Keywords

1 Introduction

Let \(\left (H,\left \langle \cdot,\cdot \right \rangle \right )\) be an inner product space over the real or complex numbers field \(\mathbb{K}\). The following inequality is well known in literature as the Schwarz’s inequality

$$\displaystyle{ \left \Vert x\right \Vert \left \Vert y\right \Vert \geq \left \vert \left \langle x,y\right \rangle \right \vert \text{ for any }x,y \in H. }$$
(1)

The equality case holds in (1) if and only if there exists a constant \(\lambda \in \mathbb{K}\) such that x = λ y. 

In 1985 the author [5] (see also [23]) established the following refinement of (1):

$$\displaystyle{ \left \Vert x\right \Vert \left \Vert y\right \Vert \geq \left \vert \left \langle x,y\right \rangle -\left \langle x,e\right \rangle \left \langle e,y\right \rangle \right \vert + \left \vert \left \langle x,e\right \rangle \left \langle e,y\right \rangle \right \vert \geq \left \vert \left \langle x,y\right \rangle \right \vert }$$
(2)

for any x, y, e ∈ H with \(\left \Vert e\right \Vert = 1.\)

Using the triangle inequality for modulus we have

$$\displaystyle{ \left \vert \left \langle x,y\right \rangle -\left \langle x,e\right \rangle \left \langle e,y\right \rangle \right \vert \geq \left \vert \left \langle x,e\right \rangle \left \langle e,y\right \rangle \right \vert -\left \vert \left \langle x,y\right \rangle \right \vert }$$

and by (2) we get

$$\displaystyle\begin{array}{rcl} \left \Vert x\right \Vert \left \Vert y\right \Vert & \geq & \left \vert \left \langle x,y\right \rangle -\left \langle x,e\right \rangle \left \langle e,y\right \rangle \right \vert + \left \vert \left \langle x,e\right \rangle \left \langle e,y\right \rangle \right \vert {}\\ & \geq & 2\left \vert \left \langle x,e\right \rangle \left \langle e,y\right \rangle \right \vert -\left \vert \left \langle x,y\right \rangle \right \vert, {}\\ \end{array}$$

which implies the Buzano’s inequality [2]

$$\displaystyle{ \frac{1} {2}\left [\left \Vert x\right \Vert \left \Vert y\right \Vert + \left \vert \left \langle x,y\right \rangle \right \vert \right ] \geq \left \vert \left \langle x,e\right \rangle \left \langle e,y\right \rangle \right \vert }$$
(3)

that holds for any x, y, e ∈ H with \(\left \Vert e\right \Vert = 1.\)

For other Schwarz and Buzano related inequalities in inner product spaces, see [110, 1215, 17, 1925, 2736], and the monographs [11, 16] and [18].

Now, let us recall some basic facts on orthogonal projection that will be used in the sequel.

If K is a subset of a Hilbert space \(\left (H,\left \langle \cdot,\cdot \right \rangle \right )\), the set of vectors orthogonal to K is defined by

$$\displaystyle{ K^{\perp }:= \left \{x \in H: \left \langle x,k\right \rangle = 0\text{ for all }k \in K\right \}. }$$

We observe that K  ⊥  is a closed subspace of H and so forms itself a Hilbert space. If V is a closed subspace of H, then V  ⊥  is called the orthogonal complement of V. In fact, every x in H can then be written uniquely as x = v + w, with v in V and w in K  ⊥ . Therefore, H is the internal Hilbert direct sum of V and V  ⊥ , and we denote that as H = VV  ⊥ . 

The linear operator P V : H → H that maps x to v is called the orthogonal projection onto V. There is a natural one-to-one correspondence between the set of all closed subspaces of H and the set of all bounded self-adjoint operators P such that P 2 = P. Specifically, the orthogonal projection P V is a self-adjoint linear operator on H of norm ≤ 1 with the property P V 2 = P V . Moreover, any self-adjoint linear operator E such that E 2 = E is of the form P V , where V is the range of E. For every x in H, P V (x) is the unique element v of V, which minimizes the distance \(\left \Vert x - v\right \Vert\). This provides the geometrical interpretation of P V (x): it is the best approximation to x by elements of V.

Projections P U and P V are called mutually orthogonal if P U P V  = 0. This is equivalent to U and V being orthogonal as subspaces of H. The sum of the two projections P U and P V is a projection only if U and V are orthogonal to each other, and in that case P U + P V  = P U+V . The composite P U P V is generally not a projection; in fact, the composite is a projection if and only if the two projections commute, and in that case P U P V  = P UV .

A family \(\left \{e_{j}\right \}_{j\in J}\) of vectors in H is called orthonormal if

$$\displaystyle{ e_{j} \perp e_{k}\text{ for any }j,k \in J\text{ with }j\neq k\text{ and }\left \Vert e_{j}\right \Vert = 1\text{ for any }j,k \in J. }$$

If the linear span of the family \(\left \{e_{j}\right \}_{j\in J}\) is dense in H, then we call it an orthonormal basis in H. 

It is well known that for any orthonormal family \(\left \{e_{j}\right \}_{j\in J}\) we have Bessel’s inequality

$$\displaystyle{ \sum _{j\in J}\left \vert \left \langle x,e_{j}\right \rangle \right \vert ^{2} \leq \left \Vert x\right \Vert ^{2}\text{ for any }x \in H. }$$

This becomes Parseval’s identity

$$\displaystyle{ \sum _{j\in J}\left \vert \left \langle x,e_{j}\right \rangle \right \vert ^{2} = \left \Vert x\right \Vert ^{2}\text{ for any }x \in H, }$$

when \(\left \{e_{j}\right \}_{j\in J}\) an othonormal basis in H. 

For an othonormal family \(\mathcal{E} = \left \{e_{j}\right \}_{j\in J}\) we define the operator \(P_{\mathcal{E}}: H \rightarrow H\) by

$$\displaystyle{ P_{\mathcal{E}}x:=\sum _{j\in J}\left \langle x,e_{j}\right \rangle e_{j\text{ }},\text{ }x \in H. }$$
(4)

We know that \(P_{\mathcal{E}}\) is an orthogonal projection and

$$\displaystyle{ \left \langle P_{\mathcal{E}}x,y\right \rangle =\sum _{j\in J}\left \langle x,e_{j}\right \rangle \left \langle e_{j},y\right \rangle,\text{ }x,y \in H\text{ and }\left \langle P_{\mathcal{E}}x,x\right \rangle =\sum _{j\in J}\left \vert \left \langle x,e_{j}\right \rangle \right \vert ^{2},\text{ }x \in H. }$$

The particular case when the family reduces to one vector, namely \(\mathcal{E} = \left \{e\right \},\ \left \Vert e\right \Vert = 1,\) is of interest since in this case \(P_{e}x:= \left \langle x,e\right \rangle e,\ x \in H,\)

$$\displaystyle{ \left \langle P_{e}x,y\right \rangle = \left \langle x,e\right \rangle \left \langle e,y\right \rangle,\text{ }x,y \in H\text{ } }$$
(5)

and Buzano’s inequality can be written as

$$\displaystyle{ \frac{1} {2}\left [\left \Vert x\right \Vert \left \Vert y\right \Vert + \left \vert \left \langle x,y\right \rangle \right \vert \right ] \geq \left \vert \left \langle P_{e}x,y\right \rangle \right \vert }$$
(6)

that holds for any x, y, e ∈ H with \(\left \Vert e\right \Vert = 1.\)

Motivated by the above results we establish in this paper some vector inequalities for an orthogonal projection P that generalizes amongst others the Buzano’s inequality (6). Applications for norm and numerical radius inequalities are provided as well.

2 Vector Inequalities for a Projection

Assume that P: H → H is an orthogonal projection on H, namely it satisfies the condition P 2 = P = P . We obviously have in the operator order of \(\mathcal{B}\left (H\right )\) that 0 ≤ P ≤ 1 H .

The following result holds:

Theorem 1.

Let P: H → H is an orthogonal projection on H. Then for any x,y ∈ H we have the inequalities

$$\displaystyle{ \left \Vert x\right \Vert \left \Vert y\right \Vert -\left \langle Px,x\right \rangle ^{1/2}\left \langle Py,y\right \rangle ^{1/2} \geq \left \vert \left \langle x,y\right \rangle -\left \langle Px,y\right \rangle \right \vert. }$$
(7)

and

$$\displaystyle{ \left \Vert x\right \Vert \left \Vert y\right \Vert -\left (\left \Vert x\right \Vert ^{2} -\left \langle Px,x\right \rangle \right )^{1/2}\left (\left \Vert y\right \Vert ^{2} -\left \langle Py,y\right \rangle \right )^{1/2} \geq \left \vert \left \langle Px,y\right \rangle \right \vert. }$$
(8)

Proof.

Using the properties of projection, we have

$$\displaystyle\begin{array}{rcl} \left \langle x - Px,y - Py\right \rangle & =& \left \langle x,y\right \rangle -\left \langle Px,y\right \rangle -\left \langle x,Py\right \rangle + \left \langle Px,Py\right \rangle \\ & =& \left \langle x,y\right \rangle - 2\left \langle Px,y\right \rangle + \left \langle P^{2}x,y\right \rangle \\ & =& \left \langle x,y\right \rangle -\left \langle Px,y\right \rangle {}\end{array}$$
(9)

for any x, y ∈ H. 

By Schwarz’s inequality we have

$$\displaystyle{ \left \Vert x - Px\right \Vert ^{2}\left \Vert y - Py\right \Vert ^{2} \geq \left \vert \left \langle x - Px,y - Py\right \rangle \right \vert ^{2} }$$
(10)

for any x, y ∈ H. 

Since, by (7), we have

$$\displaystyle{ \left \Vert x - Px\right \Vert ^{2} = \left \Vert x\right \Vert ^{2} -\left \langle Px,x\right \rangle,\text{ }\left \Vert y - Py\right \Vert ^{2} = \left \Vert y\right \Vert ^{2} -\left \langle Py,y\right \rangle, }$$

then by (10) we have

$$\displaystyle{ \left (\left \Vert x\right \Vert ^{2} -\left \langle Px,x\right \rangle \right )\left (\left \Vert y\right \Vert ^{2} -\left \langle Py,y\right \rangle \right ) \geq \left \vert \left \langle x,y\right \rangle -\left \langle Px,y\right \rangle \right \vert ^{2} }$$
(11)

for any x, y ∈ H. 

Using the elementary inequality that holds for any real numbers a, b, c, d

$$\displaystyle{ \left (ac - bd\right )^{2} \geq \left (a^{2} - b^{2}\right )\left (c^{2} - d^{2}\right ), }$$

we have

$$\displaystyle{ \left (\left \Vert x\right \Vert \left \Vert y\right \Vert -\left \langle Px,x\right \rangle ^{1/2}\left \langle Py,y\right \rangle ^{1/2}\right )^{2} \geq \left (\left \Vert x\right \Vert ^{2} -\left \langle Px,x\right \rangle \right )\left (\left \Vert y\right \Vert ^{2} -\left \langle Py,y\right \rangle \right ) }$$
(12)

for any x, y ∈ H. 

Since

$$\displaystyle{ \left \Vert x\right \Vert \geq \left \langle Px,x\right \rangle ^{1/2},\text{ }\left \Vert y\right \Vert \geq \left \langle Py,y\right \rangle ^{1/2}, }$$

then

$$\displaystyle{ \left \Vert x\right \Vert \left \Vert y\right \Vert -\left \langle Px,x\right \rangle ^{1/2}\left \langle Py,y\right \rangle ^{1/2} \geq 0, }$$

for any x, y ∈ H. 

By (11) and (12) we get

$$\displaystyle{ \left (\left \Vert x\right \Vert \left \Vert y\right \Vert -\left \langle Px,x\right \rangle ^{1/2}\left \langle Py,y\right \rangle ^{1/2}\right )^{2} \geq \left \vert \left \langle x,y\right \rangle -\left \langle Px,y\right \rangle \right \vert ^{2} }$$

for any x, y ∈ H, which, by taking the square root, is equivalent to the desired inequality (7).

Observe that, if P is an orthogonal projection, then Q: = 1 H P is also a projection. Indeed we have

$$\displaystyle{ Q^{2} = \left (1_{ H} - P\right )^{2} = 1_{ H} - 2P + P^{2} = 1_{ H} - P = Q. }$$

Now, if we write the inequality (7) for the projection Q we get the desired inequality (8).

Corollary 1.

With the assumptions of Theorem 1, we have the following refinements of Schwarz inequality:

$$\displaystyle\begin{array}{rcl} \left \Vert x\right \Vert \left \Vert y\right \Vert & \geq & \left \langle Px,x\right \rangle ^{1/2}\left \langle Py,y\right \rangle ^{1/2} + \left \vert \left \langle x,y\right \rangle -\left \langle Px,y\right \rangle \right \vert \\ & \geq & \left \vert \left \langle Px,y\right \rangle \right \vert + \left \vert \left \langle x,y\right \rangle -\left \langle Px,y\right \rangle \right \vert \geq \left \vert \left \langle x,y\right \rangle \right \vert {}\end{array}$$
(13)

and

$$\displaystyle\begin{array}{rcl} \left \Vert x\right \Vert \left \Vert y\right \Vert & \geq & \left (\left \Vert x\right \Vert ^{2} -\left \langle Px,x\right \rangle \right )^{1/2}\left (\left \Vert y\right \Vert ^{2} -\left \langle Py,y\right \rangle \right )^{1/2} + \left \vert \left \langle Px,y\right \rangle \right \vert \\ & \geq & \left \vert \left \langle x,y\right \rangle -\left \langle Px,y\right \rangle \right \vert + \left \vert \left \langle Px,y\right \rangle \right \vert \geq \left \vert \left \langle x,y\right \rangle \right \vert {}\end{array}$$
(14)

for any x,y ∈ H.

Remark 1.

Since

$$\displaystyle{ \left \vert \left \langle x,y\right \rangle -\left \langle Px,y\right \rangle \right \vert \geq \left \vert \left \langle x,y\right \rangle \right \vert -\left \vert \left \langle Px,y\right \rangle \right \vert }$$

then by the first inequality in (13) we have

$$\displaystyle{ \left \Vert x\right \Vert \left \Vert y\right \Vert \geq \left \langle Px,x\right \rangle ^{1/2}\left \langle Py,y\right \rangle ^{1/2} + \left \vert \left \langle x,y\right \rangle \right \vert -\left \vert \left \langle Px,y\right \rangle \right \vert }$$

that produces the inequality

$$\displaystyle{ \left \Vert x\right \Vert \left \Vert y\right \Vert -\left \vert \left \langle x,y\right \rangle \right \vert \geq \left \langle Px,x\right \rangle ^{1/2}\left \langle Py,y\right \rangle ^{1/2} -\left \vert \left \langle Px,y\right \rangle \right \vert \geq 0 }$$
(15)

for any x, y ∈ H. 

We notice that the second inequality follows by Schwarz’s inequality for the nonnegative self-adjoint operator P. 

Since

$$\displaystyle{ \left \vert \left \langle x,y\right \rangle -\left \langle Px,y\right \rangle \right \vert \geq \left \vert \left \langle Px,y\right \rangle \right \vert -\left \vert \left \langle x,y\right \rangle \right \vert }$$

then by (13) we have

$$\displaystyle\begin{array}{rcl} \left \Vert x\right \Vert \left \Vert y\right \Vert & \geq & \left \langle Px,x\right \rangle ^{1/2}\left \langle Py,y\right \rangle ^{1/2} + \left \vert \left \langle x,y\right \rangle -\left \langle Px,y\right \rangle \right \vert {}\\ & \geq & \left \langle Px,x\right \rangle ^{1/2}\left \langle Py,y\right \rangle ^{1/2} + \left \vert \left \langle Px,y\right \rangle \right \vert -\left \vert \left \langle x,y\right \rangle \right \vert, {}\\ \end{array}$$

which implies that

$$\displaystyle\begin{array}{rcl} \left \Vert x\right \Vert \left \Vert y\right \Vert + \left \vert \left \langle x,y\right \rangle \right \vert & \geq & \left \langle Px,x\right \rangle ^{1/2}\left \langle Py,y\right \rangle ^{1/2} + \left \vert \left \langle Px,y\right \rangle \right \vert {}\\ & \geq & 2\left \vert \left \langle Px,y\right \rangle \right \vert {}\\ \end{array}$$

and is equivalent to

$$\displaystyle\begin{array}{rcl} \frac{1} {2}\left [\left \Vert x\right \Vert \left \Vert y\right \Vert + \left \vert \left \langle x,y\right \rangle \right \vert \right ]& \geq & \frac{1} {2}\left [\left \langle Px,x\right \rangle ^{1/2}\left \langle Py,y\right \rangle ^{1/2} + \left \vert \left \langle Px,y\right \rangle \right \vert \right ] \\ & \geq & \left \vert \left \langle Px,y\right \rangle \right \vert {}\end{array}$$
(16)

for any x, y ∈ H. 

The inequality between the first and last term in (16), namely

$$\displaystyle{ \frac{1} {2}\left [\left \Vert x\right \Vert \left \Vert y\right \Vert + \left \vert \left \langle x,y\right \rangle \right \vert \right ] \geq \left \vert \left \langle Px,y\right \rangle \right \vert }$$
(17)

for any x, y ∈ H is a generalization of Buzano’s inequality (3).

From the inequality (14) we can state that

$$\displaystyle\begin{array}{rcl} \left \Vert x\right \Vert \left \Vert y\right \Vert -\left \vert \left \langle Px,y\right \rangle \right \vert & \geq & \left (\left \Vert x\right \Vert ^{2} -\left \langle Px,x\right \rangle \right )^{1/2}\left (\left \Vert y\right \Vert ^{2} -\left \langle Py,y\right \rangle \right )^{1/2} \\ & \geq & \left \vert \left \langle x,y\right \rangle -\left \langle Px,y\right \rangle \right \vert {}\end{array}$$
(18)

for any x, y ∈ H. 

From the inequality (14) we also have

$$\displaystyle\begin{array}{rcl} \left \Vert x\right \Vert \left \Vert y\right \Vert & \geq & \left (\left \Vert x\right \Vert ^{2} -\left \langle Px,x\right \rangle \right )^{1/2}\left (\left \Vert y\right \Vert ^{2} -\left \langle Py,y\right \rangle \right )^{1/2} + \left \vert \left \langle Px,y\right \rangle \right \vert {}\\ & \geq & \left \vert \left \langle x,y\right \rangle -\left \langle Px,y\right \rangle \right \vert + \left \vert \left \langle Px,y\right \rangle \right \vert \geq \left \vert \left \langle Px,y\right \rangle \right \vert -\left \vert \left \langle x,y\right \rangle \right \vert + \left \vert \left \langle Px,y\right \rangle \right \vert {}\\ & =& 2\left \vert \left \langle Px,y\right \rangle \right \vert -\left \vert \left \langle x,y\right \rangle \right \vert, {}\\ \end{array}$$

which implies that

$$\displaystyle\begin{array}{rcl} \frac{1} {2}\left [\left \Vert x\right \Vert \left \Vert y\right \Vert + \left \vert \left \langle x,y\right \rangle \right \vert \right ]& \geq & \frac{1} {2}\left [\left (\left \Vert x\right \Vert ^{2} -\left \langle Px,x\right \rangle \right )^{1/2}\left (\left \Vert y\right \Vert ^{2} -\left \langle Py,y\right \rangle \right )^{1/2}\right ] \\ +\frac{1} {2}\left [\left \vert \left \langle Px,y\right \rangle \right \vert + \left \vert \left \langle x,y\right \rangle \right \vert \right ]& \geq & \left \vert \left \langle Px,y\right \rangle \right \vert {}\end{array}$$
(19)

for any x, y ∈ H. 

The case of orthonormal families which is related to Bessel’s inequality is of interest.

Let \(\mathcal{E} = \left \{e_{j}\right \}_{j\in J}\) be an othonormal family in H. Then for any x, y ∈ H we have from (13) and (14) the inequalities

$$\displaystyle\begin{array}{rcl} \left \Vert x\right \Vert \left \Vert y\right \Vert & \geq & \left (\sum _{j\in J}\left \vert \left \langle x,e_{j}\right \rangle \right \vert ^{2}\right )^{1/2}\left (\sum _{ j\in J}\left \vert \left \langle y,e_{j}\right \rangle \right \vert ^{2}\right )^{1/2} \\ & +& \left \vert \left \langle x,y\right \rangle -\sum _{j\in J}\left \langle x,e_{j}\right \rangle \left \langle e_{j},y\right \rangle \right \vert \\ & \geq & \left \vert \sum _{j\in J}\left \langle x,e_{j}\right \rangle \left \langle e_{j},y\right \rangle \right \vert + \left \vert \left \langle x,y\right \rangle -\sum _{j\in J}\left \langle x,e_{j}\right \rangle \left \langle e_{j},y\right \rangle \right \vert \geq \left \vert \left \langle x,y\right \rangle \right \vert {}\end{array}$$
(20)

and

$$\displaystyle\begin{array}{rcl} \left \Vert x\right \Vert \left \Vert y\right \Vert & \geq & \left (\left \Vert x\right \Vert ^{2} -\sum _{ j\in J}\left \vert \left \langle x,e_{j}\right \rangle \right \vert ^{2}\right )^{1/2}\left (\left \Vert y\right \Vert ^{2} -\sum _{ j\in J}\left \vert \left \langle y,e_{j}\right \rangle \right \vert ^{2}\right )^{1/2} \\ & +& \left \vert \left \langle \sum _{j\in J}\left \langle x,e_{j}\right \rangle \left \langle e_{j},y\right \rangle \right \rangle \right \vert \\ & \geq & \left \vert \left \langle x,y\right \rangle -\sum _{j\in J}\left \langle x,e_{j}\right \rangle \left \langle e_{j},y\right \rangle \right \vert + \left \vert \sum _{j\in J}\left \langle x,e_{j}\right \rangle \left \langle e_{j},y\right \rangle \right \vert \geq \left \vert \left \langle x,y\right \rangle \right \vert.{}\end{array}$$
(21)

By (15) and (16) we have

$$\displaystyle\begin{array}{rcl} & & \left \Vert x\right \Vert \left \Vert y\right \Vert -\left \vert \left \langle x,y\right \rangle \right \vert \\ & & \geq \left (\sum _{j\in J}\left \vert \left \langle x,e_{j}\right \rangle \right \vert ^{2}\right )^{1/2}\left (\sum _{ j\in J}\left \vert \left \langle y,e_{j}\right \rangle \right \vert ^{2}\right )^{1/2} -\left \vert \left \langle \sum _{ j\in J}\left \langle x,e_{j}\right \rangle \left \langle e_{j},y\right \rangle \right \rangle \right \vert \geq 0{}\end{array}$$
(22)

and

$$\displaystyle\begin{array}{rcl} \frac{1} {2}\left [\left \Vert x\right \Vert \left \Vert y\right \Vert + \left \vert \left \langle x,y\right \rangle \right \vert \right ]& \geq & \frac{1} {2}\left (\sum _{j\in J}\left \vert \left \langle x,e_{j}\right \rangle \right \vert ^{2}\right )^{1/2}\left (\sum _{ j\in J}\left \vert \left \langle y,e_{j}\right \rangle \right \vert ^{2}\right )^{1/2} \\ & & +\frac{1} {2}\left \vert \left \langle \left \langle \sum _{j\in J}\left \langle x,e_{j}\right \rangle \left \langle e_{j},y\right \rangle \right \rangle \right \rangle \right \vert \\ & & \qquad \qquad \qquad \geq \left \vert \left \langle \sum _{j\in J}\left \langle x,e_{j}\right \rangle \left \langle e_{j},y\right \rangle \right \rangle \right \vert {}\end{array}$$
(23)

for any x, y ∈ H. 

The inequality between the first and last term in (23) provides a generalization of Buzano’s inequality for orthonormal families \(\mathcal{E} = \left \{e_{j}\right \}_{j\in J}\).

The following result holds:

Theorem 2.

Let P: H → H is an orthogonal projection on H. Then for any x,y ∈ H we have the inequalities

$$\displaystyle{ \left \vert \left \langle x,y\right \rangle - 2\left \langle Px,y\right \rangle \right \vert \leq \left \Vert x\right \Vert \left \Vert y\right \Vert, }$$
(24)
$$\displaystyle\begin{array}{rcl} & & \left \vert \left \langle x,y\right \rangle -\left \langle Px,y\right \rangle \right \vert \\ & & \leq \min \left \{\left \Vert x\right \Vert \left (\left \Vert y\right \Vert ^{2} -\left \langle Py,y\right \rangle \right )^{1/2},\left \Vert y\right \Vert \left (\left \Vert x\right \Vert ^{2} -\left \langle Px,x\right \rangle \right )^{1/2}\right \} \\ & & \leq \frac{1} {2}\left [\left \Vert x\right \Vert \left (\left \Vert y\right \Vert ^{2} -\left \langle Py,y\right \rangle \right )^{1/2} + \left \Vert y\right \Vert \left (\left \Vert x\right \Vert ^{2} -\left \langle Px,x\right \rangle \right )^{1/2}\right ] \\ & & \leq \frac{1} {2}\left (\left \Vert x\right \Vert ^{2} + \left \Vert y\right \Vert ^{2}\right )^{1/2}\left (\left \Vert x\right \Vert ^{2} + \left \Vert y\right \Vert ^{2} -\left \langle Py,y\right \rangle -\left \langle Px,x\right \rangle \right )^{1/2}{}\end{array}$$
(25)

and

$$\displaystyle\begin{array}{rcl} \left \vert \left \langle Px,y\right \rangle \right \vert & \leq & \min \left \{\left \Vert x\right \Vert \left \langle Py,y\right \rangle ^{1/2},\left \Vert y\right \Vert \left \langle Px,x\right \rangle ^{1/2}\right \} \\ & \leq & \frac{1} {2}\left [\left \Vert x\right \Vert \left \langle Py,y\right \rangle ^{1/2} + \left \Vert y\right \Vert \left \langle Px,x\right \rangle ^{1/2}\right ] \\ & \leq & \frac{1} {2}\left (\left \Vert x\right \Vert ^{2} + \left \Vert y\right \Vert ^{2}\right )^{1/2}\left (\left \langle Px,x\right \rangle + \left \langle Py,y\right \rangle \right )^{1/2}.{}\end{array}$$
(26)

Proof.

Observe that

$$\displaystyle\begin{array}{rcl} \left \Vert x - 2Px\right \Vert ^{2}& =& \left \Vert x\right \Vert ^{2} - 4\mathop{\mathrm{Re}}\left \langle x,Px\right \rangle + 4\left \langle Px,Px\right \rangle {}\\ & =& \left \Vert x\right \Vert ^{2} - 4\left \langle x,Px\right \rangle + 4\left \langle P^{2}x,x\right \rangle {}\\ & =& \left \Vert x\right \Vert ^{2} - 4\left \langle x,Px\right \rangle + 4\left \langle Px,x\right \rangle = \left \Vert x\right \Vert ^{2} {}\\ \end{array}$$

for any x ∈ H. 

Using Schwarz’s inequality we have

$$\displaystyle{ \left \Vert x\right \Vert \left \Vert y\right \Vert = \left \Vert x - 2Px\right \Vert \left \Vert y\right \Vert \geq \left \vert \left \langle x - 2Px,y\right \rangle \right \vert = \left \vert \left \langle x,y\right \rangle - 2\left \langle Px,y\right \rangle \right \vert }$$

for any x, y ∈ H and the inequality (24) is proved.

By Schwarz’s inequality we also have

$$\displaystyle{ \left \Vert x - Px\right \Vert \left \Vert y\right \Vert \geq \left \vert \left \langle x - Px,y\right \rangle \right \vert = \left \vert \left \langle x,y\right \rangle -\left \langle Px,y\right \rangle \right \vert }$$

and

$$\displaystyle{ \left \Vert x\right \Vert \left \Vert y - Py\right \Vert \geq \left \vert \left \langle x,y - Py\right \rangle \right \vert = \left \vert \left \langle x,y\right \rangle -\left \langle x,Py\right \rangle \right \vert = \left \vert \left \langle x,y\right \rangle -\left \langle Px,y\right \rangle \right \vert }$$

for any x, y ∈ H, which implies the first inequality in (25).

The second and the third inequalities are obvious by the elementary inequalities

$$\displaystyle{ \min \left \{a,b\right \} \leq \frac{1} {2}\left (a + b\right ),\text{ }a,b \in \mathbb{R}_{+} }$$

and

$$\displaystyle{ ac + bd \leq \left (a^{2} + b^{2}\right )^{1/2}\left (c^{2} + d^{2}\right )^{1/2},\text{ }a,b,c,d \in \mathbb{R}_{ +}. }$$

The inequality (26) follows from (25) by replacing P with 1 H P. 

Remark 2.

By the triangle inequality we have

$$\displaystyle{ \left \Vert x\right \Vert \left \Vert y\right \Vert + \left \vert \left \langle x,y\right \rangle \right \vert \geq \left \vert \left \langle x,y\right \rangle - 2\left \langle Px,y\right \rangle \right \vert + \left \vert \left \langle x,y\right \rangle \right \vert \geq 2\left \vert \left \langle Px,y\right \rangle \right \vert, }$$

which implies that [see also (16) and (19)]

$$\displaystyle{ \frac{1} {2}\left [\left \Vert x\right \Vert \left \Vert y\right \Vert + \left \vert \left \langle x,y\right \rangle \right \vert \right ] \geq \left \vert \left \langle Px,y\right \rangle \right \vert }$$
(27)

for any x, y ∈ H. 

From (25) we also have

$$\displaystyle\begin{array}{rcl} & & \left \vert \left \langle Px,y\right \rangle \right \vert \\ & & \leq \left \vert \left \langle x,y\right \rangle \right \vert +\min \left \{\left \Vert x\right \Vert \left (\left \Vert y\right \Vert ^{2} -\left \langle Py,y\right \rangle \right )^{1/2},\left \Vert y\right \Vert \left (\left \Vert x\right \Vert ^{2} -\left \langle Px,x\right \rangle \right )^{1/2}\right \}{}\end{array}$$
(28)

and

$$\displaystyle\begin{array}{rcl} & & \left \vert \left \langle x,y\right \rangle \right \vert \\ & & \leq \left \vert \left \langle Px,y\right \rangle \right \vert +\min \left \{\left \Vert x\right \Vert \left (\left \Vert y\right \Vert ^{2} -\left \langle Py,y\right \rangle \right )^{1/2},\left \Vert y\right \Vert \left (\left \Vert x\right \Vert ^{2} -\left \langle Px,x\right \rangle \right )^{1/2}\right \}{}\end{array}$$
(29)

for any x, y ∈ H. 

Now, if \(\mathcal{E} = \left \{e_{j}\right \}_{j\in J}\) is an orthonormal family, then by the inequalities (24) and (25) we have

$$\displaystyle{ \left \vert \left \langle x,y\right \rangle - 2\sum _{j\in J}\left \langle x,e_{j}\right \rangle \left \langle e_{j},y\right \rangle \right \vert \leq \left \Vert x\right \Vert \left \Vert y\right \Vert, }$$
(30)

and

$$\displaystyle\begin{array}{rcl} & & \left \vert \left \langle x,y\right \rangle -\sum _{j\in J}\left \langle x,e_{j}\right \rangle \left \langle e_{j},y\right \rangle \right \vert \\ & & \leq \min \left \{\left \Vert x\right \Vert \left (\left \Vert y\right \Vert ^{2} -\sum _{ j\in J}\left \vert \left \langle y,e_{j}\right \rangle \right \vert ^{2}\right )^{1/2},\left \Vert y\right \Vert \left (\left \Vert x\right \Vert ^{2} -\sum _{ j\in J}\left \vert \left \langle x,e_{j}\right \rangle \right \vert ^{2}\right )^{1/2}\right \} \\ & & \leq \frac{1} {2}\left [\left \Vert x\right \Vert \left (\left \Vert y\right \Vert ^{2} -\sum _{ j\in J}\left \vert \left \langle y,e_{j}\right \rangle \right \vert ^{2}\right )^{1/2} + \left \Vert y\right \Vert \left (\left \Vert x\right \Vert ^{2} -\sum _{ j\in J}\left \vert \left \langle x,e_{j}\right \rangle \right \vert ^{2}\right )^{1/2}\right ] \\ & & \leq \frac{1} {2}\left (\left \Vert x\right \Vert ^{2} + \left \Vert y\right \Vert ^{2}\right )^{1/2}\left (\left \Vert x\right \Vert ^{2} + \left \Vert y\right \Vert ^{2} -\sum _{ j\in J}\left \vert \left \langle y,e_{j}\right \rangle \right \vert ^{2} -\sum _{ j\in J}\left \vert \left \langle x,e_{j}\right \rangle \right \vert ^{2}\right )^{1/2}{}\end{array}$$
(31)

for any x, y ∈ H. 

From (28) we also have

$$\displaystyle\begin{array}{rcl} & & \left \vert \sum _{j\in J}\left \langle x,e_{j}\right \rangle \left \langle e_{j},y\right \rangle \right \vert \\ & \leq & \left \vert \left \langle x,y\right \rangle \right \vert +\min \left \{\left \Vert x\right \Vert \left (\left \Vert y\right \Vert ^{2} -\sum _{ j\in J}\left \vert \left \langle y,e_{j}\right \rangle \right \vert ^{2}\right )^{1/2},\left \Vert y\right \Vert \left (\left \Vert x\right \Vert ^{2} -\sum _{ j\in J}\left \vert \left \langle x,e_{j}\right \rangle \right \vert ^{2}\right )^{1/2}\right \}{}\end{array}$$
(32)

for any x, y ∈ H. 

3 Inequalities for Norm and Numerical Radius

Let \(\left (H;\left \langle \cdot,\cdot \right \rangle \right )\) be a complex Hilbert space. The numerical range of an operator T is the subset of the complex numbers \(\mathbb{C}\) given by Gustafson and Rao [26, p. 1]:

$$\displaystyle{ W\left (T\right ) = \left \{\left \langle Tx,x\right \rangle,\ x \in H,\ \left \Vert x\right \Vert = 1\right \}. }$$

The numerical radius \(w\left (T\right )\) of an operator T on H is defined by Gustafson and Rao [26, p. 8]:

$$\displaystyle{ w\left (T\right ) =\sup \left \{\left \vert \lambda \right \vert,\lambda \in W\left (T\right )\right \} =\sup \left \{\left \vert \left \langle Tx,x\right \rangle \right \vert,\left \Vert x\right \Vert = 1\right \}. }$$

It is well known that \(w\left (\cdot \right )\) is a norm on the Banach algebra \(B\left (H\right )\) and the following inequality holds true:

$$\displaystyle{ w\left (T\right ) \leq \left \Vert T\right \Vert \leq 2w\left (T\right ),\text{ for any }T \in B\left (H\right ). }$$

Utilizing Buzano’s inequality (3) we obtained the following inequality for the numerical radius [13] or [15]:

Theorem 3.

Let \(\left (H;\left \langle \cdot,\cdot \right \rangle \right )\) be a Hilbert space and T: H → H a bounded linear operator on H. Then

$$\displaystyle{ w^{2}\left (T\right ) \leq \frac{1} {2}\left [w\left (T^{2}\right ) + \left \Vert T\right \Vert ^{2}\right ]. }$$
(33)

The constant \(\frac{1} {2}\) is best possible in (33).

The following general result for the product of two operators holds [26, p. 37]:

Theorem 4.

If A,B are two bounded linear operators on the Hilbert space \(\left (H,\left \langle \cdot,\cdot \right \rangle \right ),\) then \(w\left (AB\right ) \leq 4w\left (A\right )w\left (B\right ).\) In the case that AB = BA, then \(w\left (AB\right ) \leq 2w\left (A\right )w\left (B\right ).\) The constant 2 is best possible here.

The following results are also well known [26, p. 38].

Theorem 5.

If A is a unitary operator that commutes with another operator B, then

$$\displaystyle{ w\left (AB\right ) \leq w\left (B\right ). }$$
(34)

If A is an isometry and AB = BA, then (34) also holds true.

We say that A and B double commute if AB = BA and AB  = B A. The following result holds [26, p. 38].

Theorem 6.

If the operators A and B double commute, then

$$\displaystyle{ w\left (AB\right ) \leq w\left (B\right )\left \Vert A\right \Vert. }$$
(35)

As a consequence of the above, we have [26, p. 39]:

Corollary 2.

Let A be a normal operator commuting with B. Then

$$\displaystyle{ w\left (AB\right ) \leq w\left (A\right )w\left (B\right ). }$$
(36)

A related problem with the inequality (35) is to find the best constant c for which the inequality

$$\displaystyle{ w\left (AB\right ) \leq cw\left (A\right )\left \Vert B\right \Vert }$$

holds for any two commuting operators \(A,B \in B\left (H\right ).\) It is known that 1. 064 < c < 1. 169, see [3, 32] and [33].

In relation to this problem, it has been shown in [24] that

Theorem 7.

For any \(A,B \in B\left (H\right )\) we have

$$\displaystyle{ w\left (\frac{AB + BA} {2} \right ) \leq \sqrt{2}w\left (A\right )\left \Vert B\right \Vert. }$$
(37)

For other numerical radius inequalities see the recent monograph [18] and the references therein.

The following result holds.

Theorem 8.

Let P: H → H be an orthogonal projection on the Hilbert space \(\left (H,\left \langle \cdot,\cdot \right \rangle \right ).\) If A,B are two bounded linear operators on H, then

$$\displaystyle{ \left \vert \left \langle BPAx,x\right \rangle \right \vert \leq \frac{1} {2}\left [\left \Vert Ax\right \Vert \left \Vert B^{{\ast}}x\right \Vert + \left \vert \left \langle BAx,x\right \rangle \right \vert \right ] }$$
(38)

and

$$\displaystyle{ \left \Vert BPAx\right \Vert \leq \frac{1} {2}\left [\left \Vert Ax\right \Vert \left \Vert B\right \Vert + \left \Vert BAx\right \Vert \right ] }$$
(39)

for any x ∈ H.

Moreover, we have

$$\displaystyle{ w\left (BPA\right ) \leq \frac{1} {2}\left [\left \Vert A\right \Vert \left \Vert B\right \Vert + w\left (BA\right )\right ] }$$
(40)

and

$$\displaystyle{ \left \Vert BPA\right \Vert \leq \frac{1} {2}\left [\left \Vert A\right \Vert \left \Vert B\right \Vert + \left \Vert BA\right \Vert \right ]. }$$
(41)

Proof.

From the inequality (17) we have

$$\displaystyle{ \left \vert \left \langle PAx,B^{{\ast}}y\right \rangle \right \vert \leq \frac{1} {2}\left [\left \Vert Ax\right \Vert \left \Vert B^{{\ast}}y\right \Vert + \left \vert \left \langle Ax,B^{{\ast}}y\right \rangle \right \vert \right ] }$$

that is equivalent to

$$\displaystyle{ \left \vert \left \langle BPAx,y\right \rangle \right \vert \leq \frac{1} {2}\left [\left \Vert Ax\right \Vert \left \Vert B^{{\ast}}y\right \Vert + \left \vert \left \langle BAx,y\right \rangle \right \vert \right ] }$$
(42)

for any x, y ∈ H. 

If we take y = x in (42), then we get (38).

Taking the supremum over y ∈ H with \(\left \Vert y\right \Vert = 1\) in (42) we have

$$\displaystyle\begin{array}{rcl} \left \Vert BPAx\right \Vert & =& \sup _{\left \Vert y\right \Vert =1}\left \vert \left \langle BPAx,y\right \rangle \right \vert \leq \frac{1} {2}\sup _{\left \Vert y\right \Vert =1}\left [\left \Vert Ax\right \Vert \left \Vert B^{{\ast}}y\right \Vert + \left \vert \left \langle BAx,y\right \rangle \right \vert \right ] {}\\ & \leq & \frac{1} {2}\left [\left \Vert Ax\right \Vert \sup _{\left \Vert y\right \Vert =1}\left \Vert B^{{\ast}}y\right \Vert +\sup _{\left \Vert y\right \Vert =1}\left \vert \left \langle BAx,y\right \rangle \right \vert \right ] {}\\ & =& \frac{1} {2}\left [\left \Vert Ax\right \Vert \left \Vert B\right \Vert + \left \Vert BAx\right \Vert \right ] {}\\ \end{array}$$

for any x ∈ H.

The inequalities (40) and (41) follow from (38) and (39) by taking the supremum over x ∈ H with \(\left \Vert x\right \Vert = 1.\)

Corollary 3.

Let P: H → H be an orthogonal projection on the Hilbert space \(\left (H,\left \langle \cdot,\cdot \right \rangle \right ).\) If A,B are two bounded linear operators on H, then

$$\displaystyle{ \left \vert \left \langle APAx,x\right \rangle \right \vert \leq \frac{1} {2}\left [\left \Vert Ax\right \Vert \left \Vert A^{{\ast}}x\right \Vert + \left \vert \left \langle A^{2}x,x\right \rangle \right \vert \right ] }$$
(43)

and

$$\displaystyle{ \left \Vert APAx\right \Vert \leq \frac{1} {2}\left [\left \Vert Ax\right \Vert \left \Vert A\right \Vert + \left \Vert A^{2}x\right \Vert \right ] }$$
(44)

for any x ∈ H.

Moreover, we have

$$\displaystyle{ w\left (APA\right ) \leq \frac{1} {2}\left [\left \Vert A\right \Vert ^{2} + w\left (A^{2}\right )\right ] }$$
(45)

and

$$\displaystyle{ \left \Vert APA\right \Vert \leq \frac{1} {2}\left [\left \Vert A\right \Vert ^{2} + \left \Vert A^{2}\right \Vert \right ]. }$$
(46)

Remark 3.

Let \(e \in H,\ \left \Vert e\right \Vert = 1.\) If we write the inequalities (38) and (39) for the projector P e defined by \(P_{e}x = \left \langle x,e\right \rangle e,\ x \in H,\) we have

$$\displaystyle{ \left \vert \left \langle Ax,e\right \rangle \right \vert \left \vert \left \langle Be,x\right \rangle \right \vert \leq \frac{1} {2}\left [\left \Vert Ax\right \Vert \left \Vert B^{{\ast}}x\right \Vert + \left \vert \left \langle BAx,x\right \rangle \right \vert \right ] }$$
(47)

and

$$\displaystyle{ \left \vert \left \langle Ax,e\right \rangle \right \vert \left \Vert Be\right \Vert \leq \frac{1} {2}\left [\left \Vert Ax\right \Vert \left \Vert B\right \Vert + \left \Vert BAx\right \Vert \right ] }$$
(48)

for any x ∈ H. 

Now, if we take the supremum over \(x \in H,\ \left \Vert x\right \Vert = 1\) in (48), then we get

$$\displaystyle{ \left \Vert A^{{\ast}}e\right \Vert \left \Vert Be\right \Vert \leq \frac{1} {2}\left [\left \Vert A\right \Vert \left \Vert B\right \Vert + \left \Vert BA\right \Vert \right ] }$$
(49)

for any \(e \in H,\ \left \Vert e\right \Vert = 1.\)

If in (49) we take B = A, we have

$$\displaystyle{ \left \Vert A^{{\ast}}e\right \Vert \left \Vert Ae\right \Vert \leq \frac{1} {2}\left [\left \Vert A\right \Vert ^{2} + \left \Vert A^{2}\right \Vert \right ] }$$
(50)

for any \(e \in H,\ \left \Vert e\right \Vert = 1.\)

If in (47) we take B = A, then we get

$$\displaystyle{ \left \vert \left \langle Ax,e\right \rangle \right \vert \left \vert \left \langle e,A^{{\ast}}x\right \rangle \right \vert \leq \frac{1} {2}\left [\left \Vert Ax\right \Vert \left \Vert A^{{\ast}}x\right \Vert + \left \vert \left \langle A^{2}x,x\right \rangle \right \vert \right ] }$$
(51)

for any x ∈ H and \(e \in H,\ \left \Vert e\right \Vert = 1,\) and in particular

$$\displaystyle{ \left \vert \left \langle Ae,e\right \rangle \right \vert ^{2} \leq \frac{1} {2}\left [\left \Vert Ae\right \Vert \left \Vert A^{{\ast}}e\right \Vert + \left \vert \left \langle A^{2}e,e\right \rangle \right \vert \right ] }$$
(52)

for any \(e \in H,\ \left \Vert e\right \Vert = 1.\)

Taking the supremum over \(e \in H,\ \left \Vert e\right \Vert = 1\) in (52) we recapture the result in Theorem 3.

For a given operator T we consider the modulus of T defined as \(\left \vert T\right \vert:= \left (T^{{\ast}}T\right )^{1/2}.\)

Corollary 4.

Let P: H → H be an orthogonal projection on the Hilbert space \(\left (H,\left \langle \cdot,\cdot \right \rangle \right ).\) If A,B are two bounded linear operators on H, then

$$\displaystyle{ w\left (BPA\right ) \leq \frac{1} {2}w\left (BA\right ) + \frac{1} {4}\left \Vert \left \vert A\right \vert ^{2} + \left \vert B^{{\ast}}\right \vert ^{2}\right \Vert. }$$
(53)

In particular, we have

$$\displaystyle{ w\left (APA\right ) \leq \frac{1} {2}w\left (A^{2}\right ) + \frac{1} {4}\left \Vert \left \vert A\right \vert ^{2} + \left \vert A^{{\ast}}\right \vert ^{2}\right \Vert. }$$
(54)

Proof.

From the inequality (38) we have

$$\displaystyle\begin{array}{rcl} \left \vert \left \langle BPAx,x\right \rangle \right \vert & \leq & \frac{1} {2}\left [\left \Vert Ax\right \Vert \left \Vert B^{{\ast}}x\right \Vert + \left \vert \left \langle BAx,x\right \rangle \right \vert \right ] \\ & \leq & \frac{1} {2}\left \vert \left \langle BAx,x\right \rangle \right \vert + \frac{1} {4}\left [\left \Vert Ax\right \Vert ^{2} + \left \Vert B^{{\ast}}x\right \Vert ^{2}\right ]{}\end{array}$$
(55)

for any x ∈ H, where for the second inequality we used the elementary inequality

$$\displaystyle{ ab \leq \frac{1} {2}\left (a^{2} + b^{2}\right ),\text{ }a,b \in \mathbb{R}. }$$
(56)

Since

$$\displaystyle\begin{array}{rcl} \left \Vert Ax\right \Vert ^{2} + \left \Vert B^{{\ast}}x\right \Vert ^{2}& =& \left \langle Ax,Ax\right \rangle + \left \langle B^{{\ast}}x,B^{{\ast}}x\right \rangle = \left \langle A^{{\ast}}Ax,x\right \rangle + \left \langle BB^{{\ast}}x,x\right \rangle {}\\ & =& \left \langle \left (\left \vert A\right \vert ^{2} + \left \vert B^{{\ast}}\right \vert ^{2}\right )x,x\right \rangle {}\\ \end{array}$$

for any x ∈ H, then from (55) we have

$$\displaystyle{ \left \vert \left \langle BPAx,x\right \rangle \right \vert \leq \frac{1} {2}\left \vert \left \langle BAx,x\right \rangle \right \vert + \frac{1} {4}\left \langle \left (\left \vert A\right \vert ^{2} + \left \vert B^{{\ast}}\right \vert ^{2}\right )x,x\right \rangle }$$
(57)

for any x ∈ H. 

Taking the supremum over \(x \in H,\ \left \Vert x\right \Vert = 1\) in (57) we get the desired result (53).

Remark 4.

We observe that by (52) we have

$$\displaystyle\begin{array}{rcl} \left \vert \left \langle Ae,e\right \rangle \right \vert ^{2}& \leq & \frac{1} {2}\left [\left \Vert Ae\right \Vert \left \Vert A^{{\ast}}e\right \Vert + \left \vert \left \langle A^{2}e,e\right \rangle \right \vert \right ] \\ & \leq & \frac{1} {2}\left \vert \left \langle A^{2}e,e\right \rangle \right \vert + \frac{1} {4}\left [\left \Vert Ae\right \Vert ^{2} + \left \Vert A^{{\ast}}e\right \Vert ^{2}\right ] \\ & =& \frac{1} {2}\left \vert \left \langle A^{2}e,e\right \rangle \right \vert + \frac{1} {4}\left \langle \left (\left \vert A\right \vert ^{2} + \left \vert A^{{\ast}}\right \vert ^{2}\right )e,e\right \rangle {}\end{array}$$
(58)

for any \(e \in H,\ \left \Vert e\right \Vert = 1.\)

Taking the supremum over \(e \in H,\ \left \Vert e\right \Vert = 1\) in (58) we get

$$\displaystyle{ w^{2}\left (A\right ) \leq \frac{1} {2}w\left (A^{2}\right ) + \frac{1} {4}\left \Vert \left \vert A\right \vert ^{2} + \left \vert A^{{\ast}}\right \vert ^{2}\right \Vert, }$$
(59)

for any bounded linear operator A. 

Since

$$\displaystyle{ \left \Vert \left \vert A\right \vert ^{2} + \left \vert A^{{\ast}}\right \vert ^{2}\right \Vert \leq \left \Vert \left \vert A\right \vert ^{2}\right \Vert + \left \Vert \left \vert A^{{\ast}}\right \vert ^{2}\right \Vert = 2\left \Vert A\right \Vert ^{2}, }$$

then the inequality (59) is better than the inequality in Theorem 3.

The following result also holds:

Theorem 9.

Let P: H → H be an orthogonal projection on the Hilbert space \(\left (H,\left \langle \cdot,\cdot \right \rangle \right ).\) If A,B are two bounded linear operators on H, then

$$\displaystyle{ w\left (B\left (\frac{1} {2}1_{H} - P\right )A\right ) \leq \frac{1} {4}\left \Vert \left \vert A\right \vert ^{2} + \left \vert B^{{\ast}}\right \vert ^{2}\right \Vert. }$$
(60)

In particular, we have

$$\displaystyle{ w\left (A\left (\frac{1} {2}1_{H} - P\right )A\right ) \leq \frac{1} {4}\left \Vert \left \vert A\right \vert ^{2} + \left \vert A^{{\ast}}\right \vert ^{2}\right \Vert. }$$
(61)

Proof.

From the inequality (24) we have

$$\displaystyle{ \left \vert \left \langle \left (1_{H} - 2P\right )Ax,B^{{\ast}}x\right \rangle \right \vert \leq \left \Vert Ax\right \Vert \left \Vert B^{{\ast}}x\right \Vert, }$$

that is equivalent to

$$\displaystyle{ \left \vert \left \langle B\left (\frac{1} {2}1_{H} - P\right )Ax,x\right \rangle \right \vert \leq \frac{1} {2}\left \Vert Ax\right \Vert \left \Vert B^{{\ast}}x\right \Vert }$$
(62)

for any x ∈ H. 

Using the elementary inequality (56) we have

$$\displaystyle{ \frac{1} {2}\left \Vert Ax\right \Vert \left \Vert B^{{\ast}}x\right \Vert \leq \frac{1} {4}\left (\left \Vert Ax\right \Vert ^{2} + \left \Vert B^{{\ast}}x\right \Vert ^{2}\right ) = \frac{1} {4}\left \langle \left (\left \vert A\right \vert ^{2} + \left \vert B^{{\ast}}\right \vert ^{2}\right )x,x\right \rangle }$$

and by (62) we get

$$\displaystyle{ \left \vert \left \langle B\left (\frac{1} {2}1_{H} - P\right )Ax,x\right \rangle \right \vert \leq \frac{1} {4}\left \langle \left (\left \vert A\right \vert ^{2} + \left \vert B^{{\ast}}\right \vert ^{2}\right )x,x\right \rangle }$$
(63)

for any x ∈ H. 

Taking the supremum over \(x \in H,\ \left \Vert x\right \Vert = 1\) in (63) we get the desired result (60).

Remark 5.

If we take in (60) P = 1 H , then we get [18, p. 6]

$$\displaystyle{ w\left (BA\right ) \leq \frac{1} {2}\left \Vert \left \vert A\right \vert ^{2} + \left \vert B^{{\ast}}\right \vert ^{2}\right \Vert }$$
(64)

for any A, B bounded linear operators on H.