Skip to main content

Removal of Radioactive Waste by Nonthermal Plasma Etching: Trends for the Promising Future

  • Living reference work entry
  • First Online:
Handbook of Environmental Materials Management

Abstract

In recent years, nuclear industry has made a rapid progress due to the rising demand of uninterrupted supply of clean energy. However, its progress also brings the question of nuclear waste management where conventional methods generate a lot of medium- or low-level radioactive waste. These reasons have caused researchers around the globe to look for alternative methods in radioactive waste management, and plasma is one of these promising alternative methods. Researchers also pointed that nonthermal atmospheric pressure plasma can serve as a potential alternative technique for radioactive decontamination. However, there are only a few published works available to guide this technology from lab to nuclear power plants. In an effort to bridge such gap, we will show how one can develop different types of nonthermal plasma devices and employ them successfully for radioactive decontamination purposes through chemical etching. As the issue of scaling up such a plasma device for actual deployment in power plant has always been perceived as challenge, we will show that, with proper design considerations, such challenges can also be taken care of. Our experimental results inside a glove box on radioactive wastes show that plasma etching can be a very effective alternative tool in radioactive waste management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Babij M, Kowalski ZW, Nitsch K, Silberring J, Gotszalk T (2014) Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer. Rev Sci Instrum 85:054703

    Article  Google Scholar 

  • Bak MS, Kim W, Cappelli MA (2011) On the quenching of excited electronic states of molecular nitrogen in nanosecond pulsed discharges in atmospheric pressure air. Appl Phys Lett 98:011502

    Article  Google Scholar 

  • Baránková H, Bardos L (2002) Fused hollow cathode cold atmospheric plasma source for gas treatment. Catal Today 72:237–241

    Article  Google Scholar 

  • Barve S, Chopade S, Kar R, Chand N, Deo M, Biswas A, Patel N, Rao G, Patil D, Sinha S (2017) SiOx containing diamond like carbon coatings: effect of substrate bias during deposition. Diam Relat Mater 71:63–72

    Article  CAS  Google Scholar 

  • Bekeschus S, Schmidt A, Weltmann K-D, von Woedtke T (2016) The plasma jet kINPen – a powerful tool for wound healing. Clin Plasma Med 4:19–28

    Article  Google Scholar 

  • Duncan A (2007) Evaluation of possible surrogates for validation of the oxidation furnace for the plutonium disposition project. Savannah River Site (SRS), Savannah River National Laboratory, Aiken

    Google Scholar 

  • El Otell Z, Šamara V, Zotovich A, Hansen T, de Marneffe J-F, Baklanov M (2015) Vacuum ultra-violet emission of CF4 and CF3I containing plasmas and their effect on low-k materials. J Phys D Appl Phys 48:395202

    Article  Google Scholar 

  • Ghorui S, Meher K, Kar R, Tiwari N, Sahasrabudhe S (2016) Unique erosion features of hafnium cathode in atmospheric pressure arcs of air, nitrogen and oxygen. J Phys D Appl Phys 49:295201

    Article  Google Scholar 

  • Gigosos MA, González MÁ, Cardeñoso V (2003) Computer simulated Balmer-alpha,-beta and-gamma Stark line profiles for non-equilibrium plasmas diagnostics. Spectrochim Acta B At Spectrosc 58:1489–1504

    Article  Google Scholar 

  • Griem HR (2005) Principles of plasma spectroscopy. Cambridge University Press, Cambridge, MA

    Google Scholar 

  • Gupta NK, Sengupta A, Gupta A, Sonawane JR, Sahoo H (2018) Biosorption-an alternative method for nuclear waste management: a critical review. J Environ Chem Eng 6:2159–2175

    Article  CAS  Google Scholar 

  • Hicks RF, Herrmann HW (2003) Atmospheric-pressure plasma cleaning of contaminated surfaces. University of California, Los Angeles

    Google Scholar 

  • Holton WC (2005) Power surge: renewed interest in nuclear energy. National Institute of Environmental Health Sciences, Durham

    Google Scholar 

  • Jung T, Kim D, Lim H (2006) Molecular emission of CF 4 gas in low-pressure inductively coupled plasma. Bull Kor Chem Soc 27:373–375

    Article  CAS  Google Scholar 

  • Kar R, Patel N, Chand N, Shilpa R, Dusane R, Patil D, Sinha S (2016) Detailed investigation on the mechanism of co-deposition of different carbon nanostructures by microwave plasma CVD. Carbon 106:233–242

    Article  CAS  Google Scholar 

  • Kar R, Bute A, Chand N, Chandra R, Patil D, Jagasia P, Dhami P, Sinha S (2018) Feasibility of using non-thermal microwave plasma for nuclear waste management: a detailed study backed by plasma spectroscopy. Environ Technol Innov 12:219–229

    Article  Google Scholar 

  • Kim Y-s, Min J-y, Bae K-k, Yang M-s (1999) Uranium dioxide reaction in CF4/O2 RF plasma. J Nucl Mater 270:253–258

    Article  CAS  Google Scholar 

  • Kunze H-J (2009) Introduction to plasma spectroscopy. Springer Science & Business Media, Heidelberg

    Book  Google Scholar 

  • Martz J, Hess D, Haschke J, Ward J, Flamm B (1991) Demonstration of plutonium etching in a {CF 4}/{O 2} RF glow discharge. J Nucl Mater 182:277–280

    Article  CAS  Google Scholar 

  • Niemi K, Waskoenig J, Sadeghi N, Gans T, O'Connell D (2011) The role of helium metastable states in radio-frequency driven helium–oxygen atmospheric pressure plasma jets: measurement and numerical simulation. Plasma Sources Sci Technol 20:055005

    Article  Google Scholar 

  • Nilaya JP, Biswas D (2010) Laser-assisted cleaning: dominant role of surface. Pramana 75:1087–1097

    Article  Google Scholar 

  • Pearse RWB, Gaydon AG (1976) Identification of molecular spectra. Chapman and Hall, New York

    Book  Google Scholar 

  • Schoenbach KH, El-Habachi A, Shi W, Ciocca M (1997) High-pressure hollow cathode discharges. Plasma Sources Sci Technol 6:468

    Article  CAS  Google Scholar 

  • Schopp C, Nachtrodt F, Heuermann H, Scherer UW, Mostacci D, Finger T, Tietsch W (2012) A novel 2.45 GHz/200 W microwave plasma jet for high temperature applications above 3600 K. J Phys Conf Ser, IOP Publishing 406(1):012029

    Article  Google Scholar 

  • Sharma B, Kar R, Pal AR, Shilpa R, Dusane R, Patil D, Suryawanshi S, More M, Sinha S (2017) Role of hydrogen diffusion in temperature-induced transformation of carbon nanostructures deposited on metallic substrates by using a specially designed fused hollow cathode cold atmospheric pressure plasma source. J Phys D Appl Phys 50:155207

    Article  Google Scholar 

  • Sharma B, Kar R, Pal AR, Shilpa R, Dusane R, Patil D, Suryawanshi S, More M, Sinha S (2018) Investigations on the transformation of vertically aligned CNTs to intramolecular junctions by atmospheric pressure PECVD. Mater Today Commun 16:178–185

    Article  CAS  Google Scholar 

  • Su L, Kumar R, Ogungbesan B, Sassi M (2014) Experimental investigation of gas heating and dissociation in a microwave plasma torch at atmospheric pressure. Energy Convers Manag 78:695–703

    Article  CAS  Google Scholar 

  • Tu V, Jeong J, Schütze A, Babayan S, Ding G, Selwyn G, Hicks R (2000) Tantalum etching with a nonthermal atmospheric-pressure plasma. J Vac Sci Technol A 18:2799–2805

    Article  CAS  Google Scholar 

  • Veilleux JM, Kim Y (2011) Can plasma decontamination etching of uranium and plutonium be extended to spent nuclear fuel processing? Los Alamos National Lab.(LANL), Los Alamos

    Google Scholar 

  • Veilleux JM, El-Genk MS, Chamberlin E, Munson C, FitzPatrick J (2000) Etching of UO2 in NF3 RF plasma glow discharge. J Nucl Mater 277:315–324

    Article  CAS  Google Scholar 

  • Wattal P (2013) Indian programme on radioactive waste management. Sadhana 38:849–857

    Article  Google Scholar 

  • Windarto HF, Matsumoto T, Akatsuka H, Suzuki M (2000) Decontamination process using CF4-O2 microwave discharge plasma at atmospheric pressure. J Nucl Sci Technol 37:787–792

    Article  CAS  Google Scholar 

  • Xie H, Sun B, Zhu X, Liu Y (2009) Influence of O2 on the CF4 decomposition by atmospheric microwave plasma, reactions. Int J Plasma Environ Sci Technol 3(1):6

    Google Scholar 

  • Yang X, Moravej M, Babayan S, Nowling G, Hicks R (2004) Etching of uranium oxide with a non-thermal, atmospheric pressure plasma. J Nucl Mater 324:134–139

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajib Kar .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kar, R., Bute, A., Chand, N., Ahmed, Z., Maiti, N., Patil, D.S. (2020). Removal of Radioactive Waste by Nonthermal Plasma Etching: Trends for the Promising Future. In: Hussain, C. (eds) Handbook of Environmental Materials Management. Springer, Cham. https://doi.org/10.1007/978-3-319-58538-3_224-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58538-3_224-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58538-3

  • Online ISBN: 978-3-319-58538-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics