Skip to main content

Assays of Obesity-Regulating Peptide Hormones

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Pharmacological Assays
  • 721 Accesses

Abstract

Food intake and fat deposition are regulated by peptide neurotransmitters, most of them located in the brain, particularly in the hypothalamus (Elmquist et al. 1999; Kalra et al. 1999) and in the gut. This includes peptides that are (appetite stimulating) and . A review was given on investigational anti-obesity agents and obesity therapeutic treatment targets by Bays (2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References and Further Reading

Hormonal Regulation of Food Intake

  • Ahima RS, Flier JS (2000) Adipose tissue as an endocrine organ. Trends Endocrinol Metab 11:327–332

    Google Scholar 

  • Bacher D, Kreienkamp HJ, Weise C, Buck F, Richter D (1999) Identification of melanin concentrating hormone (MHC) as the natural ligand for the orphan somatostatin-like receptor 1 (SLC-1). FEBS Lett 467:522–524

    Google Scholar 

  • Banerjee RR, Lazar MA (2004) Resistin: molecular history and prognosis. J Mol Med 81:218–226

    Google Scholar 

  • Banerjee RR, Rangwala SM, Shapiro JS, Rich AS, Rhoades B, Qi Y, Wang J, Rajala MW, Pocai A, Scherer PE, Steppan CM, Ahima RS, Obici S, Rosetti L, Lazar MA (2004) Regulation of fasted blood glucose by resistin. Science 303:1195–1198

    CAS  PubMed  Google Scholar 

  • Bays HE (2004) Current and investigational antiobesity agents and obesity therapeutic treatment targets. Obes Res 12:1197–1211

    CAS  PubMed  Google Scholar 

  • Berger A (2001) Resistin, a new hormone that links obesity with type 2 diabetes. Br Med J 322:193

    Google Scholar 

  • Broberger C (1999) Hypothalamic cocaine- and amphetamine-regulated transcript (CART) neurons. Histochemical relationship to thyrotropin-releasing hormone, melatonin-concentrating hormone, orexin/hypocretin and neuropeptide Y. Brain Res 848:101–113

    CAS  PubMed  Google Scholar 

  • Broberger C, Holmberg K, Kuhar MJ, Hökfelt T (1999) Cocaine- and amphetamine-regulated transcript in the rat vagus nerve: a putative mediator of cholecystokinin-induced satiety. Proc Natl Acad Sci U S A 96:13506–13511

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burgaud JL, Poosti R, Fehrentz JA, Martinez J, Nahon JL (1997) Melanin-concentrating hormone binding sites in human SVK14 keratinocytes. Biochem Biophys Res Commun 241:622–629

    CAS  PubMed  Google Scholar 

  • Chambers J, Ames RS, Bergsma D, Muir A, Fitzgerald LR, Hervieu G, Dytko GM, Foley JJ, Martin S, Liu WS, Park J, Ellis C, Ganguly S, Konchar S, Cluderay J, Leslie R, Wilson S, Sarau HM (1999) Melanin-concentrating hormone is the cognate ligand for the orphan G-protein-coupled receptor SLC-1. Nature 400:261–265

    CAS  PubMed  Google Scholar 

  • Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, Mc-Kee JL, Bauer TL, Caro JF (1996) Serum immunoreactive leptin concentrations in normal-weight and obese humans. N Engl J Med 334:292–295

    CAS  PubMed  Google Scholar 

  • Couceyro PR, Lambert PD (1999) CART peptides: therapeutic potential in obesity and feeding disorders. Drug News Perspect 12:133–136

    CAS  Google Scholar 

  • Crawley JN, Austin MC, Fiske SM, Martin B, Consolo S, Berthold M, Langel U, Fisone G, Bartfai T (1990) Activity of centrally administered galanin fragments on stimulation of feeding behavior and on galanin receptor binding in the rat hypothalamus. J Neurosci 10:3695–3700

    Google Scholar 

  • Dun NJ, Dun SL, Kwok EH, Yang J, Chang J-K (2000) Cocaine- and amphetamine-regulated transcript-immunoreactivity in the rat sympatho-adrenal axis. Neurosci Lett 283:97–100

    CAS  PubMed  Google Scholar 

  • Elmquist JK, Elias CF, Saper CB (1999) From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22:221–232

    CAS  PubMed  Google Scholar 

  • Fong TM, Mao C, MacNeil T, Kalyani R, Smith T, Weinberg T, Tota MR, Van der Ploeg LH (1997) ART (protein product of agouti-related transcript) as an antagonist of MC-3 and MC-4 receptors. Biochem Biophys Res Commun 237:629–631

    CAS  PubMed  Google Scholar 

  • Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    Google Scholar 

  • Haluzik M, Haluzikova D (2006) The role of resistin in obesity-induced insulin resistance. Curr Opin Investig Drugs 7:306–311

    CAS  PubMed  Google Scholar 

  • Hintermann E, Drozdz R, Tanner H, Eberle AN (1999) Synthesis and characterization of new radioligands for the mammalian melanin-concentrating hormone (MCH) receptor. J Recept Signal Transduct Res 19:411–422

    CAS  PubMed  Google Scholar 

  • Huang Q, Viale A, Picard F, Nahon JL, Richard D (1999) Effect of leptin on melanin-concentrating hormone expression in the brain of lean and obese Lep(ob)/Lep(ob) mice. Neuroendocrinology 69:145–153

    CAS  PubMed  Google Scholar 

  • Jain MR, Horvath TL, Kalra PS, Kalra SP (2000) Evidence that NPY Y1 receptors are involved in stimulation of feeding by orexins (hypocretins) in sated rats. Regul Pept 87:19–24

    Google Scholar 

  • Jensen PB, Kristensen P, Clausen JT, Judge ME, Hastrup S, Thim L, Wulff BS, Foged C, Jensen J, Holst JJ, Madsen OD (1999) The hypothalamic satiety peptide CART is expressed in anorectic and non-anorectic pancreatic islets tumors and in the normal islet of Langerhans. FEBS Lett 447:139–143

    CAS  PubMed  Google Scholar 

  • Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS (1999) Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 20:68–100

    CAS  PubMed  Google Scholar 

  • Kastin AJ, Akerström V (1999) Entry of CART into brain is rapid but not inhibited by excess CART or leptin. Am J Physiol 277:E901–E904; Endocrinol Metab 40

    CAS  PubMed  Google Scholar 

  • Koylu EO, Couceyro PR, Lambert PD, Kuhar MJ (1998) Cocaine- and amphetamine-regulated transcript peptide immunohistochemical localization in the rat brain. J Comp Neurol 391:115–132

    CAS  PubMed  Google Scholar 

  • Koylu EO, Smith Y, Couceyro PR, Kuhar MJ (1999) CART peptides colocalize with tyrosine hydroxylase neurons in rat locus coeruleus. Synapse 31:309–311

    CAS  PubMed  Google Scholar 

  • Kristensen P, Judge ME, Thim L, Ribel U, Christjansen KN, Wulff BS, Clausen JT, Jensen PB, Madsen OD, Vrang N, Larsen PJ, Hastrup S (1998) Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 393:72–76

    CAS  PubMed  Google Scholar 

  • Kuhar MJ, Dall-Vechia SE (1999) CART peptides: novel addiction- and feeding-related peptides. Trends Neurosci 22:316–320

    CAS  PubMed  Google Scholar 

  • Lambert PD, Wilding JPH, al Dokhayel AAM, Bohuon C, Comoy E, Gilbey SG, Bloom SR (1993) A role for neuropeptide Y, dynorphin, and noradrenaline in the central control of food intake after food deprivation. Endocrinology 133:29–33

    Google Scholar 

  • Lambert PD, Couceyro PR, McGirr KM, Vechia SED, Smith Y, Kuhar MJ (1998) CART peptides in the central control of feeding and interaction with neuropeptide Y. Synapse 29:293–298

    CAS  PubMed  Google Scholar 

  • Leibowitz SF, Kim T (1992) Impact of a galanin antagonist on exogenous galanin and natural patterns of fat ingestion. Brain Res 599:148–152

    Google Scholar 

  • Ludwig DS, Mountjoy KG, Tatro JB, Gillette JA, Frederich RC, Flier JS, Marato-Flier E (1998) Melanin-concentrating hormone: a functional melanocortin antagonist in the hypothalamus. Am J Physiol 274:E627–E633; Endocrinol Metab 37

    CAS  PubMed  Google Scholar 

  • Marsh DJ, Hollopeter G, Huszar D, Laufer R, Yagaloff KA, Fisher SL, Burn P, Palmiter RD (1999) Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nat Genet 21:119–122

    CAS  PubMed  Google Scholar 

  • Ollmann MM, Wilson BD, Yang Y-K, Kerns JA, Chen Y, Gantz I, Barsh GS (1997) Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278:135–138

    CAS  PubMed  Google Scholar 

  • Ollmann MM, Lamoreux ML, Wilson BD, Barsh GS (1998) Interaction of Agouti protein with the melanocortin-1 receptor in vitro and in vivo. Genes Dev 12:316–3330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parker EM (1999) The role of central neuropeptide, neurotransmitter and hormonal systems in the regulation of body weight. Neurotransmiss 15:3–11

    Google Scholar 

  • Qu D, Ludwig DS, Gammeltoft S, Piper M, Pellemounter A, Cullen MJ, Foulds-Mathes W, Przypek J, Kanarek R, Maratos-Flier E (1996) A role for melatonin-concentrating hormone in the control of feeding behavior. Nature 380:243–247

    CAS  PubMed  Google Scholar 

  • Rosenfeld RD, Zeni L, Welcher AA, Narhi LO, Hale C, Marasco J, Delaney J, Gleason T, Philo JS, Katta V, Hui J, Baumgartner J, Graham M, Stark KL, Karbon W (1998) Biochemical and biophysical characterization of bacterially expressed human agouti-related protein. Biochemistry 37:16041–16052

    CAS  PubMed  Google Scholar 

  • Rossi M, Beak SA, Choi SJ, Small CJ, Morgan DGA, Ghatei MA, Smith DM, Bloom SR (1999) Investigation of the feeding effects of melanin concentrating hormone on food intake. Action independent of galanin and the melanocortin receptors. Brain Res 846:164–170

    CAS  PubMed  Google Scholar 

  • Sahu A (1998) Evidence that galanin (GAL), melanin-concentrating hormone (MHC), neurotensin (NT) proopiomelanocortin (POMC) and neuropeptide Y (NPY) are targets of leptin signaling in the hypothalamus. Endocrinology 139:795–798

    CAS  PubMed  Google Scholar 

  • Saito Y, Nothacker HP, Wang Z, Lin SHS, Leslie F, Civelli O (1999) Molecular characterization of the melanin-concentrating hormone receptor. Nature 400:265–269

    CAS  PubMed  Google Scholar 

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JRS, Buckingham RB, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu W-S, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides an G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585

    Google Scholar 

  • Shimada M, Tritos NA, Lowell BB, Flier JS, Maratos-Flier E (1998) Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 396:670–674

    CAS  PubMed  Google Scholar 

  • Shimomura Y, Mori M, Sugo T, Ishibashi Y, Abe M, Kurokawa T, Onda H, Nishimura O, Sumino Y, Fujino M (1999) Isolation and identification of melanin-concentrating hormone as the endogenous ligand for the SLC-1 receptor. Biochem Biophys Res Commun 261:622–626

    CAS  PubMed  Google Scholar 

  • Shutter JR, Graham M, Kinsey AC, Scully S, Lüthy R, Stark KL (1997) Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mice. Genes Dev 11:593–602

    CAS  PubMed  Google Scholar 

  • Stanley BG, Magdalin W, Seirafi A, Nguyen MM, Leibowitz SF (1992) Evidence for neuropeptide Y mediation of eating produced by food deprivation and for a variant of the Y-1 receptor mediating this peptide’s effect. Peptides 13:581–587

    Google Scholar 

  • Steppan CM, Lazar MA (2002) Resistin and obesity-associated insulin resistance. Trends Endocrinol Metab 13:18–23

    CAS  PubMed  Google Scholar 

  • Steppan CM, Lazar MA (2004) The current biology of resistin. J Intern Med 255:439–447

    CAS  PubMed  Google Scholar 

  • Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA (2001a) The hormone resistin links obesity to diabetes. Nature 409:307–312

    CAS  PubMed  Google Scholar 

  • Steppan CM, Brown EJ, Wright CM, Bhat S, Banerjee RR, Dai CY, Enders GH, Silberg DG, Wen X, Wu GD, Lazar MA (2001b) A family of tissue-specific resistin-like molecules. Proc Natl Acad Sci U S A 98:502–506

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thim L, Nielsen PF, Judge ME, Andersen AS, Diers I, Egel-Mitani M, Hastrup S (1998a) Purification and characterization of e new hypothalamic satiety peptide, cocaine and amphetamine regulated transcript (CART), produced in yeast. FEBS Lett 428:263–268

    CAS  PubMed  Google Scholar 

  • Thim L, Kristene P, Larsen PJ, Wulff BS (1998b) CART, a new anorectic peptide. Int J Biochem Cell Biol 30:1281–1284

    CAS  PubMed  Google Scholar 

  • Tota MR, Smith TS, Mao C, McNeil T, Mosley RT, Van der Ploeg LTH, Fong TM (1999) Molecular interaction of Agouti protein and Agouti-related protein with human melanocortin receptors. Biochemistry 38:897–904

    CAS  PubMed  Google Scholar 

  • Tovar S, Nogueiras R, Tung LYC, Castañeda TR, Vásquez MJ, Morris A, Williams LM, Dickson SL, Diéguez C (2005) Central administration of resistin promotes short-term satiety in rats. Eur J Endocrinol 153:R1–R5

    CAS  PubMed  Google Scholar 

  • Trayhurn P, Hoggard N, Mercer JG, Rayner DV (1999) Leptin: fundamental aspects. Int J Obes 23(Suppl 1):22–28

    Google Scholar 

  • Tritos NA, Maratos-Flier E (1999) Two important systems in energy homeostasis: melanocortins and melanin-concentrating hormone. Neuropeptides 33:339–349

    CAS  PubMed  Google Scholar 

  • Xu B, Dube MG, Kalra PS, Farmeie WG, Kaibara A, Moldawer LL, Martin D, Kalra SP (1998) Anorectic effects of the cytokine, ciliary neurotropic factor, are mediated by hypothalamic neuropeptide Y: comparison with leptin. Endocrinology 139:466–473

    CAS  PubMed  Google Scholar 

Leptin: General Considerations on the Obese Gene Product Leptin

  • Ahima RS, Flier JS (2000) Leptin. Annu Rev Physiol 62:413–437

    Google Scholar 

  • Arch JRS, Beeley LJ (1996) Leptin: the hormone that directs the regulation of energy balance. Pharmacol Commun 7:317–322

    CAS  Google Scholar 

  • Barinaga M (1995) “Obese” protein that slims mice. Science 269:475–476

    CAS  PubMed  Google Scholar 

  • Chebab FF (2000) Leptin as a regulator of adipose mass and reproduction. Trends Pharmacol Sci 21:309–314

    Google Scholar 

  • Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207

    CAS  PubMed  Google Scholar 

  • Dumond H, Presle N, Terlain B, Mainard D, Loeuille D, Netter P, Pottie P (2003) Evidence for a key role of leptin of osteoarthritis. Arthritis Rheum 48:3118–3129

    CAS  PubMed  Google Scholar 

  • Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    Google Scholar 

  • Grasso P, Leinung MC, Ingher SP, Lee DW (1997) In vivo effects of leptin-related synthetic peptides on body weight and food intake in female ob/ob mice. Endocrinology 138:1413–1418

    CAS  PubMed  Google Scholar 

  • Grasso P, White DW, Tartaglia LA, Leinung MC, Lee DW (1999) Inhibitory effects of leptin-related synthetic peptide 116–130 on food intake and body weight gain in female C57BL/6J ob/ob mice may not be mediated by peptide activation of the long form of the leptin receptor. Diabetes 48:2204–2209

    CAS  PubMed  Google Scholar 

  • Guan XM, Hess JF, Yu H, Hey PJ, Van der Ploeg LHT (1997) Differential expression of mRNA for leptin receptor isoforms in the rat brain. Mol Cell Endocrinol 133:1–7

    CAS  PubMed  Google Scholar 

  • Hamann A, Matthaei S (1996) Regulation of energy balance by leptin. Exp Clin Endocrinol Diabetes 104:293–300

    CAS  PubMed  Google Scholar 

  • Igel M, Becker W, Herberg L, Joost HG (1997) Hyperleptinemia, leptin resistance, and polymorphic leptin receptor in the New Zealand obese mouse. Endocrinology 138:4234–4239

    CAS  PubMed  Google Scholar 

  • Liu C, Liu XJ, Barry G, Ling N, Maki RA, De Souza EB (1997) Expression and characterization of a putative high affinity human soluble leptin receptor. Endocrinology 138:3548–3554

    CAS  PubMed  Google Scholar 

  • MacDougald OA, Hwang CS, Fan H, Lane MD (1995) Regulated expression of the obese gene product (leptin) in white adipose tissue and 3T3-L1 adipocytes. Proc Natl Acad Sci U S A 92:9034–9037

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S, Kern PA, Friedman JM (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1:1155–1161

    Google Scholar 

  • Maffei M, Stoffel M, Berone M, Moon B, Dammerman M, Ravussin E, Bogardus C, Ludwig DS, Flier JS, Talley M, Auerbach S, Friedman JM (1996) Absence of mutations in the human OB gene in obese/diabetic subjects. Diabetes 45:679–682

    CAS  PubMed  Google Scholar 

  • Murakami T, Yamashita T, Iida M, Kuwajima M, Shima K (1997) A short form of leptin receptor performs signal transduction. Biochem Biophys Res Commun 231:26–29

    CAS  PubMed  Google Scholar 

  • Sarmiento U, Benson B, Kaufman S, Ross L, Qi M, Scully S, DiPalma C (1997) Morphologic and molecular changes induced by recombinant human leptin in the white and brown adipose tissues of C57BL/6 mice. Lab Invest 77:243–256

    CAS  PubMed  Google Scholar 

  • Scarpace PJ, Matheny M, Pollock BH, Tumer N (1997) Leptin increases uncoupling protein expression and energy expenditure. Am J Physiol (Endocrin Metab) 273:E226–E230

    CAS  Google Scholar 

  • Stephens TW, Caro JF (1998) To be lean or not to be lean. Is leptin the answer? Exp Clin Endocrinol Diabetes 106:1–15

    CAS  PubMed  Google Scholar 

  • Stephens TW, Basinski M, Birstow PK, Bue-Valleskey JM, Burgett SG, Craft L, Hale J, Hoffmann J, Hsuing HM, Kriauciuneas A, Mackelar W, Rosteck PR Jr Schoner B, Smith D, Tinsley FC, Zhang X, Heiman M (1995) The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature 377:530–532

    Google Scholar 

  • Strosberg D, Issad T (1999) The involvement of leptin in humans revealed by mutations in the leptin and leptin receptor genes. Trends Pharmacol Sci 20:227–230

    CAS  PubMed  Google Scholar 

  • Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317

    CAS  PubMed  Google Scholar 

  • Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J, Muir C, Sanker S, Moriarty A, Moore KJ, Smutko JS, Mays GG, Woolf EA, Monroe CA, Tepper RI (1995) Identification and expression cloning of a leptin receptor, OB-R. Cell 83:1263–1271

    CAS  PubMed  Google Scholar 

  • Trayhurn P, Hoggard N, Mercer JG, Rayner DV (1999) Leptin: fundamental aspects. Int J Obes 23(Suppl 1):22–28

    Google Scholar 

  • Widdowson PS, Upton R, Buckingham R, Arch J, Williams G (1997) Inhibition of food response to intracerebroventricular injection of leptin is attenuated in rats with diet-induced obesity. Diabetes 46:1782–1785

    CAS  PubMed  Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    CAS  PubMed  Google Scholar 

Leptin: Determination of Leptin mRNA Level in Adipose Tissue

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    CAS  PubMed  Google Scholar 

  • Frederich RC et al (1995) Expression of ob mRNA and its encoded protein in rodents: impact of nutrition and obesity. J Clin Invest 96:1658–1663

    Google Scholar 

  • Frederich RC, Hamann A, Anderson S, Löllmann B, Lowell BB, Flier JS (1995) Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat Med 1:1311–1314

    Google Scholar 

  • Harris RBS, Ramsay TG, Smith SR, Bruch RC (1996) Early and late stimulation of ob mRNA expression in meal-fed and over-fed rats. J Clin Invest 97:2020–2026

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karbowska J, Kochan Z, Zelewski L, Swierczynski J (1999) Tissue-specific effect of clofibrate on rat lipogenic enzyme gene expression. Eur J Pharmacol 370:329–336

    CAS  PubMed  Google Scholar 

  • Kochan Z, Karbowska J, Swierczynski J (1999) Effect of clofibrate on malic enzyme and leptin mRNA level in rat brown and white adipose tissue. Horm Metab Res 31:536–542

    Google Scholar 

  • Li HY, Wang LL, Yeh RS (1999) Leptin-immunoreactivity in the central nervous system in normal and diabetic rats. Neuroreport 10:437–442

    CAS  PubMed  Google Scholar 

  • Richards MP, Ashwell CM, McMurtry JP (2000) Quantitative analysis of leptin mRNA using competitive reverse transcription polymerase chain reaction and capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 21:792–798

    CAS  PubMed  Google Scholar 

  • Shintani M, Nishimura H, Yonemitsu S, Masuzaki H, Ogawa Y, Hosoda K, Inuoe G, Yoshimasa Y, Nakao K (2000) Downregulation of leptin by free fatty acids in rat adipocytes: effects of triacsin C, palmitate, and 2-bromopalmitate. Metab Clin Exp 49:326–330

    CAS  PubMed  Google Scholar 

  • Zachwieja JJ, Hendry SL, Smith SR, Harris RBS (1997) Voluntary wheel running decreases adipose tissue mass and expression of leptin mRNA in Osborne-Mendel rats. Diabetes 46:1159–1166

    Google Scholar 

Leptin: Determination of Plasma Leptin

  • Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S, Kern PA, Friedman JM (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1:1155–1161

    Google Scholar 

  • McGregor GP, Desaga JF, Ehlenz K, Fischer A, Heese F, Hegele A, Lämmer C, Peiser C, Lang RE (1996) Radioimmunological measurement of leptin in plasma of obese and diabetic human subjects. Endocrinology 137:1501–1504

    CAS  PubMed  Google Scholar 

  • Surwit RS, Petro AE, Parekh P, Collins S (1997) Low plasma leptin in response to dietary fat in diabetes- and obesity-prone mice. Diabetes 46:1516–1520

    CAS  PubMed  Google Scholar 

  • Van Heek M, Compton DS, France CF, Tedesco RP, Fawzi AB, Graziano MP, Sybertz EJ, Strader CD, Davis HR Jr (1997) Diet-induced obese mice develop peripheral, but not central, resistance to leptin. J Clin Invest 99:385–390

    PubMed Central  PubMed  Google Scholar 

  • Zachwieja JJ, Hendry SL, Smith SR, Harris RBS (1997) Voluntary wheel running decreases adipose tissue mass and expression of leptin mRNA in Osborne-Mendel rats. Diabetes 46:1159–1166

    Google Scholar 

Neuropeptide Y: General Considerations on Neuropeptide Y and Related Peptides

  • Baraban SC (2004) Neuropeptide Y and epilepsy: recent progress, prospects and controversies. Neuropeptides 38:261–266

    CAS  PubMed  Google Scholar 

  • Berglund MM, Hipskind PA, Gehlert DR (2003) Recent developments in our understanding of the physiological role of PP-fold peptide receptor subtypes. Exp Biol Med 228:217–244

    CAS  Google Scholar 

  • Billington CJ, Briggs JE, Grace M, Levine AS (1991) Effect of intracerebroventricular injection of neuropeptide Y on energy metabolism. Am J Physiol 260:R321–R327; Regul Integr Comp Physiol 29

    CAS  PubMed  Google Scholar 

  • Bischoff A, Avramidis P, Erdbrugger W, Munter K, Michel MC (1997) Receptor subtypes Y1 and Y5 are involved in the renal effects of neuropeptide Y. Br J Pharmacol 120:1335–1343

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blaze CA, Mannon PJ, Vigna SR, Kherani AR, Benjamin BA (1997) Peptide YY receptor distribution and subtype in the kidney: effect on renal hemodynamics and function in rats. Am J Physiol 273:F545–F553; Renal Physiol 42

    CAS  PubMed  Google Scholar 

  • Britton KT, Southerland S, Van Uden E, Kirby D, Rivier J, Koob G (1997) Anxiolytic activity of NPY receptor agonists in the conflict test. Psychopharmacology (Berl) 132:6–13

    CAS  Google Scholar 

  • Broqua P, Wettstein JG, Rocher MN, Gauthier-Martin B, Riviere PJM, Junien JL, Dahl SG (1996) Antinociceptive effects of neuropeptide Y and related peptides in mice. Brain Res 724:25–32

    CAS  PubMed  Google Scholar 

  • Chen CH, Stephens RL Jr, Rogers RC (1997) PYY and NPY: control of gastric motility via action on Y1 and Y2 receptors in the dorsal vagal complex. Neurogastroenterol Motil 9:109–116

    CAS  PubMed  Google Scholar 

  • Criscione L, Rigollier P, Batzl-Hartmann C, Rueger H, Stricker-Krangrad A, Wyss P, Brunner L, Whitebread S, Yamaguchi Y, Gerald C, Heurich RO, Walker MW, Chiesi M, Schilling W, Hofbauer KG, Levens N (1998) Food intake in free-feeding and energy-deprived lean rats is mediated by the neuropeptide Y5 receptor. J Clin Invest 102:2136–2145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dumont Y, Chabot JG, Quirion R (2004) Receptor autoradiography as means to explore the possible functional relevance of neuropeptides: focus on new agonists and antagonists to study natriuretic peptides, neuropeptide Y and calcitonin gene-related peptides. Peptides 25:365–391

    CAS  PubMed  Google Scholar 

  • Erickson JC, Hollopeter G, Palmiter RD (1996) Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science 274:1704–1707

    CAS  PubMed  Google Scholar 

  • Fuhlendorff J, Gether U, Aakerlund L, Langeland-Johansen N, Thøgersen H, Melberg SG, Olsen UB, Thastrup O, Schwartz TW (1990) [Leu31, Pro34]neuropeptide Y: a specific Y1 receptor agonist. Proc Natl Acad Sci U S A 87:182–186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gerald C, Walker MW, Criscione L, Gustafson EL, Batzl-Hartmann C, Smith KE, Vaysse P, Durkin MM, Laz TM, Linemeyer DL, Schaffhauser AO, Whitebread S, Hofbauer KG, Taber RI, Branchek TA, Weinshank RL (1996) A receptor subtype involved in neuropeptide Y-induced food intake. Nature 382:168–171

    CAS  PubMed  Google Scholar 

  • Goumain M, Voisin T, Lorinet AM, Balsubramaniam A, Laburthe M (1998) Pharmacological profile of the rat intestinal crypt peptide YY receptor vs. the recombinant Y5 receptor. Eur J Pharmacol 362:245–249

    CAS  PubMed  Google Scholar 

  • Heilig M (2004) The NPY system in stress, anxiety and depression. Neuropeptides 38:213–224

    CAS  PubMed  Google Scholar 

  • Hudspith MJ, Munglani R (1997) The therapeutic potential of neuropeptide Y in cardiovascular disease. Expert Opin Investig Drugs 6:437–445

    CAS  PubMed  Google Scholar 

  • Iyengar S, Li DL, Simmons RMA (1999) Characterization of neuropeptide Y-induced feeding in mice: do Y1-Y6 receptor subtypes mediate feeding? J Pharmacol Exp Ther 289:1031–1040

    CAS  PubMed  Google Scholar 

  • Kalra SP, Kalra PS (2004) NPY and cohorts in regulating appetite, obesity and metabolic syndrome: beneficial effects of gene therapy. Neuropeptides 38:201–211

    CAS  PubMed  Google Scholar 

  • Kanatani A, Kanno T, Ishihara A, Hata M, Sakuraba A, Tanaka T, Tsuchiya Y, Mase T, Fukuroda T, Fukami T, Ihara M (1999) The novel neuropeptide Y Y1 receptor antagonist J-104870: a potent feeding suppressant with oral bioavailability. Biochem Biophys Res Commun 266:88–91

    CAS  PubMed  Google Scholar 

  • Kask A, Rago L, Harro J (1996) Anxiogenic-like effect of the neuropeptide Y Y1 receptor antagonist BIBP3226. Eur J Pharmacol 317:R3–R4

    CAS  PubMed  Google Scholar 

  • Kask A, Rago L, Harro J (1998) Evidence for involvement of neuropeptide Y receptors in the regulation of food intake: studies with Y-1-selective antagonist BIBP3226. Br J Pharmacol 124:1507–1515

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kask A, Vasar E, Heidmets LT, Allikmets L, Wikberg JES (2001) Neuropeptide Y Y5 receptor antagonist CGP71683A: the effects on food intake and anxiety-related behavior in the rat. Eur J Pharmacol 414:215–224

    CAS  PubMed  Google Scholar 

  • Kask A, Harro J, von Hörsten S, Redrobe JP, van Dumont Y, Quirion R (2002) The neurocircuitry and receptor subtypes mediating anxiolytic-like effects of neuropeptide Y. Neurosci Biobehav Rev 26:259–283

    CAS  PubMed  Google Scholar 

  • Kirby DA, Koerber SC, May JM, Hagaman C, Cullen MJ, Pelleymounter MA, Rivier JE (1995) Y1 and Y2 receptor selective neuropeptide Y analogues: evidence for a Y1 receptor subclass. J Med Chem 38:4579–4586

    CAS  PubMed  Google Scholar 

  • Lambert PD, Wilding JPH, al Dokhayel AAM, Bohuon C, Comoy E, Gilbey SG, Bloom SR (1993) A role for neuropeptide Y, dynorphin, and noradrenaline in the central control of food intake after food deprivation. Endocrinology 133:29–33

    Google Scholar 

  • Larhammar D (1996) Structural diversities for neuropeptide Y, peptide YY and pancreatic polypeptide. Regul Pept 65:165–174

    CAS  PubMed  Google Scholar 

  • Larhammar D, Salaneck E (2004) Molecular evolution of NPY receptor subtypes. Neuropeptides 38:141–151

    CAS  PubMed  Google Scholar 

  • Leibowitz SF (1994) Hypothalamic neuropeptide Y in regulation to energy balance. Ann N Y Acad Sci 739:12–35

    CAS  PubMed  Google Scholar 

  • Lew MJ, Murphy R, Angus JA (1996) Synthesis and characterization of a selective peptide antagonist of neuropeptide Y vascular postsynaptic receptors. Br J Pharmacol 117:1768–1772

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin S, Boey D, Herzog H (2004) NPY and Y receptors: lessons from transgenic and knockout models. Neuropeptides 38:189–200

    CAS  PubMed  Google Scholar 

  • Marsh DJ, Hollopeter G, Kafer KE, Palmiter RD (1998) Role of Y5 neuropeptide Y receptor in feeding and obesity. Nat Med 4:718–721

    Google Scholar 

  • Matthews JE, Jansen M, Lyerly D, Cox R, Chen WJ, Koller KJ, Daniels AJ (1997) Pharmacological characterization and selectivity of the NPY antagonist GR231118 (1229U91) for different NPY receptors. Regul Pept 72:113–119

    CAS  PubMed  Google Scholar 

  • McCloskey MJD, Moriarty MJ, Tseng A, Shine J, Potter EK (1997) Activities of centrally truncated analogues of neuropeptide Y at Y1 and Y2 receptor subtypes in vivo. Neuropeptides 31:193–197

    CAS  PubMed  Google Scholar 

  • Michel MC, Beck-Sickinger A, Cox H, Doods HN, Herzog H, Larhammar D, Quirion R, Schwartz T, Westfall T (1998) XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol Rev 50:143–150

    Google Scholar 

  • Mullins DE, Guzzi M, Xia L, Parker EM (2000) Pharmacological characterization of the cloned neuropeptide Y y6 receptor. Eur J Pharmacol 395:87–93

    CAS  PubMed  Google Scholar 

  • Parker EM (1999) The role of central neuropeptide, neurotransmitter and hormonal systems in the regulation of body weight. Neurotransmiss 15:3–11

    Google Scholar 

  • Parker EM, Babij CK, Balasubramaniam A, Burrier RE, Guzzi M, Hamud F, Mukhopadhyay G, Rudinski MS, Tao Z, Tice M, Xia L, Mullins DE, Salisbury BG (1998) GR231118 (1229U91) and other analogues of the C-terminus of neuropeptide Y are potent neuropeptide Y Y1 receptor antagonists and neuropeptide Y Y4 receptor agonists. Eur J Pharmacol 349:97–105

    Google Scholar 

  • Playford RJ, Cox HM (1996) Peptide YY and neuropeptide Y: two peptides intimately involved in electrolyte homeostasis. Trends Pharmacol Sci 17:436–438

    CAS  PubMed  Google Scholar 

  • Sajdyk TJ, Vandergriff MG, Gehlert DR (1999) Amygdalar neuropeptide Y Y1 receptors mediated the anxiolytic-like actions of neuropeptide Y in the social interaction test. Eur J Pharmacol 368:143–147

    CAS  PubMed  Google Scholar 

  • Sajdyk TJ, Schober DA, Smiley DL, Gehlert DR (2002) Neuropeptide Y-Y2 receptors mediate anxiety in the amygdale. Pharmacol Biochem Behav 71:419–423

    CAS  PubMed  Google Scholar 

  • Schaffhauser AO, Stricker-Krongrad A, Brunner L, Cumin F, Gerald C, Whitebread S, Criscione L, Hofbauer KG (1997) Inhibition of food intake by neuropeptide Y Y5 receptor antisense oligodeoxynucleotides. Diabetes 46:1792–1798

    CAS  PubMed  Google Scholar 

  • Shigeri Y, Ishikawa M, Ishihara Y, Fujimoto M (1998) A potent nonpeptide neuropeptide Y Y1 receptor antagonist, a benzodiazepine derivative. Life Sci 63:151–160

    Google Scholar 

  • Small CJ, Morgan DGA, Meeran K, Heath MM, Gunn I, Edwards CMB, Gardiner J, Taylor GM, Hurley JD, Rossi M, Goldstone AP, O’Shea D, Smith DM, Ghatei MA, Bloom SR (1997) Peptide analogue studies of the hypothalamic neuropeptide Y receptor mediating pituitary adrenocorticotrophic hormone release. Proc Natl Acad Sci U S A 94:11686–11691

    CAS  PubMed Central  PubMed  Google Scholar 

  • Souli A, Chariot J, Voisin T, Presset O, Tsocas A, Balasubramaniam A, Laburthe M, Roze C (1997) Several receptors mediate the antisecretory effects of peptide YY, neuropeptide Y and pancreatic polypeptide on VIP-induced fluid secretion in the rat jejunum in vivo. Peptides 18:551–557

    CAS  PubMed  Google Scholar 

  • Stanley BG, Magdalin W, Seirafi A, Nguyen MM, Leibowitz SF (1992) Evidence for neuropeptide Y mediation of eating produced by food deprivation and for a variant of the Y-1 receptor mediating this peptide’s effect. Peptides 13:581–587

    Google Scholar 

  • Stephens TW, Basinski M, Bristow PK, Bue-Valleskey JM, Rosteck PR, Schoner B, Smith D, Tinsley FC, Zhang X-Y, Heiman M (1995) The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature 377:530–532

    Google Scholar 

  • Sundler P, Boettcher G, Ekblad E, Hakanson R (1993) PP, PYY and NPY: occurrence and distribution in the periphery. In: Colmers WF, Walestedt C (eds) The biology of neuropeptide Y and related peptides. Humana Press, Totowa, pp 157–196

    Google Scholar 

  • Tadepalli AS, Harrington WW, Hashim MA, Matthews J, Leban JJ, Spaltenstein A, Daniels AJ (1996) Hemodynamic characterization of a novel neuropeptide Y receptor antagonist. J Cardiovasc Pharmacol 27:712–718

    CAS  PubMed  Google Scholar 

  • Thiele TE, Sparta DR, Hayes DM, Fee JR (2004) The role of neuropeptide Y in neurobiological responses to ethanol and drugs of abuse. Neuropeptides 38:235–243

    CAS  PubMed  Google Scholar 

  • Vezzani A, Sperk G (2004) Overexpression of NPY and Y2 receptors in epileptic brain tissue: an endogenous neuroprotective mechanism in temporal lobe epilepsy? Neuropeptides 38:245–252

    CAS  PubMed  Google Scholar 

  • Wettstein JG, Early B, Junien JL (1995) Central nervous system pharmacology of neuropeptide Y. Pharmacol Ther 65:397–414

    CAS  PubMed  Google Scholar 

  • Wieland HA, Engel W, Eberlein W, Rudolf K, Doods HN (1998) Subtype selectivity of the novel nonpeptide neuropeptide Y Y1 receptor antagonist BIBO 3304 and its effect on feeding in rodents. Br J Pharmacol 125:549–555

    Google Scholar 

  • Wyss P, Stricker-Krongard A, Brunner L, Miller J, Crossthwaite A, Whitebread S, Criscione L (1998) The pharmacology of neuropeptide Y (NPY) receptor-mediated feeding in rats characterizes better Y5 than Y1, but not Y2 or Y4 subtypes. Regul Pept 75–76:363–371

    Google Scholar 

  • Zarrinmayeh H, Nunes AM, Ornstein PL, Zimmermann DM, Arnold MB, Schober DA, Gackenheimer SL, Bruns RF, Hipskind BA, Britton TC, Cantrell BE, Gehlert DL (1998) Synthesis and evaluation of a series of novel 2-[(4-chlorophenoxy)methyl]benzimidazoles as selective neuropeptide Y Y1 receptor antagonists. J Med Chem 41:2709–2719

    CAS  PubMed  Google Scholar 

Neuropeptide Y: Receptor Assay of Neuropeptide Y

  • Andres CJ, Antal Zimanyi I, Deshpande MS, Iben LG, Grant-Young K, Mattson GK, Zhai W (2003) Differentially functionalized diamines as novel ligands for the NPY2 receptor. Bioorg Med Chem Lett 13:2883–2885

    CAS  PubMed  Google Scholar 

  • Beauverger P, Rodriguez M, Nicolas JP, Audinot V, Lamamy V, Dromaint S, Nagel N, Macia C, Léopold O, Galizzi JP, Caignard DH, Aldana I, Monge A, Chomarat P, Boutin JA (2005) Functional characterization of human neuropeptide Y receptor subtype five specific antagonists using an luciferase reporter gene assay. Cell Signal 17:489–496

    CAS  PubMed  Google Scholar 

  • Bischoff A, Michel MC (1999) Emerging functions for neuropeptide Y5 receptors. Trends Pharmacol Sci 20:104–106

    CAS  PubMed  Google Scholar 

  • Blum CA, Zheng X, de Lombaert S (2004) Design, synthesis and biological evaluation of substituted 2-cyclhexyl-4-phenyl-1H-imidazoles. Potent and selective neuropeptide Y Y5-receptor antagonists. J Med Chem 47:2318–2325

    CAS  PubMed  Google Scholar 

  • Dautzenberg FM, Huber G, Higelin J, Py-Lang G, Kilpatrick G (2000) Evidence for the abundant expression of arginine 185 containing human CRF2α receptors and the role of position 185 for receptor-ligand selectivity. Neuropharmacology 39:1368–1376

    CAS  PubMed  Google Scholar 

  • Dautzenberg FM, Wichmann J, Higelin J, Py-Lang G, Kratzeisen C, Malherbe P, Kilpatrick GJ, Jenck F (2001) Pharmacological characterization of the novel nonpeptide orphanin FQ/nociceptin receptor agonist Ro 64–6198: rapid and reversible desensitization of the ORL1 receptor in vitro and lack of tolerance in vivo. J Pharmacol Exp Ther 298:812–819

    CAS  PubMed  Google Scholar 

  • Dautzenberg FM, Gutknecht E, Van der Linden I, Olivares-Reyes JA, Dürrenberger F, Hauger RL (2004) Cell type specific calcium signaling by corticotropin-releasing factor type 1 (CRF1) and 2a (CRF2α ) receptors: phospholipase C-mediated responses in human embryonic kidney 293 but not SK-N-MC neuroblastoma cells. Biochem Pharmacol 68:1833–1844

    CAS  PubMed  Google Scholar 

  • Dautzenberg FM, Higelin J, Pflieger P, Neidhart W, Guba W (2005) Establishment of robust functional assays for the characterization of neuropeptide Y (NPY) receptors: identification of 3-(5-benzoyl-thiazol-2-ylamino)-benzonitrile as selective NPY type 5 receptor antagonist. Neuropharmacology 48:1043–1055

    CAS  PubMed  Google Scholar 

  • Doods HN, Krause J (1991) Different neuropeptide Y receptor subtypes in rat and rabbit vas deferens. Eur J Pharmacol 204:101–103

    CAS  PubMed  Google Scholar 

  • Dumont Y, Jacques D, Bouchard P, Quirion R (1998) Species differences in the expression and distribution of the neuropeptide Y Y1, Y2, Y4, and Y5 receptors in rodents, guinea pig, and primate brains. J Comp Neurol 402:372–384

    CAS  PubMed  Google Scholar 

  • Dumont Y, Cadieux A, Doods H, Pheng LH, Abounader R, Hamel E, Jacques D, Regoli D, Quirion J (2000a) BIIE0246, a potent and highly selective non-peptide neuropeptide Y Y2 receptor antagonist. Br J Pharmacol 129:1075–1088

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dumont Y, Cadieux A, Doods H, Fournier A, Quirion R (2000b) Potent and selective tools to investigate neuropeptide Y receptors in the central and peripheral nervous system: BIBO3304 (Y_1) and CGP71683A (Y5). Can J Physiol Pharmacol 78:116–125

    CAS  PubMed  Google Scholar 

  • Feletou M, Nicolas JP, Rodriguez M, Beauverger P, Galizzi JP, Boutin JA, Dehault J (1999) NPY receptor subtype in the rabbit isolated ileum. Br J Pharmacol 127:795–801

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fotsch C, Sonnenberg JD, Chen N, Hale C, Karbon W, Norman MH (2001) Synthesis and structure-activity relationships of trisubstituted phenyl urea derivatives as neuropeptide Y5 antagonists. J Med Chem 44:2344–2356

    CAS  PubMed  Google Scholar 

  • Gehlert DR, Gackenheimer SL, Schober DA, Beavers L, Gadski R, Burnett JP, Mayne N, Lundell I, Larhammer D (1996) The neuropeptide Y Y1 receptor selective radioligand, [125I][Leu31, Pro34]peptide YY, is also a high affinity radioligand for human pancreatic polypeptide 1 receptors. Eur J Pharmacol 318:485–490

    CAS  PubMed  Google Scholar 

  • Gicquiaux H, Tschopl M, Doods HN, Bucher B (1996) Discrimination between neuropeptide Y and peptide YY in the rat tail artery by the neuropeptide Y1-selective antagonist BIBP 3226. Br J Pharmacol 119:1313–1318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gillman KW, Higgins MA, Poindexter GS, Browning M, Clarke WJ, Flowers S, Grace JE, Hogan JB, McGovern RT, Iben LG, Mattson GK, Ortiz A, Rassnick S, Russell JW, Antal-Zimanyi I (2006) Synthesis and evaluation of 5.5-diphenylimidazolones as potent human neuropeptide Y5 receptor antagonists. Bioorg Med Chem 14:5517–5526

    CAS  PubMed  Google Scholar 

  • Hammond M, Elliott RL, Gillapsy ML, Hager DC, Hank RF, LaFlamme JA, Oliver RM, DaSilva-Jardine PA, Stevenson RW, Mack CM, Cassella JV (2003) Structure-activity relationships in a series of NPY Y5 antagonists: 3-amido-9-ethylcarbazoles, core-modified analogues and amide isosteres. Bioorg Med Chem Lett 13:1989–1992

    CAS  PubMed  Google Scholar 

  • Hedge SS, Bonhaus DW, Stanley W, Eglen RM, Moy TM, Loeb M, Shetty SG, Desouza A, Krstenansky J (1995) Pharmacological evaluation of 1229U91, a novel high-affinity and selective neuropeptide Y Y1 receptor. J Pharmacol Exp Ther 275:1261–1266

    Google Scholar 

  • Islam I, Dhanoa D, Finn J, Du P, Walker MW, Salon JA, Zhang J, Gluchowski C (2002) Discovery of potent and selective small molecule NPY Y5 receptor antagonists. Bioorg Med Chem Lett 12:1767–1769

    CAS  PubMed  Google Scholar 

  • Kakui N, Tanaka J, Tabata Y, Asai K, Masuda N, Miyara T, Nakatani Y, Ohsawa F, Nishikawa N, Sugai M, Suzuki M, Aoki K, Kitaguchi H (2006) Pharmacological characterization and feeding-suppressive property of FMS586 [3-(5,6,7,8-tetrahydro-9-isopropyl-carbazol-3yl)-1-methyl-1-(2-pyridin-4-yl-ethyl) urea hydrochloride], a novel, selective, and orally active antagonist for neuropeptide Y Y5 receptor. J Pharmacol Exp Ther 317:562–570

    CAS  PubMed  Google Scholar 

  • Marsh DJ, Hollopeter G, Kafer KE, Palmiter RD (1998) Role of Y5 neuropeptide Y receptor in feeding and obesity. Nat Med 4:718–721

    Google Scholar 

  • Michel MC, Beck-Sickinger A, Cox H, Doods HN, Herzog H, Larhammar D, Quirion R, Schwartz T, Westfall T (1998) XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol Rev 50:143–150

    Google Scholar 

  • Murakami Y, Hagishita S, Okada T, Kii M, Hashizume H, Yagami T, Fujimoto M (1999) 1,3-Disubstituted benzazepines as neuropeptide Y Y1 receptor antagonists. Bioorg Med Chem 7:1703–1714

    CAS  PubMed  Google Scholar 

  • Parker EM, Babij CK, Balasubramaniam A, Burrier RE, Guzzi M, Hamud F, Mukhopadhyay G, Rudinski MS, Tao Z, Tice M, Xia L, Mullins DE, Salisbury BG (1998) GR231118 (1229U91) and other analogues of the C-terminus of neuropeptide Y are potent neuropeptide Y Y1 receptor antagonists and neuropeptide Y Y4 receptor agonists. Eur J Pharmacol 349:97–105

    Google Scholar 

  • Pheng LH, Regoli D (1998) Bioassays for NPY receptors: old and new. Regul Pept 75–76:79–87

    PubMed  Google Scholar 

  • Pheng LH, Quirion R, Iyengar S, Fournier A, Regoli D (1997) The rabbit ileum; a sensitive and selective preparation for the neuropeptide Y Y5 receptor. Eur J Pharmacol 333:R3–R5

    CAS  PubMed  Google Scholar 

  • Poindexter GS, Bruce MA, LeBoulluec KL, Monkovic I, Martin SW, Parker EM, Iben LG, McGovern RT, Ortiz AA, Stanley JA, Mattson GK, Kozlowski M, Arcuri M, Antal-Zimanyi I (2002) Dihydropyridine neuropeptide Y Y1 receptor antagonists. Bioorg Med Chem Lett 12:379–382

    CAS  PubMed  Google Scholar 

  • Primus RJ, Yevich E, Gallagher DW (1998) In vitro autoradiography of GTP γ [35S] binding at activated NPY receptor subtypes in adult rat brain. Mol Brain Res 58:74–82

    CAS  PubMed  Google Scholar 

  • Rist B, Zerbe O, Ingenhoven N, Scapozza L, Peers C, Vaughan PF, McDonald RL, Wieland HA, Beck-Sickinger AG (1996) Modified, cyclic dodecapeptide analog of neuropeptide Y is the smallest full agonist at the human Y2 receptor. FEBS Lett 394:169–173

    CAS  PubMed  Google Scholar 

  • Robin-Jagerschmidt C, Sylte I, Bihoreau C, Hendricksen L, Calvet A, Dahl SG, Bénicourt C (1998) The ligand binding site of NPY at the rat Y1 receptor investigated by site-directed mutagenesis and molecular modeling. Mol Cell Endocrinol 139:187–198

    CAS  PubMed  Google Scholar 

  • Rose PM, Fernandes P, Lynch JS, Frazier ST, Fisher SM, Kodokula K, Kienzle B, Seethala R (1995) Cloning and functional expression of a cDNA encoding a human type 2 neuropeptide Y receptor. J Biol Chem 270:22661–22664

    CAS  PubMed  Google Scholar 

  • Rover S, Adam G, Cesura AM, Galley G, Jenck F, Monsma FJ Jr, Wichmann J, Dautzenberg FM (2000) High-affinity, non-peptide agonists for the ORL1 (orphanin FQ/nociceptin) receptor. J Med Chem 43:1329–1338

    CAS  PubMed  Google Scholar 

  • Savontaus E, Pesonen U, Rouru J, Huupponen R, Koulu M (1998) Effects of ZD7114, a selective β 3-adrenoceptor agonist, on neuroendocrine mechanisms controlling energy balance. Eur J Pharmacol 374:265–274

    Google Scholar 

  • Sheikh SP, O’Hare MM, Tortora O, Schwartz TW (1989) Binding of monoiodinated neuropeptide Y to hippocampal membranes and human neuroblastoma cell lines. J Biol Chem 264:6648–6654

    CAS  PubMed  Google Scholar 

  • Wieland HA, Engel W, Eberlein W, Rudolf K, Doods HN (1998) Subtype selectivity of the novel nonpeptide neuropeptide Y Y1 receptor antagonist BIBO 3304 and its effect on feeding in rodents. Br J Pharmacol 125:549–555

    Google Scholar 

  • Wyss P, Stricker-Krongard A, Brunner L, Miller J, Crossthwaite A, Whitebread S, Criscione L (1998) The pharmacology of neuropeptide Y (NPY) receptor-mediated feeding in rats characterizes better Y5 than Y1, but not Y2 or Y4 subtypes. Regul Pept 75–76:363–371

    Google Scholar 

Orexin: General Considerations on Orexin

  • Cai XJ, Widdowson PJ, Harrold J, Wilson S, Buckingham RE, Arch JRS, Tadayyon M, Clapham JC, Wilding J, Williams G (1999) Hypothalamic orexin expression. Modulation by blood glucose and feeding. Diabetes 48:2132–2137

    CAS  PubMed  Google Scholar 

  • Chen C-T, Hwang L-L, Chang J-K, Dun NJ (2000) Pressor effects of orexins injected intracisternally and to the rostral ventrolateral medulla of anesthetized rats. Am J Physiol 278:R692–R897; Regul Integr Comp Physiol 47

    CAS  Google Scholar 

  • Date Y, Ueta Y, Yamashita H, Yamaguchi H, Matsukura S, Kangawa K, Sakurai T, Yanagisawa M, Nakazato M (1999) Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci U S A 96:748–753

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Lecea L, Sutcliffe JG (1999) The hypocretins/orexins: novel hypothalamic neuropeptides involved in different physiological systems. Cell Mol Life Sci 56:473–480

    PubMed  Google Scholar 

  • De Lecea L, Kilduff TS, Peyron C, Gao XB, Foye PE, Danielson PE, Fukuhara C, Battenberg ELF, Gautvik VT, Bartlett FS II, Frankel WN, Van der Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95:322–327

    PubMed Central  PubMed  Google Scholar 

  • Dube MG, Kalra SP, Kalra PS (1999) Food intake elicited by central administration of orexins/hypocretins: identification of hypothalamic sites of action. Brain Res 842:473–477

    CAS  PubMed  Google Scholar 

  • Evans ME, Harries M, Patel S, Benham CD (1999) Orexin-A depolarizes neurons in the rat locus coeruleus brain slice in vitro. J Physiol 515:121P

    Google Scholar 

  • Ida T, Nakahara K, Katayama T, Murakami M, Nakazato M (1999) Effect of lateral cerebroventricular injection of the appetite-stimulating neuropeptide, orexin and neuropeptide Y, on the various behavioral activities of rats. Brain Res 821:526–529

    CAS  PubMed  Google Scholar 

  • Jain MR, Horvath TL, Kalra PS, Kalra SP (2000) Evidence that NPY Y1 receptors are involved in stimulation of feeding by orexins (hypocretins) in sated rats. Regul Pept 87:19–24

    Google Scholar 

  • Jöhren O, Brüggemann N, Dominiak P (2004) Orexins (hypocretins) and adrenal function. Horm Metab Res 36:370–375

    PubMed  Google Scholar 

  • Mieda M, Willie JT, Hara J, Sinton CM, Sakurai T, Yanagisawa M (2004) Orexin peptides prevent catalepsy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. Proc Natl Acad Sci U S A 101:4649–4654

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mondal MS, Nakazato M, Date Y, Murakami N, Yanagisawa M, Matsukura S (1999) Widespread distribution of orexin in the rat brain and its regulation upon fasting. Biochem Biophys Res Commun 256:495–499

    Google Scholar 

  • Nowak KW, Mackowiak P, Switonska MM, Fabis M, Malendowicz LK (2000) Acute orexin effects on insulin secretion in the rat: in vivo and in vitro studies. Life Sci 66:449–454

    CAS  PubMed  Google Scholar 

  • Nowak KW, Strowski MZ, Switonska M, Kaczmarek P, Singh V, Fabis M, Mackowiak P, Nowak M, Malendowicz LK (2005) Evidence that orexins A and B stimulate insulin secretion from rat pancreas via both receptor subtypes. Int J Mol Med 15:969–972

    CAS  PubMed  Google Scholar 

  • Parker EM (1999) The role of central neuropeptide, neurotransmitter and hormonal systems in the regulation of body weight. Neurotransmiss 15:3–11

    Google Scholar 

  • Piper DC, Upton N, Smith MI, Hunter AJ (2000) The novel neuropeptide, orexin A, modulates the sleep-wake cycle of rats. Eur J Neurosci 12:726–730

    CAS  PubMed  Google Scholar 

  • Pu S, Jain MR, Kalra PS, Kalra SP (1998) Orexins, a novel family of hypothalamic neuropeptides, modulate pituitary luteinizing hormone secretion in an ovarian steroid-dependent manner. Regul Pept 78:133–136

    CAS  PubMed  Google Scholar 

  • Sakurai T (1999) Orexin and orexin receptors: implication of feeding behavior. Regul Pept 85:25–30

    CAS  PubMed  Google Scholar 

  • Sakurai T (2006) Roles of orexins and orexin receptors in central regulation of feeding behavior and energy homeostasis. CNS Neurol Disord Drug Targets 5:313–325

    CAS  PubMed  Google Scholar 

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JRS, Buckingham RB, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu W-S, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides an G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585

    Google Scholar 

  • Shirasaka T, Nakazato M, Matsukura S, Takasaki M, Kannan H (1999) Sympathetic and cardiovascular actions of orexins in conscious rats. Am J Physiol 277:R1780–R1785; Regul Integr Comp Physiol 46

    CAS  PubMed  Google Scholar 

  • Siegel JM (2003) Hypocretin (orexin): role in normal behavior and neuropathology. Annu Rev Psychol 55:125–148

    Google Scholar 

  • Smart D (1999) Orexins: a new family of neuropeptides. Br J Anaesth 83:695–697

    CAS  PubMed  Google Scholar 

  • Smart D, Jerman JC, Brough SJ, Rushton SL, Murdock PR, Jewitt F, Elshourbagy NA, Ellis JC, Middlemiss DN, Brown F (1999) Characterization of recombinant orexin receptor pharmacology in a Chinese hamster ovary cell-line using FLIPR. Br J Pharmacol 128:1–3

    Google Scholar 

  • Taheri S, Zeitzer JM, Mignot E (2002) The role of hypocretins (orexins) in sleep regulation and narcolepsy. Annu Rev Neurosci 25:283–313

    CAS  PubMed  Google Scholar 

  • Tamura T, Irahara M, Tezuka M, Kiyokawa M, Aono T (1999) Orexins, orexigenic hypothalamic neuropeptides, suppress the pulsatile secretion of luteinizing hormone in ovariectomized female rats. Biochem Biophys Res Commun 264:759–762

    CAS  PubMed  Google Scholar 

  • Van den Pol AN, Gao XB, Obrietan K, Kilduff TS, Belousov AB (1999) Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin. J Neurosci 18:7962–7971

    Google Scholar 

  • Willie JT, Chemelli RM, Sinton CM, Tokita S, Williams SC, Kisanuki YY, Marcus JN, Lee C, Elmquist JK, Kohlmeier KA, Leonard CS, Richardson JA, Hammer RE, Yanagisawa M (2003) Distinct narcolepsy syndromes in orexin receptor-2 and orexin null mice: molecular genetic dissection of non-REM and REM sleep regulatory processes. Neuron 38:715–730

    CAS  PubMed  Google Scholar 

  • Yamada H, Okumura T, Motomura W, Kobayashi Y, Kohgo Y (2000) Inhibition of food intake by central injection of anti-orexin antibody in fasted rats. Biochem Biophys Res Commun 267:527–531

    CAS  PubMed  Google Scholar 

Orexin: Receptor Assay of Orexin

  • Ammoun S, Holmquist T, Shariatmadari R, Oonk HB, Detheux M, Parmentier M, Åkerman KEO, Kukkonen JP (2005) Distinct recognition of OX1 and OX2 receptors by orexin peptides. J Pharmacol Exp Ther 305:507–514

    Google Scholar 

  • Marcus JN, Aschkenasi CJ, Chemelli RM, Saper CB, Yanagisawa M, Elmquist JK (2001) Differential expression of orexin receptor 1 and 2 in rat brain. J Comp Neurol 435:6–25

    CAS  PubMed  Google Scholar 

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JRS, Buckingham RB, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu W-S, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides an G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585

    Google Scholar 

  • Smart D, Jerman JC, Brough SJ, Rushton SL, Murdock PR, Jewitt F, Elshourbagy NA, Ellis JC, Middlemiss DN, Brown F (1999) Characterization of recombinant orexin receptor pharmacology in a Chinese hamster ovary cell-line using FLIPR. Br J Pharmacol 128:1–3

    Google Scholar 

  • Sullivan E, Tucker EM, Dale IL (1999) Measurement of [Ca2+] using the fluorometric imaging plate reader (FLIRP). In: Lambert DG (ed) Calcium signaling protocols. Humana Press, Totowa, pp 125–136

    Google Scholar 

  • Takigawa M, Sakurai T, Kasuya Y, Abe Y, Masaski T, Goto K (1995) Molecular identification of guanine-nucleotide-binding regulatory proteins which couple to endothelin receptors. Eur J Biochem 228:102–108

    CAS  PubMed  Google Scholar 

Orexin: Radioimmunoassay for Orexin

  • Mitsuma T, Hirooka Y, Kayama M, Mori Y, Yokoi Y, Rhue N, Ping J, Izumi M, Ikai R, Adachi K, Nogimori T (2000) Radioimmunoassay for orexin A. Life Sci 66:897–904

    CAS  PubMed  Google Scholar 

  • Mondal MS, Nakazato M, Date Y, Murakami N, Handa R, Sakata T, Matsukura S (1999) Characterization of orexin A and orexin B in the microdissected brain nuclei and their contents in two obese rat models. Neurosci Lett 273:45–48

    Google Scholar 

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JRS, Buckingham RB, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu W-S, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides an G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585

    Google Scholar 

Galanin: General Considerations on Galanin

  • Ahtaridis SA, Katoch SS, Moreland RS (1998) Mechanism of galanin-induced contraction of longitudinal smooth muscle of the rat jejunum. Am J Physiol 274:G306–G313; Gastrointest Liver Physiol 37

    CAS  PubMed  Google Scholar 

  • Akabayashi A, Koenig JI, Watanabe Y, Alexander JT, Leibowitz SF (1994) Galanin-containing neurons in the paraventricular nucleus: a neurochemical marker for fat ingestion and body weight gain. Proc Natl Acad Sci 91:10375–10379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arletti R, Benelli A, Cavazzuti E, Bertolini A (1997) Galantide improves social memory in rats. Pharmacol Res 35:317–319

    CAS  PubMed  Google Scholar 

  • Bahdie-Mahdavi H, Lu X, Behrens MM, Bartfai T (2005a) Role of galanin receptor 1 and galanin receptor 2 activation on synaptic plasticity associated with 3′,5′-cyclic AMP response element-binding protein phosphorylation in the dentate gyrus. Studies with a galanin receptor agonist and galanin receptor knockout mice. Neuroscience 132:591–604

    Google Scholar 

  • Bahdie-Mahdavi H, Behrens MM, Rebek J, Bartfai T (2005b) Effect of galnon on induction of long-term potentiation in dentate gyrus of C57BL/6 mice. Neuropeptides 39:249–251

    Google Scholar 

  • Baltazar ET, Kitamura N, Hondo E, Narreto EC, Yamada J (2000) Galanin-like immunoreactive endocrine cells in bovine pancreas. J Anat 196:285–291

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bartfai T, Bedecs K, Land T, Langel Ü, Bertorelli R, Girotti P, Consolo S, Xu X (1991) M-15: high-affinity chimeric peptide that blocks the neuronal actions of galanin in the hippocampus, locus coeruleus, and spinal cord. Proc Natl Acad Sci U S A 88:10961–10965

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bartfai T, Lu X, Badie Mahdavi H, Barrr AM, Mazarati A, Hua XY, Yaksh T, Haberhauer G, Ceide SC, Trembleau L, Somogyi L, Kröck L, Rebek J (2004) Galmic, a nonpeptide galanin receptor agonist, affects behaviors in seizure, pain, and forced-swim tests. Proc Natl Acad Sci U S A 101:10470–10475

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burazin TCD, Gundlach AL (1998) Inducible galanin and GalR2 receptor system in motor neuron injury and regeneration. J Neurochem 71:879–882

    CAS  PubMed  Google Scholar 

  • Cai A, Bowers RC, Moore JP Jr, Hyde JF (1998) Function of galanin in the anterior pituitary of estrogen-treated Fischer 344 rats: autocrine and paracrine regulation of prolactin secretion. Endocrinology 139:2452–2458

    CAS  PubMed  Google Scholar 

  • Ceide SC, Trembleau L, Haberhauser G, Somogyi L, Lu X, Bartfai T, Rebek J (2004) Synthesis of galmic: a nonpeptide galanin receptor agonist. Proc Natl Acad Sci U S A 101:16727–16732

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ceresini G, Sgoifo A, Freddi M, Musso E, Parmigiani S, Del-Rio G, Valenti G (1998) Effects of galanin and the galanin receptor antagonist galantide on plasma catecholamine levels during a psychosocial stress in rats. Neuroendocrinology 67:67–72

    CAS  PubMed  Google Scholar 

  • Counts SE, Perez SE, Ginsberg SD, de Lacalle S, Mufson EJ (2003) Galanin in Alzheimer disease. Mol Interv 3:137–156

    CAS  PubMed  Google Scholar 

  • Crawley JN, Austin MC, Fiske SM, Martin B, Consolo S, Berthold M, Langel U, Fisone G, Bartfai T (1990) Activity of centrally administered galanin fragments on stimulation of feeding behavior and on galanin receptor binding in the rat hypothalamus. J Neurosci 10:3695–3700

    Google Scholar 

  • Diaz-Cabiale Z, Narvaez JA, Finnman UB, Bellido I, Ögren SO, Fuxe K (2000) Galanin-(1–16) modulates 5-HT1A receptors in the ventral limbic cortex of the rat. Neuroreport 11:515–519

    CAS  PubMed  Google Scholar 

  • Ekblad E, Håkanson R, Sundler F, Wahlestedt C (1989) Galanin: neuromodulatory and direct contractile effects in smooth muscle preparations. Br J Pharmacol 86:241–246

    Google Scholar 

  • Elliott-Hunt CR, Marsh B, Bacon A, Pope R, Vanderplank P, Wynick D (2004) Galanin acts as a neuroprotective factor to the hippocampus. Proc Natl Acad Sci U S A 101:5105–5110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Finn PD, Clifton DK, Steiner RA (1998) The regulation of galanin gene expression in gonadotropin-releasing hormone neurons. Mol Cell Endocrinol 140:137–142

    CAS  PubMed  Google Scholar 

  • Fisone G, Langel U, Carlquist M, Bergman T, Consolo S, Höckfelt T (1989) Galanin receptor and its ligands in the rat hippocampus. Eur J Biochem 181:269–276

    CAS  PubMed  Google Scholar 

  • Gleason TC, Dreiling JL, Crawley JN (1999) Rat strain differences in response to galanin in the Morris water test. Neuropeptides 33:265–270

    CAS  PubMed  Google Scholar 

  • Holmes FE, Mahoney S, King VR, Bacon A, Kerr NCH, Pachnis V, Curtis R, Priestley JV, Wynick D (2000) Targeted disruption of the galanin gene reduces the number of sensory neurons and their regenerative capacity. Proc Natl Acad Sci U S A 97:11563–11568

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holmes A, Yang RJ, Crawley JN (2002) Evaluation of an anxiety-related phenotype in galanin overexpressing transgenic mice. J Mol Neurosci 18:151–165

    CAS  PubMed  Google Scholar 

  • Holmes A, Kinney JW, Wrenn CC, Li Q, Yang RJ, Ma L, Vishwanath J, Saavedra MC, Innerfield S, Jacoby AS, Shine J, Iismaa TP, Crawley JN (2003) Galanin GAL-R1 receptor null mutant mice display increased anxiety-like behavior specific to the elevated plus-maze. Neuropsychopharmacology 28:1031–1044

    CAS  PubMed  Google Scholar 

  • Kakuyama H, Mochizuki T, Iguchi K, Yamabe K, Hosoe H, Hoshino M, Yanaihara M (1997) [Ala6,D-Tryp8]galanin(1–5)ol is a potent galanin antagonist on insulin release. Biomed Res 18:49–56

    CAS  Google Scholar 

  • Kasa P, Farkas Z, Forgon M, Papp H, Balaspiri L (1998) Effects of different galanins on the release of acetylcholine in the various areas of rat brain. Ann N Y Acad Sci 863:435–437

    CAS  PubMed  Google Scholar 

  • Kask K, Berthold M, Bourne J, Andell S, Langel Ü, Bartfai T (1995) Binding and agonist/antagonist actions of M35, galanin(1–13)-bradykinin(2–9)amide chimeric peptide, in Rin m5F insulinoma cells. Regul Pept 59:341–348

    CAS  PubMed  Google Scholar 

  • Kask K, Berthold M, Bartfai T (1997) Galanin receptors: involvement in feeding, pain, depression and Alzheimer’s disease. Life Sci 60:1523–1533

    CAS  PubMed  Google Scholar 

  • Katoh T, Ohmori O (2000) Studies on the total synthesis of Sch 202596, an antagonist of the galanin subtype GalR1: synthesis of geodin, the spirocoumarone subunit of Sch 202596. Tetrahedron Lett 41:465–469

    CAS  Google Scholar 

  • Kerr BJ, Cafferty WBJ, Gupta YK, Bacon A, Wynick D, McMahon SB, Thompson SWN (2000) Galanin knockout mice reveal nociceptive deficits following peripheral nerve injury. Eur J Neurosci 12:793–802

    CAS  PubMed  Google Scholar 

  • Kisfalvi I Jr, Burghardt B, Balint A, Zelles T, Vizi ES, Varga G (2000) Antisecretory effects of galanin and its putative antagonists M15, M35, and C7 in the rat stomach. J Physiol Paris 94:37–42

    CAS  PubMed  Google Scholar 

  • Koegler FH, York DA, Bray GA (1999) The effects on feeding of galanin and M40 when injected into the nucleus of the solitary tract, the lateral parabrachial nucleus, and the third ventricle. Physiol Behav 67:259–267

    CAS  PubMed  Google Scholar 

  • Korolkiewicz R, Rekowski P, Szyk A, Kato S, Yasuhiro T, Kubomi M, Tashima K, Takeuchi K (1998) Effect of diabetes mellitus on the contractile activity of carbachol and galanin in isolated gastric fundus strips of rats. Pharmacology 57:65–78

    CAS  PubMed  Google Scholar 

  • Koshiyama H, Hato Y, Inoue T, Muarkami Y, Yanaihara N, Imura H (1987) Central galanin stimulates pituitary prolactin secretion in rats: possible involvement of hypothalamic vasoactive intestinal polypeptide. Neurosci Lett 7:49–54

    Google Scholar 

  • Krasnow SM, Hohmann JG, Gragerov A, Clifton DK, Steiner RA (2004) Analysis of the contribution of galanin receptors 1 and 2 to the central actions of galanin-like peptide. Neuroendocrinology 79:268–277

    CAS  PubMed  Google Scholar 

  • Leibowitz SF, Kim T (1992) Impact of a galanin antagonist on exogenous galanin and natural patterns of fat ingestion. Brain Res 599:148–152

    Google Scholar 

  • Leonharst U, Siegel EG, Köhler H, Barthel M, Tytko A, Nebendahl K, Creutzfeldt W (1989) Galanin inhibits glucose-induced insulin release in vitro. Horm Metab Res 21:100–101

    Google Scholar 

  • Lindskog S, Ahren B, Land T, Langel Ü, Bartfai T (1992) The novel high-affinity antagonist, galantide, blocks the galanin-mediated inhibition of glucose-induced insulin secretion. Eur J Pharmacol 210:183–188

    CAS  PubMed  Google Scholar 

  • Lu X, Mazarati A, Sanna P, Shinmei S, Bartfai T (2005) Distribution and differential regulation of galanin receptor subtypes in rat brain: effects of seizure activity. Neuropeptides 39:147–152

    CAS  PubMed  Google Scholar 

  • Lundström L, Elmquist A, Bartfai T, Langel U (2005) Galanin and its receptors in neurological disorders. Neuromolecular Med 7:157–180

    PubMed  Google Scholar 

  • Ma W, Bisby MA (1999) Increase of galanin mRNA in lumbar dorsal root ganglion neurons of adult rats after partial sciatic nerve ligation. Neurosci Lett 262:195–198

    CAS  PubMed  Google Scholar 

  • Mazarati A, Langel U, Bartfai T (2001) Galanin: an endogenous anticonvulsant? Neuroscience 7:506–517

    CAS  Google Scholar 

  • McDonald TJ, Dupre J, Tatemoto K, Greenberg GR, Rasziuk J, Mutt V (1985) Galanin inhibits insulin secretion and induces hyperglycemia in dogs. Diabetes 34:192–196

    CAS  PubMed  Google Scholar 

  • McDonald MP, Crawley JN (1997) Galanin-acetylcholine interactions in rodent memory tasks and Alzheimer’s disease. J Psychiatry Neurosci 22:303–317

    CAS  PubMed Central  PubMed  Google Scholar 

  • McDonald MP, Williard LB, Wenk GL, Crawley JN (1998a) Coadministration of galanin antagonist M40 with a muscarinic M1 agonist improves delayed nonmatching to position choice accuracy in rats with cholinergic lesions. J Neurosci 18:5078–5085

    CAS  PubMed  Google Scholar 

  • McDonald MP, Gleason TC, Robinson JK, Crawley JN (1998b) Galanin inhibits performance on rodent memory tasks. Ann N Y Acad Sci 863:305–322

    CAS  PubMed  Google Scholar 

  • Melander T, Hökfelt T, Rökaeus Å (1986) Distribution of galaninlike immunoreactivity in the rat central nervous system. J Comp Neurol 248:475–517

    CAS  PubMed  Google Scholar 

  • Murakami Y, Kato Y, Koshiyama H, Inoue T, Yanaihara N, Imura H (1987) Galanin stimulates growth hormone (GH) secretion via GH-releasing factor (GRF) in conscious rats. Eur J Pharmacol 136:415–418

    CAS  PubMed  Google Scholar 

  • Niiro M, Nishimura J, Hirano K, Nakano H, Kanaide H (1998) Mechanism of galanin-induced contraction in the rat myometrium. Br J Pharmacol 124:1623–1632

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nordström Ö, Melander T, Höckfelt T, Bartfai T, Goldstein M (1987) Evidence for an inhibitory effect of the peptide galanin on dopamine release from the rat medial eminence. Neurosci Lett 73:21–26

    PubMed  Google Scholar 

  • Ögren SO, Schott PA, Kehr J, Misane T, Razani H (1999) Galanin and learning. Brain Res 848:174–182

    PubMed  Google Scholar 

  • Ögren SO, Kuteeva E, Hökfelt T, Kehr J (2005) Galanin receptor antagonists: a potential novel pharmacological treatment for mood disorders. CNS Drugs 20:633–654

    Google Scholar 

  • Ohtaki T, Kumano S, Ishibashi Y, Ogi K, Matsui H, Harada M, Kitada C, Kurokawa T, Onda H, Fujino M (1999) Isolation and cDNA of a novel galanin-like peptide (GALP) from porcine hypothalamus. J Biol Chem 274:37041–37045

    CAS  PubMed  Google Scholar 

  • O’Meara G, Coumis U, Ma SY, Kehr J, Mahoney S, Bacon A, Allen SH, Holmes F, Kahl U, Wang FH, Kearns JR, Ove-Ogren S, Dawbarn D, Mufson EJ, Davis C, Dawson G, Wynick D (2000) Galanin regulates the postnatal survival of a subset of basal forebrain cholinergic neurons. Proc Natl Acad Sci U S A 97:11569–11574

    PubMed Central  PubMed  Google Scholar 

  • Ottlecz A, Snyder GD, McCann SM (1988) Regulatory role of galanin in control of hypothalamic-anterior pituitary function. Proc Natl Acad Sci U S A 85:9861–9865

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park JJ, Baum MJ (1999) Intracerebroventricular infusion of the galanin antagonist M40 attenuates heterosexual partner preference in ferrets. Behav Neurosci 113:391–400

    CAS  PubMed  Google Scholar 

  • Parker EM (1999) The role of central neuropeptide, neurotransmitter and hormonal systems in the regulation of body weight. Neurotransmiss 15:3–11

    Google Scholar 

  • Pooga M, Jureus A, Rezaei K, Hasanvan H, Saar K, Kask K, Kjellen P, Land T, Halonen J, Maeorg U, Uri A, Solyom S, Bartfai T, Langel Ü (1998) Novel galanin receptor ligands. J Pept Res 51:65–74

    CAS  PubMed  Google Scholar 

  • Pramanik A, Ögren SO (1992) Galanin-evoked acetylcholine release in the rat striatum is blocked by the putative galanin antagonist M15. Brain Res 574:317–319

    CAS  PubMed  Google Scholar 

  • Saar K, Mazarati AM, Mahlapuu R, Hallnemo G, Soomets U, Kilk K, Hellberg S, Pooga M, Tolf BR, Shi TS, Hökfelt T, Wasterlain C, Bartfai T (2002) Anticonvulsant activity of a nonpeptide galanin receptor agonist. Proc Natl Acad Sci U S A 99:7136–7141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sahu A, Xu B, Kalra SP (1994) Role of galanin in stimulation of pituitary luteinizing hormone secretion as revealed by a specific receptor antagonist, galantide. Endocrinology 134:529–536

    CAS  PubMed  Google Scholar 

  • Shi TS, Hökfelt T, Wasterlain C, Bartfai T, Langel U (2002) Anticonvulsant activity a nonpeptide galanin receptor antagonist. Proc Natl Acad Sci U S A 99:7136–7141

    PubMed Central  PubMed  Google Scholar 

  • Skofitsch G, Jacobowitz DM (1985) Immunohistochemical mapping of galanin-like neurons in the rat central nervous system. Peptides 6:509–546

    CAS  PubMed  Google Scholar 

  • Swanson CJ, Blackburn TP, Zhang X, Zheng K, Xu ZQD, Hökfelt T, Wolisky TD, Konkel MJ, Chen H, Zhong H, Walker MW, Craig DA, Gerald CPG, Branchek TA (2005) Anxiolytic- and antidepressant-like profiles of the galanin-3 receptor (Gal3) antagonists SNAP 37889 and SNAP 398299. Proc Natl Acad Sci U S A 102:17489–17494

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tatemoto K, Rökaeus Å, Jörnvall H, McDonald TJ, Mutt V (1983) Galanin, a novel biologically active peptide from porcine intestine. FEBS Lett 164:124–128

    CAS  PubMed  Google Scholar 

  • Todd JF, Small CJ, Akinsanya KO, Stanley SA, Smith DM, Bloom SR (1998) Galanin is a paracrine inhibitor of gonadotroph function in the female rat. Endocrinology 139:4222–4229

    CAS  PubMed  Google Scholar 

  • Tsuda K, Yokoo H, Goldstein M (1989) Neuropeptide Y and galanin in norepinephrine release in hypothalamic slices. Hypertension 14:81–86

    CAS  PubMed  Google Scholar 

  • Wang J, Akabayashi A, Hi J-Y, Dourmashkin J, Alexander JT, Silva I, Lighter J, Leibowitz SF (1998) Hypothalamic galanin: control by signals from fat metabolism. Brain Res 804:7–20

    CAS  PubMed  Google Scholar 

  • Wang D, Lundeberg T, Yu L-C (2000) Antinociceptive role of galanin in periaqueductal grey of rats with experimentally induced mononeuropathy. Neuroscience 96:767–771

    CAS  PubMed  Google Scholar 

  • Wynick D, Small CJ, Bacon A, Holmes FE, Norman M, Ormandy CJ, Kilic E, Kerr NCH, Ghatei M, Talamantes F, Bloom SR, Pachnis V (1998) Galanin regulates prolactin release and lactotroph proliferation. Proc Natl Acad Sci U S A 95:12671–12676

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu X-J, Wiesenfeld-Hallin Z, Langel Ü, Bedecs K, Bartfai T (1995) New high affinity peptide antagonists to the spinal galanin receptor. Br J Pharmacol 116:2076–2080

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu X-J, Andell S, Bartfai T, Wiesenfeld-Hallin Z (1996) Fragments of the galanin message-associated peptide (GMAP) modulate the spinal reflex in rat. Eur J Pharmacol 318:301–306

    CAS  PubMed  Google Scholar 

  • Xu X-J, Hökfelt R, Bartfai T, Wiesenfeld-Hallin Z (2000) Galanin and spinal nociceptive mechanisms: recent advances and therapeutic implications. Neuropeptides 34:137–147

    CAS  PubMed  Google Scholar 

  • Yu L-C, Lundeberg S, An H, Wang F-X, Lundeberg T (1999) Effects of intrathecal galanin on nociceptive response in rats with mononeuropathy. Life Sci 64:1145–1153

    CAS  PubMed  Google Scholar 

  • Zachariou V, Parikh K, Picciotto MR (1999) Centrally administered galanin blocks morphine place preference in the mouse. Brain Res 831:33–42

    CAS  PubMed  Google Scholar 

Galanin: Receptor Assay of Galanin

  • Ahmad S, O’Donnell D, Payza K, Ducharma J, Menard D, Brown W, Schmidt R, Wahlestedt C, Shen SH, Walker P (1998) Cloning and evaluation of the role of rat GALR-2, a novel subtype of galanin receptor, on the control of pain reception. Ann N Y Acad Sci 863:108–119

    CAS  PubMed  Google Scholar 

  • Bloomquist BT, Beauchamp MR, Zhelnin L, Brown SE, Gore-Willse AR, Gregor P, Cornfield LJ (1998) Cloning and expression of the human galanin receptor GalR2. Biochem Biophys Res Commun 243:474–479

    CAS  PubMed  Google Scholar 

  • Branchek TA, Smith KE, Gerald C, Walker MW (2000) Galanin receptor subtypes. Trends Pharmacol Sci 21:109–116

    CAS  PubMed  Google Scholar 

  • Fathi Z, Battaglino PM, Iben LG, Li H, Baker E, Zhang D, McGovern R, Lahle CD, Sutherland GR, Iismaa TP, Dickinson KEJ, Antal-Zimanyi I (1998) Molecular characterization, pharmacological properties and chromosomal localization of the human GALR2 receptor. Mol Brain Res 58:156–169

    CAS  PubMed  Google Scholar 

  • Habert-Ortoli E, Aminranoff B, Loquet I, Laburthe M, Mayaux JF (1994) Molecular cloning of a functional human galanin receptor. Proc Natl Acad Sci U S A 91:9780–9783

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heuillet E, Bouaiche Z, Ménager J, Dugay P, Munoz N, Dubois H, Amiranoff B, Crespo A, Lavavre J, Blanchard JV (1994) The human galanin receptor: ligand binding and functional characteristics in the Bowes melanoma cell line. Eur J Pharmacol 269:139–147

    CAS  PubMed  Google Scholar 

  • Iismaa TP, Shine J (1999) Galanin and galanin receptors. Results Probl Cell Differ 26:257–291

    CAS  PubMed  Google Scholar 

  • Jungnickel SRF, Gundlach AL (2005) [125I]-Galanin binding in brain of wildtype, and galanin- and GALR1-knockout mice: strain and species differences in GALR1 density and distribution. Neuroscience 131:407–421

    CAS  PubMed  Google Scholar 

  • Kolakowski LF Jr, O’Neill GP, Howard AD, Broussard SR, Sullivan KA, Feighner SD, Sawzdargo M, Nguyen T, Kargman S, Shiao L-L, Hreniuk DL, Tan CP, Evans J, Abramovitz M, Chateauneuf A, Coulombe N, Ng G, Johnson MP, Tharian A, Khoshbouei H, George SR, Smith RG, O’Dowd BF (1998) Molecular characterization and expression of cloned human galanin receptors GALR2 and GALR3. J Neurochem 71:2239–2251

    CAS  PubMed  Google Scholar 

  • Lee DK, Nguyen T, O’Neill GP, Cheng R, Liu Y, Howard AD, Coulombe N, Tan CP, Tang-Nguyen AT, George SR, O’Dowd BF (1999) Discovery of a receptor related to the galanin receptors. FEBS Lett 446:103–107

    CAS  PubMed  Google Scholar 

  • Mahoney SA, Hosking R, Farrant S, Holmes FE, Jacoby AS, Shine J, Iismaa TP, Scott MK, Schmidt R, Wynick D (2003) The second galanin receptor GalR2 plays a key role in neurite outgrowth from adult sensory neurons. J Neurosci 23:416–421

    CAS  PubMed  Google Scholar 

  • Pang L, Hashemi T, Lee-H JJ, Maguire M, Graziano MP, Bayne M, Hawes B, Wong G, Wang S (1998) The mouse GalR2 receptor: genomic organization, cDNA cloning, and functional characterization. J Neurochem 71:2252–2259

    CAS  PubMed  Google Scholar 

  • Parker EM, Izzarelli DG, Nowak HP, Mahle CD, Iben LG, Wang J, Goldstein ME (1995) Cloning and characterization of the rat GALR1 galanin receptor from Rin14B insulinoma cells. Mol Brain Res 34:179–189

    CAS  PubMed  Google Scholar 

  • Saar K, Valkna A, Soomets U, Rezaei K, Zorko M, Zilmer M, Langel Ü (1997) Role of the third cytoplasmatic loop in signal transduction by galanin receptors. Biochem Soc Trans 25:1036–1040

    CAS  PubMed  Google Scholar 

  • Smith KE, Walker MW, Artymyshyn R, Bard J, Borowsky B, Tamm JA, Yoa W-J, Vaysse PJ-J, Brancheck TA, Walker MW, Jones KA (1998) Cloned human and rat GAL3 receptors: pharmacology and activation of G-protein inwardly rectifying K+ channels. J Biol Chem 273:23321–23326

    CAS  PubMed  Google Scholar 

  • Sullivan KA, Shiao L-L, Cascieri MA (1997) Pharmacological characterization and tissue distribution of the human and rat GALR1 receptors. Biochem Biophys Res Commun 233:823–828

    CAS  PubMed  Google Scholar 

  • Wang S, Parker EM (1998) Galanin receptor subtypes as potential therapeutic targets. Expert Opin Ther Pat 8:1225–1235

    CAS  Google Scholar 

  • Wang S, Hashemi T, He C, Strader C, Bayne M (1997) Molecular cloning and pharmacological characterization of a new galanin receptor subtype. Mol Pharmacol 52:337–343

    CAS  PubMed  Google Scholar 

  • Waters SM, Krause JE (2000) Distribution of galanin-1, -2 and -3 receptor messenger RNAs in central and peripheral rat tissues. Neuroscience 95:265–271

    CAS  PubMed  Google Scholar 

Adipsin: General Considerations on Adipsin

  • Ahima RS, Flier JS (2000) Adipose tissue as an endocrine organ. Trends Endocrinol Metab 11:327–332

    Google Scholar 

  • Antras J, Lasnier F, Pairault J (1991) Adipsin gene expression in 3T3-F442A adipocytes is posttranscriptionally down-regulated by retinoic acid. J Biol Chem 266:1157–1161

    CAS  PubMed  Google Scholar 

  • Choy LN, Rosen BS, Spiegelman BM (1992) Adipsin and an endogenous pathway of complement from adipose cells. J Biol Chem 267:12736–12741

    CAS  PubMed  Google Scholar 

  • Cianflone K, Maslowska M, Sniderman AD (1999) Acylation stimulating protein (ASP) an adipocyte autocrine: new directions. Semin Cell Dev Biol 10:31–34

    CAS  PubMed  Google Scholar 

  • Cook KS, Min HY, Johnson D, Chaplinsky RJ, Flier JS, Hunt CR, Spiegelman BM (1987) Adipsin: a circulating serine protease homologue secreted by adipose tissue and sciatic nerve. Science 237:402–405

    CAS  PubMed  Google Scholar 

  • Dugail I, Quignard-Boulange A, le Liepvre X, Lavau M (1990) Impairment of adipsin expression is secondary to the onset of obesity in db/db mice. J Biol Chem 265:1831–1833

    Google Scholar 

  • Flier JS, Cook KS, Usher P, Spiegelman BM (1987) Severely impaired adipsin expression in genetic and acquired obesity. Science 237:405–408

    Google Scholar 

  • Johnson PA, Greenwood MRC, Horwitz BA, Stern JS (1991) Animal models of obesity: genetic aspects. Annu Rev Nutr 11:325–352

    CAS  PubMed  Google Scholar 

  • Kitagawa K, Rosen SB, Spiegelman BM, Lienhard GE, Tanner LI (1989) Insulin stimulates acute release of adipsin from 3T3-L1 adipocytes. Biochem Biophys Acta 1014:83–89

    CAS  PubMed  Google Scholar 

  • Lowell BB, Flier JS (1990) Differentiation dependent biphasic regulation of adipsin gene expression by insulin and insulin-like growth factor-1 in 3T3-F442A adipocytes. Endocrinology 127:2898–2906

    CAS  PubMed  Google Scholar 

  • Lowell BB, Napolitano A, Usher P, Dulloo AG, Rosen BS, Spiegelman BM, Flier JS (1990) Reduced adipsin expression in murine obesity: effect of age and treatment with the sympathomimetic-thermogenic drug mixture ephedrine and caffeine. Endocrinology 126:1514–1520

    Google Scholar 

  • Miner JL, Byatt CA, Baile CA, Krivi GG (1993) Adipsin expression and growth rate in rats as influenced by insulin and somatotropin. Physiol Behav 54:207–212

    Google Scholar 

  • Moustaid N, Lasnier F, Hainque B, Quignard-Boulange A, Pairault J (1990) Analysis of gene expression during adipogenesis in 3T3-F442A preadipocytes: insulin and dexamethasone control. J Cell Biochem 42:243–254

    CAS  PubMed  Google Scholar 

  • Murray I, Sniderman AD, Cianflone K (1999) Enhanced triglyceride clearance with intraperitoneal human acylation stimulating protein in C5BL/6 mice. Am J Physiol 277:E474–E480

    CAS  PubMed  Google Scholar 

  • Murray I, Havel PJ, Sniderman AD, Cianflone K (2000) Reduced body weight, adipose tissue, and leptin levels despite increased energy intake in female mice lacking acylation-stimulating protein. Endocrinology 141:1041–1049

    CAS  PubMed  Google Scholar 

  • Napolitano A, Lowell BB, Damm D, Leibel RL, Ravussin E, Jimerson DC, Lesem MD, Van Dyke DC, Daly PA, Chatis P (1994) Concentrations of adipsin in blood and rates of adipsin secretion by adipose tissue in humans with normal, elevated and diminished adipose tissue mass. Int J Obes Relat Metab Disord 18:213–218

    Google Scholar 

  • Peake PW, O’Grady S, Pussell BA, Charlesworth JA (1997) Detection and quantification of the control proteins of the alternative pathway of complement in 3T3-L1 adipocytes. Eur J Clin Invest 27:922–927

    CAS  PubMed  Google Scholar 

  • Rosen BS, Cook KS, Yaglom J, Groves DL, Volanikis JE, Damm D, White T, Spiegelman BM (1989) Adipsin and complement factor D activity: an immune-related defect in obesity. Science 23:1483–1487

    Google Scholar 

  • Shillabeer G, Hornford J, Forden JM, Wong NC, Russell JC, Lau DC (1992) Fatty acid synthase and adipsin mRNA levels in obese and lean JCR:LAS-cp rats: effect of diet. J Lipid Res 33:31–39

    CAS  PubMed  Google Scholar 

  • Sniderman AD, Cianflone K (1994) The adipsin-ASP pathway and regulation of adipocyte function. Ann Med 26:388–393

    CAS  PubMed  Google Scholar 

  • Spiegelman BM, Lowell B, Napolitano A, Dubuc P, Barton D, Francke U, Groves DL, Cook KS, Flier JS (1989) Adrenal glucocorticoids regulate adipsin gene expression in genetically obese mice. J Biol Chem 264:1811–1815

    Google Scholar 

  • Spurlock ME, Hahn KJ, Miner JL (1996) Regulation of adipsin and body composition in the monosodium glutamate (MSG)-treated mouse. Physiol Behav 60:1217–1221

    CAS  PubMed  Google Scholar 

  • Takahashi M, Arita Y, Yamagata K, Matsukawa Y, Okutomi K, Horie M, Shimomura I, Hotta K, Kuriyama H, Kihara S, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y (2000) Genomic structure and mutations in adipose-specific gene, adiponectin. Int J Obes Relat Metab Disord 24:861–868

    CAS  PubMed  Google Scholar 

  • Van Harmelen V, Reynisdottir S, Cianflone K, Degerman E, Hoffstedt J, Nisell K, Sniderman A, Arner P (1999) Mechanisms involved in the regulation of free fatty acid release from isolated human fat cells by acylation-stimulating protein and insulin. J Biol Chem 274:18243–18251

    PubMed  Google Scholar 

  • White RT, Damm D, Hancock N, Rosen BS, Lowell BE, Usher P, Flier S, Spiegelman BM (1992) Human adipsin is identical to complement factor D and is expressed at high levels in adipose tissue. J Biol Chem 267:9210–9213

    CAS  PubMed  Google Scholar 

Adipsin: Adipsin Expression in Mice

  • Dugail I, Le Liepvre X, Quignard-Boulangé A, Pairault J, Lavau M (1989) Adipsin mRNA amounts are not decreased in the genetically obese Zucker rat. Biochem J 257:917–919

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dugail I, Quignard-Boulangé A, Le Liepvre X, Lavau M (1990) Impairment of adipsin gene expression is secondary to the onset of obesity in db/db mice. J Biol Chem 265:1831–1833

    Google Scholar 

  • Flier JS, Cook KS, Usher P, Spiegelman BM (1987) Severely impaired adipsin expression in genetic and acquired obesity. Science 237:405–408

    Google Scholar 

  • Lowell BB, Napolitano A, Usher P, Dulloo AG, Rosen BS, Spiegelman BM, Flier JS (1990) Reduced adipsin expression in murine obesity: Effect of age and treatment with the sympathomimetic-thermogenic drug mixture ephedrine and caffeine. Endocrinology 126:1514–1520

    Google Scholar 

  • Miner JL, Byatt JC, Baile CA, Krivi GG (1993) Adipsin gene expression and growth in rats as influenced by insulin and somatotropin. Physiol Behav 54:207–212

    Google Scholar 

  • Napolitano A, Lowell BB, Damm D, Leibel RL, Ravussin E, Jimerson DC, Lesem MD, Van Dyke DC, Daly PA, Chatis P, White RL, Spiegelman BM, Flier JS (1994) Concentrations of adipsin in blood and rates of adipsin secretion by adipose tissue in humans with normal, elevated and diminished adipose tissue mass. Int J Obes 18:213–218

    Google Scholar 

  • Platt KA, Claffey KP, Wilkison WO, Spiegelman BM, Ross SR (1994) Independent regulation of adipose tissue specificity and obese response of the adipsin promoter in transgenic mice. J Biol Chem 269:28558–28562

    CAS  PubMed  Google Scholar 

  • Spiegelman BM, Lowell B, Napolitano A, Dubuc P, Barton D, Francke U, Groves DL, Cook KS, Flier JS (1989) Adrenal glucocorticoids regulate adipsin gene expression in obese mice. J Biol Chem 264:1811–1815

    Google Scholar 

Ghrelin

  • Andreis PG, Malendowicz LK, Trejter M, Neri G, Spinazzi R, Rossi GP, Nussdorfer GG (2003) Ghrelin and growth hormone secretagogue receptor are expressed in the rat adrenal cortex. Evidence that ghrelin stimulates the growth, but not the secretory activity of adrenal cells. FEBS Lett 536:173–179

    CAS  PubMed  Google Scholar 

  • Asakawa A, Inui A, Kaga T, Yuzriha H, Nagata T, Ueno N, Makino S, Fujimiya M, Niijima A (2001) Ghrelin is an appetite-stimulating signal from the stomach with structural resemblance to Motilin. Gastroenterology 120:337–345

    CAS  PubMed  Google Scholar 

  • Bowers CY, Momany F, Reynolds GA, Chang D, Hong A, Chang K (1980) Structure–activity relationships of a synthetic pentapeptide that specifically releases growth hormone in vitro. Endocrinology 106:663–667

    CAS  PubMed  Google Scholar 

  • Bowers CY, Momany FA, Reynolds GA, Hong A (1984) On the in vitro and in vivo activity of a new synthetic hexapeptide that acts on the pituitary to specifically release growth hormone. Endocrinology 114:1537–1545

    CAS  PubMed  Google Scholar 

  • Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, Matsukura S, Kangawa K, Nakazato M (2000) Ghrelin, a novel growth hormone-releasing acetylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tract of rats and humans. Endocrinology 141:4255–4261

    CAS  PubMed  Google Scholar 

  • Davenport AP, Bonner TI, Foord SM, Harmar AJ, Neubig RR, Pin JP, Spedding M, Kojima M, Kangawa K (2005) International Union of Pharmacology. LVI. Ghrelin receptor nomenclature, distribution, and function. Pharmacol Rev 57:541–546

    CAS  PubMed  Google Scholar 

  • Hattori N, Saito T, Yagyu T, Jiang BH, Kitagawa K, Inagaki C (2001) GH, GH receptor, GH secretagogue receptor, and ghrelin expressed in human T cells, B cells, and neutrophils. J Clin Endocrinol Metab 86:4284–4291

    CAS  PubMed  Google Scholar 

  • Hosada A, Kojima M, Matsuo H, Kanmgawa K (2000) Ghrelin and des-acyl ghrelin: two major forms of rat ghrelin in gastrointestinal tissue. Biochem Biophys Res Commun 279:909–913

    Google Scholar 

  • Hosoda H, Kojima M, Mizushima T, Shimizu S, Kangawa K (2003) Structural divergence of human ghrelin. Identification of multiple ghrelin-derived molecules produced by post-translational processing. J Biol Chem 278:64–70

    CAS  PubMed  Google Scholar 

  • Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI, Hamelin M, Hreniuk DL, Palyha OC, Anderson J, Paress PS, Diaz C, Chou M, Liu KK, McKee KK, Pong SS, Chaung LY, Elbrecht A, Dashkevicz M, Heavens R, Rigby M, Sirinathsinghji DJ, Dean DC, Melillo DG, Patchett AA, Nargund R, Patrick RG, DeMartino JA, Gupta SK, Schaeffer JM, Smith RG, Van der Ploeg LHY (1996) A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 273:974–977

    CAS  PubMed  Google Scholar 

  • Katugampola SD, Pallikaros Z, Davenport AP (2001) [125I-His9]-ghrelin, a novel radioligand for localizing GHS and GH receptors in human and rat tissue: upregulation of receptors with atherosclerosis. Br J Pharmacol 134:143–149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kojima M, Kangawa K (2005) Ghrelin: structure and function. Physiol Rev 85:495–522

    CAS  PubMed  Google Scholar 

  • Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660

    CAS  PubMed  Google Scholar 

  • Kojima M, Hosoda H, Kangawa K (2000) Purification and distribution of ghrelin: the natural endogenous ligand for the growth hormone secretagogue receptor. Horm Res 56(Suppl 1):93–97

    Google Scholar 

  • Kojima M, Hosoda H, Matsuo H, Kangawa K (2001) Ghrelin: discovery of the natural endogenous ligand for the growth hormone secretagogue receptor. Trends Endocrinol Metab 12:118–126

    CAS  PubMed  Google Scholar 

  • Palucki B, Feighner SD, Pong SS, McKee KK, Hreniuk DL, Tan C, Howard AD, Van der Ploeg LHY, Patchett AA, Nargund RP (2001) Spiro(indole-3,4-piperdine) growth hormone secretagogues as ghrelin mimetics. Bioorg Med Chem Lett 11:1955–1957

    CAS  PubMed  Google Scholar 

  • Wren AM, Small CJ, Abbott CR, Dhillo WS, Seal LJ, Cohen MA, Batterham RL, Taheri ST, Stanley SA, Ghatei A, Bloom SR (2001) Ghrelin causes hyperphagia and obesity in rats. Diabetes 50:2540–2547

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas W. Herling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Herling, A.W. (2014). Assays of Obesity-Regulating Peptide Hormones. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27728-3_75-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27728-3_75-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27728-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics