Skip to main content

Testicular Steroid Hormones

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Pharmacological Assays
  • 564 Accesses

Abstract

Castration of young male rats is performed with minimal bleeding in animals weighing less than 60 g. The animal is anesthetized. A small transversal incision is made in the skin on the ventral site over the symphysis. The testis lying in the scrotum is gently pushed into the abdominal cavity. With a pair of fine forceps, the abdominal wall is opened. The epididymal fat pad, easily seen, is grasped with the forceps, and the testis with the epididymis is pulled out from the wound. The ductus deferens with the testicular vessels is crushed with artery forceps and the testis together with the epididymal fad pad cut off with a pair of fine scissors. There is almost no bleeding in young animals. In older animals, ligation of the testicular vessels together with the ductus deferens may be necessary. The same procedure is performed on the other side. The skin wound is closed with one or two wound clips. The animal recovers immediately. With some skill, the operation can be performed very rapidly (Bomskov 1939).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References and Further Reading

Castration of Male Rats (Orchiectomy)

  • Bomskov C (1939) Chirurgische Methoden der Erforschung des Hodenhormones Die Kastration des männlichen Säugetieres. In: Bomskov C (ed) Methodik der Hormonforschung, vol 2. Thieme, Leipzig, pp 350–353

    Google Scholar 

  • Dorfman RI (1969) Androgens and anabolic agents. In: Dorfman RI (ed) Methods in hormone research, vol IIA. Academic, New York, pp 151–220

    Google Scholar 

Caponizing of Cockerels (Orchiectomy)

  • Bomskov C (1939) Chirurgische Methoden der Erforschung des Hodenhormones. Die Kastration des männlichen Vogels (Ka-paunisieren). In: Bomskov C (ed) Methodik der Hormonforschung, vol 2. Thieme, Leipzig, pp 353–357

    Google Scholar 

  • Dorfman RI (1969) Androgens and anabolic agents. In: Dorfman RI (ed) Methods in hormone research, vol IIA. Academic, New York, pp 151–220

    Google Scholar 

Androgen Receptor Binding

  • Bonne C, Raynaud JP (1974) Mode of spironolactone anti-androgenic action: inhibition of androstanolone binding to rat prostate androgen receptor. Mol Cell Endocrinol 2:59–67

    CAS  PubMed  Google Scholar 

  • Botella J, Paris J, Lahlou B (1987) The cellular mechanism of the antiandrogenic action of nomegestrol acetate, a new 19-norprogestagen, on the rat prostate. Acta Endocrinol 115:544–550

    CAS  PubMed  Google Scholar 

  • Brown TR, Rothwell SW, Sultan C, Migeon CJ (1981) Inhibition of androgen binding in human foreskin fibroblasts by antiandrogens. Steroids 37:635–647

    CAS  PubMed  Google Scholar 

  • Chang C, Kokontis J, Liao S (1988) Molecular cloning of human and rat androgen complementary cDNA encoding androgen receptors. Science 240:324–326

    CAS  PubMed  Google Scholar 

  • Chang C, Saltzman A, Yeh S, Young W, Keller E, Lee HJ, Wang C, Mizokami A (1995) Androgen receptor: an overview. Crit Rev Eukaryot Gene Expr 5:97–125

    CAS  PubMed  Google Scholar 

  • Christiansen RG, Bell MR, D’Ambra TE, Mallamo JP, Herrmann JL, Ackerman JH, Opalka CJ, Kullnig RK, Winneker RC, Snyder BW, Batzold FH, Schane HP (1990) Antiandrogenic steroidal sulfonylpyrazoles. J Med Chem 33:2094–2100

    Google Scholar 

  • Duc I, Botella J, Bonnet P, Fraboul F, Delansorne R, Paris J (1995) Antiandrogenic activity of nomegestrol acetate. Arzneimittelforschung 45:70–74

    CAS  PubMed  Google Scholar 

  • Grover PK, Odell WD (1975) Correlation of in vivo and in vitro activities of some naturally occurring androgens using a radioreceptor assay for 5α-dihydrotestosterone with rat prostate cytosol receptor protein. J Steroid Biochem 5:1373–1379

    Google Scholar 

  • Hoyte RM, Brown TJ, MacLusky NJ, Hochberg RB (1993) 7a-Methyl-17α-(E-2′-[125I]iodovinyl)-19-nortestosterone: a new radioligand for the detection of the androgen receptor. Steroids 58:13–23

    CAS  PubMed  Google Scholar 

  • Humm AW, Schneider MR (1990) Entwicklung nichtsteroidaler Antiandrogene: 4-Nitro-3-trifluormethyldiphenylamine. Arch Pharmacol 323:83–87

    CAS  Google Scholar 

  • Isomaa V, Pajunen AE, Bardin CW, Jänne OA (1982) Nuclear androgen receptors in the mouse kidney: validation of a new assay. Endocrinology 111:833–843

    CAS  PubMed  Google Scholar 

  • Karvonen U, Kallio PJ, Jänne OA, Palvimo JJ (1997) Interaction of androgen receptors with androgen response element in intact cells. J Biol Chem 272:15973–15979

    CAS  PubMed  Google Scholar 

  • Liang T, Tymoczko JL, Chan KMB, Hung SC, Liao S (1977) Androgen action: receptors and rapid responses. In: Martini L, Motta M (eds) Androgens and antiandrogens. Raven, New York, pp 77–89

    Google Scholar 

  • Liao S, Howell DK, Chang TM (1974) Action of a nonsteroidal antiandrogen, flutamide, on the receptor binding and nuclear retention of 5α-dihydrotestosterone in rat ventral prostate. Endocrinology 94:1205–1208

    CAS  PubMed  Google Scholar 

  • Liao S, Witte D, Schilling K, Chang C (1984) The use of a hydroxylapatite-filter steroid receptor assay method in the study of the modulation of androgen receptor interaction. J Steroid Biochem 20:11–17

    CAS  PubMed  Google Scholar 

  • Lubahn DB, Joseph DR, Sullivan PM, Willard HF, French FS, Wilson EM (1988) Cloning of human androgen receptor complementary cDNA and localization to the X chromosome. Science 240:327–330

    CAS  PubMed  Google Scholar 

  • Neubauer BE, Best KL, Clemens JA, Gates CA, Goode RL, Jones CD, Laughlin ME, Shaar CJ, Toomey RE, Hoover DM (1993) Endocrine and antiprostatic effects of Raloxifene (LY156758) in the male rat. Prostate 23:245–262

    Google Scholar 

  • Ojasoo T, Raynaud JP (1978) Unique steroid congeners for receptor studies. Cancer Res 38:4186–4198

    CAS  PubMed  Google Scholar 

  • Raynaud JP, Bonne C, Bouton MM, Moguilewsky M, Philibert D, Azadian-Boulanger G (1975) Screening for anti-hormones by receptor studies. J Steroid Biochem 6:615–622

    CAS  PubMed  Google Scholar 

  • Raynaud JP, Bonne C, Bouton MM, Lagace L, Labrie F (1979) Action of a non-steroid anti-androgen, RU 23908, in peripheral and central tissues. J Steroid Biochem 11:93–99

    CAS  PubMed  Google Scholar 

  • Schilling K, Liao S (1984) The use of radioactive 7α,17α-dimethyl-19-nortesteosterone (Mibolerone) in the assay of androgen receptors. Prostate 5:581–588

    CAS  PubMed  Google Scholar 

  • Sivelle PC, Underwood AH, Jelly JA (1982) The effects of histamine H2 receptor antagonists on androgen action in vivo and dihydrotestosterone binding to the rat prostate androgen receptor in vitro. Biochem Pharmacol 31:677–684

    Google Scholar 

  • Stobaugh ME, Blickenstaff RT (1990) Synthesis and androgen receptor binding of dihydrotestosterone hemisuccinate homologs. Steroids 55:259–262

    CAS  PubMed  Google Scholar 

  • Teutsch G, Goubet F, Battmann T, Bonfils A, Bouchoux F, Cerede E, Gofflo D, Gaillard-Kelly M, Philibert D (1994) Non-steroidal antiandrogens: synthesis and biological profile of high-affinity ligands for the androgen receptor. J Steroid Biochem Mol Biol 48:111–119

    CAS  PubMed  Google Scholar 

  • Tezón JG, Vazquez MH, Blaquier JA (1982) Androgen-controlled subcellular distribution of its receptor in the rat epididymis: 5α-dihydrotestosterone-induced translocation is blocked by antiandrogens. Endocrinology 111:2039–2045

    PubMed  Google Scholar 

  • Thoth I, Faredin I, Mesko E, Wolfling J, Schneider G (1995) In vitro binding of 16-methylated C-18 and C-19 steroid derivates to the androgen receptor. Pharmacol Res 32:217–221

    Google Scholar 

  • Tilley WD, Marcelli M, Wilson JD, McPhaul MJ (1989) Characterization and expression of a cDNA encoding the human androgen receptor. Proc Natl Acad Sci U S A 86:327–331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Traish AM, Müller RE, Wotiz HH (1986) Binding of 7α,17α-dimethyl-19-nortestosterone (Mibolerone) to androgen and progesterone receptors in human and animal tissues. Endocrinology 118:1327–1333

    CAS  PubMed  Google Scholar 

  • Von Krempelhuber A, Müller F, Fuhrmann U (1994) DNA-binding of androgen receptor overexpressed in mammalian cells. J Steroid Biochem Mol Biol 48:511–516

    CAS  Google Scholar 

  • Winneker RC, Wagner MM, Batzold FH (1989) Studies on the mechanism of action of WIN 49596: a steroidal androgen receptor antagonist. J Steroid Biochem 33:1133–1138

    CAS  PubMed  Google Scholar 

Transactivation Assay for Androgens

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Cato ACB, Miksicek R, Schütz G, Arnemann J, Beato M (1986) The hormone regulatory element of mouse mammary tumor virus mediates progesterone induction. EMBO J 6:2237–2240

    Google Scholar 

  • Felgner PL, Holm M (1989) Cationic liposome-mediated transfection. Focus 11:21–25

    Google Scholar 

  • Fuhrmann U, Bengtson C, Repenthin G, Schillinger E (1992) Stable transfection of androgen receptor and MMTV-CAT into mammalian cells: inhibition of CAT expression by antiandrogens. J Steroid Biochem Mol Biol 42:787–793

    CAS  PubMed  Google Scholar 

  • Fuhrmann U, Slater EP, Fritzemeier KH (1995) Characterization of the novel progestin gestodene by receptor binding studies and transactivation assays. Contraception 51:45–52

    CAS  PubMed  Google Scholar 

  • Fuhrmann U, Krattenmacher R, Slater EP, Fritzemeier KH (1996) The novel progestin drospirenone and its natural counterpart progesterone: biochemical profile and antiandrogenic potential. Contraception 54:243–251

    CAS  PubMed  Google Scholar 

  • Gorman CM, Moffat LF, Howard BH (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol 2:1044–1055

    CAS  PubMed Central  PubMed  Google Scholar 

  • Green S, Chambon P (1988) Nuclear receptors enhance our understanding of transcription regulations. Trends Genet 4:309–314

    CAS  PubMed  Google Scholar 

  • Muhn P, Fuhrmann U, Fritzemeier KH, Krattenmacher R, Schillinger E (1995) Drospirenone: a novel progestogen with anti-mineralocorticoid and antiandrogenic activity. Ann N Y Acad Sci 761:311–335

    CAS  PubMed  Google Scholar 

  • Warriar N, Page N, Koutsilieris M, Govindan MV (1993) Interaction of antiandrogen-androgen complexes with DNA and transcription activation. J Steroid Biochem Mol Biol 46:699–711

    CAS  PubMed  Google Scholar 

  • White JH, McCuaig KA, Mader S (1994) A simple and sensitive high-throughput assay for steroid agonists and antagonists. Biotechnology 12:1003–1007

    CAS  PubMed  Google Scholar 

Chicken Comb Method for Androgen Activity

  • Dorfman RI (1948) Studies on the bioassay of hormones. The assay of testosterone propionate and androsterone by a chick inunction method. Endocrinology 48:1–6

    Google Scholar 

  • Dorfman RI (1969) Androgens and anabolic agents. In: Dorfman RI (ed) Methods in hormone research, vol IIA. Academic, New York, pp 151–220

    Google Scholar 

  • Frank RT, Klempner E, Hollander R, Kriss B (1942) Detailed description of technique for androgen assay by the chick comb method. Endocrinology 31:63–70

    CAS  Google Scholar 

  • Fussgänger R (1934) Ein Beitrag zum Wirkungsmechanismus des männlichen Sexualhormons. Med Chem 2:194–204

    Google Scholar 

  • Gallagher TF, Koch FC (1935) The quantitative assay for the testicular hormone by the comb-growth reaction. J Pharmacol Exp Ther 55:97–117

    CAS  Google Scholar 

  • Greenwood AW, Blyth JSS, Callow RK (1935) Quantitative studies on the response of the capon’s comb to androsterone. Biochem J 29:1400–1413

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCullagh DF, Cuyler WC (1939) The response of the capon’s comb to androsterone. J Pharmacol Exp Ther 66:379–388

    CAS  Google Scholar 

  • Oesting RB, Webster B (1938) The sex hormone excretion in children. Endocrinology 22:307–314

    CAS  Google Scholar 

Weight of Androgen-Dependent Organs in Rats

  • Dorfman RI (1969) Androgens and anabolic agents. In: Dorfman RI (ed) Methods in hormone research, vol IIA. Academic, New York, pp 151–220

    Google Scholar 

  • Eisenberg E, Gordon GS (1950) The levator ani muscle of the rat as an index of myotrophic activity of steroidal hormones. J Pharmacol Exp Ther 99:38–44

    CAS  PubMed  Google Scholar 

  • Eisler M (1964) Animal techniques for evaluating sex steroids. In: Nodine JH, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical Publishers, Chicago, pp 566–573

    Google Scholar 

  • Hershberger LG, Shipley EG, Meyer RK (1953) Myotrophic activity of 19-nortestotestone and other steroids determined by modified levator ani muscle method. Proc Soc Exp Biol Med 83:175–180

    CAS  PubMed  Google Scholar 

  • Junkmann K (1957) Long-acting steroids in reproduction. Recent Prog Horm Res 13:389–427

    CAS  PubMed  Google Scholar 

  • Kincl FA (1965) Anabolic steroids. In: Dorfman RI (ed) Methods in hormone research, vol IV. Academic, New York, pp 21–76

    Google Scholar 

  • Korenchevsky V, Dennison M (1935) The assay of crystalline male sexual hormone (androsterone). Biochem J 29:1720–1731

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuhnz W, Beier S (1994) Comparative progestational and androgenic activity of norgestimate and levonorgestrel in the rat. Contraception 49:275–289

    CAS  PubMed  Google Scholar 

Nitrogen Retention

  • Dorfman RI (1969) Androgens and anabolic agents. In: Dorfman RI (ed) Methods in hormone research, vol IIA. Academic, New York, pp 151–220

    Google Scholar 

  • Polish E (1964) Clinical techniques for evaluating anabolic agents. In: Nodine JH, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical Publishers, Chicago, pp 561–565

    Google Scholar 

  • Stafford RO, Bowman BJ, Olson KJ (1954) Influence of 19-nortestosterone cyclopentyl-propionate on urinary nitrogen of castrate male rat. Proc Soc Exp Biol Med 86:322–326

    CAS  PubMed  Google Scholar 

  • Stucki JC, Forbes AD, Northam JI, Clark JJ (1960) An assay for anabolic steroids employing metabolic balance in the monkey: the anabolic activity of fluoxymesterone and its 11-keto analogue. Endocrinology 66:585–598

    CAS  PubMed  Google Scholar 

General Considerations

  • Mainwaring WIP (1977) Modes of action of antiandrogens: a survey. In: Martini L, Motta M (eds) Androgens and anti-androgens. Raven, New York, pp 151–161

    Google Scholar 

  • Moguilewski M, Bouton MM (1988) How the study of biological activities of antiandrogens can be oriented towards the clinic. J Steroid Biochem 31:699–710

    Google Scholar 

  • Neri RO (1977) Studies on the biology and mechanism of action of nonsteroidal antiandrogens. In: Martini L, Motta M (eds) Androgens and antiandrogens. Raven, New York, pp 179–189

    Google Scholar 

  • Neumann F (1985) Chemistry and pharmacology of anti-androgens. Chron Dermatol 16:557–563

    Google Scholar 

  • Neumann F, von Berswordt-Wallrabe R, Elger W, Steinbeck H, Hahn JD, Kramer M (1970) Aspects of androgen-dependent events as studied by antiandrogens. Recent Prog Horm Res 26:337–410

    CAS  PubMed  Google Scholar 

  • Neumann F, Gräf KJ, Hasan SH, Schenck B, Steinbeck H (1977) Central actions of antiandrogens. In: Martini L, Motta M (eds) Androgens and anti-androgens. Raven, New York, pp 163–177

    Google Scholar 

  • Raynaud JP, Azadian-Boulanger G, Bonne C, Perronnet J, Sakiz E (1977) In: Martini L, Motta M (eds) Androgens and anti-androgens. Raven, New York, pp 281–293

    Google Scholar 

Inhibition of 5α-Reductase

  • Andersson S, Russell DW (1990) Structural and biochemical properties of cloned and expressed human and rat steroid 5α-reductases. Proc Natl Acad Sci U S A 87:3640–3644

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brooks JR, Baptista EM, Berman C, Ham EA, Hichens M, Johnston DBR, Primka RL, Rasmusson G, Reynolds GF, Schmitt SM, Arth GE (1981) Response of rat ventral prostate to a new and novel 5α-reductase inhibitor. Endocrinology 109:830–836

    CAS  PubMed  Google Scholar 

  • Bruchovsky N, Wilson JD (1968) The conversion of testosterone to 5α-androstan-17β-ol-3-one by rat prostate in vivo and in vitro. J Biol Chem 243:2012–2021

    CAS  PubMed  Google Scholar 

  • Corvol P, Michaud A, Menard J, Freifeld M, Mahoudeau J (1975) Antiandrogenic effect of spirolactones: mechanism of action. Endocrinology 97:52–58

    CAS  PubMed  Google Scholar 

  • di Salle E, Giudici D, Briatico G, Ornati G, Panzeri A (1993) Hormonal effects of turosteride, a 5α-reductase inhibitor, in the rat. J Steroid Biochem Mol Biol 46:549–555

    Google Scholar 

  • di Salle E, Briatico G, Giudici D, Ornati G, Panzeri A (1994) Endocrine properties of the testosterone 5α-reductase inhibitor turosteride (FCE 26073). J Steroid Biochem Mol Biol 48:241–248

    PubMed  Google Scholar 

  • di Salle E, Giudici G, Radice A, Zaccheo T, Ornati G, Nesi M, Panzeri A, Délos S, Martin PM (1998) PNU 157706, a novel dual type I and II 5α-reductase inhibitor. J Steroid Biochem Mol Biol 64:179–186

    Google Scholar 

  • Hirsch KS, Jones CD, Audia JE, Andersson S, McQuaid L, Stamm NB, Neubauer BL, Pennington P, Toomey RE, Russell DW (1993) LY191704: a selective, nonsteroidal inhibitor of human steroid 5α-reductase type 1. Proc Natl Acad Sci U S A 90:5277–5281

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iehlè C, Délos S, Filhol O, Martin PM (1993) Baculovirus-directed expression of human prostatic steroid 5α-reductase 1 in an active form. J Steroid Biochem Mol Biol 46:177–182

    PubMed  Google Scholar 

  • Iehlè C, Délos S, Guirou O, Tate R, Raynaud JP, Martin PM (1995) Human prostatic steroid 5α-reductase isoforms: a comparative study of selective inhibitors. J Steroid Biochem Mol Biol 54:273–279

    PubMed  Google Scholar 

  • Jenkins EP, Andersson S, Imperato-McGinley J, Wilson J, Russell DW (1992) Genetic and pharmacological evidence for more than one human steroid 5α-reductase. J Clin Invest 89:293–300

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liang T, Cascieri MA, Cheung AH, Reynolds GF, Rasmusson GH (1985) Species differences in prostatic steroid 5α-reductase of rat, dog and human. Endocrinology 117:571–579

    CAS  PubMed  Google Scholar 

  • Neubauer BL, Best KL, Blohm TR, Gates C, Goode RL, Hirsch KS, Laughlin ME, Petrow V, Smalstig EB, Stamm NB, Toomey RE, Hoover DM (1993) LY207320 (6-methylene-4-pregnene-3,20-dione) inhibits testosterone biosynthesis, androgen uptake, 5α-reductase, and produces prostatic regression in rats. Prostate 23:181–199

    Google Scholar 

  • Rhodes L, Primka RL, Berman C, Vergult G, Gabriel M, Pierre-Malice M, Gibelin B (1993) Comparison of finasteride (Proscar), a 5α reductase inhibitor, and various commercial plant extracts in in vitro and in vivo 5α reductase inhibition. Prostate 22:43–51

    CAS  PubMed  Google Scholar 

  • Sigimura Y, Sakurai M, Hayashi N, Yamashita A, Kawamura J (1994) Age-related changes of the prostate gland in the senescence-accelerated mouse. Prostate 24:24–32

    Google Scholar 

  • Sudduth SL, Koronkowski MJ (1993) Finasteride: the first 5α reductase inhibitor. Pharmacotherapy 13:309–329

    CAS  PubMed  Google Scholar 

  • Tolman RL, Aster S, Bakshi RK, Bergman JP, Bull HG, Chang B, Cimis G, Dolenga MP, Durette P, Ellsworth K, Esser C, Graham DW, Hagman WK, Harris G, Kopka I, Lanza T, Patel G, Polo S, Rasmusson GH, Sahoo S, Toney JH, Von Langen D, Witzel B (1995) 4-Azasteroids as 5α-reductase inhibitors: identification of 4,7β-dimethyl-4-aza-5α-cholestan-3-one (MK-386) as a scalp isozyme selective inhibitor. Eur J Med Chem Suppl 30:311s–316s

    CAS  Google Scholar 

  • Wennbo T, Kindblom J, Isaksson OPG, Tornell J (1997) Transgenic mice overexpressing the prolactin gene develop dramatic enlargement of the prostate gland. Endocrinology 138:4410–4415

    CAS  PubMed  Google Scholar 

Chick Comb Method

  • Dorfman RI (1969) Antiandrogens. In: Dorfman RI (ed) Methods in hormone research, vol IIA. Academic, New York, pp 221–249

    Google Scholar 

  • Dorfman RI, Dorfman AS (1960) A test for anti-androgens. Acta Endocrinol 33:308–316

    CAS  PubMed  Google Scholar 

Antagonism of Androgen Action in Castrated Rats

  • Baba S, Paul HJ, Pollow K, Janetschek G, Jacobi GH (1981) In vivo studies on the antiandrogenic effects of cimetidine versus cyproterone acetate in rats. Prostate 2:163–174

    CAS  PubMed  Google Scholar 

  • Broulik PD (1980) Antiandrogenic activity of cimetidine in mice. Endokrinologie 76:118–121

    CAS  PubMed  Google Scholar 

  • Byrnes WW, Stafford RO, Olson KJ (1953) Anti-gonadal hormone activity of 11α-hydroxyprogesterone. Proc Soc Exp Biol Med 82:243–247

    CAS  PubMed  Google Scholar 

  • Christiansen RG, Bell MR, D’Ambra TE, Mallamo JP, Herrmann JL, Ackerman JH, Opalka CJ, Kullnig RK, Winneker RC, Snyder BW, Batzold FH, Schane HP (1990) Antiandrogenic steroidal sulfonylpyrazoles. J Med Chem 33:2094–2100

    Google Scholar 

  • Dorfman RI (1962) An anti-androgen assay using the castrated mouse. Proc Soc Exp Biol Med 111:441–443

    Google Scholar 

  • Dorfman RI (1969) Antiandrogens. In: Dorfman RI (ed) Methods in hormone research, vol IIA. Academic, New York, pp 221–249

    Google Scholar 

  • Eviatar A, Danon A, Sulman FG (1961) The mechanism of the “push and pull” principle. V. Effect of the antiandrogen RO 2-7239 on the endocrine system. Arch Int Pharmacodyn 133:75–88

    CAS  PubMed  Google Scholar 

  • Foldesy RG, Vanderhoof MM, Hahn DW (1985) In vitro and in vivo comparisons of antiandrogenic potencies of two histamine H2-receptor antagonists, cimetidine and etintidine-HCl (42087). Proc Soc Exp Biol Med 179:206–210

    CAS  PubMed  Google Scholar 

  • Furr BJA, Valcaccia B, Curry B, Woodburn JR, Chesterson C, Tucker H (1987) ICI 176,334: a novel non-steroidal, peripherally selective antiandrogen. J Endocrinol 113:R7–R9

    CAS  PubMed  Google Scholar 

  • Neri F, Florance K, Koziol P, van Cleave S (1972) A biological profile of a nonsteroidal antiandrogen, SCH 13521 (4′-nitro-3′-trifluoromethylisobutyranilide). Endocrinology 91:427–437

    Google Scholar 

  • Neubauer BL, Goode RL, Best KL, Hirsch KS, Lin TM, Pioch RP, Probst KS, Tinsley FC, Shaar CJ (1990) Endocrine effects of a new histamine H2-receptor antagonist, Nizatidine (LY139037), in the male rat. Toxicol Appl Pharmacol 102:219–232

    CAS  PubMed  Google Scholar 

  • Neubauer BE, Best KL, Clemens JA, Gates CA, Goode RL, Jones CD, Laughlin ME, Shaar CJ, Toomey RE, Hoover DM (1993) Endocrine and antiprostatic effects of Raloxifene (LY156758) in the male rat. Prostate 23:245–262

    Google Scholar 

  • Neumann F, Gräf KJ, Hasan SH, Schenck B, Steinbeck H (1977) Central actions of antiandrogens. In: Martini L, Motta M (eds) Androgens and antiandrogens. Raven, New York, pp 163–177

    Google Scholar 

  • Randall LO, Selitto JJ (1958) Anti-androgenic activity of a synthetic phenanthrene. Endocrinology 62:693–695

    CAS  PubMed  Google Scholar 

  • Shibata K, Takegawa S, Koizumi N, Yamakoshi N, Shimazawa E (1992) Antiandrogen. I. 2-azapregnane and 2-oxapregnane steroids. Chem Pharm Bull 40:935–941

    CAS  PubMed  Google Scholar 

  • Sivelle PC, Underwood AH, Jelly JA (1982) The effects of histamine H2 receptor antagonists on androgen action in vivo and dihydrotestosterone binding to the rat prostate androgen receptor in vitro. Biochem Pharmacol 31:677–684

    Google Scholar 

  • Snyder BW, Winneker RC, Batzold FH (1989) Endocrine profile of WIN 49596 in the rat: a novel androgen receptor antagonist. J Steroid Biochem 33:1127–1132

    Google Scholar 

  • Tagekawa S, Koizumi N, Takahashi H, Shibata K (1993) Antiandrogen. II. Oxygenated 2-oxapregnane steroids. Chem Pharm Bull 41:870–875

    Google Scholar 

  • Takeda M, Takagi T, Yashima Y, Maneo H (1982) Effect of a new H2-blocker, 3-[[[2-[(diaminomethylene)amino]-4-thiazoly] methyl]thio]-N2-sulfamoyl propionamidine (YM-11170), on gastric secretion, ulcer formation and male accessory sex organs in rats. Arzneimittelforschung 32:734–737

    CAS  PubMed  Google Scholar 

  • Turner RA (1965) Anabolic, androgenic, and antiandrogenic agents. In: Turner RA (ed) Screening methods in pharmacology. Academic, New York, pp 244–246

    Google Scholar 

  • Winters SJ, Banks JL, Loriaux DL (1979) Cimetidine is an antiandrogen in the rat. Gastroenterology 76:504–508

    CAS  PubMed  Google Scholar 

Anti-Androgenic Activity in Female Rats

  • Neri F, Florance K, Koziol P, van Cleave S (1972) A biological profile of a nonsteroidal antiandrogen, SCH 13521 (4′-nitro-3′-trifluoromethylisobutyranilide). Endocrinology 91:427–437

    Google Scholar 

  • Neumann F, Elger W (1966) Eine neue Methode zur Prüfung antiandrogen wirksamer Substanzen an weiblichen Ratten. Acta Endocrinol 52:54–62

    Google Scholar 

  • Snyder BW, Winneker RC, Batzold FH (1989) Endocrine profile of WIN 49596 in the rat: a novel androgen receptor antagonist. J Steroid Biochem 33:1127–1132

    Google Scholar 

Intra-Uterine Feminizing/Virilizing Effect

  • Imperato-McGinley J, Sanchez RS, Spencer JR, Yee B, Vaughan D (1992) Comparison of the effects of the 5α-reductase inhibitor finasteride and the antiandrogen flutamide on prostate and genital differentiation: dose–response studies. Endocrinology 131:1149–1156

    CAS  PubMed  Google Scholar 

  • Neumann F (1994) The antiandrogen cyproterone acetate: discovery, chemistry, basic pharmacology, clinical use and tool in basic research. Exp Clin Endocrinol 102:1–32

    CAS  PubMed  Google Scholar 

  • Neumann F, Elger W (1966) Permanent changes of gonadal function and sexual behaviour as a result of early feminization of male rats by treatment with an antiandrogenic steroid. Endokrinologie 50:209–225

    Google Scholar 

  • Neumann F, Elger W (1967) Steroidal stimulation of mammary glands in prenatally feminized male rats. Eur J Pharmacol 1:120–123

    CAS  PubMed  Google Scholar 

  • Neumann F, Junkmann K (1963) A new method for determination of virilizing properties of steroids on the fetus. Endocrinology 73:33–37

    CAS  Google Scholar 

  • Neumann F, Kramer M (1964) Antagonism of androgenic and anti-androgenic agents in their action on the rat fetus. Endocrinology 75:428–433

    CAS  PubMed  Google Scholar 

  • Nishino Y, Schröder H, El Etreby MF (1988) Experimental studies on the endocrine side effects of new aldosterone antagonists. Arzneimittelforschung 38:1800–1805

    CAS  PubMed  Google Scholar 

Anti-Androgenic Activity on Sebaceous Glands

  • Hamilton JB, Montagna W (1950) The sebaceous gland of the hamster. I. Morphological effects of androgens on integumentary structures. Am J Anat 86:191–234

    CAS  PubMed  Google Scholar 

  • Lapière CH, Chèvremont M (1953) Modifications des glandes sébacées par des hormones sexuelles appliquées localement sur la peau de Souris. C R Soc Biol (Paris) 147:1302–1306

    Google Scholar 

  • Mitchell OG (1965) Effect of castration and transplantation on ventral gland of the gerbil. Proc Soc Exp Biol Med 119:953–955

    CAS  PubMed  Google Scholar 

  • Neumann F, Elger W (1966) The effect of a new antiandrogenic steroid, 6-chloro-17-hydroxy-1α,2α-methylenepregena-4,6-diene-3,20-dione acetate (cyproterone acetate) on the sebaceous glands of mice. J Invest Dermatol 46:561–572

    Google Scholar 

  • Sauter LS, Loud AV (1975) Morphometric evaluation of sebaceous gland volume in intact, castrated, and testosterone-treated rats. J Invest Dermatol 64:9–13

    CAS  PubMed  Google Scholar 

Effect of 5α-Reductase Inhibitors on Plasma and Tissue Steroid Levels

  • di Salle E, Giudici D, Briatico G, Ornati G, Panzeri A (1993) Hormonal effects of turosteride, a 5α-reductase inhibitor, in the rat. J Steroid Biochem Mol Biol 46:549–555

    Google Scholar 

  • di Salle E, Giudici G, Radice A, Zaccheo T, Ornati G, Nesi M, Panzeri A, Délos S, Martin PM (1998) PNU 157706, a novel dual type I and II 5α-reductase inhibitor. J Steroid Biochem Mol Biol 64:179–186

    Google Scholar 

  • Falvo RE, Nalbandov AV (1974) Radioimmunoassay of peripheral plasma testosterone in males from eight species using a specific antibody without chromatography. Endocrinology 95:1466–1468

    CAS  PubMed  Google Scholar 

  • George FW, Johnson L, Wilson JD (1989) The effect of a 5α-reductase inhibitor on androgen physiology in the immature male rat. Endocrinology 125:2434–2438

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Sandow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Sandow, J. (2015). Testicular Steroid Hormones. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27728-3_78-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27728-3_78-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27728-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics