Skip to main content

Perturbation Analysis of a Nonlinear Matrix Equation Arising in Tree-Like Stochastic Processes

  • Chapter
  • First Online:
Advanced Computing in Industrial Mathematics (BGSIAM 2017)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 793))

Included in the following conference series:

Abstract

The solution, obtained in the environment of finite precision machine arithmetic must be allays accompanied by an analysis of the conditioning of the problem solved. The perturbation analysis derives measures for the sensitivity of the solution to perturbations in the matrix coefficients. Motivated by these, in order to ascertain the accuracy of an iteratively calculated solution to a nonlinear matrix equation arising in Tree-like stochastic processes, in this paper norm-wise, mixed and component-wise condition numbers, as well as local perturbation bounds are formulated and norm-wise non-local residual bounds are derived using the methods of nonlinear perturbation analysis (Fréchet derivatives, Lyapunov majorants, fixed-point principles). The residual bounds are formulated in terms of the computed approximate solution to the equation and can be used as a stop criteria of the iterations, when solving the considered nonlinear matrix equation by a numerically stable iterative algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Modeling. ASA-SIAM Series on Statistics and Applied Probability 5. SIAM, Philadelphia (1999)

    Google Scholar 

  2. Bini, A.D., Latouche, G., Meini, B.: Solving nonlinear matrix equations arising in Tree-Like stochastic processes. Linear Algebra Appl. 366, 39–64 (2003)

    Article  MathSciNet  Google Scholar 

  3. Yeung, R.W., Alfa, A.S.: The Quasi-Birth-Death Type Markov Chain with a Tree Structure. Technical report, University of Manitoba, Winnipeg (1997)

    Google Scholar 

  4. Bini, D., Meini, B.: On the solution of a nonlinear matrix equation arising in queueing problems. SIAM J. Matrix Anal. Appl. 17, 906–926 (1996)

    Article  MathSciNet  Google Scholar 

  5. Bini, D., Meini, B.: Improved cyclic reduction for solving queueing problems. Numer. Alg. 15, 5774 (1997)

    Article  MathSciNet  Google Scholar 

  6. Latouche, G.: Newtons iteration for nonlinear equations in Markov chains. IMA J. Numer. Anal. 14, 583–598 (1994)

    Article  MathSciNet  Google Scholar 

  7. Duan, X., Li, C., Lia, A.: Solutions and perturbation analysis for the nonlinear matrix equation \(X + \sum _{i=1}^m A_i^* X^{-1} A_i = I\). Appl. Math. Comput. 218, 44584466 (2011)

    Google Scholar 

  8. Hasanov, V.I., Hakkaev, S.: Newton’s method for a nonlinear matrix equation. Compt. Rend. bulg. Sci. 68(8), 973–982 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Huang, B.-H.: Ma, C.-F.: Some iterative methods for the largest positive definite solution to a class of nonlinear matrix equation. Numer. Algor. (2017). https://doi.org/10.1007/s11075-017-0432-8

    Article  MathSciNet  Google Scholar 

  10. Huang, N., Ma, C.: The inversion-free iterative methods for solving the nonlinear matrix equation \(X+A^H X^{-1} A+B^H X^{-1}B = I\). Abstract Appl. Anal. (2013). https://doi.org/10.1155/2013/843785

    Article  MathSciNet  Google Scholar 

  11. Long, J.H., Hu, X.Y., Zhang, L.: On the Hermitian positive definite solution of the nonlinear matrix equation \(X + A^\ast X^{-1} A + B^\ast X^{-1} B = I\). Bull. Braz. Math. Soc. New Ser. 39(3), 371–386 (2008)

    Article  MathSciNet  Google Scholar 

  12. Popchev, I., Konstantinov, M., Petkov, P., Angelova, V.: Condition numbers for the matrix equation \(X + A^H X^{-1} A +B^{H} X^{-1} B= I\). C. R. Acad. Bulgare Sci. 64(12), 1679–1688 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Popchev, I.P., Petkov, P.H., Konstantinov, M.M., Angelova, V.A.: Perturbation bounds for the nonlinear matrix equation \(X + A^H X^{-1} A+ B^H x^{-1} B=I A\)

    Google Scholar 

  14. Vaezzadeh S., Vaezpour, S., Saadati, R., Park, C.: The iterative methods for solving nonlinear matrix equation \(X+ A^\ast X^{-1} A+ B^\ast X^{-1} B= Q\). Adv. Differ. Equ. 229 (2013) https://doi.org/10.1186/1687-1847-2013-229.

    Article  Google Scholar 

  15. Zhang, Y.: A note on positive definite solution of matrix equation \(X + M^* X^{-1} M- N^* X^{-1} N=I\). Linear and Multilinear Algebra (2015). https://doi.org/10.1080/03081087.2015.1068267

    Article  Google Scholar 

  16. He, Y., Long, J.H.: On the Hermitian positive definite solution of the nonlinear matrix equation \(X + \sum _{i=1}^m A_i=I\)

    Google Scholar 

  17. Engwerda, J.C., Ran, A.C.M., Rijkeboer, A.L.: Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation \(X + A^*X^-1A = Q\). Linear Algebra Appl. 186, 255–275 (1993)

    Article  MathSciNet  Google Scholar 

  18. Ferrante, A., Lev, B.-C.: Hermitian solutions of the equation \(X = Q + N X^{-1} N^\ast \). 247 (1), 359–373, (1996)

    Google Scholar 

  19. Hasanov, V.I., Ivanov, I.G.: On two perturbation estimates of the extreme solutions to the equations \(X \pm A^* X^{-1} A = Q\). Linear Algebra Appl. 413(1), 81–92 (2006)

    Article  MathSciNet  Google Scholar 

  20. Ivanov, I.G., Hasanov, V., Uhlig, F.: Improved methods and starting values to solve the matrix equations \(X \pm A^*{X}^{-1} A = I\) iteratively. Math. Comp. 74, 263–278 (2004)

    Article  MathSciNet  Google Scholar 

  21. Konstantinov, M.M., Angelova, V.A., Petkov, P.H., Popchev, P.I.: Comparison of perturbation bounds for the matrix equation \(X = A_1 + A^{\rm h}_2 X^{-1} A_2\). Ann. Inst. Arch. Genie Civil Geod. 41 (200-2001), fasc. II Math 75–82 (2003)

    Google Scholar 

  22. Meini, B.: Efficient computation of the extreme solutions of \(X+A^*{X}^{-1} A = Q\) and \(X - A^* X^{-1} A = Q\). Math. Comp. 71, 1189–1204 (2001)

    Article  MathSciNet  Google Scholar 

  23. Popchev, I., Angelova, V.: On the sensitivity of the matrix equations \(X \pm A^\ast X^{-1} A=Q\)

    Google Scholar 

  24. Xu, S.: Perturbation analysis of the maximal solution of the matrix equation \(X + A^* X^-1 A = P\). Acta Sci. Nat. Univ. Pekinensis 36, 29–38 (2000)

    Google Scholar 

  25. Konstantinov, M.M., Petkov, P.H., Pelova, G., Angelova, V.A.: Perturbation analysis of differential and difference matrix quadratic equations: a survey. In: Karandzulov, L., Andreev, A. (eds.) Proceedings of Bulgarian-Turkish-Ukrainian Scientific Conference Mathematical analysis, Sunny Beach, Sept. 15–20, 2010, Academic Publishing House Prof. Marin Drinov, 101–110 (2011)

    Google Scholar 

  26. Konstantinov, M.M., Petkov, P.H.: Perturbation methods in linear algebra control (survey). Appl. Comput. Math. 7(2), 141–161 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Yonchev, A.S., Konstantinov, M.M., Petkov, P.H.: Linear perturbation bounds of the continuous-time LMI based \(H^\infty \) quadratic stability problem. Int. J. Appl. Comput. Math. 12, 133–139 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Cucker, F., Diao, H., Wei, Y.: On mixed and componentwise condition numbers for Moore-Penrose inverse and linear least squares problems. Math. Comput. 76, 947–963 (2007)

    Article  MathSciNet  Google Scholar 

  29. Gohberg, I., Koltracht, I.: Mixed, componentwise, and structured condition numbers. SIAM J. Matrix Anal. Appl. 14, 688–704 (1993)

    Article  MathSciNet  Google Scholar 

  30. Konstantinov, M.M., Gu, D.W., Mehrmann, V., Petkov, P.H.: Perturbation Theory for Matrix Equations. North-Holland, Amsterdam (2003). [ISBN 0-444-51315-9]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Angelova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Angelova, V. (2019). Perturbation Analysis of a Nonlinear Matrix Equation Arising in Tree-Like Stochastic Processes. In: Georgiev, K., Todorov, M., Georgiev, I. (eds) Advanced Computing in Industrial Mathematics. BGSIAM 2017. Studies in Computational Intelligence, vol 793. Springer, Cham. https://doi.org/10.1007/978-3-319-97277-0_4

Download citation

Publish with us

Policies and ethics