Skip to main content

Plasma in the Waste Treatment Industry

  • Living reference work entry
  • First Online:
Handbook of Thermal Plasmas

Abstract

The treatment of waste materials is a social and economic problem that has grown rapidly over the last few decades. Relatively simple solutions such as landfill depository and ocean dump sites are no more an option due to the sheer volume of the waste material generated and their long-term negative impact on the environment. The problem is compounded by the wide variety of the waste material generated by our society ranging from municipal solid waste to hazardous industrial waste and low-level radioactive waste. In this chapter, a brief introduction provides some statistics on the volume and composition of waste materials generated across the world and different waste classifications that are commonly used. This is followed by a review of current waste treatment technologies for three broad groups of waste materials, namely:

  • Municipal solid waste materials

  • Industrial waste materials

  • Low-level radioactive waste materials

In each of these groups, attention is given to the unique role thermal plasma technology can play for the safe and reliable treatment of the waste material and niche opportunities for the recovery of valuable products from the waste. In a field as vast and diversified as waste treatment, it is unrealistic to attempt to treat it in an exhaustive manner in a single chapter. Emphasis is therefore given to providing typical examples of some of the leading technologies developed over the past few decades with adequate references for further information.

Emil Pfender died before publication of this work was completed.

E. Pfender: deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AC:

Alternating current

ACW:

Asbestos-containing waste

ASR:

Automobile shredder residue

BF:

Blast furnace

BOF:

Basic oxygen furnace

CFC:

Chlorofluorocarbon

CFC-11:

Trichlorofluoromethane, CFCl3

CFC-113:

Trichlorotrifluoroethane, C2F3Cl3

CFC-114:

Dichlorotetrafluoroethane, C2F4Cl2

CFC-115:

Chloropentafluoroethane, C2F5Cl

CFC-12:

Dichlorodifluoromethane, CF2Cl2

CFD:

Converter flue dust

CMP:

Center for materials production

CP:

Compressor

CPCB:

Central Pollution Control Board

CPI:

Chemical process industries

DC:

Direct current

DENOX:

Nitrogen oxide removal system

DREs:

Destruction and removal efficiencies

EAF:

Electric arc furnace

EDF:

Electricité de France

EDM:

Engineering development model

EPA:

Environmental Protection Agency

EPI:

Electroplating industry

EPRI:

Electric Power Research Institute

EW:

Electronic waste

GHG:

Greenhouse gases

HCFC-134a:

Tetrafluoroethane, CH2FCF3

HCFC-22:

Chlorodifluoromethane, CHClF2

HEPA:

High-efficiency particulate arrestance

HLW:

High-level liquid waste

HPS:

Hot plating sludge

HSW:

Hospital solid waste

HTS:

High-temperature shift

HW:

Hazardous waste

HWM:

Hazardous waste materials

IET:

Integrated environmental technology

IPGCC:

Integrated plasma gasification combined cycle

IWM:

Industrial waste materials

IWT:

Industrial waste treatment

LD:

Linz-Donawitz

LHS:

Left-hand side

LLRW:

Low-level radioactive materials

LLW:

Low-level nuclear waste

LNG:

Liquefied natural gas

LTS:

Low-temperature shift

MSW:

Municipal solid waste

MW:

Medical waste

NMP:

Nonmetallic product

ODSs:

Ozone-depleting substances

PACT:

Plasma-arc centrifugal treatment

PAG:

Plasma-arc gasification

PAHWTS:

Plasma-arc hazardous waste treatment system

PAWDS:

Plasma-arc waste destruction system

PCB:

Printed circuit boards

PCBs:

Polychlorinated biphenyls

PCC:

Post-combustion chamber

PCDDs:

Polychlorinated dibenzodioxins

PCDFs:

Polychlorinated dibenzofurans

PE:

Polyethylene

PEC:

Plasma Energy Corporation

PEM:

Plasma-enhanced melter

PET:

Polyethylene terephthalate

PGM:

Platinum group metals

PMW:

Paper mill waste

POM:

Prescription-only medicines

PP:

Polypropylene

PPC:

Primary processing chamber

PS:

Polystyrene

PSA:

Pressure swing adsorption

PSW:

Plastic solid waste

PVC:

Polyvinyl chloride

RDF:

Refuse-derived fuel

RF:

Radio frequency

RHS:

Right-hand side

RSF:

Rotary salt furnace

SCR:

Selective catalytic reduction

SEER:

Specific electrical energy requirement

SER:

Specific energy requirement

SLRG:

Soda lime recycled glass

SPME:

Solid-phase microextraction system

SSW:

Sewage sludge waste

TA:

Transferred arc

TBP:

Tributylphosphate

TPD:

Ton per day

TPT:

Thermal plasma technology

WEEE:

Waste electrical and electronic equipment

WGS:

Water-gas shift

WM:

Waste materials

WPT:

Waste-processing technologies

WSAP:

Water-stabilized arc plasma

WtE:

Waste-to-energy

Abbreviations

Al in :

Aluminum metal in the dross charge (kg)

AlN :

Aluminum nitride (kg)

Al cast :

Aluminum metal recovered (kg)

Al NMP :

Aluminum metal in NMP (kg)

η e :

Process efficiency (%) Eq. 10

η r :

Aluminum recovery (%) Eq. 9

References

  • An’shakov AS, Faleev VA, Danilenko AA, Urbakh EK, Urbakh AE (2007) Investigation of plasma gasification of carbonaceous technogeneous wastes. Thermophys Aeromech 14:607–616

    Article  Google Scholar 

  • Arena U (2012) Process and technological aspects of municipal solid waste gasification. A review. Waste Manag 32:625–639

    Article  Google Scholar 

  • Barton TG (1979) Problem waste disposal by plasma heating. Int Recycl Congress Berlin 1:733–736

    Google Scholar 

  • Barton TG, Mordy JA (1984) The destruction of halogenated organic chemicals by plasma pyrolysis. Can J Physiol Pharmacol 62(8):976–978

    Article  Google Scholar 

  • Barton NY et al (1987) Plasma pyrolysis waste destruction. US Patent 4,644,877

    Google Scholar 

  • Benocci R, Bonizzoni G, Sindoni E (eds) (1995) Thermal plasmas for hazardous waste treatment. In: Proceedings of the international school of plasma physics. World Scientific, Hackensack

    Google Scholar 

  • Bhada-Tata P, Hoornweg D (2012) What a waste a global review of solid waste management. Urban Development Series Knowledge Papers, 15. World Bank

    Google Scholar 

  • Botes A (2017) South African waste management tire fee to generate million per year to promote tire recycling

    Google Scholar 

  • Bouvier A, Justin L (1990) R&D at EDF into the industrial applications of plasma generators. In Solonenko OP, Fedorchenko AI (eds) Plasma jets in the development of new materials. VSP Utrecht, The Netherlands

    Google Scholar 

  • Bowyer J, Fernholz K (2010) Plasma gasification: an examination of the health, safety, and environmental records of established facilities. Dovetail Partners

    Google Scholar 

  • Buckson M (2007) Turning garbage into power, an environmental dream becomes a real business. The Ottawa Construction News, January, pages C1–C8

    Google Scholar 

  • Byun Y, Cho M, Woo Chung J, Namkung W, Lee HD, Jang SD, Kim Y-S, Lee J-H, Lee C-R, Hwang S-M (2011) Hydrogen recovery from the thermal plasma gasification of solid waste. J Hazard Mater 190:317–323

    Article  Google Scholar 

  • Byun Y, Cho M, Hwang S-M, Chung J (2012) Thermal plasma gasification of municipal solid waste (MSW), Chapter 7. In: Gasification for practical applications. Intech

    Google Scholar 

  • Chand S, Paul B, Kumar M (2016) Sustainable approaches for LD slag waste management in steel industries: a review. Metallurgist 60(1–2):116–128

    Article  Google Scholar 

  • Circeo LJ, Martin RC Jr, Smith ME (2007) Achieving “zero waste” with plasma arc technology, transparencies. Georgia Tech Research Institute

    Google Scholar 

  • Clean Energy Center (1995) CFCs destroying demonstration plant. Cat. N. PMD357 ‘95, Tokyo Japan Cat. No

    Google Scholar 

  • Cretenot D et al (1990) Waste destruction by plasma. In: Proceedings of 1st international EPRI plasma symposium, May

    Google Scholar 

  • Cubas ALV, Machado M d M, Dutra AR d A, Moecke EHS, Fiedler HD, Bueno P (2015) Final treatment of spent batteries by thermal plasma. J Environ Manag 159:202–208

    Article  Google Scholar 

  • Cuchet JM, Luycs P, De Goeyse A, Braeckeveldt M (2007) The HRA-solarium project: processing of historical waster on the BelgoProcess site (Belgium). In: Proceedings of 11th international conference on environmental remediation and radioactive waste management ICEM07-7026, Sept 2-6 Bruges, Belgium

    Google Scholar 

  • Czajczynska D, Anguilano L, Ghazal H, Krzyzynska R, Reynolds AJ, Spencer N, Jouhara H (2017) Potential of pyrolysis processes in the waste management sector. Thermal Sci Eng Prog 3:171–197

    Article  Google Scholar 

  • Deckers J (2014) Treatment of radioactive waste. IAEA, Scientific forum, Radioactive waste meeting the challenge, Sept 23–24 Vienna, Austria

    Google Scholar 

  • EPA (1992) Retech plasma centrifugal furnace application analysis report. EPA Risk Reduction Engineering Laboratory, Cincinnati OH, USA, June 1992, p. 9

    Google Scholar 

  • Eschenbach RC (1989) Use of plasma torches for melting special metals and for destroying and stabilizing hazardous wastes. In: Boulos MI (ed) Proc workshop on industrial plasma applications, Pungnuochinso, Italy, pp 127–136

    Google Scholar 

  • Eschenbach RC (1990) Plasma centrifugal furnace for destroying hazardous wastes. In: Proceedings of 1st international EPRI plasma symposium May

    Google Scholar 

  • Eschenbach RC (1995) Plasma Arc Centrifugal Treatment (PACT) of Hazardous Waste. In: Paper presented at the 8th symposium on plasma science for materials, Tokyo, Japan, 15–16 June

    Google Scholar 

  • Eschenbach RC, Boomer KD (1987) Plasma Arc Stabilization of Hazardous Mixed Wastes. In: Paper presented at the ANS Winter Meeting, Los Angeles, CA, 15–19 November

    Google Scholar 

  • Eschenbach RC, Whitworth CG (1995) Glassy slag from rotary hearth vitrification. Paper presented at the American Ceramic Society Meeting, Cincinnati, Ohio, 30 April–4 May 1995.

    Google Scholar 

  • Eschenbach RC, Feng X, Einziger RE (1996) A direct, single step plasma arc-vitreous ceramic process for stabilizing spent nuclear fuels, sludges, and associated wastes. Paper presented at the scientific basis for nuclear waste management XX, Boston, MA, 2–6 December

    Google Scholar 

  • European Commission-Environment (2014) Landfill of waste. European Commission, Brussels

    Google Scholar 

  • Europlasma Company (2011). Available: http://www.europlasma.com. Accessed 17 May 2011

  • Fabry F, Rehmet C, Rohani V-J, Fulcheri L (2013) Waste gasification by thermal plasma: a review. Waste Biomass Valoriz 4(3):421–439

    Article  Google Scholar 

  • Freeman HM et al (1987) Thermal destruction of hazardous waste, state of the art review. J Hazard Mater 14(1):103–135

    Article  Google Scholar 

  • Funfschilling MR, Bernhard W, Eschenbach RC (1992) Test results with the plasma centrifugal furnace. In: Bonizzoni G et al (eds) Proceedings of plasma technologies for hazardous waste destruction (Como, Italy). Editrice Compositori, Bologna

    Google Scholar 

  • Gagliardi C, Gorodetsky A, Grichin B, James J, Newman A, Petrocelli F, Santoianni J (2014) The value of pilot plant studies in advancing the understanding of plasma gasification of municipal solid waste. In: IChemE – New horizons in gasification 12th European gasification conference March 10th–12th

    Google Scholar 

  • Gilis R, Lewandowski P, Ooms B, Reusen N, Van Laer W, Walthéry R (2007) Concrete crushing and sampling, a method and technology for the unconditional release of concrete material from decommissioning. In: Proceedings of 11th international conference on environmental remediation and radioactive waste management ICEM07-7237, Sept 2–6 Bruges, Belgium

    Google Scholar 

  • Gomez E, Amutha Rani D, Cheeseman CR, Deegan D, Wise M, Boccaccini AR (2009) Thermal plasma technology for the treatment of wastes: a critical review. J Hazard Mater 161:614–626

    Article  Google Scholar 

  • Goncalves MFS, Filho GP, Couto AA, da Silva Sobrinho AS, Miranda FS, Massi M (2022) Evaluation of thermal plasma process for treatment disposal of solid radioactive waste. J Environ Manag 311(114):895

    Google Scholar 

  • Grouzillat G (1992) Aerospatiale plasma systems – applications in the field of metallurgy and waste treatment. In: International workshop on plasma technologies for hazardous waste destruction, Como, Italy

    Google Scholar 

  • Guddeti RR, Knight R, Grossmann ED (2000) Depolymerization of polypropylene in an induction-coupled plasma (ICP) reactor. Ind Eng Chem Res 39:1171–1176

    Article  Google Scholar 

  • Harabovsky M (2002) Generation of thermal plasmas in liquid and hybrid DC arc torches. Pure & Applied Chemistry 74(3):429–433

    Google Scholar 

  • Haun R, Eschenbach RC, Battleson D, Alsberg C, Jackson T (1992) Site tests results with the PCF-6. In: Proceedings of Incineration Conf

    Google Scholar 

  • Heberlein JVR (1989a) New developments in non-transferred plasma torch. In: Proceedings of 2nd Japanese symposium on plasma chemistry, p 131

    Google Scholar 

  • Heberlein JVR (1989b) Adaptation of plasma torches to new applications of plasma technology. In: Boulos MI (ed) Workshop of industrial plasma applications, Pugnochiuso, Italy, p 1

    Google Scholar 

  • Heberlein J, Murphy AB (2008) Thermal plasma waste treatment. J Phys D Appl Phys 41:053001. 20 pp

    Article  Google Scholar 

  • Heberlein JVR, Melilli WJ, Dighe SV, Reed WH (1989) Adaptation of non-transferred plasma torches to new applications of plasma systems. In: Boulos MI (ed) Workshop on industrial plasma applications, Pugnochiuso, Italy, p 1

    Google Scholar 

  • Heep W (2005) Die Verbrennungs-und Schmellzanlage de ZWILAG, KONTEC-2005. In: Proc. Comf. Berline, Germany

    Google Scholar 

  • Hlina M, Hrabovsky M, Kavka T, Konrad M (2014) Production of high-quality syngas from argon/water plasma gasification of biomass and waste. Waste Manag 34:63–66

    Article  Google Scholar 

  • Hrabovsky M, Kopecky V, Sember V, Kavka T, Chumak O (2006) Properties of hybrid water/gas DC arc plasma torch. IEEE Trans Plasma Sci 34:1566–1575

    Google Scholar 

  • Hrabovsky M, Hlina M, Kopecky V, Maslani A, Zivny O, Krenek P, Serov A, Hurba O (2017) Steam plasma treatment of organic substances for hydrogen and syngas production. Plasma Chem Plasma Process 37:739–762

    Article  Google Scholar 

  • Huaiwei Z, Xin H (2011) An overview for the utilization of wastes from stainless steel industries. Resour Conserv Recycl 55:745–754

    Article  Google Scholar 

  • Huang H, Tang L (2007) Treatment of organic waste using thermal plasma pyrolysis technology. Energy Convers Manag 48:1331–1337. https://doi.org/10.1016/j.enconman.2006.08.013

    Article  Google Scholar 

  • IAEA (1995) The principles of radioactive waste management, international. Atomic Energy Agency, safety series no. 111-F Vienna, Austria

    Google Scholar 

  • IAEA (2006) Application of thermal technologies for processing of radioactive waste. International Atomic Energy Agency, Vienna, IAEA-TECDOC-1527, December 2006

    Google Scholar 

  • Jain KP, Pruyn J (2018) Investigating the prospects of using a plasma gasification plant to improve the offer price of ships recycled on large-sized ‘green’ yards. J Clean Prod 171:1520–1531

    Article  Google Scholar 

  • Joseph MF, Barton TG (1987) Pyrolysis of hazardous waste with a mobile plasma arc system. In: Management of hazardous and toxic wastes. Elsevier Applied Science, Amsterdam

    Google Scholar 

  • Joseph MF et al (1986) Incineration of PCBs by plasma arc. In: Proceedings of 33rd Ont. Ind. Waste Conf., pp 201–205

    Google Scholar 

  • Kandasamy J, Gokalp I (2015) Pryolysis, combustion and steam gasification of various types of crap tires for energy recovery. Energy Fuels 29:346–354

    Article  Google Scholar 

  • Karatas H, Olgun H, Akgun F (2012) Experimental results of gasification of waste tire with air & CO2, air & steam and steam in a bubbling fluidized bed gasifier. Fuel Process Technol 102:166–174

    Article  Google Scholar 

  • Karatas H, Olgun H, Akgun F (2013) Experimental results of gasification of waste tire with air in a bubbling fluidized bed gasifier. Fuel 105:566–571

    Article  Google Scholar 

  • Kolak NP et al (1986) Trial burns-plasma arc technology. In: US EPA 12th Symp. Proc., pp 396–401

    Google Scholar 

  • Lahijani P, Zainal ZA, Mohamed AR, Mohammadi M (2013) Co-gasification of tire and biomass for enhancement of tire-char reactivity in CO2 gasification process. Bioresour Technol 138:124–130

    Article  Google Scholar 

  • Lavoie S, Dubé C, Dubé G (1990) The ALCAN plasma dross treatment process. In: Rooy EL (ed) Light metals 1991. The Minerals and Metals Society, pp 981–985

    Google Scholar 

  • Lemont F, Hugues S, Meillot E (2008) Plasma technology: one way to improve the nuclear waste processing. High Temp Mater Process Special Issue 27(5):375–382

    Google Scholar 

  • Leung DYC, Wang CL (2003) Fluidized bed gasification of waste tire powders. Fuel Process Technol 84:175–196

    Article  Google Scholar 

  • Li J, Liu K, Yan S, Li Y, Han D (2016) Application of thermal plasma technology for the treatment of solid wastes in China: an overview. Waste Manag 58:260–269

    Article  Google Scholar 

  • Machin EA, Pedroso DT, Carvahlo J (2017) Energetic valorization of waste tires. Renew Sustain Energy Rev 68:306–315

    Article  Google Scholar 

  • Mac Rae DR (1989) Plasma arc process systems, reactors, and applications. Plasma Chemistry and Plasma Processing 9(1):85S–118S

    Google Scholar 

  • Mazzoni L, Janajreh I (2017) Plasma gasification of municipal solid waste with variable content of plastic solid waste for enhanced energy recovery. Int J Hydrog Energy 42:19446–19457

    Article  Google Scholar 

  • Mazzoni L, Ahmed R, Janajreh I (2017) Plasma gasification of two waste streams: municipal solid waste and hazardous waste from the oil and gas industry. Energy Procedia 105:4159–4166

    Article  Google Scholar 

  • Meyer B, Wittle JK (1987) Arc pyrolysis project, progress report. In: Proceedings of EPRI-PCB Seminar, Kansas City, October, 4.15–4.18

    Google Scholar 

  • Min B-Y, Kang Y, Song P-S, Choi W-K, Jung C-H, Oh W-Z (2007) Study on the vitrification of mixed radioactive waste by plasma arc melting. J Ind Eng Chem 13(1):57–64

    Google Scholar 

  • Mitrasinovic A, Pershin L, Wen JZ, Mostaghimi J (2011) Recovery of Cu and valuable metals from E-waste using thermal plasma treatment. JOM Aug 24–28

    Google Scholar 

  • Mossé AL, Savchin VV (2006) Analysis and simulation of the process of medico-biological waste treatment in a plasma chamber incinerator. J Eng Phys Thermo-physics 79(4):639–643

    Article  Google Scholar 

  • Mountouris A, Voutsas E, Tassios D (2006) Solid waste plasma gasification: equilibrium model development and exergy analysis. Energy Convers Manag 47:1723–1737

    Article  Google Scholar 

  • Murphy AB, McAllister T (1998) Destruction of ozone-depleting substances in a thermal plasma reactor. Appl Phys Lett 73(4):459–461

    Article  Google Scholar 

  • Nema SK, Ganeshprasad KS (2002) Plasma pyrolysis of medical waste. Curr Sci 83(3):271–278

    Google Scholar 

  • Neuschütz D (1996) Plasma processing of dusts and residues. Pure & Appl Chem 68(5):1159–1165

    Google Scholar 

  • Oboirien BO, North BC (2017) A review of waste tire gasification. J Environ Chem Eng 5:5169–5178

    Article  Google Scholar 

  • Ojha A, Reuben AC, Sharmac D (2012) Solid waste management in developing countries through plasma arc gasification- an alternative approach. APCBEE Procedia 1:193–198

    Article  Google Scholar 

  • Ooms B, Lievens B, Van Laer W, Etienne VC, Walthéry R (2009) Decommissioning of buildings 105X and 122X at Belgoprocess. In: Proceedings of the 12th international conference on environmental remediation and radioactive waste management ICEM2009-16052 October 11–15, 2009, Liverpool, UK

    Google Scholar 

  • Orfeuil M (ed) (1988) Arc plasma processes, a manufacturing technology in industry, UIE Arc plasma review. Int Union for Electro Heat, Paris-La-Défence, France, “Plasma Processes” Working Group

    Google Scholar 

  • Paik S, Hawkes G, Nguyen HD (1995) Effect of working gases on thermal plasma waste treatment. Plasma Chem Plasma Process 15(4):677–692

    Article  Google Scholar 

  • Papurello D, Lanzini A, Leone P, Pierluigi L, Santarelli M (2016) The effect of heavy tars (toluene and naphthalene) on the electrochemical performance of an anode-supported SOFC running on bio-syngas. Renew Energy 99:747–753

    Article  Google Scholar 

  • Pastor JM, Garcia LD, Quintana S, Peria J (2014) Glass reinforced concrete panels containing recycled tires: evaluation of the acoustic properties for their use as sound barriers. Construct Build Mater 54:541–549

    Article  Google Scholar 

  • Phoenix solutions Company (2011). Available: http://www.phoenixsolutionsco.com/psctorches.html. Accessed 16 May 2011

  • Plasma Pyrolysis Technology (2016) Central Pollution Control Board, Parivesh Bhawan, East Arjun Nagar, Delhi-110032

    Google Scholar 

  • Poiroux R, Rollin M (1996) High temperature treatment of waste: from laboratories to the industrial stage. Pure Appl Chem 68(5):1035–1040

    Article  Google Scholar 

  • Prado ESP, Dellamano JC, Carneiro ALG, Santos RC, Petraconi G, Potiens Jr AJ (2017) Technical feasibility study on volumetric reduction of radioactive waste using plasma technology. In: Inter. Nuclear Atlantic Conf. – INAC 2017 Belo Horizonte, MG, Brazil, October 22–27

    Google Scholar 

  • Raman KP, Walawender WP, Fan LT (1981) Gasification of waste tires in a fluid bed reactor. Conserv Recycl 4(2):79–88

    Article  Google Scholar 

  • Renkel MF, Lümmen N (2018) Supplying hydrogen vehicles and ferries in Western Norway with locally produced hydrogen from municipal solid waste. Int J Hydrog Energy 43:2585–2600

    Article  Google Scholar 

  • Riboldi L, Bolland O (2017) Overview on pressure swing adsorption (PSA) as CO2 capture technology: State of the art; limits and potentials. Energy Procedia 114:2390–2400

    Article  Google Scholar 

  • Sakai S-I, Hiraoka M (2000) Municipal solid waste incinerator residue recycling by thermal processes. Waste Manag 20:249–258

    Article  Google Scholar 

  • Schlienger MP (1988) Apparatus and method for high temperature disposal of hazardous waste materials. US Patent 4,770,109, 13 Sept 1988

    Google Scholar 

  • Schlienger MP (1991) US Patent 5,005,494, 9 Apr 1991

    Google Scholar 

  • Schlienger MP (1992) US Patent 5,136,137, 4 Aug 1992

    Google Scholar 

  • Shuey MW, Ottmer PP (2006) LLW processing and operational experience using a plasma arc centrifugal treatment (PACT™) system. In: Proceedings of waste management conference, Tucson, AZ, USA

    Google Scholar 

  • Siddique R, Naik TR (2004) Properties of concrete containing scrap-tires rubber an overview. Waste Manag 24:563–569

    Article  Google Scholar 

  • Spasiano D, Pirozzi F (2017) Treatments of asbestos containing wastes. J Environ Manag 204:82–91

    Article  Google Scholar 

  • Straka P, Bucko Z (2009) Co-gasification of a lignite/waste-tire mixture in a moving bed. Fuel Process Technol 90(10):1202–1206

    Article  Google Scholar 

  • Syngellakis S (ed) (2015) Waste to energy. WIT press, Southampton

    Google Scholar 

  • Tetronics Company (2011). Available: http://www.tetronics.com. Accessed 19 May 2011

  • Torretta V, Rada EC, Ragazzi M, Trulli E, Istrate IA, Cioca LI (2015) Treatment and disposal of tires. Two EU approaches: a review. Waste Manag 24:563–569

    Google Scholar 

  • Tsakalou C, Papamarkou S, Tsakiridis PE, Bartzas G, Tsakalakis K (2018) Characterization and leachability evaluation of medical wastes incineration fly and bottom ashes and their vitrification outgrowths. J Environ Chem Eng 6:367–376

    Article  Google Scholar 

  • Tzeng C-C, Kuo Y-Y, Huang T-F, Lin D-L, Yu Y-J (1998) Treatment of radioactive waste by plasma incineration and vitrification for final disposal. J Hazard Mater 58:207–220

    Article  Google Scholar 

  • US-EPA (2012) Wastes-Resource-Conservation-Common Waste and Materials-Scrap Tires, US EPA Environmental Protection Agency, Washington D.C

    Google Scholar 

  • van Velzen LPM, Bruggeman M, Botte J (2007) Proficiency test for non-destructive assay of 220 liter radioactive waste drum by gama assay system. In: Proceedings of 11th international conference on environmental remediation and radioactive waste management ICEM07-7236, Sept 2–6 Bruges, Belgium

    Google Scholar 

  • Womack RK (1999) Using the centrifugal method for the plasma-arc vitrification of waste. JOM 51(10):14–16

    Google Scholar 

  • Womack R, Shuey M (2002) Development and use of the dual-mode plasma torch. In: WM’02 Conf. Feb 24–28, Tucson AZ, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher I. Boulos .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Boulos, M.I., Jurewicz, J.W., Fauchais, P.L., Pfender, E. (2023). Plasma in the Waste Treatment Industry. In: Handbook of Thermal Plasmas. Springer, Cham. https://doi.org/10.1007/978-3-319-12183-3_40-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12183-3_40-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12183-3

  • Online ISBN: 978-3-319-12183-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics