Skip to main content

Non-local Nonlinear Perturbation Analysis for a Nonlinear Matrix Equation Arising in Tree-Like Stochastic Processes

  • Conference paper
  • First Online:
Advanced Computing in Industrial Mathematics (BGSIAM 2018)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 961))

Included in the following conference series:

  • 265 Accesses

Abstract

For a nonlinear matrix equation arising in tree-like stochastic processes in [1] norm-wise, mixed and component-wise condition numbers, as well as local perturbation bounds are formulated and norm-wise non-local residual bounds are derived. The local bounds are valid only asymptotically. The exigence to be small enough for the perturbations in the data in order to ensure sufficient accuracy of the local bound is an disadvantage of the local bound which is overcome in the non-local perturbation bound. As a continuation of the previous results, in this paper a non-local perturbation bound for the solution to the nonlinear matrix equation arising in tree-like stochastic processes is formulated using the techniques of Fréchet derivatives and the methods of Lyapunov majorants and fixed-point principles. The non-local bound is more pessimistic than the local bound, but it is formulated for data perturbations included in a given a priori prescribed domain which guarantees the existence of the solution to the perturbed equation in a neighborhood of the exact solution. The perturbation bound is an obligatory element when computing the solution of an equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angelova, V.: Perturbation analysis of a nonlinear matrix equation arising in tree-like stochastic processes. In: Georgiev K; Todorov M; Georgiev I. (eds.) Advanced Computing in Industrial Mathematics (BGSIAM 2017), Studies in Computational Intelligence, 793, 37–50 (2019) https://doi.org/10.1007/978-3-319-97277-0_4

  2. Bini, D., Meini, B.: On the solution of a nonlinear matrix equation arising in queueing problems. SIAM J. Matrix Anal. Appl. 17, 906–926 (1996)

    Article  MathSciNet  Google Scholar 

  3. Bini, D., Meini, B.: Improved cyclic reduction for solving queueing problems. Numer. Alg. 15, 57–74 (1997)

    Article  MathSciNet  Google Scholar 

  4. Bini, D., Latouche, G., Meini, B.: Solving nonlinear matrix equations arising in Tree-Like stochastic processes. Linear Algebra Appl. 366, 39–64 (2003)

    Article  MathSciNet  Google Scholar 

  5. Chen, S., Li, W.: Perturbation analysis for the matrix equations \({X} \pm A^* {X}^{-1} {A} = {I}\). Taiwanese Journal Of Mathematics 13, 913–922 (2009)

    Google Scholar 

  6. Duan, X., Li, C., Liao, A.: Solutions and perturbation analysis for the nonlinear matrix equation \({X} + \sum _{i=1}^m A_i^*{X}^{-1}A_i = {I}\). Appl. Math. Comput. 218, 4458–4466 (2011)

    Google Scholar 

  7. Duan, X., Wang, Q., Li, C.: Perturbation analysis for the positive definite solution of the nonlinear matrix equation \({X} - \sum ^m_{i=1}{A_i}^*{X}^{\delta _i}{A}_i = {Q}\). Appl. Math. Inform. 30, 655–663 (2012)

    Google Scholar 

  8. Engwerda, J.C., Ran, A.C.M., Rijkeboer, A.L.: Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation \({X} + {A}^*{X}^{-1}A = {Q}\). Linear Algebra Appl. 186, 255–275 (1993)

    Google Scholar 

  9. Ferrante, A., Levy, B.: Hermitian solutions of the equation \({X} = Q + {N}{X}^{-1}{N}^\ast \). Linear Algebra Appl. 247(1), 359–373 (1996)

    Google Scholar 

  10. Hasanov, V.: Notes on two perturbation estimates of the extreme solutions to the equations \({X} \pm A^* {X}^{-1}A = {Q}\). Appl. Math. Comput. 216, 1355–1362 (2010)

    Google Scholar 

  11. Hasanov, V.: On perturbation estimates for the extreme solution of a matrix equation. Ann. Acad. Rom. Sci. Ser. Math. Appl. 9(1), 74–88 (2017) ISSN 2066-6594

    Google Scholar 

  12. Hasanov, V., Hakkaev, S.: Newton’s mathod for a nonlinear matrix equation. Compt. Rend. bulg. Sci. 68(8), 973–982 (2015)

    MATH  Google Scholar 

  13. Hasanov, V., Ivanov, I.: On two perturbation estimates of the extreme solutions to the equations \({X} \pm A^* {X}^{-1}A = {Q}\). Linear Algebra Appl. 413(1), 81–92 (2006)

    Google Scholar 

  14. Hasanov, V., Ivanov, I., Uhlig, F.: Improved perturbation estimates for the matrix equations \({X} \pm A^* {X}^{-1}A = {Q}\). Linear Algebra Appl. 379, 113–135 (2004)

    Google Scholar 

  15. Huang, B.-H., Ma, C.-F.: Some iterative methods for the largest positive definite solution to a class of nonlinear matrix equation. Numer, Algor (2017)

    Google Scholar 

  16. Huang, N., Ma, C.-F.: The inversion-free iterative methods for solving the nonlinear matrix equation \({X}+{A}^{H} {X}^{-1}{A}+{B}^{H}{X}^{-1}{B} = {I}\). In: Abstract and Applied Analysis, (2013) Article ID 843785

    Google Scholar 

  17. Long, J.-H., Hu, X.-Y., Zhang, L.: On the Hermitian positive definite solution of the nonlinear matrix equation \({X} + {A}^\ast {X}^{-1}{A} + {B}^\ast {X}^{-1}{B} = {I}\). Bull. Braz. Math. Soc., New Series 39(3), 371–386 (2008)

    Google Scholar 

  18. Ivanov, I., Hasanov, V., Uhlig, F.: Improved methods and starting values to solve the matrix equations \({X} \pm A^*{X}^{-1}A = {I}\) iteratively. Math. Comp. 74, 263–278 (2004)

    Google Scholar 

  19. Konstantinov, M., Angelova, V., Petkov, P., Popchev, I.: Comparison of perturbation bounds for the matrix equation \({X} = {A}_1 + {A}^{\rm H}_2 {X}^{-1} {A}_2\). Ann. Inst. Arch. Genie Civil Geod., 41 (200-2001), fasc. II Math, 75–82 (2003)

    Google Scholar 

  20. Konstantinov, M., Gu, D.-W., Mehrmann, V., Petkov, P.: Perturbation theory for matrix equations. North-Holland, Amsterdam (2003). ISBN 0-444-51315-9

    Google Scholar 

  21. Konstantinov, M., Petkov, P., Pelova, G., Angelova, V.: Perturbation analysis of differential and difference matrix quadratic equations: a survey. In: Karandzulov, L., Andreev, A. (eds.) Proceedings Bulgarian-Turkish-Ukrainian Scientific Conference Mathematical analysis, Sunny Beach, Sept. 15-20, 2010, pp. 101– 110. Academic Publishing House “Prof. Marin Drinov” (2011)

    Google Scholar 

  22. Konstantinov, M., Petkov, P., Popchev, I., Angelova, V.: Norm-wise, mixed and component-wise condition numbers of matrix equation \({A_0} + \sum _{i=1}^k \sigma _i {A}_i^\ast X_i^{p_i}A_i =0, \;\; \sigma _i = \pm 1\). Appl. Comput. Math. 13(1), 18–30 (2014)

    Google Scholar 

  23. Latouche, G.: Newton’s iteration for nonlinear equations in Markov chains. IMA J. Numer. Anal. 14, 583–598 (1994)

    Article  MathSciNet  Google Scholar 

  24. Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Modeling. ASA-SIAM Series on Statistics and Applied Probability 5. SIAM, Philadelphia (1999)

    Google Scholar 

  25. Meini, B.: Efficient computation of the extreme solutions of \({X}+{A}^*{X}^{-1} A = Q\) and \({X - A}^*{X}^{-1} {A} = {Q}\). Math. Comp. 71, 1189–1204 (2001)

    Google Scholar 

  26. Popchev, I., Angelova, V.: On the sensitivity of the matrix equations \({X} \pm {A}^\ast X^{-1}A = {Q}\). Cybern. Inf. Technol. 10(4), 36–61 (2010)

    Google Scholar 

  27. Popchev, I., Konstantinov, M., Petkov, P., Angelova, V.: Condition numbers for the matrix equation \({X} + A^{H} {X}^{-1}{A} +{B}^{H} {X}^{-1}{B}={I}\). Compt. Rend. bulg. Sci. 64(12), 1679–1688 (2011)

    Google Scholar 

  28. Popchev, I., Konstantinov, I., Petkov, P., Angelova, V.: Norm-wise, mixed and component-wise condition numbers of the matrix equation \({A_0} + \sum _{i=1}^k \sigma _i {A}_i^\ast X_i^{p_i}A_i =0, \;\; \sigma _i = \pm 1\). Appl. Comput. Math. 13(1), 18–30 (2014)

    Google Scholar 

  29. Popchev, I., Petkov, P., Konstantinov, M., Angelova, V.: Perturbation bounds for the nonlinear matrix equation \({X} + {A}^{H} {X}^{-1} {A} + {B}^{H} {X}^{-1} {B} = {I}\). In: Wasniewski, J., Lirkov, I., Margenov, S., (eds.) Lecture Notes in Computer Science 7116 Large-Scale Scientific Computing 2011, pp. 155–162. Springer-Verlag Berlin Heidelberg (2012)

    Google Scholar 

  30. Vaezzadeh, S., Vaezpour, S., Saadati, R., Park, C.: The iterative methods for solving nonlinear matrix equation \({X}+{A}^\ast {X}^{-1}{A}+ {B}^\ast {X}^{-1}{B}={Q}\). Adv. Differ. Equ. 229, (2013). https://doi.org/10.1186/1687-1847-2013-229

  31. Xu, S.: Perturbation analysis of the maximal solution of the matrix equation \({X} + A^*{X}^{-1} {A} = {P}\). Acta Sci. Natur. Univ. Pekinensis 36, 29–38 (2000)

    Google Scholar 

  32. Yeung, R., Alfa, A.: The quasi-birth-death type Markov chain with a tree structure. Technical report, University of Manitoba, Winnipeg (1997)

    Google Scholar 

  33. Yin, X., Fang, L.: Perturbation analysis for the positive definite solution for the nonlinear matrix equation \({X} -\sum _{i=1}^m{A}_i^\ast {X}^{-1}{A}_i = {Q}\). J. Appl. Math. Comp. 43, 199–211 (2013)

    Google Scholar 

  34. Yonchev, A., Konstantinov, M., Petkov, P.: Linear perturbation bounds of the continuous-time LMI based \({H}^\infty \) quadratic stability problem. Int. J. Appl. Comput. Math. 12, 133–139 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Zhang, Y.: A note on positive definite solution of matrix equation \({X} + M^*{X}^{-1} {M} - N^*{X}^{-1} {N} = {I}\). Linear and Multilinear Algebra 64(5), 951–954 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Angelova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Angelova, V. (2021). Non-local Nonlinear Perturbation Analysis for a Nonlinear Matrix Equation Arising in Tree-Like Stochastic Processes. In: Georgiev, I., Kostadinov, H., Lilkova, E. (eds) Advanced Computing in Industrial Mathematics. BGSIAM 2018. Studies in Computational Intelligence, vol 961. Springer, Cham. https://doi.org/10.1007/978-3-030-71616-5_3

Download citation

Publish with us

Policies and ethics