Skip to main content

A Stiffness-Fault-Tolerant Control Strategy for Reliable Physical Human-Robot Interaction

  • Conference paper
  • First Online:
Human Friendly Robotics

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 7))

Abstract

Elastic actuators allow to specify the characteristics of physical human-robot interactions and increase the intrinsic safety for the human. To ensure the reliability of the interaction, this paper investigates detection and compensation of stiffness faults. A recursive least squares algorithms is used to detect faults and obtain an estimation of the actual stiffness value online. An adaptation law based on the estimation is proposed to adjust parameters of an impedance control to maintain a desired interaction stiffness. A simulation of an exemplary elastic actuator shows that the developed stiffness-fault-tolerant control strategy achieves a dependable human-robot interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vasic, M., Billard, A.: Safety issues in human-robot interactions. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 197–204. IEEE (2013)

    Google Scholar 

  2. Haddadin, S., Albu-Schffer, A., Hirzinger, G.: Safe physical human-robot interaction: measurements, analysis and new insights. In: ISRR, vol. 66, pp. 395–407. Springer (2007)

    Google Scholar 

  3. de Santis, A., Siciliano, B., de Luca, A., Bicchi, A.: An atlas of physical human robot interaction. Mechan Mach Theory 43(3), 253–270 (2008)

    Article  Google Scholar 

  4. Bicchi, A., Bavaro, M., Boccadamo, G., De Carli, D., Filippini, R., Grioli, G., Piccigallo, M., Rosi, A., Schiavi, R., Sen, S.: Others, physical human-robot interaction: dependability, safety, and performance. In: 10th IEEE International Workshop on Advanced Motion Control: AMC’08, vol. 2008, pp. 9–14. IEEE (2008)

    Google Scholar 

  5. Verstraten, T., Beckerle, P., Furnmont, R., Mathijssen, G., Vanderborght, B., Lefeber, D.: Series and parallel elastic actuation: impact of natural dynamics on power and energy consumption. Mechan Mach Theory 102, 232–246 (2016)

    Article  Google Scholar 

  6. Beckerle, P.: Practical relevance of faults, diagnosis methods, and tolerance measures in elastically actuated robots. Control Eng. Pract 50, 95–100 (2016)

    Article  Google Scholar 

  7. Filippini, R., Sen, S., Bicchi, A.: Toward soft robots you can depend on. IEEE Robot. Autom. Mag. 15(3), 31–41 (2008)

    Article  Google Scholar 

  8. Isermann, R.: Fault-Diagnosis Systems: an Introduction from Fault Detection to Fault Tolerance. Springer (2006)

    Chapter  Google Scholar 

  9. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Control: with 218 Figures, 129 Examples, and 43 Exercises, 3rd edn. Springer (2016)

    Google Scholar 

  10. Beckerle, P., Wojtusch, J., Schuy, J., Strah, B., Rinderknecht, S., von Stryk, O.: Power-optimized stiffness and nonlinear position control of an actuator with variable torsion stiffness. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2013)

    Google Scholar 

  11. Lendermann, M., Singh, B.R.P., Stuhlenmiller, F., Beckerle, P., Rinderknecht, S., Manivannan, P.V.: Comparison of passivity based impedance controllers without torque-feedback for variable stiffness actuators. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2015)

    Google Scholar 

  12. Lendermann, M., Stuhlenmiller, F., Erler, P., Beckerle, P., Rinderknecht, S.: A systematic approach to experimental modeling of elastic actuators by component-wise parameter identification. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 2015

    Google Scholar 

  13. Ott, C.: Cartesian Impedance Control of Redundant and Flexible-Joint Robots. Springer (2008)

    Google Scholar 

  14. Perner, G., Yousif, L., Rinderknecht, S., Beckerle, P.: Feature extraction for fault diagnosis in series elastic actuators. In: Conference on Control and Fault-Tolerant Systems (2016)

    Google Scholar 

  15. Flacco, F., de Luca, A., Sardellitti, I., Tsagarakis, N.G.: On-line estimation of variable stiffness in flexible robot joints. Int. J. Robot. Res. 31(13), 1556–1577 (2012)

    Article  Google Scholar 

  16. Flacco, F., de Luca, A.: Residual-based stiffness estimation in robots with flexible transmissions. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 5541–5547. IEEE (2011)

    Google Scholar 

  17. Navrtil, P., Ivanka, J.: Recursive estimation algorithms in matlab & simulink development environment. WSEAS Trans. Comput. 13, 691–702 (2014)

    Google Scholar 

  18. Flacco, F., de Luca, A.: Stiffness estimation and nonlinear control of robots with variable stiffness actuation. In: IFAC World Congress, pp. 6872–6879 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Deutsche Forschungsgemeinschaft (DFG) Research Grant (no. BE 5729/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Stuhlenmiller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stuhlenmiller, F., Perner, G., Rinderknecht, S., Beckerle, P. (2019). A Stiffness-Fault-Tolerant Control Strategy for Reliable Physical Human-Robot Interaction. In: Ficuciello, F., Ruggiero, F., Finzi, A. (eds) Human Friendly Robotics. Springer Proceedings in Advanced Robotics, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-89327-3_1

Download citation

Publish with us

Policies and ethics