (1990) Human cognitive neuropsychology. Lawrence Erlbaum, London

    Google Scholar 

  • Gobbini MI, Haxby JV (2007) Neural systems for recognition of familiar faces. Neuropsychologia 45: 32–41

    Article  PubMed  Google Scholar 

  • Goddard E, Mannion DJ, McDonald JS, Solomon SG, Clifford CWG (2011) Color responsiveness argues against a dorsal component of human V4. J Vision 11: 1–21

    Article  Google Scholar 

  • Gray CM (1999) The temporal correlation hypothesis of visual feature integration: Still alive and well. Neuron 24: 31–47

    Article  PubMed  CAS  Google Scholar 

  • Hadjikhani N, de Gelder B (2002) Neural basis of prosopagnosia: An fMRI study. Hum Brain Mapp 16: 176–182

    Article  PubMed  Google Scholar 

  • Hanley Jr (2011) An appreciation of Bruce and Young‘s (1986) serial stage model of face naming after 25 years. Br J Psychol 102: 915–930

    Article  PubMed  Google Scholar 

  • Haxby JV, Hoffman EA, Gobbini MI (2000) The distributed human neural system for face perception. Trends Cogn Sci 4: 223–233

    Article  PubMed  Google Scholar 

  • Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293: 2425–2430

    Article  PubMed  CAS  Google Scholar 

  • Haushofer J, Livingstone MS, Kanwisher N (2008) Multivariate patterns in object-selective cortex dissociate perceptual and physical shape similarity. PLoS Biology 6: 1459–1467

    Article  CAS  Google Scholar 

  • Ishai A (2008) Let‘s face it: It‘s a cortical network. NeuroImage 40: 415–419

    Article  PubMed  Google Scholar 

  • James TW, Humphrey GK, Gati JS, Menon RS, Goodale MA (2002) Differential effects of viewpoint on object-driven activation in dorsal and ventral streams. Neuron 35: 793–801

    Article  PubMed  CAS  Google Scholar 

  • Kansaku K, Hashimoto K, Muraki S, Miura K, Takahashi T, Kawano K (2001) Retinotopic hemodynamic activation of the human V5/MT area during optokinetic responses. Neuroreport 12: 3891–3895

    Article  PubMed  CAS  Google Scholar 

  • Kanwisher N (2000) Domain specificity in face perception. Nat Neurosci 3: 759–763

    Article  PubMed  CAS  Google Scholar 

  • Kanwisher N, Downing P, Epstein R, Kourtzi Z (2001) Functional neuroimaging of visual recognition. In: Cabeza R, Kingstone A (eds) Handbook of functional neuroimaging of cognition. Bradford, Cambridge, S 109–151

    Google Scholar 

  • Kanwisher N, Yovel G (2006) The fusiform face area: a cortical region specialized for the perception of faces. Phil Trans R Soc B 361: 2109–2128

    Article  PubMed  Google Scholar 

  • Kourtzi Z, Kanwisher N (2000) Activation in human MT/MST by static images with implied motion. J Cogn Neurosci 12: 48–55

    Article  PubMed  CAS  Google Scholar 

  • Kourtzi Z, Tolias AS, Altmann CF, Augath M, Logothetis NK (2003) Integration of local features into global shapes: Monkey and human fMRI studies. Neuron 37: 333–346

    Article  PubMed  CAS  Google Scholar 

  • Kreiman G, Koch C, Fried I (2000) Category-specific visual responses of single neurons in the human medial temporal lobe. Nat Neurosci 3: 946–953

    Article  PubMed  CAS  Google Scholar 

  • Kriegeskorte N, Formisano E, Sorger B, Goebel R (2007) Individual faces elicit distinct response patterns in human anterior temporal cortex. Prc Nat Acad Science 104: 20600–20605

    Article  CAS  Google Scholar 

  • Kriegeskorte N, Mur M, Ruff DA, Kiani R, Bodurka J, Esteky H, Tanaka K, Bandettini PA (2008) Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60: 1126–1141

    Article  PubMed  CAS  Google Scholar 

  • Kveraga K, Boshyan J, Bar M (2007) Magnocellular projections as the trigger of top-down facilitation in recognition. J Neurosci 27: 13232–13240

    Article  PubMed  CAS  Google Scholar 

  • Leveroni CL, Seidenberg M, Mayer AR, Mead LA, Binder JR, Rao SM (2000) Neural systems underlying the recognition of familiar and newly learned faces. J Neurosci 20: 878–886

    PubMed  CAS  Google Scholar 

  • Liu X, Steinmetz NA, Farley AB, Smith CD, Joseph JE (2008) Mid-fusiform activation during object discrimination reflects the process of differentiating structural descriptions. J Cogn Neurosci 20: 1711–1726

    Article  PubMed  Google Scholar 

  • McKeefry DJ, Zeki S (1997) The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. Brain 120: 2229–2242

    Article  PubMed  Google Scholar 

  • Morrison DJ, Bruce V, Burton AM (2000) Covert face recognition in neurologically intact participants. Psychol Res 63: 83–94

    Article  PubMed  CAS  Google Scholar 

  • Mullen KT, Dumoulin SO, McMahon KL, de Zubicaray GI, Hess RF (2007) Selectivity of human retinotopic visual cortex to S-cone-opponent, L/M-cone-opponent and achromatic stimulation. Eur J Neurosci 25: 491–502

    Article  PubMed  Google Scholar 

  • Murray SO, Kersten D, Olshausen BA, Schrater P, Woods DL (2002) Shape perception reduces activity in human primary visual cortex. PNAS 99: 15164–15169

    Article  PubMed  CAS  Google Scholar 

  • Orban GA (2011) The extraction of 3D shape in the visual system of human and nonhuman primates. Annu Rev Neurosci 34: 361–388

    Article  PubMed  CAS  Google Scholar 

  • Ostwald D, Lam JM, Li S, Kourtzi Z (2008) Neural coding of global form in the human visual cortex. J Neurophysiol 99: 2456–2469

    Article  PubMed  Google Scholar 

  • Pitcher D, Walsh V, Duchaine B (2011) The role of the occipital face area in the cortical face perception network. Exp Brain Res 209: 481–493

    Article  PubMed  Google Scholar 

  • Pourtois G, Schwartz S, Spiridon M, Martuzzi R, Vuilleumier P (2009) Object representations for multiple visual categories overlap in lateral occipital and medial fusiform cortex. Cereb Cortex 19: 1806–1819

    Article  PubMed  Google Scholar 

  • Riddoch MJ, Humphreys GW (2001) Object recognition. In: Rapp B (ed) The handbook of cognitive neuropsychology. Psychology Press, Hove, pp 45–74

    Google Scholar 

  • Rossion B (2008) Constraining the cortical face network by neuroimaging studies of acquired prosopagnosia. NeuroImage 40: 423–426

    Article  PubMed  Google Scholar 

  • Safford AS, Hussey EA, Parasuraman R, Thompson JC (2010) Objectbased attentional modulation of biological motion processing: Spatiotemporal dynamics using functional magnetic resonance imaging and electroencephalography. J Neurosci 30: 9064–9073

    PubMed  CAS  Google Scholar 

  • Shah NJ, Marshall JC, Zafiris O, Schwab A, Zilles K, Markowitsch HJ, Fink GR (2001) The neural correlates of person familiarity: A functional magnetic resonance imaging study with clinical implications. Brain 124: 804–815

    Article  PubMed  CAS  Google Scholar 

  • Shapley R, Hawken MJ (2011) Color in the Cortex: single- and doubleopponent cells. Vision Res 51: 701–717

    Article  PubMed  Google Scholar 

  • Stanley DA, Rubin N (2003) fMRI activation in response to illusory contours and salient regions in the human lateral occipital complex. Neuron 37: 323–331

    Article  PubMed  CAS  Google Scholar 

  • Taylor JC, Wiggett AJ, Downing PE (2010) fMRI-adaptation studies of viewpoint tuning in the extrastriate and fusiform body areas. J Neurophysiol 103: 1467–1477

    Article  PubMed  Google Scholar 

  • Tsao DY, Vanduffel W, Sasaki Y, Fize D, Knutsen TA, Mandeville JB, Wald LL, Dale AM, Rosen BR, Van Essen, DC, Livingstone MS, Orban GA, Tootell RBH (2003) Stereopsis activates V3a and caudal intraparietal areas in macaques and humans. Neuron 39: 555–568

    Article  PubMed  CAS  Google Scholar 

  • Tyler LK, Stamatakis EA, Dick E, Bright P, Fletcher P, Moss H (2003) Objects and their actions: Evidence for a neurally distributed semantic system. NeuroImage 18: 542–557

    Article  PubMed  CAS  Google Scholar 

  • Wade A, Augath M, Logothetis N, Wandell B (2008) fMRI mesaurements of color in macaque and human. J Vision 8: 1–19

    Article  Google Scholar 

  • Walther DB, Chai B, Caddigan E, Beck DM, Fei-Fei L (2011) Simple Line drawings suffice for functional MRI decoding of natural scene categories. PNAS 108: 9661–9666

    Article  PubMed  CAS  Google Scholar 

  • Wandell BA, Winawer J (2011) Imaging retinotopic maps in the human brain. Vision Research 51: 718–737

    Article  PubMed  Google Scholar 

  • Warnking J, Dojat M, Guérin-Dugué A, Delon-Martin C, Olympieff S, Richard N, Chéhikian A, Segebarth C (2002) fMRI retinotopic mapping – step by step. NeuroImage 17: 1665–1683

    Article  PubMed  CAS  Google Scholar 

  • Warrington EK, Shallice T (1984) Category specific semantic impairments. Brain 107: 829–854

    Article  PubMed  Google Scholar 

  • Wiggett AJ, Downing PE (2008) The face network: Overextended? (Comment on: »Let‘s face it: It‘s a cortical network« by Alumit Ishai). NeuroImage 40: 420–422

    Article  PubMed  Google Scholar 

  • Yin RK (1969) Looking at upside-down faces. J Exp Psychol 81: 141–145

    Article  Google Scholar 

  • Zeki S (1993) A vision of the brain. Blackwell Scientific, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Willmes, K., Fimm, B. (2013). Visuelles System und Objektverarbeitung. In: Schneider, F., Fink, G.R. (eds) Funktionelle MRT in Psychiatrie und Neurologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29800-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29800-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29799-1

  • Online ISBN: 978-3-642-29800-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics