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Foreword

Qazi Ibadur Rahman (QIR)

Q.I. Rahman was with Dick Askey one of the world’s greatest experts on estimates
in two important areas of complex analysis: functions of exponential type and
polynomials.

The number and variety of papers in this book show how great his influence
has been in this and other areas. His book with Gerhard Schmeisser The Analytic
Theory of Polynomials remains the fundamental textbook for anyone studying the
latter area. His distinction has been recognized by his being only the 21st person and
the second mathematician to be awarded an honorary doctorate from the University
Maria Curie-Skłodowska in Lublin, Poland. The first awardee was Irène Curie.

Let me mention some of his most memorable results.
Theorem 1 (with B. D. Bojanov and J. Szynal in Math Z. 190 (1985), 281–285).
Let f .z/ be a polynomial of degree n, all of whose zeros z� lie in the closed unit

disk. Then each disk
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vi Foreword

jz � z� j � 21=n (1)

contains at least one zero of f 0.z/. This is still the strongest result obtained for
general n toward Sendov’s conjecture that the right-hand side can be replaced by 1
in (1).

Two further striking results are contained in his paper in Trans. Amer. Math. Soc.
163 (1972), 447–455.

Theorem 2. Suppose that pn.z/ is a polynomial of degree n. Then if jpn.x/j �
.1 � x2/1=2 for �1 < x < 1, then

jp0.x/j � 2.n � 1/ for � 1 � x � 1 :

If jpn.x/j � jxj, �1 � x � 1, then

jp0.x/j � .n � 1/2 C 1 for � 1 � x � 1 :

Both these results are sharp.
Qazi Rahman was with us at Imperial College from 1959 to 1961 and was a most

valuable member of our group. Other members were Jim Clunie, Noel Baker, and
Thomas Kovari.

Later in 1965 when he became professor at the Université de Montréal, he invited
several of us there to visit him on a number of occasions. He was a devout Muslim
and so were his wife Fatima and his sons Amer and Mujtaba. It has been rightly said
that the family who prays together, stays together.

I particularly remember his kindness to fellow Muslims, my wife Waficka and
myself. He even offered to move out of his home so we could stay in it. I am deeply
grateful for his friendship and love throughout his life and that of Fatima, Amer, and
Mujtaba.

This book, which follows, is dedicated to Q.I. Rahman, who will long be
remembered for his mathematics, his enthusiasm and dedication for doing research
in mathematics, and for the overwhelming kindness and understanding he showered
on all who came in contact with him.

London, UK W.K. Hayman, F.R.S.



Preface

This volume is a collection of chapters dedicated to Professor Q. I. Rahman who
passed away on July 21, 2013, in Montreal, Canada. Professor Rahman was a
leading mathematician whose research spanned several areas of approximation
theory and classical analysis, including complex analysis. Professor Rahman was
viewed as a world expert in the analytic theory of polynomials and entire functions
of exponential type by his collaborators and many other colleagues.

We invited outstanding mathematicians, friends, and collaborators of Professor
Rahman to submit chapters to be included in this volume. This collection contains
original research articles and comprehensive survey contributions by 36 mathemati-
cians from 18 countries. All the chapters were refereed. We hope that the chapters
will interest graduate students and researchers in analysis and approximation theory.

Professor Walter K. Hayman, F.R.S., who was one of Professor Rahman’s
teachers, has prepared the monograph’s Foreword. We are extremely grateful to him
for the time and effort that he has devoted to the writing of this piece.

The chapters of the monograph are grouped by four themes which reflect some
of Professor Rahman’s areas of research. The first theme is Polynomials. It includes
inequalities for polynomials and rational functions, orthogonal polynomials and
location of zeros, and comprises the chapters entitled “On the L2 Markov Inequality
with Laguerre Weight”, “Markov-Type Inequalities for Products of Müntz Poly-
nomials Revisited”, “On Bernstein-Type Inequalities for the Polar Derivative of a
Polynomial”, “On Two Inequalities for Polynomials in the Unit Disk”, “Inequalities
for Integral Norms of Polynomials via Multipliers”, “Some Rational Inequalities
Inspired by Rahman’s Research”, “On an Asymptotic Equality for Reproducing
Kernels and Sums of Squares of Orthonormal Polynomials” and “Two Walsh-
Type Theorems for the Solutions of Multi-Affine Symmetric Polynomials”. The
second theme is Inequalities and Extremal Problems, where functions other than
polynomials are considered. This theme consists of chapters entitled “Vector
Inequalities for a Projection in Hilbert Spaces and Applications”, “A Half-Discrete
Hardy-Hilbert-Type Inequality with a Best Possible Constant Factor Related to the
Hurwitz Zeta Function”, “Quantum Integral Inequalities for Generalized Convex
Functions”, “Quantum Integral Inequalities for Generalized Preinvex Functions”
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viii Preface

and “On the Bohr Inequality”. The third theme is Approximation of Functions,
the approximants being polynomials, rational functions and other types of func-
tions; see Chapters entitled “Bernstein-Type Polynomials on Several Intervals”,
“Best Approximation by Logarithmically Concave Classes of Functions”, “Local
Approximation Using Hermite Functions”, “Approximating the Riemann Zeta and
Related Functions”, “Overconvergence of Rational Approximants of Meromorphic
Functions” and “Approximation by Bernstein-Faber-Walsh and Szász-Mirakjan-
Faber-Walsh Operators in Multiply Connected Compact Sets of C”. The last theme
is Quadrature, Cubature and Applications. It comprises three chapters, including
a posthumous article of Professor Rahman co-authored by one of the editors of
this book. This theme includes chapters entitled “Summation Formulas of Euler-
Maclaurin and Abel-Plana: Old and New Results and Applications”, “A New
Approach to Positivity and Monotonicity for the Trapezoidal Method and Related
Quadrature Methods” and “A Unified and General Framework for Enriching Finite
Element Approximations”.

In the first chapter, the authors Nikolov and Shadrin have considered L2 Markov
inequality with Laguerre weight over a semi-infinite interval of the real line. They
have also obtained an asymptotic value of the constant in their inequality.

In the chapter by Erdélyi, new Markov-type inequalities for products of Müntz
polynomials have been proved. These results extend some of the earlier contribu-
tions of the author and answer some questions posed by Thomas Bloom.

Govil and Kumar in their survey article mention in a chronological manner
Bernstein-type inequalities for polar derivatives of a polynomial. This chapter
provides a comprehensive account of results on polar derivatives.

Fournier and Ruscheweyh consider two very different generalizations and refine-
ments of Bernstein’s inequality for polynomials that have been obtained more than
30 years ago. Here, the authors show that one of these inequalities implies the other.
They also study the cases of equality.

Pritsker considers a wide range of polynomial inequalities for norms defined by
contour and area integrals over the unit disk in the complex plane. He has also
proved inequalities using the Schur-Szegő composition.

The chapter by Li, Mohapatra, and Ranasinghe is concerned with some rational
inequalities inspired by Rahman’s research. The results include Bernstein-type
inequalities for rational functions with prescribed poles and prescribed zeros.

Ignjatovic and Lubinsky investigate an asymptotic equality for reproducing ker-
nels and sums of squares of orthonormal polynomials. These results are motivated
by the recent work of Ignjatovic on orthonormal polynomials associated with a
symmetric measure with unbounded support and satisfying a recurrence relation.
The authors have studied the case of even exponential weights and weights on a
finite interval.

In the chapter by B. Sendov and H. Sendov, the authors have considered two
Walsh-type theorems for the solution of multi-affine symmetric polynomials. These
results can be considered as extensions of the Grace-Walsh-Szegő coincidence
theorem.
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In the chapter by Dragomir, some vector inequalities related to those of Schwarz
and Buzano are established. Also, inequalities involving the numerical range and
the numerical radius for two bounded operators are obtained.

Rassias and Yang have used methods of weight functions to obtain a half-discrete
Hardy-Hilbert-type inequality with a best constant related to the Hurwitz-Zeta
function. Equivalent forms, normed operator expressions, their reverses, and some
special cases are also considered.

In the chapter by M. Noor, K. Noor, and Awan, the authors have considered and
generalized convex functions involving two arbitrary functions and established some
new quantum integral inequalities for the generalized convex functions. Besides,
several special cases of interest have been mentioned as corollaries.

M. Noor, Rassias, K. Noor, and Awan have considered quantum integral inequal-
ities involving generalized preinvex functions. They give an account of quantum
integral inequalities and in a certain limiting case use these inequalities to obtain
many well-known results as special cases. The contents of this chapter are related
to that of the previous chapter.

In the chapter by Abu Muhanna, Ali, and Ponnusamy, the Bohr inequality is
considered. This survey article considers recent advances and generalizations of the
Bohr inequality in the unit disk of the complex plane. Among other things, they
have discussed the Bohr radius for harmonic and starlike logharmonic mappings in
the unit disk.

In the chapter by Szabados, Bernstein-type polynomials for a set Js of s finitely
many intervals have been considered. On such sets, approximating operators resem-
bling Bernstein polynomials have been defined, and their interpolation properties
and rate of convergence are obtained.

The chapter by Dryanov contains results on best approximation by a class of
logarithmically concave functions. Exact values of best approximations are found
for two specific cases.

The chapter by Mhaskar considers local approximation using Hermite functions.
He develops a wavelet-like representation in Lp.R/ where the local behavior of the
terms characterizes the local smoothness of the target function. He gives new proofs
for the localization of certain kernels as well as for the Markov-Bernstein inequality.

Stenger considers a function G which has the same zeros as the well-known
Riemann zeta function in the critical strip. For studying its behavior for intermediate
values of z, he uses Fourier series and derives an asymptotic approximation for large
values of z.

The chapter by Blatt deals with overconvergence of rational approximants of
meromorphic functions. It contains results on the degree of convergence and
distribution of zeros of the rational approximants. In addition, well-known results
on polynomial approximation of holomorphic functions are generalized.

The chapter by Gal is concerned with approximation by Bernstein-Faber-Walsh
and Szász-Mirakjan-Faber-Walsh operators in multiply connected compact sets
of the complex plane. These results are generalizations of earlier results of the
author on q-Bernstein-Faber polynomials and Szász-Faber-type operators in simply
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connected compact sets in C. This study leads to a conjecture concerning the use of
truncated classical Szász-Mirakjan operators in weighted approximation.

Milovanović discusses old and new results on summation formulas of Euler-
Maclaurin and Abel-Plana. He has shown connections between Euler-Maclaurin
formula and basic quadrature rules of Newton-Cotes-type as well as the composite
Gauss-Legendre rule and its Lobato modifications. Summation formulas such as the
midpoint summation formula, the Binet formula, and the Lindelöf formula are also
extended and analyzed.

The chapter by Rahman and Schmeisser provides a new approach to positivity
and monotonicity for quadrature methods. In all of the known results, sign condi-
tions on some derivatives of the given function are required. The authors propose a
new approach based on Fourier analysis and the theory of positive definite functions.
This method makes it possible to describe much wider classes of functions for which
positivity and monotonicity occur. Their results include the trapezoidal method on
a compact interval and also on the whole real line.

The chapter by Guessab and Zaim is devoted to a unified and general framework
for enriching finite element approximations through the use of additional enrichment
functions. They prove a general theorem that characterizes the existence of an
enriched finite element approximation. They also show that their method can
be used to obtain a new class of enriched nonconforming finite elements in
any dimension. For concrete constructions, the authors employ new families of
multivariate trapezoidal, midpoint, and Simpson-type cubature formulas.

It is a pleasure to express our gratitude to all the authors and referees without
whose contributions this volume would not have been possible. We would like to
thank Ziqin Feng, Dmitry Glotov, and Eze Nwaze for their help in compiling and
formatting some of the chapters in this volume. Finally, our thanks are due to the
publisher for support and careful handling of this volume.

Auburn, AL, USA N.K. Govil
Orlando, FL, USA Ram Mohapatra
Tuskegee, AL, USA M.A. Qazi
Erlangen, Germany G. Schmeisser
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Qazi Ibadur Rahman, 1934–20131

Qazi Ibadur Rahman was born in 1934 in Deoria in the State of Uttar Pradesh
(India). The English notions of christian name or first name and last name in their
literal sense did not really suit for an Indian Moslem and so he became known in
the Western world under the name Rahman, which was really his given name, while
Qazi was his family name. When Rahman was a school boy, he was considered as
a wunderkind in mathematics in his district. Already before having reached the age
of 15, he was admitted to the University of Allahabad for studying mathematics,
physics and chemistry. He graduated with a bachelor’s degree in 1951 and with a
masters’ degree in 1953. The same year, at the age of 19, Rahman became Lecturer
at the Aligarh Muslim University where he stayed till 1961. In 1956 he was awarded
his first Ph.D. in mathematics, his adviser being S.M. Shah. In 1957/58, he took
leave for 15 months and went to the Northwestern University in Evanston (Illinois)
as a Research Associate to study with R.P. Boas. From 1959 to 1961 Rahman again
took leave and went to the Imperial College in London to acquire a second Ph.D.
in mathematics, his first adviser being Jim Clunie and his second Walter Hayman.
Incidentally, he was Clunie’s first Ph.D. student.

From 1961 to 1965 Rahman was Head of the Mathematics Department at the
Regional Engineering College in Srinagar (Kashmir), except for the entire year of
1963 which he spent again at the Northwestern University in Evanston. In 1965 he
joined the University of Montreal and remained there till the end of his life. He
never retired.

Rahman’s central field of research comprised polynomials and entire functions
of exponential type. After R.P. Boas had passed away in 1992, he became the most
prominent expert for the latter class of functions. His particular fields of interest
were extremal problems. By utilizing tools from other areas such as variational
principles, optimization techniques, subordination principles, duality principles and
subharmonic functions, he obtained numerous sharp results that gave a final answer
to certain interesting and important questions. Rahman’s research portfolio is truly
impressive. During a career that spanned 58 years, he published 203 papers and
three books.

Q.I. Rahman was very inspiring for students since he slowly and patiently
explained his ideas. At the University of Montreal, he had 14 Ph.D. students. At
least eight of them became professors at a university or a college. A 15th student
had completed his thesis but could not defend it while Rahman was alive.

Rahman’s scientific activities were supported by grants of the National Research
Council of Canada. For some periods, his level of funding was the highest among
all Canadian mathematicians. He was very careful in using such support efficiently,
enabling him to invite many famous people in his field to learn from them. One of the

1Except for the last three paragraphs, this biography has been essentially reproduced from
J. Approx. Theory 179 (2014), 94–111 with the permission of Elsevier (license number
3914960806137).
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editors (GS) had the pleasure to meet mathematicians such as R.P. Boas, P. Erdős,
A. Gončar, W. Hayman, P. Turán and A. Zymund at Rahman’s place and to profit
from their lectures. For a period of about 20 years, Paul Erdős was a visitor nearly
every year. Rahman also supported students and gave a chance to young promising
scientists by inviting them to do research with him. In particular, at a time when
the world was divided into two parts—East and West—he did not hesitate to invite
young people from communist countries such as Poland, Bulgaria and Hungary. It
is remarkable that Rahman held a research grant of the National Research Council
of Canada for 48 years consecutively till his death, without any interruption.

In 1984 the University Marie Curie-Skłodowska (UMCS) in Lublin (Poland)
awarded an honorary doctoral degree to Q.I. Rahman not only for his scientific work
but also for the contacts between UMCS and the University of Montreal that he had
established. He was the second mathematician to receive this honor from UMCS.

In 1965, Rahman married Imtiyaz Fatima from Lucknow. They had two sons
Amer and Mujtaba, the elder son Amer being himself a professor of mathematics.
A stroke of fate met Rahman, when his beloved wife died all of a sudden in 2001.
Again he was very sad when he learnt that his esteemed teacher Jim Clunie passed
away in 2013. In June 2013, he went with his son to a conference in Shantou (China).
The day they arrived, Rahman had a fall and was brought to hospital suffering from
severe brain trauma which led to a deep coma. After 5 weeks in China, he was
brought by an ambulance aeroplane to Montreal where he died on July 21, 2013,
exactly 43 days after his accident.

Gerhard Schmeisser (GS) had the privilege to work with Q.I. Rahman for a
period of about three decades starting in 1972 when he came to Montreal as a
Postdoctoral Assistant. He visited Montreal 26 times. The collaboration resulted
in 44 joint papers, two joint books and a deep friendship. At most of his visits, he
lived in Rahman’s house and was treated like a family member. In particular, he
enjoyed the delicious Indian dishes prepared by Mrs. Rahman. Of course, Rahman
also visited GS in Erlangen. A few days before Rahman left for the tragic journey
to China, he phoned GS and spoke to him for an hour. In retrospect it was as if he
knew about his fate and wanted to say Good Bye forever. GS is very sad to have lost
one of his best friends.

Narendra Kumar Govil (NKG) had already been a Ph.D. student for one year
at the University of Montreal when Q.I. Rahman joined the University in 1965.
Rahman asked the then Chair of the department, Professor Maurice Labbée, to
suggest two students to work with him for doctoral studies, and Professor Labbée
proposed the names of Gilbert Labelle and of NKG. NKG started working full-time
on his Ph.D. dissertation in April 1966 under Rahman and, in just about one year,
his dissertation was complete which NKG attributes mainly to the precious guidance
and encouragement he received from Rahman. During that year, Rahman and NKG
worked together for several hours a day in research. While working on problems,
many times the idea of a solution came from Rahman, but he never took credit for
such ideas. He gave them to NKG, perhaps to encourage him. Rahman was surely
a most generous and honest person in terms of research and also in other matters.
He was an extremely well-read and knowledgeable person in matters outside of
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mathematics as well and NKG learned so many great and useful things from him.
Rahman was truly a noble soul whom NKG loved and respected deeply. NKG is very
sad to have lost his teacher, mentor and a trusted friend, whom he misses greatly.

Ram N. Mohapatra (RNM) met Q.I. Rahman in 1975 at the American University
of Beirut where he delivered a lecture in the Mathematics Colloquium at the
invitation of Professor Walid Al-Salam who was visiting from the University of
Alberta. RNM was impressed with his warmth and simplicity. In March 1995,
Rahman visited Orlando to speak at the Sectional meeting of AMS at RNM’s
request. After the conference he asked RNM if he and his friend and colleague
Xin Li could meet him on the following day to discuss what they were doing. Since
that day RNM has remained in touch with Rahman and always regarded him and
addressed him as an elder brother. In September 1995, RNM visited him and met
Professor Frappier and Professor Bojanov in his house in Montreal. Rahman was
very kind and encouraging. His research inspired RNM and some of his colleagues
to a great extent. In him RNM had found a very loving mentor.

M. Amer Qazi (MAQ) and his brother Mujtaba suffered irreparable losses when
their father and mother passed away. Both parents were role models for them. With
their father often immersed in research at home, MAQ and his brother were fortunate
to grow up in an academic environment in which they also had the distinct privilege
of meeting countless visiting scientists whom their father invited over to his house.
MAQ remembers how during such visits his mother would make everyone feel at
home. Aside from work, MAQ recalls his father’s passion for the news and many
informed discussions on various topics of interest. He also liked to relax by taking
the family for leisurely activities with other families in the community such as
picnics and general get-togethers. MAQ and his brother feel truly blessed to have
experienced a rich and diverse upbringing by their parents. They miss their parents
immensely.
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QIR, W. Hayman (2. right) and other participants of 1967 Summer Math. Seminar, Montreal

QIR with P. Turán around 1970
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QIR with J. Krzyż at ICM 1978 in Helsinki (Finland)

QIR being awarded the Doctorate Honoris Causa by UMCS in Lublin (Poland), March 1984
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QIR as Doctorate Honoris Causa in 1984

QIR with J. Krzyż during the ceremony in 1984
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QIR with a Delegate of the Indian Embassy during the ceremony in 1984

QIR with his family and G. Schmeisser (2. left) in Erlangen (Germany), July 1984
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QIR with G. Schmeisser (right) and D. Dryanov in Montreal, April 1987

QIR around 2004
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On the L2 Markov Inequality with Laguerre
Weight

Geno Nikolov and Alexei Shadrin

Abstract Let w˛.t/ D t˛ e�t, ˛ > �1, be the Laguerre weight function, and k � kw˛
denote the associated L2-norm, i.e.,

kf kw˛ WD
� Z 1

0

w˛.t/jf .t/j2 dt
�1=2

:

Denote by Pn the set of algebraic polynomials of degree not exceeding n. We study
the best constant cn.˛/ in the Markov inequality in this norm,

kp0kw˛ � cn.˛/ kpkw˛ ; p 2 Pn ;

namely the constant

cn.˛/ D sup
p2Pn
p¤0

kp0kw˛

kpkw˛

;

and we are also interested in its asymptotic value

c.˛/ D lim
n!1

cn.˛/

n
:

In this paper we obtain lower and upper bounds for both cn.˛/ and c.˛/.
Note that according to a result of P. Dörfler from 2002, c.˛/ D Œj.˛�1/=2;1��1,

with j�;1 being the first positive zero of the Bessel function J�.z/, hence our bounds
for c.˛/ imply bounds for j.˛�1/=2;1 as well.
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1 Introduction and Statement of the Results

The Markov inequality (or, to be more precise, the inequality of the brothers
Markov) has proven to be one of the most important polynomial inequalities, with
numerous applications in approximation theory, numerical analysis, and many other
branches of mathematics. In its classical variant it reads as follows:

The Inequality of the Brothers Markov If p 2 Pn, then for k D 1; : : : ; n,

kp.k/k � T.k/n .1/ kpk :

The equality is attained if and only if p D c Tn, where Tn is the n-th Chebyshev
polynomial of the first kind, Tn.x/ D cos n arccos x; x 2 Œ�1; 1� .

Here, Pn is the set of algebraic polynomials of degree not exceeding n and k�k
is the uniform norm in Œ�1; 1�, kf k WD supfjf .x/j W x 2 Œ�1; 1�g.

Proved for k D 1 in 1889 by Andrey Markov [14], and for k � 1, in 1892,
by his kid brother, Vladimir Markov [15], throughout the years Markov inequality
has got many alternative proofs and various generalizations. For the intriguing story
of Markov’s inequality in the uniform norm, and twelve of its proofs, we refer the
reader to the survey paper [27]. Another survey on the subject is [2]. For some recent
developments, see [3, 17, 18, 20–24, 26].

Generally, Markov-type inequalities provide upper bounds for a certain norm
of a derivative of an algebraic polynomial p 2 Pn in terms of some (usually the
same) norm of p. Our subject here is Markov-type inequalities in L2-norms for the
first derivative of an algebraic polynomial. For a weight function w on the finite or
infinite interval .a; b/ with all moments finite, let k � kw be the associated L2-norm,

kf kw WD
� Z b

a
w.t/jf .t/j2 dt

�1=2
;

and let cn.w/ be the best (i.e., the smallest) constant in the L2 Markov inequality

kp0kw � cn.w/ kpkw; p 2 Pn :

This constant possesses a simple characterization: it is the largest singular value of
a certain matrix, see, e.g., [7] or [16]; however, the exact values of the best Markov
constants are generally unknown even in the cases of the classical weight functions
of Laguerre and Jacobi, and, in particular, of Gegenbauer.
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The Hermite Weight wH.t/ D e�t2 ; t 2 R This is the only case where both
the sharp Markov constant and the extremal polynomial are known. Namely, in
this case the sharp Markov constant is cn.wH/ D p

2n , and the unique (up to
a constant factor) extremal polynomial is the n-th Hermite polynomial Hn.t/ D
.�1/n et2

�
d
dt

�n
e�t2 . The extremality of Hn persists in the L2 Markov inequalities for

higher order derivatives,

kp.k/kwH � c.k/n .wH/ kpkwH ; k D 1; : : : ; n ;

with the sharp Markov constants given by c.k/n .wH/ D
�
2k nŠ

.n�k/Š

�1=2
. The reason

for this case to be trivial comes from the fact that the derivatives of Hermite’s
polynomials are Hermite’s polynomials of lower degrees [28, Chap. 5], and as a
result, the sharp Markov constant is simply the largest entry in a diagonal matrix.

The Gegenbauer Weight w�.t/ D .1 � t2/��1=2, � > �1=2; t 2 Œ�1; 1� Neither
the sharp Markov constant nor the extremal polynomial is known explicitly in that
case. For � D 1=2 (a constant weight function) Schmidt [25] found tight estimates
for the Markov constant, which in a slightly weaker form look like

1

�
.n C 3=2/2 < cn.w1=2/ <

1

�
.n C 2/2 ; n > 5:

Recently, Kroó [13] turned back to this case, identifying cn.w1=2/ as the largest
positive root of a polynomial of degree n. This polynomial was found explicitly (to
some extent) by Kroó.

Nikolov [19] studied two further special cases � D 0 and � D 1; in particular,
he obtained the following two-sided estimates for the corresponding best Markov
constants:

0:472135 n2 � cn.w0/ � 0:478849 .n C 2/2 ;

0:248549 n2 � cn.w1/ � 0:256861 .n C 5
2
/2 :

In [1] we obtained an upper bound for cn.w�/, which is valid for all � > �1=2:

cn.w�/ <
.n C 1/.n C 2�C 1/

2
p
2�C 1

;

However, it seems that the correct order with respect to � should be O.1=�/. Also,
it has been shown in [1] that the extremal polynomial in the L2 Markov inequality
associated with w� is even or odd when n is even or odd, accordingly (for � � 0

this result was established, by a different argument, in [19]).

The Laguerre Weight w˛.t/ D t˛e�t; t 2 .0;1/ ; ˛ > �1 In the present paper
we study the best constant in the Markov inequality for the first derivative of an
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algebraic polynomial in the L2-norm, induced by the Laguerre weight function. We
denote this norm by k � kw˛ ,

kf kw˛ WD
� Z 1

0

t˛e�tjf .t/j2 dt
�1=2

: (1)

Further, we denote by cn.˛/ the best constant in the Markov inequality in this
norm,

cn.˛/ D sup
p2Pn
p¤0

kp0kw˛

kpkw˛

: (2)

Before formulating our results, let us give a brief account on the known results
on the Markov inequality in the L2 norm induced by the Laguerre weight function.
Turán [29] found the sharp Markov constant in the case ˛ D 0, namely

cn.0/ D
�
2 sin

�

4n C 2

��1
: (3)

In 1991, Dörfler [8] proved the inequalities

n2

.˛ C 1/.˛ C 3/
� �

cn.˛/
�2 � n.n C 1/

2.˛ C 1/
; (4)

(the first one in a somewhat stronger form), and in 2002 he found [9] the sharp
asymptotic of cn.˛/, namely

c.˛/ WD lim
n!1

cn.˛/

n
D 1

j.˛�1/=2;1
; (5)

where j�;1 is the first positive zero of the Bessel function J�.z/ .
In a series of recent papers [4–6] A. Böttcher and P. Dörfler studied the

asymptotic values of the best constants in L2 Markov-type inequalities of a rather
general form, namely (1) they include estimates for higher order derivatives and (2)
different L2-norms of Laguerre or Jacobi type are applied to the polynomial and its
derivatives (i.e., at the two sides of their Markov inequalities).

Precisely, they proved that those asymptotic values are equal to the norms of
certain Volterra operators. It seems, however, that finding the norms of these related
Volterra operators explicitly is equally difficult task. They provide also some upper
and lower bounds for the asymptotic values, but they do not match (they are similar
to those given in (4)).

Our main goal is upper and lower bounds for the Markov constant cn.˛/ which
are valid for all n and ˛.



On the L2 Markov Inequality with Laguerre Weight 5

In this paper we prove the following:

Theorem 1. For all ˛ > �1 and n 2 N , n � 3 , the best constant cn.˛/ in the
Markov inequality

kp0kw˛ � cn.˛/ kpkw˛ ; p 2 Pn

admits the estimates

2
�
n C 2˛

3

��
n � ˛C1

6

�

.˛ C 1/.˛ C 5/
<
�
cn.˛/

�2
<

�
n C 1

��
n C 2.˛C1/

5

�

.˛ C 1/
�
.˛ C 3/.˛ C 5/

� 1
3

;

where for the left-hand inequality it is additionally assumed that n > .˛ C 1/=6 .

For n D 1; 2, the exact values are readily computable:

�
c1.˛/

�2 D 1

1C ˛
;

�
c2.˛/

�2 D 3.˛ C 2/Cp
.˛ C 2/.˛ C 10/

2.˛ C 1/.˛ C 2/
:

Compared to Dörfler’s result (4), we improve the lower bound for cn.˛/ by the factor
of

p
2, and obtain for the upper bound the order O.n=˛5=6 / instead of O.n=˛1=2 /.

As an immediate consequence of Theorem 1 we obtain the following:

Corollary 1. The asymptotic Markov constant c.˛/ D limn!1fn�1 cn.˛/g satis-
fies the inequalities

c.˛/ WD
p
2p

.˛ C 1/.˛ C 5/
� c.˛/ � 1p

˛ C 1 6
p
.˛ C 3/.˛ C 5/

DW c.˛/ : (6)

Let us comment now on the bounds for c.˛/ given by Corollary 1. First of all,

lim
˛!�1
˛>�1

c.˛/

c.˛/
D 1 ;

which indicates that for small ˛ our bounds are pretty tight. In particular, in the case
˛ D 0, when we have c.0/ D 2=� (see (3)), the relative errors satisfy

c.0/

c.0/
D

p
10

�
< 1:006585 ;

c.0/

c.0/
D �

2
6

p
15
< 1:000242 :

Second, Corollary 1 gives rise to the question: what is the right order of ˛ in c.˛/
as ˛ ! 1? The answer follows below:

Theorem 2. For the asymptotic Markov constant c.˛/ we have c.˛/ D O.˛�1/ as
˛ ! 1 . More precisely, c.˛/ satisfies the inequalities

p
2p

.˛ C 1/.˛ C 5/
< c.˛/ <

2

˛ C 2� � 2 ; ˛ > 1 : (7)
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Proof. The lower bound for c.˛/ is simply c.˛/ (in fact, the left-hand inequality
in (7) holds for all ˛ > �1). For the right-hand inequality in (7), we recall that,
by Dörfler’s result (5), c.˛/ D �

j.˛�1/=2;1
��1

, with j�;1 being the first positive zero
of the Bessel function J�.z/ . On using some lower bounds for the zeros of Bessel
functions, obtained by Ifantis and Siafarikas [11] (see [10, Eq. (1.6)]), we get

1

j.˛�1/=2;1
<

2

˛ C 2� � 2 ; ˛ > 1 :

The inequalities in (7) imply that c.˛/ D O.˛�1/ as ˛ ! 1 . ut
Notice that the lower bound c.˛/ has the right order with respect to ˛ as ˛ ! 1.

Moreover, from (7) it follows that, roughly, this lower bound can only be improved
by a factor of at most

p
2.

The upper bound c.˛/ does not exhibit the right asymptotic of c.˛/ as
˛ ! 1. Nevertheless, c.˛/ is less than the upper bound in (7) for ˛ 2
Œ2:045; 47:762�. Moreover, the ratio r.˛/ D c.˛/=c.˛/ tends to infinity as ˛ ! 1
rather slowly; for instance, r.˛/ is less than two for �1 < ˛ < 500 (see Fig. 1).

Finally, in view of (5), Corollary 1 provides bounds for j�;1, the first positive zero
of the Bessel function J� , which, for some particular values of �, are better than
some of the bounds known in the literature (e.g., the lower bound below is better
than the one given in [10, Eq. (1.6)] for � 2 Œ0:53; 23:38�).
Corollary 2. The first positive zero j�;1 of the Bessel function J� , � > �1, satisfies
the inequalities

2
5
6

p
� C 1 6

p
.� C 2/.� C 3/ < j�;1 <

p
2.� C 1/.� C 3/ :

100 200 300 400 500

1.2

1.4

1.6

1.8

2.0
r(a)

a

Fig. 1 The graph of the ratio r.˛/ D c.˛/
c.˛/
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The rest of the paper is organized as follows. In Sect. 2 we present some
preliminary facts, which are needed for the proof of Theorem 1. In Sect. 2.1 we
quote a known relation between the best Markov constant cn.˛/ and the smallest
(positive) zero of a polynomial Qn.x/ D Qn.x; ˛/ of degree n, defined by a
three-term recurrent relation. By this definition, Qn is identified as an orthogonal
polynomial with respect to a measure supported on RC. In Sect. 2.2 we give lower
and upper bounds for the largest zero of a polynomial, which has only positive zeros,
in terms of a few of its highest degree coefficients. In Sect. 3 we prove formulae
for the four lowest degree coefficients of the polynomial Qn. The proof of our
main result, Theorem 1, is given in Sect. 4. As the proof involves some lengthy
tough straightforward calculations, for performing part of them we have used the
assistance of a computer algebra system. Section 5 contains some final remarks.

2 Preliminaries

In this section we quote some known facts, and prove some results which will be
needed for the proof of Theorem 1.

2.1 A Relation Between cn.˛/ and an Orthogonal Polynomial

As was already said in the introduction, the best constant in an L2 Markov inequality
for polynomials of degree not exceeding n is equal to the largest singular value of
a certain n � n matrix, say An. The latter is equal to a square root of the largest
eigenvalue of A>

n An (or kAnk2, the second matrix norm of An). However, finding
explicitly kAnk2 (and for all n 2 N) is a fairly difficult task, and this explains the
lack of many results on the sharp constants in the L2 Markov inequalities. To avoid
this difficulty, some authors simply try to estimate kAnk2, or use other matrix norms,
e.g., kAnk1, the Frobenius norm, etc.

Our approach to the proof of Theorem 1 makes use of the following theorem:

Theorem 3 ([9, p. 85]). The quantity 1=Œcn.˛/�
2 is equal to the smallest zero of

the polynomial Qn.x/ D Qn.x; ˛/, which is defined recursively by

QnC1.x/ D .x � dn/Qn.x/ � �2nQn�1.x/; n � 0 I
Q�1.x/ WD 0; Q0.x/ WD 1 I
d0 WD 1C ˛; dn WD 2C ˛

n C 1
; n � 1 I

�0 > 0 arbitrary; �2n WD 1C ˛

n
n � 1 :
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By Favard’s theorem, for any ˛ > �1, fQn.x; ˛/g1
nD0 form a system of

monic orthogonal polynomials, and, in addition, we know that the support of their
orthogonality measure is in RC. Theorem 3 transforms the problem of finding
or estimating cn.˛/ to a problem for finding or estimating the extreme zeros of
orthogonal polynomials, or, equivalently, the extreme eigenvalues of certain tri-
diagonal (Jacobi) matrices. For the latter problem one can apply numerous powerful
methods such as the Gershgorin circles and the ovals of Cassini. For more details on
this kind of methods we refer the reader to the excellent paper of van Doorn [30].

However, we choose here a different approach for estimating the smallest positive
zero of Qn.x; ˛/, which seems to be efficient, too.

2.2 Bounds for the Largest Zero of a Polynomial Having Only
Positive Roots

In view of Theorem 3, we need to estimate the smallest (positive) zero of the
polynomial Qn.x; ˛/. On using the three-term recurrence relation for fQmg1

mD0,
we can evaluate (at least theoretically) as many coefficients of Qn.x/ as we wish
(and thus coefficients of the reciprocal polynomial xn Qn.x�1/, too). Our proof of
Theorem 1 makes use of the following statement:

Proposition 1. Let P.x/ D xn � b1 xn�1 C b2 xn�2 � � � � C .�1/n�1bn�1 x C .�1/nbn

be a polynomial with positive roots x1 � x2 � � � � � xn . Then the largest zero xn of
P satisfies the inequalities:

(i)
b1
n

� xn < b1 ;

(ii) b1 � 2 b2
b1

� xn < .b
2
1 � 2b2/

1
2 ;

(iii)
b31 � 3b1 b2 C 3b3

b21 � 2b2
� xn < .b

3
1 � 3b1 b2 C b3/

1
3 .

Proof. Part (i) follows trivially from

b1
n

D x1 C x2 C � � � C xn

n
� xn < x1 C x2 C � � � C xn D b1 :

For the proof of parts (ii) and (iii) we make use of Newton’s identities to obtain

x21 C x22 C � � � C x2n D b21 � 2b2; x31 C x32 C � � � C x3n D b31 � 3b1 b2 C 3b3 :

Now (ii) follows from

b21 � 2b2
b1

D x21 C x22 C � � � C x2n
x1 C x2 C � � � C xn

� xn < .x
2
1 C x22 C � � � C x2n/

1
2 D .b21 � 2b2/

1
2



On the L2 Markov Inequality with Laguerre Weight 9

and (iii) follows from

b31 � 3b1 b2 C 3b3
b21 � 2b2

D x31 C � � � C x3n
x21 C � � � C x2n

� xn < .x
3
1C� � �Cx3n/

1
3 D .b31�3b1 b2C3b3/

1
3 :

It is clear from the proof that the lower bounds for xn are attained only when
x1 D x2 D � � � D xn. ut

3 The Lowest Degree Coefficients of the Polynomial Qn;˛

Let us denote by ak;n D ak;n.˛/, k D 0; : : : ; n, the coefficients of the monic
polynomial Qn.x/ D Qn.x; ˛/, introduced in Theorem 3, i.e.,

Qn.x/ D Qn.x; ˛/ D xn C an�1;n xn�2 C � � � C a3;n x3 C a2;n x2 C a1;n x C a0;n :

For the sake of convenience, we set am;m D 1, m � 0, and

ak;m D 0 ; if k < 0 or k > m :

From the recursive definition of Qn we have Q0.x/ D 1 , Q1.x/ D x � ˛ � 1 , thus

a0;1 D �˛ � 1 ;

and for n 2 N we obtain a recurrence relations for the coefficients of Qn�1, Qn, and
QnC1 :

ak;nC1 D ak�1;n �
�
2C ˛

n C 1

�
ak;n �

�
1C ˛

n

�
ak;n�1 ; k D 0; : : : ; n : (8)

Now recurrence relation (8) will be used to prove consecutively formulae for the
coefficients ak;n , 0 � k � 3.

Proposition 2. For all n 2 N0, the coefficient a0;n of the polynomial Qn is
given by

a0;n D .�1/n
nY

kD1

�
1C ˛

k

�
:

Proof. We apply induction with respect to n. Since a0;0 D 1 and a0;1 D �.1C ˛/,
Proposition 2 is true for n D 0 and n D 1. For k D 0 the recurrence relation (8)
becomes

a0;nC1 D �
�
2C ˛

n C 1

�
a0;n �

�
1C ˛

n

�
a0;n�1 ; n 2 N :
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Assuming Proposition 2 is true for m � n, for m D n C 1 we obtain

a0;nC1 D �
�
2C ˛

n C 1

�
.�1/n

nY
kD1

�
1C ˛

k

�
�
�
1C ˛

n

�
.�1/n�1

n�1Y
kD1

�
1C ˛

k

�

D .�1/nC1
nC1Y
kD1

�
1C ˛

k

�
;

hence the induction step is done, and Proposition 2 is proved. ut
Before proceeding with the proof of the formulae for ak;n, 1 � k � 3, let us point

out to the relation

a0;mC1 D �
�
1C ˛

m C 1

�
a0;m ; m 2 N0 ; (9)

which follows from Proposition 2, and will be used in the proof of the next
propositions.

Proposition 3. For all n 2 N0, the coefficient a1;n of the polynomial Qn is
given by

a1;n D � n.n C 1/

2.˛ C 1/
a0;n :

Proof. Again, we apply induction on n. Proposition 3 is true for n D 0 and
n D 1. Indeed, by our convention, a1;0 D 0, and a1;1 D 1 also obeys the desired
representation, as a0;1 D �.1 C ˛/ . Assume that Proposition 3 is true for m � n,
m 2 N. From the recurrence relation (8) (with k D 1), the induction hypothesis
and (9) we obtain

a1;nC1 D a0;n �
�
2C ˛

n C 1

�
a1;n �

�
1C ˛

n

�
a1;n�1

D a0;n C
�
2C ˛

n C 1

� n.n C 1/

2.˛ C 1/
a0;n C

�
1C ˛

n

� .n � 1/n
2.˛ C 1/

a0;n�1

D a0;n
h
1C

�
2C ˛

n C 1

� n.n C 1/

2.˛ C 1/
� .n � 1/n
2.˛ C 1/

i

D a0;n
2.˛ C 1/

�
n2 C .˛ C 3/n C 2.˛ C 1/

� D a0;n
.n C 2/.n C ˛ C 1/

2.˛ C 1/

D .n C 1/.n C 2/

2.˛ C 1/

�
1C ˛

n C 1

�
a0;n D � .n C 1/.n C 2/

2.˛ C 1/
a0;nC1 :

Hence, the induction step is done, and the proof of Proposition 3 is complete. ut
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Proposition 4. For all n 2 N0, the coefficient a2;n of the polynomial Qn is
given by

a2;n D .n � 1/n.n C 1/

24.˛ C 1/.˛ C 2/.˛ C 3/

�
3.˛ C 2/n C 2.˛ C 6/

�
a0;n :

Proof. The claim is true for n D 0; 1 (according to our convention), and also for
n D 2, as in this case, taking into account that a0;2 D 1=

�
.1 C ˛/.1 C ˛=2/

�
,

the above formula produces a2;2 D 1. Assume now that the proposition is true for
m � n, where n 2 N, n � 2 . We shall prove that it is true for m D n C 1, too,
thus proving Proposition 4 by induction. On using the recurrence relation (8) (with
k D 2), the inductional hypothesis, Proposition 3, and (9) we obtain

a2;nC1 D a1;n �
�
2C ˛

n C 1

�
a2;n �

�
1C ˛

n

�
a2;n�1

D � n.n C 1/

2.˛ C 1/
a0;n �

�
2C ˛

n C 1

� .n�1/n.nC1/�3.˛C2/nC2.˛C6/�

24.˛ C 1/.˛ C 2/.˛ C 3/
a0;n

C .n�2/.n�1/n�3.˛C2/.n�1/C2.˛C6/�

24.˛ C 1/.˛ C 2/.˛ C 3/
a0;n

D n.n C 1/

n C ˛ C 1

"
n C 1

2.˛ C 1/
C
�
2C ˛

n C 1

� .n2 � 1/�3.˛ C 2/n C 2.˛ C 6/
�

24.˛ C 1/.˛ C 2/.˛ C 3/

� .n � 2/.n � 1/�3.˛ C 2/.n � 1/C 2.˛ C 6/
�

24.˛ C 1/.˛ C 2/.˛ C 3/

#
a0;nC1 :

After some calculations the expression in the big brackets simplifies to

.n C 2/.n C ˛ C 1/
�
.3.˛ C 2/.n C 1/C 2.˛ C 6/

�

24.˛ C 1/.˛ C 2/.˛ C 3/
:

and substitution of this expression yields the desired formula for a2;nC1. The
induction proof of Proposition 4 is complete. ut
Proposition 5. For all n 2 N0, the coefficient a3;n of the polynomial Qn is given
by the expression

� .n�2/.n�1/n.nC1/�5.˛C2/.˛C4/n.nC1/C8.7˛C20/nC12.˛C20/�

240.˛ C 1/.˛ C 2/.˛ C 3/.˛ C 4/.˛ C 5/
a0;n:

Proof. Again, induction is applied with respect to n. The formula for a3;n is easily
verified to be true for 0 � n � 3. Then, assuming that this formula is true for
m � n , where n 2 N, n � 3, we prove that it is true also for m D n C 1, too.
The induction step is performed along the same lines as the one in the proof of
Proposition 4. First, we make use of the recurrence relation (8) with k D 3 to express
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a3;nC1 as a linear combination of a2;n, a3;n, and a3;n�1. Next, we apply the inductional
hypothesis and (9) to represent a3;nC1 in the form

a3;nC1 D �.n � 1/n.n C 1/

240.˛ C 1/.˛ C 2/.˛ C 3/.˛ C 4/.˛ C 5/

r.n/

n C ˛ C 1
a0;nC1 ;

where r.n/ D r.n; ˛/ is a polynomial of 4-th degree. With some lengthy though
straightforward calculation (we used a computer algebra program for verification)
we obtain that

r.n/D.nC2/.nC˛C1/�5.˛C2/.˛C4/.nC1/.nC2/C8.7˛C20/.nC1/C12.˛C20/�

and this expression substituted in the above formula implies the desired representa-
tion of a3;nC1. To keep the paper condensed, we omit the details. ut

4 Proof of Theorem 1

For the proof of Theorem 1 we prefer to work with the (constant multiplier of)
reciprocal polynomial of Qn

Pn.x/ D Pn.x; ˛/ D .�1/n �a0;n
��1

xn Qn
�
x�1� :

Clearly, Pn is a monic polynomial of degree n,

Pn.x/ D xn � b1 xn�1 C b2 xn�2 � b3 xn�3 C � � �

and, in view of Propositions 2–5, its coefficients b1, b2, and b3 are

b1 D n.n C 1/

2.˛ C 1/
; b2 D .n � 1/n.n C 1/

24.˛ C 1/.˛ C 2/.˛ C 3/

�
3.˛ C 2/n C 2.˛ C 6/

�
;

b3 D .n�2/.n�1/n.nC1/�5.˛C2/.˛C4/n.nC1/C8.7˛C20/nC12.˛C20/�

240.˛ C 1/.˛ C 2/.˛ C 3/.˛ C 4/.˛ C 5/
:

As was indicated in Sect. 2.1, Qn.x; ˛/ is identified an orthogonal polynomial
with positive and distinct zeros. Therefore, the same can be said for the zeros of Pn

(as reciprocal of Qn). If xn is the largest zero of Pn, then, according to Theorem 3,
we have

�
cn.˛/

�2 D xn.
Now Proposition 1 (iii) applied to P D Pn yields immediately the following:

Proposition 6. For all n 2 N , n � 3 , the best Markov constant cn.˛/ satisfies

b31 � 3b1 b2 C 3b3
b21 � 2b2

<
�
cn.˛/

�2
< .b31 � 3b1 b2 C 3b3/

1
3

with b1, b2, and b3 as given above.
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The estimates for cn.˛/
�

in Theorem 1 are a consequence of Proposition 6. For
the proof of the lower bound, we obtain that

b31 � 3b1 b2 C 3b3 � 2

.˛ C 3/.˛ C 5/

�
n C 2˛

3

��
n � ˛ C 1

6

�
.b21 � 2b2/

D 1

.˛ C 1/3.˛ C 2/.˛ C 3/.˛ C 4/.˛ C 5/

5X
jD1

�j.˛/ nj ;

with

�1.˛/ D 1

270
.1C ˛/2.10 ˛3 C 100 ˛2 C 321 ˛ C 1620/ ;

�2.˛/ D 1

36
.1C ˛/.4 ˛4 C 35 ˛3 C 166 ˛2 C 417 ˛ C 660/ ;

�3.˛/ D 1

54
.4 ˛5 C 36 ˛4 C 192 ˛3 C 625 ˛2 C 1527 ˛ C 1332/ ;

�4.˛/ D 1

36
.˛4 � ˛3 C 157 ˛2 C 579 ˛ C 780/ ;

�5.˛/ D 1

30
.˛3 C 7 ˛2 C 136 ˛ C 280/ :

Obviously, �j.˛/ > 0 for ˛ > �1, 1 � j � 5, and hence the lower bound holds:

�
cn.˛/

�2
>

b31 � 3b1 b2 C 3b3
b21 � 2 b2

>
2

.˛ C 3/.˛ C 5/

�
n C 2˛

3

��
n � ˛ C 1

6

�
:

For the proof of the upper bound for cn.˛/ in Theorem 1, we find that

1

.˛ C 1/3.˛ C 3/.˛ C 5/
.n C 1/3

�
n C 2.˛ C 1/

5

�3 � �
b31 � 3b1 b2 C 3b3

�

D 1

.˛ C 1/2.˛ C 2/.˛ C 3/.˛ C 4/.˛ C 5/

5X
jD0

�j.˛/ nj ;

where

�0.˛/ D 8

125
.1C ˛/2.2C ˛/.4C ˛/ I

�1.˛/ D 3

250
.1C ˛/.16 ˛3 C 152 ˛2 C 439 ˛ � 52/ ;

�2.˛/ D 1

500
.96 ˛4 C 1363 ˛3 C 5656 ˛2 C 9167 ˛ C 2828/ ;
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�3.˛/ D 1

250
.16 ˛4 C 363 ˛3 C 2506 ˛2 C 7167 ˛ C 4708/ ;

�4.˛/ D 1

100
.23 ˛3 C 446 ˛2 C 1657 ˛ C 2164/ ;

�5.˛/ D 3

5
.5˛ C 16/ :

We shall show now that

5X
jD0

�j.˛/ nj � 0 ; n � 2 ; ˛ > �1 : (10)

Notice that, unlike the case with the coefficients f�j.˛/g5jD1, which are all positive
for all admissible values of ˛ , i.e., ˛ > �1 , here the coefficients �j.˛/ , 1 � j � 3,
assume negative values for some ˛ 2 .�1; 0/ (�1.˛/ is negative also for some
˛ > 0).

Since �4.˛/ and �5.˛/ are positive for ˛ > �1 , for n � 2 we have

5X
jD3

�j.˛/ nj � �
4 �5.˛/C 2 �4.˛/C �3.˛/

�
n3 DW Q�3.˛/ n3 ;

where

Q�3.˛/ D 1

125
.8 ˛4 C 239 ˛3 C 2368 ˛2 C 9226 ˛ C 12564/ :

Since Q�3.˛/ > 0 for ˛ > �1, we have

5X
jD2

�j.˛/ nj � �
2 Q�3.˛/C �2.˛/

�
n2 DW Q�2.˛/ n2 ; n � 2 ;

where

Q�2.˛/ D 1

100
.32 ˛4 C 655 ˛3 C 4920 ˛2 C 16595 ˛ C 20668/ :

Now, from Q�2.˛/ > 0 for ˛ > �1, we obtain

5X
jD1

�j.˛/ nj � �
2 Q�2.˛/C �1.˛/

�
n DW Q�1.˛/ n ; n � 2 ;

with

Q�1.˛/ D 1

250
.160 ˛4C3323 ˛3C25056 ˛2C84292 ˛C103184/ > 0 ; ˛ > �1 :
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Hence,
P5

jD0 �j.˛/ nj � Q�1.˛/ n C �0.˛/ > 0 , and (10) is proved. From (10) we
conclude that

1

.˛ C 1/3.˛ C 3/.˛ C 5/
.n C 1/3

�
n C 2.˛ C 1/

5

�3
> b31 � 3b1 b2 C 3b3 ;

In view of Proposition 6, the latter inequality proves the upper bound for cn.˛/ in
Theorem 1.

5 Concluding Remarks

1. Our main concern here is the major terms in the bounds for the best Markov
constant cn.˛/, obtained through Proposition 1. We did not care much about the
lower degree terms, where perhaps some improvement is possible.

2. Obviously, Dörfler’s upper bound for cn.˛/ in (4) is a consequence of Proposi-
tion 1 (i). Dörfler’s lower bound for cn.˛/ in [8], which is slightly better than the
one given in (4), is obtained from Proposition 1 (ii). Both our lower and upper
bounds for the asymptotic constant c.˛/, given in Corollary 1, are superior for
all ˛ > �1 to Dörfler’s bounds obtained from (4) .

3. The upper bounds for the largest zero xn of a polynomial having only real
and positive zeros in Proposition 1 (ii) and (ii) admit some improvement. For
instance, in Proposition 1 (ii) one can apply the quadratic mean–arithmetic mean
inequality to obtain

b21 � 2b2 D x2n C
n�1X
iD1

x2i � x2n C
�Pn�1

iD1 jxij
�2

n � 1 � x2n C .b1 � xn/
2

n � 1 ;

which yields a (slightly stronger) quadratic inequality for xn (actually, for any of
the zeros of the polynomial P),

n x2n � 2b1 xn C 2.n � 1/b2 � .n � 2/b21 � 0 :

The solution of the latter inequality,

1

n

h
b1 �

q
.n � 1/2b21 � 2.n � 1/n b2

i
� xn � 1

n

h
b1 C

q
.n � 1/2b21 � 2.n � 1/n b2

i
;

provides lower and upper bounds for the zeros of an arbitrary real-root monic
polynomial of degree n in terms of its two leading coefficients b1 and b2. This result,
due to Laguerre, is also known as Laguerre–Samuelson inequality (for more details,
see, e.g., [12] and the references therein).
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In a similar way one can obtain a slight improvement for the upper bound in
Proposition 1 (iii). However, in our case this improvement is negligible (it affects
only the lower degree terms in the upper bound for cn.˛/).
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1 Introduction and Notation

Let Pn denote the family of all algebraic polynomials of degree at most n with real
coefficients. We use the notation

kf kA WD kf kL1.A/ WD kf kL1A WD sup
t2A

jf .t/j

and

kf kLqA WD kf kLq.A/ WD
�Z b

a
jf .t/jq dt

	1=q

; q > 0 ;

for measurable functions f defined on a nonempty set A � R. Two classical
inequalities for polynomials are the following:

Markov Inequality. We have

kf 0kŒa;b� � 2n2

b � a
kf kŒa;b�

for every f 2 Pn and for every subinterval Œa; b� of the real line.

Bernstein Inequality. We have

jf 0.y/j � np
.b � y/.y � a/

kf kŒa;b� ; y 2 .a; b/ ;

for every f 2 Pn and for every Œa; b� � R.
For proofs see [4] or [16], for example. Professor Rahman was a great expert

of Markov- and Bernstein-type inequalities for various classes of functions, in
particular for polynomials under various constraints on their zeros, coefficients,
and so on. His books [33] and [34] are great sources of such inequalities. See also
[4, 19, 22], for instance. Here we do not even try to survey Rahman’s contributions
to Markov- and Bernstein-type inequalities and related results. We focus only on
Markov- and Bernstein-type inequalities for products of Müntz polynomials. Let
ƒn WD f�0 < �1 < � � � < �ng be a set of real numbers. We denote the linear span of
x�0 ; x�1 ; : : : ; x�n over R by

M.ƒn/ WD spanfx�0 ; x�1 ; : : : ; x�ng :

Elements of M.ƒn/ are called Müntz polynomials. We denote the linear span of
e�0t; e�1t; : : : ; e�nt over R by

E.ƒn/ WD spanfe�0t; e�1t; : : : ; e�ntg :
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Elements of E.ƒn/ are called exponential sums. Observe that the substitution x D et

transforms exponential sums into Müntz polynomials and the interval .�1; 0� onto
.0; 1�.

Newman [31] established an essentially sharp Markov-type inequality for
M.ƒn/.

Theorem 1.1 (Newman’s Inequality). Let ƒn WD f�0 < �1 < � � � < �ng be a set
of nonnegative real numbers. We have

2

3

nX
jD0

�j � sup
06�f 2M.ƒn/

jf 0.1/j
kf kŒ0;1� � sup

06�f 2M.ƒn/

kxf 0.x/kŒ0;1�
kf kŒ0;1� � 11

nX
jD0

�j :

Frappier [28] showed that the constant 11 in Newman’s inequality can be
replaced by 8:29. By modifying and simplifying Newman’s arguments, Borwein and
Erdélyi [9] showed that the constant 11 in the above inequality can be replaced by 9.
But more importantly, this modification allowed us to prove the “right” Lq version
(1 � q � 1) of Newman’s inequality [9] (an L2 version of which was proved earlier
by Borwein et al. [13]). Note that Newman’s inequality can be rewritten as

2

3

nX
jD0

�j � sup
06�g2E.ƒn/

jg0.0/j
kgk.�1;0�

� sup
06�g2E.ƒn/

kg0k.�1;0�

kgk.�1;0�

� 11

nX
jD0

�j ;

whenever ƒn WD f�0 < �1 < � � � < �ng is a set of nonnegative real numbers.
It is non-trivial and proved by Borwein and Erdélyi [4] that under a growth

condition, kxf 0.x/kŒ0;1� in Newman’s inequality can be replaced by kf 0kŒ0;1�. More
precisely, the following result holds:

Theorem 1.2 (Newman’s Inequality Without the Factor x). Let

ƒn WD f�0 < �1 < � � � < �ng
be a set of nonnegative real numbers with �0 D 0 and �j � j for each j.We have

kf 0kŒ0;1� � 18

0
@

nX
jD0
�j

1
A kf kŒ0;1�

for every f 2 M.ƒn/.

It can be shown that the growth condition in Theorem 1.2 is essential. This obser-
vation is based on an example given by Len Bos (non-published communication).
The statement below is proved in [18].

Example 1.3. For every ı 2 .0; 1/ there exists a sequence ƒ WD .�j/
1
jD0 with �0 WD

0, �1 � 1; and

�jC1 � �j � ı ; j D 0; 1; 2; : : : ;
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such that with ƒ� WD f�0 < �1 < � � � < ��g we have

lim
�!1 sup

06�f 2M.ƒ�/

jf 0.0/j�P�
jD0 �j

�
kf kŒ0;1�

D 1 :

Note that the interval Œ0; 1� plays a special role in the study of Müntz polynomials.
A linear transformation y D ˛x C ˇ does not preserve membership in M.ƒn/ in
general (unless ˇ D 0), that is, f 2 M.ƒn/ does not necessarily imply that g.x/ WD
f .˛x C ˇ/ 2 M.ƒn/. Analogs of the above results on Œa; b�, a > 0, cannot be
obtained by a simple transformation. However, Borwein and Erdélyi [8] proved the
following result:

Theorem 1.4 (Newman’s Inequality on Œa; b� � .0;1/). Let

ƒn WD f0 D �0 < �1 < � � � < �ng

be a set of real numbers. Suppose there exists a % > 0 such that �j � %j for each j.
Suppose a; b 2 R and 0 < a < b. There exists a constant c.a; b; %/ depending only
on a, b, and % such that

kf 0kŒa;b� � c.a; b; %/

0
@

nX
jD0
�j

1
A kf kŒa;b�

for every f 2 M.ƒn/.

The above theorem is essentially sharp, as one can easily deduce it from the first
inequality of Theorem 1.1 by a linear scaling. The novelty of Theorem 1.5 proved
in [2] later is the fact that ƒn WD f�0 < �1 < : : : < �ng is an arbitrary set of n C 1

distinct real numbers, not even the non-negativity of the exponents �j is needed.

Theorem 1.5. Let n � 1 be an integer. Let ƒn WD f�0 < �1 < � � � < �ng be a set of
n C 1 distinct real numbers. Suppose a; b 2 R and 0 < a < b. We have

1

3

nX
jD0

j�jjC 1

4 log.b=a/
.n�1/2 � sup

06�f 2M.ƒn/

kxf 0.x/kŒa;b�
kf kŒa;b� � 11

nX
jD0

j�jjC 128

log.b=a/
.nC1/2 :

Remark 1.6. Of course, we can have f 0.x/ instead of xf 0.x/ in the above estimate,
as an obvious corollary of the above theorem is

1

3b

nX
jD0

j�jjC 1

4b log.b=a/
.n�1/2 � sup

06�f 2M.ƒn/

kf 0kŒa;b�
kf kŒa;b� � 11

a

nX
jD0

j�jjC 128

a log.b=a/
.nC1/2
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for every a; b 2 R such that 0 < a < b. Observe also that Theorem 1.1 can be
obtained from Theorem 1.5 (with the constant 1=3 in the lower bound) as a limiting
case by letting a > 0 tend to 0.

The following LqŒa; b� version of Theorem 1.5 is also proved in [2] for q � 1.

Theorem 1.7. Let n � 1 be an integer. Let ƒn WD f�0 < �1 < � � � < �ng be a set of
n C 1 distinct real numbers. Suppose a; b 2 R, 0 < a < b, and 1 � q < 1. There
is a positive constant c1.a; b/ depending only on a and b such that

sup
06�f 2M.ƒn/

kf 0kLqŒa;b�

kf kLqŒa;b�
� c1.a; b/

0
@n2 C

nX
jD0

j�jj
1
A :

Theorem 1.7 was proved earlier under the additional assumptions that �0 WD 0

and �j � ıj for each j with a constant ı > 0 and with c1.a; b/ replaced by c1.a; b; ı/,
see [17]. The novelty of Theorem 1.7 is the fact again that ƒn WD f�0 < �1 < � � � <
�ng is an arbitrary set of n C 1 distinct real numbers, not even the non-negativity of
the exponents �j is needed.

In [21] the following Markov–Nikolskii-type inequality has been proved for
E.ƒn/ on .�1; 0�.

Theorem 1.8. Let ƒn WD f�0 < �1 < � � � < �ng be a set of nonnegative real
numbers and 0 < q � p � 1. Let � be a nonnegative integer. There are constants
c2 D c2.p; q; �/ > 0 and c3 D c3.p; q; �/ depending only on p, q, and � such that

c2

0
@

nX
jD0

�j

1
A
�C 1

q � 1
p

� sup
06�f 2E.ƒn/

kf .�/kLp.�1;0�

kf kLq.�1;0�

� c3

0
@

nX
jD0

�j

1
A
�C 1

q � 1
p

;

where the lower bound holds for all 0 < q � p � 1 and � � 0, while the upper
bound holds when � D 0 and 0 < q � p � 1, and when � � 1, p � 1, and
0 < q � p � 1. Also, there are constants c2 D c2.q; �/ > 0 and c3 D c3.q; �/
depending only on q and � such that

c2

0
@

nX
jD0

�j

1
A
�C 1

q

� sup
06�f 2E.ƒn/

jf .�/.y/j
kf kLq.�1;y�

� c3

0
@

nX
jD0

�j

1
A
�C 1

q

for all 0 < q � 1, � � 1, and y 2 R.

Motivated by a question of Michel Weber, the following Markov-Nikolskii-type
inequalities have been proved in [25] for E.ƒn/ on Œa; b� � .�1;1/.

Theorem 1.9. Suppose 0 < q � p � 1, a; b 2 R, and a < b. There are constants
c4 D c4.p; q; a; b/ > 0 and c5 D c5.p; q; a; b/ depending only on p, q, a, and b such
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that

c4

0
@n2 C

nX
jD0

j�jj
1
A

1
q � 1

p

� sup
06�f 2E.ƒn/

kf kLpŒa;b�

kf kLqŒa;b�
� c5

0
@n2 C

nX
jD0

j�jj
1
A

1
q � 1

p

:

Theorem 1.10. Suppose 0 < q � p � 1, a; b 2 R, and a < b. There are constants
c6 D c6.p; q; a; b/ > 0 and c7 D c7.p; q; a; b/ depending only on p, q, a, and b
such that

c6

0
@n2 C

nX
jD0

j�jj
1
A
1C 1

q � 1
p

� sup
06�f 2E.ƒn/

kf 0kLpŒa;b�

kf kLqŒa;b�
� c7

0
@n2 C

nX
jD0

j�jj
1
A
1C 1

q � 1
p

;

where the lower bound holds for all 0 < q � p � 1, while the upper bound holds
when p � 1 and 0 < q � p � 1.

We note that even more general Nikolskii-type inequalities are proved in [12] for
shift invariant function spaces.

Müntz’s classical theorem characterizes the sequences ƒ WD .�j/
1
jD0 with

0 D �0 < �1 < �2 < � � �

for which the Müntz space

M.ƒ/ WD spanfx�0 ; x�1 ; : : :g

is dense in CŒ0; 1�. Here spanfx�0 ; x�1 ; : : :g denotes the collection of all finite linear
combinations of the functions x�0 ; x�1 ; : : : with real coefficients, and C.A/ is the
space of all real-valued continuous functions on A � Œ0;1/ equipped with the
supremum norm. If A WD Œa; b� is a finite closed interval, then the notation CŒa; b� WD
C.Œa; b�/ is used. Müntz’s Theorem states the following:

Müntz’s Theorem. Suppose 0 D �0 < �1 < �2 < � � � . The space M.ƒ/ is dense
in CŒ0; 1� if and only if

P1
jD1 1=�j D 1.

Proofs are available in [4, 14, 16], for example. The original Müntz Theorem
proved by Müntz [30] and Szász [38] and anticipated by Bernstein [3] was only
for sequences of exponents tending to infinity. There are many generalizations and
variations of Müntz’s Theorem. See [4–6, 10, 15, 16, 20, 27, 29, 35, 39] among
others. There are also many problems still open today.

Somorjai [37] in 1976 and Bak and Newman [1] in 1978 proved that

R.ƒ/ WD fp=q W p; q 2 M.ƒ/g
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is always dense in CŒ0; 1� whenever ƒ WD .�j/
1
jD0 contains infinitely many

distinct real numbers. This surprising result says that while the set M.ƒ/ of Müntz
polynomials may be far from dense, the set R.ƒ/ of Müntz rationals is always dense
in CŒ0; 1�, whenever the underlying sequence ƒ contains infinitely many distinct
real numbers. In the light of this result, Newman [32] (p. 50) raises “the very sane,
if very prosaic question”. Are the functions

kY
jD1

 njX
iD0

ai;jx
i2

!
; ai;j 2 R ; nj 2 N ;

dense in CŒ0; 1� for some fixed k � 2 ? In other words does the “extra multiplication”
have the same power that the “extra division” has in the Bak–Newman–Somorjai
result? Newman speculated that it did not.

Denote the set of the above products by Hk. Since every natural number is the
sum of four squares, H4 contains all the monomials xn, n D 0; 1; 2; : : :. However,
Hk is not a linear space, so Müntz’s Theorem itself cannot be applied to resolve the
denseness or non-denseness of H4 in CŒ0; 1�.

Borwein and Erdélyi [4, 5, 10] deal with products of Müntz spaces and, in
particular, the question of Newman is answered in the negative. In fact, in [10] we
presented a number of inequalities each of which implies the answer to Newman’s
question. One of them is the following bounded Bernstein-type inequality for
products of Müntz polynomials from non-dense Müntz spaces. For

ƒ.j/ WD .�i;j/
1
iD0 ; 0 D �0;j < �1;j < �2;j < � � � ; j D 1; 2; : : : ;

we define the sets

M.ƒ.1/; ƒ.2/; : : : ; ƒ.k// WD
8<
:f D

kY
jD1

fj W fj 2 M.ƒ.j//

9=
; :

Theorem 1.11. Suppose

ƒ.j/ WD .�i;j/
1
iD0 ; 0 D �0;j < �1;j < �2;j < � � � ; j D 1; 2; : : : ; k ;

and

1X
iD1

1

�i;j
< 1 and �1;j � 1 ; j D 1; 2; : : : ; k :

Let s > 0. There exits a constant c depending only on ƒ.1/;ƒ.2/; : : : ; ƒ.k/, s, and k
(and not on % or A) such that

kf 0kŒ0;%� � c kf kA
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for every f 2 M.ƒ.1/; ƒ.2/; : : : ; ƒ.k// and for every set A � Œ%; 1� of Lebesgue
measure at least s.

In [18] the right Markov-type inequalities for products of Müntz polynomials are
established when the factors come from arbitrary (not necessarily non-dense) Müntz
spaces. More precisely, associated with the sets

ƒn WD f�0 < �1 < � � � < �ng and �m WD f	0 < 	1 < � � � < 	mg

of real numbers we examined the magnitude of

K.M.ƒn/;M.�m// WD sup


 kx.pq/0.x/kŒ0;1�
kpqkŒ0;1� W 0 6� p 2 M.ƒn/ ; 0 6� q 2 M.�m/

�
;

(1)

eK.M.ƒn/;M.�m/; a; b/ WD sup


 k.pq/0kŒa;b�
kpqkŒa;b� W 0 6� p 2 M.ƒn/ ; 0 6� q 2 M.�m/

�
;

(2)
where Œa; b� � Œ0;1/, and

eK.E.ƒn/;E.�m/; a; b/ WD sup


 k.pq/0kŒa;b�
kpqkŒa;b� W 0 6� p 2 E.ƒn/ ; 0 6� q 2 E.�m/

�
;

(3)
where Œa; b� � .�1;1/.

The result below proved in [18] is an essentially sharp Newman-type inequality
for products of Müntz polynomials.

Theorem 1.12. Let

ƒn WD f0 D �0 < �1 < � � � < �ng and �m WD f0 D 	0 < 	1 < � � � < 	mg :

Let K.M.ƒn/;M.�m// be defined by (1). We have

1

3
..m C 1/�n C .n C 1/	m/ � K.M.ƒn/;M.�m// � 18 .n C m C 1/.�n C 	m/ :

In particular,

2

3
.n C 1/�n � K.M.ƒn/;M.ƒn// � 36 .2n C 1/�n :

The factor x from kx.pq/0.x/kŒ0;1� in Theorem 1.12 can be dropped in the expense
of a growth condition. The result below proved in [18] establishes an essentially
sharp Markov-type inequality on Œ0; 1�.
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Theorem 1.13. Let

ƒn WD f0 D �0 < �1 < � � � < �ng and �m WD f0 D 	0 < 	1 < � � � < 	mg

with �j � j and 	j � j for each j. Let eK.M.ƒn/;M.�m/; 0; 1/ be defined by (2).
We have

1

3
..m C 1/�n C .n C 1/	m/ � eK.M.ƒn/;M.�m/; 0; 1/ � 36 .n C m C 1/.�n C 	m/ :

In particular,

2

3
.n C 1/�n � eK.M.ƒn/;M.ƒn/; 0; 1/ � 72 .2n C 1/�n :

Under a growth condition again, Theorem 1.13 can be extended to the interval
Œ0; 1� replaced by Œa; b� � .0;1/. The essentially sharp Markov-type inequality
below is also proved in [18].

Theorem 1.14. Let

ƒn WD f0 D �0 < �1 < � � � < �ng and �m WD f0 D 	0 < 	1 < � � � < 	mg :

Suppose there exists a % > 0 such that �j � %j and 	j � %j for each j. Suppose
a; b 2 R and 0 < a < b. Let eK.Mn.ƒ/;Mm.�/; a; b/ be defined by (2). There is a
constant c.a; b; %/ depending only on a, b, and % such that

b

3
..mC1/�nC.nC1/	m/ � eK.M.ƒn/;M.�m/; a; b/ � c.a; b; %/ .nCmC1/.�nC	m/ :

In particular,

2b

3
.n C 1/�n � eK.M.ƒn/;M.ƒn/; a; b/ � 2 c.a; b; %/ .2n C 1/�n :

Remark 1.15. Analogs of the above three theorems dealing with products of several
Müntz polynomials can also be proved by straightforward modifications.

Remark 1.16. Let �j D 	j WD j2; j D 0; 1; : : : ; n. If we multiply pq out, where
p; q 2 M.ƒn/, and we apply Newman’s inequality, we get

K.Mn.ƒ/;Mn.ƒ// � cn4

with an absolute constant c. However, if we apply Theorem 1.12, we obtain

K.Mn.ƒ/;Mn.ƒ// � 36 .2n C 1/n2 :
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It is quite remarkable that K.Mn.ƒ/;Mn.ƒ// is of the same order of magnitude

as the Markov factor 11
�Pn

jD0 j2
�

in Newman’s inequality for Mn.ƒ/. When the

exponents �j grow sufficiently slowly, similar improvements can be observed in
each of our Theorems 1.12–1.14 compared with the “natural first idea” of “multiply
out and use Newman’s inequality”.

The essentially sharp Bernstein-type inequality below for

En WD
(

f W f .t/ D a0 C
nX

jD1
aje

�jt ; aj; �j 2 R

)
D
[

E.ƒn/

is proved in [7] (the union above is taken for all ƒn D f�0 < �1 < � � � < �ng for
which 0 2 ƒn).

Theorem 1.17. We have

1

e � 1
n � 1

minfy � a; b � yg � sup
06�f 2En

jf 0.y/j
kf kŒa;b� � 2n � 1

minfy � a; b � yg ; y 2 .a; b/ :

We note that pointwise Remez- and Nikolskii-type inequalities for En are also
proved in [11].

2 New Results

The results of this section were motivated by e-mail communications with Thomas
Bloom who was interested in Corollaries 2.3–2.6 in particular.

We examine what happens when in Theorem 1.14 we drop the growth condition
“there exists a % > 0 such that �j � %j and 	j � %j for each j”.

Modifying the proof of Theorem 1.14 we can prove the result below.

Theorem 2.1. Let ƒn WD f�0 < �1 < � � � < �ng and �m WD f	0 < 	1 < � � � < 	mg
be sets of real numbers such that �0 � 0 � �n and 	0 � 0 � 	m. Suppose a; b 2 R

and 0 < a < b. Let eK.M.ƒn/;M.�m/; a; b/ be defined by (2). We have

eK.M.ƒn/;M.�m/; a; b/ � 22.nCmC1/.�n��0C	m�	0/C 512

log.b=a/
.nCmC1/2 :

If, in addition, �0 D 	0 D 0, then

1

6
..m C 1/�n C .n C 1/	m/C 1

16 log.b=a/
.n C m � 2/2 � eK.M.ƒn/;M.�m/; a; b/ :
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Corollary 2.2. Let ƒn WD f�0 < �1 < � � � < �ng be a set of real numbers such that
�0 � 0 � �n. Suppose a; b 2 R and 0 < a < b. Let

eK.M.ƒn/;M.ƒn/; a; b/

be defined by (2). We have

eK.M.ƒn/;M.ƒn/; a; b/ � 44.2n C 1/.�n � �0/C 512

log.b=a/
.2n C 1/2 :

If, in addition, �0 D 0, then

1

3
.n C 1/�n C 1

4
log.b=a/.n � 1/2 � eK.M.ƒn/;M.ƒn/; a; b/ :

By using the substitution x D et it is easy to see that the theorem below is
equivalent to Theorem 2.1.

Theorem 2.1�. Let ƒn WD f�0 < �1 < � � � < �ng and �m WD f	0 < 	1 < � � � < 	mg
be sets of real numbers such that �0 � 0 � �n, 	0 � 0 � 	m. Suppose a; b 2 R and
a < b. Let

eK.E.ƒn/;E.�m/; a; b/

be defined by (3). We have

eK.E.ƒn/;E.�m/; a; b/ � 22.n C m C 1/.�n ��0 C 	m � 	0/C 512

b � a
.n C m C 1/2 :

If, in addition, �0 D 	0 D 0, then

1

6
..m C 1/�n C .n C 1/	m/C 1

16.b � a/
.n C m � 2/2 � eK.E.ƒn/;E.�m/; a; b/ :

Corollary 2.2�. Let ƒn WD f�0 < �1 < � � � < �ng be a set of real numbers such
that �0 � 0 � �n. Suppose a; b 2 R and a < b. Let

eK.E.ƒn/;E.ƒn/; a; b/

be defined by (3). We have

eK.E.ƒn/;E.ƒn/; a; b/ � 22.2n C 1/�n C 512

b � a
.2n C 1/2 :

If, in addition, �0 D 0, then

1

3
.n C 1/�n C 1

4
.b � a/.n � 1/2 � eK.E.ƒn/;E.ƒn/; a; b/ :
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Theorem 2.1 gives the size of

eK.Pn;Pm; a; b; ˛; ˇ/ WD sup

( �� d
dx .p.x

˛/q.xˇ//
��
Œa;b�

kp.x˛/q.xˇ/kŒa;b� W p 2 Pn ; q 2 Pm

)
(4)

immediately for real numbers 0 < a < b, ˛ > 0, and ˇ > 0.

Corollary 2.3. Suppose a; b; ˛; ˇ 2 R, 0 < a < b, ˛ > 0, and ˇ > 0. Let

eK.Pn;Pm; a; b; ˛; ˇ/

be defined by (4). We have

eK.Pn;Pm; a; b; ˛; ˇ/ � 22.n C m C 1/.n˛ C mˇ/C 512

b � a
.n C m C 1/2

and

1

6
..m C 1/n˛ C .n C 1/mˇ/C 1

16.b � a/
.n C m � 2/2 � eK.Pn;Pm; a; b; ˛; ˇ/ :

Corollary 2.4. Suppose a; b; ˛; ˇ 2 R, 0 < a < b, ˛ > 0, and ˇ > 0. Let

eK.Pn;Pm; a; b; ˛; ˇ/

be defined by (4). We have

eK.Pn;Pm; a; b; ˛; ˇ/ 	 .n C m/2 ;

where x 	 y means that c1 � x=y � c2 with some constants c1 > 0 and c2 > 0

depending only on a, b, ˛, and ˇ.

Finding the size of

eK.E.ƒn/;Pm; a; b/ WD sup


 kpq/0kŒa;b�
kpqkŒa;b� W p 2 E.ƒn/ ; q 2 Pm

�

can also be viewed as a special case of Theorem 2.1�.

Corollary 2.5. Let ƒn WD f�0 < �1 < � � � < �ng be a set of real numbers such that
�0 � 0 � �n. Suppose a; b 2 R and a < b. We have

eK.E.ƒn/;Pm; a; b/ � 22.n C m C 1/.�n � �0/C 512

b � a
.n C m C 1/2 :

If, in addition, �0 D 0, then

1

6
.m C 1/�n C 1

16.b � a/
.n C m � 2/2 � eK.E.ƒn/;Pm; a; b/ :



Markov-Type Inequalities for Products of Müntz Polynomials Revisited 31

As a special case of Corollary 2.5 we record the following:

Corollary 2.6. Suppose a; b 2 R and a < b. Let ƒn WD f0; 1; : : : ; ng. We have

eK.E.ƒn/;Pm; a; b/ 	 .n C m/2 ;

where x 	 y means that c1 � x=y � c2 with some constants c1 > 0 and c2 > 0

depending only on a and b.

Let �m WD f0 D 	0 < 	1 < � � � < 	mg be a set of nonnegative real numbers. We
denote the collection of all linear combinations of

1; cosh.	1t/; cosh.	2t/; : : : ; cosh.	mt/

over R by

G.�m/ WD spanf1 ; cosh.	1t/ ; cosh.	2t/ ; : : : ; cosh.	mt/g :
Our next result is a Bernstein-type inequality for product of exponential sums. It
would be desirable to replace G.�m/ with E.�m/ in the theorem below but our
method of proof does not seem to allow us to do so.

Theorem 2.7. Let

ƒn WD f�0 < �1 < � � � < �ng and �m WD f0 D 	0 < 	1 < � � � < 	mg
be sets of real numbers. We have

jf 0.0/j � .2n C 2m C 1/kf kŒ�1;1�
for all f of the form

f D pq; p 2 E.ƒn/; q 2 G.�m/ :

3 Lemmas for Theorem 2.1�

Our first four lemmas have been stated as Lemmas 3.1–3.4 in [22], where their
proofs are also presented. Our first lemma can be proved by a simple compactness
argument and may be viewed as a simple exercise.

Lemma 3.1. Let 
n WD fı0 < ı1 < � � � < ıng be a set of real numbers. Let
a; b; c 2 R and a < b. Let 0 6� w be a continuous function defined on Œa; b�. Let
q 2 .0;1�. There exists a 0 6� T 2 E.
n/ such that

jT.c/j
kTwkLqŒa;b�

D sup

(
jP.c/j

kPwkLqŒa;b�
W 0 6� P 2 E.
n/

)
;
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and there exists a 0 6� S 2 E.
n/ such that

jS0.c/j
kSwkLqŒa;b�

D sup

(
jP0.c/j

kPwkLqŒa;b�
W 0 6� P 2 E.
n/

)
:

Our next lemma is an essential tool in proving our key lemmas, Lemmas 3.3
and 3.4.

Lemma 3.2. Let 
n WD fı0 < ı1 < � � � < ıng be a set of real numbers. Let
a; b; c 2 R and a < b < c. Let q 2 .0;1�. Let T and S be the same as in Lemma 3.1.
The function T has exactly n zeros in Œa; b� by counting multiplicities. Under the
additional assumption ın � 0, the function S also has exactly n zeros in Œa; b� by
counting multiplicities.

The heart of the proof of our theorems is the following pair of comparison
lemmas. Lemmas 3.3 and 3.4 below are proved in [24] based on Descartes’ Rule
of Sign and a technique used earlier by Pinkus and Smith [36].

Lemma 3.3. Let 
n WD fı0 < ı1 < � � � < ıng and �n WD f	0 < 	1 < � � � < 	ng be
sets of real numbers satisfying ıj � 	j for each j D 0; 1; : : : ; n. Let a; b; c 2 R and
a < b � c. Let 0 6� w be a continuous function defined on Œa; b�. Let q 2 .0;1�.
We have

sup

(
jP.c/j

kPwkLqŒa;b�
W 0 6� P 2 E.
n/

)
� sup

(
jP.c/j

kPwkLqŒa;b�
W 0 6� P 2 E.�n/

)
:

Under the additional assumption ın � 0 we also have

sup

(
jP0.c/j

kPwkLqŒa;b�
W 0 6� P 2 E.
n/

)
� sup

(
jP0.c/j

kPwkLqŒa;b�
W 0 6� P 2 E.�n/

)
:

Lemma 3.4. Let 
n WD fı0 < ı1 < � � � < ıng and �n WD f	0 < 	1 < � � � < 	ng be
sets of real numbers satisfying ıj � 	j for each j D 0; 1; : : : ; n. Let a; b; c 2 R and
c � a < b. Let 0 6� w be a continuous function defined on Œa; b�. Let q 2 .0;1�.
We have

sup

(
jP.c/j

kPwkLqŒa;b�
W 0 6� P 2 E.
n/

)
� sup

(
jP.c/j

kPwkLqŒa;b�
W 0 6� P 2 E.�n/

)
:

Under the additional assumption 	0 � 0 we also have

sup

(
jQ0.c/j

kQwkLqŒa;b�
W 0 6� Q 2 E.
n/

)
� sup

(
jQ0.c/j

kQwkLqŒa;b�
W 0 6� Q 2 E.�n/

)
:

We will also need the following result which may be obtained from Theorem 1.5
by a substitution x D et.
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Lemma 3.5. Let n � 1 be an integer. Let ƒn WD f�0; �1; : : : ; �ng be a set of n C 1

distinct real numbers. Let a; b 2 R and 0 < a < b. We have

1

3

nX
jD0

j�jj C 1

4.b � a/
.n � 1/2 � sup

06�P2E.ƒn/

kP0kŒa;b�
kPkŒa;b� � 11

nX
jD0

j�jj C 128

b � a
.n C 1/2 :

4 Lemmas for Theorem 2.7

Let ƒn WD f�0 < �1 < � � � < �ng be a set of distinct positive real numbers. We
denote the collection of all linear combinations of

sinh.�0t/; sinh.�1t/; : : : ; sinh.�nt/

over R by

H.ƒn/ WD spanfsinh.�0t/; sinh.�1t/; : : : ; sinh.�nt/g :

The first lemma is stated and proved in Sect. 4 of [23].

Lemma 4.1. Let ƒn WD f�0 < �1 < � � � < �ng and �n WD f	0 < 	1 < � � � < 	ng be
sets of positive real numbers satisfying �j � 	j for each j D 0; 1; : : : ; n. Let a; b 2 R

and 0 � a < b. Let 0 6� w be a continuous function defined on Œa; b�. Let q 2 .0;1�.
We have

sup

(
jP0.0/j

kPwkLqŒa;b�
W P 2 H.�n/

)
� sup

(
jP0.0/j

kPwkLqŒa;b�
W P 2 H.ƒn/

)
:

As before, associated with ƒn WD f0 D �0 < �1 < � � � < �ng, we denote the
collection of all linear combinations of

1 ; cosh.�1t/ ; cosh.�2t/ ; : : : ; cosh.�nt/

over R by

G.ƒn/ WD spanf1 ; cosh.�1t/ ; cosh.�2t/ ; : : : ; cosh.�nt/g :

The next lemma is stated and proved in Sect. 3 of [26].

Lemma 4.2. Let

ƒn WD f0 D �0 < �1 < � � � < �ng and �n WD f0 D 	0 < 	1 < � � � < 	ng
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be sets of nonnegative real numbers satisfying �j � 	j for each j D 0; 1; : : : ; n. Let
a; b 2 R and 0 � a < b. Let 0 6� w be a continuous function defined on Œa; b�. Let
q 2 .0;1�. We have

sup

(
jP.0/j

kPwkLqŒa;b�
W P 2 G.�n/

)
� sup

(
jP.0/j

kPwkLqŒa;b�
W P 2 G.ƒn/

)
:

5 Proofs

Proof of Theorem 2.1�. First we prove the lower bound of the theorem. The lower
bound of Lemma 3.5 guarantees a

0 6� f 2 spanfe.�nC	0/t; e.�nC	1/t; : : : ; e.�nC	m/tg
such that

kf 0kŒa;b� �
 
1

3

mX
jD0

.�n C 	j/C 1

4.b � a/
.m � 1/2

!
kf kŒa;b�

�
 
1

3
.m C 1/�n C 1

4.b � a/
.m � 1/2

!
kf kŒa;b� :

Observe that f D pq with p 2 E.ƒn/ defined by p.x/ WD e�nt and with some
q 2 E.�m/.

Similarly, the lower bound of Lemma 3.5 guarantees a

0 6� f 2 spanfe.	mC�0/t; e.	mC�1/t; : : : ; e.	mC�n/tg

such that

kf 0kŒa;b� �
 
1

3

nX
jD0

.	m C �j/C 1

4.b � a/
.n � 1/2

!
kf kŒa;b�

�
 
1

3
.n C 1/	m C 1

4.b � a/
.n � 1/2

!
kf kŒa;b� :

Observe that f D pq with some p 2 E.ƒn/ and with q 2 E.�m/ defined by q.x/ WD
e	mt. Hence the lower bound of the theorem is proved.
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We now prove the upper bound of the theorem. We want to prove that

j.p0q/.y/j � 11.nCmC1/.�n ��0C	m �	0/C 256

b � a
.nCmC1/2 kpqkŒa;b� (5)

for every p 2 E.ƒn/, q 2 E.�m/, and y 2 Œa; b�. The rest follows from the product
rule of differentiation (the role of ƒn and �m can be interchanged). For ˛ < ˇ let

M.n;m; ˛; ˇ/ WD 11.n C m C 1/.�n � �0 C 	m � 	0/C 128

ˇ � ˛ .n C m C 1/2 :

Let d WD .a C b/=2 2 .a; b/.
First let y 2 Œd; b�. We show that

j.p0q/.y/j � M.n;m; a; y/ kpqkŒa;y� (6)

for every p 2 E.ƒn/ and q 2 E.�m/. To show (8), it is sufficient to prove that

jp0q/.y/j � .1C �/M.n;m; a; y/ kpqkŒa;y�ı� (7)

for every p 2 E.ƒn/ and q 2 E.�m/, where � denotes a quantity that tends to 0 as
ı 2 .0; y � a/ tends to 0. The rest follows by taking the limit when ı 2 .0; y � a/
tends to 0.

To see (7), by Lemmas 3.3 and 3.4 we may assume that

�j WD �n � .n � j/" ; j D 0; 1; : : : ; n ;

	j WD 	m � .m � j/" ; j D 0; 1; : : : ;m;

for some " > 0. By Lemma 3.2 we may also assume that p has n zeros in .a; y � ı/
and q has m zeros in .a; y � ı/. We normalize p and q so that p.y/ > 0 and q.y/ > 0.
Then, using the information on the zeros of p and q, we can easily see that p0.y/ > 0
and q0.y/ > 0. Therefore

j.p0q/.b/j � j.pq/0.b/j :

Now observe that f WD pq 2 E.�k/, where k WD n C m and �k WD f!1 < !2
< � � � < !kg with

!j WD �n C 	m � .n C m � j/" ; j D 0; 1; : : : ; k :

Hence Lemma 3.5 implies

j.p0q/.y/j � j.pq/0.y/j D jf 0.y/j � M.n;m; a; y/ kf kŒa;y� D M.n;m; a; y/ kpqkŒd;b� :
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By this (7), and hence (6), is proved. Combining (6) with

M.n;m; a; y/ D 11.n C m C 1/.�n � �0 C 	m � 	0/C 128

y � a
.n C m C 1/2

D 11.n C m C 1/.�n � �0 C 	m � 	0/C 256

b � a
.n C m C 1/2 ;

we conclude (7) for all y 2 Œd; b�.
Now let y 2 Œa; d�. We show that

j.p0q/.y/j � K.n;m; y; b/kpqkŒy;b� (8)

for every p 2 E.ƒn/ and q 2 E.�m/. To show (8), it is sufficient to prove that

j.p0q/.y/j � .1C �/M.n;m; y; b/ kpqkŒyCı;b� (9)

for every p 2 E.ƒn/ and q 2 E.�m/, where � denotes a quantity that tends to 0
as ı 2 .0; b � y/ tends to 0 tends to 0. The rest follows by taking the limit when
ı 2 .0; b � ı/ tends to 0.

To see (9), by Lemmas 3.3 and 3.4 we may assume that

�j WD �0 C "j ; j D 0; 1; : : : ; n ;

	j WD 	0 C "j ; j D 0; 1; : : : ;m ;

with a sufficiently small " > 0. By Lemma 3.2 we may also assume that p has n
zeros in .y C ı; b/ and q has m zeros in .y C ı; b/. We normalize p and q so that
p.y/ > 0 and q.y/ > 0. Then, using the information on the zeros of p and q, we can
easily see that p0.y/ < 0 and q0.y/ < 0. Therefore

j.p0q/.y/j � j.pq/0.y/j :

Now observe that f WD pq 2 E.�k/, where �k WD f!1 < !2 < � � � < !kg with
k WD n C m and

!j WD �0 C 	0 C j" ; j D 0; 1; : : : ; k :

Hence Lemma 3.5 implies

j.p0q/.y/j � j.pq/0.y/j D jf 0.y/j � M.n;m; y; b/ kf kŒy;b� D M.n;m; y; b/ kpqkŒy;b� :
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By this (9), and hence (8), is proved. Combining (8) with

M.n;m; y; b/ D 11.n C m C 1/.�n � �0 C 	m � 	0/C 128

b � y
.n C m C 1/2

� 11.n C m C 1/.�n � �0 C 	m � 	0/C 256

b � a
.n C m C 1/2 ;

we conclude (5) for all y 2 Œa; d�. The proof of the theorem is now complete. ut
Corollaries 2.3 and 2.4 follow from Theorem 2.1 immediately.

Proof of Corollary 2.5. Observe that

t D lim
"!0C

e"t � 1
"

;

hence every q 2 Pm and � > 0 there is a sufficiently small " > 0 and a

q" 2 E.�m;"/ WD spanf0; "; 2"; : : : ;m"g

such that

kq" � qkŒa;b� < � and kq0
" � q0kŒa;b� < � :

Therefore the corollary follows from Theorem 2.1� as a limit case. ut
Corollary 2.6 follows from Corollary 2.5 immediately.

Proof of Theorem 2.7. Let

f D pq; p 2 E.ƒn/; q 2 G.�m/ :

Observe that q 2 G.�m/ is even, hence q.t/ D q.�t/ for all t, and q0.0/ D 0. Hence,
replacing p with Qp defined by Qp.t/ WD .p.t/� p.�t//=2 we have .Qpq/0.0/ D .pq/0.0/
and

kQpqkŒ�1;1� � kpqkŒ�1;1� ;

without loss of generality we may assume that

ƒnC1 D f�0 < �1 < � � � < �nC1g � .0;1/

and p 2 H.ƒnC1/. So let f D pq with p 2 H.ƒnC1/ and q 2 G.�m/, where

ƒnC1 WD f�0 < �1 < � � � < �nC1g � .0;1/ and �m WD f0 D 	0 < 	1 < � � � < 	mg :
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As kpqkŒ�1;1� D kpqkŒ0;1�, we want to prove that

j.pq/0.0/j D jp0q/.0/j � .2n C 2m C 1/kpqkŒ0;1� (10)

for all p 2 H.ƒnC1/ and q 2 G.�m/. To prove (10), by Lemmas 4.1 and 4.2 we may
assume that

�j WD j" ; j D 0; 1; : : : ; n C 1 ;

	j WD j" ; j D 0; 1; : : : ;m ;

for some " > 0. Now observe that f WD pq 2 H.�k/, where k WD n C m C 1 and

�k WD f!1 < !2 < � � � < !kg

with

!j WD j" ; j D 0; 1; : : : ; k :

Hence Theorem 1.17 implies (10). ut
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On Bernstein-Type Inequalities for the Polar
Derivative of a Polynomial

N. K. Govil and P. Kumar

Abstract If P.z/ is a polynomial of degree n, and ˛ a complex number, then polar
derivative of P.z/ with respect to the point ˛, denoted by D˛P.z/, is defined by

D˛P.z/ D nP.z/C .˛ � z/P0.z/:

Clearly, D˛P.z/ is a polynomial of degree n � 1, and it generalizes the ordinary
derivative in the sense that

lim
˛!1


D˛P.z/

˛

�
D P0.z/:

It is well known that if P.z/ is a polynomial of degree n, then maxjzjD1 jP0.z/j �
n maxjzjD1 jP.z/j. This inequality is known as Bernstein’s inequality (Bernstein,
Leçons sur les propriétés extrémales et la meilleure approximation des fonctions
analytiques d’une variable réelle. Gauthier-Villars, Paris, 1926), although this
inequality was also proved by Riesz (Jahresber Dtsch Math-Verein 23:354–368,
1914) about 12 years before it was proved by Bernstein. The subject of inequalities
for polynomials and related classes of functions plays an important and crucial
role in obtaining inverse theorems in Approximation Theory. Frequently, the further
progress in inverse theorems has depended upon first obtaining the corresponding
analogue or generalization of Markov’s and Bernstein’s inequalities. These inequali-
ties have been the starting point of a considerable literature in Mathematics, and was
one of the areas in which Professor Q. I. Rahman worked for more than 50 years,
and made some of the most important and significant contributions. Over a period,
this Bernstein’s inequality and corresponding inequality concerning the growth of
polynomials have been generalized in different domains, in different norms, and for
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different classes of functions, and in the literature one can find hundreds of papers
on this topic. Here we study some of the research centered around Bernstein-type
inequalities for polar derivatives of polynomials. The chapter is purely expository
in nature and an attempt has been made here to provide results starting from the
beginning to some of the most recent ones.

Keywords Bernstein-type inequality • Polar derivative • Polynomial • Zero

2000 Mathematics Subject Classification: 30A10, 30C10, 30E10, 30C15.

1 Introduction

Let P.z/ D Pn
vD0 avzv be a polynomial of degree at most n. Then it is well known

that

max
jzj�1

jP0.z/j � n max
jzj�1

jP.z/j: (1)

The result is best possible and equality holds in (1) for P.z/ D �zn, � being a
complex number.

The above inequality, which is known as Bernstein’s inequality, was proved by
Bernstein [17], although this inequality was also proved by Riesz [78] about 12
years before Bernstein.

By the maximum modulus principle, max
jzj�1

jP.z/j D max
jzjD1

jP.z/j and so if we let

kPk D max
jzjD1

jP.z/j, then the Inequality (1) can be written as

kP0k � nkPk: (2)

For R � 1, it is well known (see [65], [66, Problem 269] or [79, volume 1, p. 137])
that

max
jzjDR

jP.z/j � RnkPk; (3)

with equality holding for P.z/ D �zn; where � is a complex number.
An excellent introduction to this topic is given in the well-known books due to

Marden [56], Milovanović et al. [57], and Rahman and Schmeisser [68].
Let us begin with the motivation for the genesis of the concept of polar derivative

of a polynomial. Let P.z/ be a polynomial of degree n � 1. Let

 .z/ D ˛z C ˇ

z C ı
; ˇ ¤ ˛ı; (4)
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and

.z/ D .z C ı/nP. .z//:

Then .z/ D P.˛/zn C � � � is a polynomial of degree at most n, and is of degree n if
and only if P.˛/ ¤ 0.

In order to obtain the critical points of , we differentiate .z/ with respect to z
and rearrange the terms, to obtain

0.z/ D .z C ı/n�1 �nP. .z//C .˛ �  .z//P0. .z//
�
: (5)

From this one can observe that, if � is a critical point of .z/, then either  .�/ is a
zero of

F.˛; z/ D nP.z/C .˛ � z/P0.z/ D


n C .˛ � z/
d

dz

�
P.z/; (6)

or � D �ı and F.˛; z/ is of degree less than n � 1. Conversely, if ! is a zero of
F.˛; z/, then  �1.!/ is a critical point of  unless  �1.!/ D 1, in which case
! D ˛, and then again P.˛/ D 0.

These observations lead us to believe that the first order differential operator

D˛ WD n C .˛ � z/
d

dz
; (7)

appearing in the Eq. (6) is an interesting one and hence the study of its behavior on
the class of polynomials in general and more pointedly on the class of polynomials
with restricted zeros is of significant importance. The problem concerning estima-
tion of the bound of this operator on polynomials in terms of moduli of polynomials
has been evolved subsequently over the last many years.

The fact that the operator D˛ in (7) is a “generalization” of the concept of
“ordinary derivative” of a polynomial P.z/ is evident, and convincing from the fact
that

lim
˛!1

D˛P.z/

˛
D P0.z/;

uniformly with respect to z for jzj � R; R > 0:

Definition 1. If P.z/ is a polynomial of degree n; and ˛ is any complex number,
then

D˛P.z/ D nP.z/C .˛ � z/P0.z/ (8)

is called the polar derivative of P.z/:
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As mentioned earlier, D˛P.z/ is a polynomial of degree at most n �1; and of degree
n � 1 if and only if P.n�1/.˛/ ¤ 0. It is also interesting to see that if ˛ is a zero of
P.z/ so it is of D˛P.z/:

The function D˛P.z/ has been called by Laguerre [48] the “emanant” of P.z/ and
by Pólya-Szegö [66] “the derivative of P.z/ with respect to the point ˛.” Marden
[56] called it “the polar derivative of P.z/ with respect to the pole ˛” or simply,
“the polar derivative of P.z/.”

One of the important results at the dawn of evolution of theory on polar
derivatives is the relationship between the zeros of a polynomial and that of its polar
derivative in so-called circular regions.

The class of circular regions includes the open or closed interior or exterior of
circle, and open or closed half plane. It is clear that a circular domain is invariant
under a bilinear transformation, given in (4).

The following result due to Laguerre [48, Theorem 13,1] which is analogous to
Gauss–Lucas Theorem for polynomials in convex domains is for polar derivatives
of polynomials on circular regions, and some interesting proofs of this can be found
in the monograph by Marden [56].

Theorem 1. If the zeros of the nth degree polynomial P.z/ lie in a circular region
C and if w is any zero of D˛P.z/, then not both points w and ˛ can lie outside of C.
Furthermore, if P.w/ ¤ 0, any circle S through w and ˛ either passes through all
the zeros of P.z/ or separates these zeros.

The following result which is equivalent to the first part of the above Laguerre’s
Theorem is due to Szegö [83].

Theorem 2. If P.z/ is a polynomial of degree n having no zeros in the circular
region C and if ˛ 2 C; then the polar derivative D˛P.z/ has no zeros in C.

During the course of development of inequalities involving polar derivative of
a polynomial, some interesting fundamental relations emerged. A couple of them,
given below were established by Aziz [4].

If P.z/ is a polynomial of degree n, and ˛ any real or complex number, then
clearly on jzj D 1

jD˛Q.z/j D jn N̨P.z/C .1 � N̨ z/P0.z/j; (9)

where Q.z/ D znP. 1Nz /; is the inverse polynomial of P.z/:
As is easy to see, the above identity (9) leads us to the following identity,

which has played an important role in proving many interesting inequalities in the
literature. Simply dividing (9) by j˛j on both the sides, and using the definition (8),
we get

jD˛Q.z/j D
ˇ̌
ˇ˛D 1

˛
P.z/

ˇ̌
ˇ on jzj D 1: (10)
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At this stage, it is quite natural to think if the concept of higher order ordinary
derivative of a polynomial can be extended to polar derivative of a polynomial, and
this is done as follows.

Definition 2 ([56]). Given a polynomial P.z/ of degree n; we can construct the
sequence of polar derivatives or so-called higher order derivatives with respect to
finitely many poles as given below

Pk.z/ D .n � k C 1/Pk�1.z/C .˛k � z/P0
k�1.z/; k D 1; 2; 3; � � � ; n

where P0.z/ D P.z/; and “˛k” may be identical or distinct.

For easier understanding of the concept, one can interpret the same as follows:

D˛1P.z/ D nP.z/C .˛1 � z/P0.z/

D˛2D˛1P.z/ D .n � 1/D˛1P.z/C .˛2 � z/ .D˛1P.z//
0

: : : : : :

D˛k : : :D˛1P.z/ D .n � k C 1/D˛k�1 : : :D˛1P.z/C .˛k � z/ .D˛k�1 : : :D˛1P.z//
0 ;

for 2 � k � n:

It is clear that the kth polar derivative D˛k : : :D˛1P.z/ D Pk.z/ of P.z/ is a
polynomial of degree at most n � k, just like the kth ordinary derivative P.k/.z/ of
the polynomial P.z/. Also, it is interesting to observe some clear parallels between
the location of zeros of the ordinary derivative and that of polar derivative of a
polynomial. One can recall that the location of zeros of P.k/.z/ is determined by
the repeated application of Gauss–Lucas Theorem. Similarly, the location of zeros
of polar derivative Pk.z/ can be obtained by the repeated application of Laguerre’s
Theorem.

Let us present the Laguerre’s Theorem ([56], p. 52) for higher order polar
derivatives as follows.

Theorem 3. Let P.z/ be a polynomial of degree n. If all the zeros of P.z/ lie in
a circular region C and if none of the points ˛1; ˛2; : : : ; ˛k lies in the region C,
then each of the polar derivatives D˛k D˛k�1 : : :D˛1P.z/ D Pk.z/; .k D 1; 2; 3; : : :,
n � 1/ has all of its zeros in C.

Inverse polynomials are widely seen in the literature on polynomial inequalities,
so in the inequalities involving polar derivatives as well.

Definition 3. Given a polynomial P.z/ of degree n; if P.z/ D uQ.z/ where juj D 1;

and Q.z/ D znP. 1Nz /, then P.z/ is said to be self-inversive.

Note that if P.z/ has nonzero constant term, that is P.0/ ¤ 0, and a is a zero of

P.z/ then
1

a
is a zero of Q.z/: Also, a polynomial P.z/ is self-inversive, if and only

if jP.z/j D jQ.z/j: This is evident from the maximum-modulus principle, and this



46 N. K. Govil and P. Kumar

feature of self-inversive polynomials is more employable friendly in studying the
bounds or the bounds of associated polynomials in different norms.

An interesting equality relation between the polar derivative of a self-inversive
polynomial and that of its inverse polynomial (See [4], p. 190) is given below.

For any self-inversive polynomial P.z/ and its inverse polynomial Q.z/; and for
any complex numbers ˛1; ˛2; : : :; ˛m, we have

D˛m : : :D˛1P.z/ D D˛m : : :D˛1Q.z/:

The present chapter consists of three sections with some subsections, including
Sect. 1 which is introductory in nature and contains preliminary notions, basic
definitions, and some of the known results that are relevant and related to our study,
and would be needed for the development of the subject in the subsequent sections.
Section 2 begins with a brief introduction to the problems discussed in this section,
and is followed by three subsections. In Sect. 2.1 we discuss the inequalities on
uniform norm for the polar derivative of a polynomial with no restriction on zeros,
in Sect. 2.2 the inequalities on uniform norm for polar derivative of a polynomial
having no zeros in a circle, and in Sect. 2.3 the inequalities on uniform norm for
polar derivative of a polynomial having all their zeros in a circle.

Section 3 is on Lp inequalities and has three subsections. Section 3.1 is devoted to
the LP inequalities for polar derivative of a polynomial with no restriction on zeros,
Sect. 3.2 unravels the inequalities of LP type for polar derivative of a polynomial
with no zeros inside a circle, and lastly, in Sect. 3.3 we discuss the LP inequalities
for polar derivative of a polynomial that has all the zeros in a circle.

2 Bounds on the Uniform Norm of Polar Derivative
of a Polynomial

We begin with a classical result due to Bernstein [17], mentioned in Sect. 1, which
states that, if P.z/ is a polynomial of degree n; then

max
jzjD1

jP0.z/j � n max
jzjD1

jP.z/j: (11)

For R � 1, it is well known (see [79] or Problem 269 of [66], p. 346) that

max
jzjDR

jP.z/j � Rn max
jzjD1

jP.z/j: (12)

The inequalities (11) and (12) are sharp and equality holds, if P.z/ has all its
zeros at the origin.

It is well known that the inequalities of Bernstein type are fundamental for
the proof of many subsequent theorems in the area of Approximation Theory
and Polynomial Approximations. There are many results concerning Bernstein’s
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inequality and their generalizations in different forms, an area in which Professor
Q. I. Rahman worked more than 50 years. There are many books, survey articles,
and research monographs written on this subject, and we refer to the readers the
books due to Borwein and Erdélyi [22], Marden [56], Milovanović, Mitrinović, and
Rassias [57], and Rahman and Schmeisser [68].

The results presented in this section, as well as in the coming sections on polar
derivatives are some of the extensions and generalizations of the Bernstein-type
inequalities appeared in the literature for the ordinary derivatives of any complex
polynomials. It may be noted that many times interesting inequalities hold when
some conditions on the location of zeros of polynomials are satisfied. This could be
seen in the enunciation of most of the results presented in Sects. 3.2 and 3.3. But
still, there are many results with no condition on the zeros of the polynomials under
consideration or when the underlying conditions are presented independently of the
location of zeros, even if they are connected to.

We begin with the following section that deals with some of the results for polar
derivative of a polynomial with no restriction on its zeros.

2.1 Inequalities for Polynomials with no Restriction
on Their Zeros

Various versions of Bernstein’s inequality (11) are derived in which the underlying
disks, choice of norms, and the polynomials are replaced by more general sets,
extended norms, and some special classes of polynomials. These inequalities have
their own intrinsic beauty, relevance, and significance.

The Bernstein-type inequalities for the class of polynomials with “derivative”
replaced by “polar derivative” have attracted number of mathematicians. In this
direction, the first result is probably due to Aziz [4, p. 189], (see also [13]) who
proved the following result which is an analogue of the Inequality (11) for the polar
derivatives.

If P.z/ is a polynomial of degree n, then for every real or complex number ˛ with
j˛j � 1, we have

jD˛P.z/j � nj˛zn�1j max
jzjD1

jP.z/j; for jzj � 1: (13)

The result is best possible and equality holds in (13) for P.z/ D �zn; � ¤ 0.
If we apply the above result recursively to the polynomial P.z/; we get the more

generalized form [4] as follows.

Theorem 4. If P.z/ is a polynomial of degree n, then for jzj � 1;

jD˛k D˛k�1 : : :D˛1P.z/j � n.n � 1/ : : : .n � k C 1/j˛1˛2 : : : ˛kzn�kj max
jzjD1

jP.z/j;
(14)

where j˛ij � 1 for all i D 1; 2; : : : ; k and 1 � k � n � 1.
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The result is best possible and equality holds for the polynomial P.z/ D
�zn; j�j D 1:

If we divide both the sides of (13) by j˛j, and letting j˛j ! 1, with the fact that

lim
˛!1


D˛P.z/

˛

�
D P0.z/;

we easily get

jP0.z/j � njzn�1 j max
jzjD1

jP.z/j; for jzj � 1; (15)

and this in particular, for jzj D 1 gives (11).
Next, if in (13), we take z D ˛, then fD˛P.z/gzD˛ D nP.˛/; and (13) gives

jP.˛/j � j˛jn max
jzjD1

jP.z/j;

for every ˛ with j˛j � 1, which clearly is equivalent to (12).
We do not know the corresponding inequality under the conditions of Theorem 4,

when the condition on ˛1; ˛2; : : :; ˛k; .1 � k � n�1/; is replaced by j˛ij < 1; 1 �
i � k:

Aziz also established two more generalizations in the same paper [4], which are
stated below.

Theorem 5. If P(z) is a polynomial of degree n such that max
jzjD1

jP.z/j D 1; and

˛1; ˛2; : : :; ˛k; .1 � k � n � 1/; are complex numbers with j˛ij � 1; for
i D 1; 2; : : :; k, then for jzj � 1,

jD˛k : : :D˛1P.z/j C jD˛k : : :D˛1Q.z/j

� n.n � 1/: : :.n � k C 1/fj˛1˛2: : :˛kjjzjn�k C 1g; (16)

where Q.z/ D znP. 1Nz /:

Theorem 6. If P(z) is a polynomial of degree n such that max
jzjD1

jP.z/j D 1; and

˛1; ˛2; : : :; ˛k; .1 � k � n � 1/; are complex numbers with j˛ij � 1; for
i D 1; 2; : : :; k, then for jzj � 1,

jD˛k : : :D˛1P.z/j C jD˛k : : :D˛1Q.z/j

� n.n � 1/: : :.n � k C 1/fj˛1˛2: : :˛kjjzjn�k C 1g; (17)

where Q.z/ is same as given in Theorem 5.

Again, we do not know how the inequalities in Theorems 5, and 6 will look like
if the conditions on ˛1; ˛2; : : :; ˛k; .1 � k � n � 1/; are replaced by j˛ij < 1; .1 �
i � k/; and j˛ij > 1; .1 � i � k/; respectively.
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As can be easily seen, the following two theorems (see [4]) are special cases of
Theorems 5, and 6 respectively.

Theorem 7. If P(z) is a polynomial of degree n and ˛ is any real or complex number
with j˛j � 1, then for jzj � 1,

jD˛P.z/j C jD˛Q.z/j � n
�j˛zn�1j C 1

�
max
jzjD1

jP.z/j; (18)

where Q.z/ is same as given in Theorem 5.

Theorem 8. If P(z) is a polynomial of degree n and ˛ is any real or complex number
with j˛j � 1, then for jzj � 1,

jD˛P.z/j C jD˛Q.z/j � n
�j˛zn�1j C 1

�
max
jzjD1

jP.z/j; (19)

where Q.z/ is same as given in Theorem 5.

We state below an interesting consequence (given in [4]) of the Theorem 8, which
generalizes a well-known result due to Visser [85].

If P.z/ D Pn
�D0 a�z� is a polynomial of degree n and Q.z/ is its reciprocal

polynomial, then by Theorem 8, we have

jD˛P.z/jzD0 C jD˛Q.z/jzD0 � n max
jzjD1

jP.z/j;

for any ˛ with j˛j � 1:

As can be easily seen, the above inequality is clearly equivalent to

jna0 C ˛a1j C jnan C ˛an�1j � n max
jzjD1

jP.z/j;

for any ˛ with j˛j � 1: The case ˛ D 0 of the above result is the result of Visser [85].
On combining Theorems 7 and 8 (again see [4]), one would immediately get

Theorem 9. If P(z) is a polynomial of degree n and ˛ is any real or complex
number, then on jzj D 1;

jD˛P.z/j C jD˛Q.z/j � n .j˛j C 1/max
jzjD1

jP.z/j; (20)

where Q.z/ is same as given in Theorem 5.

If we divide both the sides of (20) by j˛j, and make j˛j ! 1, we get the following
result due to Govil and Rahman [43, Inequality (3.2)].

Theorem 10. If P.z/ is a polynomial of degree n, then on jzj D 1;

jP0.z/j C jQ0.z/j � n max
jzjD1

jP.z/j; (21)

where Q.z/ is same as given in Theorem 5.

Recently, Liman et al. [51, p.1204], generalized the Inequality (13) as follows.
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Theorem 11. If P.z/ is a polynomial of degree n; then for all complex numbers
˛; ˇ with j˛j � 1; jˇj � 1;

ˇ̌
ˇ̌zD˛P.z/C nˇ

� j˛j � 1
2

	
P.z/

ˇ̌
ˇ̌ � n

ˇ̌
ˇ̌˛ C ˇ

� j˛j � 1
2

	ˇ̌
ˇ̌max

jzjD1
jP.z/j;

on jzj D 1:

Liman et al. [51, p.1205] also generalized the Theorems 9 and 10, as follows.

Theorem 12. If P.z/ is a polynomial of degree n; then for all complex numbers
˛; ˇ with j˛j � 1; jˇj � 1;

ˇ̌
ˇ̌zD˛P.z/C nˇ

� j˛j � 1
2

	
P.z/

ˇ̌
ˇ̌C

ˇ̌
ˇ̌zD˛Q.z/C nˇ

� j˛j � 1
2

	
Q.z/

ˇ̌
ˇ̌

� n


 ˇ̌
ˇ̌˛ C ˇ

� j˛j � 1
2

	ˇ̌
ˇ̌C

ˇ̌
ˇ̌z C ˇ

� j˛j � 1
2

	ˇ̌
ˇ̌
�

max
jzjD1

jP.z/j;

on jzj D 1; and Q.z/ is same as given in Theorem 5.

We next turn towards the inequalities for the so-called self-inversive polynomials,
and in this direction we begin with the following two results due to Aziz [4, p. 186].

Theorem 13. If P.z/ is a self-inversive polynomial of degree n and ˛1; ˛2; : : :; ˛k,
1 � k � n � 1; are all real or complex numbers, then

jD˛k D˛k�1 : : :D˛1P.z/j � n.n � 1/ � � � .n � k C 1/

2

�j˛1 � � �˛kzn�kj C 1
�

max
jzjD1

jP.z/j;
(22)

for jzj � 1; and j˛ij � 1; i D 1; 2; � � � k: The result is best possible and equality

holds for P.z/ D .zn C 1/

2
:

Remark 1. Note that the Inequality (22) also holds if the conditions in the above
theorem are replaced by jzj � 1; and j˛ij � 1; i D 1; 2; � � � k.

As a particular case of the above theorem we have the following [4].

Theorem 14. If P.z/ is a self-inversive polynomial of degree n and ˛ is any complex
number such that j˛j � 1; then for jzj � 1;

jD˛P.z/j � n

2

�j˛zn�1j C 1
�

max
jzjD1

jP.z/j: (23)

Remark 2. The Inequality (23) is true for jzj � 1; and for all complex numbers ˛
such that j˛j � 1:
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We conclude this section with an inequality (given in [69]) that relates polar
derivatives with ordinary derivatives, and has proved to be very useful in establish-
ing inequalities on polar derivatives.

Let P.z/ be a polynomial of degree n and Q.z/ be its inverse polynomial. Then
for any complex numbers ˛ and 	; with 0 � � < 2�; we have

ˇ̌
D˛P.ei� /C ei	D˛Q.ei� /

ˇ̌ � .j˛j C 1/
ˇ̌
P0.ei� /C ei	Q0.ei� /

ˇ̌
: (24)

To prove this, note that for any complex numbers ˛ and 	; with 0 � � < 2�;

we haveˇ̌
D˛P.ei� /C ei	D˛Q.ei� /

ˇ̌

D ˇ̌
nP.ei� /C .˛ � ei� /P0.ei� /C ei	

�
nQ.ei� /C .˛ � ei� /Q0.ei� /

�ˇ̌

D
ˇ̌
ˇei.n�1/�Q0.ei� /C ei	ei.n�1/�P0.ei� /C ˛

�
P0.ei� /C ei	Q0.ei� /

�ˇ̌ˇ
� .j˛j C 1/

ˇ̌
P0.ei� /C ei	Q0.ei� /

ˇ̌
;

from which (24) follows.
This inequality has its own significance in the literature because the relation

established over here is between the moduli of terms involving polar derivatives and
that of ordinary derivatives. It is greatly advantageous, as the bounds established for
the right-hand side of the above inequality could be used to estimate the bound for
polar derivatives.

2.2 Inequalities for Polynomials Having no Zeros in a Circle

As mentioned in the previous section, Bernstein-type inequalities are known on
various regions of the complex plane for different norms and for different class of
polynomials with various constraints, like restrictions on the zeros of polynomials.
This is quite natural because one will always like to see what happens if the
polynomials are restricted in certain ways. This section starts discussing in this
direction, that is, inequalities for constrained polynomials. Since the equality in (11)
holds for polynomials having all their zeros at the origin, it should be possible to
improve upon the bound in (11), if we restrict to the class of polynomials having
no zeros in the unit circle. It was Erdös [34], who in this direction conjectured the
following result, which was later proved by Lax [49].

Theorem 15. If P.z/ is a polynomial of degree at most n having no zeros in jzj <
1, then

max
jzjD1

jP0.z/j � n

2
max
jzjD1

jP.z/j: (25)
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The result is best possible and equality holds for any polynomial which has all its
zeros on jzj D 1:

In the special case, when P.z/ has all its zeros on jzj D 1, Theorem 15 was
proved independently by Pólya and by Szegö [66]. Simple proofs of this result were
later given by de Bruijn [23], and Aziz and Mohammed [8].

Although (25) seems to be the right inequality for the class of polynomials having
no zeros in the unit disc, the inequality becomes equality only when all the zeros
of P.z/ are on jzj D 1: Now naturally a question arises as to what happens if the
polynomial has all the zeros outside the closed unit disc, and in this direction Aziz
and Dawood [7] proved the following which sharpens Theorem 15.

Theorem 16. If P.z/ is a polynomial of degree at most n having no zeros in jzj < 1,
then

max
jzjD1

jP0.z/j � n

2



max
jzjD1

jP.z/j � min
jzjD1

jP.z/j
�
: (26)

The result is best possible and equality holds for P.z/ D �zn C�; where j�j D j�j:
Also, for a polynomial of degree n having no zeros in jzj < 1; Ankeny and Rivlin
[2] proved that

max
jzjDR

jP.z/j �
�

Rn C 1

2

	
max
jzjD1

jP.z/j: (27)

The Inequality (27) becomes equality for P.z/ D �C �zn; where j�j D j�j:
Aziz and Dawood [7] also sharpened the Inequality (27) by proving,

Theorem 17. If P.z/ is a polynomial of degree n having no zeros in jzj < 1, then
for R � 1,

max
jzjDR

jP.z/j �
�

Rn C 1

2

	
max
jzjD1

jP.z/j �
�

Rn � 1
2

	
min
jzjD1

jP.z/j: (28)

The above result is best possible and again the equality holds for the polynomial
P.z/ D �zn C �; where j�j D j�j:

Malik [53] (for related result, see Govil [37]) considered the class of polynomials
having no zeros in the circle of radius K; and proved the following generalization of
Theorem 15.

Theorem 18. If P.z/ is a polynomial of degree at most n having no zeros in jzj < K,
K � 1; then

max
jzjD1

jP0.z/j �
�

n

1C K

	
max
jzjD1

jP.z/j: (29)
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The result is best possible and equality holds for P.z/ D .z C K/n:

Govil and Rahman [43] generalized the above result of Malik by proving the
Inequality (29) for s-th order derivatives. Later Govil [39] obtained the following
generalizations of Theorem 18, and so of Theorem 16.

Theorem 19. If P.z/ is a polynomial of degree at most n having no zeros in jzj < K,
K � 1, then

max
jzjD1

jP.s/.z/j �
�

n.n � 1/ : : : .n � s C 1/

1C Ks

	�
max
jzjD1

jP.z/j � min
jzjDK

jP.z/j
	
: (30)

The above inequality is sharp in the case s D 1, and in this case, equality is
attained for P.z/ D .z C K/n: For s D 1, it sharpens the Inequality (29) of Malik,
and for s D 1, K D 1, it reduces to the Inequality (26) of Aziz and Dawood.

Aziz [4, p. 184] proved the following result for polar derivatives which extends
Theorem 15, due to Lax [49], to polar derivatives.

Theorem 20. If P(z) is a polynomial of degree n and P.z/ has no zeros in jzj < 1;

then for jzj � 1;

jD˛k : : :D˛1P.z/j � n.n � 1/: : :.n � k C 1/

2

�j˛1˛2: : :˛kzn�kj C 1
�

max
jzjD1

jP.z/j;
(31)

where j˛ij � 1; for all i D 1; 2; 3; : : :; k: The result is best possible and equality in

(31) holds for the polynomial P.z/ D
�

zn C 1

2

	
.

The following result of Aziz [4], which follows from Theorem 20, generalizes the
Inequality (25) due to Lax [49], and the Inequality (27) due to Ankeny and Rivlin
[2].

Theorem 21. If P(z) is a polynomial of degree n such that P.z/ has no zeros in
jzj < 1, then for every real or complex number j˛j � 1, we have for jzj � 1;

jD˛P.z/j � n

2

�j˛zn�1j C 1
�

max
jzjD1

jP.z/j: (32)

The result is best possible and equality in (32) holds for the polynomial P.z/ D
�zn C � where j�j D j�j D 1

2
and ˛ � 1.

To obtain Inequality (25), divide both the sides of (32) by j˛j and make j˛j !
1. In order to obtain Inequality (27) from (32), take z D ˛, and use the fact that
fD˛P.z/gzD˛ D nP.˛/:

Theorem 20 was later sharpened by Aziz and Shah [14, p. 265], who proved that
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Theorem 22. If P(z) is a polynomial of degree n which does not vanish in jzj < 1,
then for jzj � 1;

jD˛k : : :D˛1P.z/j � n.n � 1/: : :.n � k C 1/

2
(33)

�f.j˛1˛2 : : : ˛kjjzjn�k C 1/max
jzjD1

jP.z/j � .j˛1; ˛2 : : : ˛kjjzjn�k � 1/min
jzjD1

jP.z/jg;

where j˛ij � 1; for all i D 1; 2; 3; : : :; k: The result is best possible and equality in

(33) holds for the polynomial P.z/ D zn C 1

2
.

From the above Theorem 22, as its special case one can obtain the following result
due to Aziz and Shah [14].

Theorem 23. If P(z) is a polynomial of degree n which does not vanish in jzj < 1;

then for every real and complex number ˛ with j˛j � 1;

jD˛P.z/j � n

2

�
.j˛jjzjn�1 C 1/max

jzjD1
jP.z/j � .j˛jjzjn�1 � 1/min

jzjD1
jP.z/j

	
; (34)

for jzj � 1. The result is best possible and equality in (34) holds for the polynomial

P.z/ D �zn C �, where j�j D j�j D 1

2
; and ˛ � 1.

The above Theorem 23 includes as special cases Theorems 16 and 17 due to Aziz
and Dawood [7]. Again, to obtain Theorem 16 from Theorem 23, divide both the
sides of (34) by j˛j; and make j˛j ! 1. To obtain Theorem 17 from Theorem 23,
simply take z D ˛ in (34), and use the property that fD˛P.z/gzD˛ D nP.˛/.

Aziz [4, p. 187] also obtained the following result which extends Theorem 18,
due to Malik [53], to the polar derivative of a polynomial.

Theorem 24. If P(z) is a polynomial of degree n having no zeros in jzj < K, where
K � 1, then for every real or complex number ˛ with j˛j � 1; we have

max
jzjD1

jD˛P.z/j � n

� j˛j C K

1C K

	
max
jzjD1

jP.z/j: (35)

The result is best possible and equality in (35) holds for the polynomial P.z/ D
.z C K/n

.1C K/n
, with any real number ˛ � 1 and K � 1.

Govil and Labelle [40] extended Theorem 18 to the class of polynomials having
no zeros in jzj < 1; and obtained a bound that depends on the location of all the
zeros, rather then depending on the zero of smallest modulus. In this regard, they
proved

Theorem 25. If P.z/ D an
Qn
�D1.z�z�/; an ¤ 0; is a polynomial of degree n such

that jz� j � K� � 1; 1 � � � n; then

max
jzjD1

jP0.z/j � n

Pn
�D1 1

K��1Pn
�D1

K�C1
K��1

max
jzjD1

jP.z/j: (36)
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If K� D K � 1 for some 1 � � � n, then the above inequality reduces to
inequality (29). The result is sharp and equality holds for P.z/ D .z C K/n; K � 1:

The above Theorems 24 and 25 have recently been sharpened and generalized by
Rather et al. [76] as follows.

Theorem 26. If P.z/ D an
Pn

�D1.z � z�/ is a polynomial of degree n such that
jz� j � K� � 1; for 1 � � � n; then for any complex number ˛ with j˛j � 1;

max
jzjD1

jD˛P.z/j � n

� j˛j C t0
1C t0

	
max
jzjD1

jP.z/j; (37)

where

t0 D 1C nPn
�D1 1

K��1

if K� > 1 for all �; 1 � � � n; and t0 D 1 if K� D 1 for some �; 1 � � � n:

Dividing both the sides of Inequality (37) by j˛j; and making j˛j ! 1, we get
Theorem 25.

If K D minfK1;K2; � � � Kng; then K� � K � 1; for 1 � � � n: But then t0 � K;

and hence for any real or complex number ˛ with j˛j � 1; we have
j˛j C t0
1C t0

�
j˛j C K

1C K
: This establishes the improvement of the bound in Theorem 26, compared

to the bound in Theorem 24. A related result can be seen in [29].
Aziz and Shah [13, p. 164] sharpened Theorem 24, by proving

Theorem 27. If P(z) is a polynomial of degree n having no zeros in jzj < K, where
K � 1, then for every real or complex number ˛, with j˛j � 1;

max
jzjD1

jD˛P.z/j � n

1C K

�
.j˛j C K/max

jzjD1
jP.z/j � .j˛j � 1/ min

jzjDK
jP.z/j

	
: (38)

The result is best possible and equality in (38) holds for the polynomial P.z/ D
.z C K/n with a real number ˛ � 1 and K � 1.

Again, dividing both the sides of (38) by j˛j and making j˛j ! 1, we get

Theorem 28. If P(z) is a polynomial of degree n having no zeros in jzj < K, where
K � 1, then

max
jzjD1

jP0.z/j � n

1C K



max
jzjD1

jP.z/j � min
jzjDK

jP.z/j
�
: (39)

The result is best possible and equality in (39) holds for the polynomial P.z/ D
.z C K/n with any real number ˛ � 1 and K � 1.
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As is easy to see, Theorem 28 is a special case of Theorem 19 due to Govil [39],
and for K D 1; it reduces to Theorem 16 due to Aziz and Dawood [7].

As an improvement to Theorem 23 for the case jzj D 1; Liman et al. [51] proved
the following theorem with an additional parameter ˇ, and is as follows.

Theorem 29. If P.z/ is a polynomial of degree n that does not vanish in jzj < 1,
then for every complex number ˛; ˇ with j˛j � 1; jˇj � 1; and jzj D 1;ˇ̌
ˇzD˛P.z/C nˇ

� j˛j�1
2

�
P.z/

ˇ̌
ˇ

� n

2

�ˇ̌
ˇ̌˛ C ˇ

� j˛j � 1
2

	ˇ̌
ˇ̌C

ˇ̌
ˇ̌z C ˇ

� j˛j � 1
2

	ˇ̌
ˇ̌
	

max
jzjD1

jP.z/j

�n

2

�ˇ̌
ˇ̌˛ C ˇ

� j˛j � 1
2

	ˇ̌
ˇ̌ �

ˇ̌
ˇ̌z C ˇ

� j˛j � 1
2

	ˇ̌
ˇ̌
	

min
jzjD1

jP.z/j:

Recently, Singh et al. [82] (see also [60]) generalized the above result Theo-
rem 29, as follows.

Theorem 30. If P.z/ is a polynomial of degree n that does not vanish in jzj <
K; K � 1, then for all complex numbers ˛i; 1 � i � t; 1 � t � n � 1; with
j˛ij � K; K � 1; and for any real or complex number ˇ with jˇj � 1; and for
jzj D 1;

ˇ̌
ztD˛t : : :: : ::D˛2D˛1P.z/C ˇn.n � 1/.n � 2/: : ::.n � t C 1/LtP.z/

ˇ̌

� n.n � 1/.n � 2/: : ::.n � t C 1/

2
X;

where

X D
�
1

Kn
j˛1˛2 � � �˛t C ˇLtj C ˇ̌

zt C ˇLt

ˇ̌	
max
jzjD1

jP.z/j

�
�
1

Kn
j˛1˛2 � � �˛t C ˇLtj � ˇ̌

zt C ˇLt

ˇ̌	
min
jzjDK

jP.z/j;

and

Lt D
�
.j˛1j � K/.j˛2j � K/ � � � .j˛tj � K/

.1C K/t

	
:

Note that, as is easy to see, for K D t D 1; Theorem 30 reduces to Theorem 29.
The most recent extension of Theorem 29, to our knowledge, is due to Zireh and

Bidkham [90] which is for the class of polynomials having no zeros in jzj < 1;

except s-fold zeros at the origin. They have, in fact, proved
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Theorem 31. Let P.z/ be a polynomial of degree n which does not vanish in jzj < 1;
except s-fold zeros at the origin. Then for any complex numbers ˛; ˇ with j˛j �
1; jˇj � 1; and jzj D 1; we haveˇ̌
ˇzD˛P.z/C .n C s/ˇ

� j˛j�1
2

�
P.z/

ˇ̌
ˇ

� 1

2

�ˇ̌
ˇ̌n˛ C .n C s/ˇ

� j˛j � 1
2

	ˇ̌
ˇ̌C

ˇ̌
ˇ̌.n � s/z C s˛ C .n C s/ˇ

� j˛j � 1
2

	ˇ̌
ˇ̌
	

max
jzjD1

jP.z/j

�1
2

�ˇ̌
ˇ̌n˛ C .n C s/ˇ

� j˛j � 1
2

	ˇ̌
ˇ̌ �

ˇ̌
ˇ̌.n � s/z C s˛ C .n C s/ˇ

� j˛j � 1
2

	ˇ̌
ˇ̌
	

minjzjD1 jP.z/j:

It can be easily seen that when s D 0; Theorem 31 reduces to Theorem 29.
Some more results related to inequalities for polar derivative of a polynomial

whose zeros are outside an open circle can be found in [12, 26, 27] and also in [88].
In all the above theorems it has been assumed that j˛ij � 1.� K/; or j˛j � 1;

and we do not know if the corresponding results under the condition j˛ij < 1.< K/;
or j˛j < 1; are known or are still to be discovered.

2.3 Inequalities for Polynomials Having all Their Zeros
in a Circle

Since the equality in the Bernstein’s inequality (11) holds for polynomials which
have all their zeros at the origin, improvement in (11) is not possible if we consider
polynomials having all their zeros inside the unit circle. For this reason, in this
case, it may be interesting to obtain inequality in the reverse direction, and in this
connection, Turán [84] proved that if a polynomial P.z/ has all its zeros in jzj � 1,
then

max
jzjD1

jP0.z/j �
�n

2

�
max
jzjD1

jP.z/j: (40)

The result is best possible and equality holds in (40) for any polynomial which has
all its zeros on jzj D 1:

For polynomials P.z/ of degree n having all their zeros in jzj � K; where K � 1,
Malik [53] proved that

max
jzjD1

jP0.z/j �
�

n

1C K

	
max
jzjD1

jP.z/j: (41)

The Inequality (41) is sharp and equality holds for P.z/ D .z C K/n:
A simple and direct proof of (41) was given by Govil [36], who also settled the

problem for polynomials having all their zeros in jzj � K; where K � 1; by proving
that if P.z/ is a polynomial of degree n having all its zeros in jzj � K; where K � 1;
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then

max
jzjD1

jP0.z/j �
�

n

1C Kn

	
max
jzjD1

jP.z/j: (42)

The above result is also best possible and equality holds in (42) for P.z/ D zn C Kn:

Govil [39] sharpened inequalities (41) and (42) by proving that if P.z/ is a
polynomial of degree n having all its zeros in jzj � K, then

max
jzjD1

jP0.z/j �
�

n

1C K

	
max
jzjD1

jP.z/j C
�

n

Kn�1.1C K/

	
min
jzjDK

jP.z/j (43)

if K � 1, and

max
jzjD1

jP0.z/j �
�

n

1C Kn

	
max
jzjD1

jP.z/j C
�

n

1C Kn

	
min
jzjDK

jP.z/j; (44)

if K � 1. Both these inequalities are best possible. In (43), equality is attained for
P.z/ D .z C K/n; and in (44), for P.z/ D zn C Kn:

Now we turn towards the extension of these fundamental ineqaulities to the polar
derivative of a complex polynomial. Shah [80] extended the Inequality (40) of Turán
[84] to the polar derivative, by proving,

Theorem 32. If P(z) is a polynomial of degree n having all its zeros in jzj � 1, then
for every real or complex number ˛ with j˛j � 1

max
jzjD1

jD˛P.z/j � n

2
.j˛j � 1/max

jzjD1
jP.z/j: (45)

The result is best possible and equality in (45) holds for P.z/ D .z � 1/n
2

for any

real number ˛ � 1:

The above Theorem 32 has been sharpened by Aziz and Rather [9], who proved

Theorem 33. If P(z) is a polynomial of degree n having all its zeros in jzj � 1, then
for every real or complex number ˛ with j˛j � 1;

max
jzjD1

jD˛P.z/j � n

2



.j˛j � 1/max

jzjD1
jP.z/j C j˛j C 1/min

jzjD1
jP.z/j

�
: (46)

The result is best possible and equality in (46) holds for P.z/ D .z�1/n for any real
number ˛ � 1:

Also, recently Jain [47] obtained a generalization of Theorem 33 to higher order
polar derivatives, and proved
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Theorem 34. If p.z/ is a polynomial of degree n having all its zeros in jzj � 1; then
for any complex numbers ˛1; ˛2 � � � ; ˛t such that t < n; and j˛ij � 1; 1 � i � t;
we have

max
jzjD1

jD˛t � � � D˛2D˛1P.z/j

� n.n � 1/ � � � .n � t C 1/

2t


L˛t max

jzjD1
jP.z/j C ˚

2tj˛1˛2 � � �˛t � L˛t j
�

min
jzjD1

jP.z/j
�
;

(47)

where L˛t D .j˛1j � 1/ � � � .j˛tj � 1/: This result is best possible and equality holds
in (47) for P.z/ D .z � 1/n; for each real ˛i � 1; 1 � i � t:

Aziz and Rather [9] extended the Inequality (41) of Malik [53] to the polar
derivative of a polynomial. They proved

Theorem 35. If P(z) is a polynomial of degree n having all its zeros in jzj � K,
where K � 1, then for every real or complex number ˛ with j˛j � K;

max
jzjD1

jD˛P.z/j � n

� j˛j � K

1C K

	
max
jzjD1

jP.z/j: (48)

The result is sharp and equality in (48) holds for P.z/ D .z � K/n; with ˛ � 1.

Aziz and Rather [9] also extended the Inequality (42) of Govil [36] to the polar
derivative, in which they proved

Theorem 36. If P.z/ is a polynomial of degree n having all its zeros in jzj � K,
where K � 1, then for every real or complex number ˛ with j˛j � K;

max
jzjD1

jD˛P.z/j � n

� j˛j � K

1C Kn

	
max
jzjD1

jP.z/j: (49)

Govil and McTume [41] sharpened Theorem 35 of Aziz and Rather, by proving

Theorem 37. If P.z/ is a polynomial of degree n having all its zeros in jzj � K;
where K � 1, then for every real or complex number ˛ with j˛j � K,

max
jzjD1

jD˛P.z/j � n.j˛j � K/

1C K
max
jzjD1

jP.z/j C n.j˛j C 1/

Kn�1.1C K/
min
jzjDK

jP.z/j: (50)

The inequality is sharp and equality holds for P.z/ D .z � K/n, ˛ � K.

Clearly, the above Theorem 37 sharpens Theorem 35 of Aziz and Rather [9], and
includes as a special case, the Inequality (43). To obtain the above Inequality (43)
of Govil [39] from the above theorem, simply divide both sides of (50) by j˛j; and
make j˛j ! 1.
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Theorem 37 can be sharpened further by using the information about the
coefficients, jan�1j and janj, as follows, and this has been done by Govil and
McTume [41].

Theorem 38. Let P.z/ D
nX

�D0
a�z

� be a polynomial of degree n having all its zeros

in jzj � K; where K � 1. If L D nK2janj C jan�1j
jan�1j C njanj , then for every real or complex

number ˛ with j˛j � K,

max
jzjD1

jD˛P.z/j � n

1C K



.j˛j � L/max

jzjD1
jP.z/j C .j˛jK C L/

Kn
min
jzjDK

jP.z/j
�
:

(51)

As a generalization of the Inequality (51), Dewan et al. [30] proved that

Theorem 39. If P.z/ D anzn C
nX

�D�
an��zn��; 1 � � � n; is a polynomial of

degree n, having all their zeros in jzj � K; where K � 1, then for any complex
number ˛ with j˛j � K� , we have

max
jzjD1

jD˛P.z/j � n

1C K�



.j˛j � A�/max

jzjD1
jP.z/j C .j˛jK� C A�/

Kn
min
jzjDK

jP.z/j
�
;

(52)
where

A� D n.janj � m
Kn /K2� C �jan��jK��1

n.janj � m
Kn /K��1 C �jan��j :

Zireh [89] further refined the above theorem for which he proved the following.

Theorem 40. If P.z/ D anzn CPn
�D� an��zn�� is a polynomial of degree n having

all its zeros in jzj � K; K � 1; then for any complex number ˛ with j˛j � A�; we
have

max
jzjD1

jD˛P.z/j � n

1C A�



.j˛j � A�/max

jzjD1
jP.z/j C .j˛j C 1/A�

Kn
min
jzjDK

jP.z/j
�
;

(53)

where A� is as given in Theorem 39.

To see that the bound in Theorem 40 is sharper than the bound in Theorem 39,
we need to show that

n

1C K�



.j˛j � A�/max

jzjD1
jP.z/j C .j˛jK� C A�/

Kn
min
jzjDK

jP.z/j
�
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<
n

1C A�



.j˛j � A�/max

jzjD1
jP.z/j C .j˛j C 1/A�

Kn
min
jzjDK

jP.z/j
�
: (54)

To prove this, note that j˛j � A�; and K� � A� implies
minjzjDK jP.z/j

Kn
<

max
jzjD1

jP.z/j (see [89, Lemma 2.7]). This gives the inequality

minjzjDK jP.z/j
Kn

� j˛jK� C A�
1C K�

� .j˛j C 1/A�
1C A�

	
<
.j˛j � A�/.K� � A�/

.1C K�/.1C A�/
max
jzjD1

jP.z/j;

from which our claim (54) follows.
For more inequalities of these types we refer to Gulzar and Rather [44], Mir and

Dar [64], and Liman et al. [52].
Dewan and Upadhye [33] considered the problem of obtaining a bound for the

polar derivative of a polynomial that depends on the location of every zero of a
polynomial and maximum of the moduli rather than the zero of greatest modulus,
and in this regard they proved

Theorem 41. Let P.z/ D Pn
�D0 a�z� D an

Qn
�D1.z � z�/; an ¤ 0; be a polynomial

of degree n � 2; jz� j � K�; 1 � � � n; and let K D maxfK1; K2; � � � Kng � 1: Then
for any complex number ˛ with j˛j � K;

max
jzjD1

jD˛P.z/j � .j˛j � K/
X
�D1

K

K C K�

"
2

1C Kn max
jzjD1

jP.z/j C 1

Kn

�
Kn � 1
Kn C 1

	
minjzjDK

jP.z/j C 2jan�1j
K.1C Kn/

 
Kn � 1

K
� Kn�2 � 1

n � 2

!#

C
�
1 � 1

K2

	
jna0 C ˛a1j; for n > 2;

and

max
jzjD1

jD˛P.z/j � .j˛j � K/
X
�D1

K

K C K�


2

1C Kn
max
jzjD1

jP.z/j C 1

Kn

�
Kn � 1
Kn C 1

	
min
jzjDK

jP.z/j C ja1j .K � 1/n
K.1C Kn/

�

C �
1 � 1

K

� jna0 C ˛a1j; for n D 2:

If P.z/ has a zero on jzj D K, then dividing both sides of above inequalities by j˛j;
and letting j˛j ! 1; we obtain the results due to Govil [38].

According to a well-known result due to Bernstein [18] on polynomials, if P.z/
and Q.z/ are two polynomials with degree of P.z/ not exceeding that of Q.z/, where
Q.z/ has all its zeros in jzj � 1; and jP.z/j � jQ.z/j for jzj D 1; then

jP0.z/j � jQ0.z/j; for jzj D 1: (55)
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Malik and Vong [55] improved the Inequality (55) by proving

jzP0.z/C n
ˇ

2
P.z/j � jzQ0.z/C n

ˇ

2
Q.z/j; (56)

for every ˇ with jˇj � 1; and n is the degree of Q.z/:
As is easy to see for ˇ D 0, the Inequality (56) reduces to (55). A result similar

to this can also be found in a paper due to Bidkham et al. [21].
Liman et al. [51] extended the above Inequality (56) to polar derivative of a

polynomial by proving the following.

Theorem 42. Let Q.z/ be a polynomial of degree n having all its zeros in jzj � 1;

and P.z/ a polynomial of degree at most n: If jP.z/j � jQ.z/j for jzj D 1; then for
all complex numbers ˛; ˇ with j˛j � 1; jˇj � 1;

ˇ̌
ˇ̌zD˛P.z/C nˇ

� j˛j � 1
2

	
P.z/

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌zD˛Q.z/C nˇ

� j˛j � 1
2

	
Q.z/

ˇ̌
ˇ̌ ; (57)

for jzj � 1:

The Inequality (56) due to Malik and Vong [55] follows from the above Theorem 42,
if we divide the two sides of (57) by j˛j; and make j˛j ! 1:

The case ˇ D 0 of the above Inequality (57) is also interesting and useful, and
we state this below as a theorem.

Theorem 43. Let Q.z/ be a polynomial of degree n having all its zeros in jzj � 1;

and P.z/ a polynomial of degree at most n: If jP.z/j � jQ.z/j for jzj D 1; then for
any complex number ˛; with j˛j � 1;

jD˛P.z/j � jD˛Q.z/j (58)

for jzj � 1:

Dividing the two sides of Inequality (58) by j˛j, and letting j˛j ! 1 we get the
Inequality (55).

It may be remarked here that Zargar [87], and Bidkham and Mezerji [19] also
obtained related results for kth polar derivative of a polynomial.

Li [50] has given a new perspective to the results mentioned in Theorems 42
and 43. He showed how the inequalities (57) and (58) can be obtained in a more
natural way from a generalized inequality for rational functions with prescribed
poles. Before proceeding towards his result, let us introduce the set of rational
functions involved.

Let ˛1; ˛2; � � � ; ˛n be n given points in jzj > 1; and P.z/ a polynomial of degree
at most n. Consider the following space of rational functions with prescribed poles:

Rn WD Rn.˛1; ˛2; � � � ; ˛n/ D



P.z/

W.z/

�
;

where W.z/ WD .z � ˛1/.z � ˛2/ � � � .z � ˛n/:
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Denote

B.z/ D zn W.1=z/

W.z/
D

nY
kD1

1 � ˛kz

z � ˛k
:

Then it is easy to observe that jB.z/j D 1 on jzj D 1:

Now we are in a position to state the following result due to Li [50] on rational
functions, which is of interest because of its yielding several results on polar
derivatives of polynomials.

Theorem 44. Let R.z/; S.z/ 2 Rn and assume S.z/ has all its n zeros in jzj � 1;

and jR.z/j � jS.z/j for jzj D 1: Then, for any � with j�j � 1=2;

jR0.z/C �B0.z/R.z/j � jS0.z/C �B0.z/S.z/j for jzj D 1: (59)

The result is sharp and equality holds if R.z/ � S.z/:

The above theorem besides including several results on polar derivatives also
includes Theorem 42 (so also Theorem 43) due to Liman et al. [51]. For this,
take j˛j > 1 and apply Theorem 44 to the rational function, R.z/ D P.z/

.z�˛/n and

S.z/ D Q.z/
.z�˛/n with poles all at one point z D ˛, which gives us

ˇ̌
ˇ̌
�

P.z/

.z � ˛/n
	0 ˇ̌
ˇ̌ �

ˇ̌
ˇ̌
�

Q.z/

.z � ˛/n
	0 ˇ̌
ˇ̌ (60)

for all jzj D 1: Here Q.z/ is a polynomial of degree n and P.z/ is any polynomial of
degree atmost n:

Now, using the fact that

�
P.z/

.z � ˛/n
	0

D � D˛P.z/

.z � ˛/nC1

in (60), we will easily get the Inequality (58), when j˛j > 1. Taking the limit as
j˛j ! 1, we get the inequality when j˛j � 1. In the same way, Theorem 44 implies
that, for jzj D 1;

ˇ̌
ˇ̌
ˇ�

D˛P.z/

.z � ˛/nC1 C �
n.j˛j2 � 1/

jz � ˛j2
P.z/

.z � ˛/n
ˇ̌
ˇ̌
ˇ �

ˇ̌
ˇ̌
ˇ�

D˛Q.z/

.z � ˛/nC1 C �
n.j˛j2 � 1/

jz � ˛j2
Q.z/

.z � ˛/n
ˇ̌
ˇ̌
ˇ ;

and if we take ˇ

� j˛j � 1
2

	
D �

j˛j2 � 1
z � ˛ ; then we will get the Inequality (57) due

to Liman et al. [51].
It may be remarked that the proof of Theorem 44 presented in Li [50] may be

useful in proving new inequalities for polynomials and rational functions.



64 N. K. Govil and P. Kumar

We conclude this section by stating a result due to Rather et al. [76], which can
be proved using Theorem 26.

Theorem 45. If P.z/ D an
Pn

�D1.z � z�/ is a polynomial of degree n such that
P0.0/ D 0; and jz� j � K� � 1; for 1 � � � n; then for any real or complex number
˛ with j˛j � 1;

max
jzjD1

jD˛P.z/j � n

�
1C j˛js0
1C s0

	
max
jzjD1

jP.z/j; (61)

where

s0 D 1C nPn
�D1

K�
1�K�

;

if K� < 1 for all �; 1 � � � n; and s0 D 1 if K� D 1 for some �; 1 � � � n:

If maxfK�; 1 � � � ng D K; then K � 1; and therefore s0 � 1
K : Thus one can

easily get

�
1C j˛js0
1C s0

	
�
� j˛j C K

1C K

	
;

for j˛j � 1:

This will lead us to a more natural result (see [76]) that if P.z/ is a polynomial of
degree n having all its zeros in jzj < K; where K � 1; then for any complex number
˛ with j˛j � 1;

max
jzjD1

jD˛P.z/j � n

� j˛j C K

1C K

	
max
jzjD1

jP.z/j: (62)

There are many papers on this and related subjects, and here we refer the reader
to some of them [1, 10, 20, 24, 28, 32, 45, 58, 59, 61–63, 73, 86, 91].

3 Bounds on the Integral Mean Values of Polar Derivative
of a Polynomial

As mentioned in Sect. 1, the classical Bernstein’s inequality asserts that

max
jzjD1

jP0.z/j � n max
jzjD1

jP.z/j; (63)

for any polynomial P.z/ of degree n:
We have seen various generalizations of (63) in earlier sections, and by looking

at these results one would think of the generalizations of Bernstein inequality (63) in
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Lp norm, and in this section we will discuss some of the Lp inequalities for the polar
derivatives of polynomials. It may be remarked that Bernstein-type inequalities in
LP norm play an important role in approximation theory and related topics. This
section has three subsections, Sect. 3.1 dealing with inequalities for polynomials
with no restriction on their zeros, Sect. 3.2 for inequalities having no zeros in a
circle, and finally Sect. 3.3 is on polynomials having all their zeros in a circle.

3.1 Inequalities for Polynomials with no Restriction on Their
Zeros

The sharp LP inequality analogous to Bernstein’s Inequality (63) was first estab-
lished by Zygmund [93], who proved that for any polynomial P.z/ of degree n and
for any p � 1; we have


Z 2�

0

jP0.ei� /jpd�

� 1
p

� n


Z 2�

0

jP.ei� /jpd�

� 1
p

: (64)

The Inequality (64) is best possible and equality holds for polynomial P.z/ having
all its zeros at the origin.

Arestov [3] extended the above inequality of Zygmund (64) to the case 0 < p < 1
as well.

It is quite natural to seek an extension of Zygmund’s result to polar derivative of
a polynomial. In view of the uniform norm extension (13) and LP extension (64)
of Bernstein’s inequality (63), one may attempt to obtain the LP version for
corresponding inequality for polar derivative as


Z 2�

0

jD˛P.ei� /jpd�

� 1
p

� nj˛j

Z 2�

0

jP.ei� /jpd�

� 1
p

(65)

for any polynomial P.z/ of degree n and for any real or complex number ˛ with
j˛j � 1; and any p > 0: But that is not true, and in this regard Aziz and Rather [11]
constructed a counterexample by considering the polynomial P.z/ D .1� iz/n, p D
2; and ˛ D iı; where ı is any positive real number such that 1 � ı <

nCp
2n.2n�1/
3n�2 :

Then it is easy to verify that for this polynomial the Inequality (65) does not hold.
However, Aziz and Rather [11] in this direction proved the following

Theorem 46. If P.z/ is a polynomial of degree n then for every complex number ˛
and p � 1;


Z 2�

0

jD˛P.ei� /jpd�

� 1
p

� n.1C j˛j/

Z 2�

0

jP.ei� /jpd�

� 1
p

: (66)
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Later, in a subsequent paper, Rather [70] showed that, the Inequality (66) is true for
0 < p < 1 also. As is easy to see, if we divide the two sides of (66) by j˛j; and
make j˛j ! 1; we get Zygmund Inequality (64) for each p > 0:

Govil et al. [46] (See also [42]) obtained a best possible bound for polar derivative
of a self reciprocal polynomial for 1 � p < 1; which was later extended by Rather
[70], who proved it for all values of p > 0: His result is as follows.

Theorem 47. If P.z/ is a self- inversive polynomial of degree n, then for every
complex number ˛ and p > 0;


Z 2�

0

jD˛P.ei� /jpd�

� 1
p

� n .j˛j C 1/Cp


Z 2�

0

jP.ei� /jpd�

� 1
p

; (67)

where Cp D
(

2�R 2�
0

j1C ei� jpd�

) 1
p

: In the limiting case, when p ! 1; the above

inequality is sharp and equality holds for the polynomial P.z/ D a C bzn where
jaj D jbj:

The above inequality extends the LP inequality on self-reciprocal polynomials
due to Dewan and Govil [25]. We can observe this by dividing both the sides of (67)
by j˛j and letting j˛j ! 1: By doing so we get the following result due to Dewan
and Govil [25].

Theorem 48. If P.z/ is a self- inversive polynomial of degree n, then p > 0;


Z 2�

0

jP0.z/jpd�

� 1
p

� nCp


Z 2�

0

jP.ei� /jpd�

� 1
p

; (68)

where Cp D
(

2�R 2�
0

j1C ei� jpd�

) 1
p

: In the limiting case, when p ! 1; the above

inequality is sharp and equality holds for the polynomial P.z/ D a C bzn where
jaj D jbj:

3.2 Inequalities for Polynomials Having no Zeros in a Circle

LP extensions of Erdös–Lax inequality (25) for the polar derivative of a polynomial
having no zeros in a circle have been studied in different ways. We begin this
section with LP analogue of (25) for ordinary derivative of a polynomial. The first
and foremost result in this direction is due to de Bruijn [23]. In fact, he extended
Zygmund’s inequality (64) to the class of polynomials having no zeros in the disc
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jzj < 1 by proving that, if P.z/ is a polynomial of degree n having no zeros in the
disc jzj < 1; then for any p � 1;


Z 2�

0

jP0.ei� /jpd�

� 1
p

� nCp


Z 2�

0

jP.ei� /jpd�

� 1
p

; (69)

where Cp D
(

2�R 2�
0

j1C ei� jpd�

) 1
p

:

Equality holds in (69) for P.z/ D .1C zn/:

Rahman and Schmeisser [67] showed that de Bruijn’s result is in fact true for
all p > 0: Gardner and Govil [35] extended de Bruijn’s result for the class of
polynomials having no zeros in the disc jzj < K; K � 1:

Similar results on polar derivative of a complex polynomial were studied
significantly. Govil et al. [46] (see also Aziz and Rather [11]) have proved the
analogue of de Bruijn’s inequality (69) for polar derivatives. They proved that, if
P.z/ is a polynomial of degree n having no zeros in jzj < 1; then for any p � 1; and
for every real or complex number ˛; with j˛j � 1;


Z 2�

0

jD˛fP.ei� /gjpd�

� 1
p

� n.j˛j C 1/Cp


Z 2�

0

jP.ei� /jpd�

� 1
p

; (70)

where Cp D
(

2�R 2�
0

j1C ei� jpd�

) 1
p

: Equality holds in (70) for P.z/ D .1 C zn/ in

the limiting case when p ! 1:

The above Inequality (70) has been presented in a different form with an
additional parameter, in a paper due to Singh and Shah [81].

Rather [69] extended the above result (70) to the class of polynomials having no
zeros in the disk jzj < K; K � 1; and for all p > 0; as follows.

Theorem 49. If P.z/ is a polynomial of degree n and P(z) does not vanish in jzj < K
where K � 1; then for every complex number ˛ with j˛j � 1; and p > 0;


Z 2�

0

jD˛fP.ei� /gjpd�

� 1
p

� n.j˛j C K/Fp


Z 2�

0

jP.ei� /jpd�

� 1
p

; (71)

where Fp D
(

2�R 2�
0

jK C ei� jpd�

) 1
p

: In the limiting case, when p ! 1, the above

inequality is sharp and equality holds for P.z/ D .z C K/n where ˛ is any real
number with ˛ � 1:

The validity of the Inequality (70) for all p > 0 (also see [70]) immediately
follows from the above Theorem 49 by taking K D 1:



68 N. K. Govil and P. Kumar

If we take p ! 1; in (71), then Theorem 49 reduces to Theorem 24. Dividing
the two sides of Inequality (71) by j˛j; and then letting j˛j ! 1; we get the
corresponding result for ordinary derivative on uniform norm given by Gardner and
Govil [35].

We do not know if there exist in literature the corresponding inequalities, for the
case j˛j < 1:

3.3 Inequalities for Polynomials Having all Their Zeros
in a Circle

We begin with the following result, which is an immediate consequence of
Inequality (70), and was first introduced in the paper of Govil et al. [46].

If P.z/ is a polynomial of degree n having all its zeros in jzj � 1; then for every
complex number ˛ with j˛j � 1; and p � 1;


Z 2�

0

jD˛fP.ei� /gjpd�

� 1
p

� n.j˛j C 1/Cp


Z 2�

0

jP.ei� /jpd�

� 1
p

; (72)

where Cp D
(

2�R 2�
0

j1C ei� jpd�

) 1
p

:

Rather [70] (see also [15]) validated the above result for 0 < p < 1. He [69]
further extended this result for class of polynomials having all their zeros in the
closed disc jzj � K; where K � 1; and for all p > 0: His result is as given below.

Theorem 50. If P.z/ is a polynomial of degree n and P(z) has all its zeros in jzj �
K; where K � 1; and P.0/ ¤ 0; then for every complex number ˛ with j˛j � 1; and
p > 0;


Z 2�

0

jD˛fP.ei� /gjpd�

� 1
p

� n.j˛j C K/Fp


Z 2�

0

jP.ei� /jpd�

� 1
p

; (73)

where Fp D
(

2�R 2�
0

jK C ei� jpd�

) 1
p

: In the limiting case, when p ! 1, the above

inequality is sharp and equality holds for P.z/ D .z C K/n; where ˛ is any non-
negative real number with ˛ � 1:

Again, we do not know if there is a sharp inequality available under the
conditions of Theorem 50 when j˛j > 1.
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On the other hand, Malik [54] obtained a generalization of (40) due to Turán [84]
in LP norm by proving that, if P.z/ has all its zeros in jzj � 1; then for each p > 0,

n


Z 2�

0

jP.ei� /jpd�

� 1
p

�

Z 2�

0

j1C ei� /jpd�

� 1
p

max
jzjD1

jP0.z/j: (74)

The above result of (74) was generalized by Aziz [5] who proved that, if P.z/ has
all its zeros in jzj � K � 1; then for each p > 0;

n


Z 2�

0

jP.ei� /jpd�

� 1
p

�

Z 2�

0

j1C Kei� /jpd�

� 1
p

max
jzjD1

jP0.z/j: (75)

As a generalization of (75), Aziz and Ahemad [6] proved that, if P.z/ is a
polynomial of degree n having all its zeros in jzj � K � 1, then for each
p > 0; r > 1; q > 1; with r�1 C q�1 D 1;

n


Z 2�

0

jP.ei� /jpd�

� 1
p

�

Z 2�

0

j1C Kei� jprd�

� 1
pr

Z 2�

0

�jP0.ei� /j�qp
d�

� 1
qp

:

(76)
Dewan et al. [31] generalized the inequalities (74) and (75) for polar derivatives.

They in fact proved that, if P.z/ has all its zeros in jzj � K � 1, then for every
complex number ˛ with j˛j � K; and for each p > 0;

n.j˛j�K/


Z 2�

0

jP.ei� /jpd�

� 1
p

�

Z 2�

0

j1C Kei� /jpd�

� 1
p

max
jzjD1

jD˛P.z/j: (77)

Recently, Rather et al. [74] (see also [75]) further extended the Inequality (76) to
lacunary polynomials, and their result is as follows.

Theorem 51. If P.z/ D anzn CPn
�D� an��zn�� is a polynomial of degree n having

all its zeros in jzj � K; K � 1; then for any complex numbers ˛; ˇ with j˛j �
K�; jˇj � 1; and for every p > 0; r > 1; q > 1; with r�1 C q�1 D 1; we have

n.j˛j � K�/


Z 2�

0

jP.ei� /C ˇm

Kn�� jpd�

� 1
p

�

Z 2�

0

j1C K�ei� jprd�

� 1
pr

Z 2�

0

�
jD˛P.ei� /j � mn

Kn��
�qp

d�

� 1
qp

; (78)

where m D min
jzjDK

jP.z/j:

Making q ! 1; so that r ! 1; we obtain the following result due to Rather
et al. [74], which is a generalization of the Inequality (77).
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Theorem 52. If P.z/ D anzn CPn
�D� an��zn�� is a polynomial of degree n having

all its zeros in jzj � K; K � 1; then for any ˛; ˇ 2 C with j˛j � K�; jˇj � 1; and
for every p > 0; we have

n.j˛j � K�/


Z 2�

0

jP.ei� /C ˇm

Kn�� jpd�

� 1
p

�

Z 2�

0

j1C K�ei� jpd�

� 1
p

Z 2�

0

�
jD˛P.ei� /j � mn

Kn��
�p

d�

� 1
p

; (79)

where m D min
jzjDK

jP.z/j:

If in the above inequality we make p ! 1 in (79), and choosing ˇ accordingly, we
get the corresponding inequality on uniform norm proved by Rather and Mir [73].

Zireh et al. [92] obtained a similar result but took into account the moduli of
certain coefficients of the underlying polynomial, and their result is as given below.

Theorem 53. If P.z/ D anzn C Pn
�D� an��zn��; 1 � � � n; is a polynomial of

degree n having all its zeros in jzj � K � 1; and m D min
jzjDK

P.z/; then for any

complex numbers �; ˛; with j�j � 1; j˛j � s�; and p > 0; r > 1; q > 1; with
r�1 C q�1 D 1; we have

n.j˛j � s�/


Z 2�

0

jP.ei� /C �mjpd�

� 1
p

�

Z 2�

0

j1C s�ei� /jprd�

� 1
pr

Z 2�

0

jD˛P.ei� /jqpd�

� 1
qp

; (80)

where

s� D njanjK2� C �jan��jK��1

njanjK��1 C �jan��j :

In the limiting case, when r ! 1, the above Inequality (80) is sharp and equality
holds for the polynomial P.z/ D .z � K/n; with ˛ � K:

As an immediate consequence of Theorem 53 we have the following result
(see again [92]), which is of some interest, because it refines and generalizes the
Inequality (77). To obtain this, make q ! 1; in the Inequality (80), so that r ! 1:

Theorem 54. P.z/ D anzn C Pn
�D� an��zn��; 1 � � � n; is a polynomial of

degree n having all its zeros in jzj � K � 1; and m D min
jzjDK

jP.z/j; then for any

complex numbers �; ˛; with j�j � 1; j˛j � s�; and p > 0; we have

n.j˛j � s�/


Z 2�

0

jP.ei� /C �mjpd�

� 1
p

�

Z 2�

0

j1C s�ei� /jpd�

� 1
p

max
jzjD1

jD˛P.z/j;
(81)

where s� is defined as above.
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Inequalities somewhat closer in spirit to the above ones have been obtained
among others by Baba and Mir [16], Rather and Gulzar (see [71, 72]) and Rather
et al. [77].

We close this chapter with the remark that although a considerable amount of
research has been done in the direction of the Bernstein type inequalities for the
polar derivatives of polynomials but still there are many questions that are left
unanswered in this subject.
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Abstract We show that a certain interpolation type inequality for polynomials in
the unit disk, generalizing Bernstein’s inequality, is actually contained in an older,
even more general one. We also discuss the cases of equality.
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1 Introduction

Let Pn denote the class of polynomials p.z/ D Pn
kD0 akzk with complex coefficients.

We write D for the unit disk in the complex plane C and jpjD WD maxjzjD1 jp.z/j.
The famous S. Bernstein theorem says

jp0jD � njpjD; p 2 Pn; (1)

and equality holds here only for the monomials p.z/ D czn, where c is an
arbitrary complex constant. Inequality (1) has found numerous generalizations and
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refinements. A rather complete reference to many of these can be found in the very
encyclopedic book of Rahman and Schmeisser [8]. In the present chapter we are
dealing with two of those generalizations and how they are related to each other.

For a polynomial Q 2 Pn we define eQ.z/ WD zn Q.1=z/. Note that, by writing
Q 2 Pn, we do not automatically assume that the n-th coefficient qn in the standard
representation of Q is different from zero. In particular, we shall always apply the
convention that eQ belongs to Pn if Q is assumed to be. Note that this convention
implies that

e.eQ/ D Q; (2)

which cannot be guaranteed otherwise (f.i. if Q.z/ D z2 is considered an element of
P3, say, then

eQ.z/ D z3.1=z2/ D z

can be considered to be in P2 which would implye.eQ/.z/ D z ¤ Q.z/).
We use the following notation: let P1=2 be the class of analytic functions f

satisfying f .0/ D 1 and Re f .z/ > 1
2

in D; the Hadamard product of two functions
f .z/ WD P1

nD0 anzn and g.z/ WD P1
nD0 bnzn analytic in D is the function .f 
g/.z/ WDP1

nD0 anbnzn, also analytic in D.

Theorem 1.1 ([9], Corollary 4.3). For p;Q 2 Pn with Q.0/ D 0 and eQ 2 P1=2 we
have

j.p 
 Q/.z/j C j.p 
eQ/.z/j � jpjD; z 2 D: (3)

Theorem 1.2 ([5], Theorem 8). For p;Q 2 Pn as in Theorem 1.1 we have

j.p 
 Q/.z/jD � max
1�j�2n

jp.wj/j; (4)

where wj WD exp.i� j=n/; j 2 f1; : : : ; 2ng.

Note that both of these inequalities are refinements of (1). Indeed, writing

Q.z/ WD 1

n

nX
jD1

jzj

we see that Q 2 Pn with Q.0/ D 0 and

eQ.z/ D Fn�1.z/ WD
n�1X
jD0

�
1 � j

n

	
zj
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is the classical Fejér kernel which is known to belong to P1=2. Obviously we have
.Q
p/.z/ D 1

n zp0.z/, and therefore both, (3) and (4), contain and refine (1). It is also
easy to see that (3) contains a result of Malik [7] according to which, for p 2 Pn

jp0.z/j C jep 0.z/j � njpjD; z 2 D:

Besides this, Theorems 1.1 and 1.2 contain other classical inequalities. For
instance, Theorem 1.1 with Q.z/ D zn contains Visser’s inequality (see Visser [11]):
for p.z/ D Pn

kD0 akzk we have

ja0j C janj � jpjD;

and Theorem 1.2 can be considered to be an equivalent for the unit disk of the
Duffin and Schaeffer [3] refinement of the Markov inequality for polynomials on
the unit interval Œ�1; 1�. We recall that the Duffin and Schaeffer result states that for
all p 2 Pn and x 2 Œ�1; 1�,

jp0.x/j � n2 max
0�j�n

jp.cos.j�=n//j:

The original proof of Theorem 1.2 as given in [5] is not related to Theorem 1.1
in [9]. It is our aim in this note to show that Theorem 1.2 indeed follows from
Theorem 1.1, using an interpolation formula argument. This will be done in Sect. 3.
Section 4 discusses cases of equality in Theorems 1.1 and 1.2.

2 Background Material

A polynomial q in Pn is called bound-preserving over Pn if

jq 
 pjD � jpjD for all p 2 Pn:

It is known (see, for example, [9, Chap. 4] or [10] for a multivariable version) that a
necessary and sufficient condition for q 2 Pn to be bound-preserving is that

q.z/C o.zn/ D
Z

@D

1

1 � xz
d�.x/; z 2 D; (5)

where� is a complex Borel measure over the boundary @D of the unit disk with total
variation

R
@D

jd�.x/j � 1 and o.zn/ is a function analytic in D with an .n C 1/-fold
zero at the origin. Moreover, if q.0/ D 1, we obtain

1 D
Z

@D

d�.x/ �
Z

@D

jd�.x/j � 1
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so that � is in fact a probability measure over @D. In this context the representation
formula (5) is called the Herglotz formula and the function q.z/C o.zn/ appearing
there belongs to P1=2. It is also well known that if q.z/ D 1C � � � C anzn 2 P1=2 for
some n 2 N, we have janj � 1 with equality if and only if

q.z/ D
nX

jD1

`j

1 � wja
1=n
n z

C o.zn/;

where `j � 0,
Pn

jD1 `j D 1 and fwjgn
jD1 is the set of distinct nth roots of unity.

3 Theorem 1.1 Implies Theorem 1.2

First we recall the proof of Theorem 1.1 as given in [9]. Let Q be in Pn with Q.0/ D
0, eQ 2 P1=2 and � 2 D. The rational function

F�.z/ WD
eQ.z/C �Q.z/ � �zn

1 � �zn

is analytic in D, and since Q.0/ D 0 and eQ.0/ D 1; we have

F�.z/ D eQ.z/C � Q.z/C �zn.eQ.z/ � 1C � Q.z//

1 � � zn

D eQ.z/C � Q.z/C o.zn/; z ! 0:

Moreover, for jzj D 1,

Re F�.z/ D Re
eQ.z/C �Q.z/ � �zn

1 � �zn

D Re
eQ.z/C �eeQ.z/ � �zn

1 � �zn

D Re
eQ.z/C �zneQ.z/ � �zn

1 � �zn

D Re
eQ.z/C �zneQ.z/ � �zn

1 � �zn

D Re
eQ.z/CeQ.z/C .�zn � 1/eQ.z/C 1 � �zn

1 � �zn
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D Re

�
2ReeQ.z/ � 1
1 � �zn

C 1 �eQ.z/
	

D �
2ReeQ.z/ � 1�Re

�
1

1 � �zn

	
C Re

�
1 �eQ.z/�

� 2ReeQ.z/ � 1
2

C Re
�
1 �eQ.z/�

D 1

2
:

This, combined with F�.0/ D 1 and the minimum principle for harmonic functions,
implies F� 2 P1=2. Therefore, for every � 2 D, there exists a probability measure ��
on @D such that

eQ.z/C �Q.z/C o.zn/ D
Z

@D

1

1 � xz
d��.x/; z 2 D; (6)

and this implies that for any p 2 Pn, we have

.p 
eQ/.z/C �.p 
 Q/.z/ D
Z

@D

p.xz/d��.x/; z 2 D: (7)

Using proper choices of � this can be used to prove (3).
Starting out from (7) we now prove Theorem 1.2. In the case j�j D 1 the measure

� in (6) can be discretized. Indeed, we then have F WD F� 2 P1=2 with

ˇ̌
ˇ̌F.n/.0/

nŠ

ˇ̌
ˇ̌ D 1 D max

G2P1=2

ˇ̌
ˇ̌G.n/.0/

nŠ

ˇ̌
ˇ̌ ;

so that F is a support point of P1=2 (for details see [6, Chap. 4]) and therefore F has
a representation

F.z/ D eQ.z/C �Q.z/C o.zn/ D
nX

jD1

lj
1 � wj�1=nz

;

where lj � 0;
Pn

jD1 lj D 1 and the wj are distinct n-roots of unity. This is
equivalent to

.p 
eQ/.z/C �.p 
 Q/.z/ D
nX

jD1
lj.�/p.wj�

1=nz/; (8)

for arbitrary z 2 C and p 2 Pn.
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The particular choice

pj.z/ WD 1 � .wj.�/
1=nz/n

1 � wj.�/1=nz

leads to the explicit representation

lj D lj.�/ D 1

n
.2 ReeQ.wj.�/

1=n/ � 1/; 1 � j � n: (9)

Replacing � by �� in (8) we get

.p 
eQ/.z/ � �.p 
 Q/.z/ D
nX

jD1
lj.��/p.wj.��/1=nz/; (10)

and adding (10) to (8) yields

.p 
eQ/.z/ D 1

2

nX
jD1

�
lj.�/p.wj�

1=nz/C lj.��/p.wj.��/1=nz/
�

(11)

D
2nX

jD1
ƒj.�/p.vj.�/

1=nz/; (12)

where fvjg2n
jD1 stands for the set of distinct 2n-th roots of unity, and

ƒj.�/ WD 1

2n
.2 ReeQ.vj.�/

1=n/ � 1/ � 0; 1 � j � 2n; (13)

since eQ 2 P1=2. Furthermore, using the special case p � 1 in (11) yieldsP2n
jD1 ƒj.�/ � 1 for j�j D 1. Therefore, noting that (11) holds for ep as well as

for p 2 Pn and that generally

Aep 
eQ � p 
 Q

we finally obtain

�.p 
 Q.z// D
2nX

jD1
ƒj.�/.�1/jp.vj.�/

1=nz/; z; � 2 D: (14)

This, using the properties of the ƒj just discovered, implies (4) ut
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4 Cases of Equality

The cases of equality in Theorem 1.2 have not been identified in [5] but, in a special
case only 20 years later, in [2]. Now we can prove the following general Result:

Theorem 4.1. For Q as in Theorem 1.2 we have equality in (4) if and only if p.z/ D
czn with some complex constant c.

Proof. Note that according to (13) the numbers ƒj.�/, for � fixed, are values of a
trigonometric polynomial of degree at most n � 1, which means that (unless the
polynomial is identically zero, which is impossible in our case) only n � 1 of the
ƒj.�/ can be zero. Hence at least n C 1 of those must be different from zero and so,
according to (14) we can have equality in (4) only ifep assumes a fixed value Meix

in at least n C 1 points on the unit circle. This implies thatep, being a polynomial
of degree n, must be a constant function which implies the conclusion for p in our
assertion. ut

We wish to point out that a rather trivial and merely formal refinement of
inequality (4) is

j.p 
 Q/jD � min
jxjD1

max
1�j�2n

jp.xwj/j: (15)

This is because the left-hand side of (15) does not change by replacing p.z/ by p.xz/
when jxj D 1. It is also clear that the cases of equality with respect to p do not
change under this transformation. On the other hand, it is interesting that the right-
hand side of (15) does not depend on the choice of Q. So it would be interesting to
find out for which choice of Q, depending on p, the left-hand side of (15) becomes
maximal. This is an open question.

The cases of equality in Theorem 1.1 are rather numerous, and we have only
partial results which we briefly report. The question is clearly equivalent to the study
of solutions p 2 Pn of the equation

jp 
eQ.z/C �p 
 Q.z/j D jpjD; (16)

for a given Q 2 Pn with Q.0/ D 0, eQ 2 P1=2 and suitable z; � 2 @D. It is easily
verified that any polynomial p of the form A C Bzn is a solution with z; � chosen
properly.

Also, if we choose

eQ.z/ D
n�1X
kD0
.1 � k

n
/.�1=nz/k; � 2 @D;

so that

eQ.z/C �Q.z/ D 1

1 � �1=nz
C o.zn/;

then equality holds in (16) for any p 2 Pn and z suitably chosen.
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More generally, using a result of Brickman et al. [1], given a subset K of
f1; 2; : : : ; n � 1g and � 2 @D, we find Q 2 Pn with Q.0/ D 0 and eQ 2 P1=2
such that

ReeQ.wj .�/
1=n/ D 1

2
, j 2 K;

and therefore (16) will hold for a polynomial p 2 Pn and z 2 @D if and only if
p.wj�

1=nz/ D jpjDeix for all j 2 f1; 2; : : : ; ng n K and fixed x. There does not seem
to exist much information about such polynomials (however, compare [4]).
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Inequalities for Integral Norms of Polynomials
via Multipliers

Igor E. Pritsker

Dedicated to the memory of Professor Q.I. Rahman

Abstract We consider a wide range of polynomial inequalities for norms defined
by the contour or the area integrals over the unit disk. Special attention is devoted
to the inequalities obtained by using the Schur-Szegő composition.

Keywords Polynomial inequalities • Hardy spaces • Bergman spaces • Mahler
measure
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1 The Schur-Szegő Composition and Polynomial Inequalities

We survey and develop a large variety of polynomial inequalities for the integral
norms on the unit disk. An especially important tool in this study is the Schur-
Szegő composition (or convolution) of polynomials, which is defined via certain
coefficient multipliers. In particular, it played prominent role in the development of
polynomial inequalities in Hardy spaces. Let CnŒz� be the set of all polynomials of
degree at most n with complex coefficients. Define the standard Hardy space Hp

norm for Pn 2 CnŒz� by

kPnkHp D
�
1

2�

Z 2�

0

jPn.e
i� /jp d�

	1=p

; 0 < p < 1:
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It is well known that the supremum norm of the space H1 satisfies

kPnkH1 D max
jzjD1

jPn.z/j D lim
p!1 kPnkHp :

We note the other limiting case [12, p. 139] of the so-called H0 norm:

kPnkH0 D exp

�
1

2�

Z 2�

0

log jPn.e
i� /j d�

	
D lim

p!0C kPnkHp :

It is also known as the contour geometric mean or the Mahler measure of a
polynomial Pn 2 CnŒz�. An application of Jensen’s inequality for Pn.z/ D
an
Qn

jD1.z � zj/ 2 CnŒz� immediately gives that

kPnkH0 D janj
nY

jD1
max.jzjj; 1/:

The above explicit expression is very convenient, and it is frequently used in our
paper and other literature. This direct connection with the roots of Pn explains why
the Mahler measure and its close counterpart the Weil height play an important role
in number theory, see a survey of Smyth [20].

For a polynomial �n.z/ D Pn
kD0 �k

�n
k

�
zk 2 CnŒz�; we define the Schur-Szegő

composition with another polynomial Pn.z/ D Pn
kD0 akzk 2 CnŒz� by

�Pn.z/ WD
nX

kD0
�kakzk: (1)

If�n is a fixed polynomial, then�Pn is a multiplier (or convolution) operator acting
on a space of polynomials Pn: More information on the history and applications of
this composition may be found in [1, 2, 6] and [18]. De Bruijn and Springer [6]
proved a remarkable inequality stated below.

Theorem 1. Suppose that �n 2 CnŒz� and Pn 2 CnŒz�. If �Pn 2 CnŒz� is defined
by (1), then

k�PnkH0 � k�nkH0kPnkH0 : (2)

If �n.z/ D .1 C z/n, then �Pn.z/ � Pn.z/ and k�nkH0 D 1, so that (2) turns
into equality, showing sharpness of Theorem 1. This result was not sufficiently
recognized for a long time. In fact, Mahler [14] proved the following special case
of (2) nearly 15 years later by using a more complicated argument.
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Corollary 1. kP0
nkH0 � nkPnkH0

We add that equality holds in Corollary 1 if and only if the polynomial Pn has
all zeros in the closed unit disk, and present a proof of this fact in Sect. 3. To
see how Theorem 1 implies the above estimate for the derivative, just note that
if �n.z/ D nz.1C z/n�1 D Pn

kD0 k
�n

k

�
zk; then �Pn.z/ D zP0

n.z/ and k�nkH0 D n:
Furthermore, (2) immediately answers the question about a lower bound for the
Mahler measure of derivative raised in [9, pp. 12 and 194]. Following Storozhenko
[21], we consider P0

n.z/ D Pn�1
kD0 akzk and write

1

z
.Pn.z/ � Pn.0// D

n�1X
kD0

ak

k C 1
zk D �P0

n.z/;

where

�n�1.z/ D
n�1X
kD0

1

k C 1

 
n � 1

k

!
zk D .1C z/n � 1

nz
:

The result of de Bruijn and Springer (2) gives

Corollary 2 ([21]). For any Pn 2 CnŒz�, we have

kPn.z/ � Pn.0/kH0 � cn kP0
nkH0 ;

where

cn WD 1

n
k.z C 1/n � 1kH0 D 1

n

Y
n=6<k<5n=6

2 sin
k�

n
:

It is easy to see that cn � .1:4/n as n ! 1: Moreover, equality holds in
Corollary 2 for Pn.z/ D .z C 1/n � 1:

Another interesting consequence of (2) is the well-known estimate for coeffi-
cients (usually attributed to Mahler).

Corollary 3. If Pn.z/ D
nX

kD0
akzk, then

jakj �
 

n

k

!
kPnkH0 ; k D 0; : : : ; n:

The above inequality follows at once from (2) by letting �n.z/ D �n
k

�
zk; k D

1; : : : ; n; and taking into account that k�PnkH0 D kakzkkH0 D jakj and k�nkH0 D�n
k

�
:
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Many other inequalities may be obtained from Theorem 1, including the one
below, found in [16].

Corollary 4. Let Pn.z/ D
nX

kD0
akzk and m D 0; : : : ; n: We have

������
X
k¤m

akzk

������
H0

�
�����.1C z/n �

 
n

m

!
zm

�����
H0

kPnkH0 :

In particular, if m D 0, then k.1 C z/n � 1kH0 D
Y

n=6<k<5n=6

2 sin
k�

n
� .1:4/n as

n ! 1:

Again, the proof is a simple application of (2) with �n.z/ D .1 C z/n � �n
m

�
zm; so

that �m D 0 and �k D 1; k ¤ m:
An important generalization of Theorem 1 for the Hp norms was obtained by

Arestov [1].

Theorem 2. Suppose that �n 2 CnŒz� and Pn 2 CnŒz�. If �Pn 2 CnŒz� is defined
by (1), then

k�PnkHp � k�nkH0kPnkHp ; 0 � p � 1: (3)

In fact, Arestov obtained an even more general inequality, and also described the
set of extremal polynomials for it, see [1] for details. One of the main motivations for
such a result was the Bernstein inequality for derivative of a polynomial in Hp; p 2
.0; 1/:

Corollary 5. For any Pn 2 CnŒz� we have

kP0
nkHp � nkPnkHp ; 0 � p � 1: (4)

If p > 0, then equality holds in (4) only for polynomials of the form Pn.z/ D czn; c
2 C:

This inequality was originally proved by Bernstein for p D 1 [5, 15, 18], and
generalized to p � 1 by Zygmund, see [24]. For p D 0, (4) reduces to the result of de
Bruijn–Springer–Mahler stated in Corollary 1. The case p 2 .0; 1/ remained open
for a long time, and was finally settled by Arestov [1]. A more complete history of
this result can be found in the book [18] and the recent survey [3].

Lower bounds for the derivative are also of interest. While Theorem 2 immedi-
ately gives the analogue of Corollary 2 for Hp (in the same manner as before), the
resulting constant cn of Corollary 2 is no longer sharp. In fact, one can prove much
better estimates.

Theorem 3. If Pn 2 CnŒz�, then

kPn � Pn.0/kH1 � � kP0
nkH1 (5)
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and

kPn � Pn.0/kH1 � � n1=p�1kP0
nkHp ; 0 < p < 1: (6)

The constant � in (5) cannot be replaced by a smaller number.

A different application of Theorem 2 gives the solution of the Chebyshev
minimization problem in Hp.

Corollary 6. Any monic polynomial Pn.z/ D zn C : : : 2 CnŒz� satisfies

kPnkHp � 1; 0 � p � 1: (7)

If p > 0, then equality holds in (7) only for the monomial Pn.z/ D zn:

The case of p D 1 in (7) reduces to the classical Chebyshev problem for the
unit disk. It is readily seen that for p D 0 equality holds in Corollary 6 if and only
if Pn has all zeros in the closed unit disk.

Yet another useful application of (3) is the following sharp estimate of the growth
for the circular means of polynomials.

Corollary 7. For any Pn 2 CnŒz� and any R > 1, we have

kPn.Rz/kHp � RnkPnkHp ; 0 � p � 1: (8)

If p > 0, then equality holds in (8) only for polynomials of the form Pn.z/ D czn; c
2 C:

The above estimate is a special case of the classical Bernstein–Walsh Lemma on
the growth of polynomials outside the set, when p D 1.

If we use Theorem 2 to estimate the coefficients of a polynomial as in Corollary 3,
then the result is certainly valid, but is not best possible. Given any polynomial
Pn.z/ D Pn

kD0 akzk, we obtain that

jakj �
 

n

k

!
kPnkHp ; k D 0; : : : ; n; 0 � p � 1:

Apart from the cases k D 0 and k D n, this is far from being precise. In particular,
recall the well-known elementary (and sharp) estimate:

jakj � kPnkH1 ; k D 0; : : : ; n:

Many more interesting estimates for the coefficients of a polynomial may be found
in Chap. 16 of [18].

It is useful to have a bound for the regular convolution (or the Hadamard product)
of two polynomials, in addition to the Schur-Szegő convolution we mainly consider
here. In fact, one version of such an estimate follows directly from Theorem 2, as
observed by Tovstolis [22].
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Theorem 4. If Pn.z/ D Pn
kD0 akzk 2 CnŒz� and Qn.z/ D Pn

kD0 bkzk 2 CnŒz�, then
we have for Pn 
 Qn.z/ D Pn

kD0 akbkzk that

kPn 
 QnkHp � k�nkH0kPnkH0kQnkHp ; 0 � p � 1;

where

�n.z/ D
nX

kD0

 
n

k

!2
zk and lim

n!1 k�nk1=n
H0 � 3:20991230072 : : : :

We conclude this section with a bound for the derivative of a polynomial without
zeros in the unit disk that was originally proved by Lax for p D 1, then by de
Bruijn for p � 1, and finally by Rahman and Schmeisser for all p � 0. See [18, p.
553] for a detailed account.

Theorem 5. If Pn 2 CnŒz� has no zeros in the unit disk, then

kP0
nkHp � n

kz C 1kHp
kPnkHp ; 0 � p � 1;

where

kz C 1kHp D 2

�
� .p=2C 1=2/p
� � .p=2C 1/

	1=p

; 0 < p < 1;

kz C 1kH0 D 1 and kz C 1kH1 D 2:

Note that Theorem 5 is sharp as equality holds for polynomials of the form
Pn.z/ D azn C b with jaj D jbj ¤ 0: Since kz C 1kHp > 1 for p > 0, this result is an
improvement over the standard Bernstein inequality stated in Corollary 5. Arestov
[2] considered generalizations of Theorem 5 in the spirit of Theorem 2.

2 Polynomial Inequalities in Bergman Spaces

Polynomial inequalities for Bergman spaces (with norms defined by the area
measure) are not developed as well as those for Hardy spaces considered in the
previous section. Given a non-negative radial function w.z/ D w.jzj/; z 2 D; with
bw D ’

D
w dA > 0, we define the weighted Bergman space Ap

w norm by setting

kPnkA
p
w

WD
�
1

bw

“

D

jPn.z/jp w.z/dA.z/

	1=p

; 0 < p < 1;
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where dA is the Lebesgue area measure. If w � 1, then we use the standard notation
Ap for the regular Bergman space, with bw D �: Detailed information on Bergman
spaces can be found in the books [8] and [13]. We also define the A0w norm by

kPnkA0w
WD exp

�
1

bw

“

D

log jPn.z/j w.z/dA.z/

	
:

This norm was studied in [16] and [17], and it has the same relation to Bergman
spaces as H0 norm to Hardy spaces:

kPnkA0w
D lim

p!0C kPnkA
p
w
;

see [12, p. 139]. If w � 1, then the following explicit form for kPnkA0 is found in
[16, 17].

Theorem 6. Let Pn.z/ D an
Qn

jD1.z � zj/ D Pn
kD0 akzk 2 CnŒz�: If Pn has no roots

in D; then kPnkA0 D ja0j: Otherwise,

kPnkA0 D kPnkH0 exp

0
@1
2

X
jzjj<1

.jzjj2 � 1/
1
A : (9)

We immediately obtain the following comparison result from Theorem 6.

Corollary 8. For any Pn 2 CnŒz�; we have

e�n=2kPnkH0 � kPnkA0 � kPnkH0 :

Equality holds in the lower estimate if and only if Pn.z/ D czn; c 2 C: The upper
estimate turns into equality if and only if Pn has no zeros in D:

We state the following generalization of Theorem 2 for the weighted Bergman
space.

Theorem 7. Suppose that �n 2 CnŒz� and Pn 2 CnŒz�. If �Pn 2 CnŒz� is defined
by (1), then

k�PnkA
p
w

� k�nkH0kPnkA
p
w
; 0 � p � 1: (10)

Note that equality holds in (10) for any polynomial Pn 2 CnŒz� when �n.z/ D
.1 C z/n D Pn

kD0
�n

k

�
zk; because �Pn � Pn and k.1 C z/nkH0 D 1: This result

allows to treat many problems in a unified way, and it has numerous interesting
consequences.

We start with the following version of the Bernstein inequality for derivative of a
polynomial in Bergman spaces.



90 I.E. Pritsker

Theorem 8. For any Pn 2 CnŒz�, we have that

kzP0
nkA

p
w

� nkPnkA
p
w
; 0 � p < 1:

If p > 0, then equality holds here only for polynomials on the form Pn.z/ D czn; c 2
C: The same is true for p D 0 provided 0 2 supp w:

By writing 0 2 supp w we mean that
’

jzj<" w dA > 0 for all " > 0; which is the

same as
R "
0

w.r/ dr > 0 8 " > 0: While the set of extremal polynomials remains the
same, note the difference in the left-hand side comparing to the classical Hp case.
It is clear that the norms of H1 and A1 coincide, and that Theorem 8 reduces to
Corollary 5 in this case.

Continuing in the parallel pattern to the results for Hp spaces, we turn to the
lower bounds of the derivative for polynomials in Bergman norms. The approach
used in Corollary 2 can be applied to produce a similar inequality for Ap

w (with the
same constant cn). But that inequality is not sharp even for p D 0 now, in contrast
with Corollary 2. Instead, we follow different approaches to obtain the following
estimates for Ap:

Theorem 9. Any Pn 2 CnŒz� satisfies

kPn � Pn.0/kA1 � n2=p�1

.2 � p/1=p
kP0

nkAp ; 1 � p < 2; (11)

kPn � Pn.0/kA1 �
 

nX
kD1

1

k

!1=2
kP0

nkA2 � p
1C log n kP0

nkA2 ; n 2 N; (12)

and

kPn � Pn.0/kA1 � p

p � 2 kP0
nkAp ; p > 2: (13)

Note that the first inequality in (12) turns into equality for Qn.z/ D Pn
kD1 zk=k;

as

kQn � Qn.0/kA1 D
nX

kD1

1

k
and kQ0

nkA2 D
 

nX
kD1

1

k

!1=2
:

We also show in the proof of Theorem 9 that the exponent of n in (11) is optimal.
Theorem 7 implies, among many other results, that zn has the smallest Bergman

space norm among all monic polynomials.

Corollary 9. If Pn 2 CnŒz� is a monic polynomial, then

kPnkA
p
w

� kznkA
p
w
; 0 � p < 1: (14)
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If p > 0, then equality holds above only for Pn.z/ D zn. This is also true for p D 0

provided 0 2 supp w:
For w � 1 we have

kznkAp D
8
<
:

e�n=2; p D 0;�
2

pn C 2

	1=p

; 0 < p < 1:

Since kPnkA1 D kPnkH1 , the inequality kPnkA1 � kznk1 D 1 is well known, see
Corollary 6 and [5, 18].

Another useful estimate compares norms on the concentric disks DR WD fz W
jzj < Rg to that on the unit disk.

Corollary 10. If Pn 2 CnŒz� and R � 1, then

 
1

�R2

“

DR

jPn.z/jp dA.z/

!1=p

� Rn kPnkAp ; p 2 .0;1/;

and

exp

 
1

�R2

“

DR

log jPn.z/j dA.z/

!
� Rn kPnkA0 ;

where equality holds for Pn.z/ D zn:

Again, in the case p D 1, it is already known that maxz2DR jPn.z/j � RnkPnk1
(cf. Corollary 7 and [18]).

Another consequence relates kPnkp to the coefficients of Pn:

Corollary 11. If Pn.z/ D Pn
kD0 akzk 2 CnŒz�, then

jakj � �kzkkA
p
w

��1
 

n

k

!
kPnkA

p
w
; k D 0; : : : ; n; 0 � p < 1:

If w � 1, then we have

jakj �
�

pk C 2

2

	1=p
 

n

k

!
kPnkAp ; k D 0; : : : ; n; 0 < p < 1;

and

jakj � ek=2

 
n

k

!
kPnkA0 ; k D 0; : : : ; n:
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If k D 0 or k D n, then the estimates of Corollary 11 are sharp for the
corresponding monomials, but this is not generally so because binomial coefficients
grow very fast with n. One can often improve the estimates of Corollary 11 by using
the coefficient estimates for general functions from Bergman spaces. For example,
the result of Horowitz (cf. [8, p. 81]) states that for any f .z/ D P1

kD0 akzk 2 Ap we
have

 1X
kD0

jakjq
.k C 1/q�1

!1=q

� kf kAp ; 1 < p � 2; q D p=.p � 1/: (15)

It is certainly possible to extend the list of corollaries by choosing appropriate
coefficient multipliers through the polynomials �n:

A somewhat different kind of inequalities are related to comparing the norms of
polynomials in Hardy and Bergman spaces. It is well known [8, 13] that for any
function f 2 Hp we have

kf kAp � kf kHp ; 0 � p � 1:

Clearly, we have equality for p D 1: One can prove inequalities for polynomials in
the opposite direction, of the form

kPnkHp � C.n; p/ kPnkAp :

For example, we have by Corollary 8 that

kPnkH0 � en=2 kPnkA0 ;

where equality holds for Pn.z/ D zn.
The case p D 2 is easy to handle, because

kPnk2H2 D
nX

kD0
jakj2 � .n C 1/

nX
kD0

jakj2
k C 1

D .n C 1/ kPnk2A2 ;

where Pn.z/ D Pn
kD0 akzk: Hence we obtain that

kPnkH2 � p
n C 1 kPnkA2 ; Pn 2 CnŒz�;

with equality for Pn.z/ D zn: It is plausible that more generally

kPnkHp � .pn=2C 1/1=p kPnkAp ; 0 < p < 1;

with equality for Pn.z/ D zn:
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Estimates for the Bergman space norms of zero-free polynomials in the unit disk
are not available to the best of our knowledge. We give a bound for the derivative of
a polynomial without zeros in the unit disk that generalizes Theorem 5.

Theorem 10. If Pn 2 CnŒz� has no zeros in the unit disk, then

�
1

bw

Z 2�

0

Z 1

0

jP0
n.re

i� /jp krz C 1kp
Hp w.r/r drd�

	1=p

� n kPnkA
p
w
; 0 < p < 1;

where bw D ’
D

w dA. In particular, we have

kP0
nkA

p
w

� n kPnkA
p
w
; 0 � p � 1:

It is a peculiar fact that the original form of the Bernstein inequality holds for the
zero-free polynomials in this case. However, the above estimates are not sharp, see
the proof of Theorem 10.

3 Proofs

We prove all new results and also selected known results where reasonably concise
proofs can be given. In particular, the proofs of Theorems 1 and 2 are not included,
and may be, respectively, found in the original papers of de Bruijn and Springer
[6] and of Arestov [1]. An alternative exposition of methods that include a proof of
Theorem 2 is contained in Sect. 13.2 of [18]. Proofs of Corollaries 1–4 are already
outlined in Sect. 1. We start with characterization of all extremal polynomials in
Corollary 1 by the location of their zeros in the closed unit disk. We are not aware
of this observation made previously in the literature.

Proof of Corollary 1. We present an alternative proof of this corollary, independent
of Theorem 1, that gives a description of all polynomials achieving equality.
Consider any Pn.z/ D an

Qn
kD1.z� zk/ 2 CnŒz�; an ¤ 0; and note that the inequality

of Corollary 1 is equivalent to the following

log
kP0

nkH0

kPnkH0

D 1

2�

Z 2�

0

log
jP0

n.e
i� /j

jPn.ei� /j d� � log n:

On the other hand, we have that

1

2�

Z 2�

0

log

ˇ̌
ˇ̌P0

n.e
i� /

Pn.ei� /

ˇ̌
ˇ̌ d� D 1

2�

Z 2�

0

log

ˇ̌
ˇ̌
ˇ

nX
kD1

1

ei� � zk

ˇ̌
ˇ̌
ˇ d�:

Denote the above expression by u.z1; : : : ; zn/, and observe that it is a continuous
function of the roots zk 2 C. Moreover, u is subharmonic in each zk 2 D;
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k D 1; : : : ; n; by Theorem 2.4.8 of [19, p. 38]. It is also subharmonic in each variable
in ˝ WD fz 2 C W jzj > 1g: Applying the maximum principle for u with respect to
every variable zk in the domains D and ˝, we obtain that the largest value of u
is attained for a polynomial Qn.z/ D bnzn C : : : with all roots wk; k D 1; : : : ; n;
located on the unit circumference. But we can explicitly find that kQnkH0 D jbnj
for such an extremal polynomial. Since all zeros of Q0

n are contained in the closed
unit disk by the Gauss-Lukas Theorem, we also find that kQ0

nkH0 D njbnj: Thus the
largest value of u is log n for all n-tuples of points fzkgn

kD1, i.e., for all polynomials
Pn: Furthermore, the same argument gives that kPnkH0 D janj and kP0

nkH0 D njanj
for any polynomial Pn with all zeros in the closed unit disk, so that equality holds
in Corollary 1 as claimed. If Pn has a zero in ˝, then we have a strict inequality.
Indeed, assume to the contrary that zn 2 ˝ and u.z1: : : : ; zn/ D log n. Since u
is subharmonic and achieves maximum in ˝, it must be constant with respect to
zn 2 ˝. Letting zn ! 1 (and keeping other roots fixed), we now have that

log n D lim
zn!1 u.z1; : : : ; zn/ D 1

2�

Z 2�

0

log

ˇ̌
ˇ̌
ˇ

n�1X
kD1

1

ei� � zk

ˇ̌
ˇ̌
ˇ d�

D 1

2�

Z 2�

0

log

ˇ̌
ˇ̌R0

n�1.ei� /

Rn�1.ei� /

ˇ̌
ˇ̌ d�;

where Rn�1.z/ D Qn�1
kD1.z � zk/ is of degree n � 1. This is in contradiction with the

already proved inequality

log
kR0

n�1kH0

kRn�1kH0

D 1

2�

Z 2�

0

log

ˇ̌
ˇ̌R0

n�1.ei� /

Rn�1.ei� /

ˇ̌
ˇ̌ d� � log.n � 1/:

ut
Proof of Corollary 5. Inequality (4) is obtained from (3) by using the polynomial

�n.z/ D nz.1C z/n�1 D
nX

kD0
k

 
n

k

!
zk:

Indeed, given any polynomial Pn.z/ D Pn
kD0 akzk 2 CnŒz�; we obtain from the

definition of the Schur-Szegő composition in (1) that

�Pn.z/ D
nX

kD0
kakzk D zP0

n.z/:

Furthermore, it is immediate that k�nkH0 D n; so that (4) follows.
The uniqueness part for 0 < p < 1 is a consequence of Theorem 5 from [1],

because the coefficients of �n.z/ D Pn
kD0 �kzk satisfy �n D n > �0 D 0; and the

function .u/ D up clearly satisfies that u0.u/ is strictly increasing. The case of
p D 1 is classical. Uniqueness is also explicitly discussed in Theorem 6 of [10].

ut
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Proof of Theorem 3. Let f be analytic in D, with the derivative f 0 in the Hardy space
H1, and apply the Fejér-Riesz inequality, see [7, p. 46]. For any r 2 Œ0; 1� and
� 2 Œ0; 2�/, we obtain that

jf .rei� / � f .0/j D
ˇ̌
ˇ̌
Z r

0

f 0.tei� /ei� dt

ˇ̌
ˇ̌ �

Z r

0

jf 0.tei� /j dt

�
Z 1

�1
jf 0.tei� /j dt � 1

2

Z 2�

0

jf 0.ei.�C//j d D �kf 0kH1 :

It follows that

kf � f .0/kH1 � �kf 0kH1 ;

which contains (5) as P0
n 2 H1 for any polynomial Pn 2 CnŒz�.

We now prove that the constant � in the above inequality and in (5) is sharp.
Consider the conformal mapping  of the unit disk D onto the rectangle R WD
.�"; 1/� .�"; "/; " > 0; that satisfies  .0/ D 0 and  0.0/ > 0. It is easy to see that
k �  .0/kH1 D k kH1 D p

1C "2. Moreover, the perimeter of R is expressed
as

2C 6" D
Z 2�

0

j 0.ei� /j d� D 2�k 0kH1 :

Hence we have that

lim
"!0

k �  .0/kH1

�k 0kH1

D lim
"!0

p
1C "2

1C 3"
D 1;

which shows asymptotic sharpness for f D  as " ! 0: On the other hand,
polynomials are dense in H1, and there is a sequence of polynomials Qn 2 CnŒz�
such that k 0 � Q0

nkH1 ! 0 as n ! 1: The Fejér-Riesz inequality again gives

k � Qn � . .0/ � Qn.0//kH1 � �k 0 � Q0
nkH1 ! 0 as n ! 1:

Thus limn!1 kQ0
nkH1 D k 0kH1 and limn!1 kQn � Qn.0/kH1 D k � .0/kH1 ,

so that (5) is asymptotically sharp for Qn as n ! 1:

We obtain (6) from (5) with the help of the Nikolskii-type inequality [18, p. 463]:

kP0
nkH1 � ..n � 1/dp=2e C 1/1=p�1 kP0

nkHp D n1=p�1kP0
nkHp ; 0 < p < 1;

where d�e is the standard ceiling function. ut
Proof of Corollary 6. Let �n.z/ D zn; so that for any monic polynomial Pn 2 CnŒz�
we have the Schur-Szegő composition�Pn.z/ D zn. Since k�nkH0 D 1; (7) follows
from (3).
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The uniqueness part for 0 < p < 1 follows from Theorem 5 of [1], because
the coefficients of �n satisfy �n D 1 > �0 D 0; and the function .u/ D up

satisfies that u0.u/ is strictly increasing. If p D 1, then uniqueness of the extremal
polynomial in (7) is the content of Tonelli’s theorem [23, p. 72]. ut
Proof of Corollary 7. For �n.z/ D .Rz C 1/n D Pn

kD0
�k

n

�
Rkzk and Pn.z/ DPn

kD0 akzk 2 CnŒz�; we have that

�Pn.z/ D
nX

kD0
akRkzk D Pn.Rz/:

Note that k�nkH0 D Rn; because the only root of �n is in D. Thus (8) follows
from (3). The case of equality is again a consequence of Theorem 5 of [1], as �n D
Rn > �0 D 1: ut
Proof of Theorem 4. We apply Theorem 2 and the definition of the Schur-Szegő
composition to obtain that

kPn 
 QnkHp D
�����

nX
kD0

akbkzk

�����
Hp

�
�����

nX
kD0

 
n

k

!
akzk

�����
H0

kQnkHp ; 0 � p � 1:

Using Theorem 1 for the first factor on the right (or Theorem 2 again), we have

�����
nX

kD0

 
n

k

!
akzk

�����
H0

�
������

nX
kD0

 
n

k

!2
zk

������
H0

�����
nX

kD0
akzk

�����
H0

D k�nkH0kPnkH0 :

The asymptotic value

lim
n!1 k�nk1=n

H0 � 3:20991230072 : : :

is found from the product of zeros of �n outside the unit disk, see [22] for details
and more precise asymptotic results. ut

A proof of Theorem 5 may be found in [18, pp. 554–555].

Proof of Theorem 6. If Pn does not vanish in D; then log jPn.z/j is harmonic in D:

Hence kPnkH0 D ja0j and kPnkA0 D ja0j follow from the contour and the area mean
value theorems, respectively. Assume now that Pn has zeros in D:Applying Jensen’s
formula, we obtain that

log kPnkH0 D 1

2�

Z 2�

0

log jPn.e
i� /j d� D log janj C

X
jzjj�1

log jzjj:
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Furthermore,

log kPnkA0 D 1

�

Z 1

0

Z 2�

0

log jPn.re
i� /j rdrd�

D 2

Z 1

0

�
1

2�

Z 2�

0

log jPn.re
i� /j d�

	
rdr

D 2

Z 1

0

0
@log janj C

X
jzjj�r

log jzjj C
X
jzjj<r

log r

1
A rdr

D log janj C
X

jzjj�1
log jzjj C 1

2

X
jzjj<1

.jzjj2 � 1/:

Hence

kPnkA0 D kPnkH0 exp

0
@1
2

X
jzjj<1

.jzjj2 � 1/
1
A :

ut
Proof of Corollary 8. The lower bound for kPnkA0 follows from (9) because the
smallest value of the sum

X
jzjj<1

.jzjj2 � 1/

is equal to �n, which is achieved if and only if all zj D 0. The largest value of this
sum is clearly 0 iff all jzjj � 1; giving us the upper bound. ut
Proof of Theorem 7. Applying (2) to the polynomial Pn.rz/; r 2 Œ0; 1�, instead of
Pn.z/, we obtain that

Z 2�

0

log j�Pn.re
i� /j d� � 2� log k�nkH0 C

Z 2�

0

log jPn.re
i� /j d�:

Next we integrate the above inequality with respect to w.r/r dr from 0 to 1:

Z 2�

0

Z 1

0

log j�Pn.re
i� /j w.r/r drd� � log k�nkH0 2�

Z 1

0

w.r/r dr

C
Z 2�

0

Z 1

0

log jPn.re
i� /j w.r/r drd�:
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Dividing by bw D 2�
R 1
0

w.r/r dr and taking exponential, we prove (10) for p D 0.
Similarly, we obtain from (3) that

Z 2�

0

j�Pn.re
i� /jp d� � k�nkp

H0

Z 2�

0

jPn.re
i� /jp d�; 0 < p < 1;

which implies that

Z 2�

0

Z 1

0

j�Pn.re
i� /jp w.r/r drd� � k�nkp

H0

Z 2�

0

Z 1

0

jPn.re
i� /jp w.r/r drd�:

Dividing by bw and taking the power 1=p, we now have (10) for p > 0. If p D 1;

then (10) follows from (3) again:

k�PnkA1
w

D sup
0��<2�
0�r<1

j�Pn.re
i� /jw.r/ � sup

0��<2�
0�r<1

k�nkH0 max
0��<2� jPn.re

i� /j w.r/

D k�nkH0kPnkA1
w
:

ut
Proof of Theorem 8. Observe that the derivative of Pn can be expressed in the form
of the Schur-Szegő convolution as in the proof of Corollary 5:

zP0
n.z/ D �Pn.z/ with �n.z/ D nz.1C z/n�1 D

nX
kD0

k

 
n

k

!
zk:

Since k�nkH0 D n; the inequality of Theorem 8 follows from (10).
Turning to the case of equality in Theorem 8, we first let p > 0: We assume that

Z 2�

0

Z 1

0

jrP0
n.re

i� /jp w.r/r drd� D np
Z 2�

0

Z 1

0

jPn.re
i� /jp w.r/r drd�

holds for a polynomial Pn: Note that Corollary 5 applied to the polynomial
Pn.rz/; r > 0; gives that

Z 2�

0

jrP0
n.re

i� /jp d� � np
Z 2�

0

jPn.re
i� /jp d�:

Since we have equality for the area integrals over D, we must also have equality
in the latter inequality for almost every r 2 supp w: But this is only possible when
Pn.z/ D czn; c 2 C; by Corollary 5.

For p D 0, we argue in a similar fashion to show that

Z 2�

0

log jrP0
n.re

i� /j d� D 2� log n C
Z 2�

0

log jPn.re
i� /j d�
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holds for almost every r 2 supp w; provided we have equality in Theorem 8. It
follows that the family of polynomials Qn.z/ D Pn.rz/ is extremal in Corollary 1
for all such r. Hence Pn.rz/ has all zeros in the closure of D; while Pn.z/ has all
zeros in fz 2 C W jzj � rg. Since this holds for a sequence of radii r ! 0 such that
r 2 supp w, we conclude that all zeros of Pn are at the origin. ut
Proof of Theorem 9. We start with the case 1 < p � 2: Let Pn.z/ D Pn

kD0 akzk, so
that P0

n.z/ D Pn
kD1 kakzk�1. Applying Theorem 2 of [8, p. 81] [also see (15)], we

obtain that

kP0
nkAp �

 
nX

kD1

kqjakjq
kq�1

!1=q

D
 

nX
kD1

kjakjq
!1=q

; 1 < p � 2; q D p=.p � 1/:

Using this inequality together with Hölder’s inequality, we estimate

kPn � Pn.0/kA1 �
nX

kD1
k1=qjakjk�1=q �

 
nX

kD1
kjakjq

!1=q  nX
kD1

k�p=q

!1=p

� kP0
nkAp

 
nX

kD1
k1�p

!1=p

� kP0
nkAp

�
1C

Z n

1

x1�p

	1=p

:

Evaluating the latter integral, we arrive at (11) and (12). The case p D 1 in (11) is
obtained by letting p ! 1C :

We now show that the exponent of n in (11) is sharp. Consider the polynomial

Q2n�1.z/ D
Z z

0

 
nX

kD1
ktk�1

!2
dt; deg.Q2n�1/ D 2n � 1:

The second part of Theorem 2 in [8, p. 81] states a reverse inequality to (15) for
p � 2. Although p 2 .1; 2� in our case, we use this fact for 2p 2 .2; 4� and r D
2p=.2p � 1/ to estimate that

kQ0
2n�1kp

Ap D
������

 
nX

kD0
kzk�1

!2������

p

Ap

D
�����

nX
kD0

kzk�1
�����
2p

A2p

�
 

nX
kD1

kr

kr�1

!2p=r

D
 

nX
kD1

k

!2p�1
D
�

n.n C 1/

2

	2p�1
:

Hence the right-hand side of (11) for Q2n�1 is of the order O.n3/: Note that both
Q2n�1 and its derivative have positive coefficients. This immediately implies that

kQ2n�1kA1 D Q2n�1.1/ D
Z 1

0

 
nX

kD1
ktk�1

!2
dt:
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Given any polynomial Pm.z/ D Pm
kD0 akzk of degree m with positive coefficients,

we have that

Z 1

0

Pm.x/ dx D
mX

kD0

ak

k C 1
� Pm.1/

m C 1
:

The latter inequality applied to Q0
2n�1 gives that

kQ2n�1kA1 D
Z 1

0

 
nX

kD1
ktk�1

!2
dt � 1

2n � 1

 
nX

kD1
k

!2
D 1

2n � 1

 
nX

kD1

n.n C 1/

2

!2
:

Hence the left-hand side of (11) for Q2n�1 grows like n3 as n ! 1, matching the
right-hand side.

Turning to the case p > 2, we apply the area submean inequality for a
subharmonic function jP0

n.z/jp on the disk ft 2 C W jt � zj < 1 � jzjg contained
in D for any z 2 D W

jP0
n.z/jp � 1

�.1 � jzj/2
Z

fjt�zj<1�jzjg
jP0

n.t/jp dA.t/ � kP0
nkp

Ap

.1 � jzj/2 ; z 2 D:

Hence (13) follows from

jPn.e
i� / � Pn.0/j �

Z 1

0

jP0
n.re

i� /j dr � kP0
nkAp

Z 1

0

.1 � r/�2=p dr D p

p � 2kP0
nkAp :

ut
Proof of Corollary 9. Consider any monic polynomial Pn.z/ D zn C : : : and the
multiplier polynomial �n.z/ D zn: Then the Schur-Szegő convolution is given by
�Pn.z/ D zn: Hence (14) follows from (10). Equality holds trivially for Pn.z/ D zn;

and we now show that this is the only extremal polynomial. Assume first that p > 0:
Equality in (14) is equivalent to

Z 2�

0

Z 1

0

jPn.re
i� /jp w.r/r drd� D

Z 2�

0

Z 1

0

rnp w.r/r drd�

holding for a monic polynomial Pn:Corollary 6 gives by a scaling change of variable
that

1

2�

Z 2�

0

jPn.re
i� /jp d� � rnp; 0 � r � 1;

for any monic polynomial Pn 2 CnŒz�; with equality only for Pn.z/ D zn: Hence
equality in (14) implies that equality must hold in the above inequality for a.e. r 2
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supp w; which means that Pn.z/ D zn by Corollary 6. The case p D 0 is handled
similarly. It is immediate to see that

1

2�

Z 2�

0

log jPn.re
i� /j d� � log rn; 0 � r � 1;

for any monic polynomial Pn 2 CnŒz�; with equality only if all zeros of Pn.rz/ are
in the closed unit disk. Equality in (14) for p D 0 can be written as

Z 2�

0

Z 1

0

log jPn.re
i� /j w.r/r drd� D

Z 2�

0

Z 1

0

log rn w.r/r drd�

for a monic polynomial Pn; which implies that

1

2�

Z 2�

0

log jPn.re
i� /j d� D log rn

for almost every r 2 supp w. Thus Pn.rz/ has all zeros in the closure of D; and Pn.z/
has all zeros in fz 2 C W jzj � rg for a sequence of radii r ! 0 such that r 2 supp w.
It follows that Pn.z/ D zn.

The values of kznkAp given in this corollary are found by a routine computation.
ut

Proof of Corollary 10. Let �n.z/ D .1 C Rz/n D Pn
kD0

�n
k

�
Rkzk: Then �Pn.z/ D

Pn.Rz/ and k�nkH0 D Rn: Hence (10) gives that

kPn.Rz/kAp � RnkPnkAp ; 0 � p < 1;

for any R � 1: Changing variable and passing to the integral over DR, we obtain that

kPn.Rz/kAp D
 

1

�R2

“

DR

jPn.z/jp dA.z/

!1=p

; 0 � p < 1;

and

kPn.Rz/kA0 D exp

 
1

�R2

“

DR

log jPn.z/j dA.z/

!
; p D 0:

The case of equality for Pn.z/ D zn is verified by the same substitution. ut
Proof of Corollary 11. Let �n.z/ D �n

k

�
zk; 0 � k � n: Then �Pn.z/ D akzk and

k�nkH0 D �n
k

�
: It follows from (10) that

jakjkzkkA
p
w

D kakzkkA
p
w

�
 

n

k

!
kPnkA

p
w
; 0 � p � 1:
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If w � 1, then we can use explicit values of kzkkA
p
w

as given in Corollary 9 to obtain
the last two inequalities of Corollary 11. ut
Proof of Theorem 10. We recall the following estimate for a polynomial Pn without
zeros in the disk fz 2 C W jzj < Rg; R � 1:

kP0
nkHp � n

kz C RkHp
kPnkHp ; 0 � p � 1:

This extension of Theorem 5 was originally proved by Govil and Rahman [11] for
p � 1, and later by Aziz and Shah [4] for any p > 0: While equality may hold
in Theorem 5 as explained after its statement, the above inequality cannot turn into
equality for any Pn without zeros in the disk fz 2 C W jzj < Rg; R > 1: The cases
p D 0 and p D 1 follow immediately by taking limits as p ! 0 and p ! 1: We
apply the stated result to the family of polynomials Pn.rz/; r 2 .0; 1�: It is clear that
if Pn is zero-free in D; then Pn.rz/ has no zeros in the disk fz 2 C W jzj < 1=rg; r 2
.0; 1�: Hence

Z 2�

0

jrP0
n.re

i� /jp d� � np

kz C 1=rkp
Hp

Z 2�

0

jPn.re
i� /jp d�; 0 < p < 1:

Simplifying, we obtain that

krz C 1kp
Hp

Z 2�

0

jP0
n.re

i� /jp d� � np
Z 2�

0

jPn.re
i� /jp d�; 0 < p < 1:

We now integrate the above inequality with respect to w.r/r dr from 0 to 1:

Z 2�

0

Z 1

0

jP0
n.re

i� /jp krz C 1kp
Hp w.r/r drd� � np

Z 2�

0

Z 1

0

jPn.re
i� /jp w.r/r drd�:

Thus the first inequality follows for p 2 .0;1/: It remains to observe that krz C
1kp

Hp � 1 by the submean inequality for the subharmonic function jrz C 1jp, so that
the second inequality is a consequence of the first one for p 2 .0;1/: The endpoints
are handled by the standard limits as p ! 0 and p ! 1: ut
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Some Rational Inequalities Inspired
by Rahman’s Research

Xin Li, Ram Mohapatra, and Rajitha Ranasinghe

Abstract This paper describes three instances of our research activity in ratio-
nal inequalities inspired by Professor Rahman’s research. The results include
Bernstein-type inequalities for rational functions with prescribed poles, comparison
inequalities for rational functions, and integral inequalities with prescribed poles
and prescribed zeros.

Keywords Bernstein-type inequality • Polar derivative • Zeros of a polyno-
mial/Rational functions

2000 Mathematics Subject Classification: 30A10, 30C10, 30E10, 30C15

1 General Introduction

Professor Q.I. Rahman developed many novel techniques to solve extremal prob-
lems arising in polynomials, rational functions, and entire functions of exponential
type. He used tools from variational principles, optimization methods, duality
theory, subordination technique, etc. Over the years many researchers have used the
methods developed by Rahman and his collaborators (See references [1] through
[32]). In this paper, we describe how his research inspired us to obtain rational
inequalities.

Let Pn denote the complex algebraic polynomials of degree at most n (with
complex coefficients). Let aj 2 C, j D 1; 2; : : :; n, be n fixed numbers with moduli
larger than 1: jajj > 1 (j D 1; 2; : : :; n). Here C denotes the set of all complex
numbers. Define wn.z/ D Qn

jD1.z � aj/ and

Rn D



p.z/

wn.z/
j p 2 Pn

�
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Then Rn is the set of rational functions with poles a1; a2; : : : ; an at most and with
finite limit at infinity. We shall also write

Bn.z/ D
nY

jD1

1 � ajz

z � aj
:

Let T WD fz W jzj D 1g be the unit circle in C and for a function f defined on T;

we set kf k D supjzjD1 jf .z/j: Also let D� D fz W jzj < 1g and DC D fz W jzj > 1g;
respectively, be the inside and outside of the unit circle. The well-known Bernstein
inequality is the following:

Theorem 1. If p 2 Pn; then

kp0k � nkpk: (1)

For real algebraic polynomials of degree n on the interval Œ�1; 1� Markoff
inequality can be written as:

Theorem 2. If p.x/ is a real polynomial of degree at most n;

max�1�x�1 jp0.x/j � n2 max�1�x�1 jp.x/j: (2)

Duffin and Schafer [9] showed that, in (2), max�1�x�1 jp.x/j can be replaced
by the maximum of jp.x/j in the extrema fcos .k�=n/gn

kD0 of the nth Chebyshev
polynomial of the first kind. Motivated by the above, Frappier et al. [10, Theorem 8,
p. 89] proved the following improvement of Theorem 1.

Theorem 3. If p 2 Pn; then

kp0k � n max
1�k�2n

jp.ek� i=n/j: (3)

That is, in (1), kpk may be replaced by the maximum of jp.z/j in the 2nth roots
of unity. On the other hand, the maximum in the .nCm/th roots of unity with m < n
does not suffice.

It is natural to ask if there exist any polynomial p 2 Pn for which kpk >

max1�k�2n jp.ek� i=n/j:Rahman et al. [10, p. 95] provided the counterexample p.z/ D
1C izn:

Motivated by Theorem 3, Mohapatra et al. [25, Theorem B, p. 630] proved the
following improvement of it.

Theorem 4. Let z1; z2; : : : ; z2n be any 2n equally spaced points on T in order, say
zk D uek� i=n; where juj D 1 and k D 1; 2; : : : 2n: If p 2 Pn; then

kp0k � n

2

n
max
k odd

jp.zk/j C max
k even

jp.zk/j
o
:
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The rational analogue of Theorem 4 was proved by Li et al. in [20], which we
will discuss in the next section. It is needless to say that the rational analogue of
Theorem 4 had its motivation in Theorem 3 of Frappier et al.

2 Bernstein-Type Inequalities for Rational Functions
with Prescribed Poles

In this section, we will state the rational analogue of Theorems 3 and 4, and also
other related inequalities for rational functions. For reader’s convenience, all stated
results for rational functions will be proved in Sect. 7. Our first result is an identity
which is the rational analogue of the result in Mohapatra et al. [25, p. 630] and
which allows us to introduce the “sampling points” used in the discrete norms.

Theorem 5 ([20, Theorem 1]). Suppose that � 2 T: Then the following hold:

(i) Bn.z/ D � has exactly n simple roots, say t1; t2; : : : ; tn; and all lie on the unit
circle, TI

(ii) if r 2 Rn and z 2 T; then

Bn
0.z/r.z/ � r0.z/ŒBn.z/ � �� D Bn.z/

z

nX
kD1

ckr.tk/

ˇ̌
ˇ̌Bn.z/ � �

z � tk

ˇ̌
ˇ̌
2

; (4)

where ck D ck.�/ is defined by

c�1
k D

nX
jD1

jajj2 � 1
jtk � ajj2 ; for k D 1; 2; : : : ; n: (5)

The following interpolating formula for the derivative of rational functions is
useful and follows easily from Theorem 5.

Theorem 6 ([20, Corollary 1]). Let ck and tk (for k D 1; 2; : : : ; n) be as in
Theorem 5 and let the n roots of Bn.z/ D �� be s1; s2; : : : ; sn: If dk is defined as
ck in Eq. (5) with tk replaced by sk; for k D 1; 2; : : : ; n; then

2�zr0.z/
Bn.z/

D
nX

kD1
ckr.tk/

ˇ̌
ˇ̌Bn.z/ � �

z � tk

ˇ̌
ˇ̌
2

�
nX

kD1
dkr.sk/

ˇ̌
ˇ̌Bn.z/C �

z � sk

ˇ̌
ˇ̌
2

: (6)

Now the rational analogue of Theorems 3 and 4 can be stated as follows:

Theorem 7 ([20, Corollary 2]). Let tk and sk be as in Theorem 6. Then

jr0.z/j � 1

2
jB0

n.z/j


max
1�k�n

jr.tk/j C max
1�k�n

jr.sk/j
�
: (7)

The inequality in (7) reduces to an equality when r.z/ D uBn.z/ with u 2 T:
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By considering the class of polynomials having no zero in jzj < 1; P. Erdös
conjectured and P.D. Lax proved the following Erdös–Lax inequality:

Theorem 8 ([17]). If p 2 Pn with jp.z/j � 1 on z 2 T and p.z/ has no zero in D�;
then

jp0.z/j � n

2
for z 2 T:

The result is best possible and the extremal polynomial is p.z/ D ˛C ˇzn=2; where
j˛j D jˇj D 1:

It follows from inequality (7) the rational Bernstein inequality, (see [20]), for any
r 2 Rn;

jr0.z/j � jBn
0.z/jkrk for z 2 T; (8)

where the equality holds for r.z/ D uBn.z/ with u 2 T: The rational version of the
Erdös–Lax inequality was established in [20] as well.

Theorem 9 ([20, Theorem 3, p. 526]). If r 2 Rn has all its zeros in T [ DC, the
inequality (8) can be strengthened to

jr0.z/j � 1

2
jB0

n.z/jkrk for z 2 T: (9)

Equality holds for r.z/ D ˛Bn.z/C ˇ with j˛j D jˇj D 1:

Aziz and Shah [3] considered the rational functions not vanishing in D� but using
the discrete norm.

Theorem 10 ([3, Theorem 1]). Let r 2 Rn and all the zeros of r lie in T [ DC: If
tk and sk are as before, then for z 2 T;

jr0.z/j � 1

2
jB0

n.z/j
"�

max
1�k�n

jr.tk/j
	2

C
�

max
1�k�n

jr.sk/j
	2#1=2

:

Remark. From Theorem 10, Erdös–Lax result for polynomials cannot be deduced.
Still we haven’t seen either a polynomial or a rational analogue of Erdös–Lax
inequality using the discrete norm. For reader’s convenience, we will give a proof
of Theorem 10 in Sect. 7 and state the following open problem.

Open Problem. Formulate and prove a sharp Erdos–Lax inequality using the
discrete norm to replace kpk.
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3 Comparison Inequalities

If p is a complex polynomial of degree at most n; then (1) can be written as

kp0k �
ˇ̌
ˇ̌d.kpkzn/

dz

ˇ̌
ˇ̌ at jzj D 1: (10)

In fact, Bernstein in 1930 (see [31, p. 510, Theorem 14.1.2]) proved the following
result.

Theorem 11. If F.z/ D
nP

kD0
Akzk is a polynomial of degree n with all its zeros in the

closed unit disc. If in addition, f .z/ D
nP

kD0
akzk is a polynomial of degree at most n

such that jf .z/j � jF.z/j for jzj D 1; then

jf 0.z/j � jF0.z/j for 1 � jzj < 1: (11)

Equality in (11) holds at some point outside the closed unit disc if and only if f .z/ D
ei�F.z/ for some real number �:

In 1969, Rahman used such a comparison inequality to obtain derivatives
of entire functions of exponential type (see Lemma 2 and Sect. 3.2 [29]). In
Sect. 5 of that paper, Rahman introduced an operator preserving inequality between
polynomials which has led to considerable research for inequalities between polar
derivatives.

Although our interest in this paper is to write about the impact of this work
on rational functions, it is worthwhile to quote one result of Rahman from [29]
and mention a few more results of interest since they together motivate the rational
version of the comparison inequalities to be discussed in the next section

Let

p.z/ D
nX

kD0
akzk (12)

and consider an operator B that carries p.z/ into BŒp.z/� given by

BŒp.z/� D �0p.z/C �1

�nz

2

�
p0.z/C �2

�nz

2

�2 p00.z/
2Š

; (13)

where �0; �1, and �2 such that all the zeros of

u.z/ D �0 C
 

n

1

!
�1z C

 
n

2

!
�2z

2 (14)

lie in the half plane jzj � jz � n=2j :
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Theorem 12 ([29, Theorem 4, p. 304]). If p 2 Pn; then

jp.z/j � M for z 2 T

implies

jBŒp.z/�j � MjBŒzn�j for z 2 T [ DC: (15)

In 1985, Malik and Vong [23] presented the following related result:

Theorem 13. Assume that p 2 Pm and q 2 Pn are polynomials with m � n: If
q.z/ has all its zeros in jzj � 1 and jp.z/j � jq.z/j for jzj D 1; then

ˇ̌
ˇ̌ zp0.z/

n
C ˇ

p.z/

2

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌ zq0.z/

n
C ˇ

q.z/

2

ˇ̌
ˇ̌ ; (16)

for all z such that jzj D 1 and jˇj � 1:

Remark. If ˇ D 0; then Theorem 13 reduces to Theorem 11.

Open Problem. Prove or disprove: Assume that p 2 Pm and q 2 Pn are
polynomials with m � n: If q.z/ has all its n zeros in jzj � 1 and jp.z/j � jq.z/j for
jzj D 1; then

jBŒp.z/�j � jBŒq.z/�j for jzj > 1:

For a complex number ˛ and for any p 2 Pn; the polar derivative of p with
respect to ˛; D˛p.z/; is defined by

D˛p.z/ D np.z/C .˛ � z/p0.z/:

In 1988, Aziz [2] showed that for p 2 Pn; p.z/ ¤ 0 for jzj < 1;

jD˛.p.z//j � n

2
.j˛zn�1j C 1/ for jzj � 1:

In 1998, Aziz and Shah [4] extended the Bernstein inequality by proving

jD˛.p.z//j � nj˛zn�1jkpk for jzj � 1:

Recently, for polar derivative, Liman et al. [21, Theorem 1] proved the following:

Theorem 14. Let p and q as in Theorem 13. Then

ˇ̌
ˇ̌zD˛p.z/C nˇ

� j˛j � 1
2

	
p.z/

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌zD˛q.z/C nˇ

� j˛j � 1
2

	
q.z/

ˇ̌
ˇ̌ ;

for all z such that jzj D 1; j˛j � 1; jˇj � 1:
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Li [19] established some comparison inequalities for rational functions and
deduced Theorems 13 and 14 as special cases which is discussed in the next section.

4 Comparison Inequality for Rational Functions

The following result gives a rational extension of Theorem 11

Theorem 15 ([19, Theorem 3.1]). Let r; s 2 Rn and assume that s has all its n
zeros in jzj � 1: Further, let

jr.z/j � js.z/j for jzj D 1:

Then

jr0.z/j � js0.z/j for jzj D 1: (17)

Remark. Using s.z/ D Bn.z/ in Theorem 15 will yield Bernstein inequality.

Theorem 15 is a special case of the following more general result.

Theorem 16 ([19, Theorem 3.2]). Suppose r; s 2 Rn and assume s has all its n
zeros in jzj � 1 and

jr.z/j � js.z/j for jzj D 1:

Then, for any � satisfying j�j � 1=2;

jr0.z/C �Bn
0.z/r.z/j � js0.z/C �Bn

0.z/s.z/j for jzj D 1: (18)

Equality holds if r.z/ � s.z/:

Remark. Inequality (18) should be compared with the inequality (16) of Malik and
Vong [23]. Here we mention some results which can be deduced from this theorem.
We will provide a proof of Theorem 16 in Sect. 8.

Corollary 1. If p; q 2 Pn where q has all its zeros in jzj � 1 and

jp.z/j � jq.z/j for jzj D 1;

then, for jaj � 1;

jDap.z/j � jDaq.z/j for jzj D 1: (19)

Proof. In Theorem 15, take ai D a for i D 1; 2; : : : ; n; for jaj > 1; with the rational
functions r.z/ D p.z/=.z � a/n and s.z/ D q.z/=.z � a/n: Both r.z/ and s.z/ have a
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pole of order n at z D a: By Theorem 15, we have

�
p.z/

.z � a/n

	0
�
�

q.z/

.z � a/n

	0
(20)

for all z such that jzj D 1: Note that

�
p.z/

.z � a/n

	0
D p0.z/
.z � a/n

� np.z/

.z � a/nC1 D �Dap.z/

.z � a/nC1 : (21)

Hence the inequality (19) can be deduced from the inequality (20) using (21) when
jaj > 1: Letting jaj ! 1 gives the inequality for jaj � 1. �

Let r; s 2 Rn be given by

r.z/ D p.z/

.z � a/n
and s.z/ D p�.z/

.z � a/n
;

where p�.z/ D znp.1=z/ with p 2 Pn and jaj � 1: Now we can deduce:

Corollary 2 ([1, p. 190]). For p 2 Pn with its zeros in jzj � 1 and for any a with
jaj � 1; we have

jDap.z/j � jDap�.z/j for jzj D 1: (22)

Now Theorem 14 can be obtained from Theorem 16 by taking the poles ai D
a; i D 1; 2; : : : ; n; jaj > 1: In fact, we will get

ˇ̌
ˇ̌� Dap.z/

.z � a/nC1 C �
n.jaj2 � 1/p.z/
jz � aj2 .z � a/n

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌� Daq.z/

.z � a/nC1 C �
n.jaj2 � 1/q.z/
jz � aj2 .z � a/n

ˇ̌
ˇ̌ :
(23)

Next, by defining ˇ such that

ˇ

� jaj � 1
2

	
D �

ja2j � 1
.z � a/

: (24)

we see that Theorem 14 follows from Theorem 16.

Corollary 3 ([19, Corollary 3.5]). Let r; s 2 Rn and assume that s has n zeros
lying in jzj � 1 and

jr.z/j � js.z/j for jzj D 1:

Then, for any c; 0 < c < 1=3;

jr0.z/j C cj.r�/0.z/j � js0.z/j C cj.s�/0.z/j for jzj D 1: (25)
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Proof. By direct calculation (or see (22) in [20]) we get

j.r�/0.z/j D jBn
0.z/r.z/ � r0.z/Bn.z/j for jzj D 1:

Let � satisfy j�j � 3: Let us take � D �1=.Bn.z/C�/: Then j�j D 1=jBn.z/C �j �
1=2: Hence, Theorem 16 will yield

j�r0.z/C .Bn.z/r
0.z/ � Bn

0.z/r.z//j � j�s0.z/j C .Bn.z/r
0.z/ � Bn

0.z/r.z//j:

Now, choosing the argument of � such that

j�r0.z/C .Bn.z/r
0.z/ � Bn

0.z/r.z//j D j�r0.z/j C jBn.z/r
0.z/ � Bn

0.z/r.z/j

This will yield for jzj D 1;

j�jjr0.z/j C j.r�/0.z/j � j�s0.z/C Bn.z/s
0.z/ � Bn

0.z/s.z/j
� j�jjs0.z/j C j.s�/0.z/j:

Taking c D 1=j�j; we get the desired result for jzj D 1: �

Corollary 4 ([19, Corollary 3.6]). Let r 2 Rn: Then the following hold:

(i) If r has n zeros all lying in jzj � 1; then for any � such that j�j � 1=2; then

j.r�/0.z/C �Bn
0.z/r�.z/j � jr0.z/C �Bn

0.z/r.z/j for jzj D 1: (26)

(ii) If r 2 Rn has all its zeros in jzj � 1; then

jr0.z/C �Bn
0.z/r.z/j � j.r�/0.z/C �Bn

0.z/r�.z/j for jzj D 1: (27)

Proof. (i) Since jr�.z/j D jr.z/j for jzj D 1 and zeros or r are in jzj � 1; by applying
Theorem 16 with replacing r.z/ and s.z/, respectively, by r�.z/ and r.z/ yield the
desired result. (ii) Apply Theorem 16 by replacing r.z/ and s.z/, respectively, by
r.z/ and r�.z/ yield the desired result. �

Remarks. (1) It is easy to show that (i) and (ii) above are equivalent. (2) When
� D 0; (ii) yields jr0.z/j � j.r�/0.z/j for jzj D 1 which is a known result from Li
et al. [20].

This observation leads to:

Corollary 5 ([19, Corollary 3.7]). Let r 2 Rn: Then the following hold:

(i) If r has n zeros lying in jzj � 1; then

j.r�/0.z/j � jr0.z/j for jzj D 1:
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(ii) If r has n zeros lying in jzj � 1; then

jr0.z/j � j.r�/0.z/j for jzj D 1:

5 An Inequality of De Bruijn

Rahman established many inequalities for entire functions of exponential type � .
Recall that a function f .z/ is an entire function of exponential type � if for every
� > 0, there exists a positive number M� > 0 such that

jf .z/j � M�e
.�C�/jzj; z 2 C;

as jzj ! 1.
A model example of such functions is given by p.eiz/ for p 2 Pn with n � � .

In [29], Rahman gave a unified method for arriving at many familiar inequalities
for entire functions of exponential type � and their generalizations. He then used the
same idea to give an alternative proof for an inequality of De Bruijn which improved
Zygmund’s version of Bernstein inequality using Lp-norm (p > 1).

Theorem 17 ([8, Theorem 13]). If the polynomial p 2 Pn has no zeros for jzj <
1, then for ı � 1;

Z 2�

0

jp0.ei� /jı d� � Cın
ı

Z 2�

0

jpn.e
i� /jı d�

where Cı D 2�=
R 2�
0

j1C ei� jı d� .

Rahman’s proof employed the reverse polynomials and basically established
several important polynomial inequalities:

(1) The following generalized version of Bernstein’s polynomial inequality on the
unit circle: If jp.z/j � M for jzj D 1, then, for jzj D 1,

jp0.z/j C j.p�/0.z/j � Mn; (28)

recalling that p�.z/ is the reverse polynomial of p.z/ defined by p�.z/ D zn

p.1=z/:
(2) If p.z/ has no zero in jzj < 1, then, for jzj D 1,

jp0.z/j � j.p�/0.z/j: (29)

The essence of Rahman’s proof consists of the recognition of DeBruijn’s use of
an arbitrary constant of modulus larger than 1: Consider Rn.z/ D p.z/ � �M for
j�j > 1 then Rahman observed that Rn.z/ has no zero in jzj < 1 and obtained (by
applying a result of De Bruijn), for 0 � � < 2� ,
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jdp.ei� /=d� j � jdp�.ei� /=d� � inein��Mj:

Then by choosing arg(�) suitably, we get

jdp.ei� /=d� j � nj�jM � jdp�.ei� /=d� j;

which implies (28).
Inequality (28) was rediscovered in ([2, 15, 22]). But more importantly, the proof

of Rahman has been used many times ([2, 12, 19, 22, 28]). One might call this
the method of Rahman according to the criterion of Polya and Szego (“An idea
which can be used only once is a trick. If one can use it more than once it becomes
a method.” [27, p. VIII, line 6]). Now, both inequalities in (28) and (29) have
been extended to rational functions rn 2 Rn in [20, Theorems 2 and 3]. Indeed,
Theorems 15 and 16 post another example of the successful application of the
method of Rahman. (See the proof of Theorem 16 in Sect. 8.) In an effort to obtain an
Lp-norm Bernstein inequality for rational functions that is an analog of De Bruijn’s
theorem, [18] established an integral representation for the derivatives of rational
functions and used this integral representation to prove an inequality that allows
poles on both sides of the unit circle. For comparison purpose, we state the special
case when all poles are restricted to the outside of the unit circle: If  .u/ is a non-
decreasing, non-negative, and convex function for u � 0, then the inequality

Z 2�

0

 

�ˇ̌
ˇ̌ r0.z/
B0

n.z/

ˇ̌
ˇ̌
	

jB0
n.z/jjdzj �

Z 2�

0

 .jr.z/j/ jB0
n.z/jjdzj (30)

holds for any r 2 Rn. This inequality is sharp the sense that the equality holds if r
is a multiple of Bn.

We now show that, in a special case (when all poles and all zeros are outside of
the unit circle, and in Lp norm), Rahman’s idea [29] above can be used to improve
inequality (30) and obtain a new result for rational functions.

Theorem 18. If p � 1 and if r 2 Rn has all its zeros outside the unit circle, then
the inequality

Z 2�

0

ˇ̌
ˇ̌ r0.z/
B0

n.z/

ˇ̌
ˇ̌
p

jB0
n.z/jjdzj � Cp

Z 2�

0

jr.z/jp jB0
n.z/jjdzj (31)

holds for any r 2 Rn, where Cp D 2�=
R 2�
0

j1C ei˛jpd˛.

We will give the proof of this theorem in Sect. 9 after our discussion in Sect. 6 on
the integral representation which is again inspired an integral formula given for the
polynomial case in one of papers of Rahman (more precisely, [13]).

Remark. When all the poles are at 1, we are reduced to the polynomial case and
Bn.z/ D zn and so jB0

n.z/j D n for jzj D 1: Thus, the above inequality (31) becomes
the inequality as in De Bruijn’s theorem.
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6 An Integral Formula

In this section we will give one more example of how useful the ideas in Rahman’s
work on polynomial inequalities can be used as guidelines when working with
rational functions. The paper in mind is by Giroux and Rahman [13]. In this paper,
they proved many polynomial inequalities that improve the Bernstein inequality
when a zero of the polynomials is fixed. A model result in [13] is as follows.

Theorem 19. Let p 2 Pn. If kpk D 1 and p.1/ D 0, then

kp0k < n � C

n
; (32)

and the inequality is sharp in the sense that there exists a Qp 2 Pn such that kQpk D 1,
Qpn.1/ D 0, and

kQp0k > n � c

n
;

where c > 0 and C > 0 are constants independent of n.

This paper motivated further research on improving Bernstein inequality for
polynomials with a prescribed zero [11, 26]. We want to discuss the rational version
of the above theorem in [16] and, in particular, we point out the influence of Giroux
and Rahman [13] as well as another paper by Rahman and Stenger [30] in the key
steps of the proofs in [16].

The rational version of the above theorem of Giroux and Rahman is the following
results. Let a 2 Œ0; 1� and define a subset of Rn similarly as in [13] by

Rn;a WD fr 2 Rn j min
jzjD1

jr.z/j � ag:

Denote m WD minjzjD1 jB0
n.z/j and M WD maxjzjD1 jB0

n.z/j.
Theorem 20 ([16, Theorems 3.1 and 3.3]). Assume r 2 Rn;a and krk D 1. Then

jr0.z/j � jB0
n.z/j � 1 � a

4�M

nm

M
.1 � a/ � sin

m

M
.1 � a/

o
; jzj D 1: (33)

Furthermore, the above inequality is sharp in the sense that there exists a constant
c > 0 such that

max
r2Rn;a;krkD1

max
jzjD1

.jr0.z/j � jB0
n.z/j/ � � c

m
.1 � a/: (34)

When a D 0 and all the poles at 1, we see that (33) reduces to (32) for the
polynomial case. One of the key ingredients in the proof of the Theorem of Giroux
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and Rahman is the following integral formula for the derivative of a polynomial
implied in their proof (see [13, p. 88, line 5]).

Theorem 21. For jzj D 1 and pn 2 Pn,

p0.z/ D 1

2�

Z 2�

0

p.�/�



1 � .z=�/n
1 � z=�

� 2
d�; � D ei� :

The proof of this integral formula in [13] is also a gem: Note that

 
nX

kD1
zk�1

!2
D

nX
kD1

kzk�1 C higher power terms ;

so we can write

ei�p0.ei� / D 1

2�

Z 2�

0

p.ei.�Ct//e�itf1C e�it C e�i2t C � � � C e�i.n�1/tg2dt;

which implies the formula.
The rational version of this formula plays a critical role in the proof of the rational

extension.

Theorem 22 ([16, Lemma 4.3]). For jzj D 1 and r 2 Rn,

r0.z/ D 1

2�

Z 2�

0

rn.�/�

(
1 � Bn.z/Bn.�/

1 � z�

) 2
d�; � D ei� : (35)

To mimic the above proof of Giroux and Rahman, [16] uses the Malmquist-Walsh
system f'k.z/g of orthogonal rational functions in Rn to replace the system fzkgn

kD0
in the polynomial case, where 'k.z/ is defined by

'0.z/ WD 1; 'k.z/ WD hkz

1 � akz
Bk.z/; k D 1; 2; : : :; n;

with hk > 0 chosen to ensure that 1
2�

R
jzjD1 j'k.z/j2jdzj D 1. So, the sum

Pn
kD1 zk�1

is substituted by the sum

Sn.z; �/ WD
nX

kD0
'k.z/'k.�/;

which is the reproducing kernel of Rn in the following sense:

r.z/ D 1

2�

Z 2�

0

r.�/Sn.z; �/d� for every r 2 Rn: (36)
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Luckily, by the Darboux–Christoffel formula for orthogonal rational functions, this
reproducing kernel can be written in a closed form:

nX
kD0

'k.z/'k.�/ D 1 � Bn.z/Bn.�/

1 � z�
C Bn.z/Bn.�/:

Next, the proof of (35) can be carried out by first differentiating the reproducing
identity (36):

r0.z/ D 1

2�

Z 2�

0

r.�/
@

@z
Sn.z; �/d�;

and now we can follow the proof of Giroux and Rahman (although one line in their
proof becomes more than one page’s calculation (see [16, pp. 482–483])).

Based on this integral formula, the main ideas of Giroux and Rahman [13] can
be carried out in obtaining (33) for the rational case. In the proof of (34) for the
sharpness, one can easily trace the construction in the papers of Rahman in [13,
Proof of Theorem 2] and [30, pp. 87–88]. Many steps require some work for the
rational case and in particular, one technique of Rahman and Stenger in [30] plays
an important role in obtaining the following key inequality in establishing the right
estimates:

1 �
�

sin.	.� C �j/ � 	.�j//=2

M sin.�=2/

	2

�
�
1 � 1

M

	(
1 �

�
sin.	.� C �j/ � 	.�j//=2

.	.� C �j/ � 	.�j//=2

	2)
;

where

	.�/ WD
Z �

�0

jB0
n.e

i� /jd�

satisfying j	.� C �j/ � 	.�j/j � Mj� j:
Later, the integral formula in (35) was extended to rational functions having

poles on both sides of the unit circle [18, Lemma 3] where the proof is based
on applying the residue theorem. We remark that the integral formula has been
proved yet again by a different method in a recent paper by Baranov and Zarouf
in [5] using their theory of model spaces where they used the integral formula to
obtain many Bernstein-type inequalities various integral norms. Indeed, the integral
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formula is not hard to verify but getting the right formulation1 in the first place
is critical for carrying out the whole proof of Giroux and Rahman to the rational
case. This is where the influence of Giroux and Rahman [13] lies: it allowed us to
make intelligent guess on the formulation for the rational case as well as the general
guideline for its proof, and the rest is just verification. The paper of Giroux and
Rahman contains many other interesting results that have not been extended to the
rational case. We hope that our story on the impact of the paper on one of our papers
would motivate interested readers to work out some of these extensions.

7 Proofs of Theorems 5–7 and 10 in Sect. 2

The proofs of Theorems 5–7 can be found in [20] but for reader’s convenience, we
include their proofs here.

Before begin the proofs, we need the following lemma.

Lemma 1 ([20, Lemma 1]).

(i) If z 2 T; then the following hold:

zB0
n.z/

Bn.z/
D

nX
kD1

jakj2 � 1
jz � akj2 (37)

and

zB0
n.z/

Bn.z/
D jB0

n.z/j: (38)

(ii) If � 2 T; then Bn.z/ D � has exactly n simple roots, say t1; t2; : : : ; tn; and all of
them lie on T: Moreover,

tkB0
n.tk/

�
D

nX
jD1

jajj2 � 1
jtk � ajj2 ; for k D 1; 2; : : : ; n: (39)

Proof of Theorem 5. Lemma 1(ii) shows that the equation B.z/�� D 0 has exactly
n simple roots, say t1; t2; : : : ; tn; with each ti; i D 1; 2; : : : ; n satisfying jtij D 1:

Hence, it remains to prove the identity. Let

w�
n .z/ WD znwn

�
1

z

	
(40)

1By “right formulation” we mean in the sense that when taking modulus inside the integration, the
equality could be attained for some special cases - not every integral formula allows such sharp
estimation.
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and let q.z/ D w�
n .z/ � �wn.z/: Then q 2 Pn and q.z/ D wn.z/ ŒBn.z/ � �� D

�
Qn

kD1.z�tk/ for some � ¤ 0:Now, r.z/ D p.z/=wn.z/ 2 Rn: Let p.z/ D �znC: : : :
Then

p.z/ �
�
�

�

	
q.z/ 2 Pn�1: (41)

Since the roots t1; t2; : : : ; tn are distinct, we have, by Lagrange interpolation formula,

p.z/ � �

�
q.z/ D

nX
kD1

p.tk/q.z/

q0.tk/.z � tk/
: (42)

Dividing both sides of (42) by q.z/, we get

p.z/

q.z/
� �

�
D

nX
kD1

p.tk/

q0.tk/.z � tk/
: (43)

Differentiating both sides of (43) with respect to z; we have

�
p.z/

q.z/

	0
D �

nX
kD1

p.tk/

q0.tk/.z � tk/2
: (44)

Now, using q.z/ D wn.z/ ŒBn.z/ � �� and p.z/ D wn.z/r.z/; we have p.tk/ D
wn.tk/r.tk// q0.tk/ D wn.tk/B0

n.tk/: Substituting these values in (44), we get


r.z/

Bn.z/ � �
�0

D �
nX

kD1

Œp.tk/=wn.tk/�

q0.tk/.z � tk/2
D �

nX
kD1

r.tk/

q0.tk/.z � tk/2
:

Hence,

r0.z/ŒBn.z/ � �� � r.z/B0
n.z/

ŒBn.z/ � ��2 D �
nX

kD1

r.tk/

q0.tk/.z � tk/2
: (45)

Multiplying both sides of (45) by jBn.z/ � �j2; and using q0.tk/ D wn.tk/B0.tk/; we
obtain

B0
n.z/r.z/ � r0.z/ŒBn.z/ � �� D

nX
kD1

r.tk/ŒBn.z/ � ��2
Bn

0.tk/.z � tk/2
: (46)

Observe that if juj D jvj D 1; then .u � v/2 D �uvju � vj2: So

.z � tk/
2 D �ztkjz � tkj2; (47)



Some Rational Inequalities Inspired by Rahman’s Research 121

and

ŒBn.z/ � ��2 D ��Bn.z/jBn.z/ � �j2: (48)

Using (47) and (48), (46) yields

B0
n.z/r.z/ � r0.z/ŒBn.z/ � �� D Bn.z/

z

nX
kD1

�r.tk/

tkBn
0.tk/

ˇ̌
ˇ̌Bn.z/ � �

z � tk

ˇ̌
ˇ̌
2

: (49)

Now, using (39) from Lemma 1 and the definition of ck from Lemma 1, we obtain
the identity (4). This completes the proof of Theorem 1. �

We next prove Theorem 6 as an application of Theorem 5.

Proof of Theorem 6. Using � and �� in Theorem 1, we get

B0
n.z/r.z/ � r0.z/ŒBn.z/ � �� D Bn.z/

�

nX
kD1

ckr.tk/

ˇ̌
ˇ̌Bn.z/ � �

z � tk

ˇ̌
ˇ̌
2

: (50)

and

B0
n.z/r.z/ � r0.z/ŒBn.z/C �� D Bn.z/

�

nX
kD1

dkr.sk/

ˇ̌
ˇ̌Bn.z/C �

z � sk

ˇ̌
ˇ̌
2

: (51)

Subtracting (51) from (50) yields

2�r0.z/ D Bn.z/

z

"
nX

kD1
ckr.tk/

ˇ̌
ˇ̌Bn.z/ � �

z � tk

ˇ̌
ˇ̌
2

�
nX

kD1
dkr.sk/

ˇ̌
ˇ̌Bn.z/C �

z � sk

ˇ̌
ˇ̌
2
#
: (52)

Multiplying both sides by z=Bn.z/; we get the desired result. �

Proof of Theorem 7. From Theorem 6 we have

ˇ̌
ˇ̌2�zr0.z/

Bn.z/

ˇ̌
ˇ̌ �

nX
kD1

jckjjr.tk/j
ˇ̌
ˇ̌Bn.z/ � �

z � tk

ˇ̌
ˇ̌
2

C
nX

kD1
jdkjjr.sk/j

ˇ̌
ˇ̌Bn.z/C �

z � sk

ˇ̌
ˇ̌
2

: (53)

For z 2 T with jBn.z/j D 1 we get

2jr0.z/j � max
1�k�n

jr.tk/j
nX

kD1
jckj

ˇ̌
ˇ̌Bn.z/ � �

z � tk

ˇ̌
ˇ̌
2

C max
1�k�n

jr.sk/j
nX

kD1
jdkj

ˇ̌
ˇ̌Bn.z/C �

z � sk

ˇ̌
ˇ̌
2

:

(54)
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Since ck and dk are positive and for z 2 T; we have from Theorem 5,

z
Bn

0.z/
Bn.z/

D
nX

kD1
ck

ˇ̌
ˇ̌Bn.z/ � �

z � tk

ˇ̌
ˇ̌
2

; (55)

z
Bn

0.z/
Bn.z/

D
nX

kD1
dk

ˇ̌
ˇ̌Bn.z/C �

z � sk

ˇ̌
ˇ̌
2

; (56)

and

zBn
0.z/

Bn.z/
D jBn

0.z/j;

we conclude from (54) that

jr0.z/j � 1

2
jBn

0.z/j



max
1�k�n

jr.tk/j C max
1�k�n

jr.sk/j
�
:

This completes the proof of Theorem 7. �

The following proof is essentially reproduced from [3].

Proof of Theorem 10. Adding (49) and (50) to get

2
�
Bn

0.z/r.z/ � r0.z/Bn.z/
� D Bn.z/

�

"
nX

kD1
ckr.tk/

ˇ̌
ˇ̌Bn.z/ � �

z � tk

ˇ̌
ˇ̌
2

C
nX

kD1
dkr.sk/

ˇ̌
ˇ̌Bn.z/C �

z � sk

ˇ̌
ˇ̌
2
#
: (57)

Writing the first sum as T and the second sum as S; we can rewrite (51) and (57) as

2�r0.z/ D Bn.z/

�
ŒT � S� (58)

2
�
Bn

0.z/r.z/ � r0.z/Bn.z/
� D Bn.z/

�
ŒT C S�: (59)

Taking the derivative of r� (or see (22) in [20]), jBn
0.z/r.z/�r0.z/Bn.z/j D j.r�/0.z/j;

for jzj D 1: So by taking the modulus for jzj D 1 on both sides in (58) and (59), we
arrive at 2jr0.z/j D jT � Sj and 2j.r�/0.z/j D jT C Sj: Then, as in [3], by using the
parallelogram theorem,

.2jr0.z/j/2 C .2j.r�/0.z/j/2 D jT � Sj2 C jT C Sj2

D 2
�jTj2 C jSj2� :
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So

2
�jr0.z/j2 C j.r�/0.z/j2� D jTj2 C jSj2: (60)

Finally, using comparison inequality in Corollary 5, we have

jr0.z/j � j.r�/0.z/j; jzj D 1:

Thus, (60) implies

4jr0.z/j2 � jTj2 C jSj2;
which gives

jr0.z/j � 1

2

p
jTj2 C jSj2: (61)

Finally, notice that

jTj �
nX

kD1
ckjr.tk/j � max

1�k�n
jr.tk/j;

and

jSj �
nX

kD1
dkjr.sk/j � max

1�k�n
jr.sk/j:

Using these two inequalities in (61) gives the desired result. �

8 Proof of Theorem 16 in Sect. 4

The proofs (see [19]) used the techniques different from those used to prove
analogous results for polynomials. The main reason is that proofs for polynomials
use Laguerre’s theorem or Graces’ theorem (see [24]) which are not readily available
for rational functions. In fact, Bonsal and Marden [6] showed that the counting of
critical points of r 2 Rn depends on the number of distinct poles of r in addition to
the zeros. In view of this, there is no extension of Laguerre’s theorem and Grace’s
theorem for rational functions. We will need the following lemmas for the proof of
our theorems.

Lemma 2 ([20, Theorem 4]). If r 2 Rn has exactly n zeros and all the zeros lie in
jzj � 1; then

jr0.z/j � 1

2
jBn

0.z/jjr.z/j for jzj D 1:
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The following lemma in essence summarizes the simple trick used by De Bruijn
[8] and referred to as the method of Rahman in Sect. 5.

Lemma 3 ([19, Lemma 4.2]). Let A;B be any two complex numbers. Then the
following hold:

(i) Let jAj � jBj and B ¤ 0: Then A D ıB for some ı satisfying jıj < 1:
(ii) Conversely, if A ¤ ıB for all complex numbers ı satisfying jıj < 1; then

jAj � jBj:
Proof. (i) Let jAj � jBj and B ¤ 0: If A D ıB for some ı with ı < 1; then

jAj D jıjjBj < jBj; which is a contradiction.
(ii) Let A ¤ ıB for any ı with jıj < 1: If jAj < jBj; then B ¤ 0: Suppose ı D A=B;

then

A D ıB and jıj D jAj
jBj < 1;

contradicting the assumption. �

Now, we are ready to prove Theorem 16.

Proof of Theorem 16. Assume at the outset that no zeros of s.z/ are on the unit
circle jzj D 1: Hence, all the zeros of s.z/ lie in jzj < 1: Let ˛ be an arbitrary
complex number such that j˛j < 1: Let us consider the function ˛r.z/C s.z/: This
is a rational function with no poles in jzj < 1: Since jr.z/j � js.z/j for jzj D 1; by
Rouche’s theorem ˛r.z/C s.z/ and s.z/ have the same number of zeros in jzj < 1:

Thus, ˛r.z/C s.z/ also has n zeros in jzj < 1: By Lemma 2,

j˛r0.z/C s0.z/j � 1

2
jBn

0.z/jj˛r.z/C s.z/j for jzj D 1: (62)

Now, taking the logarithmic derivative of the Blaschke product yields

zBn
0.z/

Bn.z/
D

nX
kD1

jakj2 � 1
jz � akj2 ;

which implies that Bn
0.z/ ¤ 0: Hence the expression on the right-hand side of (62)

is not zero. Now, using Lemma 3, we have for all ˇ satisfying jˇj < 1;

˛r0.z/C s0.z/ ¤ 1

2
Bn

0.z/Œ˛r.z/C s.z/� for j˛j < 1 and jˇj < 1:

By using (ii) of Lemma 3, we conclude that

ˇ̌
ˇ̌s0.z/ � ˇ

2
Bn

0.z/s.z/
ˇ̌
ˇ̌ �

ˇ̌
ˇ̌r0.z/ � ˇ

2
Bn

0.z/r.z/
ˇ̌
ˇ̌ for jzj D 1 and jˇj < 1:
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Now, taking � WD ˇ=2; we get for j�j � 1=2;
ˇ̌
ˇ̌r0.z/ � ˇ

2
Bn

0.z/r.z/
ˇ̌
ˇ̌ �

ˇ̌
ˇ̌s0.z/ � ˇ

2
Bn

0.z/s.z/
ˇ̌
ˇ̌ for jzj D 1:

This completes the proof of Theorem 16.

9 Proof of Theorem 18 in Sect. 5

We provide a proof of Theorem 18 by following the ideas of Rahman in [29] as
discussed in Sect. 5.

Recall that for r 2 Rn, the reverse rational function r� is defined as

r�.z/ D Bn.z/r.1=z/:

We see that if r.z/ D p.z/=wn.z/ for some p 2 Pn, then r�.z/ D p�.z/=wn.z/.
First, we establish a lemma.

Lemma 3. We have, for jzj D 1,

Z 2�

0

r�.�/�
"
1 � Bn.z/Bn.�/

1 � z�

#2
d� D 0; � D ei� :

Proof. Note that, as a function of �, the integrand is analytic outside the unit circle,
even at 1. So, the lemma follows from Cauchy’s theorem. �

Proof of Theorem 18. Using (35) and Lemma 1 above, we have, for jzj D 1,

r0.z/C ei˛.r�/0.z/ D 1

2� i

Z 2�

0

Œr.�/C ei˛r�.�/��
"
1 � Bn.z/Bn.�/

1 � z�

#2
d�

D 1

2� i

Z 2�

0

r.�/�

"
1 � Bn.z/Bn.�/

1 � z�

#2
d�:

Therefore,

jr0.z/C ei˛.r�/0.z/j � 1

2�

Z 2�

0

jr.�/j
ˇ̌
ˇ̌
ˇ
1 � Bn.z/Bn.�/

1 � z�

ˇ̌
ˇ̌
ˇ
2

d�;

and so, by Jensen’s inequality, for p � 1,

ˇ̌
ˇ̌ r0.z/C ei˛.r�/0.z/

B0
n.z/

ˇ̌
ˇ̌
p

�
Z 2�

0

jr.�/jp�.� I z/d�;
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where

�.� I z/ D
ˇ̌
ˇ̌
ˇ
1 � Bn.z/Bn.ei� /

2�jB0
n.z/j.1 � ze�i� /

ˇ̌
ˇ̌
ˇ
2

with (by Li [18, Lemma 4])
R 2�
0
�.� I z/d� D 1:

Now, integrating in z to obtain

Z

jzjD1

ˇ̌
ˇ̌ r0.z/C ei˛.r�/0.z/

B0
n.z/

ˇ̌
ˇ̌
p

jdzj �
Z

jzjD1

Z 2�

0

jr.�/jp�.� I z/d� jdzj:

By interchanging the order of integration on the right side, we get

Z

jzjD1

ˇ̌
ˇ̌ r0.z/C ei˛.r�/0.z/

B0
n.z/

ˇ̌
ˇ̌
p

jdzj �
Z 2�

0

jr.�/jpjB0
n.�/jd�:

Now, by the comparison inequality stated in Sect. 5, we have jr0.z/j � j.r�/0.z/j for
jzj D 1 since jr.z/j D jr�.z/j and r�.z/ has all its zeros inside the unit circle.
The proof can now be completed in the same way as in Rahman [29, Proof of
Theorem 2]. �
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Kernels and Sums of Squares of Orthonormal
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This article is dedicated to the memory of Q.I. Rahman

Abstract In a recent paper, the first author considered orthonormal polynomials
fpng associated with a symmetric measure with unbounded support and with
recurrence relation

xpn .x/ D AnpnC1 .x/C An�1pn�1 .x/ ; n � 0:

Under appropriate restrictions on fAng, the first author established the identity

lim
n!1

Pn
kD0 p2k .x/Pn
kD0 A�1

k

D lim
n!1

p22n .x/C p22nC1 .x/
A�1
2n C A�1

2nC1
;

uniformly for x in compact subsets of the real line. Here, we establish and evaluate
this limit for a class of even exponential weights, and also investigate analogues for
weights on a finite interval, and for some non-even weights.
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1 Introduction

Let � be a symmetric positive measure on the real line, with all finite power
moments. Then we may define orthonormal polynomials pn .x/ D 	nxn C � � � ,
	n > 0, n � 0, satisfying

Z
pnpmd� D ımn:

Because of the symmetry, the three term recurrence relation takes a simple form:

xpn .x/ D AnpnC1 .x/C An�1pn�1 .x/ ; n � 1;

where

An D 	n

	nC1
; n � 1:

The asymptotic behavior of pn as n ! 1 has been intensively investigated for over
a century, and has a myriad of applications. In a recent paper [4], the first author
presented a novel approach, and placed the following hypotheses on the recurrence
coefficients:

(C1) limn!1 An D 1;
(C2) limn!1 .AnC1 � An/ D 0;
(C3) There exist m0; n0 such that AmCn > An for all n � n0 and m � m0;
(C4)

1X
jD0

1

Aj
D 1I

(C5) There exists k > 1 such that

1X
jD0

1

Ak
j

< 1I

(C6)

1X
jD0

ˇ̌
AjC1 � Aj

ˇ̌

A2j
< 1I
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(C7)

1X
jD0

ˇ̌
AjC2 � 2AjC1 C Aj

ˇ̌

Aj
< 1:

He proved [4]:

Theorem A. Under the hypotheses (C1)–(C7), the following limits exist, are finite
and positive, and satisfy

lim
n!1

Pn
kD0 p2k .x/Pn
kD0 A�1

k

D lim
n!1

p22n .x/C p22nC1 .x/
A�1
2n C A�1

2nC1
; (1)

uniformly for x in compact subsets of the real line.

It was shown in [4], that if 0 < p < 1, c > 0, and

An D c .n C 1/p ; n � 0;

then (C1)–(C7) hold. This rate of growth of recurrence coefficients is typically

associated with an exponential weight such as exp
�
� jxj�1=p

�
, 0 < p < 1. Indeed

the asymptotics for recurrence coefficients given in [2, p. 50, Theorem 1.3] show
that (C1)–(C7) are valid for these specific exponential weights.

Here, we shall evaluate the limit in (1), showing that it equals .2��0 .x//�1, for a
large class of exponential weights. We do this by using asymptotics for orthonormal
polynomials and Christoffel functions that were established in [5].

This chapter is organized as follows: in Sect. 2, we briefly discuss the case of
weights on Œ�1; 1�. This simple case illustrates some of the ideas of proof. Our main
results, for even exponential weights, are stated and proved in Sect. 3. In Sect. 4, we
discuss some limited extensions to non-even weights. In the sequel C;C1;C2; : : :
denote positive constants independent of n; x, polynomials of degree � n, and
possibly other parameters. We use 	 in the following sense: given sequences of
non-zero real numbers fxng and fyng, we write xn 	 yn if there exists a constant
C > 1 such that

C�1 � xn=yn � C for n � 1:

Similar notation is used for functions and sequences of functions.
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2 Weights on Œ�1; 1�

The result of this section is:

Theorem 2.1. Let � be a positive measure supported on Œ�1; 1� that satisfies
Szegő’s condition

Z 1

�1
log�0 .x/p
1 � x2

dx > �1: (2)

Assume that for some � 2 �
0; 1

2

�
, � is absolutely continuous in Œ��; ��, that �0

is positive and continuous in Œ��; ��, and satisfies for some C > 0, � > 1, and
x; y 2 Œ��; �� ;

ˇ̌
�0 .x/ � �0 .y/

ˇ̌ � C jlog jx � yjj�� : (3)

Let fxng be a sequence of real numbers with limit 0 as n ! 1. Then

lim
n!1

Pn
kD0 p2k .xn/Pn

kD0 A�1
k

D lim
n!1

p22n .xn/C p22nC1 .xn/

A�1
2n C A�1

2nC1
D 1

2�
: (4)

Of course this result is quite restricted as we need xn ! 0.
We turn to

The Proof of Theorem 2.1. Under the assumptions of Theorem 2.1, there is the
asymptotic as m ! 1,

pm .x/ �
0 .x/1=2

�
1 � x2

�1=4 D
r
2

�
cos .m� C 	 .�//C o .1/ ; (5)

uniformly for x D cos � in a compact subset of .��; �/, where

	 .�/ D 1

4�
PV

Z �

��
Œlog f .t/ � log f .�/� cot

� � t

2
dt:

Here PV denotes principal value, and

f 0 .�/ D �0 .cos �/ jsin � j :

This follows from Theorem 2 in [1, p. 41]. We note that other criteria for asymptotics
are given in, for example, [3, p. 246, Table II(a)], or Theorem 5 in [6, p. 77].

Now let fxng be a sequence with limit 0, and for n � 1, write xn D cos �n, where
�n 2 .0; �/. We see that �n ! �

2
as n ! 1. The asymptotic (5) gives
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�
p22n .xn/C p22nC1 .xn/

�
�0 .xn/

1=2
�
1 � x2n

�1=2

D 2

�

�
cos2 .2n�n C 	 .�n//C cos2 ..2n C 1/ �n C 	 .�n//

�C o .1/

D 2

�

h
cos2 .2n�n C 	 .�n//C cos2

�
2n�n C 	 .�n/C �

2

�i
C o .1/

D 2

�

�
cos2 .2n�n C 	 .�n//C sin2 .2n�n C 	 .�n//

�C o .1/ D 2

�
C o .1/ :

Next, the limit

lim
n!1 An D lim

n!1
	n

	nC1
D 1

2
(6)

is an immediate consequence of the fact that � satisfies Szegő’s condition [11,
p. 309]. Thus the second part in (4) satisfies

lim
n!1

p22n .xn/C p22nC1 .xn/

A�1
2n C A�1

2nC1
D 1

2�
: (7)

Next, asymptotics for Christoffel functions and the continuity of �0 in Œ��; �� yield
[7], [10, Theorem 3.11.9, p. 220] that uniformly for x 2 Œ��; ��,

lim
n!1

1

n C 1

 
nX

kD0
p2k .x/

!
�0 .x/ D 1

�
p
1 � x2

:

In particular, then, as �0 is continuous at 0,

lim
n!1

1

n C 1

 
nX

kD0
p2k .xn/

!
D 1

�
: (8)

Finally (6) gives

lim
n!1

1

n C 1

nX
kD0

A�1
k D 2:

Combining the last two limits, we have

lim
n!1

Pn
kD0 p2k .xn/Pn

kD0 A�1
k

D 1

2�
;

so the result follows using (7). �
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3 Even Weights on .�1; 1/

Following is the class of even weights we shall consider. It is a subclass of that in
[5, Definition 1.1, p. 7]:

Definition 3.1. Let �0 .x/ D e�2Q.x/, x 2 R, where Q is even,

(a) Q0 is continuous in R and Q .0/ D 0;
(b) Q00 exists and is positive in Rn f0g;
(c)

lim
t!1 Q .t/ D 1;

(d) The function T .t/ D tQ0.t/
Q.t/ , t 2 .0;1/ is quasi-increasing in .0;1/, in the

sense that for some constant C and 0 � x < y )

T .x/ � CT .y/ I

In addition we assume that T is bounded below in Rn f0g by a constant� larger
than 1.

(e) There exists C1 > 0 such that

Q00 .x/
jQ0 .x/j � C1

Q0 .x/
Q .x/

, a.e. x 2 .01/ :

Then we write �0 D e�2Q 2 F �C2; even
�
.

Examples of Q satisfying the conditions above on .�1;1/ include [5, pp. 8–9]

Q .x/ D jxj˛ ;

where ˛ > 1, and

Q .x/ D exp`
�jxj˛� � exp` .0/ ;

where ˛ > 1, ` � 0, and expk .x/ D exp .exp .� � � .exp .x/// is the kth iterated
exponential. We could actually allow a more general (but more technical) class of
weights, namely the even weights of class F �lip 1

2

�
from [5]. We shall prove

Theorem 3.2. Let �0 D e�2Q 2 F �C2; even
�
. Then uniformly for x in compact

subsets of the real line,

lim
n!1

Pn
kD0 p2k .x/Pn
kD0 A�1

k

D lim
n!1

p22n .x/C p22nC1 .x/
A�1
2n C A�1

2nC1
D 1

2�e�2Q.x/
: (9)
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In considering orthogonal polynomials associated with the measure d� .t/ D
e�2Q.t/dt, a crucial role is played by the Mhaskar-Rakhmanov-Saff numbers
at; t > 0. These are defined by equations [5, p. 13], [8, 9]

t D 1

�

Z 1

0

atxQ0.atx/p
1 � x2

dx: (10)

We note that at increases with t and at ! 1 as t ! 1. As an example of Mhaskar-
Rakhmanov-Saff numbers, let Q .x/ D jxj˛ , x 2 R, ˛ > 0. It is known that then
[8, 9]

at D
(
2˛�2�

�
˛
2

�2
� .˛/

) 1=˛
t1=˛; t > 0:

Another important quantity associated with Q is the nth equilibrium density [5,
p. 16]

�n.x/ D 1

�2

q
a2n � x2

Z an

0

sQ0.s/ � xQ0.x/
s2 � x2

dsp
a2n � s2

; x 2 Œ�an; an� : (11)

It has total mass n
Z an

�an

�n D n;

and satisfies the equilibrium equation

Z an

�an

log

ˇ̌
ˇ̌ 1

x � s

ˇ̌
ˇ̌ �n.s/ds C Q.x/ D cn; x 2 Œ�an; an� :

Here cn is a constant.
In many contexts, it is convenient to map �n onto a density function that is

supported on Œ�1; 1�. Let

��
n .t/ D an

n
�n .ant/ ; t 2 Œ�1; 1�: (12)

It satisfies

Z 1

�1
��

n D 1:
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Proof of Theorem 3.2.. In [5, p. 403, Theorem 15.3, (15.11)], it is shown that
uniformly for x D cos � in a closed subinterval of .�1; 1/ and m D n � 1; n;

a1=2n pm .anx/W .anx/
�
1 � x2

�1=4

D
r
2

�
cos

��
m � n C 1

2

	
� C n�

Z 1

x
��

n � �

4

	
C o .1/ : (13)

Note that the linear transformation Ln there reduces to Ln .x/ D x=an and LŒ�1�n .t/ D
ant. Setting

�n .x/ D 1

2
� C n�

Z 1

x
��

n � �

4
;

we see that uniformly for x in a closed subset of .�1; 1/ ;

anW .anx/2
�
1 � x2

�1=2 ˚
p2n .anx/C p2n�1 .anx/

�

D 2

�

n
.cos�n .x//

2 C .cos .�n .x/ � �//2
o

C o .1/ :

In particular, setting anx D y where y lies in a compact set, so that x D y=an D cos �
has � D arccos .y=an/ D arccos .o .1// D �

2
C o .1/, we obtain

anW .y/2
 
1 �

�
y

an

	2!1=2 ˚
p2n .y/C p2n�1 .y/

�

D 2

�

(�
cos�n

�
y

an

		2
C
�

cos

�
�n

�
y

an

	
� �

2

		2)
C o .1/

D 2

�

(�
cos�n

�
y

an

		2
C
�

sin�n

�
y

an

		2)
C o .1/ D 2

�
C o .1/ :

Replacing y by x, and n by 2n C 1, we have that uniformly for x in a compact subset
of R,

a2nC1W .x/2
˚
p22nC1 .x/C p22n .x/

� D 2

�
C o .1/ : (14)

Next, (1.124) of Theorem 1.23 in [5, p. 26] gives

lim
n!1

An

an
D 1

2
: (15)
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In addition, [5, p. 81, Eq. (3.50)]

lim
n!1

anC1
an

D 1:

Then the second part of (9) can be calculated as

lim
n!1

p22nC1 .x/C p22n .x/

A�1
2nC1 C A�1

2n

D lim
n!1

a2nC1
4

˚
p22nC1 .x/C p22n .x/

� D 1

2�W2 .x/
;

(16)
uniformly for x in a compact subset of R.

It is more difficult to deal with the left-hand side in (9). We first note that

lim
n!1

n�1X
kD0

p2k .x/W2 .x/ =�n .x/ D 1; (17)

uniformly for x in a range that certainly includes compact subsets of the real line
[5, Theorem 1.25, p. 26]. Our task is to compare this to

n�1X
kD0

A�1
k D 2

n�1X
kD0

a�1
k .1C o .1// :

We shall show that this last right-hand side behaves like

2

Z n

0

1

at
dt .1C o .1// ;

and using an alternative representation for �n, due to Rakhmanov, that this in turn
is close to �n .x/ when x is bounded. Let us now make this rigorous. First note that
at is a differentiable increasing function of t 2 .0;1/, with at ! 0 as t ! 0C and
at ! 1 as t ! 1. Define the inverse b W .0;1/ ! .0;1/ of a by

b .at/ D t; t > 0:

Rakhmanov’s representation for �n for even weights asserts that [5, p. 46, Eq. (2.35)]

�n .x/ D 1

�

Z n

jb.x/j
1p

a2s � x2
ds; x 2 .�an; an/ : (18)

In particular,

�n .0/ D 1

�

Z n

0

1

as
ds: (19)
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(the convergence of the integral is established in Chap. 2 of [5].) Now let m D
m .n/ D �p

n
�
, where Œx� denotes the greatest integer � x. Assume that x 2 .0; r�.

For n large enough (the threshold depends on r), we have

j�n .x/ � �n .0/j D 1

�

ˇ̌
ˇ̌
ˇ
Z n

b.x/

(
1p

a2s � x2
� 1

as

)
ds �

Z b.x/

0

1

as
ds

ˇ̌
ˇ̌
ˇ

� 1

�

Z n

b.x/

as �p
a2s � x2p

a2s � x2as

ds C
Z b.r/

0

1

as
ds

D x2

�

Z n

b.x/

1
p

a2s � x2as

�
as Cp

a2s � x2
�ds C

Z b.r/

0

1

as
ds:

(20)

Here as as � ab.x/ D x in the first integral, we see that

x2

�

Z n

b.x/

1
p

a2s � x2as

�
as Cp

a2s � x2
�ds

� x2
(
1

�x2

Z m

b.x/

dsp
a2s � x2

C 1

a2m

Z n

m

1p
a2s � x2

ds

)

� �m .x/C
�

x

am

	2
�n .x/ :

Combining this and (20) gives

ˇ̌
ˇ̌1 � �n .0/

�n .x/

ˇ̌
ˇ̌ � �m .x/

�n .x/
C
�

x

am

	2
C C

�n .x/
:

Here as x 2 Œ0; r� and m ! 1, we have
�

x
am

�2 ! 0 uniformly for x 2 Œ0; r�. In

addition, it follows from Theorem 5.2(b) in [5, p. 110] and then Lemma 3.5(c) in [5,
p. 72] that uniformly for x 2 Œ�r; r�,

�m .x/

�n .x/
� C

.m=am/

.n=an/
� C

�m

n

�1�1=� � C

�
1p
n

	1�1=�
: (21)

Here � > 1 is a lower bound for T in R. Thus, using also evenness of �n, we have

lim
n!1 sup

x2Œ�r;r�

ˇ̌
ˇ̌1 � �n .0/

�n .x/

ˇ̌
ˇ̌ D 0:
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This, (17), and (19) give, uniformly for x 2 Œ�r; r�, as n ! 1,

n�1X
kD0

p2k .x/W2 .x/ D 1

�

Z n

0

1

as
ds .1C o .1// : (22)

Finally, [5, p. 81, Eq. (3.50)] gives, for k � 1,

ˇ̌
ˇ̌
Z k

k�1
1

as
ds � 1

ak

ˇ̌
ˇ̌ �

Z k

k�1
1

as

ˇ̌
ˇ̌1 � as

ak

ˇ̌
ˇ̌ ds

� C
Z k

k�1
1

as

ˇ̌
ˇ1 � s

k

ˇ̌
ˇ ds � C

k

Z k

k�1
1

as
ds;

so from (15), and using monotonicity of at in t,

ˇ̌
ˇ̌
ˇ

n�1X
kD0

A�1
k � 2

Z n

0

1

as
ds

ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇ2

n�1X
kD2

�
a�1

k �
Z k

k�1
1

as
ds

	
C o

 
n�1X
kD2

a�1
k

!
C O .1/

ˇ̌
ˇ̌
ˇ

� C
n�1X
kD2

1

k

Z k

k�1
1

as
ds C o

�Z n

1

1

as
ds

	
C O .1/

� C
Z m

1

1

as
ds C C

m

Z n

m

1

as
ds C o

�Z n

1

1

as
ds

	

� C�m .0/C C

m
�n .0/C o .�n .0//

� C�n .0/

(�
1p
n

	1�1=�
C 1p

n
C o .1/

)

D o

�
1

�

Z n

0

1

as
ds

	
;

by (21). Thus

 
n�1X
kD0

A�1
k

!
=

�
2

Z n

0

1

as
ds

	
D 1C o .1/ :

This and (22) give uniformly for x in Œ�r; r�,

Pn�1
kD0 p2k .x/W2 .x/�Pn�1

kD0 A�1
k

� D 1

2�
.1C o .1// :

Combining this with (16) gives the result. �
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4 The Non-Even, Not Necessarily Unbounded Case

In this section, we briefly explore the extent to which we can extend Theorem 3.2 to
non-even exponential weights, possibly not on an infinite interval. To this end, we
first define the full class F �C2

�
from [5, p. 7]:

Definition 4.1. Let I D .c; d/ be a bounded or unbounded interval containing 0.
Let �0 .x/ D e�2Q.x/, x 2 I, where

(a) Q0 is continuous in I and Q .0/ D 0;
(b) Q00 exists and is positive in In f0g;
(c)

lim
t!cC Q .t/ D 1 D lim

t!d� Q .t/ ;

(d) The function T .t/ D tQ0.t/
Q.t/ , t 2 In f0gis quasi-increasing in .0; d/, in the sense

that for some constant C and 0 � x < y < d )

T .x/ � CT .y/ I

T is also assumed quasi-decreasing in .c; 0/. In addition we assume that T is
bounded below in In f0g by a constant larger than 1.

(e) There exists C1 > 0 such that

Q00 .x/
jQ0 .x/j � C1

Q0 .x/
Q .x/

; a.e. x 2 In f0g :

Then we write �0 D e�2Q 2 F �C2
�
.

Examples of Q satisfying the conditions above on .�1;1/ include [5, pp. 8–9]

Q .x/ D
(

x˛; x 2 Œ0;1/

jxjˇ ; x 2 .�1; 0/ ;

where ˛; ˇ > 1. A more general example is

Q .x/ D
8<
:

exp` .x
˛/ � exp` .0/ ; x 2 Œ0;1/

expk

�
jxjˇ

�
� expk .0/ x 2 .�1; 0/ ;

where ˛; ˇ > t, k; ` � 0, and expk .x/ D exp .exp .� � � .exp .x/// is the kth iterated
exponential. An example on .�1; 1/ is
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Q .x/ D
8<
:

exp`
��
1 � x2

��˛� � exp` .1/ ; x 2 Œ0; 1/
expk

��
1 � x2

��ˇ� � expk .1/ ; x 2 .�1; 0/ ;

where ˛; ˇ > 0 and k; ` � 0.
Instead of just one Mhaskar-Rakhmanov-Saff number, there are now two: a�n; an

are defined by equations [5, p. 13]

n D 1

�

Z an

a�n

xQ0.x/p
.x � a�n/.an � x/

dxI

0 D 1

�

Z an

a�n

Q0.x/p
.x � a�n/.an � x/

dx:

The nth equilibrium density now takes the form [5, p. 16]

�n.x/ D 1

�2

p
.x � a�n/.an � x/

Z an

a�n

Q0.s/ � Q0.x/
s � x

� dsp
.s � a�n/.an � s/

; x 2 Œa�n; an� :

The contraction of �n to Œ�1; 1� is more complicated than for the even case: let

ˇn WD 1

2
.an C a�n/I ın D 1

2
.an C ja�nj/:

We can then define the linear map of Œa�n; an� onto Œ�1; 1� by

Ln.x/ D .x � ˇn/=ın; x 2 Œa�n; an� , x D LŒ�1�n .t/ D ˇn C ınt; t 2 Œ�1; 1�:

The transformed (and renormalized) density is

��
n .t/ D ın

n
�n ı LŒ�1�n .t/; t 2 Œ�1; 1�:

Instead of the asymptotic (13), we have uniformly for x D cos � 2
Œ�1C "; 1 � "� [5, p. 403]

a1=2n pm

�
LŒ�1�n .x/

�
W
�

LŒ�1�n .x/
� �
1 � x2

�1=4

D
r
2

�
cos

��
m � n C 1

2

	
� C n�

Z 1

x
��

n � �

4

	
C o .1/ : (23)
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Instead of the asymptotic (15) for the recurrence coefficients, we have [5, p. 26]

lim
n!1

An

ın
D 1

2
: (24)

By proceeding as in Sect. 3, it is straightforward to see that

lim
n!1

p22n

�
LŒ�1�2nC1 .xn/

�
C p22nC1

�
LŒ�1�2nC1 .xn/

�

A�1
2n C A�1

2nC1
W2

�
LŒ�1�2nC1 .xn/

�
D 1

2�
; (25)

for any sequence fxng with limit 0. Setting yn D LŒ�1�2nC1 .xn/, we see that this becomes

lim
n!1

p22n .yn/C p22nC1 .yn/

A�1
2n C A�1

2nC1
W2 .yn/ D 1

2�
; (26)

for any sequence fyng with

lim
n!1 L2nC1 .yn/ D lim

n!1
yn � ˇ2nC1
ı2nC1

D 0: (27)

Unfortunately, it is more problematic to establish an analogue of (22). The asymp-
totic (16) holds uniformly for x 2 Œa�˛n; a˛n�, for any fixed ˛ 2 .0; 1/. For this to
be compatible with (27), we need ˇn 2 Œa�˛n; a˛n�, for some ˛ > 0, so in particular,
we cannot have a very asymmetric weight. Rakhmanov’s representation for �n now
takes the form

�n .x/ D 1

�

Z n

jb.x/j
1p

.x � a�s/ .as � x/
ds D 1

�

Z n

jb.x/j
1q

ı2s � .x � ˇs/
2

ds:

Provided both for some r > 0;

jyn � ˇnj � r; n � 1; (28)

and

ja�nj =an ! 1 as n ! 1; (29)

we can prove, much as in the last section, that

lim
n!1

ˇ̌
ˇ̌1 � �n .ˇn/

�n .yn/

ˇ̌
ˇ̌ D 0:
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Of course (29) is a very severe asymptotic symmetry requirement. With the aid
of (29), we can prove much as in the previous section, that

�n .ˇn/ D 1

�

Z n

0

1

ıs
ds .1C o .1// :

 
n�1X
kD0

A�1
k

!
=

�
2

Z n

0

1

ıs
ds

	
D 1C o .1/ :

Thus for W 2 F �C2
�

satisfying the additional condition (29), and sequences fyng
satisfying (27), we obtain

Pn�1
kD0 p2k .yn/W2 .yn/�Pn�1

kD0 A�1
k

� D 1

2�
.1C o .1// ;

and hence

lim
n!1

W2 .yn/
Pn

kD0 p2k .yn/Pn
kD0 A�1

k

D lim
n!1

W2 .yn/
�
p22n .yn/C p22nC1 .yn/

�

A�1
2n C A�1

2nC1
D 1

2�
:

(30)

It would be interesting to see if the severe symmetry condition (28) can be
weakened.
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Two Walsh-Type Theorems for the Solutions
of Multi-Affine Symmetric Polynomials

Blagovest Sendov and Hristo Sendov

Abstract The spirit of the classical Grace-Walsh-Szegő coincidence theorem states
that if there is a solution of a multi-affine symmetric polynomial in a domain with
certain properties, then in it there exists another solution with other properties. We
present two results in the same spirit, which may be viewed as extensions of the
Grace-Walsh-Szegő result.

Keywords Grace-Walsh-Szegő coincidence theorem • Zeros and critical points of
polynomials • Apolarity • Locus of a polynomial • Locus holder
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1 Introduction

The classical Grace-Walsh-Szegő coincidence theorem states the following:

Theorem 1.1 (Grace-Walsh-Szegő Coincidence). Let P.z1; : : : ; zn/ be a multi-
affine symmetric polynomial. If the degree of P is n, then every circular domain con-
taining the points z1; : : : ; zn contains at least one point z such that P.z1; : : : ; zn/ D
P.z; : : : ; z/. If the degree of P is less than n, then the same conclusion holds, provided
the circular domain is convex.
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In spirit, the theorem states that if there is a solution of a multi-affine symmetric
polynomial in a domain with some properties, then in it there exists another solution
with other properties. The main goal of this chapter is to present two new results
that are in the spirit of the Grace-Walsh-Szegő coincidence theorem. The first,
Theorem 4.2, states that if a multi-affine symmetric polynomial has a (extended)
solution in a zero-free sector, then it has a (extended) solution on a ray in the
sector originating from the vertex of the sector. In other words, up to a translation,
all the components of the solution have the same argument. The second result,
Theorem 4.4, states that if a multi-affine symmetric polynomial has a solution in an
annulus, then it has a solution there, that is either (a) located on a circle concentric
to the annulus, or (b) has at most two distinct components.

The broader goal of this chapter is to explain how the Grace-Walsh-Szegő
coincidence theorem is related to the notion of a locus of complex polynomials.
This is objective of Sect. 3, where we give a brief overview of the known facts about
loci, and conclude with the new findings that every bounded extended locus is a
locus, see Proposition 3.1.

2 Solutions of the Polarization of a Complex Polynomial

Denote by C the complex plane and let C� WD C [ f1g. By Pn denote the set of all
complex polynomials

p.z/ D anzn C an�1zn�1 C � � � C a0 D an.z � z1/.z � z2/ � � � .z � zn/ (1)

of degree n, where a0; : : : ; an 2 C are constants and an 6D 0. Let

Pn D
n[

sD0
Ps: (2)

For every polynomial p.z/ 2 Pn, we consider its polarization or symmetrization
with n variables. That is, we consider the multi-affine symmetric polynomial in n
complex variables z1; z2; : : : ; zn 2 C:

P.z1; z2; : : : ; zn/ D
nX

kD0

ak�n
k

�Sk.z1; z2; : : : ; zn/; (3)

where

Sk.z1; z2; : : : ; zn/ D
X

1�i1<���<ik�n

zi1zi2 � � � zik
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are the elementary symmetric polynomials of degree k D 1; 2; : : : ; n, with

S0.z1; z2; : : : ; zn/ WD 1:

Clearly, one has p.z/ D P.z; z; : : : ; z/: We say that an n-tuple fz1; z2; : : : ; zng is a
solution of P (or p.z/) if P.z1; z2; : : : ; zn/ D 0.

Definition 2.1. A polynomial q.z/ 2 Pn, given by

q.z/ D bnzn C bn�1zn�1 C � � � C b0;

is called apolar with p.z/ 2 Pn if

nX
kD0

.�1/k�n
k

� akbn�k D 0: (4)

This definition of apolarity extends the one in [1, Definition 3.3.1, p. 102] in that
it depends on n. In particular, it allows the leading coefficients of p.z/ or q.z/ to be
zero. The following lemma is easy to verify so we state it without a proof.

Lemma 2.2. The n-tuple fz1; z2; : : : ; zng � C is a solution of p.z/ if and only if the
polynomial q.z/ D .z � z1/ � � � .z � zn/ is apolar with p.z/.

With Lemma 2.2 in mind we extend the definition of a solution of p.z/.

Definition 2.3. Let 1 � m � n. An m-tuple fz1; z2; : : : ; zmg is an extended solution
of p.z/ 2 Pn if the polynomial q.z/ D .z � z1/ � � � .z � zm/ is apolar with p.z/.

In other words, an m-tuple fz1; z2; : : : ; zmg is an extended solution of p.z/ if

mX
kD0

akC.n�m/� n
kC.n�m/

�Sk.z1; : : : ; zm/ D 0: (5)

Clearly, when m D n an extended solution is a solution.
It will be convenient to formally complete each extended solution fz1; z2; : : : ; zmg

with m � n infinities. That is, we say that

fz1; z2; : : : ; zm;1; : : : ;1„ ƒ‚ …
n�m

g (6)

is an extended solution of p.z/ if the polynomial q.z/ D .z� z1/ � � � .z� zm/ is apolar
with p.z/.

Definition 2.4. We say that a sequence of n-tuples in C� converges to the n-tuple
fz1; z2; : : : ; zng if it is possible to order the elements fz1;m; z2;m; : : : ; zn;mg of the
n-tuples in the sequence, so that limm!1 zk;m D zk for all k D 1; : : : ; n.
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Lemma 2.5. Let fZmg be a sequence of extended solutions of p.z/ 2 Pn. If fZmg
converges to Z, then Z is an extended solution of p.z/. In addition, at least one
component of the extended solution Z is finite.

Proof. It is clear that for all m large, the solutions Zm have the form

Zm D fz1;m; : : : ; zn�s;m; zn�sC1;m; : : : ; zn�sC`;m;1; : : : ;1„ ƒ‚ …
s�`

g;

where zk;m 2 C for k D 1; : : : n � s C ` with limm!1 zk;m D zk 2 C for all k D
1; : : : ; n � s and limm!1 zk;m D 1 for all k D n � s C 1; : : : ; n � s C `. That is, the
n-tuple Z has the form

Z D fz1; : : : ; zn�s;1; : : : ;1„ ƒ‚ …
s

g:

For all large m, the polynomial

q.z/ D .z � z1;m/ � � � .z � zn�s;m/.z � zn�sC1;m/ � � � .z � zn�sC`;m/

is apolar to p.z/, meaning that

n�sC`X
kD0

akC.s�`/� n
kC.s�`/

�Sk.z1;m; : : : ; zn�s;m; zn�sC1; : : : ; zn�sC`;m/ D 0:

Dividing this equality by zn�sC1;m � � � zn�sC`;m and taking the limit as m goes to
infinity shows

0 D
n�sC`X

kD`

akC.s�`/� n
kC.s�`/

�Sk�`.z1; : : : ; zn�s/ D
n�sX
kD0

akCs� n
kCs

�Sk.z1; : : : ; zn�s/: (7)

A comparison with (5) shows that Z is a solution of p.z/.
If all components of solution Z are infinity, that is n D s, then (7) becomes

0 D an, contradicting the assumption that p.z/ 2 Pn. ut
Extended solutions of p.z/ are also solutions of its derivative of appropriate order,

as the next lemma shows.

Lemma 2.6. If p.z/ 2 Pn has an extended solution fz1; : : : ; zn�sg, then it is an
extended solution of p.s/.z/ 2 Pn�s, as well.
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Proof. The symmetrization of p.s/.z/ with n � s variables is

nX
mDs

m.m � 1/ � � �.m � s C 1/
am�n�s
m�s

�Sm�s.z1; : : : ; zn�s/

D n.n � 1/ � � � .n � s C 1/

nX
mDs

am�n
m

�Sm�s.z1; : : : ; zn�s/

D n.n � 1/ � � � .n � s C 1/

n�sX
kD0

akCs� n
kCs

�Sk.z1; : : : ; zn�s/

D 0;

where the last equality follows from the fact that fz1; : : : ; zn�sg is a solution of p.z/,
see (5). ut

3 Loci and Extended Loci of Complex Polynomials

In this section, we present a connection between the extended solutions and the
notion of a locus introduced in [2] and [3]. We introduce the notion of extended
locus and after a review of the known facts about the loci, we conclude the section
with Proposition 3.1, showing that, when bounded loci are considered, these two
notions are the same. For proofs of the claims made in this section see [2] and [3].

Definition 3.1. Let � be a closed subset of C�. We say that � is an (extended)
locus holder of p.z/ 2 Pn if � contains at least one point from every (extended)
solution of p.z/. A minimal by inclusion locus holder� is called a (extended) locus
of p.z/.

In [2] and [3] extended solutions of p.z/ were not considered, that is, these
works considered only solutions with m D n in (6). Thus, a priori, one should
distinguish between the notion of a locus and the notion of extended locus given in
Definition 3.1. For convenience we need the following definition:

Definition 3.2. If p.z/ 2 Pn has degree m � n; then we say that 1 is a zero of p.z/
of multiplicity n � m.

The notion of a locus is related to the classical Grace theorem, [1, p. 107], which
gives a relationship between the zeros of two apolar polynomials. We present it in
a slightly extended version. A circular domain, open or closed, is the interior or
exterior of a circle, or a half-plane determined by a line in the complex plane.

Theorem 3.3 (Extended Grace Theorem). If p.z/; q.z/ 2 Pn are apolar, then
every circular domain, containing all the zeros of p.z/ contains at least one zero of
q.z/ and vice versa.
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Thus, every circular domain containing the zeros of p.z/, in the sense of
Definition 3.2, is a locus holder for p.z/. Since every locus holder contains a locus
(similarly, every extended locus holder contains an extended locus) every p.z/ 2 Pn

has a bounded locus. Alternatively, if p.z/ 2 Pn has degree m < n, then every locus
of p.z/ is unbounded. If p.z/ 2 Pn has a single root ˛ with multiplicity n, then
it has a unique locus f˛g. Henceforth, we exclude this trivial case and the case of
a constant polynomial from our discussion. In general, a polynomial has infinitely
many loci, but each one of them:

• contains all the zeros of p.z/;
• has no isolated points;
• is the closure of its interior.

Since every solution of p.z/ is an extended solution, every extended locus is a
locus holder. Hence, every extended locus contains a locus. Conversely, starting
with a locus, one can easily enlarge it to an extended locus holder, which on its part
contains an extended locus. The question, whether the enlargement and extended
locus can be chosen in such a way so that the latter contains the given locus, is still
open.

Given a non-degenerate Möbius transformation

T.z/ D .az C b/=.cz C d/ with ad � bc 6D 0 (8)

and a polynomial p.z/ 2 Pn, we define

TŒp�.z/ WD .cz C d/np.T.z//: (9)

An argument similar to [1, Remark 3.3.4, p. 103] shows that if p.z/; q.z/ 2 Pn

are apolar, then so are TŒp�.z/ and TŒq�.z/. Möbius transformations preserve the
property of a set being a locus of a polynomial: the set � is a locus of p 2 Pn if
and only if T�1.�/ is a locus of TŒp�.z/. An application of this fact and the Grace-
Walsh-Szegő coincidence theorem leads to

Theorem 3.4. Suppose p.z/ 2 Pn has at least two distinct zeros. If all zeros of p.z/
are on the boundary of a closed circular domain D, then D is a locus of p.z/.

If p.z/ 2 Pn, then

• the intersection of all loci of p.z/ is equal to the set of all zeros of p.z/;
• the intersection of all bounded loci of p.z/ is equal to the set of all zeros of p.`/.z/,

for ` D 0; 1; : : : ; n � 1.

For any polynomial p.z/ of degree n, the linear operator

Du.pI z/ WD np.z/ � .z � u/p0.z/
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is called the polar derivative of p with pole u. Clearly

lim
u!1

1

u
Du.pI z/ D p0.z/;

allowing us to extend the notation to D1.pI z/ WD p0.z/. The polar derivative of
order ` is defined recursively:

Du1;:::;u`�1;u` .pI z/ WD Du`

�
Du1;:::;u`�1 .pI z/

�
: (10)

Note that the degree of Du1;:::;u` .pI z/ as a polynomial in z is not bigger than
n � `, and sometimes can be strictly smaller. The fundamental theorem for polar
derivatives, see [1, p. 98], is the following:

Theorem 3.5 (Laguerre). Let p be a polynomial of degree n � 2 and let u 2 C. A
circular domain containing the zeros of p, but not the point u, contains all zeros of
the polar derivative Du.pI z/.

The notion of a locus allows us to strengthen Laguerre’s theorem.

Theorem 3.6. Let� be any bounded locus of p 2 Pn. If u1; : : : ,u` 2 C� n�, where
` 2 f1; : : : ; n � 1g, then all zeros of the polar derivative Du1;:::;u` .pI z/ are in �.
Moreover, � is a minimal, by inclusion, closed set with this property.

In addition, under the conditions of the last theorem, the polar derivative (10) has
maximal degree, that is n � `. A corollary of Theorem 3.6 has bearing for the main
result of this section.

Corollary 3.1. Let p.z/ 2 Pn and let s 2 f1; : : : ; n � 1g. If � is bounded locus of
p.z/, then it is a locus holder for Du1;:::;us.pI z/, whenever u1; : : : ,us 2 C� n�.

In particular, if� is a bounded locus of p.z/ 2 Pn, then it is a locus holder for all
its derivatives p.`/.z/, ` D 1; 2; : : : ; n � 1. A bit more could be said in connection
with the last corollary. If � is a locus of p.z/ 2 Pn, then the zeros of Du1;:::;us.pI z/,
when the poles u1; : : : ; us go over C n� and s goes over the set f1; : : : ; n � 1g, form
a set that is dense in �. Corollary 3.1 is needed for the main result of this section.

Proposition 3.1. A bounded subset of C is an extended locus of p.z/ 2 Pn if and
only if it is a locus of p.z/.

Proof. Let �ext be an extended locus. Since the set of all extended solutions of p.z/
contains the set of all solutions, �ext is a locus holder for p.z/, hence it contains
a locus, call it �, of p.z/. We show next that � is an extended locus holder of
p.z/, which, together with the minimality property of the extended loci, implies
that �ext D �. Let Z D fz1; z2; : : : ; zmg be an extended solution of p.z/, m � n. By
Lemma 2.6, Z is a extended solution of p.n�m/.z/ 2 Pm, in fact a solution. Since�ext
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is a bounded set, so is �. Then, by Corollary 3.1, � is a locus holder of p.n�m/.z/,
that is, it contains at least one component of Z. This shows that � is an extended
locus holder of p.z/. ut

3.1 Examples of Loci

Polynomials of Degree 2. Let

p.z/ D .z � ˛1/.z � ˛2/ D z2 C a1z C a0

be a polynomial with ˛1 6D ˛2. The solutions of p.z/ are fz;T.z/g, where z 2 C and
T.z/ is the symmetric Möbius transformation

T.z/ D �a1z C 2a0
2z C a1

: (11)

The elementary properties of symmetric Möbius transformations imply that every
closed circular domain, D, having ˛1 and ˛2 on its boundary, is a locus of p.z/.
More loci can be constructed in the following way. Let C be a domain in D, having
a simple (not self intersecting) Jordan curve for a boundary. Then, .D n C/ [ T.C/
is a locus of p.z/.

Polynomials of Degree 3. Let

p.z/ D .z � ˛1/.z � ˛2/.z � ˛3/ D z3 C a2z
2 C a1z C a0:

The zeros of a polynomial of degree three, with distinct zeros, define a closed circu-
lar domain. Hence, by Theorem 3.4, it (as well as the closure of its complement) is a
locus. The drawback of such loci is that if the zeros are close to being co-linear, then
this locus is close to being a half-plane, in other words, too big. On the other hand,
the commentary after Theorem 3.3 shows the existence of a locus in the smallest
disk containing the zeros.

When the smallest disc containing the zeros, call it S, is the same as one of the
circular domains, call it D, having the zeros on its boundary, there is nothing to do.
So, suppose S 6D D. The latter condition implies that (a) the three zeros are distinct,
and (b) one of the zeros, say ˛3, is in the interior of S and the segment Œ˛1; ˛2� is
a diameter of S. Let � be the semi-circle of the boundary of S, that is not on the
same side with ˛3 with respect to the segment Œ˛1; ˛2�. Finally, define the rational-
quadratic map, obtained by solving P.z1; z; z/ D 0 for z1:
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Fig. 1 Theorem 3.7 for p.z/ D .z C 2i/.z � .3C 2i//.z � .1:5C i//

Q.z/ WD �a2z2 C 2a1z C 3a0
3z2 C 2a2z C a1

:

We have the following result. Refer to Fig. 1 for an illustration.

Theorem 3.7. The closed, bounded domain with boundary � [ Q.�/ is a locus of
p.z/ in the smallest disk containing the zeros of p.z/.

Finally, every polynomial of degree three with distinct roots has a locus
consisting of two discs that we now proceed to describe. Denote by e1 WD e�i�=3

and e2 WD ei�=3 two of the cube roots of �1, and let W be the symmetric Möbius
transformation uniquely defined by W.ek/ D ˛k for k D 1; 2; 3: Let B1 be the image
under W of the lower half-plane determined by the line through e1 and 0. Let B2 be
the image under W of the upper half-plane determined by the line through 0 and e2.

Theorem 3.8. The set B1 [ B2 is a locus for p.z/. Moreover, it is

1. bounded if and only if Œ˛1; ˛2� is the strictly longest segment between the zeros;
2. contained in the closed disc with diameter Œ˛1; ˛2� if and only if ˛3 2 .˛1; ˛2/:

The theorem is illustrated in Fig. 2.
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(a) (b)

(c)

Fig. 2 Illustrating Theorem 3.8. (a) Bounded locus. (b) Locus in the smallest disc. (c) Unbounded
locus

4 Argument Coincidence Theorem

This section presents two results that follow the spirit of Grace-Walsh-Szegő
coincidence theorem. In what follows, an extended solution will be called simply
a solution, for brevity.

For ˛; ˇ 2 Œ��; ��, with ˛ � ˇ, and u 2 C, define the sector

Su.˛; ˇ/ WD ˚
u C rei' W r � 0; ˛ � ' � ˇ

�
:
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Definition 4.1. Sector Su.˛; ˇ/ is called a zero-free sector for the polynomial
p.z/ 2 Pn if it does not contain a zero of p.k/.z/ for all k 2 f0; 1; : : : ; n � 1g.

In other words, a sector is zero-free if it does not contain a zero of p.z/, p0.z/; : : :,
and of p.n�1/.z/.

Theorem 4.2 (Argument Coincidence). Let Su.˛; ˇ/ be a zero-free sector for
p.z/ 2 Pn with ˇ � ˛ < � . Suppose there is a solution of p.z/ in Su.˛; ˇ/. Then,
there exists a solution of p.z/ of the form

˚
u C s1e

i ; u C s2e
i ; : : : ; u C s`e

i 
�

(12)

for some  2 Œ˛; ˇ�, where sk � 0 for all k D 1; 2; : : : ; `, ` � 2, and at least one of
fs1; s2; : : : ; s`g is strictly positive.

Proof. No solution fz1; z2; : : : ; z`g of p.z/ inside of Su.˛; ˇ/, where the displayed
points are all finite, can have equal entries. Indeed, if z1 D � � � D z` DW a, then by
Lemma 2.6, a is a zero of p.n�`/.z/, contradicting the fact that Su.˛; ˇ/ is a zero-
free sector. This shows that if a solution of the form (12) exists, then at least one of
fs1; s2; : : : ; s`g is strictly positive. This argument also implies that it is not possible
to have ` D 1.

Given a solution Z of p.z/, define the angles ˛.Z/; ˇ.Z/ 2 Œ��; ��, with ˛.Z/ �
ˇ.Z/, so that Su.˛.Z/; ˇ.Z// is the smallest sector containing the points in Z.

Let fZmg be a sequence of solutions in Su.˛; ˇ/ such that

lim
m!1

�
ˇ.Zm/ � ˛.Zm/

� D inf
˚
ˇ.Z/ � ˛.Z/ W Z is a solution of p.z/ in Su.˛; ˇ/

�
:

Without loss of generality, or else choose a subsequence, the following limits exist:

˛0 WD lim
m!1˛.Zm/ and ˇ0 WD lim

m!1ˇ.Zm/:

Without loss of generality, or else choose a subsequence, we may assume that the
sequence of solutions fZmg has a limit

Z D fz1; : : : ; z`;1; : : : ;1„ ƒ‚ …
n�`

g;

which is a solution of p.z/ in Su.˛
0; ˇ0/, by Lemma 2.5, with at least one finite point.

By the first paragraph of this proof, Z has at least two distinct finite points.
If ˛0 D ˇ0, we are done. Suppose that ˛0 < ˇ0 and suppose Z is a solution of p.z/

contained in Su.˛
0; ˇ0/ with minimal number of (finite) points on the boundary of

Su.˛
0; ˇ0/. Since those points are at least two, we let z1 D uCr1ei˛0

, z2 D uCr2eiˇ0

,
where z1 6D z2 and they can be chosen to be distinct from u as well.
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By Lemma 2.6, Z is a solution of p.n�`/.z/. Let P.n�`/.z1; : : : ; z`/ be the
symmetrization of p.n�`/.z/ 2 P`. Consider the Möbius transformation w D T.v/,
defined by P.n�`/.v;w; z3; : : : ; z`/ D 0 after fixing the points z3; : : : ; z`. Since Z is a
solution of p.n�`/.z/, we have z2 D T.z1/.

If the Möbius transformation w D T.v/ is degenerate, then, T.v/ D z2 for all
v 2 C. Hence, P.n�`/.v; z2; : : : ; z`/ D 0 for all v 2 C and by moving v to the
interior of Su.˛

0; ˇ0/ we reach a contradiction with the assumption that solution Z
has minimal number of points on the border of Su.˛

0; ˇ0/.
Assume now that the Möbius transformation w D T.v/ is non-degenerate (in

particular, it is a conformal map) with fixed points �1; �2.
Let C be the unique circle, called the joint circle of the pair z1; z2, that passes

through the points z1; z2; �1; �2. Such a circle exists, since T is an involution:

T.T.v// D v for all v 2 C:

The joint circle has the property that it is invariant under T . That is, when v moves
over C, w D T.v/ moves over C in the opposite direction and they meet over the
fixed points �1; �2. In particular, v and w are on different arcs of C defined by �1; �2.
Finally, if v is inside C, w D T.v/ is outside of C, and vice versa.

If one of the fixed points, say �1, is inside of Su.˛
0; ˇ0/, then f�1; �1; z3; : : : ; z`g is

a solution with smaller number of points on the border of the sector, a contradiction.
So, the two fixed points �1 and �2 are not inside the sector Su.˛

0; ˇ0/. This implies
that the vertex u of the sector Su.˛

0; ˇ0/ is also not inside the joint circle C, or
otherwise one of the fixed points will be on the arc between z1 and z2 inside the
sector Su.˛

0; ˇ0/.
Having that in mind, the joint circle has to cross the border of Su.˛

0; ˇ0/ in
two more points: u1 D �1ei˛0

and u2 D �2eiˇ0

. As the fixed points are not inside
Su.˛

0; ˇ0/, we have either

(1) �1 � r1 and �2 � r2, or
(2) �1 � r1 and �2 � r2.

By symmetry, it is sufficient to consider only case (1). Denote by � 2 Œ0; �=2� the
angle at which the circle C crosses the border of Su.˛

0; ˇ0/ at the point z1 and by
� 2 Œ0; �=2� the angle at which the circle C crosses the border of Su.˛

0; ˇ0/ at the
point z2, see Fig. 3. If � < �, we move z2 along the border of Su.˛

0; ˇ0/ and outside
the circle C, see Fig. 3. Then, z1 will move along a circular arc inside the circle C.
As the Möbius transformation preserves the angle, z1 will move inside the sector
Su.˛

0; ˇ0/. This produces a solution fz0
1; z

0
2; z3; : : : ; z`g within the sector Su.˛

0; ˇ0/,
but with fewer points on its boundary, a contradiction.

If � > �, we move z1 along the border of Su.˛
0; ˇ0/ and outside the circle C, see

Fig. 4. Then, z2 will move along a circular arc inside the circle C. As the Möbius
transformation preserves the angle, z2 will move inside the sector Su.˛

0; ˇ0/. This
produces a solution fz0

1; z
0
2; z3; : : : ; z`g within the sector Su.˛

0; ˇ0/, but with fewer
points on its boundary, a contradiction.
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Fig. 3 Illustrating the proof of Theorem 4.2, case � < �

Fig. 4 Illustrating the proof of Theorem 4.2, case � > �

The final case � D � is similar to the previous ones, but has a twist. We move z1
along the border of Su.˛

0; ˇ0/ and outside the circle C, see Fig. 5. We know that z2
has to enter C and has to move along a circular arc. Now, the two circles, denoted
C1 and C2, intersecting C at an angle � do not both enter the sector Su.˛

0; ˇ0/. If
z2 moves along C2 it enters the sector, while if it moves along C1, it does not. We
now show that z2 moves along C2. Consider again the Möbius transformation T.z/
defined by z1 and z2 as above, and recall that when z is on the joint circle C, then so
is T.z/. The circle along which z2 moves is the image under T of the line through
u; z1 and u1. Starting at z D z1 and moving along C, the image T.z/ starts at z2 and
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Fig. 5 Illustrating the proof of Theorem 4.2, case � D �

moves along C in the opposite direction, until they meet at the fixed point �1. After
that, while z goes over the arc �1;B; u1, its image T.z/ stays on the arc �1;A; z1.
Thus, T.u1/ is on the arc �1;A; z1. But u1 is at the intersection of C and the line
through u; z1; u1. Hence, T.u1/ is at the intersection of C and the circle traversed by
z2. This shows that z2 goes over C2 since C1 does not intersect C in the arc �1;A; z1.
(Note that this argument uses the fact that the angle z1; u; u2 of the sector Su.˛

0; ˇ0/
is less than � .) ut

It is important to see that the premises of Theorem 4.2 are not vacuous. That is,
there is a zero-free sector that contains a solution of p.z/. This is the goal of the next
example.

Example 4.3. Consider the polynomial p.z/ D .z � 1/.z � i/.z � .1C i//. Denote
its zeros by ˛1, ˛2, ˛3 as shown in Fig. 6. The zeros of its derivative are denoted by
ˇ1, ˇ2 and are equal to

2

3
C

p
2

6
C
�2
3

�
p
2

6

�
i and

2

3
�

p
2

6
C
�2
3

C
p
2

6

�
i:

Finally, the zero of its second derivative is 	 WD 2
3

C 2
3
i. Figure 6 shows a solution

of the polarization

P.z1; z2; z3/ D z1z2z3 � 2C 2i

3
.z1z2 C z1z3 C z2z3/C i.z1 C z2 C z3/C .1 � i/

that is in a zero-free sector with vertex at the origin. The solution is approximately

.z1; z2; z3/ D .0:55C 0:45i; 2C 1:5i; 0:4481C 0:2623i/:
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Fig. 6 Illustrating the premises of Theorem 4.2

Using ideas similar to those used in the proof of Theorem 4.2, it is possible to
give another extension in the spirit of the Grace-Walsh-Szegő coincidence theorem.

The closed set enclosed between two concentric circles is referred to as annulus
or circular ring. By the width of an annulus, we understand the distance between
the two concentric circles. A solution of p 2 Pn is called a bi-solution if the set
fz1; : : : ; zng contains at most two distinct points. In the next theorem, by a solution
we understand a solution consisting of n points.

Theorem 4.4 (Bi-solution Coincidence). If p.z/ 2 Pn has a solution contained in
an annulus, then either

(a) p.z/ has a solution on a circle concentric to the annulus and inside of it; or
(b) p.z/ has a bi-solution in the annulus.

Proof. Let A be the annulus containing the solution of p.z/. Since the limit of a
sequence of solutions of p.z/ is also a solution, let A� be an annulus, concentric to
A, contained in A, with the smallest width, containing a solution of p.z/. (Note that
since the annulus is a closed and bounded set, a limit of a sequence of solutions in
it with n points is a solution in the annulus with n points as well.) If the width of A�
is zero, then A� is a circle and we arrive at conclusion (a). ut

Assume now that the width of A� is strictly positive. Clearly, A� will have an
element of the solution on its inner boundary and an element on its outer boundary.
Among all solutions of p.z/ in A� let Z D fz1; : : : ; zng be one with fewest elements
on the boundary of A�.

If the degree of p.z/ is one or two, then any solution Z is trivially a bi-solution.
So, assume the degree of p.z/ is at least three.
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We want to show that all elements of the solution Z are on the boundary of A�.
Indeed, let z1 be on the boundary of A� and suppose there is a z2 in the interior of A�.
Consider the Möbius transformation w D T.v/, defined by P.v;w; z3; : : : ; zn/ D 0

after fixing the points z3; : : : ; zn. (Since Z is a solution of p.z/, we have z2 D T.z1/.)
If T is degenerate, then we can freely move z1 in the interior of A� and arrive at a
solution with fewer elements on the boundary of A�. If T is non-degenerate, then
it is an open map, and we can perturb z1 to the interior of A�, so that z2 D T.z1/
remains in the interior of A�. We arrive at a new solution with fewer elements on
the boundary. This contradiction shows that all elements of Z are on the boundary
of A�.

Thus, every solution Z of p.z/ in A� has the form

Z D fz1; : : : ; zk; zkC1; : : : ; zng;

where z1; : : : ; zk are on the outer boundary circle of A� and zkC1; : : : ; zn are on
the inner boundary circle. Next, we specialize the solution Z further. Among all
solutions of p.z/ with points on the boundary of A�, let Z be the one that minimizes
the sum

diam fz1; : : : ; zkg C diam fzkC1; : : : ; zng;

where diam stands for the diameter of a set.
Next, we show that the joint circle of any two points zr; zs 2 fz1; : : : ; zkg

coincides with the outer boundary circle of A� and similarly the joint circle of any
two points zr; zs 2 fzkC1; : : : ; zng coincides with the inner boundary circle of A�.
Since the arguments are analogous we deal with the outer circle only. Suppose that
the joint circle of z1 and z2 is not the outer boundary circle of A�. Consider the
Möbius transformation w D T.v/, defined by P.v;w; z3; : : : ; zn/ D 0 after fixing
the points z3; : : : ; zn. (Since Z is a solution of p.z/, we have z2 D T.z1/.) If T is
degenerate, then we can freely move z1 in the interior of A�. Otherwise, T has two
distinct fixed points �1; �2. One of the fixed points, say �1, of T has to be in the
unbounded component of the exterior of A�, see Fig. 7. Then, moving z1 towards �2
along the joint circle forces z2 D T.z1/ to move also towards �2 along the joint circle
in the opposite direction. In this way both z1 and z2 enter the interior of A� creating
a solution of p.z/ in A� that does not have all of its elements on the boundary of A�.
This is a contradiction.

Suppose now that diamfz1; : : : ; zkg > 0. Let z1 and zk be such that one of the arcs
between them contains the points z2; : : : ; zk�1, and the segment between that arc and
the cord Œz1; zk� has diameter equal to diam fz1; : : : ; zkg. Call the arc `. One of the
fixed points, say �1 of the Möbius transformation T , determined by z1 and zk, must
be on the arc `, so we can move z1 towards �1 forcing zk D T.z1/ to move towards
�1 as well. This may not automatically reduce the diameter of the set fz1; : : : ; zkg
since both z1 and zk may have been multiple points. But it is clear that we can repeat
this argument until we obtain a solution of p.z/ with a smaller diameter of the set of
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Fig. 7 Illustrating part of the proof of Theorem 4.4

points on the outer circle of A�. This contradiction shows that there is a bi-solution
with one multiple point on the outer boundary circle of A� and one multiple point
on the inner. ut

We conclude with a result that complements Theorem 4.4. For u; v;w 2 C, define
the infinite strip

S.u; v;w/ WD ˚
u C t.v � u/C sw W t 2 Œ0; 1�; s 2 R

�
:

An extended solution fz1; : : : ; z`g of p 2 Pn is called a bi-solution if the set
fz1; : : : ; z`g contains at most two distinct points.

Theorem 4.5 (Bi-solution in a Strip). If p.z/ 2 Pn has an extended solution
contained in a strip, then either

(a) p.z/ has an extended solution on a line parallel to the strip and inside of it; or
(b) p.z/ has an extended bi-solution in the strip.

Proof. Let S be a strip containing a solution of p.z/. By Lemma 2.5, the limit of a
sequence of extended solutions of p.z/ is also an extended solution with at least one
finite component. Using a limiting argument, we can find a strip S� parallel to S,
contained in S, with the smallest width, containing a solution of p.z/. If the width of
S� is zero, then S� is a line in the strip parallel to it, and we arrive at conclusion (a).
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If the width of S� is strictly positive, then it will have an element of an extended
solution on each of its boundary lines. The next step is to show that every extended
solution Z of p.z/ in S� has the form

Z D fz1; : : : ; zk; zkC1; : : : ; z`g;

where z1; : : : ; zk are on one of the boundary lines of S� and zkC1; : : : ; z` are on the
other boundary line. The rest of the argument is analogous to that in the proof of
Theorem 4.4 and is omitted. ut

Of course, Theorem 4.5 is trivial if the strip contains a zero of p.z/ or of one of
its derivatives. Thus, the interesting case is when the strip is a zero-free strip.
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Vector Inequalities for a Projection in Hilbert
Spaces and Applications

Silvestru Sever Dragomir

Abstract In this paper we establish some vector inequalities related to Schwarz
and Buzano results. Applications for norm and numerical radius inequalities of two
bounded operators are given as well.

Keywords Hilbert space • Schwarz inequality • Buzano inequality • Orthogonal
projection • Numerical radius • Norm inequalities

1 Introduction

Let .H; h�; �i/ be an inner product space over the real or complex numbers field K.
The following inequality is well known in literature as the Schwarz’s inequality

kxk kyk � jhx; yij for any x; y 2 H: (1)

The equality case holds in (1) if and only if there exists a constant � 2 K such that
x D �y:

In 1985 the author [5] (see also [23]) established the following refinement of (1):

kxk kyk � jhx; yi � hx; ei he; yij C jhx; ei he; yij � jhx; yij (2)

for any x; y; e 2 H with kek D 1:

Using the triangle inequality for modulus we have

jhx; yi � hx; ei he; yij � jhx; ei he; yij � jhx; yij

S.S. Dragomir (�)
Mathematics, College of Engineering & Science, Victoria University, PO Box 14428,
Melbourne city, MC 8001, VIC, Australia

School of Computer Science & Applied Mathematics, University of the Witwatersrand,
Private Bag 3, Johannesburg 2050, South Africa
e-mail: sever.dragomir@vu.edu.au

© Springer International Publishing AG 2017
N.K. Govil et al. (eds.), Progress in Approximation Theory and Applicable
Complex Analysis, Springer Optimization and Its Applications 117,
DOI 10.1007/978-3-319-49242-1_9

163

mailto:sever.dragomir@vu.edu.au


164 S.S. Dragomir

and by (2) we get

kxk kyk � jhx; yi � hx; ei he; yij C jhx; ei he; yij
� 2 jhx; ei he; yij � jhx; yij ;

which implies the Buzano’s inequality [2]

1

2
Œkxk kyk C jhx; yij� � jhx; ei he; yij (3)

that holds for any x; y; e 2 H with kek D 1:

For other Schwarz and Buzano related inequalities in inner product spaces, see
[1–10, 12–15, 17, 19–25, 27–36], and the monographs [11, 16] and [18].

Now, let us recall some basic facts on orthogonal projection that will be used in
the sequel.

If K is a subset of a Hilbert space .H; h�; �i/, the set of vectors orthogonal to K is
defined by

K? WD fx 2 H W hx; ki D 0 for all k 2 Kg :

We observe that K? is a closed subspace of H and so forms itself a Hilbert space.
If V is a closed subspace of H, then V? is called the orthogonal complement of V .
In fact, every x in H can then be written uniquely as x = v C w, with v in V and w
in K?. Therefore, H is the internal Hilbert direct sum of V and V?, and we denote
that as H D V ˚ V?:

The linear operator PV W H ! H that maps x to v is called the orthogonal
projection onto V . There is a natural one-to-one correspondence between the set
of all closed subspaces of H and the set of all bounded self-adjoint operators P
such that P2 D P. Specifically, the orthogonal projection PV is a self-adjoint linear
operator on H of norm � 1 with the property P2V D PV . Moreover, any self-adjoint
linear operator E such that E2 D E is of the form PV , where V is the range of
E. For every x in H, PV.x/ is the unique element v of V , which minimizes the
distance kx � vk. This provides the geometrical interpretation of PV.x/: it is the
best approximation to x by elements of V .

Projections PU and PV are called mutually orthogonal if PUPV D 0. This is
equivalent to U and V being orthogonal as subspaces of H. The sum of the two
projections PU and PV is a projection only if U and V are orthogonal to each other,
and in that case PUCPV D PUCV :The composite PUPV is generally not a projection;
in fact, the composite is a projection if and only if the two projections commute, and
in that case PUPV D PU\V .

A family
˚
ej
�

j2J of vectors in H is called orthonormal if

ej ? ek for any j; k 2 J with j ¤ k and
��ej

�� D 1 for any j; k 2 J:
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If the linear span of the family
˚
ej
�

j2J is dense in H; then we call it an orthonormal
basis in H:

It is well known that for any orthonormal family
˚
ej
�

j2J we have Bessel’s
inequality

X
j2J

ˇ̌˝
x; ej

˛ˇ̌2 � kxk2 for any x 2 H:

This becomes Parseval’s identity

X
j2J

ˇ̌˝
x; ej

˛ˇ̌2 D kxk2 for any x 2 H;

when
˚
ej
�

j2J an othonormal basis in H:

For an othonormal family E D ˚
ej
�

j2J we define the operator PE W H ! H by

PE x WD
X
j2J

˝
x; ej

˛
ej ; x 2 H: (4)

We know that PE is an orthogonal projection and

hPE x; yi D
X
j2J

˝
x; ej

˛ ˝
ej; y

˛
; x; y 2 H and hPE x; xi D

X
j2J

ˇ̌˝
x; ej

˛ˇ̌2
; x 2 H:

The particular case when the family reduces to one vector, namely E D feg ; kek D
1; is of interest since in this case Pex WD hx; ei e; x 2 H;

hPex; yi D hx; ei he; yi ; x; y 2 H (5)

and Buzano’s inequality can be written as

1

2
Œkxk kyk C jhx; yij� � jhPex; yij (6)

that holds for any x; y; e 2 H with kek D 1:

Motivated by the above results we establish in this paper some vector inequalities
for an orthogonal projection P that generalizes amongst others the Buzano’s
inequality (6). Applications for norm and numerical radius inequalities are provided
as well.
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2 Vector Inequalities for a Projection

Assume that P W H ! H is an orthogonal projection on H, namely it satisfies the
condition P2 D P D P�: We obviously have in the operator order of B .H/ that
0 � P � 1H .

The following result holds:

Theorem 1. Let P W H ! H is an orthogonal projection on H: Then for any x; y 2
H we have the inequalities

kxk kyk � hPx; xi1=2 hPy; yi1=2 � jhx; yi � hPx; yij : (7)

and

kxk kyk �
�
kxk2 � hPx; xi

�1=2 �kyk2 � hPy; yi
�1=2 � jhPx; yij : (8)

Proof. Using the properties of projection, we have

hx � Px; y � Pyi D hx; yi � hPx; yi � hx;Pyi C hPx;Pyi (9)

D hx; yi � 2 hPx; yi C ˝
P2x; y

˛

D hx; yi � hPx; yi
for any x; y 2 H:

By Schwarz’s inequality we have

kx � Pxk2 ky � Pyk2 � jhx � Px; y � Pyij2 (10)

for any x; y 2 H:
Since, by (7), we have

kx � Pxk2 D kxk2 � hPx; xi ; ky � Pyk2 D kyk2 � hPy; yi ;

then by (10) we have

�
kxk2 � hPx; xi

� �
kyk2 � hPy; yi

�
� jhx; yi � hPx; yij2 (11)

for any x; y 2 H:
Using the elementary inequality that holds for any real numbers a; b; c; d

.ac � bd/2 � �
a2 � b2

� �
c2 � d2

�
;
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we have

�
kxk kyk � hPx; xi1=2 hPy; yi1=2

�2 �
�
kxk2 � hPx; xi

� �
kyk2 � hPy; yi

�
(12)

for any x; y 2 H:
Since

kxk � hPx; xi1=2 ; kyk � hPy; yi1=2 ;

then

kxk kyk � hPx; xi1=2 hPy; yi1=2 � 0;

for any x; y 2 H:
By (11) and (12) we get

�
kxk kyk � hPx; xi1=2 hPy; yi1=2

�2 � jhx; yi � hPx; yij2

for any x; y 2 H; which, by taking the square root, is equivalent to the desired
inequality (7).

Observe that, if P is an orthogonal projection, then Q WD 1H � P is also a
projection. Indeed we have

Q2 D .1H � P/2 D 1H � 2P C P2 D 1H � P D Q:

Now, if we write the inequality (7) for the projection Q we get the desired
inequality (8).

Corollary 1. With the assumptions of Theorem 1, we have the following refinements
of Schwarz inequality:

kxk kyk � hPx; xi1=2 hPy; yi1=2 C jhx; yi � hPx; yij (13)

� jhPx; yij C jhx; yi � hPx; yij � jhx; yij

and

kxk kyk �
�
kxk2 � hPx; xi

�1=2 �kyk2 � hPy; yi
�1=2 C jhPx; yij (14)

� jhx; yi � hPx; yij C jhPx; yij � jhx; yij

for any x; y 2 H:
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Remark 1. Since

jhx; yi � hPx; yij � jhx; yij � jhPx; yij

then by the first inequality in (13) we have

kxk kyk � hPx; xi1=2 hPy; yi1=2 C jhx; yij � jhPx; yij

that produces the inequality

kxk kyk � jhx; yij � hPx; xi1=2 hPy; yi1=2 � jhPx; yij � 0 (15)

for any x; y 2 H:
We notice that the second inequality follows by Schwarz’s inequality for the

nonnegative self-adjoint operator P:
Since

jhx; yi � hPx; yij � jhPx; yij � jhx; yij

then by (13) we have

kxk kyk � hPx; xi1=2 hPy; yi1=2 C jhx; yi � hPx; yij
� hPx; xi1=2 hPy; yi1=2 C jhPx; yij � jhx; yij ;

which implies that

kxk kyk C jhx; yij � hPx; xi1=2 hPy; yi1=2 C jhPx; yij
� 2 jhPx; yij

and is equivalent to

1

2
Œkxk kyk C jhx; yij� � 1

2

h
hPx; xi1=2 hPy; yi1=2 C jhPx; yij

i
(16)

� jhPx; yij

for any x; y 2 H:
The inequality between the first and last term in (16), namely

1

2
Œkxk kyk C jhx; yij� � jhPx; yij (17)

for any x; y 2 H is a generalization of Buzano’s inequality (3).



Vector Inequalities for a Projection in Hilbert Spaces and Applications 169

From the inequality (14) we can state that

kxk kyk � jhPx; yij �
�
kxk2 � hPx; xi

�1=2 �kyk2 � hPy; yi
�1=2

(18)

� jhx; yi � hPx; yij

for any x; y 2 H:
From the inequality (14) we also have

kxk kyk �
�
kxk2 � hPx; xi

�1=2 �kyk2 � hPy; yi
�1=2 C jhPx; yij

� jhx; yi � hPx; yij C jhPx; yij � jhPx; yij � jhx; yij C jhPx; yij
D 2 jhPx; yij � jhx; yij ;

which implies that

1

2
Œkxk kyk C jhx; yij� � 1

2

�
kxk2 � hPx; xi

�1=2 �kyk2 � hPy; yi
�1=2�

(19)

C1

2
ŒjhPx; yij C jhx; yij� � jhPx; yij

for any x; y 2 H:

The case of orthonormal families which is related to Bessel’s inequality is of
interest.

Let E D ˚
ej
�

j2J be an othonormal family in H: Then for any x; y 2 H we have
from (13) and (14) the inequalities

kxk kyk �
0
@X

j2J

ˇ̌˝
x; ej

˛ˇ̌2
1
A
1=20
@X

j2J

ˇ̌˝
y; ej

˛ˇ̌2
1
A
1=2

(20)

C
ˇ̌
ˇ̌
ˇ̌hx; yi �

X
j2J

˝
x; ej

˛ ˝
ej; y

˛
ˇ̌
ˇ̌
ˇ̌

�
ˇ̌
ˇ̌
ˇ̌
X
j2J

˝
x; ej

˛ ˝
ej; y

˛
ˇ̌
ˇ̌
ˇ̌C

ˇ̌
ˇ̌
ˇ̌hx; yi �

X
j2J

˝
x; ej

˛ ˝
ej; y

˛
ˇ̌
ˇ̌
ˇ̌ � jhx; yij

and

kxk kyk �
0
@kxk2 �

X
j2J

ˇ̌˝
x; ej

˛ˇ̌2
1
A
1=20
@kyk2 �

X
j2J

ˇ̌˝
y; ej

˛ˇ̌2
1
A
1=2

(21)
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C
ˇ̌
ˇ̌
ˇ̌
*X

j2J

˝
x; ej

˛ ˝
ej; y

˛+
ˇ̌
ˇ̌
ˇ̌

�
ˇ̌
ˇ̌
ˇ̌hx; yi �

X
j2J

˝
x; ej

˛ ˝
ej; y

˛
ˇ̌
ˇ̌
ˇ̌C

ˇ̌
ˇ̌
ˇ̌
X
j2J

˝
x; ej

˛ ˝
ej; y

˛
ˇ̌
ˇ̌
ˇ̌ � jhx; yij :

By (15) and (16) we have

kxk kyk � jhx; yij (22)

�
0
@X

j2J

ˇ̌˝
x; ej

˛ˇ̌2
1
A
1=20
@X

j2J

ˇ̌˝
y; ej

˛ˇ̌2
1
A
1=2

�
ˇ̌
ˇ̌
ˇ̌
*X

j2J

˝
x; ej

˛ ˝
ej; y

˛+
ˇ̌
ˇ̌
ˇ̌ � 0

and

1

2
Œkxk kyk C jhx; yij� � 1

2

0
@X

j2J

ˇ̌˝
x; ej

˛ˇ̌2
1
A
1=20
@X

j2J

ˇ̌˝
y; ej

˛ˇ̌2
1
A
1=2

C 1

2

ˇ̌
ˇ̌
ˇ̌
**X

j2J

˝
x; ej

˛ ˝
ej; y

˛++
ˇ̌
ˇ̌
ˇ̌

�
ˇ̌
ˇ̌
ˇ̌
*X

j2J

˝
x; ej

˛ ˝
ej; y

˛+
ˇ̌
ˇ̌
ˇ̌ (23)

for any x; y 2 H:
The inequality between the first and last term in (23) provides a generalization of

Buzano’s inequality for orthonormal families E D ˚
ej
�

j2J .
The following result holds:

Theorem 2. Let P W H ! H is an orthogonal projection on H: Then for any x; y 2
H we have the inequalities

jhx; yi � 2 hPx; yij � kxk kyk ; (24)

jhx; yi � hPx; yij (25)

� min



kxk

�
kyk2 � hPy; yi

�1=2
; kyk

�
kxk2 � hPx; xi

�1=2�
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� 1

2


kxk

�
kyk2 � hPy; yi

�1=2 C kyk
�
kxk2 � hPx; xi

�1=2�

� 1

2

�
kxk2 C kyk2

�1=2 �kxk2 C kyk2 � hPy; yi � hPx; xi
�1=2

and

jhPx; yij � min
n
kxk hPy; yi1=2 ; kyk hPx; xi1=2

o
(26)

� 1

2

h
kxk hPy; yi1=2 C kyk hPx; xi1=2

i

� 1

2

�
kxk2 C kyk2

�1=2
.hPx; xi C hPy; yi/1=2 :

Proof. Observe that

kx � 2Pxk2 D kxk2 � 4Re hx;Pxi C 4 hPx;Pxi
D kxk2 � 4 hx;Pxi C 4

˝
P2x; x

˛

D kxk2 � 4 hx;Pxi C 4 hPx; xi D kxk2

for any x 2 H:
Using Schwarz’s inequality we have

kxk kyk D kx � 2Pxk kyk � jhx � 2Px; yij D jhx; yi � 2 hPx; yij

for any x; y 2 H and the inequality (24) is proved.
By Schwarz’s inequality we also have

kx � Pxk kyk � jhx � Px; yij D jhx; yi � hPx; yij

and

kxk ky � Pyk � jhx; y � Pyij D jhx; yi � hx;Pyij D jhx; yi � hPx; yij

for any x; y 2 H; which implies the first inequality in (25).
The second and the third inequalities are obvious by the elementary inequalities

min fa; bg � 1

2
.a C b/ ; a; b 2 RC

and

ac C bd � �
a2 C b2

�1=2 �
c2 C d2

�1=2
; a; b; c; d 2 RC:

The inequality (26) follows from (25) by replacing P with 1H � P:
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Remark 2. By the triangle inequality we have

kxk kyk C jhx; yij � jhx; yi � 2 hPx; yij C jhx; yij � 2 jhPx; yij ;

which implies that [see also (16) and (19)]

1

2
Œkxk kyk C jhx; yij� � jhPx; yij (27)

for any x; y 2 H:
From (25) we also have

jhPx; yij (28)

� jhx; yij C min



kxk

�
kyk2 � hPy; yi

�1=2
; kyk

�
kxk2 � hPx; xi

�1=2�

and

jhx; yij (29)

� jhPx; yij C min



kxk

�
kyk2 � hPy; yi

�1=2
; kyk

�
kxk2 � hPx; xi

�1=2�

for any x; y 2 H:

Now, if E D ˚
ej
�

j2J is an orthonormal family, then by the inequalities (24)
and (25) we have

ˇ̌
ˇ̌
ˇ̌hx; yi � 2

X
j2J

˝
x; ej

˛ ˝
ej; y

˛
ˇ̌
ˇ̌
ˇ̌ � kxk kyk ; (30)

and
ˇ̌
ˇ̌
ˇ̌hx; yi �

X
j2J

˝
x; ej

˛ ˝
ej; y

˛
ˇ̌
ˇ̌
ˇ̌ (31)

� min

8̂
<
:̂

kxk
0
@kyk2 �

X
j2J

ˇ̌˝
y; ej

˛ˇ̌2
1
A
1=2

; kyk
0
@kxk2 �

X
j2J

ˇ̌˝
x; ej

˛ˇ̌2
1
A
1=2
9>=
>;
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� 1

2

2
64kxk

0
@kyk2 �

X
j2J

ˇ̌˝
y; ej

˛ˇ̌2
1
A
1=2

C kyk
0
@kxk2 �

X
j2J

ˇ̌˝
x; ej

˛ˇ̌2
1
A
1=2
3
75

� 1

2

�
kxk2 C kyk2

�1=2
0
@kxk2 C kyk2 �

X
j2J

ˇ̌˝
y; ej

˛ˇ̌2 �
X
j2J

ˇ̌˝
x; ej

˛ˇ̌2
1
A
1=2

for any x; y 2 H:
From (28) we also have

ˇ̌
ˇ̌
ˇ̌
X
j2J

˝
x; ej

˛ ˝
ej; y

˛
ˇ̌
ˇ̌
ˇ̌

� jhx; yij C min

8̂
<
:̂

kxk
0
@kyk2 �

X
j2J

ˇ̌˝
y; ej

˛ˇ̌2
1
A
1=2

; kyk
0
@kxk2 �

X
j2J

ˇ̌˝
x; ej

˛ˇ̌2
1
A
1=2
9>=
>;

(32)

for any x; y 2 H:

3 Inequalities for Norm and Numerical Radius

Let .HI h�; �i/ be a complex Hilbert space. The numerical range of an operator T is
the subset of the complex numbers C given by Gustafson and Rao [26, p. 1]:

W .T/ D fhTx; xi ; x 2 H; kxk D 1g :

The numerical radius w .T/ of an operator T on H is defined by Gustafson and
Rao [26, p. 8]:

w .T/ D sup fj�j ; � 2 W .T/g D sup fjhTx; xij ; kxk D 1g :

It is well known that w .�/ is a norm on the Banach algebra B .H/ and the
following inequality holds true:

w .T/ � kTk � 2w .T/ ; for any T 2 B .H/ :

Utilizing Buzano’s inequality (3) we obtained the following inequality for the
numerical radius [13] or [15]:
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Theorem 3. Let .HI h�; �i/ be a Hilbert space and T W H ! H a bounded linear
operator on H: Then

w2 .T/ � 1

2

h
w
�
T2
�C kTk2

i
: (33)

The constant 1
2

is best possible in (33).

The following general result for the product of two operators holds [26, p. 37]:

Theorem 4. If A;B are two bounded linear operators on the Hilbert space
.H; h�; �i/ ; then w .AB/ � 4w .A/w .B/ : In the case that AB D BA; then w .AB/ �
2w .A/w .B/ : The constant 2 is best possible here.

The following results are also well known [26, p. 38].

Theorem 5. If A is a unitary operator that commutes with another operator B; then

w .AB/ � w .B/ : (34)

If A is an isometry and AB D BA; then (34) also holds true.

We say that A and B double commute if AB D BA and AB� D B�A: The following
result holds [26, p. 38].

Theorem 6. If the operators A and B double commute, then

w .AB/ � w .B/ kAk : (35)

As a consequence of the above, we have [26, p. 39]:

Corollary 2. Let A be a normal operator commuting with B: Then

w .AB/ � w .A/w .B/ : (36)

A related problem with the inequality (35) is to find the best constant c for which
the inequality

w .AB/ � cw .A/ kBk

holds for any two commuting operators A;B 2 B .H/ : It is known that 1:064 < c <
1:169; see [3, 32] and [33].

In relation to this problem, it has been shown in [24] that



Vector Inequalities for a Projection in Hilbert Spaces and Applications 175

Theorem 7. For any A;B 2 B .H/ we have

w

�
AB C BA

2

	
� p

2w .A/ kBk : (37)

For other numerical radius inequalities see the recent monograph [18] and the
references therein.

The following result holds.

Theorem 8. Let P W H ! H be an orthogonal projection on the Hilbert space
.H; h�; �i/ : If A;B are two bounded linear operators on H; then

jhBPAx; xij � 1

2

�kAxk kB�xk C jhBAx; xij� (38)

and

kBPAxk � 1

2
ŒkAxk kBk C kBAxk� (39)

for any x 2 H:
Moreover, we have

w .BPA/ � 1

2
ŒkAk kBk C w .BA/� (40)

and

kBPAk � 1

2
ŒkAk kBk C kBAk� : (41)

Proof. From the inequality (17) we have

jhPAx;B�yij � 1

2

�kAxk kB�yk C jhAx;B�yij�

that is equivalent to

jhBPAx; yij � 1

2

�kAxk kB�yk C jhBAx; yij� (42)

for any x; y 2 H:
If we take y D x in (42), then we get (38).
Taking the supremum over y 2 H with kyk D 1 in (42) we have

kBPAxk D sup
kykD1

jhBPAx; yij � 1

2
sup

kykD1
�kAxk kB�yk C jhBAx; yij�
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� 1

2

"
kAxk sup

kykD1
kB�yk C sup

kykD1
jhBAx; yij

#

D 1

2
ŒkAxk kBk C kBAxk�

for any x 2 H.
The inequalities (40) and (41) follow from (38) and (39) by taking the supremum

over x 2 H with kxk D 1:

Corollary 3. Let P W H ! H be an orthogonal projection on the Hilbert space
.H; h�; �i/ : If A;B are two bounded linear operators on H; then

jhAPAx; xij � 1

2

�kAxk kA�xk C ˇ̌˝
A2x; x

˛ˇ̌�
(43)

and

kAPAxk � 1

2

�kAxk kAk C ��A2x
��� (44)

for any x 2 H:
Moreover, we have

w .APA/ � 1

2

h
kAk2 C w

�
A2
�i

(45)

and

kAPAk � 1

2

h
kAk2 C ��A2

��i : (46)

Remark 3. Let e 2 H; kek D 1: If we write the inequalities (38) and (39) for the
projector Pe defined by Pex D hx; ei e; x 2 H; we have

jhAx; eij jhBe; xij � 1

2

�kAxk kB�xk C jhBAx; xij� (47)

and

jhAx; eij kBek � 1

2
ŒkAxk kBk C kBAxk� (48)

for any x 2 H:
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Now, if we take the supremum over x 2 H; kxk D 1 in (48), then we get

kA�ek kBek � 1

2
ŒkAk kBk C kBAk� (49)

for any e 2 H; kek D 1:

If in (49) we take B D A; we have

kA�ek kAek � 1

2

h
kAk2 C ��A2

��i (50)

for any e 2 H; kek D 1:

If in (47) we take B D A; then we get

jhAx; eij jhe;A�xij � 1

2

�kAxk kA�xk C ˇ̌˝
A2x; x

˛ˇ̌�
(51)

for any x 2 H and e 2 H; kek D 1; and in particular

jhAe; eij2 � 1

2

�kAek kA�ek C ˇ̌˝
A2e; e

˛ˇ̌�
(52)

for any e 2 H; kek D 1:

Taking the supremum over e 2 H; kek D 1 in (52) we recapture the result in
Theorem 3.

For a given operator T we consider the modulus of T defined as jTj WD .T�T/1=2 :

Corollary 4. Let P W H ! H be an orthogonal projection on the Hilbert space
.H; h�; �i/ : If A;B are two bounded linear operators on H; then

w .BPA/ � 1

2
w .BA/C 1

4

���jAj2 C jB�j2
��� : (53)

In particular, we have

w .APA/ � 1

2
w
�
A2
�C 1

4

���jAj2 C jA�j2
��� : (54)

Proof. From the inequality (38) we have

jhBPAx; xij � 1

2

�kAxk kB�xk C jhBAx; xij� (55)

� 1

2
jhBAx; xij C 1

4

h
kAxk2 C kB�xk2

i
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for any x 2 H; where for the second inequality we used the elementary inequality

ab � 1

2

�
a2 C b2

�
; a; b 2 R. (56)

Since

kAxk2 C kB�xk2 D hAx;Axi C hB�x;B�xi D hA�Ax; xi C hBB�x; xi
D
D�

jAj2 C jB�j2
�

x; x
E

for any x 2 H; then from (55) we have

jhBPAx; xij � 1

2
jhBAx; xij C 1

4

D�
jAj2 C jB�j2

�
x; x
E

(57)

for any x 2 H:
Taking the supremum over x 2 H; kxk D 1 in (57) we get the desired result (53).

Remark 4. We observe that by (52) we have

jhAe; eij2 � 1

2

�kAek kA�ek C ˇ̌˝
A2e; e

˛ˇ̌�
(58)

� 1

2

ˇ̌˝
A2e; e

˛ˇ̌C 1

4

h
kAek2 C kA�ek2

i

D 1

2

ˇ̌˝
A2e; e

˛ˇ̌C 1

4

D�
jAj2 C jA�j2

�
e; e
E

for any e 2 H; kek D 1:

Taking the supremum over e 2 H; kek D 1 in (58) we get

w2 .A/ � 1

2
w
�
A2
�C 1

4

���jAj2 C jA�j2
��� ; (59)

for any bounded linear operator A:
Since

���jAj2 C jA�j2
��� �

���jAj2
���C

���jA�j2
��� D 2 kAk2 ;

then the inequality (59) is better than the inequality in Theorem 3.

The following result also holds:

Theorem 9. Let P W H ! H be an orthogonal projection on the Hilbert space
.H; h�; �i/ : If A;B are two bounded linear operators on H; then
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w

�
B

�
1

2
1H � P

	
A

	
� 1

4

���jAj2 C jB�j2
��� : (60)

In particular, we have

w

�
A

�
1

2
1H � P

	
A

	
� 1

4

���jAj2 C jA�j2
��� : (61)

Proof. From the inequality (24) we have

jh.1H � 2P/Ax;B�xij � kAxk kB�xk ;

that is equivalent to

ˇ̌
ˇ̌
�
B

�
1

2
1H � P

	
Ax; x

�ˇ̌
ˇ̌ � 1

2
kAxk kB�xk (62)

for any x 2 H:
Using the elementary inequality (56) we have

1

2
kAxk kB�xk � 1

4

�
kAxk2 C kB�xk2

�
D 1

4

D�
jAj2 C jB�j2

�
x; x
E

and by (62) we get

ˇ̌
ˇ̌
�
B

�
1

2
1H � P

	
Ax; x

�ˇ̌
ˇ̌ � 1

4

D�
jAj2 C jB�j2

�
x; x
E

(63)

for any x 2 H:
Taking the supremum over x 2 H; kxk D 1 in (63) we get the desired result (60).

Remark 5. If we take in (60) P D 1H; then we get [18, p. 6]

w .BA/ � 1

2

���jAj2 C jB�j2
��� (64)

for any A;B bounded linear operators on H:
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A Half-Discrete Hardy-Hilbert-Type Inequality
with a Best Possible Constant Factor Related
to the Hurwitz Zeta Function

Michael Th. Rassias and Bicheng Yang

Abstract Using methods of weight functions, techniques of real analysis as well
as the Hermite-Hadamard inequality, a half-discrete Hardy-Hilbert-type inequality
with multi-parameters and a best possible constant factor related to the Hurwitz
zeta function and the Riemann zeta function is obtained. Equivalent forms, normed
operator expressions, their reverses and some particular cases are also considered.

Keywords Hardy-Hilbert-type inequality • Hurwitz zeta function • Riemann zeta
function • weight function • operator
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1 Introduction

If p > 1; 1p C 1
q D 1; f .x/; g.y/ � 0; f 2 Lp.RC/; g 2 Lq.RC/;

jjf jjp D .

Z 1

0

f p.x/dx/
1
p > 0;
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jjgjjq > 0; then we have the following Hardy-Hilbert’s integral inequality (cf. [3]):

Z 1

0

Z 1

0

f .x/g.y/

x C y
dxdy <

�

sin.�=p/
jjf jjpjjgjjq; (1)

where the constant factor �
sin.�=p/ is the best possible. Assuming that

am; bn � 0; a D famg1
mD1 2 lp; b D fbng1

nD1 2 lq;

jjajjp D .

1X
mD1

ap
m/

1
p > 0; jjbjjq > 0;

we have the following Hardy-Hilbert’s inequality with the same best constant �
sin.�=p/

(cf. [3]):

1X
mD1

1X
nD1

ambn

m C n
<

�

sin.�=p/
jjajjpjjbjjq: (2)

Inequalities (1) and (2) are important in Analysis and its applications (cf. [3, 11, 19,
20, 22]).

If �i; vj > 0.i; j 2 N D f1; 2; � � � g/;

Um WD
mX

iD1
�i;Vn WD

nX
jD1

�j.m; n 2 N/; (3)

then we have the following inequality (cf. [3], Theorem 321) :

1X
mD1

1X
nD1

�
1=q
m �

1=p
n ambn

Um C Vn
<

�

sin.�=p/
jjajjpjjbjjq: (4)

Replacing �
1=q
m am and v

1=p
n bn by am and bn in (4), respectively, we obtain the

following equivalent form of (4):

1X
mD1

1X
nD1

ambn

Um C Vn
<

�

sin.�p /

 1X
mD1

ap
m

�
p�1
m

! 1
p
 1X

nD1

bq
n

�
q�1
n

! 1
q

: (5)

For �i D vj D 1.i; j 2 N/; both (4) and (5) reduce to (2). We call (4) and (5) as
Hardy-Hilbert-type inequalities.

Note. The authors did not prove that (4) is valid with the best possible constant
factor in [3].
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In 1998, by introducing an independent parameter � 2 .0; 1�, Yang [17] gave an
extension of (1) with the kernel 1=.x C y/� for p D q D 2. Optimizing the method
used in [17], Yang [20] provided some extensions of (1) and (2) as follows:

If �1; �2 2 R; �1 C �2 D �; k�.x; y/ is a non-negative homogeneous function of
degree ��; with

k.�1/ D
Z 1

0

k�.t; 1/t
�1�1dt 2 RC;

.x/ D xp.1��1/�1;  .x/ D xq.1��2/�1; f .x/; g.y/ � 0;

f 2 Lp;.RC/ D



f I jjf jjp; WD f
Z 1

0

.x/jf .x/jpdxg 1p < 1
�
;

g 2 Lq; .RC/; jjf jjp; ; jjgjjq; > 0; then we have

Z 1

0

Z 1

0

k�.x; y/f .x/g.y/dxdy < k.�1/jjf jjp; jjgjjq; ; (6)

where the constant factor k.�1/ is the best possible.
Moreover, if k�.x; y/ remains finite and k�.x; y/x�1�1.k�.x; y/y�2�1/ is decreasing

with respect to x > 0 .y > 0/; then for am;bn � 0;

a 2 lp; D
(

aI jjajjp; WD .

1X
nD1

.n/janjp/ 1p < 1
)
;

b D fbng1
nD1 2 lq; ; jjajjp; ; jjbjjq; > 0; we have

1X
mD1

1X
nD1

k�.m; n/ambn < k.�1/jjajjp; jjbjjq; ; (7)

where the constant factor k.�1/ is still the best possible.
Clearly, for

� D 1; k1.x; y/ D 1

x C y
; �1 D 1

q
; �2 D 1

p
;

inequality (6) reduces to (1), while (7) reduces to (2). For

0 < �1; �2 � 1; �1 C �2 D �;
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we set

k�.x; y/ D 1

.x C y/�
..x; y/ 2 R2C/:

Then by (7), we have

1X
mD1

1X
nD1

ambn

.m C n/�
< B.�1; �2/jjajjp; jjbjjq; ; (8)

where the constant B.�1; �2/ is the best possible, and

B .u; v/ D
Z 1

0

1

.1C t/uCv tu�1dt.u; v > 0/

is the beta function.
In 2015, subject to further conditions, Yang [26] proved an extension of (8)

and (5) as follows:

1X
mD1

1X
nD1

ambn

.Um C Vn/�
(9)

< B.�1; �2/

 1X
mD1

Up.1��1/�1
m ap

m

�
p�1
m

! 1
p
 1X

nD1

Vq.1��2/�1
n bq

n

�
q�1
n

! 1
q

; (10)

where the constant B.�1; �2/ is still the best possible.
Further results including some multidimensional Hilbert-type inequalities can be

found in [18, 21, 23–25, 27, 33].
On the topic of half-discrete Hilbert-type inequalities with non-homogeneous

kernels, Hardy et al. provided a few results in Theorem 351 of [3]. But, they did not
prove that the constant factors are the best possible. However, Yang [18] presented
a result with the kernel 1=.1 C nx/� by introducing a variable and proved that the
constant factor is the best possible. In 2011, Yang [21] gave the following half-
discrete Hardy-Hilbert’s inequality with the best possible constant factor B .�1; �2/:

Z 1

0

f .x/

" 1X
nD1

an

.x C n/�

#
dx < B .�1; �2/ jjf jjp; jjajjq; ; (11)

where �1 > 0, 0 < �2 � 1, �1 C �2 D �: Zhong et al. [36, 37, 39–41] investigated
several half-discrete Hilbert-type inequalities with particular kernels.

Using methods of weight functions and techniques of discrete and integral
Hilbert-type inequalities with some additional conditions on the kernel, a half-
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discrete Hilbert-type inequality with a general homogeneous kernel of degree �� 2
R and a best constant factor k .�1/ is obtained as follows:

Z 1

0

f .x/
1X

nD1
k�.x; n/andx < k.�1/jjf jjp; jjajjq; ; (12)

which is an extension of (11) (cf. Yang and Chen [28]). Additionally, a half-discrete
Hilbert-type inequality with a general non-homogeneous kernel and a best constant
factor is given by Yang [24]. The reader is referred to the three books of Yang
[23, 25] and Yang and Debnath [29], where half-discrete Hilbert-type inequalities
and their operator expressions are extensively treated. The interested reader will
find a vast literature on both old and new results on half-discrete Hardy-Hilbert-
type inequality with emphasis to the study of best constants in references [1–42].

In this chapter, using methods of weight functions, techniques of real analysis
as well as the Hermite-Hadamard inequality, a half-discrete Hardy-Hilbert-type
inequality with multi-parameters and a best possible constant factor related to
the Hurwitz zeta function and the Riemann zeta function is studied, which is an
extension of (12) for � D 0 in a particular kernel. Equivalent forms, normed operator
expressions, their reverses and some particular cases are also considered.

2 An Example and Some Lemmas

In the following, we assume that �i; �j > 0 .i; j 2 N/;Um and Vn are defined by (3),

QVn WD Vn � Q�n. Q�n 2 Œ0; �n

2
�/.n 2 N/;

�.t/ is a positive continuous function in RC D .0;1/,

U.x/ WD
Z x

0

�.t/dt < 1.x 2 Œ0;1//;

�.t/ WD �n; t 2 .n � 1
2
; n C 1

2
�.n 2 N/; and

V.y/ WD
Z y

1
2

�.t/dt.y 2 Œ 1
2
;1//;

p ¤ 0; 1; 1
p C 1

q D 1; ı 2 f�1; 1g; f .x/; an � 0.x 2 RC; n 2 N/;

jjf jjp;˚ı D .

Z 1

0

˚ı.x/f
p.x/dx/

1
p ;
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jjajjq; Q� D .
P1

nD1 Q�.n/bq
n/

1
q ; where,

˚ı.x/ WD Up.1�ı�/�1.x/
�p�1.x/

; Q�.n/ WD
QVq.1��/�1

n

�
q�1
n

.x 2 RC; n 2 N/:

Example 1. For 0 < 	 < �; 0 � ˛ � � .� > 0/;

csc h.u/ WD 2

eu � e�u
.u > 0/

is the hyperbolic cosecant function (cf. [34]). We set

h.t/ D csc h.�t	 /

e˛t	
.t 2 RC/:

(i) Setting u D �t	 ; we find

k.�/ WD
Z 1

0

csc h.�t	 /

e˛t	
t��1dt

D 1

	��=	

Z 1

0

csc h.u/

e
˛
� u

u
�
	 �1du

D 2

	��=	

Z 1

0

e� ˛
� uu

�
	 �1

eu � e�u
du

D 2

	��=	

Z 1

0

e�. ˛� C1/uu
�
	 �1

1 � e�2u
du

D 2

	��=	

Z 1

0

1X
kD0

e�.2kC ˛
� C1/uu

�
	 �1du:

By the Lebesgue term by term integration theorem (cf. [34]), setting v D�
2k C ˛

�
C 1

�
u, we have

k.�/ D
Z 1

0

csc h.�t	 /

e˛t	
t��1dt

D 2

	��=	

1X
kD0

Z 1

0

e�.2kC ˛
� C1/uu

�
	 �1du

D 2

	��=	

1X
kD0

1

.2k C ˛
�

C 1/�=	

Z 1

0

e�vv
�
	 �1dv
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D
2� .�

	
/

	.2�/�=	

1X
kD0

1

.k C ˛C�
2�
/�=	

D
2� .�

	
/

	.2�/�=	
�.
�

	
;
˛ C �

2�
/ 2 RC; (13)

where

�.s; a/ WD
1X

kD0

1

.k C a/s
.s > 1I 0 < a � 1/

is the Hurwitz zeta function, �.s/ D �.s; 1/ is the Riemann zeta function, and

� .y/ WD
Z 1

0

e�vvy�1dv .y > 0/

is the Gamma function (cf. [16]).
In particular, (1) for ˛ D � > 0;we have h.t/ D csc h.�t	 /

e�t	 and k.�/ D
2� . �	 /�.

�
	 /

	.2�/�=	
: In this case, for 	 D �

2
; we have h.t/ D csc h.�

p
t� /

e�
p

t�
and k.�/ D �2

6��2
I

(2) for ˛ D 0; we have h.t/ D csc h.�t	 / and
2� . �	 /

	.2�/�=	
�. �

	
; 1
2
/: In this case, for

	 D �
2
; we find h.t/ D csc h.�

p
t� / and k.�/ D �2

2��2
:

(ii) We obtain for u > 0; 1
eu�e�u > 0;

d

du
.

1

eu � e�u
/ D � eu C e�u

.eu � e�u/2
< 0;

d2

du2
.

1

eu � e�u
/ D 2.eu C e�u/2 � .eu � e�u/2

.eu � e�u/3
> 0:

If g.u/ > 0; g0.u/ < 0; g00.u/ > 0; then for 0 < 	 � 1;

g.�t	 / > 0;
d

dt
g.�t	 / D �	 t	�1g0.�t	 / < 0;

d2

dt2
g.�t	 / D �	.	 � 1/t	�2g0.�t	 /C �2	2t2	�2g00.�t	 / > 0I

for y 2 .n � 1
2
; n C 1

2
/; g.V.y// > 0;

d

dy
g.V.y// D g0.V.y//�n < 0;

d2

dy2
g.V.y// D g00.V.y//�2n > 0.n 2 N/:
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If gi.u/ > 0; g0
i.u/ < 0; g

00
i .u/ > 0.i D 1; 2/; then

g1.u/g2.u/ > 0;

.g1.u/g2.u//
0 D g0

1.u/g2.u/C g1.u/g
0
2.u/ < 0;

.g1.u/g2.u//
00 D g00

1 .u/g2.u/C 2g0
1.u/g

0
2.u/C g1.u/g

00
2 .u/ > 0.u > 0/:

(iii) Therefore, for 0 < 	 < � � 1; 0 � ˛ � �.� > 0/; we have k.�/ 2 RC; with
h.t/ > 0; h0.t/ < 0; h00.t/ > 0; and then for c > 0; y 2 .n � 1

2
; n C 1

2
/.n 2 N/;

it follows that

h.cV.y//V��1.y/ > 0;
d

dy
h.cV.y//V��1.y/ < 0;

d2

dy2
h.cV.y//V��1.y/ > 0:

Lemma 1. If g.t/.> 0/ is decreasing in RC and strictly decreasing in Œn0;1/

where n0 2 N; satisfying
R1
0

g.t/dt 2 RC; then we have

Z 1

1

g.t/dt <
1X

nD1
g.n/ <

Z 1

0

g.t/dt: (14)

Proof. Since we have

Z nC1

n
g.t/dt � g.n/ �

Z n

n�1
g.t/dt.n D 1; � � � ; n0/;

Z n0C2

n0C1
g.t/dt < g.n0 C 1/ <

Z n0C1

n0

g.t/dt;

then it follows that

0 <

Z n0C2

1

g.t/dt <
n0C1X
nD1

g.n/ <
n0C1X
nD1

Z n

n�1
g.t/dt D

Z n0C1

0

g.t/dt < 1:

Similarly, we still have

0 <

Z 1

n0C2
g.t/dt �

1X
nDn0C2

g.n/ �
Z 1

n0C1
g.t/dt < 1:

Hence, (14) follows and therefore the lemma is proved.
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Lemma 2. If 0 � ˛ � �.� > 0/; 0 < 	 < � � 1; define the following weight
coefficients:

!ı.�; x/ W D
1X

nD1

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	

Uı� .x/�n

QV1��
n

; x 2 RC; (15)

$ı.�; n/ W D
Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	

QV�
n �.x/

U1�ı� .x/
dx; n 2 N: (16)

Then, we have the following inequalities:

!ı.�; x/ < k.�/.x 2 RC/; (17)

$ı.�; n/ � k.�/.n 2 N/; (18)

where k.�/ is given by (13).

Proof. Since we find

QVn D Vn � Q�n � Vn � �n

2

D
Z nC 1

2

1
2

�.t/dt �
Z nC 1

2

n
�.t/dt D

Z n

1
2

�.t/dt D V.n/;

and for t 2 .n � 1
2
; n C 1

2
�;V 0.t/ D �n; hence by Example 1(iii) and Hermite-

Hadamard’s inequality (cf. [8]), we have

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	

�n

QV1��
n

� csc h.�.Uı.x/V.n//	 /

e˛.Uı.x/V.n//	

�n

V1�� .n/

<

Z nC 1
2

n� 1
2

csc h.�.Uı.x/V.t//	 /

e˛.Uı.x/V.t//	

V 0.t/
V1�� .t/

dt;

!ı.�; x/ <
1X

nD1

Z nC 1
2

n� 1
2

csc h.�.Uı.x/V.t//	 /

e˛.Uı.x/V.t//	

Uı� .x/V 0.t/
V1�� .t/

dt

D
Z 1
1
2

csc h.�.Uı.x/V.t//	 /

e˛.Uı.x/V.t//	

Uı� .x/V 0.t/
V1�� .t/

dt:
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Setting u D Uı.x/V.t/; by (13), we find

!ı.�; x/ <
Z Uı.x/V.1/

0

csc h.�u	 /

e˛u	
Uı� .x/U�ı.x/
.uU�ı.x//1��

du

�
Z 1

0

csc h.�u	 /

e˛u	
u��1du D k.�/:

Hence, (17) follows.
Setting u D QVnUı.x/ in (16), we find du D ı QVnUı�1.x/�.x/dx and

$ı.�; n/ D 1

ı

Z QVnUı.1/

QVnUı.0/

csc h.�u	 /

e˛u	

QV�
n

QV�1
n . QV�1

n u/
1
ı �1

. QV�1
n u/

1
ı �� du

D 1

ı

Z QVnUı.1/

QVnUı.0/

csc h.�u	 /

e˛u	
u��1du:

If ı D 1; then

$1.�; n/ D
Z QVnU.1/

0

csc h.�u	 /

e˛u	
u��1du

�
Z 1

0

csc h.�u	 /

e˛u	
u��1du:

If ı D �1; then

$�1.�; n/ D �
Z QVnU�1.1/

1
csc h.�u	 /

e˛u	
u��1du

�
Z 1

0

csc h.�u	 /

e˛u	
u��1du:

Then by (13), we have (18). The lemma is proved.

Remark 1. We do not need the constraint � � 1 to obtain (18). If U.1/ D 1; then
we have

$ı.�; n/ D k.�/.n 2 N/: (19)

For example, if we set �.t/ D 1

.1Ct/ˇ
.t > 0I 0 � ˇ � 1/; then for x � 0; we find

U.x/ D
Z x

0

1

.1C t/ˇ
dt

D
(
.1Cx/1�ˇ�1

1�ˇ ; 0 � ˇ < 1

ln.1C x/; ˇ D 1
< 1;
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and

U.1/ D
Z 1

0

1

.1C t/ˇ
dt D 1:

Lemma 3. If 0 � ˛ � � .� > 0/; 0 < 	 < � � 1; there exists n0 2 N; such that
�n � �nC1 .n 2 fn0; n0 C 1; � � � g/; and V.1/ D 1; then

(i) for x 2 RC; we have

k.�/.1 � �ı.�; x// < !ı.�; x/; (20)

where, �ı.�; x/ D O..U.x//ı.��	// 2 .0; 1/I
(ii) for any b > 0; we have

1X
nD1

�n

QV1Cb
n

D 1

b

 
1

Vb
n0

C bO.1/

!
: (21)

Proof. Since vn � vnC1.n � n0/; and

QVn D Vn � Q�n � Vn D
Z nC 1

2

1
2

�.t/dt D V.n C 1

2
/;

by Example 1(iii), we have

!ı.�; x/ D
1X

nD1

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	

Uı� .x/�n

QV1��
n

�
1X

nDn0

Z nC 3
2

nC 1
2

csc h.�.Uı.x/V.n C 1
2
//	 /

e˛.U
ı.x/V.nC 1

2 //
	

Uı� .x/�nC1dt

.V.n C 1
2
//1��

>

1X
nDn0

Z nC 3
2

nC 1
2

csc h.�.Uı.x/V.t//	 /

e˛.Uı.x/V.t//	

Uı� .x/V 0.t/
.V.t//1��

dt

D
Z 1

n0C 1
2

csc h.�.Uı.x/V.t//	 /

e˛.Uı.x/V.t//	

Uı� .x/V 0.t/
.V.t//1��

dt:

Setting u D Uı.x/V.t/; in view of V.1/ D 1; by (13), we find

!ı.�; x/ >
Z 1

Uı.x/Vn0

csc h.�u	 /

e˛u	
u��1du

D k.�/ �
Z Uı.x/Vn0

0

csc h.�u	 /

e˛u	
u��1du
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D k.�/.1 � �ı.�; x//;

�ı.�; x/ W D 1

k.�/

Z Uı.x/Vn0

0

csc h.�u	 /

e˛u	
u��1du 2 .0; 1/:

Since F.u/ D u	 csc h.�u	 /
e˛u	 is continuous in .0;1/; satisfying

F.u/ ! 1

�
.u ! 0C/;F.u/ ! 0.u ! 1/;

there exists a constant L > 0; such that F.u/ � L; namely,

csc h.�u	 /

e˛u	
� Lu�	 .u 2 .0;1//:

Hence we find

0 < �ı.�; x/ � L

k.�/

Z Uı.x/Vn0

0

u��	�1du

D L.Uı.x/Vn0 /
��	

k.�/.� � 	/ ;

and then (20) follows.
For b > 0; we find

1X
nD1

�n

QV1Cb
n

�
n0X

nD1

�n

QV1Cb
n

C
1X

nDn0C1

�n

V1Cb.n/

<

n0X
nD1

�n

QV1Cb
n

C
1X

nDn0C1

Z nC 1
2

n� 1
2

V 0.x/
V1Cb.x/

dx

D
n0X

nD1

�n

QV1Cb
n

C
Z 1

n0C 1
2

dV.x/

V1Cb.x/

D
n0X

nD1

�n

QV1Cb
n

C 1

bVb.n0 C 1
2
/

D 1

b

 
1

Vb
n0

C b
n0X

nD1

�n

QV1Cb
n

!
;

1X
nD1

�n

QV1Cb
n

�
1X

nDn0

Z nC 3
2

nC 1
2

�nC1
V1Cb.n C 1

2
/
dx
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>

1X
nDn0

Z nC 3
2

nC 1
2

V 0.x/
V1Cb.x/

dx D
Z 1

n0C 1
2

dV.x/

V1Cb.x/

D 1

bVb.n0 C 1
2
/

D 1

bVb
n0

:

Hence we have (21). The lemma is proved.

Note. For example, �n D 1

.n��/ˇ .n 2 NI 0 � ˇ � 1; 0 � � < 1/ satisfies the
conditions of Lemma 3 (for n0 � 1/.

3 Equivalent Inequalities and Operator Expressions

Theorem 1. If 0 � ˛ � �.� > 0/; 0 < 	 < � � 1; k.�/ is given by (13), then for
p > 1; 0 < jjf jjp;˚ı ; jjajjq; Q� < 1; we have the following equivalent inequalities:

I W D
1X

nD1

Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
anf .x/dx < k.�/jjf jjp;˚ı jjajjq; Q� ; (22)

J1 W D
1X

nD1

�n

QV1�p�
n

"Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
f .x/dx

#p

< k.�/jjf jjp;˚ı ; (23)

J2 W D
( Z 1

0

�.x/

U1�qı� .x/

" 1X
nD1

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
an

#q

dx

) 1
q

< k.�/jjajjq; Q� : (24)

Proof. By Hölder’s inequality with weight (cf. [8]), we have

"Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
f .x/dx

#p

D
2
4
Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	

0
@U

1�ı�
q .x/f .x/

QV
1��

p
n �

1
q .x/

1
A
0
@ QV

1��
p

n �
1
q .x/

U
1�ı�

q .x/

1
A dx

3
5

p

�
Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	

0
@U

p.1�ı�/
q .x/f p.x/

QV1��
n �

p
q .x/

1
A dx
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�
"Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	

QV.1��/.p�1/
n �.x/

U1�ı� .x/
dx

#p�1

D .$ı.�; n//p�1

QVp��1
n �n

Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	

U.1�ı�/.p�1/.x/�n

QV1��
n �p�1.x/

f p.x/dx: (25)

In view of (18) and the Lebesgue term by term integration theorem (cf. [9]), we
find

J1 � .k.�//
1
q

" 1X
nD1

Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	

U.1�ı�/.p�1/.x/�n

QV1��
n �p�1.x/

f p.x/dx

# 1
p

D .k.�//
1
q

"Z 1

0

1X
nD1

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	

U.1�ı�/.p�1/.x/�n

QV1��
n �p�1.x/

f p.x/dx

# 1
p

D .k.�//
1
q

Z 1

0

!ı.�; x/
Up.1�ı�/�1.x/
�p�1.x/

f p.x/dx

� 1
p

: (26)

Then by (17), we have (23).
By Hölder’s inequality (cf. [8]), we have

I D
1X

nD1

2
4 �

1
p
n

QV
1
p ��

n

Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
f .x/dx

3
5
0
@ QV

1
p ��

n an

�
1
p
n

1
A

� J1jjajjq; Q� : (27)

Then by (23), we have (22).
On the other hand, assuming that (22) is valid, we set

an WD �n

QV1�p�
n

"Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
f .x/dx

#p�1
; n 2 N:

Then, we find Jp
1 D jjajjq

q; Q� :
If J1 D 0; then (23) is trivially valid.
If J1 D 1; then (23) keeps impossible.
Suppose that 0 < J1 < 1: By (22), it follows that

jjajjq
q; Q� D Jp

1 D I < k.�/jjf jjp;˚ı jjajjq; Q� ;

jjajjq�1
q; Q� D J1 < k.�/jjf jjp;˚ı ;

and then (23) follows, which is equivalent to (22).
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By Hölder’s inequality with weight (cf. [8]), we obtain
" 1X

nD1

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
an

#q

D
2
4

1X
nD1

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	

0
@U

1�ı�
q .x/�

1
p

n

QV
1��

p
n

1
A
0
@ QV

1��
p

n an

U
1�ı�

q .x/�
1
p

n

1
A
3
5

q

�
" 1X

nD1

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	

U.1�ı�/.p�1/.x/�n

QV1��
n

#q�1

�
1X

nD1

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	

QV
q.1��/

p
n

U1�ı� .x/�q�1
n

aq
n

D .!ı.�; x//q�1

Uqı��1.x/�.x/

1X
nD1

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	

QV.1��/.q�1/
n �.x/

U1�ı� .x/�q�1
n

aq
n: (28)

Then by (17) and Lebesgue term by term integration theorem (cf. [9]), it follows that

J2 < .k.�//
1
p

( Z 1

0

1X
nD1

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	

QV.1��/.q�1/
n �.x/

U1�ı� .x/�q�1
n

aq
ndx

) 1
q

D .k.�//
1
p

( 1X
nD1

Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	

QV.1��/.q�1/
n �.x/

U1�ı� .x/�q�1
n

aq
ndx

) 1
q

D .k.�//
1
p

( 1X
nD1

$ı.�; n/
QVq.1��/�1

n

�
q�1
n

aq
n

) 1
q

: (29)

Then by (18), we have (24).
By Hölder’s inequality (cf. [8]), we have

I D
Z 1

0

 
U

1
q �ı�

.x/

�
1
q .x/

f .x/

!"
�

1
q .x/

U
1
q �ı�

.x/

1X
nD1

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
an

#
dx

� jjf jjp;˚ıJ2: (30)

Then by (24), we have (22).
On the other hand, assuming that (24) is valid, we set

f .x/ WD �.x/

U1�qı� .x/

" 1X
nD1

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
an

#q�1
; x 2 RC:
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Then we find Jq
2 D jjf jjpp;˚ı :

If J2 D 0; then (24) is trivially valid.
If J2 D 1; then (24) keeps impossible.
Suppose that 0 < J2 < 1: By (22), it follows that

jjf jjpp;˚ı D Jq
2 D I < k.�/jjf jjp;˚ı jjajjq; Q� ;

jjf jjp�1
p;˚ı

D J2 < k.�/jjajjq; Q� ;

and then (24) follows, which is equivalent to (22).
Therefore, (22), (23) and (24) are equivalent. The theorem is proved.

Theorem 2. With the assumptions of Theorem 1, if there exists n0 2 N; such that
vn � vnC1 .n 2 fn0; n0 C 1; � � � g/; and U.1/ D V.1/ D 1; then the constant
factor k.�/ in (22), (23) and (24) is the best possible.

Proof. For " 2 .0; q.� � 	//; we set Q� D � � "
q .2 .	; 1//; and Qf D Qf .x/; x 2

RC; Qa D fQang1
nD1;

Qf .x/ D



Uı.Q�C"/�1.x/�.x/; 0 < xı � 1

0; xı > 0
; (31)

Qan D QV Q��1
n �n D QV�� "

q �1
n �n; n 2 N: (32)

Then for ı D ˙1; since U.1/ D 1; we find

Z

fx>0I0<xı�1g
�.x/

U1�ı".x/
dx D 1

"
Uı".1/: (33)

By (21), (33) and (20), we obtain

jj Qf jjp;˚ı jjQajjq; Q� D
�Z

fx>0I0<xı�1g
�.x/dx

U1�ı".x/

	 1
p

 1X
nD1

�n

QV1C"
n

! 1
q

D 1

"
U

ı"
p .1/

 
1

V"
n0

C " QO.1/
! 1

q

; (34)

QI W D
Z 1

0

1X
nD1

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
Qan Qf .x/dx

D
Z

fx>0I0<xı�1g

1X
nD1

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	

QV Q��1
n �n�.x/

U1�ı.Q�C"/.x/
dx
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D
Z

fx>0I0<xı�1g
!ı. Q�; x/ �.x/

U1�ı".x/
dx

� k. Q�/
Z

fx>0I0<xı�1g
.1 � �ı. Q�; x// �.x/

U1�ı".x/
dx

D k. Q�/
Z

fx>0I0<xı�1g
.1 � O..U.x//ı.�� "

q �	/
//

�.x/

U1�ı".x/
dx

D k. Q�/
Z

fx>0I0<xı�1g
�.x/

U1�ı".x/
dx

�
Z

fx>0I0<xı�1g
O.

�.x/

U1�ı.��	C "
p /.x/

/dx

#

D 1

"
k.� � "

q
/.Uı".1/ � "O.1//:

If there exists a positive constant K � k.�/; such that (22) is valid when replacing
k.�/ to K; then in particular, by Lebesgue term by term integration theorem, we have
"QI < "Kjj Qf jjp;˚ı jjQajjq; Q� ; namely,

k.� � "

q
/.Uı".1/ � "O.1// < K � U

ı"
p .1/

 
1

V"
n0

C " QO.1/
! 1

q

:

It follows that k.�/ � K." ! 0C/: Hence, K D k.�/ is the best possible constant
factor of (22).

The constant factor k.�/ in (23) (respectively, (24)) is still the best possible.
Otherwise, we would reach a contradiction by (27) (respectively, (30)) that the
constant factor in (22) is not the best possible. The theorem is proved.

For p > 1; we find

Q�1�p.n/ D �n

QV1�p�
n

.n 2 N/; ˚1�q
ı .x/ D �.x/

U1�qı� .x/
.x 2 RC/;

and define the following real normed spaces:

Lp;˚ı .RC/ D ff I f D f .x/; x 2 RC; jjf jjp;˚ı < 1g;
lq; Q� D faI a D fang1

nD1; jjajjq; Q� < 1g;
L

q;˚
1�q
ı

.RC/ D fhI h D h.x/; x 2 RC; jjhjj
q;˚

1�q
ı

< 1g;
lp; Q�1�p D fcI c D fcng1

nD1; jjcjjp; Q�1�p < 1g:
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Assuming that f 2 Lp;˚ı .RC/; setting

c D fcng1
nD1; cn WD

Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
f .x/dx; n 2 N;

we can rewrite (23) as follows:

jjcjjp; Q�1�p < k.�/jjf jjp;˚ı < 1;

namely, c 2 lp; Q�1�p :

Definition 1. Define a half-discrete Hardy-Hilbert-type operator

T1 W Lp;˚ı .RC/ ! lp; Q�1�p

as follows:
For any f 2 Lp;˚ı .RC/; there exists a unique representation T1f D c 2 lp; Q�1�p :

Define the formal inner product of T1f and a D fang1
nD1 2 lq; Q� as follows:

.T1f ; a/ WD
1X

nD1

"Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
f .x/dx

#
an: (35)

Then we can rewrite (22) and (23) as:

.T1f ; a/ < k.�/jjf jjp;˚ı jjajjq; Q� ; (36)

jjT1f jjp; Q�1�p < k.�/jjf jjp;˚ı : (37)

Define the norm of operator T1 as follows:

jjT1jj WD sup
f .¤�/2Lp;˚ı .RC/

jjT1f jjp; Q�1�p

jjf jjp;˚ı
:

Then by (37), it is evident that jjT1jj � k.�/: Since by Theorem 2, the constant
factor in (37) is the best possible, we have

jjT1jj D k.�/ D
2� .�

	
/

	.2�/�=	
�.
�

	
;
˛ C �

2�
/: (38)

Assuming that a D fang1
nD1 2 lq; Q� ; setting

h.x/ WD
1X

nD1

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
an; x 2 RC;
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we can rewrite (24) as follows:

jjhjj
q;˚

1�q
ı

< k.�/jjajjq; Q� < 1;

namely, h 2 L
q;˚

1�q
ı

.RC/:

Definition 2. Define a half-discrete Hardy-Hilbert-type operator

T2 W lq; Q� ! L
q;˚

1�q
ı

.RC/

as follows:
For any a D fang1

nD1 2 lq; Q� ; there exists a unique representation T2a D h 2
L

q;˚
1�q
ı

.RC/: Define the formal inner product of T2a and f 2 Lp;˚ı .RC/ by:

.T2a; f / WD
Z 1

0

" 1X
nD1

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
an

#
f .x/dx: (39)

Then we can rewrite (22) and (24) as follows:

.T2a; f / < k.�/jjf jjp;˚ı jjajjq; Q� ; (40)

jjT2ajj
q;˚

1�q
ı

< k.�/jjajjq; Q� : (41)

Define the norm of operator T2 by:

jjT2jj WD sup
a.¤�/2lq; Q�

jjT2ajj
q;˚

1�q
ı

jjajjq; Q�
:

Then by (41), we find jjT2jj � k.�/: Since by Theorem 2, the constant factor in (41)
is the best possible, we have

jjT2jj D k.�/ D
2� .�

	
/

	.2�/�=	
�.
�

	
;
˛ C �

2�
/ D jjT1jj: (42)

4 Some Equivalent Reverses

In the following, we also set

Q̊
ı.x/ WD .1 � �ı.�; x//Up.1�ı�/�1.x/

�p�1.x/
.x 2 RC/:

For 0 < p < 1 or p < 0; we still use the formal symbols jjf jjp;˚ı , jjf jjp; Q̊ı and
jjajjq; Q� :
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Theorem 3. If 0 � ˛ � �.� > 0/; 0 < 	 < � � 1; k.�/ is given by (13), there
exists n0 2 N; such that vn � vnC1 .n 2 fn0; n0 C 1; � � � g/; and U.1/ D V.1/ D
1; then for p < 0; 0 < jjf jjp;˚ı ; jjajjq; Q� < 1; we have the following equivalent
inequalities with the best possible constant factor k.�/:

I D
1X

nD1

Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
anf .x/dx > k.�/jjf jjp;˚ı jjajjq; Q� ; (43)

J1 D
1X

nD1

�n

QV1�p�
n

"Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
f .x/dx

#p

> k.�/jjf jjp;˚ı ; (44)

J2 D
( Z 1

0

�.x/

U1�qı� .x/

" 1X
nD1

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
an

#q

dx

) 1
q

> k.�/jjajjq; Q� : (45)

Proof. By the reverse Hölder’s inequality with weight (cf. [8]), since p < 0;

similarly to the way we obtained (25) and (26), we have

"Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
f .x/dx

#p

�
QV1�p�

n

.$ı.�; n//1�p�n

Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	

U.1�ı�/.p�1/.x/�n

QV1��
n �p�1.x/

f p.x/dx;

and then by (19) and Lebesgue term by term integration theorem, it follows that

J1 � .k.�//
1
q

" 1X
nD1

Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	

U.1�ı�/.p�1/.x/�n

QV1��
n �p�1.x/

f p.x/dx

# 1
p

D .k.�//
1
q

Z 1

0

!ı.�; x/
Up.1�ı�/�1.x/
�p�1.x/

f p.x/dx

� 1
p

:

Then by (17), we have (44).
By the reverse Hölder’s inequality (cf. [8]), we have

I D
1X

nD1

2
4 �

1
p
n

QV
1
p ��

n

Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
f .x/dx

3
5
0
@ QV

1
p ��

n an

�
1
p
n

1
A

� J1jjajjq; Q� : (46)

Then by (44), we have (43).
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On the other hand, assuming that (43) is valid, we set an as in Theorem 1. Then
we find Jp

1 D jjajjq
q; Q� :

If J1 D 1; then (44) is trivially valid.
If J1 D 0; then (44) is impossible.
Suppose that 0 < J1 < 1: By (43), it follows that

jjajjq
q; Q� D Jp

1 D I > k.�/jjf jjp;˚ı jjajjq; Q� ;

jjajjq�1
q; Q� D J1 > k.�/jjf jjp;˚ı ;

and then (44) follows, which is equivalent to (43).
By the reverse of Hölder’s inequality with weight (cf. [8]), since 0 < q < 1;

similarly to the way we obtained (28) and (29), we have

" 1X
nD1

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
an

#q

� .!ı.�; x//q�1

Uqı��1.x/�.x/

1X
nD1

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	

QV.1��/.q�1/
n �.x/

U1�ı� .x/�q�1
n

aq
n;

and then by (17) and Lebesgue term by term integration theorem, it follows that

J2 > .k.�//
1
p

"Z 1

0

1X
nD1

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	

QV.1��/.q�1/
n �.x/

U1�ı� .x/�q�1
n

aq
ndx

# 1
q

D .k.�//
1
p

" 1X
nD1

$ı.�; n/
QVq.1��/�1

n

�
q�1
n

aq
n

# 1
q

:

Then by (19), we obtain (45).
By the reverse Hölder’s inequality (cf. [8]), we get

I D
Z 1

0

 
U

1
q �ı�

.x/

�
1
q .x/

f .x/

!"
�

1
q .x/

U
1
q �ı�

.x/

1X
nD1

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
an

#
dx

� jjf jjp;˚ıJ2: (47)

Then by (45), we derive (43).
On the other hand, assuming that (45) is valid, we set f .x/ as in Theorem 1. Then

we find Jq
2 D jjf jjpp;˚ı :

If J2 D 1; then (45) is trivially valid.
If J2 D 0; then (45) keeps impossible.
Suppose that 0 < J2 < 1: By (43), it follows that
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jjf jjpp;˚ı D Jq
2 D I > k.�/jjf jjp;˚ı jjajjq; Q� ;

jjf jjp�1
p;˚ı

D J2 > k.�/jjajjq; Q� ;

and then (45) follows, which is equivalent to (43).
Therefore, inequalities (43), (44) and (45) are equivalent.
For " 2 .0; q.� � 	//; we set Q� D � � "

q .2 .	; 1//; and Qf D Qf .x/; x 2 RC,
Qa D fQang1

nD1;

Qf .x/ D



Uı.Q�C"/�1.x/�.x/; 0 < xı � 1

0; xı > 0
;

Qan D QV Q��1
n �n D QV�� "

q �1
n �n; n 2 N:

By (21), (33) and (17), we obtain

jj Qf jjp;˚ı jjQajjq; Q� D 1

"
U

ı"
p .1/

 
1

V"
n0

C " QO.1/
! 1

q

; (48)

QI D
1X

nD1

Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
Qan Qf .x/dx

D
Z

fx>0I0<xı�1g
!ı. Q�; x/ �.x/

U1�ı".x/
dx

� k. Q�/
Z

fx>0I0<xı�1g
�.x/

U1�ı".x/
dx D 1

"
k.� � "

q
/Uı".1/:

If there exists a positive constant K � k.�/; such that (43) is valid when replacing
k.�/ by K; then in particular, we have "QI > "Kjj Qf jjp;˚ı jjQajjq; Q� ; namely,

k.� � "

q
/Uı".1/ > K � U

ı"
p .1/

 
1

V"
n0

C " QO.1/
! 1

q

:

It follows that k.�/ � K." ! 0C/: Hence, K D k.�/ is the best possible constant
factor of (43).

The constant factor k.�/ in (44) (respectively, (45)) is still the best possible.
Otherwise, we would reach a contradiction by (46) (respectively, (47)) that the
constant factor in (43) is not the best possible. The theorem is proved.

Theorem 4. With the assumptions of Theorem 3, if

0 < p < 1; 0 < jjf jjp;˚ı ; jjajjq; Q� < 1;



A Half-Discrete Hardy-Hilbert-Type Inequality 205

then we have the following equivalent inequalities with the best possible constant
factor k.�/:

I D
1X

nD1

Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
anf .x/dx > k.�/jjf jjp; Q̊ı jjajjq; Q� ; (49)

J1 D
1X

nD1

�n

QV1�p�
n

"Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
f .x/dx

#p

> k.�/jjf jjp; Q̊ı ; (50)

J W D
( Z 1

0

.1 � �ı.�; x//1�q�.x/

U1�qı� .x/

" 1X
nD1

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
an

#q

dx

) 1
q

> k.�/jjajjq; Q� : (51)

Proof. By the reverse Hölder’s inequality with weight (cf. [8]), since 0 < p < 1;

similarly to the way we obtained (25) and (26), we have

"Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
f .x/dx

#p

� .$ı.�; n//p�1

QVp��1
n �n

Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	

U.1�ı�/.p�1/.x/�n

QV1��
n �p�1.x/

f p.x/dx;

and then in view of (19) and Lebesgue term by term integration theorem, we find

J1 � .k.�//
1
q

" 1X
nD1

Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	

U.1�ı�/.p�1/.x/�n

QV1��
n �p�1.x/

f p.x/dx

# 1
p

D .k.�//
1
q

Z 1

0

!ı.�; x/
Up.1�ı�/�1.x/
�p�1.x/

f p.x/dx

� 1
p

:

Then by (20), we have (50).
By the reverse Hölder’s inequality (cf. [8]), we have

I D
1X

nD1

2
4 �

1
p
n

QV
1
p ��

n

Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
f .x/dx

3
5
0
@ QV

1
p ��

n an

�
1
p
n

1
A

� J1jjajjq; Q� : (52)

Then by (50), we have (49).
On the other hand, assuming that (49) is valid, we set an as in Theorem 1. Then

we find Jp
1 D jjajjq

q; Q� :
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If J1 D 1; then (50) is trivially valid.
If J1 D 0; then (50) remains impossible.
Suppose that 0 < J1 < 1: By (49), it follows that

jjajjq
q; Q� D Jp

1 D I > k.�/jjf jjp; Q̊ı jjajjq; Q� ;

jjajjq�1
q; Q� D J1 > k.�/jjf jjp; Q̊ı ;

and then (50) follows, which is equivalent to (49).
By the reverse Hölder’s inequality with weight (cf. [8]), since q < 0; we have

" 1X
nD1

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
an

#q

� .!ı.�; x//q�1

Uqı��1.x/�.x/

1X
nD1

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	

QV.1��/.q�1/
n �.x/

U1�ı� .x/�q�1
n

aq
n;

and then by (20) and Lebesgue term by term integration theorem, it follows that

J > .k.�//
1
p

"Z 1

0

1X
nD1

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	

QV.1��/.q�1/
n �.x/

U1�ı� .x/�q�1
n

aq
ndx

# 1
q

D .k.�//
1
p

" 1X
nD1

$ı.�; n/
QVq.1��/�1

n

�
q�1
n

aq
n

# 1
q

:

Then by (19), we have (51).
By the reverse Hölder’s inequality (cf. [8]), we have

I D
Z 1

0

"
.1 � �ı.�; x//

1
p

U
1
q �ı�

.x/

�
1
q .x/

f .x/

#

�
"
.1 � �ı.�; x//

�1
p �

1
q .x/

U
1
q �ı�

.x/

1X
nD1

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
an

#
dx

� jjf jjp; Q̊ıJ: (53)

Then by (51), we have (49).
On the other hand, assuming that (49) is valid, we set f .x/ as in Theorem 1. Then

we find Jq D jjf jjp
p; Q̊ı :

If J D 1; then (51) is trivially valid.
If J D 0; then (51) remains impossible.
Suppose that 0 < J < 1: By (49), it follows that
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jjf jjp
p; Q̊ı D Jq D I > k.�/jjf jjp; Q̊ı jjajjq; Q� ;

jjf jjp�1
p; Q̊ı D J > k.�/jjajjq; Q� ;

and then (51) follows, which is equivalent to (49).
Therefore, inequalities (49), (50) and (51) are equivalent.
For " 2 .0; p.� � 	//; we set Q� D � C "

p .> 	/; and Qf D Qf .x/; x 2 RC; Qa D
fQang1

nD1;

Qf .x/ D



UıQ��1.x/�.x/; 0 < xı � 1

0; xı > 0
;

Qan D QV Q��"�1
n �n D QV�� "

q �1
n �n; n 2 N:

By (20), (21) and (33), we obtain

jj Qf jjp; Q̊ı jjQajjq; Q�

D
Z

fx>0I0<xı�1g
.1 � O..U.x//ı.��	///

�.x/dx

U1�ı".x/

� 1
p

 1X
nD1

�n

QV1C"
n

! 1
q

D 1

"

�
Uı".1/ � "O.1/�

1
p

 
1

V"
n0

C " QO.1/
! 1

q

;

QI D
1X

nD1

Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	
Qan Qf .x/dx

D
1X

nD1

"Z

fx>0I0<xı�1g
csc h.�.Uı.x/ QVn/

	 /

e˛.Uı.x/ QVn/	

QV Q�
n �.x/

U1�ıQ� .x/
dx

#
�n

QV1C"
n

�
1X

nD1

"Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e˛.Uı.x/ QVn/	

QV Q�
n �.x/

U1�ıQ� .x/
dx

#
�n

QV1C"
n

D
1X

nD1
$ı. Q�; n/ �n

QV1C"
n

D k. Q�/
1X

nD1

�n

QV1C"
n

D 1

"
k.� C "

p
/

 
1

V"
n0

C " QO.1/
!
:

If there exists a positive constant K � k.�/; such that (43) is valid when replacing
k.�/ by K; then in particular, we have "QI > "Kjj Qf jjp; Q̊ı jjQajjq; Q� ; namely,
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k.� C "

p
/

 
1

V"
n0

C " QO.1/
!

> K
�
Uı".1/ � "O.1/�

1
p

 
1

V"
n0

C " QO.1/
! 1

q

:

It follows that k.�/ � K." ! 0C/: Hence, K D k.�/ is the best possible constant
factor of (49).

The constant factor k.�/ in (50) (respectively, (51)) is still the best possible.
Otherwise, we would reach a contradiction by (52) (respectively, (53)) that the
constant factor in (49) is not the best possible. The theorem is proved.

5 Some Particular Inequalities

For Q�n D 0; QVn D Vn; we set

�.n/ WD Vq.1��/�1
n

�
q�1
n

.n 2 N/:

In view of Theorems 2–4, we have

Corollary 1. If 0 � ˛ � �.� > 0/; 0 < 	 < � � 1; k.�/ is given by (13), there
exists n0 2 N; such that vn � vnC1 .n 2 fn0; n0 C 1; � � � g/; and U.1/ D V.1/ D
1; then

(i) for p > 1; 0 < jjf jjp;˚ı ; jjajjq;� < 1; we have the following equivalent
inequalities:

1X
nD1

Z 1

0

csc h.�.Uı.x/Vn/
	 /

e˛.Uı.x/Vn/	
anf .x/dx < k.�/jjf jjp;˚ı jjajjq;� ; (54)

1X
nD1

�n

V1�p�
n

Z 1

0

csc h.�.Uı.x/Vn/
	 /

e˛.Uı.x/Vn/	
f .x/dx

�p

< k.�/jjf jjp;˚ı ; (55)

( Z 1

0

�.x/

U1�qı� .x/

" 1X
nD1

csc h.�.Uı.x/Vn/
	 /

e˛.Uı.x/Vn/	
an

#q

dx

) 1
q

< k.�/jjajjq;� I
(56)

(ii) for p < 0; 0 < jjf jjp;˚ı ; jjajjq;� < 1; we have the following equivalent
inequalities:
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1X
nD1

Z 1

0

csc h.�.Uı.x/Vn/
	 /

e˛.Uı.x/Vn/	
anf .x/dx > k.�/jjf jjp;˚ı jjajjq;� ; (57)

1X
nD1

�n

V1�p�
n

Z 1

0

csc h.�.Uı.x/Vn/
	 /

e˛.Uı.x/Vn/	
f .x/dx

�p

> k.�/jjf jjp;˚ı ; (58)

( Z 1

0

�.x/

U1�qı� .x/

" 1X
nD1

csc h.�.Uı.x/Vn/
	 /

e˛.Uı.x/Vn/	
an

#q

dx

) 1
q

> k.�/jjajjq;� I
(59)

(iii) for 0 < p < 1; 0 < jjf jjp;˚ı ; jjajjq;� < 1; we have the following equivalent
inequalities:

1X
nD1

Z 1

0

csc h.�.Uı.x/Vn/
	 /

e˛.Uı.x/Vn/	
anf .x/dx > k.�/jjf jjp; Q̊ı jjajjq;� ; (60)

1X
nD1

�n

V1�p�
n

Z 1

0

csc h.�.Uı.x/Vn/
	 /

e˛.Uı.x/Vn/	
f .x/dx

�p

> k.�/jjf jjp; Q̊ı ; (61)

( Z 1

0

.1 � �ı.�; x//1�q�.x/

U1�qı� .x/

" 1X
nD1

csc h.�.Uı.x/Vn/
	 /

e˛.Uı.x/Vn/	
an

#q

dx

) 1
q

> k.�/jjajjq;� : (62)

The above inequalities have the best possible constant factor k.�/:
In particular, for ı D 1; we have the following inequalities with the non-

homogeneous kernel:

Corollary 2. If 0 � ˛ � �.� > 0/; 0 < 	 < � � 1; k.�/ is given by (13), there
exists n0 2 N; such that vn � vnC1 .n 2 fn0; n0 C 1; � � � g/; and U.1/ D V.1/ D
1; then

(i) for p > 1; 0 < jjf jjp;˚1 ; jjajjq;� < 1; we have the following equivalent
inequalities:

1X
nD1

Z 1

0

csc h.�.U.x/Vn/
	 /

e˛.U.x/Vn/	
anf .x/dx < k.�/jjf jjp;˚1 jjajjq;� ; (63)

1X
nD1

�n

V1�p�
n

Z 1

0

csc h.�.U.x/Vn/
	 /

e˛.U.x/Vn/	
f .x/dx

�p

< k.�/jjf jjp;˚1 ; (64)

( Z 1

0

�.x/

U1�q� .x/

" 1X
nD1

csc h.�.U.x/Vn/
	 /

e˛.U.x/Vn/	
an

#q

dx

) 1
q

< k.�/jjajjq;� I (65)
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(ii) for p < 0; 0 < jjf jjp;˚1 ; jjajjq;� < 1; we have the following equivalent
inequalities:

1X
nD1

Z 1

0

csc h.�.U.x/Vn/
	 /

e˛.U.x/Vn/	
anf .x/dx > k.�/jjf jjp;˚1 jjajjq;� ; (66)

1X
nD1

�n

V1�p�
n

Z 1

0

csc h.�.U.x/Vn/
	 /

e˛.U.x/Vn/	
f .x/dx

�p

> k.�/jjf jjp;˚1 ; (67)

( Z 1

0

�.x/

U1�q� .x/

" 1X
nD1

csc h.�.U.x/Vn/
	 /

e˛.U.x/Vn/	
an

#q

dx

) 1
q

> k.�/jjajjq;� I (68)

(iii) for 0 < p < 1; 0 < jjf jjp;˚1 ; jjajjq;� < 1; we have the following equivalent
inequalities:

1X
nD1

Z 1

0

csc h.�.U.x/Vn/
	 /

e˛.U.x/Vn/	
anf .x/dx > k.�/jjf jjp; Q̊1 jjajjq;� ; (69)

1X
nD1

�n

V1�p�
n

Z 1

0

csc h.�.U.x/Vn/
	 /

e˛.U.x/Vn/	
f .x/dx

�p

> k.�/jjf jjp; Q̊1 ; (70)

( Z 1

0

.1 � �1.�; x//1�q�.x/

U1�q� .x/

" 1X
nD1

csc h.�.U.x/Vn/
	 /

e˛.U.x/Vn/	
an

#q

dx

) 1
q

> k.�/jjajjq;� : (71)

The above inequalities involve the best possible constant factor k.�/:
For ı D �1; we have the following inequalities with the homogeneous kernel of

degree 0:

Corollary 3. If 0 � ˛ � �.� > 0/; 0 < 	 < � � 1; k.�/ is given by (13), there
exists n0 2 N; such that vn � vnC1 .n 2 fn0; n0 C 1; � � � g/; and U.1/ D V.1/ D
1; then

(i) for p > 1; 0 < jjf jjp;˚�1 ; jjajjq;� < 1; we have the following equivalent
inequalities:

1X
nD1

Z 1

0

csc h.�. Vn
U.x/ /

	 /

e˛.
Vn

U.x/ /
	

anf .x/dx < k.�/jjf jjp;˚�1 jjajjq;� ; (72)



A Half-Discrete Hardy-Hilbert-Type Inequality 211

1X
nD1

�n

V1�p�
n

"Z 1

0

csc h.�. Vn
U.x/ /

	 /

e˛.
Vn

U.x/ /
	

f .x/dx

#p

< k.�/jjf jjp;˚�1 ; (73)

( Z 1

0

�.x/

U1Cq� .x/

" 1X
nD1

csc h.�. Vn
U.x/ /

	 /

e˛.
Vn

U.x/ /
	

an

#q

dx

) 1
q

< k.�/jjajjq;� I (74)

(ii) for p < 0; 0 < jjf jjp;˚�1 ; jjajjq;� < 1; we have the following equivalent
inequalities:

1X
nD1

Z 1

0

csc h.�. Vn
U.x/ /

	 /

e˛.
Vn

U.x/ /
	

anf .x/dx > k.�/jjf jjp;˚�1 jjajjq;� ; (75)

1X
nD1

�n

V1�p�
n

"Z 1

0

csc h.�. Vn
U.x/ /

	 /

e˛.
Vn

U.x/ /
	

f .x/dx

#p

> k.�/jjf jjp;˚�1 ; (76)

( Z 1

0

�.x/

U1Cq� .x/

" 1X
nD1

csc h.�. Vn
U.x/ /

	 /

e˛.
Vn

U.x/ /
	

an

#q

dx

) 1
q

> k.�/jjajjq;� I (77)

(iii) for 0 < p < 1; 0 < jjf jjp;˚�1 ; jjajjq;� < 1; we have the following equivalent
inequalities:

1X
nD1

Z 1

0

csc h.�. Vn
U.x/ /

	 /

e˛.
Vn

U.x/ /
	

anf .x/dx > k.�/jjf jjp; Q̊
�1

jjajjq;� ; (78)

1X
nD1

�n

V1�p�
n

"Z 1

0

csc h.�. Vn
U.x/ /

	 /

e˛.
Vn

U.x/ /
	

f .x/dx

#p

> k.�/jjf jjp; Q̊
�1
; (79)

( Z 1

0

.1 � ��1.�; x//1�q�.x/

U1Cq� .x/

" 1X
nD1

csc h.�. Vn
U.x/ /

	 /

e˛.
Vn

U.x/ /
	

an

#q

dx

) 1
q

> k.�/jjajjq;� : (80)

The above inequalities involve the best possible constant factor k.�/:
For ˛ D � in Theorems 2–4, we have

Corollary 4. If � > 0; 0 < 	 < � � 1;

K.�/ WD
2� .�

	
/�. �

	
/

	.2�/�=	
; (81)
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there exists n0 2 N; such that vn � vnC1 .n 2 fn0; n0 C 1; � � � g/; and U.1/ D
V.1/ D 1; then

(i) for p > 1; 0 < jjf jjp;˚ı ; jjajjq; Q� < 1; we have the following equivalent
inequalities with the best possible constant factor K.�/:

1X
nD1

Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e�.Uı.x/ QVn/	
anf .x/dx < K.�/jjf jjp;˚ı jjajjq; Q� ; (82)

1X
nD1

�n

QV1�p�
n

"Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e�.Uı.x/ QVn/	
f .x/dx

#p

< K.�/jjf jjp;˚ı ; (83)

( Z 1

0

�.x/

U1�qı� .x/

" 1X
nD1

csc h.�.Uı.x/ QVn/
	 /

e�.Uı.x/ QVn/	
an

#q

dx

) 1
q

< K.�/jjajjq; Q� :
(84)

(ii) for p < 0; 0 < jjf jjp;˚ı ; jjajjq; Q� < 1; we have the following equivalent
inequalities with the best possible constant factor K.�/ W

1X
nD1

Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e�.Uı.x/ QVn/	
anf .x/dx > K.�/jjf jjp;˚ı jjajjq; Q� ; (85)

1X
nD1

�n

QV1�p�
n

"Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e�.Uı.x/ QVn/	
f .x/dx

#p

> K.�/jjf jjp;˚ı ; (86)

( Z 1

0

�.x/

U1�qı� .x/

" 1X
nD1

csc h.�.Uı.x/ QVn/
	 /

e�.Uı.x/ QVn/	
an

#q

dx

) 1
q

> K.�/jjajjq; Q� I
(87)

(iii) for 0 < p < 1; 0 < jjf jjp;˚ı ; jjajjq; Q� < 1; we have the following equivalent
inequalities with the best possible constant factor K.�/:

1X
nD1

Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e�.Uı.x/ QVn/	
anf .x/dx > K.�/jjf jjp; Q̊ı jjajjq; Q� ; (88)

1X
nD1

�n

QV1�p�
n

"Z 1

0

csc h.�.Uı.x/ QVn/
	 /

e�.Uı.x/ QVn/	
f .x/dx

#p

> K.�/jjf jjp; Q̊ı ; (89)

( Z 1

0

.1 � �ı.�; x//1�q�.x/

U1�qı� .x/

" 1X
nD1

csc h.�.Uı.x/ QVn/
	 /

e�.Uı.x/ QVn/	
an

#q

dx

) 1
q

> K.�/jjajjq; Q� : (90)



A Half-Discrete Hardy-Hilbert-Type Inequality 213

In particular, for 	 D �
2
; �ı.�; x/ D O..U.x//

ı�
2 /;

(i) for p > 1; we have the following equivalent inequalities with the best possible
constant factor �2

6��2
:

1X
nD1

Z 1

0

csc h.�.Uı.x/ QVn/
�=2/

e�.Uı.x/ QVn/�=2
anf .x/dx <

�2

6��2
jjf jjp;˚ı jjajjq; Q� ; (91)

1X
nD1

�n

QV1�p�
n

"Z 1

0

csc h.�.Uı.x/ QVn/
�=2/

e�.Uı.x/ QVn/�=2
f .x/dx

#p

<
�2

6��2
jjf jjp;˚ı ; (92)

( Z 1

0

�.x/

U1�qı� .x/

" 1X
nD1

csc h.�.Uı.x/ QVn/
�=2/

e�.Uı.x/ QVn/�=2
an

#q

dx

) 1
q

<
�2

6��2
jjajjq; Q� I

(93)
(ii) for p < 0;we have the following equivalent inequalities with the best possible

constant factor �2

6��2
:

1X
nD1

Z 1

0

csc h.�.Uı.x/ QVn/
�=2/

e�.Uı.x/ QVn/�=2
anf .x/dx >

�2

6��2
jjf jjp;˚ı jjajjq; Q� ; (94)

1X
nD1

�n

QV1�p�
n

"Z 1

0

csc h.�.Uı.x/ QVn/
�=2/

e�.Uı.x/ QVn/�=2
f .x/dx

#p

>
�2

6��2
jjf jjp;˚ı ; (95)

( Z 1

0

�.x/

U1�qı� .x/

" 1X
nD1

csc h.�.Uı.x/ QVn/
�=2/

e�.Uı.x/ QVn/�=2
an

#q

dx

) 1
q

>
�2

6��2
jjajjq; Q� I

(96)
(iii) for 0 < p < 1;we have the following equivalent inequalities with the best

possible constant factor �2

6��2
:

1X
nD1

Z 1

0

csc h.�.Uı.x/ QVn/
�=2/

e�.Uı.x/ QVn/�=2
anf .x/dx >

�2

6��2
jjf jjp; Q̊ı jjajjq; Q� ; (97)

1X
nD1

�n

QV1�p�
n

"Z 1

0

csc h.�.Uı.x/ QVn/
�=2/

e�.Uı.x/ QVn/�=2
f .x/dx

#p

>
�2

6��2
jjf jjp; Q̊ı ; (98)

( Z 1

0

.1 � �ı.�; x//1�q�.x/

U1�qı� .x/

" 1X
nD1

csc h.�.Uı.x/ QVn/
�=2/

e�.Uı.x/ QVn/�=2
an

#q

dx

) 1
q
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>
�2

6��2
jjajjq; Q� : (99)

For ˛ D 0; 	 D �
2
; �ı.�; x/ D O..U.x//

ı�
2 / in Theorems 2–4, we have

Corollary 5. If � > 0; 0 < � � 1; there exists n0 2 N; such that vn � vnC1 .n 2
fn0; n0 C 1; � � � g/; and U.1/ D V.1/ D 1; then

(i) for p > 1; 0 < jjf jjp;˚ı ; jjajjq; Q� < 1; we have the following equivalent

inequalities with the best possible constant factor �2

2��2
:

1X
nD1

Z 1

0

csc h.�.Uı.x/ QVn/
�
2 /anf .x/dx <

�2

2��2
jjf jjp;˚ı jjajjq; Q� ; (100)

1X
nD1

�n

QV1�p�
n

Z 1

0

csc h.�.Uı.x/ QVn/
�
2 /f .x/dx

�p

<
�2

2��2
jjf jjp;˚ı ; (101)

( Z 1

0

�.x/

U1�qı� .x/

" 1X
nD1

csc h.�.Uı.x/ QVn/
�
2 /an

#q

dx

) 1
q

<
�2

2��2
jjajjq; Q� I

(102)
(ii) for p < 0; 0 < jjf jjp;˚ı ; jjajjq; Q� < 1; we have the following equivalent

inequalities with the best possible constant factor �2

2��2
:

1X
nD1

Z 1

0

csc h.�.Uı.x/ QVn/
�
2 /anf .x/dx >

�2

2��2
jjf jjp;˚ı jjajjq; Q� ; (103)

1X
nD1

�n

QV1�p�
n

Z 1

0

csc h.�.Uı.x/ QVn/
�
2 /f .x/dx

�p

>
�2

2��2
jjf jjp;˚ı ; (104)

( Z 1

0

�.x/

U1�qı� .x/

" 1X
nD1

csc h.�.Uı.x/ QVn/
�
2 /an

#q

dx

) 1
q

>
�2

2��2
jjajjq; Q� I

(105)
(iii) for 0 < p < 1; 0 < jjf jjp;˚ı ; jjajjq; Q� < 1; we have the following equivalent

inequalities with the best possible constant factor �2

2��2
:

1X
nD1

Z 1

0

csc h.�.Uı.x/ QVn/
�
2 /anf .x/dx >

�2

2��2
jjf jjp; Q̊ı jjajjq; Q� ; (106)

1X
nD1

�n

QV1�p�
n

Z 1

0

csc h.�.Uı.x/ QVn/
�
2 /f .x/dx

�p

>
�2

2��2
jjf jjp; Q̊ı ; (107)
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( Z 1

0

.1 � �ı.�; x//1�q�.x/

U1�qı� .x/

" 1X
nD1

csc h.�.Uı.x/ QVn/
�
2 /an

#q

dx

) 1
q

>
�2

2��2
jjajjq; Q� : (108)

Remark 2. (i) For �.x/ D �n D 1 in (54), we have the following inequality with
the best possible constant factor k.�/ W

1X
nD1

Z 1

0

csc h.�.xın/	 /

e˛.xın/	
anf .x/dx (109)

< k.�/

Z 1

0

xp.1�ı�/�1f p.x/dx

� 1
p

" 1X
nD1

nq.1��/�1aq
n

# 1
q

: (110)

In particular, for ı D 1; we have the following inequality with the non-
homogeneous kernel:

1X
nD1

Z 1

0

csc h.�.xn/	 /

e˛.xn/	
anf .x/dx (111)

< k.�/

Z 1

0

xp.1��/�1f p.x/dx

� 1
p

" 1X
nD1

nq.1��/�1aq
n

# 1
q

I (112)

for ı D �1; we have the following inequality with the homogeneous kernel:

1X
nD1

Z 1

0

csc h.�. n
x /
	 /

e˛.
n
x /
	 anf .x/dx (113)

< k.�/

Z 1

0

xp.1C�/�1f p.x/dx

� 1
p

" 1X
nD1

nq.1��/�1aq
n

# 1
q

: (114)

(ii) For �.x/ D �n D 1; Q�n D � 2 .0; 1
2
� in (22), we have the following more

accurate inequality than (82) with the best possible constant factor k.�/ W
1X

nD1

Z 1

0

csc h.�Œxı.n � �/�	 /
e˛.xı.n��/�	 /	 anf .x/dx (115)

< k.�/

Z 1

0

xp.1�ı�/�1f p.x/dx

� 1
p

" 1X
nD1
.n � �/q.1��/�1aq

n

# 1
q

: (116)
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In particular, for ı D 1; we have the following inequality with the non-
homogeneous kernel:

1X
nD1

Z 1

0

csc h.Œx.n � �/�	 /
e˛fŒx.n��/�g	 anf .x/dx (117)

< k.�/

Z 1

0

xp.1��/�1f p.x/dx

� 1
p

" 1X
nD1
.n � �/q.1��/�1aq

n

# 1
q

I (118)

for ı D �1; we have the following inequality with the homogeneous kernel:

1X
nD1

Z 1

0

csc h.�. n��
x /

	 /

e˛.
n��

x /	
anf .x/dx (119)

< k.�/

Z 1

0

xp.1C�/�1f p.x/dx

� 1
p

" 1X
nD1
.n � �/q.1��/�1aq

n

# 1
q

: (120)

We can still obtain a large number of other inequalities by using some special
parameters in the above theorems and corollaries.
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Quantum Integral Inequalities for Generalized
Convex Functions

Muhammad Aslam Noor, Khalida Inayat Noor, and Muhammad Uzair Awan

Abstract In this chapter, we consider generalized convex functions involving two
arbitrary functions. We establish some new quantum integral inequalities for the
generalized convex functions. Several spacial cases are also discussed which can be
obtained from our main results. We expect that the techniques and ideas developed
here would be useful in future research. Exploring the applications of general
convex functions and quantum integral inequalities is an interesting and fascinating
problem.

Keywords Generalized convex functions • Quantum estimates • Hermite–
Hadamard inequalities • Convex functions • Convex sets

2000 Mathematics Subject Classification: 26A33, 26D15, 49J40, 90C33

1 Introduction

Theory of convexity plays an important role in different fields of pure and applied
sciences. Theory of convex functions has been extended in different directions using
innovative and novel techniques. For the various generalizations and extensions, for
example, see [1, 2, 9, 11–17, 19, 20, 26, 31]. Noor [15] and Jian [9] introduced
the notion of generalized convexity involving two arbitrary functions. This type
of convexity is quite general and flexible. One can obtain a wide class of convex
functions and its variant forms by selecting appropriate choice of the arbitrary
functions. These generalized convex functions and convex sets include the g-convex
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sets introduced by Youness [31]. Noor [15] has shown that the minimum of the
differentiable generalized convex functions involving two arbitrary functions on the
generalized convex set can be characterized by a class of variational inequalities,
which is called extended general variational inequalities. This result inspired a deal
of research activities in variational inequalities and optimization.

It is well known that a function is a convex function if and only if it satisfies the
inequality

f .
a C b

2
/ � 1

b � a

Z b

a
f .x/dx � f .a/C f .b/

2
; 8a; b 2 I D Œa; b�;

which is called the Hermite–Hadamard inequality. In recent years, several types of
integral inequalities have been derived for various classes of convex functions. See
[2–4, 7, 11, 16–20, 24–26].

Quantum calculus is the study of calculus without limits. Euler (17-7-1783)
introduced the q in tracks of Newton’s infinite series. F. H. Jackson started the
study of quantum calculus. In quantum calculus, we obtain the q-analogues of
mathematical objects, which can be obtained as q �! 1: It has been noticed
that quantum calculus is a subfield of time scale calculus. The time scale provides
us a unified and flexible framework for studying dynamic equations on both the
discrete and continuous domains. The quantum calculus can be treated as bridge
between Mathematics and Physics. In recent years, quantum calculus has emerged
as a fascinating and interesting field. Several researchers have utilized the concepts
of quantum calculus to obtain integral inequalities via different classes of convex
functions, see [6, 21–23, 28, 30]. We would like to emphasize that the analysis
of these problems requires a blend of techniques from convex analysis, functional
analysis, numerical analysis and other optimization theory.

In this chapter, we consider the class of generalized convexity involving two
arbitrary functions. We establish some new quantum estimates for Hermite–
Hadamard type inequalities via generalized convexity. We also discuss some special
cases which can be deduced from the main results. Our results continue to hold for
these new and known special cases. It is an interesting problem to find the derivative
estimates of the polynomials on the unit interval using the quantum calculus. For
an excellent exposition of the theory of polynomials, see Rahman and Schmeisser
[27]. The readers are encouraged to find applications of the generalized convexity
and quantum integral inequalities in various fields of pure and applied sciences.

2 Basic Results from Quantum Calculus

In this section, we discuss some basic concepts and results pertaining to quantum
calculus. For more details interested readers may consult [5, 10].
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Let us start with q-analogue of differentiation. Then, consider

lim
x!x0

f .x/ � f .x0/

x � x0
D df

dx
;

the above expression gives the derivative of a function f .x/ at x D x0.
If we take x D qx0 where 0 < q < 1 is a fixed number and do not take limits,

then we enter in the world of Quantum calculus. The q-derivative of xn is Œn�xn�1,
where

Œn� D qn � 1
q � 1 ;

is the q-analogue of n in the sense that n is the limit of Œn� as q ! 1.
We now give the formal definition of q-derivative of a function f .

Definition 1. The q-derivative is defined as

Dqf .x/ D f .qx/ � f .x/

.q � 1/x : (1)

Note that when q ! 1, then we have ordinary derivative.

Definition 2. The function F.x/ is a q-antiderivative of f .x/, if DqF.x/ D f .x/. It is
denoted by

Z
f .x/dqx: (2)

Our next definition is due to Jackson.

Definition 3. The Jackson integral of f .x/ is defined as

Z
f .x/dqx D .1 � q/x

1X
jD0

qjf .qjx/: (3)

It is evident from the above definition that

Z
f .x/Dqg.x/dqx D .1 � q/x

1X
jD0

qjf .qjx/Dqg.qjx/

D .1 � q/x
1X

jD0
qjf .qjx/

g.qjx/ � g.qjC1x/
.1 � q/qjx

:
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Definite q-integrals are defined as:

Definition 4 ([8]). Let 0 < a < b: Then definite q-integral is defined as

bZ

0

f .x/dqx D .1 � q/b
1X

jD0
qjf .qjb/; (4)

provided the sum converges absolutely.

A more general formula for definite integrals is given as

bZ

0

f .x/dqx D
1X

jD0
f .qjb/.g.qjb/ � g.qjC1b//:

Remark 1. From the above definition of definite q-integral, we have

bZ

a

f .x/dqx D
bZ

0

f .x/dqx �
aZ

0

f .x/dqx:

We now recall some basic concepts of quantum calculus on finite intervals. These
results are mainly due to Tariboon and Ntouyas [29, 30].

Let J D Œa; b� � R be an interval and 0 < q < 1 be a constant. Then q-derivative
of a function f W J ! R at a point x 2 J on Œa; b� is defined as follows:

Definition 5. Let f W J ! R be a continuous function and let x 2 J. Then q-
derivative of f on J at x is defined as

Dqf .x/ D f .x/ � f .qx C .1 � q/a/

.1 � q/.x � a/
; x ¤ a: (5)

A function f is q-differentiable on J if Dqf .x/ exists for all x 2 J. We illustrate this
fact by an example.

Example 1. Let x 2 Œa; b� and 0 < q < 1. Then, for x ¤ a, we have

Dqx2 D x2 � .qx C .1 � q/a/2

.1 � q/.x � a/

D .1C q/x2 � 2qax � .1 � q/x2

x � a

D .1C q/x C .1 � q/a:

Note that, when x D a, we have lim
x!a

.Dqx2/ D 2a.



Quantum Integral Inequalities for Generalized Convex Functions 223

Definition 6. Let f W J ! R is a continuous function. Then, a second-order q-
derivative on J, which is denoted as D2

q f , provided Dqf is q-differentiable on J is
defined as D2

q f D Dq.Dqf / W J ! R. Similarly higher order q-derivatives on J are
defined by Dn

q f DW J ! R.

Lemma 1. Let ˛ 2 R. Then

Dq.x � a/˛ D
�1 � q˛

1 � q

�
.x � a/˛�1:

Tariboon and Ntouyas [29, 30] defined the q-integral as:

Definition 7. Let f W I � R ! R be a continuous function. Then q-integral on I is
defined as

xZ

a

f .t/dqt D .1 � q/.x � a/
1X

nD0
qnf .qnx C .1 � qn/a/; (6)

for x 2 J.

These integrals can be viewed as Riemann-type q-integral. If a D 0 in (6), then we
have the classical q-integral, that is

xZ

0

f .t/dqt D .1 � q/x
1X

nD0
qnf .qnx/; x 2 Œ0;1/:

Moreover, if c 2 .a; x/, then the definite q-integral on J is defined by

xZ

c

f .t/dqt D
xZ

a

f .t/dqt �
cZ

a

f .t/dqt

D .1 � q/.x � a/
1X

nD0
qnf .qnx C .1 � qn/a/

� .1 � q/.c � a/
1X

nD0
qnf .qnc C .1 � qn/a/:

Theorem 1. Let f W I ! R be a continuous function. Then for x 2 J

1. Dq

xR
a

f .t/ dqt D f .x/

2.
xR

c
Dqf .t/dqt D f .x/ � f .c/ for x 2 .c; x/.
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Theorem 2. Let f ; g W I ! R be a continuous functions, ˛ 2 R. Then for x 2 J

1.
xR

a
Œf .t/C g.t/� dqt D

xR
a

f .t/ dqt C
xR

a
g.t/ dqt

2.
xR

a
.˛f .t//.t/ dqt D ˛

xR
a

f .t/ dqt

3.
xR

a
f .t/ aDqg.t/ dqt D .fg/jxc �

xR
c

g.qt C .1 � q/a/Dqf .t/dqt for c 2 .a; x/.

Lemma 2. Let ˛ 2 R n f�1g. Then

xZ

a

.t � a/˛dqt D
� 1 � q

1 � q˛C1
�
.x � a/˛C1:

3 Generalized Convexity

In this section, we recall the concepts of generalized convex sets and generalized
convex functions involving two arbitrary functions h; g W R ! R; which are mainly
due to Noor [15].

Definition 8 ([15]). Let K � R be any set. Then, the set K is said to be generalized
convex set with respect to arbitrary functions h; g W R ! R such that

.1 � t/h.u/C tg.v/ 2 K; 8u; v 2 R W h.u/; g.v/ 2 K; t 2 Œ0; 1�:

Remark 2. If h D I D g, the identity functions, then the definition of generalized
convex set reduces to the definition of classical convex sets. If h D I, then we
have the definition of Noor-type convex sets [14]. If g D I; then we have the
definition of h-convex sets [16]. If h D g; then the definition of generalized convex
set coincides with the definition of convex sets (E-convex sets), see [31]. This shows
that the generalized convex sets include several kinds of convex sets as special cases.
Clearly, this shows that the convex sets provide us with a unified framework.

Definition 9 ([15]). A function f W K ! R is said to be generalized convex, if there
exist two arbitrary functions h; g W R ! R, such that

f ..1 � t/h.u/C tg.v// � .1 � t/f .h.u//C tf .g.v//;

8u; v 2 R W h.u/; g.v/ 2 K; t 2 Œ0; 1�: (7)
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Definition 10 ([16]). The function f W K ! R is said to be a generalized quasi-
convex, if there exist two arbitrary functions h; g W R ! R such that

f ..1 � t/h.u/C tg.v// � maxff .h.u//; f .g.v//g;
8u; v 2 R W h.u/; g.v/ 2 K; t 2 Œ0; 1�: (8)

Definition 11. Let I � R be the interval and h; g W R ! R be any two arbitrary
functions. Then f is generalized convex function, if and only if,

ˇ̌
ˇ̌
ˇ̌

1 1 1

h.a/ x g.b/
f .h.a// f .x/ f .g.b//

ˇ̌
ˇ̌
ˇ̌ � 0I h.a/ � x � g.b/;

where x D .1 � t/h.a/C tg.b/.

From the above definition, one can obtain the following equivalent forms:

1. f is generalized convex function.
2. f .x/ � f .h.a//C f .g.b//�f .h.a//

g.b/�h.a/ .x � h.a//.

3. f .x/�f .h.a//
x�h.a/ � f .g.b//�f .h.a//

g.b/�h.a/ � f .g.b//�f .x/
g.b/�x .

4. f .h.a//
.x�h.a//.g.b/�h.a// C f .x/

.g.b/�x/.x�h.a// C f .g.b//
.g.b/�h.a//.g.b/�x/ � 0.

5. .g.b/ � x/f .h.a//C .g.b/ � h.a//f .x/C .x � h.a//f .g.b// � 0.

Definition 12 ([26]). Two functions f and g are said to be similarly ordered (f is
g-monotone) on I � R, if

hf .x/ � f .y/; g.x/ � g.y/i � 0; 8x; y 2 I:

Theorem 3. The product of two similarly generalized convex functions involving
two arbitrary functions is a generalized convex function.

Proof. Let f and w be two generalized convex functions. Then

f ..1 � t/h.a/C tg.b//w..1 � t/h.a/C tg.b//

� Œ.1 � t/f .h.a//C tf .g.b//�Œ.1 � t/w.h.a//C tw.g.b//�

D Œ1 � t�2f .h.a//w.h.a//C t.1 � t/f .h.a//w.g.b//C t.1 � t/f .g.b//w.h.a//

CŒt�2f .g.b//w.g.b//
D .1 � t/f .h.a//w.h.a//C tf .g.b//w.g.b// � .1 � t/f .h.a//w.h.a//

�tf .g.b//w.g.b//C Œ1 � t�2f .h.a//w.h.a//C t.1 � t/f .h.a//w.g.b//

Ct.1 � t/f .g.b//w.h.a//C Œt�2f .g.b//w.g.b//

D .1 � t/f .h.a//w.h.a//C tf .g.b//w.g.b//
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�t.1 � t/Œf .h.a//w.h.a//C f .g.b//w.g.b//

�f .g.b//w.h.a// � f .h.a//w.g.b//�

� .1 � t/f .h.a//w.h.a//C tf .g.b//w.g.b//:

This completes the proof. ut

4 Quantum Estimates

In this section, we establish some quantum estimates of Hermite–Hadamard type
inequalities via generalized convexity.

Theorem 4. Let f W I ! R be generalized convex and continuous function on J
with respect to arbitrary functions h; g W R ! R. Then, for 0 < q < 1, we have

f

�
h.a/C g.b/

2

	
� 1

g.b/ � h.a/

g.b/Z

h.a/

f .t/dqt � qf .h.a//C f .g.b//

1C q
: (9)

Proof. Let f be a generalized convex function, then q-integrating with respect to t
on Œ0; 1�. Then

f

�
h.a/C g.b/

2

	
D

1Z

0

f

�
.1 � t/h.a/C tg.b/C th.a/C .1 � t/g.b/

2

	
dqt

� 1

2

2
4

1Z

0

f ..1 � t/h.a/C tg.b//dqt C
1Z

0

f .th.a/C .1 � t/g.b//dqt

3
5

D 1

g.b/ � h.a/

g.b/Z

h.a/

f .t/dqt

D
1Z

0

f ..1 � t/h.a/C tg.b//dqt

� f .h.a//

1Z

0

.1 � t/dqt C f .g.b//

1Z

0

t dqt

D qf .h.a//C f .g.b//

1C q
:
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This completes the proof. ut
Note that, if q ! 1, then Theorem 4 reduces to:

Theorem 5. Let f W Œh.a/; g.b/� ! R be a generalized convex function. Then

f

�
h.a/C g.b/

2

	
� 1

g.b/ � h.a/

g.b/Z

h.a/

f .x/dx � f .h.a//C f .g.b//

2
:

Theorem 6. Let f ;w W I ! R be generalized convex functions involving two
arbitrary functions. Then

1

g.b/ � h.a/

g.b/Z

h.a/

f .x/w.x/dqx

� �1f .h.a//w.h.a//C �2N.h.a/; g.b//C �3f .g.b//w.g.b//;

where

�1 D q.1C q2/

.1C q/.1C q C q2/
I

�2 D q2

.1C q/.1C q C q2/
I

�3 D 1

1C q C q2
;

and N.a; bI hI g/ is given by

N.a; bI hI g/ D f .h.a//w.g.b//C f .g.b//w.h.a//: (10)

Proof. Since f and w are generalized convex functions involving two arbitrary
functions, so we have

f ..1 � t/h.a/C tg.b// � tf .h.a//C .1 � t/f .g.b//;

w..1 � t/h.a/C tg.b// � tw.h.a//C .1 � t/w.g.b//:

Multiplying the above inequalities, we have

f ..1 � t/h.a/C tg.b//w..1 � t/h.a/C tg.b//

� .1 � t/2f .h.a//w.h.a//C t.1 � t/ff .h.a//w.g.b//C f .g.b//w.h.a//g
Ct2f .g.b//w.g.b//:
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Taking q-integral of the above inequality with respect to t on Œ0; 1�, we have

1Z

0

f ..1 � t/h.a/C tg.b//w..1 � t/h.a/C tg.b//dqt

� f .h.a//w.h.a//

1Z

0

.1 � t/2dqt C ff .h.a//w.g.b//C f .g.b//w.h.a//g
1Z

0

t.1 � t/dqt

Cf .g.b//w.g.b//

1Z

0

t2dqt:

This implies that

1

g.b/ � h.a/

g.b/Z

h.a/

f .x/w.x/dqx

�


q.1C q2/

.1C q/.1C q C q2/

�
f .h.a//w.h.a//

C


q2

.1C q/.1C q C q2/

�
ff .h.a//w.g.b//C f .g.b//w.h.a//g

C


1

1C q C q2

�
f .g.b//w.g.b//:

This completes the proof. ut
Theorem 7. Let f and w be two generalized convex functions involving two
arbitrary functions. Then

2f

�
h.a/C g.b/

2

	
w

�
h.a/C g.b/

2

	
� 2q2M.a; bI hI g/C .1C 2q C q3/N.a; bI hI g/

2.1C q/.1C q C q2/

� 1

.g.b/ � h.a//

g.b/Z

h.a/

f .x/w.x/dqx;

where

M.a; bI hI g/ D f .h.a//w.h.a//C f .g.b//w.g.b//; (11)

and N.a; bI hI g/ is given by (8).
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Proof. Since f and w are generalized convex functions, so we have

f

�
h.a/C g.b/

2

	
w

�
h.a/C g.b/

2

	

� 1

4
Œf ..1 � t/h.a/C tg.b//C f .th.a/C .1 � t/g.b//

Cw..1 � t/h.a/C tg.b//C w.th.a/C .1 � t/g.b//�

� 1

4

"
f ..1 � t/h.a/C tg.b//w..1 � t/h.a/C tg.b//

Cf .th.a/C .1 � t/g.b//w.th.a/C .1 � t/g.b//

CŒf .h.a//w.h.a//C f .g.b//w.g.b//�f2t.1 � t/g

CŒf .h.a//w.g.b//C f .g.b//w.h.a//�ft2 C .1 � t/2g
#
:

By q-integrating the above inequality with respect to t on Œ0; 1�, we have

f

�
h.a/C g.b/

2

	
w

�
h.a/C g.b/

2

	

� 1

4

" 1Z

0

Œf ..1 � t/h.a/C tg.b//w..1 � t/h.a/C tg.b//

Cf .th.a/C .1 � t/g.b//w.th.a/C .1 � t/g.b//� dqt

CŒf .h.a//w.h.a//C f .g.b//w.g.b//�

1Z

0

f2t.1 � t/gdqt

CŒf .h.a//w.g.b//C f .g.b//w.h.a//�

1Z

0

ft2 C .1 � t/2gdqt

#

D 1

2.g.b/ � h.a//

g.b/Z

h.a/

f .x/w.x/dqx

C1

4


2q2ff .h.a//w.h.a//C f .g.b//w.g.b//g

.1C q/.1C q C q2/

C .1C 2q C q3/Œf .h.a//w.g.b//C f .g.b//w.h.a//�

.1C q/.1C q C q2/

�
:

This completes the proof. ut



230 M.A. Noor et al.

We now prove an auxiliary result, which will be useful in proving our coming
results.

Lemma 3. Let f W I D Œh.a/; g.b/� � R ! R be a q-differentiable function on the
interior Iı of I and let Dq be continuous and integrable on I; where 0 < q < 1. Then

1

g.b/ � h.a/

g.b/Z

h.a/

f .x/dqx � qf .h.a//C f .g.b//

1C q

D q.g.b/ � h.a//

1C q

1Z

0

.1 � .1C q/t/Dqf ..1 � t/h.a/C t.g.b/// dqt:

Proof. The proof is left for interested readers. ut
Remark 3. We would like to emphasize that if h D I D g in Lemma 3, then we
have Lemma 3.1 [22]. If, along with h D I D g, q ! 1, we have Lemma 2.1 [3].

Theorem 8. Let f W I ! R be a q-differentiable function on the interior Iı of I and
let Dq be continuous and integrable on I; where 0 < q < 1. Let jDqf jr, r � 1 be a
generalized convex function. Then

ˇ̌
ˇ̌
ˇ

1

g.b/ � h.a/

g.b/Z

h.a/

f .x/dqx � qf .h.a//C f .g.b//

1C q

ˇ̌
ˇ̌
ˇ

� q.g.b/ � h.a//

1C q

 
2q

.1C q/2

!1� 1
r

�
"

q.1C 3q2 C 2q3/

.1C q C q2/.1C q/3
jDqf .h.a//jr C q.1C 4q C q2/

.1C q C q2/.1C q/3
jDqf .g.b//jr

# 1
r

:

Proof. Since jDqf jr is generalized convex function, using Lemma 3 and power mean
inequality, we have

ˇ̌
ˇ̌
ˇ

1

g.b/ � h.a/

g.b/Z

h.a/

f .x/dqx � qf .h.a//C f .g.b//

1C q

ˇ̌
ˇ̌
ˇ

D
ˇ̌
ˇ̌
ˇ
q.g.b/ � h.a//

1C q

1Z

0

.1 � .1C q/t/Dqf ..1 � t/h.a/C t.g.b/// dqt

ˇ̌
ˇ̌
ˇ

� q.g.b/ � h.a//

1C q

 1Z

0

j1 � .1C q/tj dqt

!1� 1
r
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�
 1Z

0

j1 � .1C q/tjjDqf ..1 � t/h.a/C t.g.b///jr dqt

! 1
r

� q.g.b/ � h.a//

1C q

 
2q

.1C q/2

!1� 1
r

�
 1Z

0

j1 � .1C q/tjŒ.1 � t/jDqf .h.a//jr C tjDqf .g.b//jr� dqt

! 1
r

D q.g.b/ � h.a//

1C q

 
2q

.1C q/2

!1� 1
r

�
"

q.1C 3q2 C 2q3/

.1C q C q2/.1C q/3
jDqf .h.a//jr C q.1C 4q C q2/

.1C q C q2/.1C q/3
jDqf .g.b//jr

# 1
r

:

This completes the proof. ut
Theorem 9. Let f W I ! R be a q-differentiable function on the interior Iı of I
and let Dq be continuous and integrable on I; where 0 < q < 1. Let jDqf jr be a
generalized convex function, where p; r > 1, 1p C 1

r D 1. Then

ˇ̌
ˇ̌
ˇ
qf .h.a//C f .g.b//

1C q
� 1

g.b/ � h.a/

g.b/Z

h.a/

f .x/dqx

ˇ̌
ˇ̌
ˇ

� q.g.b/ � h.a//

1C q

 
2q

.1C q/2

! 1
p

�
"

q.1C 3q2 C 2q3/

.1C q C q2/.1C q/3
jDqf .h.a//jr C q.1C 4q C q2/

.1C q C q2/.1C q/3
jDqf .g.b//jr

# 1
r

:

Proof. Since jDqf jr is generalized convex function, so using Lemma 3 and Holder’s
inequality, we have

ˇ̌
ˇ̌
ˇ
qf .h.a//C f .g.b//

1C q
� 1

g.b/ � h.a/

g.b/Z

h.a/

f .x/dqx

ˇ̌
ˇ̌
ˇ

D
ˇ̌
ˇ̌
ˇ
q.g.b/ � h.a//

1C q

1Z

0

.1 � .1C q/t/Dqf ..1 � t/h.a/C t.g.b///dqt

ˇ̌
ˇ̌
ˇ
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�
ˇ̌
ˇ̌
ˇ
q.g.b/ � h.a//

1C q

1Z

0

.1 � .1C q/t/1� 1
r .1 � .1C q/t/

1
r Dqf ..1 � t/h.a/C t.g.b///dqt

ˇ̌
ˇ̌
ˇ

� q.g.b/ � h.a//

1C q

 1Z

0

j1 � .1C q/tjdqt

! 1
p

�
 1Z

0

j1 � .1C q/tjjDqf ..1 � t/h.a/C t.g.b///jrdqt

! 1
r

D q.g.b/ � h.a//

1C q

 
2q

.1C q/2

! 1
p

�
"

q.1C 3q2 C 2q3/

.1C q C q2/.1C q/2
jDqf .h.a//jr C q.1C 4q C q2/

.1C q C q2/.1C q/3
jDqf .g.b//jr

# 1
r

:

This completes the proof. ut
Now we prove some quantum analogues of Iyengar type inequalities via generalized
convex functions involving two arbitrary functions.

Theorem 10. Let f W I ! R be a q-differentiable function on the interior Iı of I
and let Dq be continuous and integrable on I where 0 < q < 1. Let jDqf jr be a
generalized quasi-convex function such that p; r > 1, 1p C 1

r D 1. Then

ˇ̌
ˇ̌
ˇ
qf .h.a//C f .g.b//

1C q
� 1

g.b/ � h.a/

g.b/Z

h.a/

f .x/dqx

ˇ̌
ˇ̌
ˇ

� q.g.b/ � h.a//

1C q

 
2q

.1C q/2

! 1
p

�
 

q.2C q C q3/

.1C q/3

h
maxfjDqf .h.a//j; jDqf .g.b//jg

i! 1
r

:

Proof. Using Lemma 3, Holder’s inequality and the fact that jDqf jr is generalized
quasi-convex function, we have

ˇ̌
ˇ̌
ˇ
qf .h.a//C f .g.b//

1C q
� 1

g.b/ � h.a/

g.b/Z

h.a/

f .x/dqx

ˇ̌
ˇ̌
ˇ



Quantum Integral Inequalities for Generalized Convex Functions 233

D
ˇ̌
ˇ̌
ˇ
q.g.b/ � h.a//

1C q

1Z

0

.1 � .1C q/t/Dqf ..1 � t/h.a/C t.g.b///dqt

ˇ̌
ˇ̌
ˇ

�
ˇ̌
ˇ̌
ˇ
q.g.b/ � h.a//

1C q

1Z

0

.1 � .1C q/t/1� 1
r .1 � .1C q/t/

1
r Dqf ..1 � t/h.a/C t.g.b///dqt

ˇ̌
ˇ̌
ˇ

� q.g.b/ � h.a//

1C q

 1Z

0

j1 � .1C q/tjdqt

! 1
p

�
 1Z

0

j1 � .1C q/tjjDqf ..1 � t/h.a/C t.g.b///jrdqt

! 1
r

D q.g.b/ � h.a//

1C q

 
2q

.1C q/2

! 1
p

�
 

q.2C q C q3/

.1C q/3

h
maxfjDqf .h.a//j; jDqf .g.b//jg

i! 1
r

:

This completes the proof. ut
Theorem 11. Let f W I ! R be a q-differentiable function on the interior Iı of I
and let Dq be continuous and integrable on I; where 0 < q < 1. Let jDqf jr be a
generalized quasi-convex function, r > 1: Then

ˇ̌
ˇ̌
ˇ
qf .h.a//C f .g.b//

1C q
� 1

g.b/ � h.a/

g.b/Z

h.a/

f .x/dqx

ˇ̌
ˇ̌
ˇ

� q2.g.b/ � h.a//.2/

.1C q/3

 
maxfjDqf .h.a//j; jDqf .g.b//jg

! 1
r

:

Proof. Using Lemma 3, power mean inequality and the fact that jDqf jr is general-
ized quasi-convex function, we have

ˇ̌
ˇ̌
ˇ
qf .h.a//C f .g.b//

1C q
� 1

g.b/ � h.a/

g.b/Z

h.a/

f .x/dqx

ˇ̌
ˇ̌
ˇ

D
ˇ̌
ˇ̌
ˇ
q.g.b/ � h.a//

1C q

1Z

0

.1 � .1C q/t/Dqf ..1 � t/h.a/C t.g.b///dqt

ˇ̌
ˇ̌
ˇ
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� q.g.b/ � h.a//

1C q

 1Z

0

j1 � .1C q/tjdqt

!1� 1
r

�
 1Z

0

j1 � .1C q/tjjDqf ..1 � t/h.a/C t.g.b///jrdqt

! 1
r

D q2.g.b/ � h.a//.2/

.1C q/3

 
maxfjDqf .h.a//j; jDqf .g.b//jg

! 1
r

:

This completes the proof. ut
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Quantum Integral Inequalities for Generalized
Preinvex Functions

Muhammad Aslam Noor, Themistocles M. Rassias, Khalida Inayat Noor,
and Muhammad Uzair Awan

Abstract We consider the generalized preinvex functions, which unify the preinvex
and '-convex functions. We give an account of the quantum integral inequalities
via the generalized preinvex functions. Results obtained in this chapter represent
significant and important refinements of the known results. These inequalities
involve Riemann-type quantum integrals. We would like to emphasize that these
results reduce to classical results, when q ! 1. It is expected that ideas and
techniques given here would inspire further research.

Keywords Preinvex functions • Integral inequalities • Quantum estimates •
Convex functions • Invex sets
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1 Introduction

Theory of convexity has a great impact in our daily life through its numerous appli-
cations in various fields of pure and applied sciences, see [3, 4, 6, 11, 15, 36–40].
Many classical and famous inequalities have been obtained via convex functions and
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their various generalizations, see [5, 7–9, 16, 20, 24–28, 30–34, 41, 43]. One of the
most extensively studied inequalities is Hermite–Hadamard type inequality, which
provides a necessary and sufficient condition for a function to be convex.

Theorem 1. Let f W I D Œa; b� � R ! R be a convex function. Then

f

�
a C b

2

	
� 1

b � a

bZ

a

f .x/dx � f .a/C f .b/

2
:

The left side of Hermite–Hadamard’s inequality is estimated by Ostrowski’s
inequality, which reads as:

Let f W I � Œ0;1/ ! R be a differentiable function on Iı, the interior of the
interval I, such that f 0 2 LŒa; b�, where a; b 2 I with a < b: If jf 0.x/j < M; where M
is a constant, then we have

ˇ̌
ˇ̌
ˇ̌f .x/ � 1

b � a

bZ

a

f .u/du

ˇ̌
ˇ̌
ˇ̌ � M

b � a


.x � a/2 C .b � x/2

2

�
:

The right side of Hermite–Hadamard inequality can be estimated by the inequality
of Iyengar, which reads as:

ˇ̌
ˇ̌
ˇ
f .a/C f .b/

2
� 1

b � a

bZ

a

f .x/dx

ˇ̌
ˇ̌
ˇ � M.b � a/

4
� 1

4M.b � a/
.f .b/ � f .a//2;

where by M, we denote the Lipschitz constant, that is, M D sup
nˇ̌
ˇ f .x/�f .y/

x�y

ˇ̌
ˇI x ¤ y

o
.

In recent years, convex sets and convex functions have been generalized in
several directions using novel and innovative ideas. In this chapter, we mainly
consider two different classes of functions, which are investigated recently. The
origin of one of these classes can be traced back to Hanson [14], which was
introduced in mathematical programming. This class of functions is called invex
functions. Ben Israel and Mond [2] introduced the concept of the invex set and
defined the class of nonconvex functions on the invex sets. This class of nonconvex
functions is known as preinvex functions. Under certain conditions, one can show
that these two classes of nonconvex functions are equivalent. Noor [21] had shown
that the minimum of the differentiable preinvex functions on the invex sets can be
characterized by a class of variational inequalities, which is called variational-like
inequalities. For the numerical methods and other aspects of the variational-like
inequalities, see [21, 22] and the references therein. Gordji et al. [13] introduced
the notion of '-convex functions with respect to the bifunction '.:; :/: They have
shown that this class of convex functions is quite different than the classical convex
functions and preinvex functions. Gordi et al. [13] also introduced another class of
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nonconvex functions, which is called the generalized preinvex functions. This class
of nonconvex functions includes the preinvex functions and '-convex functions as
special cases.

In recent years, some authors have utilized the concepts of quantum calculus to
obtain the integral inequalities via different classes of convex functions, see [12, 26–
29, 31, 41, 43]. Noor et al. [28, 31] obtained some q-analogues of certain integral
inequalities involving preinvex functions and '-convex functions, respectively.

In Sect. 2, we recall the basic concepts and results. We also give a brief account of
the Hermite–Hadamard inequalities for the '-convex functions. Preinvex functions
and their characterizations are also given. Section 3 is devoted to the fundamentals
of the quantum calculus. In Sect. 4, we establish the quantum inequalities for '-
convex functions and preinvex functions. These results are due to Noor et al.
[28, 31]. In Sect. 5, we introduce the class of the generalized preinvex functions.
We derive several new quantum integral inequalities for the generalized preinvex
functions. Results obtained here continue to hold for the previously known and new
classes of convex functions. It is an interesting problem to explore the applications
of the quantum calculus and the generalized preinvex functions in the theory of
polynomials. For an excellent exposition of the theory of polynomials, see Rahman
and Schmeisser [35].

2 '-Convex Functions and Preinvex Functions

In this section, we recall some definitions and basic results of '-convex functions
and preinvex functions. We include all the necessary details to convey the main ideas
involved.

Definition 1 ([13]). A function f W K ! R is said to be '-convex function, if there
exists a bifunction '.:; :/, such that

f ..1 � �/u C �v/ � f .u/C �'.f .v/; f .u//; 8u; v 2 K; � 2 Œ0; 1�: (1)

Also f is said to be '-affine, if

f ..1 � �/u C �v/ D f .u/C �'.f .v/; f .u//; 8u; v 2 K: (2)

If '.f .v/; f .u// D f .v/ � f .u/ in (1) and (2), then we have classical convex and
classical affine functions.

If u D v in (1), then we have '.f .v/; f .u// � 0. If � D 1, then

f .v/ � f .u/ � '.f .v/; f .u//:

We show that the '-convex functions are not convex functions. We give some
examples of '-convex functions, which are due to Gordi et al. [13].
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Examples. 1. For a convex function f , we may find another function '.u; v/ D u�v
such that f is '-convex. Let f .x/ D x2 and '.u; v/ D 2u C v. Then

f .�u C .1 � �/v/ D .�u C .1 � �/v/2
� v2 C �u2 C �.1 � �/2uv

� v2 C �u2 C �.1 � �/.u2 C v2/

� v2 C �.2u2 C v2/

D f .v/C �'.f .u/; f .v//:

Also the facts u2 � v2 C .2u2 C v2/ and v2 � v2, for u; v 2 R; show the
correctness of inequality for � D 0, respectively. This means that f is '-convex.
We would like to remark here that function f .u/ D u2 is a '-convex function
with respect to '.u; v/ D au C bv with a � 1, b � �1 and u; v 2 R.

2. There is a '-convex function f which is not convex. Let f W R ! R be defined
as:

f .x/ D

 �u; if u � 0;

u; if u < 0;
(3)

and ' W Œ�1; 0� � Œ�1; 0� ! R be defined as

'.u; v/ D
8<
:

u; if v D 0;

�v; if u D 0;

�u � v; if u < 0; v < 0:
(4)

Then it is clear that f is '-convex and is not convex in the classical sense.

Definition 2. A function f W K ! R is said to be '-quasiconvex, if

f .�u C .1 � �/v/ � maxff .u/; f .u/C '.f .y/; f .u//g; 8u; v 2 K; � 2 Œ0; 1�:

Theorem 2. A function f W I ! R is said to a '-convex if and only if

ˇ̌
ˇ̌
ˇ̌
1 x1 '.f .x1/; f .x3//
1 x2 f .x2/ � f .x3/
1 x3 0

ˇ̌
ˇ̌
ˇ̌ � 0I x1 < x2 < x3;

and

f .x2/ � f .x3/C '.f .x1/; f .x3//:

Our next result is Hermite–Hadamard type inequality for '-convex functions.
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Theorem 3 ([13]). Let f W I � R ! R be a '-convex function and ' be bounded
from above on f .I/ � f .I/. Then, for any a; b 2 I with a < b, we have

2f

�
a C b

2

	
� M' � 1

b � a

bZ

a

f .x/dx � f .b/C '.f .a/; f .b//

2
;

where M' is an upper bound of ' on f .Œa; b�/ � f .Œa; b�/.

Proof. Let f be a '-convex function. Then

f .�a C .1 � �/b/ � f .b/C �'.f .a/; f .b// � f .b/C M':

This shows that f has an upper bound. To find the lower bound of f ; consider

f

�
a C b

2

	
D f

�
a C b

4
C t

2
C a C b

4
� t

2

	

D f

�
1

2

�
a C b

2
C t

	
C 1

2

�
a C b

2
� t

		

� f

�
a C b

2
� t

	
C 1

2
'

�
f

�
a C b

2
C t

	
; f

�
a C b

2
� t

		

� f

�
a C b

2
� t

	
C M'

2
:

Now suppose m D f
�

aCb
2

� � M'

2
. For the right-hand side of the inequality, let x D

�aC.1��/b. Then this implies that f .x/ � f .b/C�'.f .a/; f .b//, where � D x�b
a�b .

It follows that

1

b � a

bZ

a

f .x/dx � 1

b � a

�
f .b/.b � a/C '.f .a/; f .b//

b � a
� .b � a/2

2

	

D f .b/C '.f .a/; f .b//

2
:

Since f is '-convex, hence

f

�
a C b

2

	
D f

�
a C b

4
� t.b � a/

4
C a C b

4
C t.b � a/

4

	

D f

�
1

2

�
a C b � t.b � a/

2

	
C 1

2

�
a C b C t.b � a/

2

		

� f

�
a C b C t.b � a/

2

	
C 1

2
'

�
f

�
a C b � t.b � a/

2

	
;
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f

�
a C b C t.b � a/

2

		

� f

�
a C b C t.b � a/

2

	
C 1

2
M'; 8t 2 Œ0; 1�:

Also

1

b � a

bZ

a

f .x/dx D 1

b � a

2
664

aCb
2Z

a

f .x/dx C
bZ

aCb
2

f .x/dx

3
775

D
1Z

0


f

�
a C b � t.b � a/

2

	
C f

�
a C b C t.b � a/

2

	�
dt

�
1Z

0


f

�
a C b � t.b � a/

2

	
C f

�
a C b

2

	
� 1

2
M'

�
dt

� m C f

�
a C b

2

	
� 1

2
M'

D 2f

�
a C b

2

	
� M':

This completes the proof. ut
We now recall the concepts of invex sets and preinvex functions, which are mainly
due to Ben-Isreal and Mond [2]. See also [44].

Definition 3 ([44]). A set K � R is said to be invex set with respect to an arbitrary
bifunction �.:; :/, if

u C ��.v; u/ 2 K; 8u; v 2 K; t 2 Œ0; 1�: (5)

The invex set K is also called �-connected set.

Remark 1 ([1]). We note that every convex set is also an invex set with respect to
�.v; u/ D v� u, but the converse is not necessarily true. See [45] and the references
therein.

Definition 4 ([44]). A function f is said to be preinvex with respect to an arbitrary
bifunction �.:; :/, if

f .u C t�.v; u// � .1 � t/f .u/C tf .v/; 8u; v 2 K; t 2 Œ0; 1�: (6)
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For �.v; u/ D v � u in (6), the preinvex functions reduce to convex functions in the
classical sense. In general, preinvex functions are not convex functions.

We also need the well-known Condition C, which was introduced by Mohan and
Neogy in [19]. This condition is automatically satisfied for the convex functions.

Condition C. Let K � R be an invex set with respect to bifunction �.:; :/. Then,
8x; y 2 K and t 2 Œ0; 1�,

�.y; y C t�.x; y// D �t�.x; y/;

�.x; y C t�.x; y// D .1 � t/�.x; y/:

Note that for every x; y 2 K, t1; t2 2 Œ0; 1� and from Condition C, we have

�.y C t2�.x; y/; y C t1�.x; y// D .t2 � t1/�.x; y/:

It is worth mentioning that Condition C plays a crucial and significant role in the
development of the variational-like inequalities, see [21, 22] and the references
therein.

Noor [23] has shown that a function f is a preinvex function, if and only if, it
satisfies the inequality

f

�
2a C �.b; a/

2

	
� 1

�.b; a/

aC�.b;a/Z

a

f .x/dx � f .a/C f .b/

2
;

which is called the Hermite–Hadamard–Noor inequality.

3 Quantum Calculus

In this section, we recall some basic concepts and results of quantum calculus. For
further details see [10, 18]. We start with the q-analogue of differentiation. For this
purpose, we consider

lim
x!x0

f .x/ � f .x0/

x � x0
D df

dx
:

This implies the derivative of a function f .x/ at x D x0.
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If we take x D qx0; where 0 < q < 1 is a fixed number and do not take limits,
then we enter in the world of Quantum calculus. The q-derivative of xn is Œn�xn�1,
where

Œn� D qn � 1
q � 1 ;

is the q-analogue of n in the sense that n is the limit of Œn� as q ! 1.
Formal definition of q-derivative of a function f is given as:

Definition 5. The q-derivative is defined as

Dqf .x/ D f .qx/ � f .x/

.q � 1/x : (7)

Note that when q ! 1, then we have ordinary derivative.
Usually, q-analogue of antiderivatives of function f is defined as follows:

Definition 6. The function F.x/ is a q-antiderivative of f .x/; if DqF.x/ D f .x/. It is
denoted by

R
f .x/dqx.

Jackson [17] defined q-integral as follows:

Definition 7. The Jackson integral of f .x/ is defined:

Z
f .x/dqx D .1 � q/x

1X
jD0

qjf .qjx/: (8)

It is evident from the above definition that

Z
f .x/Dqg.x/dqx D .1 � q/x

1X
jD0

qjf .qjx/Dqg.qjx/

D .1 � q/x
1X

jD0
qjf .qjx/

g.qjx/ � g.qjC1x/
.1 � q/qjx

:

Definite q-integrals are defined as follows:

Definition 8 ([17]). Let 0 < a < b. The definite q-integral is defined as

bZ

0

f .x/dqx D .1 � q/b
1X

jD0
qjf .qjb/; (9)

provided the sum converges absolutely.
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A more general formula for definite integrals is given as follows:

bZ

0

f .x/dqx D
1X

jD0
f .qjb/.g.qjb/ � g.qjC1b//:

Remark 2. Definite q-integral in a generic interval Œa; b� is given by

bZ

a

f .x/dqx D
bZ

0

f .x/dqx �
aZ

0

f .x/dqx:

Tariboon et al. [42, 43] discussed the concepts of quantum calculus on finite
intervals. To be more precise, let J D Œa; b� � R be an interval and 0 < q < 1

be a constant. The q-derivative of a function f W J ! R at a point x 2 J on Œa; b� is
defined as follows.

Definition 9. Let f W J ! R be a continuous function and let x 2 J. Then q-
derivative of f on J at x is defined as

Dqf .x/ D f .x/ � f .qx C .1 � q/a/

.1 � q/.x � a/
; x ¤ a: (10)

A function f is q-differentiable on J; if Dqf .x/ exists for all x 2 J. We elaborate this
definition with the help of an example.

Example 1. Let x 2 Œa; b� and 0 < q < 1. Then, for x ¤ a, we have

Dqx2 D x2 � .qx C .1 � q/a/2

.1 � q/.x � a/

D .1C q/x2 � 2qax � .1 � q/x2

x � a

D .1C q/x C .1 � q/a:

Note that when x D a, we have lim
x!a

.Dqx2/ D 2a.

Definition 10. Let f W J ! R be a continuous function. Then a second-order
q-derivative on J, which is denoted as D2

q f , provided Dqf is q-differentiable on J
is defined as D2

q f D Dq.Dqf / W J ! R. Similarly higher order q-derivative on J is
defined by Dn

q f DW J ! R.

Lemma 1. Let ˛ 2 R. Then

Dq.x � a/˛ D
�1 � q˛

1 � q

�
.x � a/˛�1:
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Tariboon et al. [42, 43] defined the q-integral as follows:

Definition 11. Let f W I � R ! R be a continuous function. Then q-integral on I
is defined as

xZ

a

f .t/dqt D .1 � q/.x � a/
1X

nD0
qnf .qnx C .1 � qn/a/; 8x 2 J: (11)

These integrals can be viewed as Riemann-type q-integral. If a D 0 in (11), then we
have the classical q-integral, that is

xZ

0

f .t/dqt D .1 � q/x
1X

nD0
qnf .qnx/; x 2 Œ0;1/:

Moreover, if c 2 .a; x/, then the definite q-integral on J is defined by

xZ

c

f .t/dqt D
xZ

a

f .t/dqt �
cZ

a

f .t/dqt

D .1 � q/.x � a/
1X

nD0
qnf .qnx C .1 � qn/a/

�.1 � q/.c � a/
1X

nD0
qnf .qnc C .1 � qn/a/:

Theorem 4. Let f W I ! R be a continuous function. Then

1. Dq

xR
a

f .t/ dqt D f .x/

2.
xR

c
Dqf .t/dqt D f .x/ � f .c/, for x 2 .c; x/.

Theorem 5. Let f ; g W I ! R be continuous functions, ˛ 2 R. Then, for x 2 J;

1.
xR

a
Œf .t/C g.t/� dqt D

xR
a

f .t/ dqt C
xR

a
g.t/ dqt

2.
xR

a
.˛f .t//.t/ dqt D ˛

xR
a

f .t/ dqt

3.
xR

a
f .t/ aDqg.t/ dqt D .fg/jxc �

xR
c

g.qt C .1 � q/a/Dqf .t/dqt, for c 2 .a; x/.



Quantum Integral Inequalities 247

Tariboon et al. [43] obtained the following q-analogue of Hermite–Hadamard’s
inequality for convex functions as:

f

�
a C b

2

	
� 1

b � a

bZ

a

f .x/ dqx � qf .a/C f .b/

1C q
:

4 Quantum Integral Inequalities Via '-Convex and Preinvex
Functions

In this section, we recall the recent results, which are mainly due to Noor et al.
[31]. They have derived the quantum Hermite–Hadamard inequalities for '-convex
functions and preinvex functions.

Theorem 6. Let f ; g W I ! R be two '-convex functions. Then

1

b � a

bZ

a

f .x/g.x/dqx � f .a/g.a/C 1

1C q
T.a; bI'I f I g/

C 1

1C q C q2
R.a; bI'I f I g/;

where

T.a; bI'I f I g/ D f .a/'.g.b/; g.a//C g.a/'.f .b/; f .a//;

and

R.a; bI'I f I g/ D '.g.b/; g.a//'.f .b/; f .a//:

Proof. Let f and g be two '-convex functions. Then

f ..1 � �/a C �b/ � f .a/C �'.f .b/; f .a//

g..1 � �/a C �b/ � g.a/C �'.g.b/; g.a//:

Multiplying the above inequalities, we have

f ..1 � �/a C �b/g..1 � �/a C �b/ � f .a/g.a/C �f .a/'.g.b/; g.a//

C�g.a/'.f .b/; f .a//

C�2'.g.b/; g.a//'.f .b/; f .a//:
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Now by q-integrating the above inequality with respect to � on Œ0; 1�, we have

1

b � a

bZ

a

f .x/g.x/dqx

� f .a/g.a/C 1

1C q
Œf .a/'.g.b/; g.a//C g.a/'.f .b/; f .a//�

C 1

1C q C q2
'.g.b/; g.a//'.f .b/; f .a//:

ut
The following two auxiliary results are due to Noor et al. [27]. These results play an
important role in the development of our results.

Lemma 2. Let f W I � R ! R be a q-differentiable function on the interior Iı of I
with Dq be continuous and integrable on I; where 0 < q < 1. Then

Hf .a; bI q/ D 1

b � a

bZ

a

f .x/dqx � qf .a/C f .b/

1C q

D q.b � a/

1C q

1Z

0

.1 � .1C q/�/Dqf ..1 � �/a C �b/ dq�:

Lemma 3. Let f W I � R ! R be a q-differentiable function on the interior Iı of I
with Dq be continuous and integrable on I; where 0 < q < 1. Then

Kf .a; bI q/ D f .x/ � 1

b � a

bZ

a

f .u/adqu

D q.x � a/2

b � a

1Z

0

�Dqf .�x C .1 � �/a/dq�

Cq.b � x/2

b � a

1Z

0

�Dqf .�x C .1 � �/b/dq�

Theorem 7. Let f W I � R ! R be a q-differentiable function on the interior Iı of
I and let Dq be continuous and integrable on I; where 0 < q < 1. Let jDqf j be a
'-convex function. Then
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ˇ̌
Hf .a; bI q/

ˇ̌

� ˝.b � a/

�
"
2.1C q/.1C q C q2/jDqf .a/j C .1C 4q C q2/'.jDqf .b/j; jDqf .a/j/

#
;

where

˝ D q2

.1C q C q2/.1C q/4
:

Proof. Using Lemma 2 and the fact that jDqf j is a '-convex function, we have

ˇ̌
Hf .a; bI q/

ˇ̌

D
ˇ̌
ˇ̌
ˇ
q.b � a/

1C q

1Z

0

.1 � .1C q/�/Dqf ..1 � �/a C �b/ dq�

ˇ̌
ˇ̌
ˇ

� q.b � a/

1C q

1Z

0

j1 � .1C q/�jjDqf ..1 � �/a C �b/j dq�

� q.b � a/

1C q

1Z

0

j1 � .1C q/�jŒjDqf .a/j C �'.jDqf .b/j; jDqf .a/j/�

D q.b � a/

1C q

" 1Z

0

j1 � .1C q/�jjDqf .a/jdq�

C
1Z

0

�j1 � .1C q/�j'.jDqf .b/j; jDqf .a/j/dq�

#

D q.b � a/

1C q

"
2q

.1C q/2
jDqf .a/j C q.1C 4q C q2/

.1C q C q2/.1C q/3
'.jDqf .b/j; jDqf .a/j/

#

D q2.b � a/

.1C q C q2/.1C q/4

�
"
2.1C q/.1C q C q2/jDqf .a/j C .1C 4q C q2/'.jDqf .b/j; jDqf .a/j/

#
:

ut
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Theorem 8. Let f W I � R ! R be a q-differentiable function on the interior Iı of
I and let Dq be continuous and integrable on I; where 0 < q < 1. Let jDqf jr be a
'-convex function, where r > 1: Then

ˇ̌
Hf .a; bI q/

ˇ̌

� q.b � a/

1C q

 
2q

.1C q/2

!1� 1
r
"
�1jDqf .a/jr C �2'.jDqf .b/jr; jDqf .a/jr/

# 1
r

;

where

�1 D 2q

.1C q/2
; and �2 D q.1C 4q C q2/

.1C q C q2/.1C q/3
:

Proof. Since jDqf jr is a '-convex function, hence, from Lemma 2 and using
Holder’s inequality, we have

ˇ̌
Hf .a; bI q/

ˇ̌

D
ˇ̌
ˇ̌
ˇ
q.b � a/

1C q

1Z

0

.1 � .1C q/�/Dqf ..1 � �/a C �b/dq�

ˇ̌
ˇ̌
ˇ

� q.b � a/

1C q

 1Z

0

j1 � .1C q/�jdq�

!1� 1
r

�
 1Z

0

j1 � .1C q/�jjDqf ..1 � �/a C �b/jrdq�

! 1
r

D q.b � a/

1C q

 
2q

.1C q/2

!1� 1
r

�
"

2q

.1C q/2
jDqf .a/jr C q.1C 4q C q2/

.1C q C q2/.1C q/3
'.jDqf .b/jr; jDqf .a/jr/

# 1
r

:

This completes the proof. ut
We now derive some quantum analogues for Iyengar type inequalities via
'-quasiconvex functions.

Theorem 9. Let f W I ! R be a q-differentiable function on the interior Iı of I
and let Dq be continuous and integrable on I; where 0 < q < 1. Let jDqf jr be a
'-quasiconvex function, where r > 1: Then
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ˇ̌
Hf .a; bI q/

ˇ̌ � q2.b � a/2

.1C q/3

 
maxfjf .a/jr; jf .a/C '.f .a/; f .b//jrg

! 1
r

:

Proof. Using Lemma 2, power mean inequality and the fact that jDqf jr is a '-
quasiconvex function, we have

ˇ̌
Hf .a; bI q/

ˇ̌ D
ˇ̌
ˇ̌
ˇ
q.b � a/

1C q

1Z

0

.1 � .1C q/�/aDqf ..1 � �/a C �b/dq�

ˇ̌
ˇ̌
ˇ

� q.b � a/

1C q

 1Z

0

j1 � .1C q/�jdq�

!1� 1
r

�
 1Z

0

j1 � .1C q/�jjDqf ..1 � �/a C �b/jrdq�

! 1
r

D q2.b � a/2

.1C q/3

 
maxfjf .a/jr; jf .a/C '.f .a/; f .b//jrg

! 1
r

:

This completes the proof. ut
Our next results are quantum analogues of Ostrowski type inequalities via '-convex
functions.

Theorem 10. Let f W I � R ! R be a q-differentiable function on the interior of
I and let Dq be continuous and integrable on I; where 0 < q < 1. Let jDqf j be a
'-convex function. Then

ˇ̌
Kf .a; bI q/

ˇ̌ � q.x � a/2

b � a


1

1C q
jDqf .a/j C 1

1C q C q2
'.jDqf .x/j; jDqf .a/j/

�

Cq.b � x/2

b � a


1

1C q
jDqf .b/j C 1

1C q C q2
'.jDqf .x/j; jDqf .b/j/

�
:

Proof. If we use Lemma 3 and the fact that jDqf j is a '-convex function, we have

ˇ̌
Kf .a; bI q/

ˇ̌ D
ˇ̌
ˇ̌
ˇ
q.x � a/2

b � a

1Z

0

�Dqf .�x C .1 � �/a/dq�

Cq.b � x/2

b � a

1Z

0

�Dqf .�x C .1 � �/b/dq�

ˇ̌
ˇ̌
ˇ
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� q.x � a/2

b � a

1Z

0

�jDqf .�x C .1 � �/a/jdq�

Cq.b � x/2

b � a

1Z

0

�jDqf .�x C .1 � �/b/jdq�

� q.x � a/2

b � a

1Z

0

�ŒjDqf .a/j C �'.jDqf .x/j; jDqf .a/j/� dq�

Cq.b � x/2

b � a

1Z

0

�ŒjDqf .b/j C �'.jDqf .x/j; jDqf .b/j/� dq�

D q.x � a/2

b � a


1

1C q
jDqf .a/j C 1

1C q C q2
'.jDqf .x/j; jDqf .a/j/

�

Cq.b � x/2

b � a


1

1C q
jDqf .b/j C 1

1C q C q2
'.jDqf .x/j; jDqf .b/j/

�
:

This completes the proof. ut
Theorem 11. Let f W I � R ! R be a q-differentiable function on the interior Iı
of I and let Dq be continuous and integrable on I; where 0 < q < 1. Let jDqf jr be a
'-convex function. Then, for p; r > 1, 1p C 1

r D 1, we have

ˇ̌
Kf .a; bI q/

ˇ̌

� q.x � a/2

b � a

� 1 � q

1 � qpC1
� 1

p
�
jDqf .a/jr C 1

1C q C q2
'.jDqf .x/jr; jDqf .a/jr/

� 1
r

Cq.b � x/2

b � a

� 1 � q

1 � qpC1
� 1

p
�
jDqf .b/jr C 1

1C q
'.jDqf .x/jr; jDqf .b/jr/

� 1
r
:

Proof. Using Lemma 3, Holder’s inequality and the fact that jDqf jr is a '-convex
function, we have

ˇ̌
Kf .a; bI q/

ˇ̌ D
ˇ̌
ˇ̌
ˇ
q.x � a/2

b � a

1Z

0

�Dqf .�x C .1� �/a/dq�

C q.b � x/2

b � a

1Z

0

�Dqf .�x C .1� �/b/dq�

ˇ̌
ˇ̌
ˇ
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� q.x � a/2

b � a

� 1Z

0

�pdq�
� 1

p
� 1Z

0

jDqf .�x C .1� �/a/jrdq�
� 1

r

C q.b � x/2

b � a

� 1Z

0

�pdq�
� 1

p
� 1Z

0

jDqf .�x C .1� �/b/jrdq�
� 1

r

� q.x � a/2

b � a

� 1� q

1� qpC1

� 1
p
� 1Z

0

ŒjDqf .a/jr C �'.jDqf .x/jr; jDqf .a/jr/� dq�
� 1

r

C q.b � x/2

b � a

� 1� q

1� qpC1

� 1
p
� 1Z

0

ŒjDqf .b/jr C �'.jDqf .x/jr; jDqf .b/jr/� dq�
� 1

r

� q.x � a/2

b � a

� 1� q

1� qpC1

� 1
p
�
jDqf .a/jr C 1

1C q
'.jDqf .x/jr; jDqf .a/jr/

� 1
r

C q.b � x/2

b � a

� 1� q

1� qpC1

� 1
p
�
jDqf .b/jr C 1

1C q
'.jDqf .x/jr; jDqf .b/jr/

� 1
r
:

This completes the proof. ut
We now establish some quantum estimates of certain integral inequalities via
preinvex functions. For more details, see [28]. For simplicity, we denote the interval
by I� D Œa; a C �.b; a/� � R and by I0� the interior of I�.

Theorem 12. Let f W I� ! R be a preinvex function with �.b; a/ > 0. If the
bifunction �.:; :/ satisfies the Condition C, then, we have

f

�
2a C �.b; a/

2

	
� 1

�.b; a/

aC�.b;a/Z

a

f .x/ dqx � qf .a/C f .b/

2
:

Proof. Let f be a preinvex function with respect to the bifunction �.:; :/: Then, using
Condition C, we have

f

�
2a C �.b; a/

2

	
� 1

2
Œf .a C ��.b; a//C f .a C .1 � �/�.b; a//� :

By q-integrating the above inequality with respect to t on Œ0; 1�, we have

f

�
2a C �.b; a/

2

	
� 1

2

2
4 1

�.b; a/

aC�.b;a/Z

a

f .x/ dqx C 1

�.b; a/

aC�.b;a/Z

a

f .x/ dqx

3
5
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D 1

�.b; a/

aC�.b;a/Z

a

f .x/ dqx: (12)

Since f is a preinvex function, hence

f .a C ��.b; a// � .1 � �/f .a/C �f .b/; � 2 Œ0; 1�::

Again q-integrating the above inequality with respect to � on Œ0; 1�, we have

1

�.b; a/

aC�.b;a/Z

a

f .x/ dqx � qf .a/C f .b/

2
: (13)

Combining (12) and (13) completes the proof. ut
Remark 3. If q ! 1, then, Theorem 12 reduces to (2). If �.b; a/ D b � a, then,
Theorem 12 reduces to (3). If �.b; a/ D b � a and q ! 1, then Theorem 12 reduces
to (1).

Theorem 13. Let f ; g W I� ! R be integrable and preinvex functions with �.b; a/ >
0 and let Condition C hold. Then, for 0 < q < 1, we have

2f

�
2a C �.b; a/

2

	
g

�
2a C �.b; a/

2

	
� Œ�1M.a; b/C �2N.a; b/�

� 1

�.b; a/

aC�.b;a/Z

a

f .x/g.x/ dqx;

where

�1 D q2

.1C q/.1C q C q3/
;

�2 D 1C 2q C q2

2.1C q/.1C q C q2/
;

M.a; b/ D f .a/g.a/C f .b/g.b/;

and

N.a; b/ D f .a/g.b/C f .b/g.a/:

Proof. Let f and g be preinvex functions with respect to bifunction �.:; :/: Then,
using Condition C, we have



Quantum Integral Inequalities 255

f

�
2a C �.b; a/

2

	
g

�
2a C �.b; a/

2

	

D f

�
a C ��.b; a/C a C .1 � �/�.b; a/

2

	

�g

�
a C ��.b; a/C a C 1 � ��.b; a/

2

	

� 1

4
Œff .a C ��b; a/C f .a C .1 � �/�b; a/g
fg.a C ��b; a/C g.a C .1 � �/�b; a/g�

� 1

4
Œff .a C ��b; a/f .a C ��b; a/C f .a C .1 � �/�b; a/f .a C .1 � �/�b; a/g

C ˚
2�.1 � �/M.a; b/C .�2 C .1 � �/2/N.a; b/�� :

By q-integrating both sides of the above inequality with respect to � on Œ0; 1�, we
have

2f

�
2a C �.b; a/

2

	
g

�
2a C �.b; a/

2

	
� 2q2M.a; b/C .1C 2q C q2/N.a; b/

2.1C q/.1C q C q2/

� 1

�.b; a/

aC�.b;a/Z

a

f .x/g.x/ dqx:

This completes the proof. ut
Theorem 14. Let f ; g W I� ! R be integrable and preinvex functions with
�.b; a/ > 0. Then, for 0 < q < 1, we have

1

�.b; a/

aC�.b;a/Z

a

f .x/g.x/ dqx

� 1f .a/g.a/C 2
�
q.1C q2/f .b/g.b/C q2N.a; b/

�
;

where

1 D 1

1C q C q2
;

2 D 1

.1C q/.1C q C q2/
;



256 M.A. Noor et al.

and

N.a; b/ D f .a/g.b/C f .b/g.a/:

Proof. Let f and g be two preinvex functions. Then

f .a C ��.b; a// � .1 � �/f .a/C �f .b/; (14)

and

g.a C ��.b; a// � .1 � �/g.a/C �g.b/: (15)

Multiplying (14) and (15), we have

f .a C ��.b; a//g.a C ��.b; a//

� .1 � �/2f .a/g.a/C �.1 � �/f .a/g.b/C �.1 � �/f .b/g.a/C �2f .b/g.b/:

By q-integrating both sides of the above inequality with respect to � on Œ0; 1�, we
have

1Z

0

f .a C ��.b; a//g.a C ��.b; a// dq�

� f .a/g.a/

1Z

0

.1 � �/2 dq�C f .a/g.b/

1Z

0

�.1 � �/ dq�

Cf .b/g.a/

1Z

0

�.1 � �/ dq�C f .b/g.b/

1Z

0

�2 dq�:

This implies that

1

�.b; a/

aC�.b;a/Z

a

f .x/g.x/ dqx

� ˝1f .a/g.a/C˝2

�
q.1C q2/f .b/g.b/C q2N.a; b/

�
:

This completes the proof. ut
Theorem 15. Let f ; g W I� ! R be integrable and preinvex functions. Then
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1C q C q2

�.b; a/

aC�.b;a/Z

a

1Z

0

f

�
2a C �.b; a/

2
C ��

�
y;
2a C �.b; a/

2

		

�g

�
2a C �.b; a/

2
C ��

�
y;
2a C �.b; a/

2

		
dq� dqy

� 1

�.b; a/

aC�.b;a/Z

a

f .x/g.x/ dqx C q.1C q2/

4.1C q/
ŒM.a; b/C N.a; b/�

C q2

2.1C q/2
Œ2.qf .a/g.a/C f .b/g.b//C .1C q/N.a; b/� :

Proof. Let f and g be preinvex functions. Then

f

�
2a C �.b; a/

2
C ��

�
y;
2a C �.b; a/

2

		

� .1 � �/f
�
2a C �.b; a/

2

	
C �f .y/; (16)

and

g

�
2a C �.b; a/

2
C ��

�
y;
2a C �.b; a/

2

		
� .1 � �/g

�
2a C �.b; a/

2

	

C�g.y/: (17)

Multiplying (16) and (17), we have

f

�
2a C �.b; a/

2
C ��

�
y;
2a C �.b; a/

2

		

�g

�
2a C �.b; a/

2
C ��

�
y;
2a C �.b; a/

2

		

� .1 � �/2f
�
2a C �.b; a/

2

	
g

�
2a C �.b; a/

2

	

C�.1 � �/


f

�
2a C �.b; a/

2

	
g.y/C f .y/g

�
2a C �.b; a/

2

	�
C �2f .y/g.y/;
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By q-integrating both sides of the above inequality with respect to � on Œ0; 1�, we
have

1Z

0

"
f

�
2a C �.b; a/

2
C ��

�
y;
2a C �.b; a/

2

		

�g

�
2a C �.b; a/

2
C ��

�
y;
2a C �.b; a/

2

		#
dq�

� q.1C q2/

.1C q/.1C q C q2/
f

�
2a C �.b; a/

2

	
g

�
2a C �.b; a/

2

	

C q2

.1C q/.1C q C q2/


f

�
2a C �.b; a/

2

	
g.y/C f .y/g

�
2a C �.b; a/

2

	�

C 1

1C q C q2
f .y/g.y/:

Again q-integrating both sides of the above inequality with respect to y on Œa; a C
�.b; a/� and using Theorem 12, we have

aC�.b;a/Z

a

1Z

0

f

�
2a C �.b; a/

2
C t�

�
y;
2a C �.b; a/

2

		

�g

�
2a C �.b; a/

2
C ��

�
y;
2a C �.b; a/

2

		
dq� dqy

� q.1C q2/

.1C q/.1C q C q2/

aC�.b;a/Z

a

f .y/g.y/ dqy

C q2�.b; a/

2.1C q/.1C q C q2/
Œ2f.qf .a/g.a/C f .b/g.b//g C .1C q/N.a; b/�

C q.1C q2/�.b; a/

4.1C q/.1C q C q2/
ŒM.a; b/C N.a; b/�:

Multiplying both sides of the above inequality by .1Cq/.1CqCq2/
�2.b;a/

completes the proof.
ut

Theorem 16. Let f ; g W I� ! R be integrable and preinvex functions. Then

.1C q/.1C q C q2/

�2.b; a/

aC�.b;a/Z

a

aC�.b;a/Z

a

1Z

0

f .x C ��.y; x//g.x C ��.y; x// dq� dqx dqy
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� 1C 2q C q2

�.b; a/

aC�.b;a/Z

a

f .x/g.x/ dqx C 2q2

.1C q/2
Œq2f .a/g.a/C f .b/g.b/C qN.a; b/�:

Proof. Let f and g be preinvex functions. Then

f .x C ��.y; x//g.x C ��.y; x//

� .1 � �/2f .x/g.x/C �.1 � �/Œf .x/g.y/C f .y/g.x/�C �2f .y/g.y/;

By q-integrating the above inequality with respect to � on Œ0; 1�, we have

1Z

0

f .x C ��.y; x//g.x C ��.y; x// dq�

� f .x/g.x/q.1C q2/

.1C q/.1C q C q2/
C q2Œf .x/g.y/C f .y/g.x/�

.1C q/.1C q2 C q3/
C f .y/g.y/

1C q C q2
:

Again q-integrating both sides of the above inequality, with respect to x; y on
Œa C a C �.b; a/� and using Theorem 12, we have

aC�.b;a/Z

a

aC�.b;a/Z

a

1Z

0

f .x C ��.y; x//g.x C ��.y; x// dq� dqx dqy

�
�

1

1C q2 C q3
C q.1C q2/

.1C q/.1C q C q2/

	
�.b; a/

aC�.b;a/Z

a

f .x/g.x/ dqx

C 2q2�2.b; a/

.1C q/3.1C q C q2/
Œq2f .a/g.a/C f .b/g.b/C qN.a; b/�:

Multiplying both sides of the above inequality by .1Cq/.1CqCq2/
�2.b;a/

completes the proof.
ut

The next Lemma will be helpful in obtaining our next results.

Lemma 4 ([28]). Let f W I� ! R be a continuous function and 0 < q < 1. If Dqf
is an integrable function on I0� , then

�f .a; a C �.b; a/I qI �/

D q�.b; a/

1C q

1Z

0

.1 � .1C q/�/Dqf .a C ��.b; a// dq�;
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where

�f .a; a C �.b; a/I qI �/ D 1

�.b; a/

aC�.b;a/Z

a

f .x/ dqx � qf .a/C f .a C �.b; a//

1C q
:

Theorem 17. Let f W I� ! R be a q-differentiable function on Iı
� and let Dq be

continuous and integrable on I�; where 0 < q < 1. If jDqf j is a preinvex function,
then

ˇ̌
�f .a; a C �.b; a/I qI �/ˇ̌

�  �.a; bI q/
�
q.1C 3q2 C 2q3/jDqf .a/j C .1C 4q C q2/jDqf .b/j� ;

where

 �.a; bI q/ D q2�.b; a/

.1C q/4.1C q C q2/
:

Proof. Using Lemma 4, property of modulus and the fact that jDqf j is a preinvex
function, we have

ˇ̌
�f .a; a C �.b; a/I qI �/ˇ̌

D
ˇ̌
ˇ̌
ˇ̌
q�.b; a/

1C q

1Z

0

.1 � .1C q/�/Dqf .a C ��.b; a// dq�

ˇ̌
ˇ̌
ˇ̌

� q�.b; a/

1C q

2
4jDqf .a/j

1Z

0

j1 � .1C q/�j.1 � �/ dq�

CjDqf .b/j
1Z

0

j1 � .1C q/�j� dq�

3
5

D q2�.b; a/

.1C q/4.1C q C q2/

�
.1C 3q2 C 2q3/jDqf .a/j C .1C 4q C q2/jDqf .b/j� :

This completes the proof. ut
Theorem 18. Let f W I� ! R be a q-differentiable function on the interior Iı

� and let
Dq be continuous and integrable on I�; where 0 < q < 1. Let jDqf jr be a preinvex
function, where r � 1: Then
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ˇ̌
�f .a; a C �.b; a/I qI �/ˇ̌

� ��.a; bI q/


q.1C 3q2 C 2q3/jaDqf .a/jr C .1C 4q C q2/jaDqf .b/jr

.1C q C q2/2q

� 1
r

;

where

��.a; bI q/ D q22�.b; a/

.1C q/3
:

Proof. Using Lemma 4, property of modulus, Holder’s inequality and the fact that
jDqf jr is a preinvex function, we have

ˇ̌
�f .a; a C �.b; a/I qI �/ˇ̌

D
ˇ̌
ˇ̌
ˇ̌
q�.b; a/

1C q

1Z

0

.1 � .1C q/�/Dqf .a C ��.b; a// dq�

ˇ̌
ˇ̌
ˇ̌

�
0
@

1Z

0

j1 � .1C q/�j dq�

1
A
1� 1

r

�
0
@

1Z

0

j1 � .1C q/�jŒ.1 � �/jDqf .a/jr C �Dqf .b/jr� dq�

1
A

1
r

D
�

2q

.1C q/2

	1� 1
r

�
�

q

.1C q/3.1C q C q2/

h
.1C 3q2 C 2q3/jDqf .a/jr C .1C 4q C q2/jDqf .b/jr

i	 1
r

:

This completes the proof. ut
We now prove some new quantum Iyengar type inequalities for quasi preinvex
functions.

Theorem 19. Let f W I� ! R be a q-differentiable function on Iı
� and let Dq be

continuous and integrable on I�; where 0 < q < 1. If jDqf jr is a quasi preinvex
function, where r � 1, then

ˇ̌
�f .a; a C �.b; a/I qI �/ˇ̌ � q2�.b; a/2

.1C q/3
�
maxfjDqf .a/jr; jDqf .b/jrg� 1r :
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Proof. If we use Lemma 4, property of modulus, Holder’s inequality and the fact
that jDqf jr is a quasi preinvex function, we have

ˇ̌
�f .a; a C �.b; a/I qI �/ˇ̌

D
ˇ̌
ˇ̌
ˇ̌
q�.b; a/

1C q

1Z

0

.1 � .1C q/�/Dqf .a C ��.b; a//dq�

ˇ̌
ˇ̌
ˇ̌

� q�.b; a/

1C q

0
@

1Z

0

j1 � .1C q/�jdq�

1
A
1� 1

r

�
0
@

1Z

0

j1 � .1C q/�jjDqf .a C ��.b; a//jrdq�

1
A

1
r

D q2�.b; a/2

.1C q/3
�
maxfjDqf .a/jr; jDqf .b/jrg� 1r :

This completes the proof. ut
Theorem 20. Under the conditions of Theorem 19, ifor r D 1; we have

ˇ̌
�f .a; a C �.b; a/I qI �/ˇ̌ � q2�.b; a/2

.1C q/3
�
maxfjaDqf .a/j; jaDqf .b/jg� :

5 Quantum Inequalities for Generalized Preinvex Functions

In this section, we derive some q-analogues of certain integral inequalities for
generalized preinvex functions. These classes of '-convex functions and preinvex
functions are distinctly different extensions of the classical functions. Gordji et al.
[13] introduced the generalized preinvex functions only. For integral inequalities
and their various variant forms, see Noor [24].

Definition 12 ([13]). Let K � R be an invex set with respect to the bifunction
�.:; :/. Then a function f W K ! R is said to be generalized preinvex with respect to
�.:; :/ and '.:; :/, if

f .u C ��.v; u// � f .u/C �'.f .v/; f .u//; 8u; v 2 K; � 2 Œ0; 1�:
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For different values of �; �.:; :/, and '.:; :/; one can easily show that the generalized
preinvex functions include '-convex functions and preinvex functions as special
cases. We now introduce the following concept of generalized quasi preinvex
functions.

Definition 13. Let K � R be an invex set with respect to the bifunction �.:; :/. A
function f W K ! R is said to be generalized quasi preinvex with respect to �.:; :/
and '.:; :/, if

f .u C ��.v; u// � maxff .u/; f .u/C '.f .v/; f .u//g; 8u; v 2 K; � 2 Œ0; 1�:

We now establish some quantum integral inequalities for generalized preinvex
functions.

Theorem 21. Let f ; g W I ! R be two generalized preinvex functions. Then

1

�.b; a/

aC�.b;a/Z

a

f .x/g.x/dqx

� f .a/g.a/C 1

1C q
K1.a; bI'I f I g/C 1

1C q C q2
K2.a; bI'I f I g/;

where

K1.a; bI'I f I g/ D f .a/'.g.b/; g.a//C g.a/'.f .b/; f .a//;

and

K2.a; bI'I f I g/ D '.g.b/; g.a//'.f .b/; f .a//:

Proof. Let f and g be two generalized preinvex functions. Then

f .a C ��.b; a// � f .a/C �'.f .b/; f .a//

g.a C ��.b; a// � g.a/C �'.g.b/; g.a//:

Multiplying the above inequalities, we have

f .a C ��.b; a//g.a C ��.b; a//

� f .a/g.a/C �f .a/'.g.b/; g.a//C �g.a/'.f .b/; f .a//

C�2'.g.b/; g.a//'.f .b/; f .a//:
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Now by q-integrating the above inequality with respect to � on Œ0; 1�, we have

1

�.b; a/

aC�.b;a/Z

a

f .x/g.x/dqx

� f .a/g.a/C 1

1C q
Œf .a/'.g.b/; g.a//C g.a/'.f .b/; f .a//�

C 1

1C q C q2
'.g.b/; g.a//'.f .b/; f .a//:

This completes the proof. ut
Theorem 22. Let f W I � R ! R be a q-differentiable function on the interior
Iı of I with Dq be continuous and integrable on I; where 0 < q < 1. If jDqf j is a
generalized preinvex function, then

ˇ̌
�f .a; a C �.b; a/I qI �/ˇ̌

� !.b � a/

�
"
2.1C q/.1C q C q2/jDqf .a/j C .1C 4q C q2/'.jDqf .b/j; jDqf .a/j/

#
;

where

! D q2

.1C q C q2/.1C q/3
:

Proof. Using Lemma 4 and the fact that jDqf j is a generalized preinvex function,
we have

ˇ̌
�f .a; a C �.b; a/I qI �/ˇ̌

D
ˇ̌
ˇ̌
ˇ
q�.b; a/

1C q

1Z

0

.1 � .1C q/�/Dqf .a C ��.b; a// dq�

ˇ̌
ˇ̌
ˇ

� q�.b; a/

1C q

1Z

0

j1 � .1C q/�jjDqf .a C ��.b; a//j dq�

� q�.b; a/

1C q

1Z

0

j1 � .1C q/�jŒjDqf .a/j C �'.jDqf .b/j; jDqf .a/j/�
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D q�.b; a/

1C q

" 1Z

0

j1 � .1C q/�jjDqf .a/jdq�

C
1Z

0

�j1 � .1C q/�j'.jDqf .b/j; jDqf .a/j/dq�

#

Dq�.b; a/

1Cq

"
2q

.1Cq/2
jDqf .a/jC q.1C4qCq2/

.1CqCq2/.1Cq/3
'.jDqf .b/j; jDqf .a/j/

#

D q2�.b; a/

.1C q C q2/.1C q/4

�
"
2.1C q/.1C q C q2/jDqf .a/j C .1C 4q C q2/'.jDqf .b/j; jDqf .a/j/

#
:

ut
Theorem 23. Let f W I � R ! R be a q-differentiable function on the interior Iı
of I and let Dq be continuous and integrable on I; where 0 < q < 1. If jDqf jr is a
generalized preinvex function where r > 1, then

ˇ̌
�f .a; a C �.b; a/I qI �/ˇ̌

� q�.b; a/

1C q

 
2q

.1C q/2

!1� 1
r
"
#1jDqf .a/jr C #2'.jDqf .b/jr; jDqf .a/jr/

# 1
r

;

where

#1 D 2q

.1C q/2
; and #2 D q.1C 4q C q2/

.1C q C q2/.1C q/3
:

Proof. Let jDqf jr be a generalized preinvex function. Then, from Lemma 4 and
using Holder’s inequality, we have

ˇ̌
�f .a; a C �.b; a/I qI �ˇ̌

D
ˇ̌
ˇ̌
ˇ
q�.b; a/

1C q

1Z

0

.1 � .1C q/�/Dqf .a C ��.b; a// dq�

ˇ̌
ˇ̌
ˇ

� q�.b; a/

1C q

 1Z

0

j1 � .1C q/�jdq�

!1� 1
r
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�
 1Z

0

j1 � .1C q/�jjDqf .a C ��.b; a//jrdq�

! 1
r

D q�.b; a/

1C q

 
2q

.1C q/2

!1� 1
r

�
"

2q

.1C q/2
jDqf .a/jr C q.1C 4q C q2/

.1C q C q2/.1C q/3
'.jDqf .b/jr; jDqf .a/jr/

# 1
r

:

This completes the proof. ut
We now derive some quantum Iyengar type inequalities via generalized quasi
preinvex functions.

Theorem 24. Let f W I ! R be a q-differentiable function on the interior Iı of
I and let Dq be continuous and integrable on I; where 0 < q < 1. If jDqf jr is a
generalized quasi preinvex function, where r > 1, then

ˇ̌
�f .a; a C �.b; a/I qI �ˇ̌

� q2.b � a/2

.1C q/3

 
maxfjf .a/jr; jf .a/C '.f .a/; f .b//jrg

! 1
r

:

Proof. If we use Lemma 4, power mean inequality and the fact that jDqf jr is a
generalized quasi preinvex function, we have

ˇ̌
Hf .a; bI q/

ˇ̌

D
ˇ̌
ˇ̌
ˇ
q�.b; a/

1C q

1Z

0

.1 � .1C q/�/Dqf .a C ��.b; a// dq�

ˇ̌
ˇ̌
ˇ

� q.b � a/

1C q

 1Z

0

j1 � .1C q/�jdq�

!1� 1
r

�
 1Z

0

j1 � .1C q/�jjDqf .a C ��.b; a//jrdq�

! 1
r

D q2.b � a/2

.1C q/3

 
maxfjf .a/jr; jf .a/C '.f .a/; f .b//jrg

! 1
r

:

ut
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On the Bohr Inequality

Yusuf Abu Muhanna, Rosihan M. Ali, and Saminathan Ponnusamy

Abstract The Bohr inequality, first introduced by Harald Bohr in 1914, deals with
finding the largest radius r, 0 < r < 1, such that

P1
nD0 janjrn � 1 holds whenever

jP1
nD0 anznj � 1 in the unit disk D of the complex plane. The exact value of this

largest radius, known as the Bohr radius, has been established to be 1=3. This paper
surveys recent advances and generalizations on the Bohr inequality. It discusses
the Bohr radius for certain power series in D, as well as for analytic functions
from D into particular domains. These domains include the punctured unit disk,
the exterior of the closed unit disk, and concave wedge-domains. The analogous
Bohr radius is also studied for harmonic and starlike logharmonic mappings in D.
The Bohr phenomenon which is described in terms of the Euclidean distance is
further investigated using the spherical chordal metric and the hyperbolic metric.
The exposition concludes with a discussion on the n-dimensional Bohr radius.
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1 Harald August Bohr (1887–1951)

Harald August Bohr was born on the 22nd day of April, 1887 in Copenhagen,
Denmark, to Christian and Ellen Adler Bohr. His father was a distinguished
professor of physiology at the University of Copenhagen and his elder brother Niels
was to become a famous theoretical physicist.

Harald and Niels were prolific football (soccer) players. Harald made his playing
debut as a 16-year-old in 1903 with Akademisk Boldklub. He represented the Danish
national football team in the 1908 Summer Olympics, where football was first
introduced as an official event. Denmark faced hosts Great Britain in the final, but
eventually lost 2-0, and Bohr and the Danish team came home as silver medalists.

Bohr enrolled at the University of Copenhagen in 1904 to study mathematics.
It was reported that during his doctoral dissertation examination, there were more
football fans in attendance than there were mathematicians!

Bohr became a professor in mathematics at the Copenhagen’s Polytechnic Insti-
tute in 1915. He was later appointed as professor at the University of Copenhagen
in 1930, where he remained in that position until his demise on January 22, 1951.

Bohr was an extremely capable teacher. Indeed to his honour, the annual award
for outstanding teacher at the University of Copenhagen is called The Harald.
With Johannes Mollerup, Bohr wrote an influential four-volume textbook entitled
Lærebog i Matematisk Analyse (Textbook in mathematical analysis).

Bohr worked on Dirichlet series, and applied analysis to the theory of numbers.
During this period, Edmund Landau was at Göttingen, studying the Riemann zeta
function �.s/, and whom was also renowned for his unsolved problem on Landau’s
constant (see, for example, [64]). Bohr collaborated with Landau, and in 1914, they
proved the Bohr–Landau theorem on the distribution of zeros for the zeta function.
All but an infinitesimal proportion of these zeros lie in a small neighbourhood of
the line s D 1=2. Although Niels Bohr was an accomplished physicist and Nobel
Laureate, Harald and Niels only had one joint publication.

Bohr’s interest in functions which could be represented by a Dirichlet series led
to the development of almost periodic functions. These are functions which, after a
period, take values within e of the values in the previous period. Bohr pioneered this
theory and presented it in three major works during the years 1923 and 1926 in Acta
Mathematica. It is with these works that his name is now most closely associated.

Titchmarsh [68] made the following citation on Bohr’s work on almost periodic
functions: “The general theory was developed for the case of a real variable, and
then, in the light of it, was developed the most beautiful theory of almost periodic
functions of a complex variable. The creation of the theory of almost periodic
functions of a real variable was a performance of extraordinary power, but was not
based on the most up-to-date methods, and the main results were soon simplified and
improved. However, the theory of almost periodic functions of a complex variable
remains up to now in the same perfect form in which it was given by Bohr”.
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Bohr devoted his life to mathematics and to the theory of almost periodic
functions. Four months before his death, Bohr was still actively engaged with
the mathematical community at the International Congress of Mathematicians in
Cambridge, Massachusetts, in September, 1950; he died soon after the New Year.
Besicovitch wrote: “For most of his life Bohr was a sick man. He used to suffer
from bad headaches and had to avoid all mental effort. Bohr the man was not
less remarkable than Bohr the mathematician. He was a man of refined intellect,
harmoniously developed in many directions. He was also a most humane person.
His help to his pupils, to his colleagues and friends, and to refugees belonging to
the academic world was generous indeed. Once he had decided to help he stopped
at nothing and he seldom failed. He was very sensitive to literature. His favourite
author was Dickens; he had a deep admiration of Dickens’ love of the human being
and deep appreciation of his humour”.

Harald Bohr was elected an Honorary Member of the London Mathematical
Society in 1939. Additional biographical account on Bohr may be obtained from
http://en.wikipedia.org/wiki/Harald_Bohr

2 The Classical Bohr Inequality

Let D denote the unit disk fz 2 C W jzj < 1g and let A denote the space of functions
analytic in the unit disk D. Then A is a locally convex linear topological vector
space endowed with the topology of uniform convergence over compact subsets
of D. We may assume that f 2 A has continuous boundary values and kf k1 D
supz2D jf .z/j. It is evident that each f 2 A has a power series expansion about the
origin. What can be deduced from the sum of the moduli of the terms in the series?

In 1914, Harald Bohr [27] studied this property and made the observation: “In
particular, the solution of what is called the “absolute convergence problem” for
Dirichlet series of the type

P
ann�s must be based upon a study of the relations

between the absolute value of a power-series in an infinite number of variables on
the one hand, and the sum of the absolute values of the individual terms on the
other. It was in the course of this investigation that I was led to consider a problem
concerning power-series in one variable only, which we discussed last year, and
which seems to be of some interest in itself.” More precisely, Bohr obtained the
following remarkable result.

Theorem A (Bohr Inequality (1914)). Let f .z/ D
1P

nD0
anzn be analytic in D, and

kf k1 WD supz2D jf .z/j < 1 for all z 2 D. Then

Mf .r/ WD
1X

nD0
janjrn � kf k1 (1)

for 0 � r � 1=3.

http://en.wikipedia.org/wiki/Harald_Bohr
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Here Mf is the associated majorant series for f . Bohr actually obtained the
inequality (1) only for r � 1=6. M. Riesz, I. Schur, and N. Wiener independently
proved its validity for r � 1=3 and showed that the bound 1=3 was sharp. The best
constant r in (1), which is 1=3, is called the Bohr radius for the class of all analytic
self-maps of the unit disk D. Other proofs can also be found, for example, by Sidon
[67], Tomic [69], and Paulsen et al. in [61] and [62, 63]. Similar problems were
considered for Hardy spaces or for more abstract spaces, for instance, by Boas and
Khavinson in [25]. More recently, Aizenberg [12, 14] extended the inequality in the
context of several complex variables which we shall discuss with some details in
Sect. 3.

2.1 Bohr Phenomenon for the Space of Subordinate Mappings

In recent years, two types of spaces are widely considered in the study of Bohr
inequality. They are the space of subordinations and the space of complex-valued
bounded harmonic mappings. One way of generalizing the notion of the Bohr
phenomenon, initially defined for mappings from D to itself, is to rewrite Bohr
inequality in the equivalent form

1X
kD1

jakjrk � 1 � ja0j D 1 � jf .0/j:

The distance to the boundary is an important geometric quantity. Observe that the
number 1� jf .0/j is the distance from the point f .0/ to the boundary @D of the unit
disk D. Using this “distance form” formulation of Bohr inequality, the notion of
Bohr radius can be generalized to the class of functions f analytic in D which take
values in a given domain ˝. For our formulation, we first introduce the notion of
subordination.

If f and g are analytic in D, then g is subordinate to f , written g  f or g.z/ 
f .z/, if there exists a function w analytic in D satisfying w.0/ D 0, jw.z/j < 1 and
g.z/ D f .w.z// for z 2 D. If f is univalent in D, then g  f if and only if g.0/ D f .0/
and g.D/ � f .D/ (see [44, p. 190 and p. 253]). By the Schwarz lemma, it follows
that

jg0.0/j D jf 0.w.0//w0.0/j � jf 0.0/j:

Now for a given f , let S.f / D fg W g  f g and ˝ D f .D/. The family S.f / is said
to satisfy a Bohr phenomenon if there exists an rf , 0 < rf � 1 such that whenever
g.z/ D P1

nD0 bnzn 2 S.f /, then

1X
nD1

jbnjrn D Mg.r/ � jb0j � dist.f .0/; @f .D// (2)
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for jzj D r � rf . We observe that if f .z/ D .a0 � z/=.1 � a0z/ with ja0j < 1, and
˝ D D, then dist.f .0/; @˝/ D 1 � ja0j D 1 � jb0j so that (2) holds with rf D 1=3,
according to Theorem A. We say that the family S.f / satisfies the classical Bohr
phenomenon if (2) holds for jzj D r < r0 with 1�jf .0/j in place of dist.f .0/; @f .D//.
Hence the distance form allows us to extend Bohr’s theorem to a variety of distances
provided the Bohr phenomenon exists. The following theorem was obtained in [4,
Theorem 1]:

Theorem 1. If f ; g are analytic in D such that f is univalent in D and g 2 S.f /, then
inequality (2) holds with rf D 3� 2p2 � 0:17157. The sharpness of rf is shown by
the Koebe function f .z/ D z=.1 � z/2.

Proof. Let g.z/ D P1
nD0 bnzn  f .z/, where f is a univalent mapping of D onto a

simply connected domain ˝ D f .D/. Then it is well known that (see, for instance,
[44, p. 196] and [33])

1

4
jf 0.0/j � dist.f .0/; @˝/ � jf 0.0/j and jbnj � njf 0.0/j: (3)

It follows that jbnj � 4ndist.f .0/; @˝/, and thus

1X
nD1

jbnjrn � 4dist.f .0/; @˝/
1X

nD1
nrn D 4dist.f .0/; @˝/

r

.1 � r/2
� dist.f .0/; @˝/

provided 4r � .1� r/2, that is, for r � 3�2p2. When f .z/ D z=.1� z/2, we obtain
dist.f .0/; @˝/ D 1=4 and a simple calculation gives sharpness. ut

In [4], it was also pointed out that for f .z/ D z=.1 � z/2, S.f / does not have the
classical Bohr phenomenon. Moreover, from the proof of Theorem 1, it is easy to see
that rf D 3�2p2 could be replaced by 1=3 if f is univalent in D with convex image.
In this case, instead of (3), one uses the following (see [44, p. 195, Theorem 6.4]):

1

2
jf 0.0/j � dist.f .0/; @˝/ � jf 0.0/j and jbnj � jf 0.0/j:

Hence the deduced result clearly contains the classical Bohr inequality (1). In the
next section, we shall present various other generalizations and improved results.

2.2 Bohr Radius for Alternating Series and Symmetric
Mappings

The majorant series of f defined by (1) belongs to a very important class of series,
namely, series with non-negative terms. As pointed out by the authors in [11], there
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is yet another class of interesting series—the class of alternating series. Thus, for

f .z/ D
1P

nD0
anzn, its associated alternating series is given by

Af .r/ D
1X

kD0
.�1/kjakj rk: (4)

In [11], the authors obtained several results on Bohr radius, which include the
following counterpart of Theorem A.

Theorem 2. If f .z/ D
1P

nD0
anzn is analytic and bounded in D, then

ˇ̌
Af .r/

ˇ̌ � kf k1

for 0 � r � 1=
p
3. The radius r D 1=

p
3 is best possible.

In [11], the authors proved the following.

Theorem 3. Let f .z/ D P1
kD1 a2k�1z2k�1 be an odd analytic function in D such

that jf .z/j � 1 in D. Then Mf .r/ � 1 for 0 � r � r�, where r� is a solution of the
equation

5r4 C 4r3 � 2r2 � 4r C 1 D 0;

which is unique in the interval 1=
p
3 < r < 1. The value of r� can be calculated in

terms of radicals as

r� D �1
5

C 1

10

r
A C 32

3
C 1

10

s
64

3
� A

3
C 144

r
3

A C 32
D 0:7313 : : : ;

where

A D 10 � 2 23
�
.47 � 3p93/ 13 C .47C 3

p
93/

1
3

�
:

In [11], an example was given to conclude that the Bohr radius for the class of
odd functions satisfies the inequalities r� � r � r� � 0:7899, where

r� D 1

4

r
B � 2
6

C 1

2

s
3

r
6

B � 2 � B

24
� 1

6
;

with

B D .3601 � 192p327/ 13 C .3601C 192
p
327/

1
3 :

This raises the following open problem.
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Problem 1 ([11]). Find the Bohr radius for the class of odd functions f satisfying
jf .z/j � 1 for all z 2 D.

Apart from the majorant and alternating series defined by (1) and (4), one can
consider a more general type of series associated with f given by

Sn
f .r/ D

1X
kD0

e
2� ik

n jakjrk; (5)

where n is a positive integer. Note that

Mf .r/ D S1f .r/ and Af .r/ D S2f .r/:

The arguments of coefficients of series (5) are equally spaced over the interval
Œ0; 2�/, and thus Sn

f .r/ can be thought of as an argument symmetric series associated
with f . This raised the next problem.

Problem 2 ([11]). Given a positive integer n � 2, and jf .z/j � 1 in D, find the
largest radius rn such that jSn

f .r/j � 1 for all r � rn.

We recall that an analytic function in D is called n-symmetric, where n � 1 is an
integer, if f .e2� i=nz/ D f .z/ for all z 2 D. It is a simple exercise to see that f .z/ D
1P

nD0
anzn is n-symmetric if and only if its Taylor expansion has the n-symmetric form

f .z/ D a0 C
1X

kD1
ankznk:

In [11], the authors generalized Theorem A as follows.

Theorem 4. If f .z/ D P1
kD0 ankznk is analytic in D, and jf .z/j � 1 in D, then

Mf .r/ � 1 for 0 � r � 1=
n

p
3. The radius r D 1=

n
p
3 is best possible.

Proof. Put � D zn and consider a function g.�/ D P1
kD0 ank�

k. Clearly, g is analytic
in D and jg.�/j D jf .z/j � 1 for all j�j < 1. Thus, jankj � 1 � ja0j2 for all k � 1

and this well-known inequality is easily established (see [27] and [60, Exercise 8,
p.172]). For rn � 1=3,

Mf .r/ � ja0j C .1 � ja0j2/
1X

kD1
rnk D ja0j C .1 � ja0j2/ rn

1 � rn

� ja0j C .1 � ja0j2/ 1=3

1 � .1=3/ WD 1

2
h.ja0j/;
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where h.x/ D 1C 2x � x2, 0 � x < 1. Since h.x/ � h.1/, it follows that

Mf .r/ D
1X

kD0
jankjrnk � 1 for r � 1=

n
p
3:

To show that the radius 1= n
p
3 is best possible, consider

'˛.�/ D ˛ � �
1 � ˛�

with � D zn. Then, for each fixed ˛ 2 D, '˛ is analytic in D, '˛.D/ D D and
'˛.@D/ D @D. It suffices to restrict ˛ such that 0 < ˛ < 1. Moreover, for j�j < 1=˛,

'˛.�/ D .˛ � �/
1X

kD0
˛k�k D ˛ � .1 � ˛2/

1X
kD1

˛k�1�k;

and with j�j D �,

M'˛ .�/ D ˛ C .1 � ˛2/
1X

kD1
˛k�1�k D 2˛ � '˛.�/:

It follows that M'˛ .�/ > 1 if and only if .1 � ˛/..1C 2˛/� � 1/ > 0, which gives
� > 1=.1 C 2˛/. Since ˛ can be chosen arbitrarily close to 1, this means that the
radius r D 1=

n
p
3 in Theorem 4 is best possible. ut

In Theorem 4, it would be interesting to find the smallest constant for Bohr
inequality to hold when r > 1= n

p
3. From the proof, it is clear that

M.r/ D sup



t C .1 � t2/

rn

1 � rn
W 0 � t D ja0j � 1

�

D
8<
:

1 for 0 � r � 1=
n

p
3

4r2n C .1 � rn/2

4rn.1 � rn/
for 1= n

p
3 < r < 1:

On the other hand, it follows from the argument of Landau, which is an immediate
consequence of the Cauchy-Bunyakovskii inequality, that

Mf .r/ �
 1X

kD0
jankj2

!1=2  1X
kD0

r2nk

!1=2
D kf k2p

1 � r2n
� kf k1p

1 � r2n
;

where kf k2 stands for the norm of the Hardy space H2.D/. Thus the following result
is obtained.
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Corollary 1. If f .z/ D P1
kD0 ankznk is bounded and analytic in D, then

Mf .r/ � An.r/kf k1;

where An.r/ D inffM.r/; 1=
p
1 � r2ng:

We remark that for r close to 1, M.r/
p
1 � r2n > 1 which is reversed for r close

to 1= n
p
3. So a natural question is to look for the best such constant A.r/. In [28],

Bombieri determined the exact value of this constant for the case n D 1 and for r in
the range 1=3 � r � 1=

p
2. This constant is

A.r/ D 3 �p
8.1 � r2/

r
:

Later Bombieri and Bourgain in [29] considered the function

m.r/ D sup



Mf .r/

kf k1

�

for the case n D 1, and studied the behaviour of m.r/ as r ! 1 (see also [43]).
More precisely, the authors in [29, Theorem 1] proved the following result which
validated a question raised in [61, Remark 1] in the affirmative.

Theorem 5. If r > 1=
p
2, then m.r/ < 1=

p
1 � r2. With ˛ D 1=

p
2, the function

'˛.z/ D .˛ � z/=.1 � ˛z/ is extremal giving m.1=
p
2/ D p

2.

A lower estimate for m.r/ as r ! 1 is also obtained in [29, Theorem 2]. Given
� > 0, there exists a positive constant C.�/ > 0 such that

1

1 � r2
� C.�/

�
log

1

1 � r

	 3
2C�

� m.r/

as r ! 1. A multidimensional generalization of the work in [29] along with several
other issues, including on the Rogosinski phenomena, is discussed in a recent article
by Aizerberg [13]. More precisely, the following problems were treated in [13] (see
also Sect. 3):

1. Asymptotics of the majorant function in the Reinhardt domains in C
n.

2. The Bohr and Rogosinski radii for Hardy classes of functions holomorphic in the
disk.

3. Neither Bohr nor Rogosinski radius exists for functions holomorphic in an
annulus with natural basis.

4. The Bohr and Rogosinski radii for the mappings of the Reinhardt domains into
Reinhardt domains.

If a0 D 0, it follows from the proof of Theorem 4 that the number r D 1=
n

p
3 in

Theorem 4 can be evidently replaced by r D 1=
n

p
2.
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Corollary 2. If f .z/ D P1
kD1 ankznk is analytic in D, and jf .z/j � 1 in D, then

Mf .r/ � 1 for 0 � r � 1=
n

p
2. The radius r D 1=

n
p
2 is best possible as

demonstrated by the function

'˛.z/ D zn

�
˛ � zn

1 � ˛zn

	

with ˛ D 1=
n

p
2.

We now state another simple extension of Theorem 4 which again contains the
classical Bohr inequality for the special case n D 1.

Theorem 6. If f .z/ D P1
kD0 ankznk is analytic in D satisfying Re f .z/ � 1 in D and

f .0/ D a0 is positive, then Mf .r/ � 1 for 0 � r � 1=
n

p
3.

Proof. The proof requires the well-known coefficient inequality for functions with
positive real part. If p.z/ D P1

kD0 pkzk is analytic in D such that Re p.z/ > 0 in D,
then jpkj � 2Re p0 for all k � 1. Applying this result to p.z/ D 1 � f .z/ leads to
jankj � 2.1 � a0/ for all k � 1. Thus

Mf .r/ � a0 C 2.1 � a0/
1X

kD1
rnk D a0 C 2.1 � a0/

rn

1 � rn
;

which is clearly less than or equal to 1 if rn � 1=3. ut
A minor change in the proof of Theorem 4 gives the following result, which for

a0 D 0 provides a vast improvement on the Bohr radius.

Corollary 3. If f .z/ D P1
kD0 ankznk is analytic in D, and jf .z/j � 1 in D, then

ja0j2 C
1X

kD1
jankjrnk � 1

for 0 � r � 1=
n

p
2. The radius r D 1=

n
p
2 is best possible.

Proof. As in the proof of Theorem 4, it follows easily that for rn � 1=2,

ja0j2 C
1X

kD1
jankjrnk � ja0j2 C .1 � ja0j2/ rn

1 � rn
� ja0j2 C .1 � ja0j2/ D 1:

Also, it is easy to see that this inequality fails to hold for larger r. ut
The case n D 1 of Theorem 6 and Corollary 3 appeared in [61].
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2.3 Bohr Phenomenon for Harmonic Mappings

Suppose that f D uC iv is a complex-valued harmonic function defined on a simply
connected domain D. Then f has the canonical form f D h C g, where h and g are
analytic in D. A generalization of Bohr inequality for harmonic functions from D

into D was initiated by Abu Muhanna in [4].

Theorem 7. Let f .z/ D h.z/Cg.z/ D P1
nD0 anznCP1

nD1 bnzn be a complex-valued
harmonic function in D. If jf .z/j < 1 in D, then

1X
nD1
.janj C jbnj/rn � 2

�
� 0:63662

and

1X
nD1

j ei�an C e�i�bnjrn C jRe ei�a0j � 1 (6)

for r � 1=3 and any real �. Equality in (6) is attained by the Möbius transformation

'.z/ D z � a

1 � az
; 0 < a < 1; as a ! 1:

From the proof of Theorem 1, it suffices to have sharp upper estimates for janj C
jbnj and j ei�an C e�i�bnj. With the help of these estimates (see [4, Lemma 4] and
[30, 31]), the proof of Theorem 7 is readily established. In [4], an example of a
harmonic function was given to show that the inequality (6) fails when jRe ei�a0j is
replaced by ja0j.

Theorem 7 was extended to bounded domains in [7]. If D is a bounded set, denote
by D the closure of D, and Dmin the smallest closed disk containing the closure of D.

Theorem 8 ([7, Theorem 4.4]). Let f .z/ D h.z/Cg.z/ D P1
nD0 anzn CP1

nD1 bnzn

be a complex-valued harmonic function in D. If f W D ! D for some bounded
domain D, then, for r � 1=3,

1X
nD1
.janj C jbnj/rn � 2

�
�

and

1X
nD1

jei�an C e�i�bnj rn C jRe ei�.a0 � w0/j � �;

where � and w0 are, respectively, the radius and centre of Dmin.
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The bound 1=3 is sharp as demonstrated by an analytic univalent mapping f from
D onto D. In particular, if D is an open disk with radius � > 0 centred at �w0, then
sharpness is shown by the Möbius transformation

'.z/ D ei�0�

�
z C a

1C az
C jw0j

	

for some 0 < a < 1 and �0 satisfying w0 D jw0jei�0 .

2.4 Bohr Inequality in Hyperbolic Metric

In [5], Abu Muhanna and Ali expressed the Bohr inequality in terms of the spherical
chordal distance

�.z1; z2/ D jz1 � z2jp
1C jz1j2

p
1C jz2j2

; z1; z2 2 C:

Thus the Euclidean distance in inequality (2) is replaced by the chordal distance �.
Let cD denote the complement of D [ @D and H .D; ˝/ be the class consisting

of all analytic functions mapping D into ˝. Denote by H .D/ WD H .D;D/. The
following theorem generalizes Bohr’s theorem for the class H .D; cD/.

Theorem 9. If f .z/ D P1
nD0 anzn 2 H .D; cD/, then

�

 1X
nD0

janznj; ja0j
!

� �.a0; @cD/ (7)

for jzj � 1=3. Moreover, the bound 1=3 is sharp.

Interestingly, if f 2 H .D; cD/, then f  exp ıW for some univalent function
W mapping D onto the right-half plane. Thus exp ıW 2 H .D; cD/ is a universal
covering map. The proof of Theorem 9 in [5] used the following key result.

Lemma 1 (see [9]). If F is a univalent function mapping D onto ˝, where the
complement of ˝ is convex, and F.z/ ¤ 0, then any analytic function f 2 S.Fn/ for
a fixed n D 1; 2; : : :, can be expressed as

f .z/ D
Z

jxjD1
Fn.xz/ d�.x/
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for some probability measure � on the unit circle jxj D 1. (Here S.Fn/ is defined as
in Sect. 2.1.) Consequently,

f .z/ D
Z

jxjD1
exp.Fn.xz// d�.x/;

for every f 2 S.exp ıF/.

In the same paper [5], a result under a more general setting than Theorem 9 was
also obtained.

Theorem 10. Let � be a compact convex body with 0 2 �, 1 2 @�. Suppose
that there is a universal covering map from D into c� with a univalent logarithmic
branch that maps D into the complement of a convex set. If f .z/ D P1

nD0 anzn 2
H .D; c�/ satisfies a0 > 1, then inequality (7) holds for jzj < 3� 2p2 � 0:17157.

Another paper by Abu Muhanna and Ali [6] considered the hyperbolic metric.
Recall that [21] the hyperbolic metric for D is defined by

�D.z/jdzj D 2jdzj
1 � jzj2 ;

the hyperbolic length by

LD.	/ D
Z

	

�D.z/ jdzj;

and the hyperbolic distance by

dD.z;w/ D inf
	

LD.	/ D log
1C

ˇ̌
ˇ z�w
1�zw

ˇ̌
ˇ

1 �
ˇ̌
ˇ z�w
1�zw

ˇ̌
ˇ
:

Here the infimum is taken over all smooth curves 	 joining z to w in D. The function
�D.z/ D 2=.1� jzj2/ is known as the density of the hyperbolic metric on D. For any
simply connected domain ˝, �˝ can be computed via the formula

�˝.w/ D �D.f �1.w//
jf 0.f �1.w//j ; w 2 ˝;
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where f maps D conformally onto ˝. Note that the metric �˝ is independent of the
choice of the conformal map f used. The metrics d˝ and dD satisfy the following
relation:

Theorem 11. Let f W D ! ˝ be analytic, where ˝ is a simply connected
subdomain of C. Then

d˝.f .z/; f .w// � dD.z;w/:

Equality is possible only when f maps D conformally onto ˝.

The authors in [6] incorporated the hyperbolic metric into the Bohr inequality for
three classes of functions. Let H D fz D x C iy W Re z > 0g be the right half-plane.
Then

�Hjdzj D jdzj
Re z

as shown in [21, Example 7.2].

Theorem 12 ([6, Theorem 2.1]). Let f .z/ D P1
nD0 anzn 2 H .D;H/. Then

1X
nD1

janznj � 1

�H.a0/
D dist.a0; @H/

for jzj � 1=3. The bound is sharp.

The next result is on the class H .D;P/, where P D fz W j arg zj < �g is a slit
domain. Its hyperbolic metric [21, Example 7.7] is given by

�Pjdzj D jdzj
2jpzjRe

p
z

D jdzj
2jzj cosŒ.arg z/=2�

� jdzj
2jzj :

Theorem 13 ([6, Theorem 2.3]). Let g.z/ D P1
nD0 bnzn 2 H .D;P/. Then

1X
nD1

jbnznj � 1

2�P.jb0j/ D dist.jb0j; @P/

for jzj � 3 � 2p2 � 0:17157. The bound is sharp.

The final class treated was the class H .D; cD/. By the formula given earlier, it
can be deduced that

�cDjdzj D jdzj
jzj log jzj :
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Theorem 14 ([6, Theorem 2.5]). Let c0 > 1 and h.z/ D P1
nD0 cnzn 2 H .D; cD/.

If jzj � 1=3, then

(a) log

 1X
nD0

jcnznj
!

� log c0 � 1

�H.log c0/
D dist.log c0; @H/,

(b)
1X

nD1
jcnznj � 2

�cD.c0/
, provided c0 � 2.

2.5 Bohr Radius for Concave-Wedge Domain

In [7], another class H .D;W˛/ was considered, where

W˛ WD
n
w 2 C W j arg wj < ˛�

2

o
; 1 � ˛ � 2;

is a concave-wedge domain. In this instance, the conformal map of D onto W˛ is
given by

F˛;t.z/ D t

�
1C z

1 � z

	˛
D t

 
1C

1X
nD1

Anzn

!
; t > 0: (8)

When ˛ D 1, the domain reduces to a convex half-plane, while the case ˛ D 2

yields a slit domain. The results are as follows:

Theorem 15. Let ˛ 2 Œ1; 2�. If f .z/ D a0 CP1
nD1 anzn 2 H .D;W˛/ with a0 > 0,

then

1X
nD1

janznj � dist.a0; @W˛/

for j zj � r˛ D .21=˛ � 1/=.21=˛ C 1/. The function f D F˛;a0 in (8) shows that the
Bohr radius r˛ is sharp.

Theorem 16. Let ˛ 2 Œ1; 2�. If f .z/ D a0 CP1
nD1 anzn 2 H .D;W˛/, then

1X
nD0

janznj � ja0j� � dist.ja0j�; @W˛/

for j zj � r˛ D .21=˛ � 1/=.21=˛ C 1/, where ja0j� D F˛;1
�ˇ̌

F�1
˛;1.a0/

ˇ̌�
and F˛;1 is

given by (8). The function f D F˛;ja0j� shows that the Bohr radius r˛ is sharp.
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Theorem 15 is in the standard distance form for the Bohr theorem but under the
condition a0 > 0. Theorem 16, however, has no extra condition, but the inequality
is only nearly Bohr-like. In a recent paper [11], Theorem 15 is shown to hold true
without the assumption a0 > 0.

2.6 Bohr Radius for a Special Subordination Class

The link between Bohr and differential subordination was also established in [7].
For ˛ � 	 � 0, and for a given convex function h 2 H .D/, let

R.˛; 	; h/ WD ff 2 H .D/ W f .z/C ˛zf 0.z/C 	z2f 00.z/  h.z/; z 2 Dg:

An easy exercise shows that

f .z/  q.z/  h.z/; for all f 2 R.˛; 	; h/;

where

q.z/ D
Z 1

0

Z 1

0

h.zt�s�/ dt ds 2 R.˛; 	; h/: (9)

Thus R.˛; 	; h/ � S.h/ which is a subordination class.

Theorem 17. Let f .z/ D P1
nD0 anzn 2 R.˛; 	; h/, and h be convex. Then

1X
nD1

janznj � dist.h.0/; @h.D//

for all jzj � rCV.˛; 	/, where rCV.˛; 	/ is the smallest positive root of the equation

1X
nD1

1

.1C �n/.1C �n/
rn D 1

2
:

Further, this bound is sharp. An extremal case occurs when f .z/ D q.z/ as defined
in (9) and h.z/ D z=.1 � z/.

Analogously, if h 2 H .D/ is starlike, that is, h is univalent in D and the domain
h.D/ is starlike with respect to the origin, then the function q in (9) is also starlike.
A similar result for subordination to a starlike function is readily obtained.



On the Bohr Inequality 285

Theorem 18. Let f .z/ D P1
nD0 anzn 2 R.˛; 	; h/, and h be starlike. Then

1X
nD1

janznj � dist.h.0/; @h.D//

for all jzj � rST.˛; 	/, where rST.˛; 	/ is the smallest positive root of the equation

1X
nD1

n

.1C �n/.1C �n/
rn D 1

4
:

This bound is sharp. An extremal case occurs when f .z/ D q.z/ as defined in (9)
and h.z/ D z=.1 � z/2.

2.7 Bohr’s Theorem for Starlike Logharmonic Mappings

We end Sect. 2 by discussing a recent extension of Bohr’s theorem to the class
of starlike logharmonic mappings. These mappings have been widely studied, for
example, the works in [10, 57, 59] and the references therein.

Let B.D/ denote the set of all functions a analytic in D satisfying ja.z/j < 1 in
D. A logharmonic mapping defined in D is a solution of the nonlinear elliptic partial
differential equation

fz
f

D a
fz
f
;

where the second dilatation function a lies in B.D/. Thus the Jacobian

Jf D jfzj2 .1 � jaj2/

is positive and all non-constant logharmonic mappings are therefore sense-
preserving and open in D.

If f is a non-constant logharmonic mapping of D which vanishes only at z D 0,
then f admits the representation [1]

f .z/ D zmjzj2ˇmh.z/g.z/; (10)

where m is a nonnegative integer, Reˇ > �1=2, and h and g are analytic functions
in D satisfying g.0/ D 1 and h.0/ ¤ 0. The exponent ˇ in (10) depends only on
a.0/ and can be expressed by



286 Y. Abu Muhanna et al.

ˇ D a.0/
1C a.0/

1 � ja.0/j2 :

Note that f .0/ ¤ 0 if and only if m D 0, and that a univalent logharmonic mapping
in D vanishes at the origin if and only if m D 1, that is, f has the form

f .z/ D zjzj2ˇh.z/g.z/; z 2 D;

where Reˇ > �1=2, 0 … .hg/.D/ and g.0/ D 1. In this case, it follows that F.�/ D
log f .e�/ is a univalent harmonic mapping of the half-plane f� W Re.�/ < 0g.

Denote by SLh the class consisting of univalent logharmonic maps f of the form

f .z/ D zh.z/g.z/

with the normalization h.0/ D g.0/ D 1. Also denote by ST0Lh the class consisting of
functions f 2 SLh which maps D onto a starlike domain (with respect to the origin).
Further let S� be the usual class of normalized analytic functions f satisfying f .D/
is a starlike domain.

Lemma 2 ([2]). Let f .z/ D zh.z/g.z/ be logharmonic in D. Then f 2 ST0Lh if and
only if '.z/ D zh.z/=g.z/ 2 S�.

This lemma shows the connection between starlike logharmonic functions and
starlike analytic functions. The authors made use of Lemma 2 to obtain necessary
and sufficient conditions on h and g so that the function f .z/ D zh.z/g.z/ belongs to
ST0Lh (see [10, Theorem 1]), from which resulted in a sharp distortion theorem.

Theorem 19. Let f .z/ D zh.z/g.z/ 2 ST0Lh. Then

1

1C jzj exp

� �2jzj
1C jzj

	
� jh.z/j � 1

1 � jzj exp

�
2jzj
1 � jzj

	
;

.1C jzj/ exp

� �2jzj
1C jzj

	
� jg.z/j � .1 � jzj/ exp

�
2jzj
1 � jzj

	
;

and

jzj exp

� �4jzj
1C jzj

	
� jf .z/j � jzj exp

�
4jzj
1 � jzj

	
:

Equalities occur if and only if h; g; and f are, respectively, appropriate rotations
of h0; g0, and f0, where

h0.z/ D 1

1 � z
exp

�
2z

1 � z

	
D exp

 1X
nD1

�
2C 1

n

	
zn

!
;



On the Bohr Inequality 287

g0.z/ D .1 � z/ exp

�
2z

1 � z

	
D exp

 1X
nD1

�
2 � 1

n

	
zn

!
;

and

f0.z/ D zh0.z/g0.z/ D z.1 � z/

1 � z
exp

�
Re

�
4z

1 � z

		
:

The function f0 is the logharmonic Koebe function. Theorem 19 then gives

Corollary 4. Let f .z/ D zh.z/g.z/ 2 ST0Lh. Also, let H.z/ D zh.z/ and G.z/ D
zg.z/. Then

1

2e
� dist.0; @H.D// � 1;

2

e
� dist.0; @G.D// � 1;

and

1

e2
� dist.0; @f .D// � 1:

Equalities occur if and only if h; g, and f are, respectively, suitable rotations of
h0; g0, and f0.

Finally, with the help of Corollary 4 and the sharp coefficient bounds from [3,
Theorem 3.3], the Bohr theorems are obtained.

Theorem 20. Let f .z/ D zh.z/g.z/ 2 ST0Lh, H.z/ D zh.z/ and G.z/ D zg.z/. Then

(a) jzj exp

 1X
nD1

janjjzjn
!

� dist.0; @H.D// for jzj � rH � 0:1222, where rH is the

unique root in .0; 1/ of

r

1 � r
exp

�
2r

1 � r

	
D 1

2e
;

(b) jzj exp

 1X
nD1

jbnjjzjn
!

� dist.0; @G.D// for jzj � rG � 0:3659, where rG is the

unique root in .0; 1/ of

r.1 � r/ exp

�
2r

1 � r

	
D 2

e
:

Both radii are sharp and are attained, respectively, by appropriate rotations of
H0.z/ D zh0.z/ and G0.z/ D zg0.z/. Here h0 and g0 are given in Theorem 19.
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Theorem 21. Let f .z/ D zh.z/g.z/ 2 ST0Lh. Then, for any real t,

jzj exp

 1X
nD1

ˇ̌
an C eitbn

ˇ̌ jzjn
!

� dist.0; @f .D//

for jzj � r0 � 0:09078, where r0 is the unique root in .0; 1/ of

r exp

�
4r

1 � r

	
D 1

e2
:

The bound is sharp and is attained by a suitable rotation of the logharmonic Koebe
function f0.

3 Dirichlet Series and n-Dimensional Bohr Radius

3.1 Bohr and the Dirichlet Series

In [19], Balasubramanian et al. extended the Bohr inequality to the setting of
Dirichlet series. This paper brings the Bohr phenomenon back to its origins since
Bohr radius for power series on the disk originated from studying problems on
absolute convergence [27] in the theory of Dirichlet series.

For 1 � p < 1, let Dp be the space of ordinary Dirichlet series consisting of
f .s/ D P1

nD1 ann�s in H D fs D � C it W � > 0g corresponding to the Hardy space
of order p. The space Dp is the completion of the space of Dirichlet polynomials
P.s/ D PN

nD1 ann�s in the norm

kPk D
�

lim
T!1

1

2T

Z T

�T
jP.it/jp dt

	1=p

;

which is equivalent to requiring
P janj2 < 1 when p D 2. The space D1 consists

of the space of Dirichlet series as above with kf k1 WD supfjf .s/j W � D Re s >
0g < 1. Then the Bohnenblust–Hille theorem [26] takes the form

Theorem 22. The infimum of � such that
P1

nD1 janjn�� < 1 for every
P1

nD1 ann�s

in D1 equals 1=2.

For k � 1, let D1
k denote the subspace of D1 consisting of f .s/ D P1

nD1 ann�s

such that an D 0 whenever the number of prime divisors of n exceeds k. If .E; k � k/
is a Banach space of Dirichlet series, the isometric Bohr abscissa and the isomorphic
Bohr abscissa are, respectively, defined as
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�1.E/ D min

(
� � 0 W

1X
nD1

janjn�� � kf k for all f 2 E

)
;

and

�.E/ D inf

(
� � 0 W 9 C� 2 .0;1/ such that

1X
nD1

jankn�� � C�kf k for all f 2 E

)
:

By using a number of recent developments in this topic (some of them related to
the hypercontractivity properties of the Poisson kernel), the authors in [19] obtained
among others the following results:

(1) If 1 � p < 1, then �.Dp/ D 1=2, but this value is not attained. For p D 1,
this is equivalent to determining the maximum possible width of the strip of
uniform, but not absolute, convergence of Dirichlet series (see Theorem 22).

(2) �.D1/ D 1=2, and this value is attained. So
P1

nD1 janjn�1=2 � Ckf k1 for
some absolute constant C (see Theorem 22).

(3) Let p 2 Œ0; 1�. Every f .s/ D P1
nD1 ann�s 2 D1 satisfies

P1
nD1 jann�� jp < 1

whenever � � �0 WD 1=p � 1=2. If � < �0, there is f 2 D1 such that the last
sum is infinite.

(4) �.D1
k / D 1=2 � 1=.2k/, and it is attained.

(5) �1.D1
1 / D 0.

(6) 1:5903 < �1.D1
2 / < 1:5904.

(7) 1:585 < log 3= log 2 � �1.D1/ � 1:8154. In particular,
P1

nD1 janjn�2 �
kf k1.

3.2 The n-Dimensional Bohr Radius

Mathematicians have studied various generalizations of Bohr theorem, for example,
in the works of [12, 14, 24, 25, 40, 41, 48, 49] and the references therein. One
generalization uses power series representation of holomorphic functions defined
on a complete Reinhardt domain, that is, a bounded complete n-circular domain
in C

n. In order to present and summarize certain multidimensional analogs of
the Bohr and related inequalities, consider an n-variable power series

P
˛ c˛z˛

in the standard multi-index notation, where ˛ denotes an n-tuple .˛1; : : : ; ˛n/ of
nonnegative integers, j˛j denotes the sum ˛1 C � � � C ˛n of its components, ˛Š
denotes the product ˛1Š � � �˛nŠ of the factorials of its components, z denotes the
n-tuple .z1; : : : ; zn/ of complex numbers, and z˛ D z˛11 � � � z˛n

n .
Let D be a complete Reinhardt domain. Denote by R.D/ the largest nonnegative

number r such that whenever the power series
P

˛ c˛z˛ converges in D withˇ̌P
˛ c˛z˛

ˇ̌
< 1, then

P
˛ jc˛z˛j < 1 in the homothety rD. The number R.D/ is called

the Bohr radius. In the case of n-dimensional unit polydisk D
n D f.z1; : : : ; zn/ W
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max1�j�n jzjj < 1g, Boas and Khavinson in [25, Theorem 2] showed the following
estimate for the Bohr radius R.D/ (also known as the first Bohr radius, and denoted
by Kn):

1

3
p

n
� Kn � 2

r
log n

n
:

Note that the radius decreases to zero as the dimension of the domain increases. The
result of Boas and Khavinson stimulated a lot of interest in Bohr type questions and
has brought Bohr theorem to prominence even though the generalization of Bohr
radius to the unit polydisk in C

n was first studied in [40]. By using the fact that the
Bohnenblust–Hille inequality is hypercontractive, Defant et al. [35] obtained the
optimal asymptotic estimate for this radius to be

Kn D b.n/

r
log n

n
;

where 1=
p
2 C o.1/ � b.n/ � 2. Bayart et al. [20] proved that Kn behaves

asymptotically as
p
.log n/=n and further improved the bounds for Kn to

Kn D c.n/

r
log n

n
; (11)

where 1 C o.1/ � c.n/ � 2. The article of Bohnenblust–Hille remains a seminal
contribution, and the hypercontractive polynomial Bohnenblust–Hille inequality is
the best one can hope for. It has several interesting consequences, and leads to
precise asymptotic results regarding certain Sidon sets, Bohr radii for polydisks,
and the moduli of the coefficients of functions in H1.

A few years after the first appearance of Kn in [25], Boas [24] extended the Bohr
theorem to the complex Banach space `n

p whose norm is defined by

kzk`n
p

WD
0
@

nX
jD1

jzjjp
1
A
1=p

:

When p D 1, the unit ball is to be interpreted as the unit polydisk in C
n. Denote by

K.B`n
p
/ the corresponding Bohr radius. For 1 � p � 1, it was shown in [24] that

1

c

�
1

n

	1� 1
minfp;2g � K.B`n

p
/ � c

�
log n

n

	1� 1
minfp;2g

;

where c > 0 is a constant independent of p; n. The lower bound was then improved
to the value

p
.log n= log log n/=n in [34]. On the other hand, Aizenberg [12] proved

that
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1

3e1=3
� K.B`n

1
/ � 1=3;

where 1=3 is the best upper bound. Also note that this estimate does not depend
on n. In the same paper, Aizenberg defined the second Bohr radius Bn.G/, which
is the largest radius r such that whenever a multidimensional power series

P
	 a	 z	

is bounded by 1 in the complete Reinhardt domain G, then
P

	 suprG ja	 z	 j � 1.
General lower and upper estimates for the first and the second Bohr radii of bounded
complete Reinhardt domains are given in [37]. Results from both papers [34] and
[37] were proved using certain theorems from [36], which was the first paper linking
multidimensional Bohr study to local Banach space theory. The estimates for Kn

obtained in [36] were in terms of unconditional basis constants and Banach-Mazur
distances. We refer to [39] for a survey on these studies.

3.3 Bohr Radius in the Study of Banach Spaces

A new Bohr-type radius can be found in [38] which relates to the study of Banach
spaces. Let v W X ! Y be a bounded operator between complex Banach spaces,
n 2 N, and � � kvk. The �-Bohr radius of v, denoted by Kn.v; �/, is the supremum
of all r � 0 such that for all holomorphic functions f .z/ D P

˛2Nn
0

c˛z˛ on the
n-dimensional unit polydisk D

n,

sup
z2rDn

X
˛2Nn

0

kv.c˛/z˛kY � � sup
z2Dn

���
X
˛2Nn

0

c˛z˛
���

X
:

If X D C, v is the identity on X and � D 1, then Kn.v; �/ D Kn is exactly the
n-dimensional Bohr radius previously defined. Thus, the main goal in [38] was to
study the Bohr radii of the n-dimensional unit polydisk for holomorphic functions
defined on D

n with values in Banach spaces, for example, by obtaining upper and
lower estimates for Bohr radii Kn.v; �/ of specific operators v between Banach
spaces. Interestingly, Dixon [42] paid attention to applications of Bohr phenomena
to operator theory showing that Bohr theorem is useful in the characterization of
Banach algebras that satisfy von Neuman’s inequality. Later Paulsen et al. in [61]
continued the work in this line of investigation.

It was shown in [22] that the analogous Bohr theorem fails in the Hardy spaces
Hq, 0 < q < 1, equipped with the corresponding Hardy norm. The authors also
showed how renorming a space affected the Bohr radius. In [8], Abu-Muhanna and
Gunatillake found the Bohr radius for the weighted Hardy Hilbert spaces, and again
showed that no Bohr radius exists for the classical Hardy space H2. The Bohr
research on multidimensional weighted Hardy-Hilbert was earlier done in [61].
Thus, in view of the supremum norm, we can say that for the standard basis .zn/1nD0,



292 Y. Abu Muhanna et al.

there exists a compact set fz 2 C W jzj � 1=3g which lies in the open set U � C

such that the norm version Bohr inequality occurred. Hence .zn/1nD0 is said to have
the Bohr property.

In [15] and [16], Aizenberg et al. considered the general bases for the space
of holomorphic functions H .M/ on a complex manifold M. A basis .n/

1
nD0 in

H .M/ is said to have the Bohr Property (BP) if there exist an open set U � M and
a compact set K � M satisfying

X
jcnj sup

U
jn.z/j � sup

K
jf .z/j

for all f D P
cnn 2 H .M/. It was shown in [16] that when 0 D 1 and n.z0/,

n � 1, vanishes for some z0 2 M, then .n/
1
n has the BP. A generalization of this

result can be found in [15, Theorem 4]. Aytuna and Djakov in [18] introduced the
term Global Bohr Property: a basis .n/

1
n in the space of entire functions H .Cn/

has the Global Bohr Property (GBP) if for every compact K � C
n there is a compact

K1 � K such that

X
jcnj sup

K
jn.z/j � sup

K1

jf .z/j

for all f D P
cnn 2 H .Cn/. They showed that a basis .n/

1
n has the GBP if and

only if one of the functions n is a constant. As pointed out in [18], the inequality
of GBP was first stated in a paper by Lassère and Mazzilli [55]. They studied
the power series expressed in Faber polynomial basis which is associated with a
compact continuum in C. In fact, the relation between BP and Faber polynomials
was first discovered by Kaptanoǧlu and Sadık [52]. The radius obtained in [52]
was not sharp. It was later solved in [56] by using better elliptic Carathéodory’s
inequalities.

The connection between Hadamard real part theorem and Bohr theorem can
be seen in [53], in which Kresin and Maz’ya introduced the Bohr type real part
estimates and proved the following theorem by applying the `p norm on the
remainder of the power series expansion:

Theorem 23. Let f .z/ D P1
nD0 anzn 2 A with

sup
j�j<1

Re .e�i arg f .0/f .�// < 1;

where arg f .0/ is replaced by zero if f .0/ D 0. Then for any q 2 .0;1�, integer
m � 1, and jzj � rm;q, the inequality

 1X
nDm

janznjq
!1=q

� sup
j�j<1

Re .e�i arg f .0/f .�// � jf .0/j

holds, where rm;q 2 .0; 1/ is the root of the equation 2qrmqCrq�1 D 0 if 0 < q < 1,
and rm;1 WD 2�1=m. The radius rm;q is best possible.
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With .q;m/ D .1; 1/, the result reduces to the sharp inequality obtained by Sidon
[67] and which contains the classical Bohr inequality. For a discussion on the Bohr-
type real part estimates, we refer to [54, Chap. 6].

There are still many possible directions of extending the Bohr theorem. For
example, in [52], the authors considered the domain of functions bounded by ellipse
instead of the unit disk D. However, the Bohr radius does not exist for the space of
holomorphic functions in an annulus equipped with the natural basis [13]. The Bohr
radius for the class of analytic functions defined on

fz W jz C 	=.1 � 	/j < 1=.1 � 	/g; 0 � 	 < 1;

was given in [46]. Liu and Wang [58] proved another kind of extension of the
classical Bohr inequality involving bounded symmetric domains.

Theorem 24. Let ˝ denote one of the four classical domains in the sense of Hua
[50] or the unit polydisk in C

n. Denote by k � k˝ the Minkowski norm associated
with ˝. Let f W ˝ ! ˝ be a holomorphic map with

f .z/ D
1X

kD0
fk.z/

as its Taylor expansion in k-homogeneous polynomials fk. Let  2 Aut˝ such that
.f .0// D 0. Then

1X
kD0

kD.f .0// � fk.z/k˝
kD.f .0//k˝ < 1

for all z 2 ˝ satisfying kzk˝ < 1=3.

Using a different approach, Roos [66] extended the theorem to any bounded
circled symmetric domain. Earlier results on the generalization of Bohr theorem
using homogeneous expansions can also be found in [12, Theorem 8] and [14].
Meanwhile, the generalization of both the results [58] and [12, Theorem 8] was
obtained by Hamada et al. [49].

On the other hand, Guadarrama [47] considered the polynomial Bohr radius
defined by

Rn D sup
p2Pn

(
r 2 .0; 1/ W

nX
kD0

jakjrk � kpk1; p.z/ D
nX

kD0
akzk

)
;

where Pn consists of all the complex polynomials of degree at most n. The author
showed that

C1
1

3n=2
� Rn � 1=3 � C2

log n

n
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for some positive constants C1 and C2. Subsequently, Fournier [45] computed and
obtained an explicit formula for Rn by applying the notion of bounded-preserving
operators. The following result concerning the asymptotic behaviour of Rn was
proved only recently in [32]:

lim
n!1 n2

�
Rn � 1

3

	
D �2

3
:

As remarked earlier, the authors in [61] square the constant term in the expansion of
f and obtained the sharp Bohr radius 1=2. A similar idea was adopted by Blasco in
[23]. The author introduced and studied the radius

Rp;q.X/ D inffRp;q.f ;X/ W sup
jzj<1

kf kX � 1g;

where X D Lp.�/ or X D `p spaces and

Rp;q.f ;X/ D sup

(
r � 0 W ka0kp

X C
 1X

nD1
kankXrn

!q

� 1; f .z/ D
1X

nD0
anzn

)
:

Popescu et al. [61, 63, 65] established the operator-theoretic Bohr radius. In [51],
Kaptanoǧlu studied the Bohr phenomenon for elliptic equations by considering
the case of harmonic functions for the Laplace-Beltrami operator. The Bohr radii
for classes of harmonic, separately harmonic and pluriharmonic functions were
evaluated in [17]. Extension of Bohr theorem to uniform algebra can also be found
in [62].

3.4 Concluding Remarks on Multidimensional Bohr Radius

To conclude, we discuss some results with regard to the multidimensional Bohr
radius. For functions f holomorphic in D

n of the form

f .z/ D
X
˛

c˛z˛ D
1X

kD0

X
j˛jDk

c˛z˛; (12)

its associated majorant series is given by

Mf .z/ D
X
˛

jc˛z˛j D
1X

kD0

X
j˛jDk

jc˛z˛j:
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Also for an integer m � 1, we extend the definition of an m-symmetric analytic
function of single variable to n-variable: a function f holomorphic in D

n is called
m-symmetric if f .e2� i=mz/ D f .z/ for all z 2 D

n. Also note that a holomorphic
function f of the form (12) is m-symmetric if and only if its Taylor expansion has
the m-symmetric form

f .z/ D
1X

kD0

X
j˛jDk

cm˛zm˛;

where m˛ D .m˛1; : : : ;m˛n/. Therefore if f .z/ D P1
kD0

P
j˛jDk cm˛zm˛ is

holomorphic in D
n, then by letting � D zm, it follows that the function g.�/ DP1

kD0
P

j˛jDk cm˛�
˛ is also holomorphic in D

n. Hence the following result is
obtained as a consequence of the n-dimensional Bohr theorem (11).

Theorem 25. If f .z/ D P1
kD0

P
j˛jDk cm˛zm˛ is holomorphic in D

n for some integer
m � 1, and jf .z/j < 1 in D

n, then Mf .z/ < 1 holds in Kn;m � Dn with

Kn;m D m

s
c.n/

r
log n

n
;

and 1C o.1/ � c.n/ � 2.

Similar to the case of single variable, for a function f holomorphic in D
n of the

form (12), its alternating series can be defined as

Af .z/ D
1X

kD0
.�1/k

X
j˛jDk

jc˛z˛j:

Adopting the idea from [12], denote by BA;n the largest number r such that

MrAf .z/ D
1X

kD0
.�1/k

X
j˛jDk

sup
Dn

r

jc˛z˛j < 1;

where r > 0 and D
n
r D r �Dn is the homothetic transformation of Dn. The following

majorant-type series

Mr;f .z/ D
1X

kD0

X
j˛jDk

sup
Dn

r

jc˛z˛j

will be required in the sequel.

Theorem 26. If f .z/ D P1
kD0

P
j˛jDk c˛z˛ is holomorphic in D

n and jf .z/j < 1 in

D
n, then jMrAf .z/j < 1 holds in BA;n � Dn, where 1 � n

p
2=5 � BA;n.
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Proof. If z D .z1; : : : ; zn/ 2 D
n, then �z D .�z1; : : : ;�zn/ and

.�z/˛ D .�z1/
˛1 � � � .�zn/

˛n D .�1/j˛jz˛:

Define the even and odd parts of f to, respectively, be

fe.z/ D 1

2
.f .z/C f .�z// D

1X
kD0

X
j˛jD2k

c˛z˛;

and

fo.z/ D 1

2
.f .z/ � f .�z// D

1X
kD0

X
j˛jD2kC1

c˛z˛:

As D is convex, it follows that jfe.z/j < 1 and jfo.z/j < 1 in D
n.

Now, Wiener method (see the proof of [25, Theorem 2]) and the multidimen-
sional Cauchy estimate yield

jc˛j � 1 � jc0j2 for j˛j � 1:

The inequality then gives

MrAf .z/ D Mr;fe.z/ � Mr;fo.z/ � Mr;fe.z/

D
1X

kD0

X
j˛jD2k

sup
r�Dn

jc˛z˛j D
1X

kD0

X
j˛jD2k

jc˛j sup
r�Dn

jz˛j

� jc0j C .1 � jc0j2/
1X

kD1
r2k

X
˛1C���C˛nD2k

1

D jc0j C .1 � jc0j2/
1X

kD1

 
2k C n � 1

2k

!
r2k:

Since .1 � r/�n D P1
kD0

�nCk�1
k

�
rk and jc0j < 1, it follows that

MrAf .z/ < jc0j C .1 � jc0j/
�

1

.1 � r/n
C 1

.1C r/n
� 2

	
:

Thus MrAf .z/ < 1 when

1

.1 � r/n
C 1

.1C r/n
� 3: (13)
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On the other hand,

MrAf .z/ D Mr;fe.z/ � Mr;fo.z/ � �Mr;fo.z/

D �
1X

kD0

X
j˛jD2kC1

sup
r�Dn

jc˛z˛j D �
1X

kD0

X
j˛jD2kC1

jc˛j sup
r�Dn

jz˛j

� �.1 � jc0j2/
1X

kD0
r2kC1 X

˛1C���C˛nD2kC1
1

> �
1X

kD0

 
n C 2k

2k C 1

!
r2kC1 D 1

2.1C r/n
� 1

2.1 � r/n
:

Thus MrAf .z/ > �1 when

1

.1 � r/n
� 1

.1C r/n
� 2: (14)

Adding (13) and (14) gives r � 1 � n
p
2=5: ut

Note: After the present survey was completed, Problem 1 on the Bohr radius for odd
analytic functions was solved by I. Kayumov and S. Ponnusamy in a more general
setting: https://arxiv.org/pdf/1701.03884.pdf
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52. Kaptanoǧlu H.T., Sadık N.: Bohr radii of elliptic region. Russ. J. Math. Phys. 12(3), 363–365
(2005)

53. Kresin G., Maz’ya V.: Sharp Bohr type real part estimates. Comput. Methods Funct. Theory
7(1), 151–165 (2006)

54. Kresin, G., Maz’ya, V.: Sharp Real-Part Theorems. A Unified Approach. [Translated from the
Russian and edited by T. Shaposhnikova]. Lecture Notes in Mathematics, vol. 1903. Springer,
Berlin (2007)

55. Lassère, P., Mazzilli, E.: Bohr’s phenomenon on a regular condenser in the complex plane.
Comput. Methods Funct. Theory 12(1), 31–43 (2012)

56. Lassère, P., Mazzilli, E.: The Bohr radius for an elliptic condenser. Indag. Math. (N.S.) 24(1),
83–102 (2013)

57. Li, P., Ponnusamy, S., Wang, X.: Some properties of planar p-harmonic and log-p-harmonic
mappings. Bull. Malays. Math. Sci. Soc. (2) 36(3), 595–609 (2013)



300 Y. Abu Muhanna et al.

58. Liu, T., Wang, J.: An absolute estimate of the homogeneous expansions of holomorphic
mappings. Pacific J. Math. 231(1), 155–166 (2007)

59. Mao, Z., Ponnusamy, S., Wang, X.: Schwarzian derivative and Landau’s theorem for loghar-
monic mappings. Complex Var. Elliptic Equ. 58(8), 1093–1107 (2013)

60. Nehari Z.: Conformal mapping. Reprinting of the 1952 edition, vii+396 pp. Dover Publications,
Inc., New York (1975)

61. Paulsen V.I., Popescu G., Singh D.: On Bohr’s inequality. Proc. Lond. Math. Soc. 85(2),
493–512 (2002)

62. Paulsen, V.I., Singh, D.: Bohr’s inequality for uniform algebras. Proc. Am. Math. Soc. 132(12),
3577–3579 (2004)

63. Paulsen, V.I., Singh, D.: Extensions of Bohr’s inequality. Bull. Lond. Math. Soc. 38(6),
991–999 (2006)

64. Ponnusamy S.: Foundations of Complex Analysis. Alpha Science International Publishers, UK
(2005)

65. Popescu, G.: Multivariable Bohr inequalities. Trans. Am. Math. Soc. 359(11), 5283–5317
(2007)

66. Roos G.: H. Bohr’s theorem for bounded symmetric domains. arXiv:0812.4815 (2011)
67. Sidon S.: Über einen Satz von Herrn Bohr. Math. Z. 26(1), 731–732 (1927)
68. Titchmarsh E.C.: Obituary: Harald Bohr. J. Lond. Math. Soc. 28, 113–115 (1953)
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Abstract We construct the analogues of Bernstein polynomials on the set Js

of s finitely many intervals. Two cases are considered: first when there are no
restrictions on Js, and then when Js has a so-called T-polynomial. On such sets
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be the corresponding set of s pairwise disjoint intervals, and denote by ˘n the set
of polynomials of degree at most n. Denote by C.Js/ the set of continuous functions
on Js.

Some basic problems of approximation theory like Markov–Bernstein inequali-
ties or Lagrange interpolation have been considered for functions f 2 C.Js/; see, for
example, [4] or [2]. It is equally important to establish analogues of classic operators
on this set. In this context we will be concerned with generalizations of Bernstein
polynomial.

2 The General Case

The simplest construction for a general set Js is the following. If f 2 C.Js/ is
not differentiable, then extend it to Œ0; 1� n Js by defining it as a linear function
in each Œbj; ajC1�; j D 1; : : : ; s � 1; continuously connecting the different parts of
the original function. If f 0 2 C.Js/, then in each Œbj; ajC1�; j D 1; : : : ; s � 1; define
f as the third degree Hermite polynomial satisfying

Hj.bj/ D f .bj/; H0
j.bj/ D f 0.bj/; Hj.ajC1/ D f .ajC1/; H0

j.ajC1/ D f 0.ajC1/;

1 � j � s � 1: Then evidently the modulus of continuity !.Qf ; t/ � c!.f ; t/ in
the first case, and !.Qf 0; t/ � c!.f 0; t/ in the second case. Thus considering the
ordinary Bernstein polynomials for the extended function Qf on Œ0; 1�, we obtain
the usual error estimates c!.f ; 1=

p
n/ and !.f 0; 1=

p
n/=

p
n in the corresponding

cases, respectively. (In the latter case besides function values, derivative values at
the endpoints Ij of the function also appear in the construction.)

This method has two disadvantages. First, in the classic case the difference
between the number of data used in the construction and the degree of the Bernstein
polynomials is 1, while here it is cn. Second, the classic Bernstein polynomials
interpolate at the endpoints of the interval, while here not.

3 The Case of T-Polynomials

It is well known that given arbitrary positive integer m, a set Js always has a so-called
Chebyshev polynomial of degree m, i.e., a polynomial which attains its maximum
and minimum on Js at consecutive mC1 points in Js. If, in addition, this polynomial
attains its maximum or minimum on Js at the endpoints of Ij; j D 1; : : : ; s, then we
say that this is a T-polynomial. Of course, this additional property does not hold
for all sets Js. It was F. Peherstorfer who introduced this notion, and thoroughly
investigated its existence and properties (see [5, 6]).
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It will be convenient to assume that a T-polynomial has a minimum 0 and
maximum 1 on Js.

Assume that Js has a T-polynomial p.x/ 2 ˘m; m � s normalized such that
p.0/ D 0. For n 2 N, let xk1 < � � � < xkmk be defined by

p.xki/ D k

n
; i D 1; : : : ;mkI k D 0; : : : ; n

where

mk D

8
ˆ̂<
ˆ̂:

m C s � �
mCs
2

�
; if k D 0;

m; if k D 1; : : : ; n � 1;�
mCs
2

�
; if k D n:

The existence of such xki’s follows from the properties of T-polynomials (they are
monotone between two adjacent extremal values).

For an arbitrary f .x/ 2 C.Js/, let

Lk.f ; x/ D
mkX

iD1
f .xki/`ki.x/ 2 ˘mk�1; k D 0; 1; : : : ; n ;

be the Lagrange interpolation polynomial with respect to the nodes xki. Here `ki.x/ 2
˘mk�1 are the fundamental polynomials with the property

`ki.xkj/ D ıij; i; j D 1; : : : ;mk; k D 0; 1; : : : ; n : (1)

Consider the discrete linear operator

Bn.f ; x/ WD
nX

kD0
Lk.f ; x/bnk.p.x//; x 2 Js ; (2)

where

bnk.x/ D
 

n

k

!
xk.1 � x/n�k; k D 0; : : : ; n ;

are the fundamental functions of the Bernstein polynomials. Evidently, Bn.f ; x/ 2
˘mnCm�1, and there are mn C s function values used in the construction of the
operator. This means that the difference between the number of function values and
the degree of the operator is m � s C 1, i.e., independent of n, just like in case of the
classic Bernstein polynomials. In this respect they are better than the polynomials
defined in the previous section.
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Although this is not a positive operator, it still has a bounded norm; this will
follow from Theorem 1 below.

We mention two properties of this operator. The first one is about reproducing
polynomials:

Bn.q; x/ � q.x/ if q 2 ˘mn�1 or q D p : (3)

Namely, if q 2 ˘mn�1, then Lk.q; x/ � q.x/; k D 0; 1; : : : ; n, by the reproducing
property of Lagrange interpolation, and thus

Bn.q; x/ D q.x/
nX

kD0
bnk.p.x// D q.x/ :

And if q D p, then Lk.p; x/ � k
n ; k D 0; 1; : : : ; n, whence

Bn.p; x/ D
nX

kD0

k

n
bnk.p.x// D p.x/ ;

since the classic Bernstein polynomials reproduce linear functions. Again, this
is better than the corresponding reproducing property of the classic Bernstein
polynomials (which reproduce only linear functions).

The second property is about interpolation:

Bn.f ; xki/ D f .xki/; i D 1; : : : ;mkI k D 0 or n : (4)

Namely, p.x0i/ D 0; i D 1; : : : ;m0, and thus

Bn.f ; x0i/ D L0.f ; x0i/ D f .x0i/; i D 1; : : : ;m0 :

Similarly for the xni’s. Notice that the polynomials defined in the previous section
interpolate only at 0 and 1.

Now we state a pointwise convergence estimate. Let

'.x/ D
q
.x � aj/.bj � x/ if x 2 Ij; j D 1; : : : ; s;

and define the Ditzian–Totik modulus of continuity (cf. [1, Chap. 1]) as

!'.f ; t/ D sup
0<h�t

k�h'.x/f .x/kJs

where the difference is meant to be zero if any of the arguments is outside Js, and we
assume that t is so small that both x ˙ '.x/ fall into the same interval Ij. Further let
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V.f / D sup
x;y2Js

jf .x/ � f .y/j :

Theorem 1. For an arbitrary f 2 C.Js/ we have

kf .x/ � Bn.f ; x/kJs � c!'

�
f ;

1p
n

	
C c

V.f /p
n
:

(Here and in what follows, c will always denote a positive constant depending on Js

and m, but independent of n, not necessarily the same at each occurrence.) Note that
the second term in the error estimate cannot be dropped, since for functions which
are constant on each interval Ij, the modulus of continuity is zero, while the operator
does not reproduce such functions.

For the proof we need the following:

Lemma 1. Let .˛; ˇ/ be one of the pairs of numbers .0; 1/; .1=2; 1/; .1; 1/;

.1; 2/; .3=2; 2/. Then

Œn=2�X
kD1

�n

k

�˛ ˇ̌ˇ̌x � k

n

ˇ̌
ˇ̌
ˇ

bnk.x/ �
8<
:

c
�

x
n

� ˇ�˛
2 ; if 0 � x � 1=n;

c xˇ=2�˛

nˇ=2
; if 1=n � x � 1 :

Proof. By Cauchy–Schwarz inequality we get for 0 � x � 1=n,

T WD
Œn=2�X
kD1

�n

k

�˛ ˇ̌ˇ̌x � k

n

ˇ̌
ˇ̌
ˇ

bnk.x/ �
0
@
Œn=2�X
kD1

�n

k

�2˛ �
x � k

n

	2ˇ
bnk.x/

1
A
1=2

�
0
@
Œn=2�X
kD1

�
x � k

n

	2ˇ�2˛
bnk.x/

1
A
1=2

:

Now we use the inequalities

nX
kD0

ˇ̌
ˇ̌x � k

n

ˇ̌
ˇ̌
2	

bnk.x/ � c
� x

n

�	
; (5)

where 	 D 1=2 or 1 and 0 � x � 1, or 	 D 2 and 1=n � x � 1. These follow from
well-known relations (cf. Lorentz [3, p. 14]). Hence we obtain the first statement of
the lemma.

Next let 1=n � x � 1: We obtain, using again (5),

T �
0
@
Œn=2�X
kD1

�n

k

�2˛ �
x � k

n

	2ˇ
bnk.x/

1
A
1=2

� 1

x˛

0
@
Œn=2�X
kD1

�
x � k

n

	2ˇ
bnC2˛;k.x/

1
A
1=2
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� c

x˛

0
@
Œn=2�X
kD1

�
x � k

n C 2˛

	2ˇ
bnC2˛;k.x/

1
A
1=2

C c
1

nˇ�˛ � c
xˇ=2�˛

nˇ=2
: �

Proof of Theorem 1. Let x 2 .�; �/ � Ij D Œaj; bj� be such that p.�/ D 0; p.�/ D 1

and p0.x/ > 0 (the case p0.x/ < 0 can be handled similarly). Let p.xkt/ D k
n where

xkt 2 Œ�; ��: Let

Sk D
(

ftg; if � D aj;

ft � 1; tg; if � > aj :

Since both operators Lk and the classic Bernstein polynomials reproduce constants,
we get

jf .x/ � Bn.f ; x/j �
nX

kD0

mkX
iD1

jf .x/ � f .xki/j � j`ki.x/jbnk.p.x//

�c
nX

kD0

8<
:!'

�
f ;

1p
n

	X
i2Sk

 p
n

'.x/
.x � xki/C 1

�
j`ki.x/j

CV.f /
X
i…Sk

j`ki.x/j
9=
; bnk.p.x// :

Here we used the inequality '
� xCxki

2

� � c'.x/; i 2 Sk.

We estimate the right-hand side sum for 0 � k � n=2; the other part can be
handled similarly. Then it is sufficient to consider the case 0 � p.x/ � 4=5, since
for 4=5 � p.x/ � 1 we get

Œn=2�X
kD0

�n

k

�˛
bnk.p.x// � n˛.1 � p.x//n=2

nX
kD0

 
n

k

!
p.x/k

� n˛2n.1=5/n=2 D n˛.4=5/n=2 :

This geometric convergence to zero implies that all similar sums to be handled
subsequently are minor compared to the estimates for 0 � p.x/ � 4=5. Also, it
is sufficient to consider the case when � < bj, since � D bj corresponds to the case
� D aj.

Let first k D 0. Then we have j`0i.x/j � c; i D 0; 1; : : : ;m0; and

.x � x0i/j`0i.x/j
'.x/

� c
x � x0t

'.x/
� c

p
p.x/; i D 1; : : : ;m0 :
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Hence

� p
n

'.x/
.x � x0i/C 1

	
j`0i.x/jbn0.p.x// � c.

p
np.x/.1 � p.x//n C c � c :

Now let 1 � k � n=2. In order to complete the proof of Theorem 1 we need to
prove the following estimates:

A WD
Œn=2�X
kD1

X
i2Sk

j`ki.x/jbnk.p.x// � c ;

B WD
Œn=2�X
kD1

X
i2Sk

jx � xkij � j`ki.x/jbnk.p.x// � '.x/p
n
;

C WD
Œn=2�X
kD1

X
i…Sk

j`ki.x/jbnk.p.x// � cp
n
:

We distinguish two cases.

Case 1: Sk D ftg: Then j`kt.x/j � c, whence A � c
PŒn=2�

kD1 bnk.p.x// � c. On
the other hand, jx � xktj � c

ˇ̌
p.x/ � k

n

ˇ̌
, therefore by Lemma 1 applied with

˛ D 0; ˇ D 1 yields

B � c
Œn=2�X
kD1

jx � xktjbnk.p.x// � c
Œn=2�X
kD1

ˇ̌
ˇ̌p.x/ � k

n

ˇ̌
ˇ̌ bnk.p.x// � c

r
p.x/

n
� c

'.x/p
n
:

Finally, using j`ki.x/j � c
p n

k jx � xktj; i … Sk, and Lemma 1 with ˛ D 1
2
; ˇ D 1,

C � c
Œn=2�X
kD1

r
n

k
jx � xktjbnk.p.x// � c

Œn=2�X
kD1

r
n

k

ˇ̌
ˇ̌p.x/ � k

n

ˇ̌
ˇ̌ bnk.p.x// � cp

n
:

Case 2: Sk D ft � 1; tg. Then

j`kt.x/j � c
x � xk;t�1

xkt � xk;t�1
� 1C c

r
n

k
jx � xktj ;

j`k;t�1.x/j � c
jx � xktj

xkt � xk;t�1
� c

r
n

k
jx � xktj :

j`ki.x/j � c
jx � xktj.x � xk;t�1/

xki � xk;i˙1
� cjx � xktj C

r
n

k
.x � xkt/

2; i … Sk :

We also need the inequalities
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jx � xktj �
8<
:

c
p n

k

�
p.x/ � k

n

�
; if 1 � k � n min.p.x/; 1=2/;

c min
�q

k
n ;

1p
p.x/

�
k
n � p.x/

��
if n min.p.x/; 1=2/ < k � n=2 ;

and

0 < x � xk;t�1 � cjx � xktj C c

r
k

n
:

These relations can be easily seen by using the mean value theorem and
considering that p0.x/ 	 p

p.x/.

Using Lemma 1 with ˛ D ˇ D 1 we have

A � c
Œn=2�X
kD1

�
1C

r
n

k
jx � xktj

	
bnk.p.x//

� c C c
Œn min.p.x/;1=2/�X

kD1

n

k

�
k

n
� p.x/

	
bnk.p.x//C

Œn=2�X
kDŒn min.p.x/;1=2/�

bnk.p.x// � c ;

and since now '.x/ � c, Lemma 1 for .˛; ˇ/ D .1=2; 1/; .3=2; 2/; .0; 1/ gives

B � c
Œn=2�X
kD1

jx � xktj
�
1C

r
n

k
jx � xktj

	
bnk.p.x//

� c
Œn min.p.x/;1=2/�X

kD1

(r
n

k

�
p.x/ � k

n

	
C
�n

k

�3=2 �
p.x/ � k

n

	2)
bnk.p.x//

C
Œn=2�X

kDŒn min.p.x/;1=2/�

(
1p
p.x/

�
k

n
� p.x/

	)
bnk.p.x// � cp

n
� c

'.x/p
n
:

Finally, using

j`ki.x/j � c

ˇ̌
ˇ̌ .x � xkt/.x � xk;t�1/

xki � xk;i˙1

ˇ̌
ˇ̌ � cjx � xktj C c

r
n

k
.x � xkt/

2; i … S :

we get

C � c
Œn=2�X
kD1

�
jx � xktj C

r
n

k
.x � xkt/

2

	
bnk.p.x// :

But this leads to the same estimate as for B above. �
Next, we state an equivalence result.
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Theorem 2. We have

kf � Bn.f /kJs D O.n�˛=2/ ” !'.f ; t/ D O.t˛/; 0 < ˛ < 1 :

For the proof we need two lemmas.

Lemma 2. We have

k'B0
n.f /kJs � c

p
nV.f /

for all f 2 C.Js/.

Proof of Lemma 2. We make the same assumptions on x and on the summation for
k as in the proof of Theorem 1. Differentiating the identity

nX
kD0

mkX
iD1

`ki.x/bnk.p.x// D 1

we obtain

nX
kD0

mkX
iD1

f .x/`ki.x/b
0
nk.p.x//p

0.x/C
nX

kD0

mkX
iD1

f .x/`0
ki.x/bnk.p.x// D 0 :

Also, differentiating the operator Bn.f ; x/ and subtracting the pervious relation we
obtain

'.x/jB0
n.f ; x/j � '.x/V.f /

nX
kD0

mkX
iD1

˚j`ki.x/jb0
nk.p.x//jp0.x/j C j`0

ki.x/jbnk.p.x//
�

� cV.f /
nX

kD0

mkX
iD1

np
p.x/j`ki.x/jb0

nk.p.x//C j`0
ki.x/jbnk.p.x//

o
;

since

'.x/jp0.x/j � c
p

p.x/ : (6)

Thus we have to prove:

A WD
p

p.x/
Œn=2�X
kD0

 
mkX

iD1
j`ki.x/j

!
b0

nk.p.x// � c
p

n
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and

B WD
Œn=2�X
kD0

 
mkX

iD1
j`0

ki.x/j
!

bnk.p.x// � c
p

n :

For k D 0 we have j`ki.x/j � c; and by the Markov inequality j`0
ki.x/j � c for all

i D 1; : : : ;m0, thus the contribution to A and B will be

n
p

p.x/.1 � p.x//n�1 � c
p

n and c.1 � p.x//n � c ;

respectively.
So let 1 � k � Œn=2�. Since

jb0
nk.p.x//j � cn

p.x/

ˇ̌
ˇ̌p.x/ � k

n

ˇ̌
ˇ̌ bnk.p.x// ; (7)

we have

A � c
p

n C cnp
p.x/

Œn=2�X
kD1

 
mkX

iD1
j`ki.x/j

! ˇ̌
ˇ̌p.x/ � k

n

ˇ̌
ˇ̌ bnk.p.x// :

From the proof of Theorem 1 we can see that

j`ki.x/j � c C c

r
n

k
jx � xktj

� c C
(

c n
k

�
p.x/ � k

n

�
; if 1 � k � n min.p.x/; 1=2/;

0; if n min.p.x/; 1=2/ < k � Œn=2� ;

i D 1; : : : ;mkI k D 1; : : : ; Œn=2�, where again xkt is the nearest node to x on the
right. Thus we obtain, using Lemma 1 with ˛ D 1; ˇ D 2,

A � c
p

n C cnp
p.x/

n min.p.x/;1=2/X
kD1

n

k

�
p.x/ � k

n

	2
bnk.p.x//

� c
p

n C cnp
p.x/

 r
p.x/

n
C 1

n

!
� c

p
n ;

since the sum appears only if p.x/ � 1=n.



Bernstein-Type Polynomials on Several Intervals 311

Finally, since j`ki.x/j � c
p

n, consequently j`0
ki.x/j � c

p
n, we obtain

B � c
p

n
nX

kD0
bnk.p.x// � c

p
n : �

Lemma 3. We have

k'B0
n.f /kJs � c.k'f 0kJs C V.f //

for all f 0 2 C.Js/.

Remark. The example of a piecewise constant function shows that the second term
on the right-hand side is necessary.

Proof of Lemma 3. Similarly as in the proof of Lemma 2, by (6) and (7) we obtain

'.x/jB0
n.f ; x/j �c'.x/jp0.x/j

nX
kD0

 
mkX

iD1
jf .x/ � f .xki/j � j`ki.x/j

!
jb0

nk.p.x//j

C c'.x/
nX

kD0

 
mkX

iD1
jf .x/ � f .xki/j � j`0

ki.x/j
!

bnk.p.x// :

(8)

Since '.x/ � p
x � aj, we have

'.x/jf .x/ � f .xki/j D '.x/

ˇ̌
ˇ̌
Z x

xki

f 0.t/ dt

ˇ̌
ˇ̌

� c'.x/k'f 0kJs

Z x

xki

dt

'.t/
� cjx � xkij � k'f 0kJs ; i 2 Sk : (9)

Hence (8) will take the form

'.x/jB0
n.f ; x/j � ck'f 0kJs

nX
kD0

8<
:

0
@X

i2Sk

j.x � xki/`ki.x/j
1
A p0.x/jb0

nk.p.x//j

C
0
@X

i2Sk

j.x � xki/`
0
ki.x/j

1
A bnk.p.x//

9
=
;

CcV.f /'.x/
nX

kD0

8
<
:

0
@X

i…Sk

j`ki.x/j
1
A p0.x/jb0

nk.p.x//j C
0
@X

i…Sk

j`0
ki.x/j

1
A bnk.p.x//

9
=
; :
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Let

Ak WD p0.x/
X
i2Sk

j.x � xki/`ki.x/j; Bk WD
X
i2Sk

j.x � xki/`
0
ki.x/j ;

Ck WD p0.x/'.x/
X
i…Sk

j`ki.x/j; Dk WD '.x/
X
i…Sk

j`0
ki.x/j :

Let first k D 0. Then A0 	 C0 � c.x � x0t/, and both contribute

A0jb0
n0.p.x//j 	 C0jb0

n0.p.x//j �
� cnp0.x/.x � x0t/.1 � p.x//n�1 � cnp.x/.1 � p.x//n�1 � c :

Similarly, B0 	 D0 � c, and their contribution is also majorized by constant.
Now let 1 � k � n=2. Assume first that aj D � < x < � (i.e. x is at the left

“edge” of the interval Ij). Then

Ak 	 Bk � c

ˇ̌
ˇ̌p.x/ � k

n

ˇ̌
ˇ̌ ; Ck � c

r
np.x/

k

ˇ̌
ˇ̌p.x/ � k

n

ˇ̌
ˇ̌ ; Dk 	

r
np.x/

k
;

Thus summing up for 1 � k � n using these estimates and the relation jb0
nk.x/j �

c n
x

ˇ̌
x � k

n

ˇ̌
bnk.x/ we get

nX
kD1

Akb0
nk.p.x// � c

n

p.x/

nX
kD1

�
p.x/ � k

n

	2
bnk.p.x// � c

(cf. (5) with 	 D 2),

nX
kD1

Bkbnk.p.x// � c
nX

kD1

ˇ̌
ˇ̌p.x/ � k

n

ˇ̌
ˇ̌ bnk.p.x// � c

r
p.x/

n

(cf. (5) with 	 D 1),

nX
kD1

Ckjb0
nk.p.x//j � c

n

p.x/

nX
kD1

r
np.x/

k

�
p.x/ � k

n

	2
bnk.p.x//

� cnp
p.x/

 
nX

kD1

k

n

�
p.x/ � k

n

	2
bnk.p.x//

nX
kD1

�
p.x/ � k

n

	2
bnk.p.x//

!1=2

� cnp
p.x/

�
1

n
� p.x/

n

	1=2
� c
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(cf. Lemma 1 with ˛ D 1; ˇ D 2), and

nX
kD1

Dkbnk.p.x// � c
nX

kD1

r
np.x/

k
bnk.p.x// �

p
p.x/

nX
kD1

�n

k
bnk.p.x//

�1=2 � c

(cf. Lemma 1 with ˛ D 1; ˇ D 0).
Finally, let aj < � < x < �, i.e., x is “inside” the interval Ij. Since now p0.x/ �

c
p

p.x/, we have

Ak 	 Ck � c
p

p.x/

�r
n

k
.x � xkt/

2 C x � xkt

	
; Bk 	 Dk � c

r
n

k
.x � xkt/C 1 :

Using previous estimates for jx � xktj we get

nX
kD1

Akjb0
nk.p.x/j � c

np
p.x/

nX
kD1

�r
n

k
.x � xkt/

2 C x � xkt

	 ˇ̌
ˇ̌p.x/ � k

n

ˇ̌
ˇ̌ bnk.p.x//

� cnp
p.x/

X
1�k�np.x/

"�n

k

�3=2 ˇ̌ˇ̌p.x/ � k

n

ˇ̌
ˇ̌
3

C
r

n

k

�
p.x/ � k

n

	2#
bnk.p.x//

C cn

p.x/

X
np.x/�k�n

�
p.x/ � k

n

	2
bnk.p.x// � cn

nX
kD1

�n

k

�2 ˇ̌ˇ̌p.x/ � k

n

ˇ̌
ˇ̌
3

bnk.p.x//

C np
p.x/

 
nX

kD1

n

k

�
p.x/ � k

n

	2
bnk.p.x//

!1=2
C c

� cn

�
1

n
C 1p

xn3=2

	
C 1p

np.x/
C c � c :

And finally,

nX
kD1

r
n

k
C 1

�
bnk.p.x// � c

X
1�k�np.x/

n

k

ˇ̌
ˇ̌p.x/ � k

n

ˇ̌
ˇ̌ bnk.p.x//

C
X

np.x/�k�n

bnk.p.x//C c � c :

�
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Proof of Theorem 2. The implication “(H” follows from Theorem 1. The proof
of the other direction is modelled after the proof of (9.3.3) in [1] for the classic
Bernstein-type operators. Define the K-functional by

K'.f ; t/ WD inf.kf � gkJs C tk'f 0kJs/ ;

where the infimum is taken over all functions g which are absolutely continuous on
each interval Ij. By applying Lemmas 2 and 3 for fig and g, respectively, we get

K'

�
f ;

1p
n

	
�kf � Bk.f /kJs C 1p

n
k'B0

k.f /kJs

�kf � Bk.f /kJs C cp
n

�p
kkf � gkJs C k'g0kJs C c

�

�kf � Bk.f /kJs C cp
k

C c

r
k

n
K'

�
f ;

1p
k

	

� c

k˛=2
C c

r
k

n
K'

�
f ;

1p
k

	
; 0 < ˛ < 1 :

Applying the Berens–Lorentz lemma (cf. Lemma 9.3.4 from [1]) with r D 1=2 we
get

K'

�
f ;

1p
n

	
� c

n˛=2
; whence K'.f ; t/ � ct˛; 0 < ˛ < 1 :

This easily implies !'.f ; t/ � t˛ (cf. the proof in Sect. 2.4 in [1]). �

We do not know if the operator Bn is saturated with O.n�1=2/. The following
example seems to support this conjecture.

Example. Let m � s � 1. Then there are m � s extremal points of p.x/ inside Js.
Assume that there exists an extremal point such that p.x/ D 1, and let

f0.x/ D
mnY
iD1
.x � xni/ 2 ˘mn ; mn D


m C s

2

�
:

Then

kf0.x/ � Bn.f0; x/kJs 	 1p
n
:

Here the upper estimate follows from Theorem 1. To prove the lower estimate,
note that
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Lk.f0; x/ D
(

f0.x/; if k D 0; : : : ; n � 1;
0; if k D n :

Thus

f0.x/ � Bn.f0; x/ D f0.x/p.x/
n :

Now let xnr 2 intJs be such that p.xnr/ D 1 and let x D xnr C 1p
n
. Then

jf0.x/ � Bn.f0; x/j � c.x � xnr/.1 � jp.xnr/ � p.x/j/n

� c.x � xnr/.1 � c.x � xnr/
2/n � cp

n
:
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Best Approximation by Logarithmically
Concave Classes of Functions
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Abstract The paper contains results on best approximation by logarithmically
concave classes of functions. For example, we prove the following: Let Pc denote
the class of real polynomials, having �1 and 1 as consecutive zeros, and whose zeros
zk D xkCiyk; i2 D �1, satisfy the inequality jykj � jxkj�1. Let i.x/ D 1; x 2 Œ�1; 1�
be the unit function on the interval Œ�1; 1� and 1 � p < 1. Then, there exists a
unique constant cp such that

inf
q2Pc

Z 1

�1
ji.x/ � q.x/jpdx D

Z 1

�1
ji.x/ � cp.1 � x2/jpdx:

The exact values of the best approximation are found in the particular cases p D 1

and p D 2.

Keywords Uniqueness of best approximation • Logarithmically concave classes
of functions • Polynomials with only real zeros • Laguerre–Pólya class of entire
functions
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In a lecture given at the Université de Montreal by J.G. Clunie, the following
proposition has been formulated as crucial in the proof of a necessary and sufficient
condition for an entire function to have only real zeros.

Proposition 1. Let Pr denote the class of polynomials with only real zeros, having
�1 and 1 as consecutive zeros. Then for the best L1Œ�1; 1� approximation of the unit
function i.x/ D 1; x 2 Œ�1; 1� by polynomials q 2 Pr the following estimate from
below holds:
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inf
q2Pr

Z 1

�1
ji.x/ � q.x/jdx > 0:1:

Proposition A says that the best L1Œ�1; 1� approximation of the unit function i by
polynomials from the class Pr is bounded from below by a positive constant.

Question Asked by Q.I. Rahman Inspired by the result formulated in Proposi-
tion 1, Q.I. Rahman asked the following question: Let 0 < p < 1. Find the best
LpŒ�1; 1� approximant to the unit function i by polynomials q from the class Pr. In
other words, given p 2 .0;1/, find q� 2 Pr such that

inf
q2Pr

Z 1

�1
ji.x/ � q.x/jpdx D

Z 1

�1
ji.x/ � q�.x/jpdx : (1)

Note that the class Pr is not a linear space and the usual theorems and techniques
when approximating by linear spaces of functions are not applicable. Next, if q is
negative on .�1; 1/, then obviously

Z 1

�1
ji.x/ � Œ�q.x/�jpdx <

Z 1

�1
ji.x/ � q.x/jpdx; p > 0

and in view of this, if Pr;C denote the polynomials from Pr that are positive on
.�1; 1/, then

inf
q2Pr

Z 1

�1
ji.x/ � q.x/jpdx D inf

q2Pr;C

Z 1

�1
ji.x/ � q.x/jpdx:

Generalization of the Problem We consider a generalization of the above question
by using a characteristic property of the approximation polynomial class Pr:
The polynomials with only real zeros are logarithmically concave on any interval
bounded by two consecutive zeros. Namely, if q 2 Pr with zeros x1; x2; : : : ; xn,
then

d2 ln jq.x/j
dx2

D


q0.x/
q.x/

�0
D �

nX
kD1

1

.x � xk/2
< 0

at each point x where it is defined. Taking this property of polynomials belonging
to Pr as a characteristic one, we generalize the approximation problem (1) by
considering as an approximation tool the class RD lc;C of all functions of the form
f .x/ D .1 � x2/ .x/, where  .x/ is logarithmically concave on .�1; 1/. Without
any restriction we can suppose that  .x/ > 0 on .�1; 1/.

Note also that the polynomial class Pr;C is a subclass of the function class
RD lc;C.
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Logarithmically Concave Polynomials with Complex Zeros Let Pc denote the
class of real polynomials (with real coefficients), having �1 and 1 as consecutive
zeros, and whose zeros zk D xk C iyk; i2 D �1 satisfy the inequality jykj � jxkj � 1.
Then, each polynomial q 2 Pc has the form

q.x/ D c.1 � x2/
m1Y
jD1
.x � xj/

m2Y
kD1
.x � zk/.x � Nzk/ D .1 � x2/ .x/:

Analogously to the above considerations we have

inf
q2Pc

Z 1

�1
ji.x/ � q.x/jpdx D inf

q2Pc;C

Z 1

�1
ji.x/ � q.x/jpdx;

where Pc;C denote the polynomials from Pc that are positive on .�1; 1/. In other
words q 2 Pc;C if  .x/ > 0 for jxj < 1. Then

d2 ln j .x/j
dx2

D

 0.x/
 .x/

�0
D �

m1X
jD1

1

.x � xj/2

�2
m2X

kD1

.x � xk/
2 � y2k

.x2 � 2xxk C x2k C y2k/
2
< 0 for jxj < 1:

In view of this, each polynomial from Pc is logarithmically concave in .�1; 1/.
Hence, Pc;C is also a subclass of RD lc;C.

Laguerre–Pólya Class of Entire Functions A real entire function is said to belong
to Laguerre–Pólya class, LP for short, if it is a local uniform limit in the complex
plane of a sequence of polynomials with only real zeros; see [4, 5] and the references
given there for additional facts about LP class of entire functions. Let us denote
by LP1;C the set of functions in LP having �1 and 1 as consecutive zeros and
positive on .�1; 1/. Each function f .x/ from LP1;C can be written (see [4, 5])
as f .x/ D .1 � x2/ .x/, where  .x/ > 0 on .�1; 1/ and  .x/ has the following
representation:

 .x/ D ce�ax2Cbx
1Y

kD1
.1 � tkx/etkx .�1 � tk � 1; c > 0; a � 0; b real/

such that
P1

kD1 t2k < 1. Note that  is logarithmically concave between two
consecutive zeros hence, LP1;C is a subclass of RD lc;C . Note also that f 2
LP1;C if and only if f is a local inform limit in the complex plane of a sequence
of polynomials in Pr;C.

Let ALP1;C denote the subclass of LP1;C consisting of entire functions of the
form c.1 � x2/e� x, where c > 0 and � is real.
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Theorem 1. Let 0 < p < 1. Then the following holds:

inf
f 2DRlc;C

Z 1

�1
ji.x/ � f .x/jpdx D inf

e2LP1;C

Z 1

�1
ji.x/ � e.x/jpdx

D inf
e2eLP1;C

Z 1

�1
ji.x/ � e.x/jpdx:

Proof. Let p 2 .0;1/: Note thatALP1;C is a subclass of DR lc;C being a subclass
of LP1;C. Let f 2 DR lc;C hence, f .x/ D .1 � x2/ .x/ but f is not in the class
ALP1;C; in other words,  .x/ is not in the form c e�x .

Obviously, 1 � f .x/ D 0 if and only if ln .x/ D � ln.1 � x2/ and since the
left side of this equation is concave and the right side is strictly convex in .�1; 1/,
this equation can have at most two solutions in .�1; 1/. This means that the curve
y D f .x/ intersects the line y D 1 either twice, or touches it, or remains below it.

Case 1. Suppose that the equation ln .x/ D � ln.1 � x2/ has two solutions x1 <
x2 in .�1; 1/. Consider the line y D �x C b interpolating the points .x1;� ln.1�
x21// and .x2;� ln.1 � x22//

y D �x C b D � ln.1 � x21/C x � x1
x2 � x1

ln
1 � x21
1 � x22

:

Replacing ln .x/ by �x C b in j1 � .1 � x2/eln .x/j we obtain a better point-
wise approximation to the unit function i.x/ on the interval Œ�1; 1�. The function
� ln.1� x2/ is strictly convex and ln is concave hence on the intervals Œ�1; x1/
and .x2; 1� we have

ln .x/ � �x C b � � ln.1 � x2/ , .1 � x2/ .x/ � .1 � x2/e�xCb < 1

and because f … ALP1;C, the first inequality is strict on some non-degenerate
subinterval Œ˛; ˇ� contained in Œ�1; x1/ [ .x2; 1�. On the other hand, on .x1; x2/
we have

ln .x/ � �x C b > � ln.1 � x2/ , .1 � x2/ .x/ � .1 � x2/e�xCb > 1:

Hence,

ˇ̌
i.x/ � .1 � x2/ .x/

ˇ̌p � ˇ̌
i.x/ � .1 � x2/e�xCb

ˇ̌p
for all x 2 Œ�1; 1�

with strict inequality on .˛; ˇ/.
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Case 2. The equation ln .x/ D � ln.1� x2/ has a unique solutions x0 in .�1; 1/.
In this case we consider the line y D �x C b that is tangent to the curve y D
� ln.1�x2/ at the point .x0;� ln.1�x20//. Similar to the Case 1 we conclude that
the inequality

ˇ̌
i.x/ � .1 � x2/ .x/

ˇ̌p � ˇ̌
i.x/ � .1 � x2/e�xCb

ˇ̌p
for all x 2 Œ�1; 1�

holds and this inequality is strict on some non-degenerate subinterval of .�1; 1/.
Case 3. The equation ln .x/ D � ln.1 � x2/ does not have a solution in .�1; 1/

that is equivalent to

.1 � x2/ .x/ < 1 for all x 2 Œ�1; 1�:

In this case the graphs of the functions y D � ln.1 � x2/ and y D ln .x/ do not
have common points. In addition, the function y D � ln.1 � x2/ is convex but
the function y D ln .x/ is concave. Hence, there exists a line y D �x C b that
separates the graphs of both functions, that is

ln .x/ < �x C b < � ln.1 � x2/ for all x 2 Œ�1; 1�:

Hence, taking into account that p > 0 we have the strict inequality

ˇ̌
i.x/ � .1 � x2/ .x/

ˇ̌p
>
ˇ̌
i.x/ � .1 � x2/e�xCb

ˇ̌p
for all x 2 Œ�1; 1� :

In view of the above three cases we conclude the following:
If f .x/ D .1 � x2/ .x/ 2 DR lc;C but f is not in the class ALP1;C, then
substituting eb D c > 0 we obtain

Z 1

�1
ji.x/ � f .x/jp dx >

Z 1

�1

ˇ̌
i.x/ � c.1 � x2/e�x

ˇ̌p
dx:

We end the proof of Theorem 1 by observing that

ALP1;C � LP1;C � DR lc;C :

Remark. Substituting v D �x we obtain

Z 1

�1
ji.x/ � c.1 � x2/e�xjpdx D

Z 1

�1
ji.v/ � c.1 � v2/e��vjpdv

and in view of this

inf
e2eLP1;C

Z 1

�1
ji.x/ � e.x/jpdx D inf

c�0;��0

Z 1

�1
ji.x/ � c.1 � x2/e�xjpdx :
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How to Proceed Following Theorem 1, we attempt to find the best LpŒ�1; 1�
approximants to the unit function i from RD lc;C by studding the best LpŒ�1; 1�
approximation of the unit function i from the .c; �/-parametric classALP1;C. Note
thatALP1;C is a subclass of RD lc;C.

Next theorem gives existence and uniqueness of the best LpŒ�1; 1� approximant,
0 < p < 1, to i from the linear space fc.1 � x2/; �1 < c < 1g.

Theorem 2. Let 0 < p < 1. Then, there exists a unique constant cp 2 .�1;1/

such that

inf�1<c<1

Z 1

�1
ji.x/ � c.1 � x2/jpdx D

Z 1

�1
ji.x/ � cp.1 � x2/jpdx:

In addition, cp > 1.

Proof. Let p 2 .0;1/ be a fixed number. Obviously

inf�1<c<1

Z 1

�1
ji.x/ � c.1 � x2/jpdx D inf

c�0

Z 1

�1
ji.x/ � c.1 � x2/jpdx:

We have to show that there exists a unique cp � 0 such that

inf
c�0

Z 1

�1
ji.x/ � c.1 � x2/jpdx D

Z 1

�1
ji.x/ � cp.1 � x2/jpdx:

Consider the p-parametric function of the variable c

Ip.c/ D
Z 1

�1
ji.x/ � c.1 � x2/jpdx:

For 0 < p < 1, LpŒ�1; 1� is a metric space and in view of this

jIp.c1/ � Ip.c2/j � jc1 � c2jp
Z 1

�1
.1 � x2/pdx :

For p � 1, LpŒ�1; 1� is a normed space hence,

jŒIp.c1/�
1=p � ŒIp.c2/�

1=pj � jc1 � c2j
�Z 1

�1
.1 � x2/pdx

	1=p

:

By the above two inequalities we conclude that the function Ip.c/ is continuous in
c 2 .0;1/.
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In addition, it is obvious that Ip.c/ ! 1 as c ! 1 and from here we conclude
that there is c�

p such that

inf
c�0 Ip.c/ D inf

0�c�c�
p

Ip.c/ D min
0�c�c�

p

Ip.c/ D min
1�c�c�

p

Ip.c/

where c�
p is a positive constant which must be greater than or equal to 1 (cp � 1),

taking into account that Ip.c/ is a decreasing function for 0 � c � 1. Now, Ip.c/ is
continuous in c 2 .0;1/ and Œ1; c�

p � is a compact set hence, by the Extreme Value
Theorem [6] we conclude that there exists cp 2 Œ1; c�

p � such that

inf
c�0 Ip.c/ D min

1�c�c�
p

Ip.c/ D Ip.cp/:

Hence, the infimum of Ip.c/ over the open interval .0;1/ is attained. Then, the
point of minimum cp must be a critical number, i.e., to satisfy the normal equation

dIp.c/

d c

ˇ̌
ˇ̌
cDcp

D 0

that is equivalent to

Z 1

�1

ˇ̌
1 � c.1 � x2/

ˇ̌p�1
sign

�
1 � c.1 � x2/

�
.1 � x2/dx

ˇ̌
ˇ̌
cDcp

D 0:

The above equality can hold only if the integrand changes sign in .�1; 1/ and in view
of this, cp must be greater than 1. Therefore, for c > 1, the even curve y D c.1� x2/
intersects the even line y D 1 exactly twice, say at x D �� and x D � for some
� 2 .0; 1/. Then, c D 1=.1 � �2/ and it will be sufficient to show that

min
�2.0;1/ !.�/ D min

�2.0;1/

Z 1

�1

ˇ̌
ˇ̌x2 � �2
1 � �2

ˇ̌
ˇ̌
p

dx D min
�2.0;1/ 2

Z 1

0

ˇ̌
ˇ̌x2 � �2
1 � �2

ˇ̌
ˇ̌
p

dx

is attained for only one value �p 2 .0; 1/, where cp D 1=.1 � �2p / . Substituting
� D �2 and u D x2 in the above equation we obtain an equivalent minimum problem
in terms of � 2 .0; 1/:

min
�2.0;1/ !.�/ D min

�2.0;1/ ˝.�/ D min
�2.0;1/

Z 1

0

u�1=2
ˇ̌
ˇ̌u � �
1 � �

ˇ̌
ˇ̌
p

du:

Hence, in order to solve the initial c minimum problem we may show that the above
minimum of ˝.�/ over � 2 .0; 1/ is attained for only one value �p 2 .0; 1/.
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The minimum of ˝.�/ can occur only at the roots of the normal equation
d˝=d� D 0 that is

Z 1

0

u�1=2
ˇ̌
ˇ̌u � �
1 � �

ˇ̌
ˇ̌
p�1

sign


u � �
1 � �

�
u � 1
.1 � �/2 du D 0

and since 0 < � < 1, the above equation is equivalent to

Z 1

0

.1 � u/u�1=2 ju � �jp�1 sign Œu � �� du D 0 :

Now, replacing � 2 .0; 1/ by .1 � ˇ/=2; �1 < ˇ < 1 and making the substitution
u D .1 � v/=2 in the above integral, we obtain the following equivalent equation:

Z 1

�1
.1C v/.1 � v/�1=2jv � ˇjp�1signŒv � ˇ� dv D 0; ˇ 2 .�1; 1/

and we have to show that it is satisfied for only one value ˇp 2 .�1; 1/. Substituting
ˇ D cos �1, �� < �1 < � and v D cos � , it is easily seen that the above equation
is equivalent to the following equation, involving trigonometric integral (taking into
account that the integrand is even trigonometric function)

Z �

��
�.�/ cos

�

2
d� D 0; (2)

where

�.�/ D cos2
�

2

ˇ̌
ˇ̌sin

� C �1

2
sin

� � �1
2

ˇ̌
ˇ̌
p�1

sign


sin

� C �1

2
sin

� � �1
2

�
:

Observing that the function �.�/ is even and sin.�=2/ is odd, the next equality is
satisfied for all �1 2 Œ��; ��:

Z �

��
�.�/ sin

�

2
d� D 0; (3)

Now we shall use the following result contained in [2]: Let m be positive integer.
Let ˛ > 0 and ˛� > 0; � D 0; 1; : : : ;m. Then, there exists a unique

.t�1 ; : : : ; t�m/ 2 fNt D .t1; : : : ; tm/ W �� � t1 � � � � � tm � �g

that satisfies the following system of equation with respect to t1; : : : ; tm:
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Z �

��

ˇ̌
ˇ̌cos

�

2

ˇ̌
ˇ̌
˛.˛0�1/ mY

�D1

ˇ̌
ˇ̌sin

� � t�
2

ˇ̌
ˇ̌
˛.˛��1/

�sign

2
4

mY
�D1

sin
� � t�
2

3
5 ei .m�1/�2k

2 d�; k D 0; : : : ;m � 1; i2 D �1:

In addition, the unique solution .t�1 ; : : : ; t�m/ satisfies �� < t�1 < � � � < t�m < � .
The particular case m D 2; ˛ D 1; ˛0 D 3; ˛1 D ˛2 D p > 0 of the above

result (see [2] for details) gives that the system of non-linear equations

Z �

��
cos2

�

2

ˇ̌
ˇ̌sin

� � t1
2

sin
� � t2
2

ˇ̌
ˇ̌
p�1

sign


sin

� � t1
2

sin
� � t2
2

�
e˙ i �2 d� (4)

has a unique solution �� < t1 < t2 < � .
Substituting � by �� in (4) we observe that �� < �t2 < �t1 < � is also

a solution of the same system. However, the solution of the system is unique and
from here we conclude that t�2 must be equal to �t�1 . Hence, if we substitute t2 D �1,
then the unique solution has the form �� < ��1 < �1 < � . In view of this, we can
now claim that the system of Eqs. (2), (3) has a unique solution. However, Eq. (3) is
satisfied for all values of �1 2 Œ��; ��. Hence, Eq. (2) must have a unique solution.

The Case p D 2 Next theorem gives in particular that the unique best L2Œ�1; 1�
approximant to i fromALP1;C must have � D 0, i.e., it must be of the form c.1�x2/.

Theorem 3. Let i denote the unit function on the interval Œ�1; 1�. Then, there exists
a unique constant c2 2 .�1;1/ such that

inf
f 2DRlc;C

Z 1

�1
Œi.x/ � f .x/�2dx D inf

e2LP1;C

Z 1

�1
Œi.x/ � e.x/�2dx

D inf
e2eLP1;C

Z 1

�1
Œi.x/ � e.x/�2dx D inf

q2Pc;C

Z 1

�1
Œi.x/ � q.x/�2dx

D inf
q2Pr;C

Z 1

�1
Œi.x/ � q.x/�2dx D inf�1<c<1

Z 1

�1
Œi.x/ � c.1 � x2/�2dx

D
Z 1

�1
Œi.x/ � c2.1 � x2/�2dx:

In addition, c2 D 5=4 hence, .5=4/.1 � x2/ is the unique best approximant and the
exact value of the best approximation is

Z 1

�1


i.x/ � 5

4
.1 � x2/

�2
dx D 1

3
:
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Proof. Denote

I.c; �/ D
Z 1

�1
.1 � c.1 � x2/ e�x/2 dx:

First obviously, we have

inf�1<c<1;�1<�<1 I.c; �/ D inf
c�0; ��0 I.c; �/:

Let � 2 .�1;1/ be fixed. Observing that I.c; �/ tends to infinity as c ! 1 and
I.c; �/ is a decreasing function of c in a small interval of the form Œ0; ı��; ı� > 0 we
conclude that, for a fixed �, there exists a positive number c�

� such that

inf
c�0 I.c; �/ D min

ı��c�c�
�

I.c; �/:

The minimum points on the right side of the above equality must be critical numbers
for I.c; �/ hence, they must be roots of the normal equation

@I

@c
D �2

Z 1

�1
Œ1 � c.1 � x2/e�x�.1 � x2/e�x dx D 0

and because the above equation is linear in c, it can be solved for c to obtain that the
unique minimum point c.�/ 2 .�1;1/, located in Œı�; c�

� � is determined by

c.�/ D
R 1

�1.1 � x2/e�x dxR 1
�1.1 � x2/2e2�x dx

:

Then,

min
ı��c�c�

�

I.c; �/ D I.c.�/; �/ D
Z 1

�1
�
1 � 2c.�/.1 � x2/e�x C c2.�/.1 � x2/2e2�x

�
dx

D 2 �
hR 1

�1.1 � x2/e�x dx
i2

R 1
�1.1 � x2/2e2�x dx

Consider

I.c.�/; �/ D 2 �
hR 1

�1.1 � x2/e�x dx
i2

R 1
�1.1 � x2/2e2�x dx

:
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Next, we shall use Maclaurin series representations of entire functions in order to
prove the following: If � ¤ 0 is a real number, then

I.c.�/; �/ > I.c.0/; 0/

and from here we conclude that

min�1<�<1 I.c.�/; �/ D I.c.0/; 0/

and the unique point of minimum of I.c.�/; �/ is � D 0. Suppose that � ¤ 0. Then,
straight computations show that

"Z 1

�1
.1 � x2/e�x dx

#2
D 4

�4


e2�

�
1 � 2

�
C 1

�2

	
C e�2�

�
1C 2

�
C 1

�2

	
C 2 � 2

�2

�

and

Z 1

�1
.1 � x2/2e2�x dx D 1

�3


e2�

�
1 � 3

2�
C 3

4�2

	
� e�2�

�
1 � 3

2�
C 3

4�2

	�
:

Since, c.0/ D 5=3 and I.c.0/; 0/ D 1=3 we need to show that

2 �
4
�4

h
e2�

�
1 � 2

�
C 1

�2

�
C e�2�

�
1C 2

�
C 1

�2

�
C 2 � 2

�2

i

1
�3

h
e2�

�
1 � 3

2�
C 3

4�2

�
� e�2�

�
1 � 3

2�
C 3

4�2

�i >
1

3
for � ¤ 0:

Taking into account that
R 1

�1.1� x2/2e2�x dx > 0, the above inequality is equivalent
to the inequality

G.�/ > 0; where G.�/ D e2�
�
5�3 � 39

2
�2 C 111

4
� � 12

	

�e�2�
�
5�3 C 39

2
�2 C 111

4
�C 12

	
C 24.1 � �2/:

Denote,

h.�/ D e2�
�
5�3 � 39

2
�2 C 111

2
� � 12

	
:

Then

G.�/ D h.�/C h.��/C 24.1 � �2/; G.0/ D 0
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and we have to show that G.�/ > 0 for each � ¤ 0. Obviously, G is an even entire
function. In view of this, its Maclaurin expansion has the form

G.�/ D
1X

kD1

G.2k/.0/

.2k/Š
�2k:

Calculating the even order derivatives of h we conclude that

h.2/.�/ D e2�.20�3 � 18�2 � 15�C 24/; g.2/.0/ D 2h.2/.0/ � 48 ) g.2/.0/ D 0I
h.4/.�/ D 4e2�.20�3 C 42�2 � 21�/; g.4/.0/ D 2h.4/.0/ D 0I

h.6/.�/ D 16e2�.20�3 C 102�2 C 93�/; g.6/.0/ D 2h.6/.0/ D 0I
Observing that G.2k/.0/ D 2h.2k/.0/ for k � 2 and taking into account that the
coefficients of �3, �2, and � in the expression of h.6/.�/ are positive we make an
important conclusion that the coefficients of �3, �2, �, and the free term in the
expression h.2k/.�/ for all k � 4 are all positive.

Hence, for k � 3

h.2k/.�/ D e2�.ak�
3 C bk�

2 C ck�C dk/; ak > 0; bk > 0; ck > 0; dk > 0;

where the coefficients ak; bk; ck; dk are all positive and in view of this

G.2k/.0/ D 2h.2k/.0/ D 2dk > 0 for k � 4:

Thus

G.�/ D
1X

kD1

2dk

.2k/Š
�2k > 0 for � ¤ 0:

The Case p D 1 Next theorem gives in particular that the unique best L1Œ�1; 1�
approximant to i fromALP1;C must have � D 0, i.e., it is of the form c.1 � x2/.

Theorem 4. Let i denote the unit function on the interval Œ�1; 1�. Then, there exists
a unique constant c1 2 .�1;1/ such that

inf
f 2DRlc;C

Z 1

�1
ji.x/ � f .x/jdx D inf

e2LP1;C

Z 1

�1
ji.x/ � e.x/jdx

D inf
e2eLP1;C

Z 1

�1
ji.x/ � e.x/jdx D inf

q2Pc;C

Z 1

�1
ji.x/ � q.x/jdx

D inf
q2Pr;C

Z 1

�1
ji.x/ � q.x/jdx D inf�1<c<1

Z 1

�1
ji.x/ � c.1 � x2/jdx

D
Z 1

�1
ji.x/ � c1.1 � x2/jdx:
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In addition, c1 D �
1 � 4 sin2

�
�
18

���1
hence, the unique best approximant is�

1 � 4 sin2
�
�
18

���1
.1 � x2/ and the exact value of the best approximation is

Z 1

�1
ji.x/ � c1.1 � x2/jdx D 2 � 8 sin

� �
18

�
:

Proof. Taking into account Theorems 1 and 2 it is sufficient to prove that

inf
e2eLP1;C

Z 1

�1
ji.x/ � e.x/jdx D inf�1<c<1

Z 1

�1
ji.x/ � c.1 � x2/jdx :

We have i.x/ D 1 for x 2 Œ�1; 1�, and for simplicity we denote

I.c; �/ D
Z 1

�1

ˇ̌
i.x/ � c.1 � x2/e�x

ˇ̌
dx D

Z 1

�1

ˇ̌
1 � c.1 � x2/e�x

ˇ̌
dx:

It is obvious that minimizing I.c; �/, without any restriction, we can assume � � 0

and c � 0.
Let us fix �. Then, I.c; �/ tends to 1 as c goes to 1. In addition, I.c; �/ < I.0; �/

for all small positive values of c. Hence, the minimum of I.c; �/ over c 2 Œ0;1/

is attained at some finite points in the open interval c 2 .0;1/. Hence, a point of
minimum (being a critical number) must be a solution of the normal equation

� @I

@c
D
Z 1

�1
sign

�
1 � c.1 � x2/e�x

�
.1 � x2/e�xdx D 0: (5)

The above equation can be satisfied for some c if the function
�
1 � c.1 � x2/e�x

�
changes sign at least once in .�1; 1/. However, it must do so exactly twice since
it has only one critical number in .�1; 1/. We claim that (5) is satisfied for only
one value of c. For a fixed c, denote by �1;c < �2;c the points, where the function�
1 � c.1 � x2/e�x

�
changes sign in .�1; 1/. Taking into account that the optimal

c is strictly positive, the above normal equation can be written in the following
equivalent form:

Z 1

�1
sign


1

c
� .1 � x2/e�x

�
.1 � x2/e�xdx D 0:

Next, consider the planar region bounded by the curve y D .1 � x2/e�x, the lines
x D �1, x D 1 and the x-axis. Divide this region into three parts by the lines
x D �1;c, x D �2;c. Denote by A1.c/ the area of the part to the left of x D �1;c; by
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A2.c/ the area of the one lying to the right of x D �2;c; and by A3.c/ the area of the
part in the middle. Then (5) can be written as

A1.c/C A2.c/ � A3.c/ D 0:

If 1=c is small, then A1.c/C A2.c/ is small and A3.c/ is large; but as 1=c increases,
then A1.c/ C A2.c/ increases while A3.c/ decreases. Hence, by the Intermediate
Value Theorem, taking into account that A.c/ is strictly increasing with 1=c, there
is one and only one value of c for which A.c/ D 0. Obviously for each � � 0, the
unique solution c.�/ must be greater than 1.

The next steps of the proof are based on a technique similar to what has been
developed in [3]. Denote �1.�/ D �1;c.�/, �2.�/ D �2;c.�/. Then, we obtain

min
c�0

Z 1

�1

ˇ̌
1 � c.1 � x2/e�x

ˇ̌
dx D

Z 1

�1

ˇ̌
1 � c.�/.1 � x2/e�x

ˇ̌
dx

D
Z 1

�1
sign Œ.x � �1.�//.x � �2.�//�

�
1 � c.�/.1 � x2/e�x

�
dx (6)

D
Z 1

�1
sign Œ.x � �1.�//.x � �2.�//� dx

D
Z �1.�/

�1
dx �

Z �2.�/

�1.�/

dx C
Z 1

�2.�/

dx D 2 � 2 Œ�2.�/ � �1.�/� :

by using the fact that (5) is equivalent to

Z 1

�1
sign Œ.x � �1.�//.x � �2.�//� .1 � x2/e�xdx D 0: (7)

Next, we show that �2.�/� �1.�/ is a decreasing function of � for all � > 0. For this
we use (7) and the two relations

c.�/
�
1 � �21 .�/

�
e��1.�/ D 1 (8)

c.�/
�
1 � �22 .�/

�
e��2.�/ D 1 (9)

Observe that �2.�/ > 0 for � � 0. Assume to the contrary: �1 < �1.�/ < �2.�/ � 0.
Then

0 D
Z 1

�1
sign Œ.x � �1.�//.x � �2.�//� .1 � x2/e�xdx

D
Z 0

�1
sign Œ.x � �1.�//.x � �2.�//� .1 � x2/e�xdx C

Z 1

0

.1 � x2/e�xdx
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> �
Z 0

�1
.1 � x2/e�x C

Z 1

0

.1 � x2/e�xdx � 0

and we get a contradiction. In addition, for � > 0, by (8) and (9), .1 � �21 .�//=.1 �
�22 .�// D e�Œ�2.�/��1.�/� > 1 and in view of this �2.�/ > j�1.�/j. Hence,

�2.�/C �1.�/ > 0 for � > 0 and evidently, �2.0/C �1.0/ D 0: (10)

By the definition of I.c; �/ we clearly have that I.c;��/ D I.c; �/. Then c.�/,
�1.�/, and �2.�/ can be extended to negative values of �. We have c.��/ D c.�/,
�1.��/ D ��2.�/, and �2.��/ D ��1.�/. In particular, �2.�/ � �1.�/ is an even
function of �.

Using (7)–(9) we compute the Jacobian of the non-linear system

F1.�1; �2; c; �/ D
Z 1

�1
sign Œ.x � �1.�//.x � �2.�//� .1 � x2/e�xdx D 0I

F2.�1; �2; c; �/ D ln
�
c.1 � �21 /e��1

� D 0I F3.�1; �2; c; �/ D ln
�
c.1 � �22 /e��2

� D 0

to obtain

@.F1;F2;F3/

@.�1; �2; c/
D 4

c2


�2

1 � �22
� �1

1 � �21

�
> 0 .¤ 0/

taking into account that �=.1 � �2/ is an increasing function of � 2 .�1; 1/.
Hence, by Implicit Function Theorem [6, Theorem 9.18] we conclude that
c.�/; �1.�/; �2.�/ are continuously differentiable functions of �.

Next, differentiating (7) with respect to � we obtain

� 0
2.�/ � � 0

1.�/ D c.�/

2

Z 1

�1
sign Œ.x � �1.�//.x � �2.�//� .x � x3/e�xdx (11)

Simple computations, by using (7)–(9) give for � > 0

Z 1

�1
sign Œ.x � �1.�//.x � �2.�//� xe�xdx

D .1 � �22 .�//e��2.�/ � .1 � �21 .�//e��1.�/ D 0: (12)

By continuity, the above equality holds for � D 0. Hence, (11) can be simplified to

� 0
2.�/ � � 0

1.�/ D �c.�/

2

Z 1

�1
sign Œ.x � �1.�//.x � �2.�//� x3e�xdx (13)
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We need the sign of the left-hand side in (13) and it will be determined by the
following equality that holds for � > 0:


4

�
C �2.�/C �1.�/

� Z 1

�1
sign Œ.x � �1.�//.x � �2.�//� x3e�xdx

D
Z 1

�1
j.x � �1.�//.x � �2.�/j .1 � x2/e�xdx

C 2

�c.�/

�
�22 .�/ � �21 .�/

�
: (14)

Now we prove the above equality. Obviously,

.x � �1.�//.x � �2.�//.1 � x2/ D 1 � x4 C Œ�1.�/C �2.�/� x
3

� Œ1 � �1.�/�2.�/� .1 � x2/ � Œ�1.�/C �2.�/� x:

Multiplying the above equality by sign Œ.x � �1.�//.x � �2.�//� e�x and integrating,
we obtain by using (7) and (12)

Z 1

�1
j.x � �1.�//.x � �2.�/j .1 � x2/e�xdx

D
Z 1

�1
sign Œ.x � �1.�//.x � �2.�//� .1 � x4/e�xdx

C Œ�1.�/C �2.�/�

Z 1

�1
sign Œ.x � �1.�//.x � �2.�//� x3e�xdx : (15)

The first integral on the right-hand side of (15) is equal to

�2
�

�
.1 � �42 .�//e��2.�/ � .1 � �41 .�//e��1.�/

�

C4

�

Z 1

�1
sign Œ.x � �1.�//.x � �2.�//� x3e�x dx :

From (8) and (9) we obtain

.1 � �42 .�//e��2.�/ � .1 � �41 .�//e��1.�/ D 1

c.�/

�
�22 .�/ � �21 .�/

�
:
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In view of this, Eq. (15) is equivalent to Eq. (14). Taking into account (10), we
conclude that the right-hand side of (14) and the multiplier on the left-hand side
of (14) before the integral are positive hence,

Z 1

�1
sign Œ.x � �1.�//.x � �2.�//� x3e�xdx > 0 for � > 0:

By (13) we conclude that

Œ�2.�/ � �1.�/�0 D � 0
2.�/ � � 0

1.�/ < 0 for � > 0 :

From here, the function Œ�2.�/ � �1.�/� is strictly decreasing for � 2 .0;1/ and
using (6) and by Theorem 2 we conclude that there exists a unique c1 2 .�1;1/

such that

min
.c; �/2.�1;1/	.�1;1/

Z 1

�1

ˇ̌
1 � c.1 � x2/e�x

ˇ̌
dx D min

c2.�1;1/

Z 1

�1

ˇ̌
1 � c.1 � x2/

ˇ̌
dx

D
Z 1

�1

ˇ̌
1 � c1.1 � x2/

ˇ̌
dx:

Next, we compute the extremal constant c1 and the minimum value of the integral.
The extremal constant c1 is the unique solution of the equation

Z 1

�1
sign

�
1 � c.1 � x2/

�
.1 � x2/dx D 0: (16)

In addition, c1 > 1 and by (10) �1 < �1.0/ < 0 < �2.0/ < 1 and �1.0/ D ��2.0/ D
�� , 0 < � < 1. Hence, ��; � , 0 < � < 1 are the two points in .�1; 1/, where the
graph of the function y D c1.1�x2/ intersects the line y D 1. Then (16) is equivalent
to

Z 1

�1
sign Œ.x C �/.x � �/� .1 � x2/dx D 0 )

Z 1

�1
sign

�
x2 � �2� .1 � x2/dx D 0

)
Z 1

0

sign Œx � �� .1 � x2/dx D 0 ) �3 � 3� C 1 D 0; 0 < � < 1

) 4!3 � 3! C 1

2
; � D 2!; 0 < ! <

1

2
:

Substituting ! D cos.	/ and using the trigonometric identity cos.3	/ D
4 cos3.	/ � 3 cos.	/ we obtain an equivalent equation in terms of 	 :

cos.3	/ D �1=2; �

3
< 	 <

�

2
:
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The above equation has three solutions in Œ0; ��: 	1 D 2�=9, 	2 D 4�=9, 	3 D
8�=9 but only 	2 is in .�=3; �=2/. Hence,

c1 D 1

1 � �21
D 1

1 � 4 sin2
�
�
18

� ; �1 D 2 cos

�
4�

9

	
D 2 sin

� �
18

�
2 .0; 1/:

By using (6) we obtain the exact value of the best L1Œ�1; 1� approximation to i from
DR lc;C:

Z 1

�1
j1 � c1.1 � x2/jdx D 2 � 4�1 D 2 � 8 sin

� �
18

�
; �1 D 2 sin

� �
18

�
:

The Case 1 < p < 1 Next theorem gives in particular that the unique best
LpŒ�1; 1� approximant to i from ALP1;C must have � D 0, i.e., it is the form
c.1 � x2/.

Theorem 5. Let i denote the unit function on the interval Œ�1; 1� and let
1 < p < 1. Then, there exists a unique constant cp 2 .�1;1/ such that

inf
f 2DRlc;C

Z 1

�1
ji.x/ � f .x/jpdx D inf

e2LP1;C

Z 1

�1
ji.x/ � e.x/jpdx

D inf
e2eLP1;C

Z 1

�1
ji.x/ � e.x/jpdx D inf

q2Pc;C

Z 1

�1
ji.x/ � q.x/jpdx

D inf
q2Pr;C

Z 1

�1
ji.x/ � q.x/jpdx D inf�1<c<1

Z 1

�1
ji.x/ � c.1 � x2/jpdx

D
Z 1

�1
ji.x/ � cp.1 � x2/jpdx:

Proof. Taking into account Theorems 1 and 2, it is sufficient to prove that

inf
e2eLP1;C

Z 1

�1
ji.x/ � e.x/jpdx D inf�1<c<1

Z 1

�1
ji.x/ � c.1 � x2/jpdx :

For simplicity we denote

I.c; �/ D
Z 1

�1

ˇ̌
i.x/ � c.1 � x2/e�x

ˇ̌p
dx D

Z 1

�1

ˇ̌
1 � c.1 � x2/e�x

ˇ̌p
dx:

Next, our considerations follow the technique that has been developed in [3, pp. 32–
36]. Here are the details. Without any restriction, when minimizing I.c; �/, we can
assume � � 0 and c � 0. Let us fix � and minimize I.c; �/ with respect to c. Then,
I.c; �/ tends to infinity as c goes to infinity. In addition, I.c; �/ < I.0; �/ for small
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positive values of c. Hence, the minimum is attained at some finite point c.�/ in
.0;1/ that is a critical number of I.c; �/ so, we must have dI=dc D 0 at c D c.�/
that is equivalent to

Z 1

�1

ˇ̌
ˇ̌1
c

� .1 � x2/e�x

ˇ̌
ˇ̌
p�1

sign
�
1 � c.1 � x2/e�x

�
.1 � x2/e�x dx D 0: (17)

By (17), the function Œ1 � c.�/.1 � x2/e�x� must change sign at exactly two points
�1 < �1.�/ < �2.�/ < 1 in .�1; 1/ and also, c.�/ > 1. Similar to the case p D 1,
we conclude that (17) is satisfied for only one value c.�/ of c. Hence, the function
I.c.�/; �/ is well defined. Note that I.c.�/; �/ is the minimum of I.c; �/ for a fixed
�, with respect to c 2 .�1;1/.

Our goal is to show that the function I.c.�/; �/ is increasing for � � 0. We extend
the function I.c.�/; �/ for all � 2 .�1;1/ taking into account that c.��/ D c.�/,
�1.��/ D ��2.�/, and �2.��/ D ��1.�/.

Next, we observe that the Jacobian

@.G1;G2;G3/

@.�1; �2; c/
D �.p � 1/

�
� 2�1

1 � �21
C �

	�
� 2�2

1 � �22
C �

	

�
Z 1

�1
j1 � c.1 � x2/e�xjp�2.1 � x2/2e2�x dx

of the non-linear system of equations (the first one of the equations below is
equivalent to (17))

G1.�1; �2; c; �/ WD
Z 1

�1

ˇ̌
ˇ̌1
c

� .1 � x2/e�x

ˇ̌
ˇ̌
p�1
sign Œ.x � �1/.x � �2/� .1 � x2/e�xdx D 0

G2.�1; �2; c; �/ WD c.1 � �21 /e��1 � 1 D 0

G3.�1; �2; c; �/ WD c.1 � �22 /e��2 � 1 D 0

is distinct from zero since the function
��2x=.1 � x2/C �

�
vanishes in .�1; 1/

only at the point of maximum of .1 � x2/e�x, i.e., not at �1 and �2. Hence, by
Implicit Function Theorem [6] we conclude that c.�/, �1.�/, �2.�/ are continuously
differentiable functions of �.

Next by (17), for c D c.�/, �1 D �1.�/, and �2 D �2.�/ (� ¤ 0), taking into
account that

c.�/
�
1 � �21 .�/

�
e��1.�/ D 1; c.�/

�
1 � �22 .�/

�
e��2.�/ D 1;
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the following relation holds:

0 D
Z 1

�1
j1 � c.1 � x2/e�xjp�1sign Œ.x � �1/.x � �2/� .1 � x2/e�xdx

D 2

�

Z 1

�1
j1 � c.1 � x2/e�xjp�1 Œ.x � �1/.x � �2/� xe�xdx

� 1

c�

"Z �1

�1
C
Z 1

�2

# �
1 � c.1 � x2/e�x

�p�1
d
�
1 � c.1 � x2/e�x

�
(18)

C 1

c�

Z �2

�1

�
c.1 � x2/e�x � 1�p�1

d
�
c.1 � x2/e�x � 1� :

In view of (18) and by continuity we have for � � 0

Z 1

�1
j1 � c.�/.1 � x2/e�xjp�1sign Œ.x � �1.�//.x � �2.�//� x e�x dx D 0: (19)

We prove that I.c.�/; �/ is an increasing function of � � 0 by studying the sign of
its derivative with respect to �; � > 0. At c D c.�/ we have @I=@c D 0 and taking
into account (17) and (19), we are to show that

d I.c.�/; �/

d �
D @ I

@ c

d c

d �
C @ I

@ �
D @ I

@ �
(20)

D pc.�/
Z 1

�1
j1 � c.�/.1 � x2/e�xjp�1sign Œ.x � �1.�//.x � �2.�//� .x3 � x/e�xdx

D pc.�/
Z 1

�1
j1 � c.�/.1 � x2/e�xjp�1sign Œ.x � �1.�//.x � �2.�//� x3 e�xdx > 0 :

Next, with c D c.�/, �1 D �1.�/, �2 D �2.�/ the following holds:

0 <

Z 1

�1
j1 � c.1 � x2/e�xjp�1sign Œ.x � �1/.x � �2/� Œ.x � �1/.x � �2/� .1 � x2/e�xdx

D
Z 1

�1
j1 � c.1 � x2/e�xjp�1sign Œ.x � �1/.x � �2/� .1 � x4/e�xdx (21)

C .�1 C �2/

Z 1

�1
j1 � c.1 � x2/e�xjp�1sign Œ.x � �1/.x � �2/� x3e�xdx

By (17)–(19), and representing .1 � x4/ in the form

1 � x4 D 1 � x2 C 1

�

��2x C �.1 � x2/C 2x
�

x2
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the relation (21) can be written in the following equivalent form:

0 <
1

�

Z 1

�1
j1 � c.1 � x2/e�xjp�1sign Œ.x � �1/.x � �2/�

��2x C �.1 � x2/
�

x2e�xdx

C

�1 C �2 C 2

�

� Z 1

�1
j1 � c.1 � x2/e�xjp�1sign Œ.x � �1/.x � �2/� x3 e�x

D 2

p c �

Z 1

�1
j1 � c.1 � x2/e�xjp x dx C


�1 C �2 C 2

�

� Z 1

�1
j1 � c.1 � x2/e�xjp�1

� sign Œ.x � �1/.x � �2/� x3 e�x dx (22)

D 2

p c �

Z 1

�1
j1 � c.1 � x2/e�xjp�1 sign Œ.x � �1/.x � �2/� x dx

C

�1 C �2 C 2

�
C 2

p�

� Z 1

�1
j1 � c.1 � x2/e�xjp�1sign Œ.x � �1/.x � �2/� x3 e�x dx

taking into account (19) and the following identity:

Z 1

�1
j1 � c.1 � x2/e�xjpxdx D

Z 1

�1
j1 � c.1 � x2/e�xjp�1sign Œ.x � �1/.x � �2/�

� �1 � c.1 � x2/e�x
�

xdx : (23)

Analogously to the case p D 1 (see (10)), �1.�/C �2.�/ > 0 for � > 0 hence, (20)
will follow by (22) if

Z 1

�1
j1 � c.1 � x2/e�xjp�1sign Œ.x � �1/.x � �2/� x dx � 0 : (24)

In order to prove (24) we consider 2 cases.
First, let �1�2 � 0, i.e., �1 < �1 � 0 < �2 < 1. It is easily seen that the auxiliary

function

h.x/ WD 1

�2 � �1

ˇ̌
ˇ̌
ˇ̌
1 �1 �1e��1

1 �2 �2e��2

1 x xe�x

ˇ̌
ˇ̌
ˇ̌ D xe�x � ˇx � ˛

has two simple zeros at �1 and �2 and it is positive on .�1; �1/ and .�2; 1/ and
negative on .�1; �2/. Then by (17), (19), and (23) (�2 > j�1j)

0 <

Z 1

�1
j1 � c.1 � x2/e�xjp�1sign Œ.x � �1/.x � �2/� .�2 � �1/h.x/dx
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D �1�2.e
��2 � e��1/

Z 1

�1
j1 � c.1 � x2/e�xjp�1sign Œ.x � �1/.x � �2/� dx

�.�2e��2 � �1e��1/
Z 1

�1
j1 � c.1 � x2/e�xjp�1sign Œ.x � �1/.x � �2/� x dx

D �1�2.e
��2 � e��1/

Z 1

�1
j1 � c.1 � x2/e�xjpdx

�.�2e��2 � �1e��1/
Z 1

�1
j1 � c.1 � x2/e�xjp�1sign Œ.x � �1/.x � �2/� x dx

and in view of this (24) follows taking into account that �1�2.e��2 � e��1/ � 0 and
�2e��2 � �1e��1 > 0.

Now let �1�2 > 0 hence, 0 < �1 < �2 < 1. Since � > 0, c D c.�/ > 0, and p > 1
we have

j1 � c.1 � x2/e�xjp�1 < j1 � c.1 � x2/e��xjp�1 for 0 < x < 1

and then, trivially

Z 1

�1
j1 � c.1 � x2/e�xjp�1sign Œ.x � �1/.x � �2/� x dx

D
"Z 0

�1
C
Z �1

0

�
Z �2

�1

C
Z 1

�2

#
j1 � c.1 � x2/e�xjp�1 x dx

< �
Z �2

�1

j1 � c.1 � x2/e�xjp�1 x dx �
Z �2

�1

j1 � c.1 � x2/e��xjp�1 x dx < 0

hence, (24) holds. Then

min
��0 I.c.�/; �/ D I.c.0/; 0/ D min

c2.�1;1/

Z 1

�1
j1 � c.1 � x2/jp dx:

This completes the proof.
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Local Approximation Using Hermite Functions

H.N. Mhaskar

Abstract We develop a wavelet-like representation of functions in Lp.R/ based on
their Fourier–Hermite coefficients; i.e., we describe an expansion of such functions
where the local behavior of the terms characterize completely the local smoothness
of the target function. In the case of continuous functions, a similar expansion is
given based on the values of the functions at arbitrary points on the real line. In the
process, we give new proofs for the localization of certain kernels, as well as for
some very classical estimates such as the Markov–Bernstein inequality.

Keywords Approximation with Hermite polynomials • Localized kernels
• Quadrature formulas • Wavelet-like representation

1 Introduction

The subject of weighted polynomial approximation is by now fairly well studied
in approximation theory, with several books (e.g., [12, 14, 27]) devoted to various
aspects of this subject. One of the first papers in the modern theory was by Freud
et al. [11]. The purpose of this paper is to revisit this theory in the context of
approximation by Hermite functions.

To describe our motivation, we consider the case of uniform approximation of
periodic functions by trigonometric polynomials. In view of the direct and converse
theorems of approximation, both the functions

f1.x/ D
p

j cos xj; f2.x/ D
1X

kD0

cos.4kx/

2k
; x 2 R;
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are in the same Hölder class Lip.1=2/, with the uniform degree of approximation by
trigonometric polynomials of order < n to both of these being O.n�1=2/. However,
f1 has an analytic extension except at x D .2k C 1/�=2, k 2 Z, while f2 is nowhere
differentiable. Also, the Fourier coefficients of neither of the two functions reveal
this fact. One of the reasons for developing the very popular wavelet analysis is to
be able to detect the fact that f1 is only locally in Lip.1=2/ at x D .2k C 1/�=2,
k 2 Z, and infinitely smooth at other points by means of local behavior of the
wavelet coefficients of f1 rather than its Fourier coefficients [4, Chap. 9]. Motivated
by this theory, we have developed in a series of papers (e.g., [2, 3, 7, 9, 17–19, 21–
25]) a theory of wavelet-like representations of functions on the torus, compact
interval, sphere, manifolds, and graphs using the expansion coefficients of classical
orthogonal systems on these domains, for example, Jacobi polynomials on the
interval. In this paper, we develop such a theory for the whole real line using Hermite
functions as the underlying orthogonal system.

Naturally, the basic ideas and ingredients involved in this development are the
same as in our previous work. However, there are several technical difficulties.
The infinite–finite range inequalities (see Proposition 6.1) help us, as expected,
to deal with the fact that the domain of approximation here is obviously not
compact. An additional technical difficulty is the following “product problem.” The
product of two polynomials P1, P2 of degree < n is also a polynomial of degree
< 2n. In contrast, the product of two “weighted polynomials” exp.�x2=2/P1.x/,
exp.�x2=2/P2.x/ is not another weighted polynomial. A straightforward attempt to
approximate exp.�x2=2/ by its Taylor polynomial or even the more sophisticated
approach described in [14, Chap. 7] is not adequate to obtain the correct rates of
approximation of such a product with weighted polynomials. The other important
components in our theory are the availability of localized kernels and quadrature
formulas based on arbitrary points on R. While the localization estimates on certain
kernels as in Theorem 3 are given in [6, 8], we give a more elementary proof
based on the Mehler identity and a new Tauberian theorem proved in [13]. As a
consequence, we also give a new proof of certain classical inequalities such as the
estimates on the Christoffel functions and Markov–Bernstein inequalities.

The paper is organized as follows. We define the basic notations and definitions
and summarize some preliminary facts in Sect. 2. In Sect. 3, we develop the
machinery to help us surmount the product problem by reviewing and interpreting
certain equivalence theorems from the theory of weighted polynomial approxima-
tion. Localized kernels will be described next in Sect. 4 (Theorem 3). These will
be used in Sect. 5 to develop certain localized, uniformly bounded summability
operators (Lemma 2, Theorem 6). In turn, these will be used to give a new proof
of the Markov–Bernstein inequality in Corollary 5.1. The summability operators
are analogues of the shifted average operators in [14, Sect. 3.4]. When defined in
terms of the Lebesgue measure, they reproduce weighted polynomials. This may
not hold when they are defined with other measures. For this purpose, we will prove
in Sect. 6 the existence of measures supported on an arbitrary set of real numbers
which integrate products of weighted polynomials exactly. Finally, the wavelet-like
representation is given in Sect. 7.
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2 Basic Notation and Definitions

In this section, we collect together different notations and definitions, as well as
some preliminary facts which we will use often in this paper.

If x 2 R and r � 0, we will write B.x; r/ D Œx � r; x C r�.
Let f jg denote the sequence of orthonormalized Hermite functions; i.e., [28,

Formulas (5.5.3), (5.5.1)]

 j.x/ D .�1/j
�1=42j=2

p
jŠ

exp.x2=2/

�
d

dx

	j

.exp.�x2//; x 2 R; j D 0; 1; � � � :
(1)

We note that
Z

R

 j.z/ `.z/dz D ıj;`; j; ` D 0; 1; � � � : (2)

We denote w.x/ D exp.�x2=2/. For t > 0, let Pt be the class of all algebraic
polynomials of degree < t. The space ˘t is defined by

˘t D spanf j W pj < tg D fwP W P 2 Pt2g; t > 0: (3)

In this paper, the term measure will denote a signed, complex valued Borel
measure (or a positive, sigma–finite Borel measure). We recall that if � is an
extended complex valued Borel measure on R, then its total variation measure is
defined for a Borel set B by

j�j.B/ D sup
X

j�.Bk/j;

where the sum is over a partition fBkg of B comprising Borel sets, and the supremum
is over all such partitions.

Definition 1. If t > 0, a Borel measure � will be called t-regular if there exists a
constant A > 0 such that

j�j.B.x; r// � A.r C 1=t/; x 2 R; r > 0: (4)

We will define the regularity norm of � by

jjj�jjjt D sup
r>0; x2R

j�j.B.x; r//
r C 1=t

: (5)

The set of all Borel measures for which jjj�jjjt < 1 is a vector space, denoted
by Rt. ut
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It is easy to verify that jjj � jjjt is a norm on Rt. It is not difficult to deduce from the
definition that

jjj�jjjt � max.1; t=u/jjj�jjju; t; u > 0:

In particular, when t < u, Ru � Rt, and for any constant c > 0, the spaces
of measures Rt and Rct are the same, with the constants involved in the norm
equivalence depending upon c.

For example, the Lebesgue measure on R is in R1, and its regularity norm is
obviously 1. If C � R, the density content of C is defined by

ı.C / D sup
y;z2C

jy � zj: (6)

If C is a finite set, and � is a measure that associates the mass 1 with each of these
points, then � is clearly 1=ı.C /-regular.

Definition 2. Let n > 0. A Borel measure � on R is called quadrature measure
of order n if

Z

R

P.y/Q.y/dy D
Z

R

P.y/Q.y/d�.y/; P;Q 2 ˘n: (7)

The set of all quadrature measures of order n which are in R.n/ is denoted by
MZ.n/. ut

We note that the formula (7) is required for products of weighted polynomials.
Clearly, the Lebesgue measure itself is in MZ.n/ for all n > 0. In Theorem 7, we
will prove the existence of measures in MZ.n/ supported on a sufficiently dense set
of points in R.

If � is any Borel measure on R, for 1 � p � 1, and �-measurable set B � R

and �-measurable function f W B ! R

kf k�Ip;B WD
8<
:


Z

B
jf .x/jpdj�j.x/

� 1=p

; if 1 � p < 1;

j�j � ess supx2B jf .x/j; if p D 1:

The class of all functions f for which kf k�Ip;B < 1 is denoted by Lp.�I B/, with the
usual convention that functions that are equal j�j-almost everywhere are considered
to be equal. If � is the Lebesgue measure, its mention will be omitted from the
notation, and if B D R, its mention will also be omitted from the notation. The set
Xp will denote Lp if 1 � p < 1, and the set of all continuous functions on R which
vanish at infinity if p D 1.

Constant Convention
The symbols c; c1; � � � will denote generic positive constants depending only

on the fixed parameters in the discussion, such as the norms and smoothness
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parameters. Their value may be different at different occurrences, even within a
single formula. The notation A 	 B means that c1A � B � c2A. ut

3 Weighted Approximation

In this section, we review some results from [16] for the sake of making this paper
more self-contained. The main purpose is to point out Corollary 3.1, which will help
us later in Sect. 7 to get around the difficulty that the product of P;Q 2 ˘n is not in
any ˘cn.

Let 1 � p � 1, t > 0. If f 2 Lp, we define

Et;p.f / D inf
Q2˘t

kf � Qkp: (8)

For t > 0 and integer k � 0, the forward difference of a function f W R ! R is
defined by

�k
t f .x/ WD

kX
`D0
.�1/k�`

�
k
`

	
f .x C `t/:

With

Qı.x/ WD min
�
ı�1; .1C x2/1=2

�
; ı > 0; x 2 R;

we define a modulus of smoothness for f 2 Lp, ı > 0 by the formula

!r.pI f ; ı/ WD
rX

kD0
ır�k sup

jtj�ı
kQr�k

ı �k
t f kp: (9)

The results in [16] lead to the following theorem:

Theorem 1. Let 1 � p � 1, f 2 Xp, r; n � 1 be integers. Then

En;p.f / � c!r.pI f ; 1=n/; (10)

and

!r.pI f ; 1=n/ � c

nr

(
kf kp C

nX
kD0
.k C 1/r�1Ek;p.f /

)
: (11)

For the present paper, we need the following equivalence theorem, Theorem 2,
which is obtained from Theorem 1 using standard methods of approximation theory
as in [5].
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For a sequence a D fang1
nD0, 0 < � � 1, 	 2 .0;1/, we define the sequence

(quasi-)norm

ŒŒa���;	 D
( �P1

nD0.2	njanj/��1=� ; if 0 < � < 1;

supn�0 2n	 janj; if � D 1:
(12)

The space of all sequences a with ŒŒa���;	 < 1 will be denoted by b�;	 .

Definition 3. Let 1 � p � 1, 0 < � � 1, 0 < 	 < 1. The Besov space Bp;�;	 is
the space of all f 2 Xp for which kf kp C ŒŒfE2n;p.f /g1

nD0���; 	 < 1. ut
Theorem 2. Let 0 < � � 1, 0 < 	 < 1, 1 � p � 1, f 2 Xp, and r > 	 be an
integer. Then f 2 Bp;�;	 if and only if ŒŒf!r.pI f ; 1=2n/g1

nD0���; 	 < 1.

A consequence of this theorem is the following. Let w.x/ D exp.�x2=2/. Let
1 � p � 1, t > 0. If f 2 Lp, we define

QEt;p.f / D inf
R2Pt2

kf � Rw2kp: (13)

With Qf .x/ D f .x=
p
2/, it is elementary to see that QEn;p.f / 	 En;p.Qf /. Since

!r.pI Qf ; ı/ 	 !r.pI f ; ı/ for ı > 0, we obtain as a corollary to Theorem 2 from
the following:

Corollary 3.1. Let 0 < � � 1, 0 < 	 < 1, 1 � p � 1, f 2 Xp. Then f 2 Bp;�;	

if and only if ŒŒf QE2n;p.f /g1
nD0���; 	 < 1.

4 Localized Kernels

If H W Œ0;1/ ! R is a compactly supported function, we write

˚n.HI x; y/ D
1X

jD0
H

�p
j

n

	
 j.x/ j.y/; n > 0; x; y 2 R: (14)

Theorem 3. Let H W R ! R be a compactly supported, infinitely differentiable,
even function. For x; y 2 R, n � 1, S � 3, we have

j˚n.HI x; y/j � c
n

max.1; .njx � yj/S/ ;
ˇ̌
ˇ̌ @
@x
˚n.HI x; y/

ˇ̌
ˇ̌ � c

n2

max.1; .njx � yj/S/ ;
(15)

where the constants c may depend upon S.

The proof of this theorem requires some preparation. First, we recall some
terminology.
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A measure � on R is called an even measure if �..�u; u// D 2�.Œ0; u// for all
u > 0, and �.f0g/ D 0. If � is an extended complex valued measure on Œ0;1/, and
�.f0g/ D 0, we define a measure �e on R by

�e.B/ D � .fjxj W x 2 Bg/ ;

and observe that �e is an even measure such that �e.B/ D �.B/ for B � Œ0;1/.
In the sequel, we will assume that all measures on Œ0;1/ which do not associate a
nonzero mass with the point 0 are extended in this way, and will abuse the notation
� also to denote the measure �e. In the sequel, the phrase “measure on R” will refer
to an extended complex valued Borel measure having bounded total variation on
compact intervals in R, and similarly for measures on Œ0;1/.

The proof of Theorem 3 uses two Tauberian theorems. The first of these [13,
Theorem 2.1] is the following:

Theorem 4. Let � be an extended complex valued measure on Œ0;1/, and
�.f0g/ D 0. We assume that there exist Q; r > 0, such that each of the following
conditions are satisfied:

1.

sup
u2Œ0;1/

j�j.Œ0; u//
.u C 2/Q

< 1; (16)

2. There are constants c;C > 0, such that

ˇ̌
ˇ̌
Z

R

exp.�u2t/d�.u/

ˇ̌
ˇ̌ � c1t

�C exp.�r2=t/ sup
u2Œ0;1/

j�j.Œ0; u//
.u C 2/Q

; 0 < t � 1:

(17)

Let H W Œ0;1/ ! R, S > Q C 1 be an integer, and suppose that there exists a
measure HŒS� such that

H.u/ D
Z 1

0

.y2 � u2/SCdHŒS�.y/; u 2 R; (18)

and

VQ;S.H/ D max

�Z 1

0

.y C 2/Qy2SdjHŒS�j.y/;
Z 1

0

.y C 2/QySdjHŒS�j.y/
	
< 1:

(19)
Then for n � 1,

ˇ̌
ˇ̌
Z 1

0

H.u=n/d�.u/

ˇ̌
ˇ̌ � c

nQ

max.1; .nr/S/
VQ;S.H/ sup

u2Œ0;1/

j�j.Œ0; u//
.u C 2/Q

: (20)

The second theorem we need is the following [20, Lemma 5.2]:
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Theorem 5. Let C > 0, f`jg be a non-increasing sequence of nonnegative numbers
such that `0 D 0 and lim

j!1 `j D 1. Let fajg be a sequence of nonnegative numbers

such that
P1

jD0 exp.�`2j t/aj converges for t 2 .0; 1�. Then

c1L
C �

X
`j�L

aj � c2L
C; L > 0; (21)

if and only if

c3t
�C=2 �

1X
jD0

exp.�`2j t/aj � c4t
�C=2; t 2 .0; 1�: (22)

We are now in a position to prove Theorem 3. We note that the estimates (27)
and (33) below were obtained in [14, Theorem 3.3.4] assuming the Markov–
Bernstein inequality using more complicated machinery. In the present paper, the
Markov–Bernstein inequality will be deduced as a consequence of Theorem 3.

Proof of Theorem 3. The starting point of the proof is the Mehler formula [1,
Formula (6.1.13)]: For x; y 2 R, jrj < 1,

1X
jD0

 j.x/ j.y/r
j D 1p

�.1 � r2/
exp

�
2xyr � .x2 C y2/r2

1 � r2

	
exp.�.x2 C y2/=2/

D 1p
�.1 � r2/

exp

�
� r

1 � r2
.x � y/2 � 1 � r

1C r

x2 C y2

2

	
: (23)

Writing r D e�t, t > 0, we get the explicit expression for the “heat kernel”:

1X
jD0

e�jt j.x/ j.y/

D et=2

p
2� sinh t

exp

�
� 2

sinh t
.x � y/2

	
exp.�.1=2/ tanh.t=2/.x2 C y2//: (24)

Hence,

ˇ̌
ˇ̌
ˇ̌

1X
jD0

e�jt j.x/ j.y/

ˇ̌
ˇ̌
ˇ̌ � c1p

t
exp

�
�c.x � y/2

t

	
; 0 < t � 1: (25)
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Taking x D y above, we see that

1X
jD0

e�jt j.x/
2 � ct�1=2: (26)

Consequently, Theorem 5 used with `j D p
j and aj D  j.x/2 yields

X

0�p
j<u

 j.x/
2 � cu; u � 1: (27)

We now define a family of measures �x;y by

�x;y.u/ D
X

0�p
j<u

 j.x/ j.y/; u; x; y 2 R:

Using Schwarz inequality and (27), we conclude that

sup
u>0

j�x;yj.u/
u C 2

� c; x; y 2 R: (28)

In view of (25), the estimate (17) is satisfied by each of the measures �x;y with r D
jx � yj. Moreover, it is clear that H satisfies the conditions required in Theorem 4.
Since

˚n.HI x; y/ D
Z 1

0

H.u=n/d�x;y.u/;

we may use Theorem 4 with Q D 1 to arrive at the first inequality in (15).
In order to prove the second estimate in (15), we define a family of measures

�
.1/
x;y by

�.1/x;y.u/ D
X

0�p
j<u

 0
j .x/ j.y/; u; x; y 2 R;

and observe that

@

@x
˚n.HI x; y/ D

Z 1

0

H.u=n/d�.1/x;y.u/; x; y 2 R:

We will verify that (17) is satisfied by each of the measures �.1/x;y with r D jx � yj,
and

sup
u>0

j�.1/x;y j.u/
.u C 2/2

� c; x; y 2 R: (29)
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An application of Theorem 4 with Q D 2 then implies the desired second inequality
in (15) as before.

Since  0
n.x/ D p

2n n�1.x/� x n.x/ (cf. [28, Eqs. (5.5.1), (5.5.10)]), it follows
from (27) that k 0

nk1 � cn2. Therefore, we may differentiate the left-hand side
of (24) term by term to obtain for t > 0

1X
jD0

e�jt 0
j .x/ j.y/ D et=2

p
2� sinh t



4.y � x/

sinh t
� x tanh.t=2/

�
�

exp

�
� 2

sinh t
.x � y/2 � .1=2/ tanh.t=2/.x2 C y2/

	
; (30)

and

1X
jD0

e�jt 0
j .x/ 

0
j .y/

D et=2

p
2� sinh t



4

sinh t
C
�
4.y � x/

sinh t
� x tanh.t=2/

	�
4.x � y/

sinh t
� y tanh.t=2/

	�
�

exp

�
� 2

sinh t
.x � y/2 � .1=2/ tanh.t=2/.x2 C y2/

	
:

(31)

Since max
x2R jxjm exp.�ax2/ D .2a=.em//�m=2, m D 1; 2; � � � , we deduce from (30)

and (31) that for 0 < t � 1,

ˇ̌
ˇ̌
ˇ̌

1X
jD0

e�jt 0
j .x/ j.y/

ˇ̌
ˇ̌
ˇ̌ � c1

t
exp

�
�c.x � y/2

t

	
;

1X
jD0

e�jt 0
j .x/

2 � ct�3=2:

(32)

Thus, each of the measures �.1/x;y satisfies (17) with r D jx � yj. Using Theorem 5
with  0

j .x/
2 in place of aj, (32) leads to

X

0�p
j<u

 0
j .x/

2 � cu3; u � 1: (33)

Therefore, using Schwarz inequality and (27), we conclude that for u � 1,

j�.1/x;y j.u/ �
X

0�p
j<u

j 0
j .x/ j.y/j � cu2:

This leads to (29) and completes the proof of the second inequality in (15) as
explained before. ut
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5 Summability Operators

Definition 4. A function h W R ! Œ0; 1� is called a low pass filter if each of the
following conditions is satisfied:

1. h is an even, infinitely differentiable function on R,
2. h.u/ D 1 for juj � 1=2,
3. h is non-increasing on Œ1=2; 1�,
4. h.u/ D 0 if juj � 1. ut

In the sequel we will fix an infinitely differentiable low pass filter h, and will omit
its mention from the notations, unless necessary to avoid confusion. In particular,
the constants may depend upon h.

Let n > 0, � be a Borel measure on R, f 2 L1.�/C L1, and x 2 R. We define

Of .�I j/ D
Z

R

f .y/ j.y/d�.y/; j D 0; 1; � � � ; (34)

and with ˚n.x; y/ D ˚n.hI x; y/ as defined in (14),

�n.�I f ; x/ D �n.hI �I f ; x/ D
Z

R

˚n.x; y/f .y/d�.y/ D
1X

jD0
h.
p

j=n/Of .�I j/ j.x/:

(35)
As usual, we will omit the mention of � if � is the Lebesgue measure on R, e.g.,

Of .j/ D
Z

R

f .y/ j.y/dy; j D 0; 1; � � � : (36)

In this section, we will also find it useful to introduce the notation

�.1/n .f ; x/ D d

dx
�n.f ; x/; x 2 R; f 2 L1 C L1: (37)

The main theorem of this section is the following:

Theorem 6. Let n > 0, � 2 MZ.n/. If P 2 ˘n=2, then �n.�I P/ D P. If 1 � p � 1
and f 2 Lp, then

En;p.f / � k�n.�I f / � f kp � cEn=2;p.f /: (38)

In preparation for the proof of this theorem, we first prove two lemmas.

Lemma 1. If t > 0, � 2 Rt, r > 0, S � 2, and x 2 R, then

Z

RnB.x;r/
jy � xj�Sdj�j.y/ � 2S

2S � 2 jjj�jjjtr�SC1.2C 1=.rt//: (39)
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In particular, if n > 0, and � 2 Rn, then

Z

R

j˚n.x; y/jdj�j.y/ � cjjj�jjjn;
Z

R

ˇ̌
ˇ̌ @
@x
˚n.x; y/

ˇ̌
ˇ̌ dj�j.y/ � cnjjj�jjjn: (40)

Proof. By re-normalization if necessary, we may assume in this proof that jjj�jjjt D 1.
Then (5) can be used to deduce that

Z

RnB.x;r/
jy � xj�Sdj�j.y/ D

1X
jD0

Z

B.x;2jC1r/nB.x;2jr/
jy � xj�Sdj�j.y/

�
1X

jD0
.2jr/�Sj�j.B.x; 2jC1r//

�
1X

jD0
.2jr/�S.2jC1r C 1=t/ D 2Sr�SC1

2S�1 � 1 C 2Sr�S

.2S � 1/t

� 2Sr�SC1

2S � 2 .2C 1=.rt//:

Using the first estimate in (15) with S � 2, we deduce from (39) (with n in place of
t) that

Z

R

j˚n.x; y/jdj�j.y/ D
Z

B.x;1=n/
j˚n.x; y/jdj�j.y/C

Z

RnB.x;1=n/
j˚n.x; y/jdj�j.y/

� cn
˚j�j.B.x; 1=n//C n�SnS�1� � c:

The second estimate in (40) is proved in the same way using the second estimate
in (15). ut

As a consequence of this lemma, we obtain the following:

Lemma 2. Let n > 0, �; � 2 Rn, and 1 � p � 1. Then

k�n.�I f /k�Ip � ckf k�Ip; f 2 Lp.�/; (41)

k�.1/n .f /kp � cnkf kp; f 2 Lp.�/ (42)

Proof. In view of (40), for all x 2 R, and f 2 L1.�/,

j�n.�I f ; x/j �
Z

R

j˚n.x; y/jjf .y/jdj�j.y/ � ckf k�I1;
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and similarly, using Tonelli’s theorem, if f 2 L1.�/,

Z

R

j�n.�I f ; x/jdj�j.x/ �
Z

R

Z

R

j˚n.x; y/jjf .y/jdj�j.y/dj�j.x/

D
Z

R

Z

R

j˚n.y; x/jjf .y/jdj�j.x/dj�j.y/ � ckf k�I1:

The estimate (41) follows from these and the Riesz-Thorin interpolation theorem.
The proof of (42) is similar. ut

We are now in a position to prove Theorem 6.

Proof of Theorem 6. We recall that h.u/ D 1 if juj � 1=2. If P 2 ˘n=2, then for
x 2 R,

P.x/ D
X

0�
p

j<n=2

OP.j/ j.x/ D
1X

jD0

h.
p

j=n/ OP.j/ j.x/ D �n.P; x/ D
Z

R

P.y/˚n.x; y/dy:

Since � 2 MZ.n/, the definition (7) now shows that

P.x/ D
Z

R

P.y/˚n.x; y/d�.y/ D �n.�I P; x/:

The first inequality in (38) is obvious. In view of Lemma 2, we obtain for any
P 2 ˘n=2,

k�n.�I f / � f kp D k�n.�I f � P/ � .f � P/kp � ckf � Pkp:

This leads to the second inequality in (38). ut
We end this section by pointing out that the estimate (42) leads immediately to

the following Markov–Bernstein inequality. This deduction is the same in spirit as
that given in [14], but we consider it to be a new proof, since the proof of (42) is
significantly different from that in [14].

Corollary 5.1. For 1 � p � 1,

kP0kp � cnkPkp; n > 0; P 2 ˘n: (43)

Proof. If P 2 ˘n, Theorem 6 shows that �2n.P/ D P, so that P0 D �
.1/
2n .P/. The

inequality (43) follows from this and (42). ut



354 H.N. Mhaskar

6 Quadrature Formula

In this section, we wish to demonstrate the existence of measures in MZ.n/,
supported on sufficiently dense finite point sets in R, in the sense made precise
below. We recall that if C � R, the density content of C is defined by

ı.C / D sup
y;z2C

jy � zj: (44)

Theorem 7. There exists C; ˛ > 0 with the following property: With An D
.n

p
2/.1C Cn�4=3/, if C D fy1 < � � � < yMC1g � R, Œ�An;An� � Œy1; yMC1�, and

ı.C / � c, then there exist real numbers w1; � � � ;wM such that with n D ˛ı.C /�1,
Z

R

P.y/Q.y/dy D
MX

kD1
wkP.yk/Q.yk/; P;Q 2 ˘n; (45)

and

jwkj � cjykC1 � ykj; k D 1; � � � ;M: (46)

In particular, the measure � that associates the mass wk with each of the points yk

is in MZ.n/. Further, if Œy1; yMC1� � Œ�cnˇ; cnˇ� for some ˇ > 0, then

MX
kD1

jwkj � cnˇ: (47)

This theorem will be deduced by making some changes in variable in the
following theorem:

Theorem 8. There exists C; ˛1 > 0 with the following property: With A0
n D 2n.1C

Cn�4=3/, if C 0 D fx1 < � � � < xMC1g � R, Œ�A0
n;A

0
n� � Œx1; xMC1�, and ı.C 0/ � c,

then there exist real numbers Qw1; � � � ; QwM such that with n D ˛1ı.C 0/�1,

Z

R

P.x/dx D
MX

kD1
QwkP.xk/; P 2 ˘n

p
2; (48)

and

j Qwkj � cjxkC1 � xkj; k D 1; � � � ;M: (49)

The proof of Theorem 8 follows the now standard methods (e.g., [10, 15, 19, 26]).
We first use the Markov–Bernstein inequality (43) with p D 1 to prove the so-called
Marcinkiewicz–Zygmund inequalities (Lemma 3 below), and then use the Hahn–
Banach theorem.

Before starting this program, we recall some finite–infinite range inequalities.
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Proposition 6.1. Let n > 0, 1 � p; r � 1, P 2 ˘n. Then

kPkp;RnŒ�2n;2n� � c exp.�c1n/kPkr;Œ�2n;2n�: (50)

Moreover, there exists D > 0 such that with Bn D .n
p
2/.1C Dn�4=3/, we have for

n � c,

Z

RnŒ�Bn;Bn�

jP.x/jdx � .1=8/

Z Bn

�Bn

jP.x/jdx: (51)

Proof. The estimate (50) is proved in [14, Proposition 6.2.8] (and its proof). The
estimate (51) is proved in [15, Corollary 2.1]. (To reconcile the notation in [15], we
use ˛ D 2 and 2n2 in place of n which yields the interval denoted there by �n;˛ to
be of the form Œ�Bn;Bn� with a suitable value of D.) ut
Lemma 3. We assume the set up in Theorem 8. Then

.3=4/

Z

R

jP.x/jdx �
MX

kD1
.xkC1 � xk/jP.xk/j � .5=4/

Z

R

jP.x/jdx; P 2 ˘n
p
2:

(52)

Proof. Let P 2 ˘n
p
2, and C D 2�2=3D, where D is defined in Proposition 6.1.

Since Œ�A0
n;A

0
n� � Œx1; xMC1�, we obtain from (51) that for n � c

Z

RnŒx1;xMC1�

jP.x/jdx � .1=8/

Z xMC1

x1

jP.x/jdx: (53)

For k D 1; � � � ;M, we have

ˇ̌
ˇ̌
Z xkC1

xk

jP.x/jdx � .xkC1 � xk/jP.xk/j
ˇ̌
ˇ̌ �

Z xkC1

xk

jjP.x/j � jP.xk/jj dx

�
Z xkC1

xk

jP.x/ � P.xk/jdx �
Z xkC1

xk

Z y

xk

jP0.u/jdudx

� .xkC1 � xk/

Z xkC1

xk

jP0.u/jdu:

Consequently, we deduce from (53) and (43) that

ˇ̌
ˇ̌
ˇ
Z

R

jP.x/jdx �
MX

kD1
.xkC1 � xk/jP.xk/j

ˇ̌
ˇ̌
ˇ

�
Z

RnŒx1;xMC1�

jP.x/jdx C
ˇ̌
ˇ̌
ˇ
Z xMC1

x1

jP.x/jdx �
MX

kD1
.xkC1 � xk/jP.xk/j

ˇ̌
ˇ̌
ˇ
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� .1=8/

Z

R

jP.x/jdx C
MX

kD1

ˇ̌
ˇ̌
Z xkC1

xk

jP.x/jdx � .xkC1 � xk/jP.xk/j
ˇ̌
ˇ̌

� .1=8/

Z

R

jP.x/jdx C
MX

kD1
.xkC1 � xk/

Z xkC1

xk

jP0.u/jdu

� .1=8/

Z

R

jP.x/jdx C cı.C 0/
Z

R

jP0.u/jdu

� .1=8/

Z

R

jP.x/jdx C cnı.C 0/
Z

R

jP.x/jdx:

Therefore, choosing ˛1 sufficiently small, we obtain for n D ˛1ı.C 0/�1,
ˇ̌
ˇ̌
ˇ
Z

R

jP.x/jdx �
MX

kD1
.xkC1 � xk/jP.xk/j

ˇ̌
ˇ̌
ˇ � .1=4/

Z

R

jP.x/jdx:

This completes the proof. ut
We are now in a position to complete the proof of Theorem 8.

Proof of Theorem 8. In this proof only, we define a norm on R
M by

jjj.z1; � � � ; zM/jjj D
MX

kD1
.xkC1 � xk/jzkj;

the sampling operator U W ˘n
p
2 ! R

M by U P D .P.x1/; � � � ;P.xM//, and denote
the range of U by V . Then (52) shows that the operator U is invertible on V , and
we may define a linear functional on V by

x�.U P/ D
Z

R

P.x/dx:

The dual norm of this functional can be estimated easily using (52):

jx�.U P/j �
Z

R

jP.x/jdx � .4=3/jjjU Pjjj;

so that the norm is � 4=3. In view of the Hahn–Banach theorem, this functional can
be extended from V to R

M , where the extended functional has the same norm as x�;
i.e., � 4=3. This extended functional can be identified with . Qw1; � � � ; QwM/ 2 R

M .
Then for P 2 ˘n

p
2,
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MX
kD1

QwkP.xk/ D x�.U P/ D
Z

R

P.x/dx;

proving (48). The norm of the extended functional is

max
1�k�M

j Qwkj
xkC1 � xk

� .4=3/:

This proves (49). ut
Having proved Theorem 8, the proof of Theorem 7 is only a change of variables.

Proof of Theorem 7. Let xk D yk

p
2, k D 1; � � � ;M C 1, and C 0 D fx1; � � � ; xMC1g.

Then with A0
n, ˛1 as defined in Theorem 8, ı.C 0/ D p

2ı.C /, and Œ�A0
n;A

0
n� �

Œx1; xMC1�. Further, with ˛ D ˛1=
p
2, n D ˛ı.C /�1 D ˛1ı.C 0/�1. Therefore,

Theorem 8 yields Qwk satisfying (48) and (49).
If P.y/ D R1.y/ exp.�y2=2/, Q.y/ D R2.y/ exp.�y2=2/, R1;R2 2 Pn2 , then

x 7! R1.x=
p
2/R2.x=

p
2/ exp.�x2=2/ 2 ˘n

p
2. Hence, with wk D Qwk=

p
2, (48)

implies that

Z

R

P.y/Q.y/dy D
Z

R

R1.y/R2.y/ exp.�y2/dy

D 1p
2

Z

R

R1.x=
p
2/R2.x=

p
2/ exp.�x2=2/dx

D
MX

kD1
wkR1.yk/R2.yk/ exp.�y2k/

D
MX

kD1
wkP.yk/Q.yk/;

which is (45). Also, (49) implies that

jwkj D 1p
2

j Qwkj � cp
2

jxkC1 � xkj D cjykC1 � ykj;

which is (46). ut
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7 Wavelet-Like Representation

We recall Definition 3 of Besov spaces Bp;�;	 . Our first theorem is a characterization
of these spaces in terms of an expansion of a function in Lp based either on the
Fourier–Hermite coefficients or values of the target function at arbitrary points on R.

Let @ D f�ng be a sequence of measures. We define the frame operators by

�n.@I f / D


�1.�0I f /; if n D 0;

�2n.�nI f / � �2n�1 .�n�1I f /; if n D 1; 2; � � � ; (54)

for all f for which the operators involved are well defined. If each of the measures �n

is the Lebesgue measure, we will omit the mention of the sequence in the notations.
In this case, the operators are defined for f 2 L1 C L1. If each �n is a finitely
supported measure, then the operators are defined for f 2 X1.

The following theorem is easy to deduce from Theorem 6 and [2, Theorem 3.1]:

Theorem 9. Let 1 � p � 1, @ D f�ng be a sequence of measures such that each
�n 2 MZ.2nC1/. Let f 2 Xp.

(a) We have

f D
1X

nD0
�n.@I f /: (55)

(b) If 0 < � � 1, 0 < 	 < 1, then f 2 Bp;�;	 if and only if fkf ��2n.f /kpg 2 b�;	 .
In turn, f 2 Bp;�;	 if and only if fk�n.f /kpg1

nD0 2 b�;	 .
(c) Let @ D f�ng be a sequence of measures such that each �n 2 MZ.2nC1/, f 2

X1, 0 < � � 1, and 0 < 	 < 1. Then f 2 B1;�;	 if and only if fkf �
�2n.�nI f /k1g 2 b�;	 . In turn, f 2 B1;�;	 if and only if fk�n.@I f /k1g1

nD0 2 b�;	 .
(d) If f 2 L2, then

kf k22 	
1X

nD0
k�n.f /k22: (56)

The main purpose of this section is to show that (55) is a wavelet-like rep-
resentation; i.e., the local behavior of the sequence f�n.f /g1

nD0 characterizes the
membership of f in local Besov spaces, defined below.

Definition 5. If x0 2 R, the local Besov space Bp;�;	 .x0/ is the space of all f 2 Xp

with the following property : There exists a ı > 0 such that for every infinitely
differentiable function  supported on B.x0; ı/, f 2 Bp;�;	 . ut

The wavelet-like representation property is described in the following theorem:

Theorem 10. Let 1 � p � 1, f 2 Xp, x0 2 R, 0 < � � 1, and 0 < 	 < 1. The
following statements are equivalent:
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(a) f 2 Bp;�;	 .x0/.
(b) There exists a ı > 0 such that fkf � �2n.f /kp;B.x0;ı/g1

nD0 2 b�;	 .
(c) There exists a ı > 0 such that fk�n.f /kp;B.x0;ı/g1

nD0 2 b�;	 .

In the case of functions in X1, one can obtain a similar theorem also based on
the samples of the target function at arbitrary points.

Theorem 11. Let f 2 X1, x0 2 R, 0 < � � 1, and 0 < 	 < 1. Let @ D f�ng
be a sequence of measures such that each �n 2 MZ.2nC1/. The following statements
are equivalent:

(a) f 2 B1;�;	 .x0/.
(b) There exists a ı > 0 such that fkf � �2n.�nI f /k1;B.x0;ı/g1

nD0 2 b�;	 .
(c) There exists a ı > 0 such that fk�n.@I f /k1;B.x0;ı/g1

nD0 2 b�;	 .

We will prove Theorem 11 in some detail, and then indicate the changes required
to prove Theorem 10.

Proof of Theorem 11. In this proof, we will choose and fix an integer S > 	 C 3.
All constants may depend upon x0, ı, and S.

Let (a) hold, and ı > 0 be such that for every infinitely differentiable function 
supported on B.x0; ı/, fE2n;1.f /g1

nD0 2 b�;	 . In this part of the proof, let  be an
infinitely differentiable function supported on B.x0; ı/ and equal to 1 on B.x0; 3ı=4/.
We use the first estimate in (15) and (39) (with S C 1 in place of S) to conclude that
for x 2 I D B.x0; ı=2/,

j�2n.�nI .1 � /f ; x/j D
ˇ̌
ˇ̌
Z

RnB.x0;3ı=4/
.1 � .y//f .y/˚n.x; y/d�n.y/

ˇ̌
ˇ̌

� ckf k1
Z

RnB.x0;3ı=4/
j˚n.x; y/jdj�nj.y/

� ckf k1
Z

RnB.x;ı=4/
j˚n.x; y/jdj�nj.y/ � c2�nSkf k1: (57)

Therefore, (38) leads to

kf � �2n.�nI f /k1;I D kf � �2n.�nI f /k1;I

� kf � �2n.�nIf /k1;I C k�2n..1 � /f k1;I

� c
˚
E2n�1;1.f /C 2�nSkf k1

�
: (58)

Since S > 	 C 3, each of the sequences fE2n�1;1.f /g1
nD0 and f2�nSkf k1g1

nD0
belongs to b�;	 . Therefore, (58) implies the statement in part (b).
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Conversely, let part (b) hold, and  be any infinitely differentiable function
supported on I D B.x0; ı/. Since  is in particular 2S times continuously
differentiable, the direct theorem of approximation [14, Theorem 4.2.1] shows that
for n � c, there exists Rn 2 ˘2n such that kRnk1 � c, and

k � Rnk1 � c2�nS: (59)

Therefore, using the notation introduced in (13),

QE2nC1;1.f / � kf � Rn�2n.�nI f /k1
� k.f � �2n.�nI f //k1 C k. � Rn/�2n.�nI f /k1
� c fk.f � �2n.�nI f /k1;I C k � Rnk1k�2n.�nI f /k1g
� c

˚k.f � �2n.�nI f /k1;I C c2�nSkf k1
�
:

As before, the statement in part (b) now leads to f QE2n;1.f /g1
nD0 2 b�;	 . In view of

Corollary 3.1, this implies the statement in part (a).
The equivalence of parts (b) and (c) follows from (55), and an application of the

discrete Hardy inequalities [5, p. 27]. ut
Proof of Theorem 10. The proof is almost verbatim the same as that of Theorem 11,
except for one difference, which we now point out. We continue the notation as in
the proof of (a)) (b). All the constants in this proof will depend upon x0 and ı. As
shown in (57) (with the Lebesgue measure in place of �n),

k�2n..1 � /f k1;I � c2�nSkf k1; f 2 L1: (60)

If f 2 L1, then (15) (with S C 1 in place of S) implies that

Z

I
j�2n..1 � /f ; x/jdx

�
Z

I

Z

RnB.x0;3ı=4/
j.1 � .y//f .y/jj˚n.x; y/jdydx

� ckf k1 sup
y2RnB.x0;3ı=4/

Z

I
j˚n.x; y/jdx � c2�nSkf k1: (61)

The Riesz–Thorin interpolation theorem applied with the operator f 7! �2n..1 �
/f /, together with (60) and (61), now implies that for 1 � p � 1,

k�2n..1 � /f kp;I � c2�nSkf kp; f 2 Lp:

The remainder of the proof is almost verbatim the same as that of Theorem 11. ut
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Approximating the Riemann Zeta and Related
Functions

Frank Stenger

This chapter is written in memory of Q.I. Rahman

Abstract In this chapter we study the well-known function G, as well as some
other functions that have the same zeros as the Riemann zeta function �.z/ in the
critical strip. To this end, we first derive a Fourier series expansion of G. Next, we
use asymptotic methods to derive another function which also has the same zeros
in the critical strip as �.z/, but which lacks the extreme oscillatory behavior and
extreme amplitude values that �.z/ possesses, and which is therefore more suitable
for computational purposes.

Keywords Riemann-zeta function • Sinc approximation • Asymptotic
approximation

AMS Subject Classification: 42A15, 42A05, 41A55, 41A20

1 Introduction and Summary

Q.I. Rahman posed a mathematical problem to me many years ago when I was a
visitor at the Centre de Récherches Mathématiques at the Université de Montréal.
I was lucky to have been able to solve that problem for him, and I soon forgot about
it. However, about 2 years later I received a reprint [11], authored by him and me,
which surprised me, albeit mildly, inasmuch as I knew Rahman to be a very kind
person. Rahman and Schmeisser [10] improved the result of [11], and Lachance
et al. [9] later obtained the exact solution to that problem.
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P. Erdős frequently visited the University of Montreal, and that is how Rahman
learned about this problem. Erdős’ interest in this subject stemmed from work with
P. Turán, who worked on problems associated with Riemann’s hypothesis (see,
e.g., [5]).

It thus seems appropriate to write this chapter about the Riemann zeta function,
and the Riemann Hypothesis. Section 2 thus begins with a derivation of the well-
known function, G , which has the same zeros as the zeta function in the critical
strip, D D fz 2 C W 0 < <z < 1g. Section 3 then describes some explicit Fourier
series and Fourier polynomials that are obtained by approximating G using Sinc
quadrature [§1.5.7 of 15]. These formulas may be used to approximate G.z/ for
values of z in D that are not unduly large.1 Section 4 presents some novel asymptotic
approximations in order to facilitate the approximation of G for very large2 values
of z. Section 5 presents two examples of applications of the results.

The literature is replete with excellent papers about computing the Riemann zeta
function (see, e.g., [2, 8, 13], with the latter describing a procedure based on Sinc
approximation). There also exist several asymptotics papers, but those are based on
the Euler–MacLauren formula; they require partial sums of the series representation
of the zeta function, they yield results based on fixed numerical values of z, and
I believe that the formulas derived here are more suitable for studying �.z/ for
arbitrarily large values of z.

2 Function Related Riemann Zeta

The usual series expansion of the Riemann Zeta function can be obtained via term-
wise integration of the expression

�.z/ D
1X

nD1

1

nz

D 1

�.z/

Z 1

0

xz�1

ex � 1 dx

D 1

�.z/

Z 1

0

e�x xz�1 �1C e�x C e�2 x C : : :
�

dx ;

(1)

where �.z/ denotes the usual Gamma function. Unfortunately, the above infinite
series converges only in the region <z > 1, and it is thus not convenient for studying

1This formula may be used to approximate G on an interval where the usual FFT formula is
applicable.
2The formulas of Sects. 3 and 4 are applicable on overlapping regions.
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the zeros of the Zeta function in the critical strip, D D fz 2 C W 0 < <z < 1g.
However, the above series for �.z/ immediately yields

2

2z
�.z/ D

1X
nD1

2

.2 n/z
; (2)

and by subtracting the series (2) from the series in (1), and then proceeding as in (1)
above, we immediately get

�
1 � 2

2z

	
�.z/ D 1

�.z/

Z 1

0

xz�1

ex C 1
dx : (3)

Theorem 2.1. Set

G.z/ D
Z 1

0

xz�1

ex C 1
dx : (4)

Then G is analytic on the right half plane, and moreover, the zeros of G coincide
with the zeros of the Riemann zeta function in the critical strip, D D fz 2 C W 0 <
<z < 1g.

Proof. The analyticity of G on the right half plane follows by inspection of the
integral (4). That G and �.z/ have the same zeros in D follows from (3) as a
consequence of the fact that neither of the functions

�
1 � 2

2z

�
and 1=�.z/ vanishes

in D. �

Corollary 2.2. The Riemann Hypothesis is equivalent to having all zeros of G in
the critical strip D be on the line fz 2 C W � D <z D 1=2g.

3 Fourier Series Approximation of G

Let us briefly recall the conditions for convergence of Sinc quadrature from [Stp,
§4.2] or [15, §1.5.7], or [15].

Theorem 3.1. Assume that the function f in the integral

I D
Z 1

0

f .x/ dx (5)

satisfies the following assumptions:

1. f is analytic in the sector, S" � fx 2 C W j arg.x/j < �=2� "g, with " 2 .0 ; 1/ an
arbitrary positive constant; and

2. jf .x/j D O �x��1 exp.�jxj/� , x 2 S" , where x is a positive number. Set ˇ D
2� .�=2 � "/.
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(a) Then, [Stp, Theorem 4.2.2 (b)] we have for positive numbers h and C, with
C depending only on f , such that

ˇ̌
ˇ̌
ˇI � h

1X
kD�1

ek h f
�
ekh
�
ˇ̌
ˇ̌
ˇ < C exp

�
�ˇ

h

	
: (6)

(b) By taking h D .ˇ=N/1=2 and M D ŒN=��, there exists a constant C0
depending only on g, such that

ˇ̌
ˇ̌
ˇI � h

NX
kD�M

ek h f
�
ekh
�
ˇ̌
ˇ̌
ˇ < C0 exp

��.ˇ N/1=2
�
: (7)

Now, by taking f .x/ D xz�1=.exp.x/ C 1/, we get a function f which not only
depends on x but also on a complex parameter z. Furthermore, if z 2 D" D fz 2 C W
" < <z < 1� "g (where we assume that 0 < " < 1=2), then this function f does, in
fact, satisfy all of the above conditions, enabling us to arrive at the following result.

Theorem 3.2. Let G be defined by the integral (4), let z D � C i t 2 D", define M
and N and h as in Theorem 3.1, set

a.�; x/ D exp.� x/

1C exp .ex/
; (8)

and set

Gh.� C i t/ D

8
ˆ̂̂<
ˆ̂̂
:

h
1X

kD�1
a.�; kh/ ei k h t if jtj < �=h ;

0 if jtj > �=h :

Gh;M;N.� C i t/ D

8̂
ˆ̂<
ˆ̂̂:

h
NX

kD�M

a.� ; k h/ ei k h t if jtj < �=h

0 if jtj > �=h :

(9)

Then, in the notation of Theorem 3.1, we have for all z D � C i t 2 D", and for
constants C" and C0

" depending only on " and a, that

jG.� C i t/ � Gh.� C i t/j < C" exp
�
�ˇ

h

�
;

jG.� C i t/ � GM;N;h.� C i t/j < C0
" exp

��.ˇ N/1=2
�
:

(10)



Approximating the Riemann Zeta and Related Functions 367

Remark 3.3. The function G of (8) can also be expressed as a Fourier transform.
For, in the notation of (8) above,

G.� C i y/ D
Z

R
a.� ; t/ ei t y dt ;

a.�; t/ D 1

2�

Z

R
G.� C iy/ e� i t y dt;

G.1=2C i y/ D
Z

R
a.1=2 ; t/ ei t y dy :

(11)

It is easy to deduce that Gh and GM;N;h do, in fact, converge to G uniformly on
the strip D", as h ! 0. It follows, therefore, that these functions converge to G at all
points of the critical strip D. Clearly, a.� ; �/ 2 L1.0 ;1/ for all � 2 .0 ; 1/.

4 Asymptotic Approximations

There are a number of papers that enable asymptotic estimates of the Riemann zeta
function; see, e.g., [6, 13] and the references in these papers. In this section we
present an approach, which follows the one used to get the asymptotic expansion
of the Gamma function [3]. The excellent thesis [7] and the papers [13] and [6]
start with a partial sum of the series for �.z/ as given in (1) and then to express the
remainder with an integral which must somehow be evaluated, an evaluation that
is usually carried out via use of the Euler–MacLauren formula, with this formula
requiring the evaluation of an asymptotic series that has limited accuracy.3

Similarly, the usual asymptotic expression for the Gamma function �.z/ as
obtained in [3] is the leading term i.e., Stirling’s formula-times an integral factor,
which is a non-convergent power series in powers of 1=z, and which also only has
limited accuracy. In this section we present an approach which is similar to that used
to get the asymptotic expansion of the Gamma function.

The procedures of Erdély and Wyman [4] as well as that in Copson [3] will thus
be used to get asymptotic estimates of the integral for G.z/ in (4) to derive a novel
function which also has the same zeros in the critical strip as the Riemann Zeta
function, but for which the values of amplitude and oscillations are less extreme.
As for the case of the asymptotic expansion of the Gamma function, we shall assume
at the outset that z is real.

3W. Galway shows, there is no difference between the asymptotic expansion and use of the
trapezoidal rule for the large values of z of his computations.
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Let us first sketch the procedure of Erdély and Wyman [4]. We are interested
only in dominant behavior of the asymptotic expansions, and we shall thus omit the
details required of getting a complete asymptotic expansion, which can be found in
[4]. Our aim is to soon write another paper based on the novel formulas obtained
here.

Starting with the function G as defined in (4), we replace x with z x in this integral,
to get

G.z/ D zz
Z 1

0

x�1 exp.�z .x � log.x///

1C exp.�z x/
dx : (12)

Next, we locate the critical point by solving the equation .d=dx/.x�log.x// D 0;
this yields x D 1. The critical points are the points whose neighborhood contains
the complete asymptotic expansion.

Then, replacing x with 1 C x (to replace the critical point x D 1 with x D 0)
yields

G.z/ D
� z

e

�z
Z 1

�1
h.z; x/ dx

h.z; x/ WD exp.�z .x � log.1C x///

.1C x/ .1C exp.�z x � z//
:

(13)

Expanding4

� z .x � log.1C x// D �z x2=2C z x3=3 � : : : ; (14)

we select a neighborhood of the origin, such as N˛ D fx 2 R W jxj < z�˛g, for
some ˛ > 0, with ˛ a positive number to be determined, such that one of the terms
of this expansion dominates in N˛ . In our case, this neighborhood has the property
that all but the dominant term approach zero in this neighborhood, whereas when
x D z�˛ , the dominant term approaches infinity. If the first term of the expansion
on the right-hand side of (14), i.e., if �z x2=2 is to dominate, then we must have
z x�2 ˛ D z1�2 ˛ ! 1 as z ! 1, requiring 1 � 2 ˛ > 0, i.e., ˛ < 1=2. For all
other terms, we require z xn ! 0 in N˛ for n D 3 ; 4 ; : : :, i.e., n˛ > 1 for n � 3.
This yields ˛ > 1=3. Combining with ˛ < 1=2, this means that any ˛ in the range
1=3 < ˛ < 1=2 will suffice. One such ˛ is, e.g., ˛ D 5=12.

4This present analysis is for z ! 1, with z real. By taking x D 0, the function .1C exp.�zx �
z//�1 D 1 � exp.�z//�1 WD 1 C 0, for large positive values of z, i.e., the power series of .1 C
exp.�z.1 C x// only has one term that contributes to the asymptotic expansion, the remainder
being of negative exponential order, and hence asymptotically zero. We have, however, included
this function, since it does have an important contribution for large values of z in the critical strip.
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Thus, setting

k.z ; x/ WD exp.�z.x � log.1C x//C z x2=2/ (15)

and expanding in powers of x, we get

k.z; x/ D exp.z .x3=3C O.x4/// ; x ! 0 ; (16)

where, with ˛ D 5=12,

Z 1

�1
h.z; x/ dx

D
Z

N˛

exp.�z x2=2/
k.z ; x/

.1C x/ .1C exp.�z � z x//
dx C E

D .2z/�1=2
Z

jyj<z�5=12

k.z .2=z/1=2 y/

.1C .2=z/1=2 y/.1C exp.�z � .2=z/1=2 y/
e�y2 dy

C E

D .2=z/1=2
Z

jyj<z�5=12

e�y2 1

.1C x/ .1C exp.�z � z x//
dy

CO.1=z/C E

D .2=z/1=2
Z

R
e�y2 dy C E0

WD
�
2�

z

	1=2
C E0 :

(17)
In (17) the terms E and E0 can be shown using Watson’s lemma (see [4]) to be

of order O.exp.�	z// for some constant 	 > 0; such terms decrease exponentially
and hence they do not contribute to an asymptotic expansion involving powers of
1=z, i.e., they are asymptotically zero with respect to such an asymptotic sequence.

Recall now, the Stirling formula result, that

�.z/ D
�
2�

z

	1=2 � z

e

�z
.1C O.1=z// ; z ! 1; (18)

where, as shown in [3], this asymptotic relation holds for all z 2 C" � fC W
j arg.z/j < � � "g for any number " in .0 ; �=2/.

Note also that the factor .z=e/z is non-vanishing in D. Combining this with the
above asymptotic derivation yields
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Theorem 4.1. Let h.z; x/ be defined as in (13), and let K be defined by the equation

K.z/ D
Z 1

�1
h.z; x/ dx

D
Z 1

�1
exp.�z.x � log.1C x//

.1C x/.1C exp.�z � z x//
dx

(19)

Then K has the same zeros in D as the Riemann zeta function �.z/.

Now let K be defined as in Theorem 4.1. Then

G.z/ D
� z

e

�z
K.z/ : (20)

Let us next examine the L.z/ WD G.z/=K.z/, i.e., the factor preceding K.z/ in
(20), for z D � C i t, with � > 0 fixed, and t large. The purpose of this examination
is just to get an insight into the behavior of G.� C i t/ for large t. Thus,

L.z/ D
� z

e

�z D jL.z/j ei � : (21)

As is shown in [3] that for z D � C i t with � fixed in R,

j�.z/j D
ˇ̌
ˇ̌
ˇ
�
2�

z

	1=2 � z

e

�z
ˇ̌
ˇ̌
ˇ D .�=.2 �=jtj//1=2jtj� exp.�� jtj=2/ .1C O.1=jtj// ;

(22)
as t ! 1.

Note, also, if z D � C i t with � > 0 fixed, then

.1C exp.�z//�1 D 1

2

exp..� C i t/=2/

cosh..� C i t/=2/
I

j1C exp.�z/j�1 D jtj� exp.�� jtj=2C �=2/

.sinh2.�=2/C cos2.t=2//1=2
.1C O.1=jtj// :

(23)

so that this term remains bounded, e.g., if � � 1=2.
Furthermore, we have

� D = log.L.z//

D � arctan.t=�/C t log.j� C i tj/ � t � arg.1C e�.�Ci t//

D � .�=2 � arctan.�=t//

C.t=2/ log.�2 C t2/ � t � arctan

�
e�� sin.t/

1C e�� cos.t/

	
:

(24)
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The following lemma summarizes the above derived result thus illustrates the
extreme variation of the magnitude and the wild oscillatory behavior of the function
L. The removal of L from G yields the function K.z/ which is thus affected less by
such oscillatory phenomena, and should therefore be more suitable for studying the
behavior of the Riemann zeta function for large values of z in the critical strip.

Lemma 4.2. Let L.z/ D L.� C i t/ and � be defined as in (21). Then, with � C i t 2
D, with � 2 .1=2C "; 1/ fixed, and t ! ˙1,

jL.� C i t/j D .�=2/1=2
jtj� exp.�� jtj=2C �=2/
�
sinh2.�=2/C cos2.t=2/

�1=2 .1C O.1=jtj/ ;

� D � �=2C t .log.jtj/ � 1/C arctan

�
e�� sin.t/

1C e�� cos.t/

	
:

(25)

5 Examples

We present here two examples illustrating the application of our results.

Example 5.1. Let us use formula (9)-(b) to compute G.z/ via (b) using M D 240,
N D 160 and h D �=

p
M. The printout is given in Fig. 1 for the interval

.13:5 ; 14:5/, which is known to contain the first zero of the Riemann zeta function.
Note the small magnitude of the function G on this interval, as predicted in Sect. 4.

Example 5.2. An Asymptotic Estimate of K.z/
It follows from the above, that

K.z/ D
Z 1

�1
exp.�z x2=2/ p.z; x/ dx I

p.z; x/ D exp.z x2=2/ exp.�z.x � log.1C x//

.1C x/.1C exp.�z � z x//
:

(26)

This expression of course readily yields an asymptotic expansion for K.z/ with z
real and x ! 1. For example, taking only the x0 term of the expansion of p.z; x/ in
powers of x and integrating over .�1 ;1/, we get

K.z/ 	
�
2�

z

	1=2
.1C exp.�z//�1 ; z ! 1 : (27)



372 F. Stenger

13.5 13.6 13.7 13.8 13.9 14 14.1 14.2 14.3 14.4 14.5

10 -10

-5

0

5

10

15

20

Fig. 1 Real (solid line) and imaginary (dotted line) parts of G

Note at this point, in view of our above estimates of L, that if � > 1=2, then the
function

�.z/ WD
�
2�

z

	�1=2
.1C exp.�z//K.z/ (28)

has the same zeros in the region D1=2 WD fz 2 C W 1=2 < <z < 1g as the Riemann
zeta function, �.z/.

This leads to the question regarding the validity of the result (27), e.g., as z D
� C i t ! 1 with � fixed in .1=2C "; 1/, and with " 2 .0 ; 1=2/ as t ! 1.

We shall again examine this approach via use of more careful analysis in a future
paper, using, e.g., the results of [1, 12, 14] and §1.5.8 of [15]. We would like to
be able to prove, for example, that given such an " > 0, there exists a positive
number T D T."/, such that whenever t > T , then �.z/ has no zeros in the region
z 2 D1=2 \ .T ;1/. I believe that such a result could be an important step towards
proving the Riemann Hypothesis.

Acknowledgements The author is grateful to the referee for valuable comments. No funding was
received for this research.
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Overconvergence of Rational Approximants
of Meromorphic Functions
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Abstract Let E be a compact set in C with regular connected complement ˝,
and let f be meromorphic on E with maximal Green domain of meromorphy E�.f /,
�.f / < 1. We investigate rational approximants rn;mn of f with numerator degree
� n and denominator degree � mn and deduce overconvergence properties from
geometric convergence rates of f � rn;mn near the boundary of E if n ! 1 and
mn D o.n/ (resp. mn D o.n= log n// as n ! 1. Moreover, results about the limiting
distribution of the zeros of rn;mn , as well as for the distribution of the interpolation
points of multipoint Padé approximation can be derived. Hereby, well-known results
for polynomial approximation of holomorphic functions are generalized for rational
approximation of meromorphic functions.

Keywords Rational approximation • Convergence in m1-measure and capacity •
Distribution of zeros • Harmonic majorant • Padé approximation
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1 Introduction: Polynomial Approximation

For B � C, we denote by Bı the set of interior points of E, by B its closure and by
@B the boundary of B, and we use k �kB for the supremum norm on B. A compact set
B in C, resp. C, is called a continuum if B is connected and consists of more than a
single point.
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Let K be a compact set in the complex plane and let B.K/ denote the collection
of all probability measures with support in K. The logarithmic energy I.�/ of � 2
B.K/ is defined by

I.�/ WD
Z Z

log
1

jz � tjd�.z/d�.t/

and the energy V of K by

V WD inffI.�/ W � 2 B.K/g:

V is either finite or C1. The quantity

cap K WD e�V

is called the capacity of K. The capacity of any set B � C is defined by

cap B WD supfcap K W K � B;K compactg:

If K is compact, then there exists a measure �K 2 B.K/ such that I.�K/ D
� log cap K D V . �K is called an equilibrium measure of K. If cap K > 0, then �K

is unique.
In the following, E is a compact set of C with regular connected complement

˝ D C n E in the extended complex plane C. The set ˝ is called regular if there
exists a Green function G.z/ D G.z;1/ on ˝ with pole at 1 satisfying G.z/ ! 0

as z 2 ˝ tends to the boundary @˝ of ˝. Then cap E > 0 and

lim
z!1.G.z/ � log jzj/ D � log cap E:

If E is a continuum, then ˝ is regular (cf. [17, Theorem. I. 11, p. 7]).
For � > 1 we define the Green domains E� by

E� WD fz 2 ˝ W G.z/ < log �g [ E

with boundaries �� WD @E�. If ˝ is regular, then the equilibrium measure �E of E
exists and is unique, as well as the equilibrium measure �E� of E� for all � > 1.

For B � C, we denote by C.B/ the class of continuous functions on B, and
A .B/ (resp. M .B/) represents the class of functions f that are holomorphic (resp.
meromorphic) in some open neighborhood of B. Moreover, we will denote by
Mm.B/ the subset of functions f of M .B/ such that for some neighborhood U of B,
the function f has at most m poles in U, each pole counted with its multiplicity.

Let f 2 C.E/ \ A .Eı/, then by Mergelyan’s theorem

lim
n!1 inffkf � pkE W p 2 Png D 0;
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where Pn denotes the collection of all algebraic polynomials having degree at most
n. If fpngn2N, pn 2 Pn, is a sequence of polynomials with lim

n!1kf � pnkE D 0,

then the Bernstein–Walsh lemma [21, p. 77] implies that for any compact set S in
˝ D C n E,

lim
n!1 max

z2S

�
1

n
log jpn.z/j � G.z/

	
� 0;

i.e., the Green function G.z/ is a harmonic majorant for the sequence of subhar-
monic functions .1=n/ log jpn.z/j, n 2 N, in ˝ (cf. [20]).

If f 2 A .E/ is not an entire function, then there exists a maximal � > 1 such
that f has a holomorphic continuation to E�. Then a sequence pn 2 Pn, n 2 N, is
said to converge maximally to f on E if

lim sup
n!1

kf � pnk1=n
E D 1

�
: (1)

For example, the polynomials p�
n of best uniform approximation to f on E are

maximally convergent. Moreover, Walsh ([19], Corollary on p. 81, Sect. 4.7) proved
that for such maximally convergent polynomials

lim sup
n!1

kf � pnk1=n
E�

D �

�
; 1 < � < �: (2)

Then again the Bernstein–Walsh lemma implies that for the sequence .1=n/ log jpn.z/j,
n 2 N, the Green function

G� .z/ D G.z/ � log �

is a harmonic majorant in CnE� for any � , 1 < � < �. Hence, G�.z/ D G.z/�log �
is a harmonic majorant for f.1=n/ log jpn.z/jgn2N in C n E�, or

lim sup
n!1

max
z2S

�
1

n
log jpn.z/j � G�.f /

	
� 0 (3)

for any compact set S � C n E�. Moreover, Walsh [19] proved that in (3) always
the equality sign holds if fpngn2N is maximally converging to f on E and if S is a
continuum. This observation leads Walsh to the following terminology [20]:

The sequence f.1=n/ log jpn.z/jgn2N has the Green function G�.z/ as an exact
harmonic majorant if in (3) the equality sign holds for any continuum S 2 C n E�,
i.e.,

lim sup
n!1

max
z2S

�
1

n
log jpn.z/j � G�.z/

	
D 0: (4)
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For (4) to be true for any continuum S it is sufficient that (4) holds for some compact
set S � C n E� and S can be a single point [20].

As a consequence of (4), the normalized counting measures �n of the zeros of pn

converge weakly to the equilibrium measure �E� of E� ([11], cf. [1]), where �n is
defined for B � C by

�n.B/ WD # number of zeros of pn in B

degree .pn/

and the zeros are counted with respect to their multiplicity.
Another type of maximally convergent polynomials are Hermite–Lagrange

interpolating polynomials pn to f at points

z0;n; z1;n; : : : ; zn;n 2 E; n 2 N: (5)

Let us introduce the probability measure �n such that

�n.fz�;ng/ D c�;n
n C 1

(6)

where c�;n is the multiplicity of z�;n in (5). Then pn, n 2 N, converge maximally to f

on E if �n
�!

n!1 �E in the weak*-sense [21].

Conversely, let f 2 A .E/with maximal parameter � of holomorphy, 1 < � < 1.
If there exists Hermite–Lagrange interpolating polynomials pn at the points (5),
which are maximally convergent to f on E, then for the sequence of measures �n

in (6) there exists a subsequence� � N such that the associated balayage measures
b�n to the boundary of E satisfy

b�n
�! �E as n 2 �; n ! 1:

proved by Grothmann [12] if E� is a domain.

2 Rational Approximation, Overconvergence in m1-Measure

Let E be compact in C with regular connected complement˝ D CnE, G.z/ denotes
the Green function on ˝ with pole at 1.

Given n;m 2 N [ f0g, let Rn;m denote the collection of all rational functions

Rn;m WD fr D p=q W p 2 Pn; q 2 Pm; q 6� 0g:

For fixed f 2 M .E/ we define � D �.f / as the maximal parameter � > 1 such that
f 2 M .E�/. �.f / D 1 if and only if f is meromorphic on C.
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Our starting point is a sequence of rational approximants frn;mngn2N to f 2
M .E/ n M .C/ with

lim
n!1mn D 1 and mn D o.n= log n/ as n ! 1; (7)

and

lim sup
n!1

kf � rn;mnk1=n
@E � 1

�.f /
: (8)

Since f is meromorphic on E, but not on C, the parameter �.f / satisfies
1 < �.f / < 1. By Walsh’s theorem, we know that such a sequence frn;mngn2N
with (7) and (8) always exists.

In this section, we consider the overconvergence of frn;mngn2N to f in m1-measure
(cf. [10]):

Let B be a subset of C and set

m1.B/ WD inf

(X
�

jU� j
)
;

where the infimum is taken over all denumerable coverings fU�g of B by disks U�

and jU� j is the radius of U� . Then the overconvergence of frn;mngn2N outside E (resp.
@E) is described by

Theorem 2.1 ([4], Theorem 2.1). Let E be compact with regular connected
complement. Under the conditions (7) and (8), for any " > 0 there exists a subset
˝."/ � C with m1.˝."// < " such that

lim sup
n!1

kf � rn;mnk1=n
E�n˝."/ � �

�.f /
(9)

for any � , 1 < � < �.f /.

If E is connected in Theorem 2.1, we obtain from (9) that for any � , 1 < � <

�.f /,

lim inf
��!�

lim sup
n!1

kf � rn;mnk1=n
���

� �

�.f /
(10)

(cf. [6], Remark 4).
The property (9) was called in [6] maximal m1-convergence. Furthermore, we

remark that the exceptional set ˝."/ can be defined explicitly: Let us denote by

�1; �2; : : : ; �s
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the finite number of poles of f in E, notified according to their multiplicities. Since
f is meromorphic in E�.f /, the total number of poles of f in E�.f / is denumerable.
Hence we may arrange the poles �i of f outside E, i > s, such that

G.�i/ � G.�iC1/ for i � s:

If the number of poles of f on E�.f / is finite, sayes, then we set �esCj D �, j � 1,
where � is a fixed point on E�.f /. Therefore, in any case we have defined an infinite
sequence

f�ig1
iD1 with lim

i!1 G.�i/ D �.f /;

where all poles of f in E�.f / are listed. Next, let �n;i denote the poles of rn;mn ,
according to their multiplicities again. For 0 < " < 1, we define the open sets

˝n."/ WD
[
�n;i

n
z 2 C W jz � �n;ij < "

2n3

o
[
n
z 2 C W jz � �nj < "

2n3

o

and

˝."/ WD
1[

nD1
˝n."/: (11)

Then m1.˝."// < " and in [4] it was shown that ˝."/ satisfies Theorem 2.1.
For obtaining results about the distribution of rn;mn we have to consider functions

f which guarantee that the inequality (9) is an equality, and consequently, that the
growth of rn;mn outside E�.f / can be characterized by the Green function of Cn E�.f /.

To this end we use a result of Gonchar [9] connecting the rate of rational
approximation with the property of single-valuedness of an analytic function in the
neighborhood of an isolated singular point of the boundary of E�.f /:

Let z0 2 ��.f / D @E�.f / and U a neighborhood of z0 such that f can be continued
to any point of U n fz0g to a function which is locally holomorphic. Moreover, let
K � U be a continuum such that z0 2 K and .K n fz0g/ � E�.f /.

Define

K" WD fz 2 K W jz � z0j � "g;
�n.f ;K"/ WD inf

r2Rn;n

kf � rk1=n
K"
;

�.f ;K"/ WD lim inf
n!1 �n.f ;K"/
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and

�.f ;K/ WD sup
">0

�.f ;K"/: (12)

Since f is holomorphic on K" for any " > 0, we have 0 � �.f ;K"/ < 1 and

�.f ;K/ D lim
"!0

�.f ;K"/ � 1:

Theorem 2.2 (Gonchar [9], Theorem 1). Under the above conditions, let
�.f ;K/ < 1. Then f is single-valued in U n fz0g.

Hence, this characterization leads to the following definition.

Definition. Let f 2 M .E/ with �.f / < 1. A point z0 of the boundary of E�.f / is
called a singularity of multivalued character of f if there exists a neighborhood U of
z0 such that f can be continued to any point of U nfz0g and f is locally holomorphic,
but not single-valued.

For example, a branch point is a special type of a singularity of multivalued
character.

Theorem 2.3. Let E be a compact, connected set in C with regular connected
complement and let (7) and (8) hold. If there exists a singularity of multivalued
character on the boundary of E�.f /, then

lim sup
n!1

kf � rn;mnk1=n
@E D 1

�.f /
(13)

and for any " > 0 there exists a set ˝."/ in C with m1.˝."// < " such that

lim sup
n!1

kf � rn;mnk1=n
E�n˝."/ D �

�.f /
(14)

for any � , 1 < � < �.f /. Moreover, ˝."/ can be defined by (11).

Proof. We note that (13) is the first part of Theorem 2 in [6].
Concerning (14), we know from Theorem 2.1 that for the sets ˝."/, defined

by (11), the inequality (9) holds. Hence, if we assume that (14) is not true, then for
some � , 1 < � < �.f /, we have

lim sup
n!1

kf � rn;mnk1=n
E�n˝."/ <

�

�.f /
;

where " > 0 and ˝."/ is defined by (11). Then there exists a parameter ��, 1 <
�� < �.f /, such that

lim sup
n!1

kf � rn;mnk1=n
���

� 1

�
<

��

�.f /
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(compare Remark 4 in [6]). Following the proof of Theorem 2 in [6], we can
construct a continuum K such that .K n fz0g/ � E�.f / and

�.f ;K/ < 1;

where �.f ;K/ is defined in (12). This is a contradiction to the above Theorem 2.2 of
Gonchar, since z0 is a singularity of multivalued character. ut

The property (14) is essential for obtaining estimates of the growth of rn;mn in
˝ D C n E�.f /. Hence, let us introduce the following class of approximants.

Definition. Let f 2 M .E/ and �.f / < 1. A sequence frngn2N, rn 2 Rn;n, is called
exactly m1-maximally convergent to f on E�.f / if for any " > 0 there exists a subset
˝."/ with m1.˝."// < " such that

lim sup
n!1

kf � rnk1=n
E�n˝."/ � �

�.f /
(15)

and

lim
"!0

lim sup
n!1

kf � rnk1=n
E�n˝."/ D �

�.f /
(16)

for any � , 1 < � � �.f /.

Remark. In [6], a sequence frngn2N, rn 2 Rn;n, which is m1-maximally convergent
to f on E�.f /, was called exact if the convergence rate (8) holds and

lim inf
��!�

lim sup
n!1

kf � rnk1=n
���

D �

�.f /

for any � , 1 < � < �.f /, i.e., this condition replaces (16).

In any case, the condition (8) is not necessary for getting estimates of the growth
of rn D rn;mn outside E�.f / if fmngn2N satisfies (7) and (15) holds. Moreover, if E is
connected both definitions are equivalent up to the condition (8). This observation
immediately leads to

Theorem 2.4. Let E be a compact, connected set in C with regular connected
complement and let (7) hold. Moreover, let f 2 M .E/ with �.f / < 1 and let
frn;mngn2N, rn;mn 2 Rn;mn , be an exact m1-maximally convergent sequence to f on
E�.f /. Then the Green function

G�.f /.z/ D G.z/ � log �.f / of C n E�.f /

is an exact harmonic majorant for the sequence
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1

n
log jpn.z/j

�

n2N
in C n E�.f /;

where rn;mn D pn=qmn is normalized by kqmnkE D 1.

Proof. Theorem 2.4 was proved in [6], Theorem 3, for the case that rn;mn D p�
n=q�

mn

was normalized with respect to E� , where 0 2 E� and � > �.f /, i.e.

q�
mn
.z/ D q�

mn;1
.z/q�

mn;2
.z/ (17)

with

q�
mn;1

.z/ D
Y
�n;i2E�

.z � �n;i/; q�
mn;2

.z/ D
Y
�n;i…E�

�
1 � z

�n;i

	
(18)

and �n;i denotes the zero of q�
mn

. Then



1

n
log jp�

n .z/j
�

n 2 N

has the Green function G�.f /.z/ as an exact harmonic majorant in C n E�.f /.
Let rn;mn D pn=qmn with kqmnkE D 1 as in Theorem 2.4. We define p�

n 2 Pn,
q�

mn
2 Pmn such that

deg.p�
n / D deg.pn/ and deg.q�

mn
/ D deg.qmn/;

and moreover, we can define a constant 	n ¤ 0 such that

pn D 	np�
n and qmn D 	nq�

mn

and q�
mn

is normalized according to (17), (18). Let `n;1 D deg.q�
mn;1

/ and `n;2 D
deg.q�

mn;2
/. Then

kq�
mn

kE � kq�
mn;1

kE min
z2E

jq�
mn;2

.z/j

� .cap E/`n;1˛
`n;2
1 ;

where

˛1 D min
z2E

min
�2CnE�

ˇ̌
ˇ̌1 � z

�

ˇ̌
ˇ̌ > 0:

Define

˛ WD min.˛1; cap E; 1/;
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then

kq�
mn

kE � ˛mn : (19)

On the other hand,

kq�
mn

kE � kq�
mn;1

kE kq�
mn;2

kE � ˇmn ; (20)

where

ˇ D max.1; ˇ1; ˇ2/

and

ˇ1 WD max
z2E

max
�2E�

jz � �j and ˇ2 WD max
z2E

max
�2CnE�

ˇ̌
ˇ̌1 � z

�

ˇ̌
ˇ̌

Using (19) and (20), we get

j	nj˛mn � 1 D kqmnkE D j	njkq�
mn

kE � j	njˇmn

or

ˇ�mn � j	nj � ˛�mn :

Consequently,

�mn

n
logˇ � 1

n
log j	nj � �mn

n
log˛

and therefore

lim
n!1

1

n
log j	nj D 0:

Since

1

n
log jpn.z/j D 1

n
log j	nj C 1

n
log jp�

n .z/j

we have proved that G�.f / is also an exact harmonic majorant of f.1=n/ log jpn.z/jgn2N
in C n E�.f /. ut

Let us denote by �n the normalized zero counting of rn;mn , zeros counted with
their multiplicities, i.e.,
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�n.B/ WD # number of zeros of rn;mn in B

total number of zeros of rn;mn in C
: (21)

Then we obtain the following distribution result for the zeros.

Theorem 2.5 ([6], Theorem 4). Let E; f ; fmngn2N and frn;mngn2N be as in Theo-
rem 2.4. Then the normalized zero counting measures �n of rn;mn converge weakly to
the equilibrium measure �E�.f / of the maximal Green domain E�.f / of meromorphy,
at least for a subsequence � � N as n 2 �, n ! 1.

We remark that all theorems remain valid with some minor modifications if in (7)
the sequence fmngn2N is bounded, i.e., if

lim sup
n!1

mn D m < 1:

Let us denote by Mm.E�/; � > 1, the class of meromorphic functions on E� with at
most m poles in E�. Define for f 2 M .E/

�m.f / WD fsup � W � > 1; f 2 Mm.E�/g;

then all theorems above hold if �m.f / < 1 and if we replace �.f / by �m.f /. More-
over, m1-maximal convergence and exact m1-maximal convergence are equivalent in
this case. Hence, there is a complete analogue between polynomial approximation
and rational approximation with fixed degree m of the denominator (cf. [15], [10]).
Recently, new results for generalized multipoint Padé-approximation were obtained
by M. Bello Hernández, B. de la Calle Ysern, and J. Mínguez Ceniceros (cf. [2, 8]).

3 Rational Approximation: Overconvergence in Capacity

As in the previous section, let E � C be compact with regular connected
complement ˝ D C n E.

We weaken the conditions (7) and (8) of Sect. 2. First, let frn;mngn2N, rn;mn 2
Rn;mn , be a sequence of rational approximants of f 2 M .E/ with �.f / < 1, and let

lim
n!1mn D 1; mn D o.n/ as n ! 1: (22)

Second, define �1 WD @E and let f�ng1
nD1; �n � 1, be a sequence with lim

n!1�n D 1.

Then we consider a sequence frn;mngn2N such that

lim sup
n!1

kf � rn;mnk1=n
��n

� 1

�.f /
: (23)
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Hence, (8) of Sect. 2 is a special case of (23) of Sect. 3 if all �n D 1 and ��n D
@E. (23) of this Section has the advantage that it is more appropriate for applications,
for example for multipoint Padé approximation in Sect. 4 (cf. proof of Theorem 4.2).

To clarify the different notions of convergence, let D be an open set in C, ' a
function in D with values in C. A sequence f'ngn2N of meromorphic functions in D
is said to converge in capacity inside D to ' if for any compact set K � D and any
" > 0

cap fz 2 K W j.' � 'n/.z/j � 0g ! 0 as n ! 1:

Moreover, f'ngn2N converges uniformly in capacity inside D to ' if for any compact
set K � D and any " > 0 there exists a set K" � K such that cap K" < " and f'ngn2N
converges uniformly to ' in K n K" (cf. [10]).

Theorem 3.1 (cf. [3], Theorem 2.2). Let E be compact in C with regular
connected complement, f 2 M .E/ with �.f / < 1, let fmngn2N be a sequence
satisfying (22), i.e.,

lim
n!1 mn D 1; mn D o.n/ as n ! 1:

Moreover, let f�ng1
nD1, �n � 1, be a sequence with lim

n!1�n D 1 and let frn;mngn2N,

rn;mn 2 Rn;mn , be such that (23) holds, i.e.

lim sup
n!1

kf � rn;mnk1=n
��n

� 1

�.f /
:

If � , 1 < � < �.f /, and 1 < � < �.f /=� , then there exists a number n0 D
n0.�; �/ 2 N and compact sets ˝n.�; �/ � E� such that for all n � n0.�; �/

cap ˝n.�; �/ � d1=2
�
1 � � � 1

1C 3�

	 n
2mn

(24)

and

kf � rn;mnkE�n˝n.�;�/
�
�
��

�.f /

	n

; (25)

where d is the diameter of E�.f /.

Proof. For abbreviation, we write � D �.f /. Let " WD .� � 1/=4; then we get

" D � � 1
4

<
�=� � 1

4
D 1

4

� � �
�

< � � �:

We choose � such that � � " < � < �, and we denote by h� the monic polynomial
whose zeros are the poles of f in E� , counted with their multiplicities. Then
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.fh� /.z/ D f .z/h� .z/

is holomorphic in E� . Let us denote by p�n 2 Pn the best uniform approximation of
fh� on E. Then there exists n1 D n1.�; "/ such that for n � n1.�; "/

kfh� � rn;mn h�k��n
� 1

2

�
1

� � "
	n

; (26)

kfh� � p�nkE�n
� 1

2

�
1

� � "
	n

; (27)

kfh� � p�nkE� � 1

2

�
�

� � "
	n

; (28)

degree .h� / � mn: (29)

For (26) we have used (23), the theorem of Bernstein–Walsh for (27) and (28), (29)
follows from (22).

Equation (26) together with (27) yields

krn;mn h� � p�nk��n
�
�

1

� � "
	n

; n � n1.�; "/: (30)

Let rn;mn.z/ D pn.z/=qmn.z/ be normalized by

qmn.z/ D q�
mn
.z/

Y
�n;i…E�

�
1 � z

�n;i

	
and q�

mn
.z/ D

Y
�n;i2E�

.z � �n;i/:

Then for any compact set K � C

lim sup
n!1

kqmnk1=n
K � 1:

Because of (9) and the normalization of qmn , there exists a constant c > 0 such that
for z 2 E�n

j.pnh� � p�nqmn/.z/j � cmn

�
1

� � "
	n

:

We apply the lemma of Bernstein–Walsh to the polynomial

w.z/ D .pnh� � p�nqmn/.z/ 2 PnCmn
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and obtain

jw.z/j � .c�/mn

�
�

� � "
	n

for z 2 E� :

Consequently, for z 2 E� , where qmn.z/ ¤ 0, we get

j.rn;mn h� � p�n/.z/j � .c�/mn

�
�

� � "
	n

1

jqmn.z/j
:

Hence, there exists n2 D n2.�; "/, n2 � n1, such that

j.rn;mn h� � p�n/.z/j � 1

2

�
.1C "/�

� � "
	n

1

jq�
mn
.z/j

for all z 2 E� with q�
mn
.z/ ¤ 0 and n � n2.

Let us consider the set

Sn.�; "/ WD



z 2 E� W j.rn;mn h� � p�n/.z/j � 1

2

�
.1C 2"/�

� � "
	n�

;

then

Sn.�; "/ � en D en.�; "/ WD



z 2 E� W jq�
mn
.z/j �

�
1C "

1C 2"

	n�
:

Since q�
mn

is monic and degree .q�
mn
/ � mn, we obtain

cap en �
�
1C "

1C 2"

	 n
mn

: (31)

Therefore, we have for z 2 E� n en and n � n2

j.rn;mn h� � p�n/.z/j � 1

2

�
.1C 2"/�

� � "
	n

: (32)

By (28) and (32) we get for z 2 E� n en and n � n2

j.fh� � rn;mn h� /.z/j �
�
.1C 2"/�

� � "
	n

or

j.f � rn;mn/.z/j �
�
.1C 2"/�

� � "
	n

1

jh� .z/j ;
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where h� .z/ ¤ 0. Let us consider

eSn.�; "/ WD



z 2 E� W j.f � rn;mn/.z/j �
�
.1C 3"/�

� � "
	n�

then

eSn.�; "/ �een Deen.�; "/ WD



z 2 E� W jh� .z/j �
�
1C 2"

1C 3"

	n�

and with (29),

cap een �
�
1C 2"

1C 3"

	 n
mn

: (33)

Summarizing, we have obtained for z 2 E� n .en [een/ and n � n2

jf .z/ � rn;mn.z/j �
�
.1C 3"/�

� � "
	n

: (34)

Because of the subadditivity property of the capacity, due to Nevanlinna (cf. [17])

1= log
d

cap .en [een/
� 1= log

d

cap en
C 1= log

d

capeen
;

where d is greater than or equal to the diameter of en [een. Hence, we can choose d
as the diameter of E�.f /.Then we fix n3 D n3."/ such that

d

�
1C 3"

1C 2"

	 n
2mn

> 1 for all n � n3."/

and we obtain for n � n3."/

d

�
1C 2"

1C "

	 n
2mn

> d

�
1C 3"

1C 2"

	 n
2mn

> 1:

Define n0.�; �/ WD max.n2.�; "/; n3."//, then we get for n � n0.�; �/ by using (31)
and (33)

1= log
d

cap .en [een/
� 1= log

"
d

�
1C 2"

1C "

	 n
mn

#
C 1= log

"
d

�
1C 3"

1C 2"

	 n
mn

#

� 2= log

"
d

�
1C 3"

1C 2"

	 n
mn

#
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or

log
d

cap .en [een/
� 1

2
log

"
d

�
1C 3"

1C 2"

	 n
mn

#

and finally

cap .en [een/ � d1=2
�
1C 2"

1C 3"

	 n
2mn

: (35)

Since " D .� � 1/=4, we get

1C 2"

1C 3"
D 2C 2�

1C 3�
D 1 � � � 1

1C 3�
< 1

and some calculations show that

1C 3"

� � " <
�

�
:

Inserting the last inequalities into (34) and (35) and define the compact sets

˝n.�; �/ WD en.�; "/ [een.�; "/;

where " D .� � 1/=4, then we have proved the inequalities (24) and (25) for n �
n0.�; �/. ut

Hence, (24) and (25) imply that frn;mngn2N converges in capacity to f inside E�.f /.
Concerning uniform convergence in capacity, the following theorem holds.

Theorem 3.2 ([4], Theorem 3.2). Let E be compact in C with regular connected
complement, f 2 M .E/ with �.f / < 1, fmng as in (22) and let frn;mngn2N, rn;mn 2
Rn;mn , satisfy (23). Then there exists a subsequence � � N with the property: For
any � , 1 < � < �.f /, and any " > 0 there exists a denumerable union of closed sets
˝.�; "/ � E� (a so-called F� -set) with cap ˝.�; "/ < " such that

lim sup
n2�;n!1

kf � rn;mnk1=n
E�n˝.�;"/ � �

�.f /
: (36)

In the above theorem and in the following, we will use the standard notion of
an F� -set as the denumerable union of closed sets; there is no connection with the
parameter � where 1 < � < �.f /. Though we have weakened the condition (7)
by (22), we could obtain overconvergence in capacity. At first glance, this appears
somewhat contradicting because convergence in capacity seems to be stronger than
m1-convergence due to an inequality of H. Cartan, namely that there exists a constant
c > 0 such that m1.B/ � c cap B for any Borel set B � C ([13, p. 203]). But by
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Theorem 3.2 we obtain maximal convergence in capacity only for a subsequence
� � N, in contrast to Theorem 2.3 where we have maximal m1-convergence for the
whole sequence.

For abbreviation, we will call the property (36) of frn;mngn2� maximal conver-
gence in capacity to f on E�.f / (cf. [4], Theorem 3.2 and Corollary 3.4), used also if
rn;mn 2 Rn;mn is replaced by rn 2 Rn;n.

In polynomial approximation, we get by (2) trivially

lim sup
n!1

kf � pnk1=n
��

� �

�
; 1 < � < �;

if fpngn2N is maximally convergent to f on the maximal Green domain E� of
holomorphy of E. Apparently, this cannot hold for rational approximation since the
poles of the rational approximants can destroy such an inequality. Nevertheless, a
modified version of such a result holds, analogous to the inequality (10).

Theorem 3.3 ([4], Theorem 3.5). In addition to the conditions of Theorem 3.2, let
E be connected. Then for any � , 1 < � < �.f /, there exists a sequence

f�ng1
nD1; �n � �; with lim

n!1�n D �

such that

lim sup
n!1

kf � rn;mnk1=n
��n

� �

�.f /
:

As a consequence, we can prove the analogue of Theorem 2.4 under the weaker
condition mn D o.n/ as n ! 1.

Theorem 3.4 ([4], Theorem 3.7). Under the conditions of Theorem 3.3 the Green
function

G�.f /.z/ D G.z/ � log �.f / of C n E�.f /

is a harmonic majorant for the sequence



1

n
log jpn.z/j

�

n2N
in C n E�.f /;

where rn;mn D pn=qmn is normalized by kqmnkE D 1.

Next, we want to obtain results about the zeros of rn;mn , but now for the case that
mn D o.n/ as n ! 1, instead of mn D o.n= log n/ as in Sect. 2.

Henceforth, let frngn2�, rn 2 Rn;n, be a sequence that converges maximally in
capacity to f on E�.f /. We define for fixed " > 0 and � , 1 < � < �.f /, the set

F.�; "/ WD f˝.�; "/ W ˝.�; "/ is a F� -set in E� with cap ˝.�; "/ < "g
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and

m.�; �; "/ WD inf

(
lim sup

n2�;n!1
kf � rnk1=n

E�n˝.�;"/ W ˝.�; "/ 2 F.�; "/

)
:

Then

m.�; �; "/ � m.�; �; "0/ for " < "0

and

m.�; �/ WD lim inf
"!0

m.�; �; "/ D lim
"!0

m.�; �; "/:

By definition, the maximal convergence in capacity of the sequence frngn2� implies

m.�; �/ � �

�.f /
for all �; 1 < � < �.f /:

Therefore,

lim inf
�!�.f /

�
m.�; �/

�.f /

�

	
� lim sup

�!�.f /

�
m.�; �/

�.f /

�

	
� 1:

This observation leads to the following definition.

Definition. Let frngn2� be maximally convergent in capacity to f on E�.f /. Then the
sequence frngn2� is called exactly maximally convergent if

lim inf
�!�.f /

�
m.�; �/

�.f /

�

	
D 1;

or, equivalently, if

lim inf
�!�.f /

m.�; �/ D 1:

Comparing the definition of exactness for maximal convergence in m1-measure
and in capacity, we can note the following: If frngn2N, rn 2 Rn;n, is exactly m1-
maximally convergent to f on E�.f / and if the subsets ˝."/ in (15) and (16) are
F� -sets with cap˝."/ < ", then the sequence frngn2N is also exactly maximally
convergent in capacity. On the other hand, if frngn2N, rn 2 Rn;n, is exactly
maximally convergent in capacity to f on E�.f /, and if m.N; �/ D �=�.f / for all
� , 1 < � < �.f /, then this sequence is exactly m1-maximally convergent.

Again with the characterization of Gonchar (Theorem 2.2) we can obtain such
an exact maximal convergent sequence if f has again a singularity of multivalued
character on ��.f /, namely
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Theorem 3.5 ([5], Theorem 1). Let E be a compact and connected set in C with
regular connected complement,� � N, and let frngn2� be maximally convergent in
capacity to f on E�.f /, �.f / < 1. If f has a singularity of multivalued character on
the boundary of E�.f /, then frngn2� is exactly maximally convergent to f on E�.f /.

As a consequence of the exact maximal convergence we obtain

Theorem 3.6 ([5], Theorem 2). Let E be a compact, connected set in C with
regular connected complement, and let frn;mngn2N with (22) and (23) be maximally
convergent to f on E�.f /. If there exists a subset� � N such that frn;mngn2� is exactly
maximally convergent to f on E�.f /, then the Green function

G�.f /.z/ D G.z/ � log �.f / of C n E�.f /

is an exact harmonic majorant for the sequence



1

n
log jpn.z/j

�

n2N
on C n E�.f /;

where rn;m D pn=qmn is normalized by kqmnkE D 1.

Finally, we are in position to get the analogous result as in Theorem 2.5 for the
distribution of the zero of rn;mn , but now for mn D o.n/ as n ! 1.

Theorem 3.7 ([5], Theorem 4). Let E be a compact, connected set in C, let fmng
be a sequence satisfying (22), and let frn;mngn2N, rn;mn 2 Rn;mn , be a sequence with
the property (23). If there exists a subsequence� � N such that frn;mngn2� is exactly
maximally convergent to f on E�.f /, then there exists a subsequence �1 � N such
that

�n
�! �E�.f / as n ! 1; n 2 �1;

where �n is the normalized zero counting measure of �n, defined in (21).

We point out that the proof in [5] does not imply that �1 has to be a subset of �.

4 Multipoint Padé Approximation

Let ˛ be an infinite triangular table

˛ D f˛ngn2N where ˛n D f˛n;kgn
kD1; ˛n;k 2 E;

and let us define
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wn.z/ D
nY

kD1
.z � ˛n;k/:

Let f 2 M .E/ and let .n;m/ be a fixed pair of nonnegative integers. We assume
moreover that f is holomorphic at all points of the table ˛. Then there exists a
unique rational function

�˛n;m D p

q
2 Rm;n

such that the function .fq � p/=wnCmC1 2 M .E/ is holomorphic at all points of
the table ˛. The rational function �˛n;m is called multipoint Padé approximant to f
with respect to the table ˛. If 0 2 E and if all ˛n;k D 0 in the table ˛, then we
obtain the classical Padé approximants, denoted by �n;m. In this classical case, the
convergence of �n;m to f was first studied by Montesssus de Ballore and generalized
for multipoint Padé by Saff [16] and Wallin [18] if the degree m of the denominators
of �n;m are fixed and n ! 1.

Convergence results for �n;m to f are based on analytic properties of f and the
degree m of the denominators. For example, Pommerenke [14] showed that �n;n

converges in capacity to f if f is meromorphic on C n e, where the exceptional set e
has capacity 0. Moreover, Wallin [18] has given an example of an entire function f
such that the poles of �n;n are dense everywhere in C, n ! 1 (except at 0).

A natural method for controlling the behavior of the poles of �˛n;m is the limitation
of the growth of the degrees m of the denominators. In [10], Gonchar considered two
cases of sequences f�˛n;mn

gn2N, where rn;mn 2 Rn;mn and

mn D o.n= log n/ or mn D o.n/ as n ! 1:

A main role for the convergence of Padé approximants �˛n;mn
, n ! 1, is played by

the normalized counting measures �˛n of the table ˛, defined by

�˛n .B/ WD #f˛n;k 2 B W 1 � k � ng
n

; B � C:

�˛n is a probability measure on E with logarithmic potential

U�˛n .z/ D 1

n
log

1

jwn.z/j :

Let us denote byb�˛n the balayage measure of �˛n to the boundary of E.

Theorem 4.1. Let E be compact in C with regular connected complement and let
f 2 M .E/, �.f / < 1, be holomorphic at all points of the triangular table ˛.
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Moreover, letb�˛n converge weakly to the equilibrium measure �E of E. If fmng1
nDN

satisfies (7) (i.e., mn D o.n= log n/, then the Padé approximants �˛n;mn
converge m1-

maximally to f on E�.f / as n ! 1.

For the proof we refer to a result of Gonchar [10] (cf. Theorem A in [7]).

Theorem 4.2. In addition to the conditions of Theorem 4.1, let E be connected. If
fmng1

nDN
satisfies (22) (i.e., mn D o.n/ as n ! 1), then there exists a subsequence

� � N such that f�˛n;mn
gn2� converges maximally in capacity to f on E�.f /, as n 2 �,

n ! 1.

Proof. Let ˚ be the conformal mapping from ˝ to the exterior of the unit disk,
normalized by ˚.1/ D 1 and ˚ 0.1/ > 0. Then, according to the transfer lemma
for the logarithmic capacity (Lemma 5.1 in [4]), there exists a constant c.�/ > 0

such that

cap ˚.B/ � c.�/ cap B (37)

for any compact set B � C n E� .
Now, let us fix � with 1 < � < �.f /. Let f"kg1

kD1 be strictly decreasing with
lim

k!1"k D 0 and "1 < .�.f / � �/=2.

Define for k 2 N

�k D � C "k and �k D �.f / � "k: (38)

Let �˛n;mn
D pn=qmn be the multipoint Padé approximant, normalized by qmn D

qmn;1qmn;2 with

qmn;1.z/ D
Y
�n;i2E�

.z � �n;i/; qmn;2.z/ D
Y
�n;i…E�

�
1 � z

�n;i

	
;

where �n;i denote the poles of �˛n;mn
and � is chosen in such a way that 0 2 E� and

� > �.f /. For fixed k 2 N, we numerize by

�k;1; �k;2; : : : ; �k;sk

all poles of f in E�k , counted with their multiplicities, and set

Qk.z/ WD
skY

iD1
.z � �k;i/:
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The Lagrange–Hermite formula (cf. [21]) yields for z 2 E�k and for n with mn � sk

.fqmQk � pnQk/.z/ D 1

2� i

Z

��k

wnCmnC1.z/
wnCmnC1.t/

.fqmQk/.t/

t � z
dt: (39)

Using the weak*-convergence ofb�˛n to �E and mn D o.n/ as n ! 1, we obtain
by (39) (cf. [10]), that there exists a number nk such that for n � nk we have mn � sk

and

j.fqmn Qk � pnQk/.z/j �
�
.1C "k/�k

�.f /

	n

for z 2 E�k : (40)

Since we may define the numbers nk inductively, we can assume that nkC1 > nk.k 2
N/ and

c.�/

�
1C "k

1C 2"k

	 n
2mn � "k

8
for all n � nk: (41)

Let

c1 D min

 
1; min

z2E�.f /
min
�…E�

ˇ̌
ˇ̌1 � z

�

ˇ̌
ˇ̌
!

then 0 < c1 � 1, and

jqmn;2.z/j � cmn
1 for z 2 E�k :

We obtain with (40)

j.f � �˛n;mn
/.z/j � 1

cmn
1

�
.1C "k/�k

�.f /

	n
1

j.qmn;1Qk/.z/j

for z 2 E�k with .qmn;1Qk/.z/ ¤ 0: Let us define

Sn.�k; "k/ WD



z 2 E�k W j.qmn;1Qk/.z/j �
�
1C "k

1C 2"k

	n�
;

then

j.f � �˛n;mn
.z/j � 1

cmn
1

�
.1C 2"k/

�k

�.f /

	n

(42)
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for z 2 E�k n Sn.�k; "k/ and

cap Sn.�n; "k/ �
�
1C "k

1C 2"k

	 n
2mn

(43)

for all n � nk.
Next, we want to define a sequence f��

n g1
nD1, � � ��

n < �.f /, such that
lim

n!1�
�
n D � and

lim sup
n!1

kf � �˛n;mn
k1=n
�
��

n
� �

�.f /
: (44)

To construct this sequence, we consider the projection p1 W C ! RC defined by
p1.z/ D jzj. The contraction principle of the logarithmic capacity yields

cap p1.B/ � cap B for any compact set B � C:

Then the contraction principle together with the transfer lemma, applied to the
compact sets

eSn.�k; "k/ WD Sn.�k; "k/ \ .C n E� /;

implies

cap p1.˚.eSn.�k; "k// � cap ˚.eSn.�k; "k//

� c.�/ capeSn.�k; "k/ � c.�/

�
1C "k

1C 2"k

	 n
2mn

� "k

8
for n � nk; (45)

where we have used (41) and (43).
On the other hand, consider the annulus

Rk WD fz 2 C W � � jzj � � C "kg;

then again by the contraction principle,

cap p1.Rk/ D cap .Œ�; � C "k�/ D "k

4
: (46)

Combining (45) and (46), we conclude that there exists for each n � nk a parameter
�n;k with � � �n;k � � C "k such that the level line ��n;k of Green’s function G.z/
satisfies
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��n;k � E�k n Sn.�k; "k/;

and therefore for n � nk, using (42) and (43),

kf � �˛n;mn
k1=n
��n;k

�
�
1

c1

	 mn
n

.1C 2"k/
�k

�.f /
: (47)

Now, we define

��
n WD �n;1 for 1 � n < n2

and

��
n WD �n;k for nk � n < nkC1; k � 2:

Then we obtain for f��
n g1

nDn1 , using (47),

lim sup
n!1

kf � �˛n;mn
k1=n
�
��

n
� �

�.f /
;

and (44) is proved.
Consider a sequence f�kgk2N, �k > 1, with lim

k!1�k D 1. Replacing � in (44) by

�k, we can find parameters �n;k � �k, n 2 N, with lim
n!1�n;k D �k and a number

nk 2 N such that

kf � �˛n;mn
k1=n
��n;k

� .�k/
2

�.f /
for n � nk:

Moreover, we may assume that nk < nkC1, k 2 N. Then we define the sequence
f�ngn2N by

�n WD �n;1 for 1 � n < n2
and

�n WD �n;k for nk � n < nkC1, k � 2.
Hence, lim

n!1�n D 1 and

lim sup
n!1

kf � �˛n;mn
k1=n
��n

� 1

�.f /
;

and Theorem 3.2 implies the maximal convergence of f�˛n;mn
gn2� to f in E�.f /, at

least for a subsequence � � N. ut
Finally, we can apply the theorems in Sects. 2 and 3 to obtain insights to the

distribution of the zeros of �˛n;mn
if f has a singularity of multivalued character
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on the boundary of E�.f /, or more generally, if f�˛n;mn
gn2N is exactly m1-maximally

convergent (resp. exactly maximally convergent in capacity) to f in E�.f /.
In the polynomial case, we mentioned already a converse result of Grothmann

[12]. If mn D o.n= log n/, an analogue for multipoint Padé approximation was
proved via m1-maximal convergence in [7], namely

Theorem 4.3 ([7]). Let E � C be compact and connected with regular, connected
complement, let fmngn2N be a sequence in N satisfying (7), and let ˛ be a triangular
table with points in E.

Moreover, let f 2 M .E/, �.f / < 1, be holomorphic at all points of the table ˛.
If f�˛n;mn

gn2N is a m1-maximally convergent sequence of Padé approximants to f in
E�.f / such that for some ��, 1 < �� < �.f /,

lim inf
�!��

lim sup
n!1

kf � �˛n;mn
k1=n
��

D ��

�.f /
;

then there exists a subsequence � � N such that the balayage measuresb�˛n of the
normalized counting measures �˛n of the interpolation point sets ˛n satisfy

b�˛n
�!

n2�;n!1 �E:

Final Remark The exact convergence (in m1-measure or in capacity) is proved via
the result of Gonchar [9] only under the additional condition that E is connected.
Moreover, this condition was needed in the proofs if the transfer lemma (Lemma 5.1
in [4]) for the logarithmic capacity was applied. Hence, Theorems 2.3–2.5, The-
orems 3.3–3.6, and Theorems 4.2–4.3 were proved under the condition that E is
connected. It would be interesting to get rid of this condition.

Furthermore, an analogue of Theorem 4.3 for the distribution of the interpolation
points under the weaker condition (22), i.e., if mn D o.n/ as n ! 1 is open.
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Approximation by Bernstein–Faber–Walsh
and Szász–Mirakjan–Faber–Walsh Operators
in Multiply Connected Compact Sets of C

Sorin G. Gal

Abstract By considering a multiply connected compact set G � C and an analytic
function on G, we attach the q-Bernstein–Faber–Walsh polynomials with q � 1,
for which Voronovskaja-type results with quantitative upper estimates are given
and the exact orders of approximation in G for these polynomials, namely 1

n if
q D 1 and 1

qn if q > 1, are obtained. Also, given a sequence with the property
�n & 0 as fast as we want, a type of Szász–Mirakjan–Faber–Walsh operator is
attached to G, for which the approximation order O.�n/ is proved. The results
are generalizations of those previously obtained by the author for the q-Bernstein–
Faber polynomials and Szász–Faber type operators attached to simply connected
compact sets of the complex plane. The proof of existence for the Faber–Walsh
polynomials used in our constructions is strongly based on some results on the
location of critical points obtained in the book of Walsh (The location of critical
points of analytic and harmonic functions, vol 34. American Mathematical Society,
New York, 1950), which is also used in the major book of Rahman–Schmeisser
(Analytic theory of polynomials, vol 26. Oxford University Press Inc, New York,
2002). At the end of the chapter, we present and motivate a conjecture and an
open question concerning the use of truncated classical Szász–Mirakjan operators
in weighted approximation and in solving a generalization of the Szegó’s problem
concerning the zeroes distribution for the partial sums of the exponential function,
respectively. Concerning the open question, the extensions of Eneström–Kakeya
Theorem in Govil–Rahman (Tôhoku Math J 20(2):126–136, 1968) and other results
on the location of the zeroes of polynomials in the Rahman–Schmeisser’s book
(Analytic theory of polynomials, vol 26. Oxford University Press Inc, New York,
2002) are of interest.
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1 Introduction

The history of the overconvergence phenomenon in complex approximation by
Bernstein-type operators goes back to the work of Wright [46], Kantorovich
[22], Bernstein [1–3], Lorentz [25, Chap. 4], and Tonne [40], who in the case of
complex Bernstein operators defined by

Bn.f /.z/ D
nX

kD0
pn;k.z/f .

k

n
/; pn;k.z/ D

 
n

k

!
zk.1 � z/n�k; z 2 C;

have given interesting qualitative results, but without giving quantitative estimates.
Also, qualitative results without any quantitative estimates were obtained for the
complex Favard–Szász–Mirakjan operators by Dressel–Gergen and Purcell [4] and
for the complex Jakimovski–Leviatan operators by Wood [45]. We notice that the
qualitative results are theoretically based on the “bridge” made by the classical result
of Vitali, between the (well-established) approximation results for these Bernstein-
type operators of real variable and those for the Bernstein-type operators of complex
variable.

In Chap. 1 of each of the recent books of Gal [9, 13], the exact orders in
approximation for several important classes of complex Bernstein-type operators
attached to an analytic function f in closed disks were obtained, as for example
for the operators of Bernstein, Bernstein–Butzer, q-Bernstein with 0 < q � 1,
Bernstein–Stancu, Bernstein–Kantorovich, Beta of first kind, Bernstein–Durrmeyer,
Lorentz, q-Stancu, and so on. It is worth noting here that in this topic, many
other studies were made for other kinds of complex approximation operators, for
a selective bibliography see, e.g., [10–12, 14–21, 26–28, 31, 32, 36].

A progress was realized when by using the Faber polynomials too, the Bernstein
kind operators were constructed attached to arbitrary simply connected compact
subsets in C (not necessarily disks centered at origin). Thus, for example, in the
recent book [13], in Sects. 1.9 and 1.11, we introduced the so-called q-Bernstein–
Faber polynomials, Bn;q.f I G/.z/, q � 1, attached to a simply connected compact
subset G � C and an analytic function f on G, for which the upper approximation
estimate of order 1

Qqn and a Voronovskaja-type results were obtained. Here Qqn D qn

if q > 1 and Qqn D n if q D 1.
Looking closer at the proofs of the results obtained in Sect. 1.11 of [13], it is

worth noting that instead to define Bn;q.f I G/.z/ by Definition 1.11.1, p. 86 in [13]
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which makes use of F.f /.w/ D 1
2� i � RjujD1

f .�.u//
u�w du, we could define Bn;q for f .z/ DP1

kD0 ak.f / � Fk.z/ (the development of f in Faber series, Fk.z/-Faber polynomial of
degree k), directly by

Bn;q.f I G/.z/ D
1X

kD0
ak.f / �

nX
pD0

D.q/
n;p;k � Fp.z/; (1)

where D.q/
n;p;k D �n

p

�
q

� Œ�p
1=Œn�q

ek.0/�q are positive constants given by the explicit

formula (1.11.6), p. 91 in [13], satisfying
Pn

pD0 D.q/
n;p;k D 1. This new definition

presents the advantage that avoids the additional hypothesis on F.f / in Defini-
tion 1.11.1 in [13].

Indeed, firstly since f is analytic in G, there exists R > 1 such that f is analytic
in GR, i.e. f .z/ D P1

kD0 ak.f / � Fk.z/, z 2 GR, where GR denotes the interior of
the closed level curve �R D f�.w/I jwj D Rg, and � is the conformal mapping
of QC n D1 onto QC n G. Let 1 < r < ˇ < R. Since by relationships (1.11.2) and
(1.11.3), pp. 88–89 in [13], we have jFp.z/j � C.r/rp, for all z 2 Gr, p � 0 and
jak.f /j � C.ˇ;f /

ˇk , for all k � 0, it immediately follows

jBn;q.f I G/.z/j � C.r/ � C.ˇ; f / �
1X

kD0

�
r

ˇ

	k

D 1

1 � r=ˇ
< C1;

that is Bn;q.f I G/.z/ is well defined at each z 2 Gr, n 2 N.
Also, note that Bn;q.f I G/.z/ given by (1) is a polynomial of degree n. Indeed, we

can write Bn;q.f I G/.z/ D Pn
pD0 Fp.z/

hP1
kD0 ak.f / � D.q/

n;p;k

i
, where denoting S.q/n;p D

P1
kD0 ak.f / � D.q/

n;p;k, for any 0 � p � n we have

jS.qn;pj �
1X

kD0
jak.f /j � D.q/

n;p;k � C1

1X
kD0

1

ˇk
� Œ0; Œ1�q=Œn�q; : : : ; Œp�q=Œn�qI ek�

� C2

1X
kDpC1

1

ˇk
� kp

pŠ
< C1:

It is worth noting that similar considerations with those made for formula (1),
can be made for the Szász–Mirakjan–Faber operators too, see [14].

Based on the generalization of Faber polynomials attached to compact sets
consisting of several components introduced in Walsh [43] and called Faber–
Walsh polynomials, here we show that all the above-mentioned approximation
results in the case of q-Bernstein–Faber polynomials and Szász–Mirakjan–Faber
type operators attached to simply connected compact sets can be extended to the
corresponding q-Bernstein–Faber–Walsh polynomials and Szász–Mirakjan–Faber
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–Walsh type operators, attached to compact sets of several components. By using in
this case a formula of definition similar to that in (1), the proofs will considerably
be simplified.

The plan of this chapter goes as follows. Section 2 contains some preliminar-
ies on Faber–Walsh polynomials, on q-Bernstein–Faber–Walsh polynomials and
on Szász–Mirakjan–Faber–Walsh type operators. In Sect. 3, firstly we prove a
Voronovskaja-type results with quantitative estimates and then, results concerning
the exact orders of approximation for the q-Bernstein–Faber–Walsh polynomials,
q � 1, on a multiply connected compact domain G. Section 4 firstly deals with an
upper estimate in approximation by Szász–Mirakjan–Faber–Walsh type operators.
The chapter ends with the conjecture that the classical truncated Szász–Mirakjan
operators could represent a constructive solution to the weighted approximation
in fjzj < 1=2g intersected with the Szegö’s domain. Also, a generalization of
the Szegö’s result concerning the zeroes distribution for the partial sums of the
exponential function is raised as an open question.

It is worth mentioning that the proof of existence of the Faber–Walsh polynomials
used in our constructions and the results concerning the zeroes distributions in the
original and in the generalized Szegö’s problem are strongly based on some results
on the location of critical points and of zeroes of polynomials, two topics in which
Professor Rahman has made very important contributions, summarized in, e.g., the
major book Rahman–Schmeisser [30].

2 Definitions and Preliminaries

The Faber polynomials were introduced by Faber in [5] as associated with a simply
connected compact set. They allow the expansion of functions analytic on that set
into a series with similar properties to the classical power series.

In Walsh [43], were introduced polynomials that generalize the Faber polyno-
mials, to compact sets consisting of several components (i.e., whose complement
is a multiply connected domain). These generalized Faber polynomials are called
Faber–Walsh polynomials and also allow the expansion of an analytic function into
a series with properties again similar to the power series.

In what follows, let us briefly recall some basic concepts on Faber–Walsh
polynomials and Faber–Walsh expansions we need in this chapter.

Everywhere in this chapter G � C will be considered a compact set consisting
of several components, that is QC n G is multiply connected.

Definition 1 (See, e.g., Walsh [43]). A lemniscatic domain is a domain of the form
fw 2 QCI jU.w/j > �g, where � > 0 is some constant and U.w/ D ˘�

jD1.w �
˛j/

mj for some points ˛1; : : : ; ˛� 2 C and real exponents m1; : : : ;m� > 0 withP�
jD1 mj D 1.

In all what follows, we will consider that the points ˛1; : : : ; ˛� have the property
that from them can be chosen a sequence .˛j/j2N such that for any closed set C not
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containing any of the points ˛1; : : : ; ˛� , there exist constants A1.C/;A2.C/ > 0 with

A1.C/ <
jun.w/j
jU.w/jn < A2.C/; n D 0; 1; 2; : : : ; w 2 C; (2)

where un.w/ D ˘ n
jD1.w � ˛j/.

Let D1; : : : ;D� be mutually exterior compact sets (none a single point) of the
complex plane such that the complement of G WD S�

jD1 Dj in the extended plane is
a �-times connected region (open and connected set). According to Theorem 3 in
Walsh [42], there exists a lemniscatic domain

K1 D fw 2 QCI jU.w/j > �g
and a conformal bijection

˚ W QC n G ! fw 2 QCI jU.w/j > �g; with ˚.1/ D 1; and ˚ 0.1/ D 1:

Here � is the logarithmic capacity of G. Further, the inverse conformal bijection
satisfies

� D ˚�1 D fw 2 QCI jU.w/ > �g ! QC n G; with �.1/ D 1 and � 0.1/ D 1:

Consider the Green’s functions H1.w/ D log.jU.w/j/� log.�/, H D H1 ı˚ and
for r > 1 their level curves

�r D fw 2 CI H1.w/ D log.r/g D fw 2 CI jU.w/j D r�g;
� .r/ D fz 2 CI H.z/ D log.r/g:

We have �r D �.�r/. Denote by Gr the interior of �r and by D1
r the exterior of�r

(including 1).
Notice that for 1 < r < ˇ < R we have G � Gr � Gˇ � GR.
According to Theorem 3 in Walsh [43], for z 2 �r and w 2 D1

r we have

� 0.w/
�.w/ � z

D
1X

nD0

Bn.z/

unC1.w/
; with Bn.z/ D 1

2� i

Z

��

un.t/ � � 0.t/
�.t/ � z

dt; � > r:

The polynomial Bn.z/ is called the n-th Faber–Walsh polynomial attached to G and
.˛j/j2N and according to Lemma 2.5 in Sète [33], the Faber–Walsh polynomials are
independent of the lemniscatic domain and the exterior mapping function � .

Remark 1. The proof of existence of the above conformal mapping � (and implic-
itly of the existence of Faber–Walsh polynomials) was obtained in Walsh [42] and
it is based on some results on critical points of polynomials obtained in the book
of Walsh [41]. It is worth mentioning that this book of Walsh [41] was also used
in the important book of Rahman–Schmeisser [30], where many other results of the
authors in this topic are presented.
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Remark 2. A nice property of the Faber–Walsh polynomials obtained in Walsh [43,
p. 31], relation (34), is that

lim sup
k!1

ŒkBkkG�
1=k D �;

property which is similar to that for Chebyshev polynomials attached to the multiply
connected compact set G and also holds for many sets of polynomials defined by
extremal properties (see Fekete–Walsh [6, 7]). Here k � kG denotes the uniform norm
on G.

Similar to the Faber polynomials, according to Theorem 3 in Walsh [43],
the Faber–Walsh polynomials allow the series expansion of functions analytic in
compact sets. Namely, if f is analytic on the compact set G (with multiply connected
complement), there exists R > 1 such that f is analytic in GR and inside GR admits
(locally uniformly) the series expansion f .z/ D P1

kD0 ak.f /Bk.z/, with

ak.f / D 1

2� i

Z

�ˇ

f .�.t//

ukC1.t/
dt; 1 < ˇ < R: (3)

Remark 3. If G is simply connected, then the Faber–Walsh polynomials become the
Faber polynomials.

Remark 4. In our reasonings, we will also need the following estimate, see, e.g.,
Walsh [43], p. 29, relation (26)

jBk.z/j � A1.r�/
k; for all z 2 �r; 1 < r < R; k � 0; (4)

where A1 depends on r only.
Also, by the relationship lim supn!1 jakj1=k � 1

ˇ�
in Walsh [43], page 30, we

immediately get the estimate

jak.f /j � C.ˇ; �; f /

.ˇ�/k
; for all k D 0; 1; : : : ; (5)

where C.ˇ; �; f / > 0 is independent of k. Note that here and in all the next
reasonings we will choose 1 < r < ˇ < R.

For further properties of Faber–Walsh polynomials, see, e.g., Chap. 13 in
Suetin [37].

Now, denoting Œn�q D qn�1
q�1 for q > 1, Œn�q D n for q D 1,

Œn�qŠ D Œ1�q � Œ2�q � : : : � Œn�q;
 

n

k

!

q

D Œn�qŠ

Œk�qŠŒn � k�qŠ
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and using the Faber–Walsh polynomials Bp.z/, attached to the multiple connected
compact set G, for f analytic on G, suggested by the comments on Bernstein–Faber
polynomials in Introduction, we can introduce the following.

Definition 2. For q; � � 1, z 2 G, n 2 N, the q-Bernstein–Faber–Walsh
polynomials attached to G and f are defined by the formulas

Wn;q.f I G/.z/ D
1X

kD0
ak.f / � Œ

nX
pD0

D.q/
n;p;k � Bp.z/� D

nX
pD0

Bp.z/Œ
1X

kD0
ak.f / � D.q/

n;p;k�; (6)

where Bp.z/ is the Faber–Walsh polynomial of degree p attached to G, ak.f / are

the coefficients in the Faber–Walsh expansion of f and D.q/
n;p;k are the constants

mentioned in Introduction, i.e. more precisely

D.q/
n;p;k D

 
n

p

!

q

Œ�
p
1=Œn�q

ek.0/�q

D .1 � Œ1�q=Œn�q/ � : : : � .1 � Œp � 1�q=Œn�q/ � Œ0; Œ1�q=Œn�q; : : : ; Œp�q=Œn�qI ek�:

Here Œ0; Œ1�q=Œn�q; : : : ; Œp�q=Œn�qI ek� denotes the divided difference of ek.z/ D zk and
we suppose � � 1 due to the fact that in the classical case when G is a compact disk
with radius r, we have considered that r � 1 and therefore in that case � D r � 1.

Remark 5. The expression Wn;q.f I G/.z/ in Definition 2 is indeed a polynomial (of

degree n), because denoting Sn;p D P1
kD0 ak.f /D

.q/
n;p;k, applying the mean value

theorem to the divided difference and taking into account (5) too, for any 0 � p � n
we obtain

jS.q/n;pj �
1X

kD0
jak.f /j � D.q/

n;p;k � C1

1X
kD0

1

.ˇ�/k
� Œ0; Œ1�q=Œn�q; : : : ; Œp�q=Œn�qI ek�

� C2

1X
kDpC1

1

.ˇ�/k
� kp

pŠ
< C1:

Remark 6. In the past, while the Faber polynomials were studied and used in
many previously published papers, the Faber–Walsh polynomials have rarely been
studied, excepting the Suetin’s book [37], which contains a short section about
them. The main reason for neglecting the Faber–Walsh polynomials was the fact
that no explicit examples of Walsh’s lemniscatic conformal maps were known. But
very recently, by the papers [33–35], Sète, Oral communication, the Faber–Walsh
polynomials were brought again into attention. Thus, the first example of Walsh’s
lemniscatic conformal maps seems to be mentioned in the very recent paper of Sète–
Liesen [35]. Also, the first explicit formulas for the Faber–Walsh polynomials were
obtained for the case when G consists in two disjoint compact intervals in Sète–
Liesen [34]. The results in the present work are also new contributions to the topic
of Faber–Walsh polynomials.
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3 Approximation by q-Bernstein–Faber–Walsh Polynomials

In this section we present the approximation results by q-Bernstein–Faber–Walsh
polynomials, q � 1. The notations used are those in Sect. 2.

For the proofs of results, we will use the methods in the case of q-Bernstein–
Faber polynomials in [9], pp. 19–20 and [13], pp. 88–98), adapted to the case of
Faber–Walsh polynomials.

We can summarize all the results by the following theorem.

Theorem 1. Let D1; : : : ;D� be mutually exterior compact sets (none a single point)
of the complex plane such that the complement of G WD S�

jD1 Dj in the extended
plane is a �-times connected region (open and connected set) and suppose that �,
the logarithmic capacity of G, satisfies � � 1. Let f be analytic in G, that is there
exists R > 1 such that f is analytic in GR. Also, denote S.q/k D Œ1�q C : : :C Œk � 1�q,
k � 2. Above, we recall that GR denotes the interior of the closed level curve �R,
both defined as in Sect. 2.

(i) Then for any 1 < r < R the following upper estimate

jWn;1.f I G/.z/ � f .z/j � C

n
; z 2 Gr; n 2 N;

holds, where C > 0 depends on f , r, and Gr but it is independent of n.
(ii) Let 1 < q < R. Then for any 1 < r < R

q , the following upper estimate

jWn;q.f I G/.z/ � f .z/j � C

qn
; for all z 2 Gr; n 2 N;

holds, where C > 0 depends on f , r, Gr and q but is independent of n and z.
(iii) Assume that 1 � q < R and denote S.q/k D Œ1�q C : : :C Œk � 1�q, k � 2.

.iiia/ If q D 1, then for any 1 < r < R, z 2 Gr and n 2 N, the following upper
estimate

ˇ̌
ˇ̌
ˇWn;1.f I G/.z/ � f .z/ �

1X
kD2

ak.f / � S.1/k

n
ŒBk�1.z/ � Bk.z/�

ˇ̌
ˇ̌
ˇ � C

n2

holds, where C > 0 depends on f , r, Gr but it is independent of n.
.iiib/ If q > 1, 1 < r < R

q2
, z 2 Gr and n 2 N, then the following upper

estimate
ˇ̌
ˇ̌
ˇWn;q.f I G/.z/ � f .z/ �

1X
kD2

ak.f / � S.q/k

Œn�q
ŒBk�1.z/ � Bk.z/�

ˇ̌
ˇ̌
ˇ � C

q2n

holds, where C > 0 depends on f , r, Gr, and q but is independent of n.
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(iv) If q � 1, then for any 1 < r < R
q we have

lim
n!1Œn�q.Wn;q.f I G/.z/ � f .z// D Aq.f /.z/; uniformly in Gr;

where Aq.f /.z/ D P1
kD2 ak.f / � S.q/k � ŒBk�1.z/ � Bk.z/�.

(v) Let 1 � q < R. If 1 < r < R
q and f is not a polynomial of degree � 1 in G, then

kWn;q.f I G/ � f kGr
	 1

Qqn
; n 2 N;

where kf kGr
D supfjf .z/jI z 2 Grg and the constants in the equivalence depend

on f ; r;Gr, and q, but are independent of n.

Proof.

(i) By the considerations in Sect. 2, for any fixed 1 < ˇ < R we have f .z/ DP1
kD0 ak.f /Bk.z/ uniformly in Gˇ , where ak.f / are the Faber–Walsh coefficients

given by (3).

Consequently, by (6) we obtain

jWn;1.f I G/.z/ � f .z/j �
1X

kD0
jak.f /j � j

nX
pD0

D.1/
n;p;kBp.z/ � Bk.z/j

D
nX

kD0
jak.f /j � j

nX
pD0

D.1/
n;p;kBp.z/ � Bk.z/j

C
1X

kDnC1
jak.f /j � j

nX
pD0

D.1/
n;p;kBp.z/ � Bk.z/j:

Since for the classical complex Bernstein polynomials attached to a disk of center at
origin we can write Bn.ek/.z/ D Pn

pD0 D.1/
n;p;kzp, since each ek is convex of any order

and Bn.ek/.1/ D ek.1/ D 1 for all k, it follows that all D.1/
n;p;k � 0 and

Pn
pD0 D.1/

n;p;k D
1, for all k and n. Also, note that D.1/

n;k;k D n.n�1/:::.n�kC1/
nk .

In the estimation of jak.f /j � jPn
pD0 D.1/

n;p;kBp.z/�Bk.z/j we distinguish two cases:
(1) 0 � k � n ; (2) k > n .

Case 1. We have

j
nX

pD0
D.1/

n;p;kBp.z/ � Bk.z/j � jBk.z/j � j1 � D.1/
n;k;kj C

k�1X
pD0

D.1/
n;p;k � jBp.z/j:

Fix now 1 < r < ˇ. By using the estimate in (4), we immediately get

j
nX

pD0
D.1/

n;p;kBp.z/ � Bk.z/j � 2A1.r/Œ1 � D.1/
n;k;k�.r�/

k � A1.r/
k.k � 1/

n
.r�/k;
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for all z 2 Gr. Here we used the inequality 1 �˘ k
iD1xi � Pk

iD1.1 � xi/ (valid if
all xi 2 Œ0; 1�) which implies the inequality

1 � D.1/
n;k;k D 1 � n.n � 1/ : : : .n � k C 1/

nk
D 1 �˘ k�1

iD1
n � i

n

�
k�1X
iD1
.1 � .n � i/=n/ D 1

n

k�1X
iD0

i D k.k � 1/
2n

:

By the estimate for jak.f /j in (5), for all z 2 Gr and k D 0; 1; 2; : : : n, it follows

jak.f /j � j
nX

pD0
D.1/

n;p;kBp.z/ � Bk.z/j � C.r; ˇ; �; f /

n
k.k � 1/


r

ˇ

�k

;

(above � was simplified), that is

nX
kD0

jak.f /j�j
nX

pD0
D.1/

n;p;kBp.z/�Bk.z/j � C.r; ˇ; �; f /

n

nX
kD2

k.k�1/dk; for all z 2 Gr;

where 0 < d D r=ˇ < 1. Also, clearly we have
Pn

kD2 k.k � 1/dk � P1
kD2 k

.k � 1/dk < 1, which finally implies that

nX
kD0

jak.f /j � j
nX

pD0
D.1/

n;p;kBp.z/ � Bk.z/j � C�.r; ˇ; �; f /
n

:

Case 2. We have

1X
kDnC1

jak.f /j � j
nX

pD0
D.1/

n;p;kBp.z/ � Bk.z/j �
1X

kDnC1
jak.f /j � j

nX
pD0

D.1/
n;p;kBp.z/j

C
1X

kDnC1
jak.f /j � jBk.z/j:

By the estimates mentioned in the Case (1), we immediately get

1X
kDnC1

jak.f /j � jBk.z/j � C.r; ˇ; �; f /
1X

kDnC1
dk; for all z 2 Gr;

with d D r=ˇ.
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Also,

1X
kDnC1

jak.f /j � j
nX

pD0
D.1/

n;p;kBp.z/j D
1X

kDnC1
jak.f /j �

ˇ̌
ˇ̌
ˇ̌

nX
pD0

D.1/
n;p;k � Bp.z/

ˇ̌
ˇ̌
ˇ̌

�
1X

kDnC1
jak.f /j �

nX
pD0

D.1/
n;p;k � jBp.z/j:

But for p � n < k and taking into account the estimates obtained in the Case (1)
we get

jak.f /j � jBp.z/j � C.r; ˇ; �; f /
.r�/p

.ˇ�/k
� C.r; ˇ; �; f /

rk

ˇk
; for all z 2 Gr;

which implies

1X
kDnC1

jak.f /j � j
nX

pD0
D.1/

n;p;kBp.z/ � Bk.z/j � C.r; ˇ; �; f /
1X

kDnC1

nX
pD0

D.1/
n;p;k


r

ˇ

�k

D C.r; ˇ; �; f /
1X

kDnC1


r

ˇ

�k

D C.r; ˇ; �; f /
dnC1

1 � d
;

with d D r=ˇ.
In conclusion, collecting the estimates in the Cases (1) and (2) we obtain

j
nX

pD0
D.1/

n;p;kBp.z/ � f .z/j � C1
n

C C2d
nC1 � C

n
; z 2 Gr; n 2 N:

(ii) By using (6), we obtain

jWn;q.f I G/.z/ � f .z/j �
1X

kD0
jak.f /j � j

nX
pD0

D.q/
n;p;kBp.z/ � Bk.z/j D

nX
kD0

jak.f /j � j
nX

pD0
D.q/

n;p;kBp.z/ � Bk.z/j C
1X

kDnC1
jak.f /j � j

nX
pD0

D.q/
n;p;kBp.z/ � Bk.z/j:

Since each ek is convex of any order, we get that all D.q/
n;p;k � 0 and

Pn
pD0 D.q/

n;p;k D
1, for all k and n.
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Also, note that for all k � 1

D.q/
n;k;k D

�
1 � Œ1�q

Œn�q

	
: : :

�
1 � Œk � 1�q

Œn�q

	

and that D.q/
n;0;0 D 1.

In the estimation of jak.f /j � jPn
pD0 D.q/

n;p;kBp.z/�Bk.z/j we distinguish two cases:
(1) 0 � k � n ; (2) k > n .

Case 1. Since D.q/
n;0;0 D 1, we may suppose that 1 � k � n. We have

j
nX

pD0
D.q/

n;p;kBp.z/ � Bk.z/j � jBk.z/j � j1 � D.q/
n;k;kj C

k�1X
pD0

D.q/
n;p;k � jBp.z/j:

Fix now 1 < r < ˇ

q . By the proof of Theorem 3, p. 3766 in Mahmudov [26]
(taking there ˛ D 	 D 0), taking into account (4) and by similar reasonings with
those in the case q D 1, we immediately get

j
nX

pD0
D.q/

n;p;kBp.z/ � Bk.z/j � 2A1.r/Œ1 � D.q/
n;k;k�.r�/

k � c.r/
kŒk � 1�q
Œn�q

.r�/k

� c.r/
kqk

.q � 1/.Œn�q/ .r�/
k D c.r/

k.qr�/k

.q � 1/.Œn�q/ � c.r; q/
k.qr�/k

Œn�q
;

for all z 2 Gr.

Then, by the estimate in (5) of jak.f /j, for all z 2 Gr and k D 0; 1; 2; : : : n, it
follows

jak.f /j � j
nX

pD0
D.q/

n;p;kBp.z/ � Bk.z/j � C.r; ˇ; �; f ; q/

Œn�q
k


qr

ˇ

�k

;

that is

nX
kD0

jak.f /j � j
nX

pD0
D.q/

n;p;kBp.z/ � Bk.z/j � C.r; ˇ; �; f ; q/

Œn�q

nX
kD1

kdk
1; for all z 2 Gr;

where d1 D rq
ˇ
< 1

Also, clearly we have
Pn

kD1 kdk
1 � P1

kD1 kdk
1 < 1, which finally implies that

nX
kD0

jak.f /j � j
nX

pD0
D.q/

n;p;kBp.z/ � Bk.z/j � C�.r; ˇ; �; f ; q/
Œn�q

� qC�.r; ˇ; �; f ; q/
qn

:

Here we used the inequality 1
Œn�q

� q
qn .



Bernstein–Faber–Walsh and Szász–Mirakjan–Faber–Walsh Operators 413

Case 2. We have
1X

kDnC1
jak.f /j � j

nX
pD0

D.q/
n;p;kBp.z/ � Bk.z/j �

1X
kDnC1

jak.f /j � j
nX

pD0
D.q/

n;p;kBp.z/jC

1X
kDnC1

jak.f /j � jBk.z/j:

By the estimates mentioned in the Case (1), we immediately get

1X
kDnC1

jak.f /j � jBk.z/j � C.r; ˇ; f /
1X

kDnC1
dk; for all z 2 Gr;

with d D r=ˇ.

Also,

1X
kDnC1

jak.f /j � j
nX

pD0
D.q/

n;p;kBp.z/j �
1X

kDnC1
jak.f /j �

nX
pD0

D.q/
n;p;k � jBp.z/j:

But for p � n < k and taking into account the estimates obtained in the Case (1)
we get

jak.f /j � jBp.z/j � C.r; ˇ; �; f /
.r�/p

.ˇ�/k
� C.r; ˇ; �; f /

rk

ˇk
; for all z 2 Gr;

which therefore implies

1X
kDnC1

jak.f /j � j
nX

pD0
D.q/

n;p;kBp.z/ � Bk.z/j

� C.r; ˇ; �; f /
1X

kDnC1

nX
pD0

D.q/
n;p;k


r

ˇ

�k

C C.r; ˇ; �; f /
1X

kDnC1


r

ˇ

�k

� C.r; ˇ; �; f /
1X

kDnC1


r

ˇ

�k

D C.r; ˇ; �; f /
dnC1

1 � d

D rC.r; ˇ; �; f /

ˇ � r
� dn � rC.r; ˇ; �; f /

ˇ � r
� 1

qn
;

with d D r
ˇ
< 1

q < 1.
In conclusion, collecting the estimates in the Cases (1) and (2) we obtain

jWn;q.f I G/.z/ � f .z/j � c1
qn

C c2
qn

� C

qn
; z 2 Gr; n 2 N;

with the constants c1; c2;C > 0 depending on r; ˇ; �; f ; q, but independent of n
and z.
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(iii) Let 1 < r < R
q . Simple calculation shows that

S.q/k D k.k � 1/
2

; for q D 1 and S.q/k D qk � k.q � 1/ � 1
.q � 1/2 ; for q > 1: (7)

Note that by Lemma 3, p. 245 in [28], we have

D.q/
n;k�1;k D S.q/k

Œn�q
�˘ k�2

iD1
�
1 � Œi�q

Œn�q

	
; k � n: (8)

In what follows, first we prove that Aq.f /.z/ given by

Aq.f /.z/ D
1X

kD2
ak.f / � S.q/k � ŒBk�1.z/ � Bk.z/�;

is analytic in Gr, for 1 < r < R
q .

Indeed, by the inequality

jAq.f /.z/j �
1X

kD0
jak.f /j � S.q/k � ŒjBk�1.z/j C jBk.z/j�;

since by (7) we get S.q/k � qk

.q�1/2 for q > 1, by (4) and (5) it immediately follows

jAq.f /.z/j � 2C.r/ � C.ˇ; �; f /

.q � 1/2 �
1X

kD0
dk D 2C.r/ � C.ˇ; �; f /

.1 � d/.q � 1/2 ; if q > 1;

and

jAq.f /.z/j � C.r/ � C.ˇ; �; f /
1X

kD0
k.k � 1/dk; if q D 1;

with d D rq
ˇ
< 1, for all z 2 Gr. But by the ratio test the above series is uniformly

convergent, which immediately shows that for q � 1, the function Aq.f / is well
defined and analytic in Gr.

Now, by (6) we obtain

ˇ̌
ˇ̌
ˇWn;q.f I G/.z/ � f .z/ �

1X
kD0

ak.f / � S.q/k

Œn�q
ŒBk�1.z/ � Bk.z/�

ˇ̌
ˇ̌
ˇ

�
1X

kD0
jak.f /j � jE.q/k;n.G/.z/j;
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where

E.q/k;n.G/.z/ D
nX

pD0
D.q/

n;p;kBp.z/ � Bk.z/ � S.q/k

Œn�q
ŒBk�1.z/ � Bk.z/�:

Because simple calculations imply that

E.q/0;n.G/.z/ D E.q/1;n.G/.z/ D E.q/2;n.G/.z/ D 0;

in fact we have to estimate the expression

1X
kD3

jak.f /j � jE.q/k;n.G/.z/j

D
nX

kD3
jak.f /j � jE.q/k;n.G/.z/j C

1X
kDnC1

jak.f /j � jE.q/k;n.G/.z/j:

To estimate jE.q/k;n.G/.z/j, we distinguish two cases : (1) 3 � k � n ; (2) k � n C 1.

Case 1. By using (4), we obtain

Œn�qjE.q/k;n.G/.z/j D jŒn�q.
nX

pD0
D.q/

n;p;kBp.z/ � Bk.z// � S.q/k � .Bk�1.z/ � Bk.z//j

� C.r/.r�/kŒn�q

k�2X
iD1

D.q/
n;i;k C C.r/.r�/kjŒn�qD.q/

n;k�1;k � S.q/k j

CC.r/.r�/kjŒn�q.1 � D.q/
n;k;k/ � S.q/k j:

Taking now into account (8) and following exactly the reasonings in the proof of
Lemma 3, p. 747 in [44], we arrive at

jE.q/k;n.G/.z/j � 4C.r/.k � 1/2Œk � 1�2q
Œn�2q

� .r�/k; for all z 2 Gr: (9)

Let ˇ satisfy qr < ˇ < R. By (5) and (9) it follows

nX
kD3

jak.f /j � jE.q/k;n.G/.z/j � 4C.r/ � C.ˇ; �; f /

Œn�2q
�

nX
kD3
.k � 1/2Œk � 1�2q�k; (10)

for all z 2 Gr and n 2 N, where � D r
ˇ
< 1

q .
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Case 2. We get

1X
kDnC1

jak.f /j � jE.q/k;n.G/.z/j

�
1X

kDnC1
jak.f /j � j

nX
pD0

D.q/
n;p;kBp.z/j C

1X
kDnC1

jak.f /j � jBk.z/j

C 1

Œn�q

1X
kDnC1

jak.f /j � S.q/k � jBk�1.z/j C 1

Œn�q

1X
kDnC1

jak.f /j � S.q/k � jBk.z/j

DW L1;q.z/C L2;q.z/C L3;q.z/C L4;q.z/: (11)

Wa have two subcases : .iiia/ q D 1 ; .iiib/ q > 1.

Subcase .iiia/. By (4) and (5), for 1 < r < ˇ < R, denoting � D r
ˇ

, it
immediately follows

L1;1.z/ �
1X

kDnC1
jak.f /j �

nX
pD0

D.1/
n;p;kjBp.z/j � C.r; ˇ; �; f /

n2

1X
kDnC1

.k � 1/2�k;

and similarly

L2;1.z/ � C.r; ˇ; �; f /

n2

1X
kDnC1

.k � 1/2�k:

for all z 2 Gr.
Next, by similar reasonings as above and by (7), we obtain

L3;1.z/ � C.r; ˇ; �; f /

n

1X
kDnC1

k.k � 1/
2

�k � C.r; ˇ; �; f /

n2

1X
kDnC1

.k � 1/3�k;

and

L4;1.z/ � C.r; ˇ; �; f /

n2

1X
kDnC1

.k � 1/3�k;

which by (11) implies that there exists a constant K.r; ˇ; �; f / > 0 independent of
n, such that

1X
kDnC1

jak.f /j � jE.1/k;n.G/.z/j � K.r; ˇ; �; f /

n2

1X
kDnC1

.k � 1/3�k;

for all z 2 Gr and n 2 N.
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But the sequence fan D P1
kDnC1.k � 1/3�k; n 2 Ng is convergent to zero

(therefore bounded by a constant M > 0 independent of n), as the remainder of
the convergent series

P1
kD0.k � 1/3�k (applying, for example, the ratio test), which

will imply

1X
kDnC1

jak.f /j � jE.1/k;n.G/.z/j � M � K.r; ˇ; �; f /

n2
;

for all z 2 Gr and n 2 N.
Now, taking q D 1 in (10) and taking into account that by the ratio test the seriesP1
kD3.k � 1/4�k is convergent, we get

nX
kD3

jak.f /j � jE.1/k;n.G/.z/j � 4C.r/ � C.ˇ; f /

n2
�

nX
kD3
.k � 1/4�k

� 4C.r/ � C.ˇ; �; f /

n2
�

1X
kD3
.k � 1/4�k D K0.r; ˇ; �; f /

n2
;

which combined with the previous estimate immediately implies

1X
kD0

jak.f /j � jE.1/k;n.G/.z/j � C

n2
;

for all z 2 Gr and n 2 N, where C > 0 is a constant independent of n.
This proves .iiia/ in the statement of (iii).
Subcase .iiib/. By (4) and (5), for 1 < r < ˇ

q <
R
q and denoting � D r

ˇ
< 1

q < 1,

for all z 2 Gr it follows

L1;q.z/ �
1X

kDnC1
jak.f /j �

nX
pD0

D.q/
n;p;kjBp.z/j � C.r; ˇ; �; f /

1X
kDnC1

�k

� C.r; ˇ; �; f /

Œn�2q

1X
kDnC1

Œk � 1�2q�k � C.r; ˇ; �; f ; q/

Œn�2q

1X
kDnC1

.q2�/k

and similarly

L2;q.z/ � C.r; ˇ; �; f /
1X

kDnC1
�k � C.r; ˇ; �; f /

Œn�2q

1X
kDnC1

Œk � 1�2q�k

� C.r; ˇ; �; f ; q/

Œn�2q

1X
kDnC1

.q2�/k:
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Also, since by (7) we get S.q/k � qk

.q�1/2 , by using (4) and (5) too, for all z 2 Gr

it follows

L3;q.z/ � C.r; ˇ; �; f ; q/

Œn�q

1X
kDnC1

qk�k D C.r; ˇ; �; f ; q/

Œn�q

1X
kDnC1

.q�/k

� C0.r; ˇ; �; f ; q/
Œn�2q

1X
kDnC1

.q2�/k;

and

L4;q.z/ � C.r; ˇ; �; f ; q/

Œn�q

1X
kDnC1

qk�k D C.ˇ; f ; q/

Œn�q

1X
kDnC1

.q�/k

� C0.r; ˇ; �; f ; q/
Œn�2q

1X
kDnC1

.q2�/k:

By (11), we immediately obtain

1X
kDnC1

jak.f /j � jE.q/k;n.G/.z/j � K.r; ˇ; �; f ; q/

Œn�2q
;

for all z 2 Gr, if q2� < 1 (which holds for 1 < r < ˇ

q2
< R

q2
). Also, by (10), since

Œk � 1�2q � Œk�2q � q2k

.q�1/2 , for z 2 Gr with 1 < r < ˇ

q2
< R

q2
, we easily obtain

nX
kD3

jak.f /j � jE.q/k;n.G/.z/j � K0.r; ˇ; �; f ; q/
Œn�2q

:

Collecting these results, we immediately obtain the upper estimate in .iiib/ too.

(iv) The case q D 1 follows directly by multiplying by n in the estimate in .iiia/
and by passing to limit with n ! 1. In the case of q > 1, if 1 < r < R

q2
then

by multiplying in .iiib/ with Œn�q and passing to limit with n ! 1, we get the
desired conclusion.

What remained to be proved is that the limit in (iv) still holds under the more
general condition 1 < r < R

q .

Since R
q1Ct % R

q as t & 0, evidently that given 1 < r < R
q , there exists a t 2

.0; 1/, such that q1Ctr < R. Because f is analytic in G, choosing ˇ with q1Ctr < ˇ <

R, by (4) and (5) this implies that
P1

kD2 jak.f /jk4q.1Ct/krk � P1
kD2 k4

�
q1Ctr
ˇ

�k
<

1, for all z 2 Gr. Also, the convergence of the previous series implies that for
arbitrary " > 0, there exists n0, such that

P1
kDn0C1 jak.f /jk2qkrk < ".
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By using (9), for all z 2 Gr and n > n0 we get

ˇ̌
ˇ̌
ˇ̌Œn�q.

nX
pD0

D.q/
n;p;kBp.z/ � f .z// � Aq.f /.z/

ˇ̌
ˇ̌
ˇ̌

�
n0X

kD2
jak.f /j �

ˇ̌
ˇ̌
ˇ̌Œn�q.

nX
pD0

D.q/
n;p;kBp.z/ � Bk.z// � S.q/k ŒBk�1.z/ � Bk.z/�

ˇ̌
ˇ̌
ˇ̌

C
1X

kDn0C1
jak.f /j �

0
@Œn�qj

nX
pD0

D.q/
n;p;kBp.z/ � Bk.z/j C S.q/k jBk�1.z/ � Bk.z/j

1
A

� C.r/
n0X

kD2
jak.f /j � 4.k � 1/2Œk � 1�2q

Œn�q
� .r�/k

C
1X

kDn0C1
jak.f /j �

0
@Œn�qj

nX
pD0

D.q/
n;p;kBp.z/ � Bk.z/j C S.q/k jBk�1.z/ � Bk.z/j

1
A :

But by the proof of the above points (i), (ii), Case (1), for k � n we have

j
nX

pD0
D.q/

n;p;kBp.z/ � Bk.z/j � C.r/
kŒk � 1�q
Œn�q

� .r�/k;

while for k > n and using (4), we get

j
nX

pD0
D.q/

n;p;kBp.z/ � Bk.z/j

� j
nX

pD0
D.q/

n;p;kBp.z/j C jBk.z/j �
nX

pD0
D.q/

n;p;kjBp.z/j C jBk.z/j

� C.r/.r�/n C C.r/.r�/k � C0.r/.r�/k � 2C0.r/
kŒk � 1�q
Œn�q

� .r�/k;

for all z 2 Gr.
Also, since S.q/k � .k � 1/Œk � 1�q, by using (4) it is immediate that

S.q/k � jBk�1.z/ � Bk.z/j � S.q/k � ŒjBk�1.z/j C jBk.z/j�
� 2C.r/.k � 1/Œk � 1�q.r�/k:
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Therefore, we easily obtain

1X
kDn0C1

jak.f /j �
0
@Œn�qj

nX
pD0

D.q/
n;p;kBp.z/ � Bk.z/j C S.q/k jBk�1.z/ � Bk.z/j

1
A

� K.r; �/ �
1X

kDn0C1
jak.f /j � .k � 1/Œk � 1�q.r�/k;

valid for all z 2 Gr, where K.r; �/ > 0 is a constant depending only on r.
From this we conclude that, for all z 2 Gr and n > n0 we have

ˇ̌
ˇ̌
ˇ̌Œn�q.

nX
pD0

D.q/
n;p;kBp.z/ � f .z// � Aq.f /.z/

ˇ̌
ˇ̌
ˇ̌

� C.r/
n0X

kD2
jak.f /j � 4.k � 1/2Œk � 1�2q

Œn�q
� .r�/k

CK.r; �/ �
1X

kDn0C1
jak.f /j � .k � 1/Œk � 1�q.r�/k

� 4C.r/

Œn�tq
�

n0X
kD2

jak.f /j � k2Œk � 1�1Ct
q � .r�/k C K.r; �/ �

1X
kDn0C1

jak.f /j � k2qk.r�/k

� 4C.r/

Œn�tq
�

1X
kD2

jak.f /j � k4q.1Ct/k � .r�/k C K.r; �/":

Now, since 4C.r/
Œn�tq

! 0 as n ! 1 and
P1

kD2 jak.f /j � k4q.1Ct/k � .r�/k < 1, for the

given " > 0, there exists an index n1, such that

4C.r/

Œn�tq
�

1X
kD2

jak.f /j � k4q.1Ct/k � .r�/k < ";

for all n > n1.
As a final conclusion, for all n > maxfn0; n1g and z 2 Gr, we get

ˇ̌
ˇ̌
ˇ̌Œn�q.

nX
pD0

D.q/
n;p;kBp.z/ � f .z// � Aq.f /.z/

ˇ̌
ˇ̌
ˇ̌ � .1C K.r//";

which shows that

lim
n!1Œn�q.

nX
pD0

D.q/
n;p;kBp.z/ � f .z// D Aq.f /.z/; uniformly in Gr:
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(v) Suppose that we would have kWn;1.f I G/ � f kGr
D o.Œn��1q /. Then, combining

the above points (i), (ii), and (iv) would immediately imply that Aq.f / D 0 for
all z 2 Gr, where Aq.f /.z/.

But Aq.f /.z/ D 0 for all z 2 Gr by simple calculation implies

2a2.f /S
.q/
2 B1.z/C

1X
kD2
ŒS.q/kC1akC1.f / � S.q/k ak.f /�Bk.z/ D 0; z 2 Gr:

By the uniqueness of Walsh polynomial series (see [33]), since by (7) it is clear that
S.q/k > 0 for all k � 2, we would get that a2.f / D 0 and

S.q/kC1akC1.f / � S.q/k ak.f / D 0; for all k D 2; 3; : : : ; :

For k D 2 we easily get a3.f / D 0 and taking above step by step k D 3; 4; : : : ; we
easily would obtain that ak.f / D 0 for all k � 2.

Therefore we would get f .z/ D a0.f /B0.z/ C a1.f /B1.z/ for all z 2 Gr. But
because Bk.z/ is a polynomial of exact degree k, would imply that f is a polynomial
of degree � 1 in Gr, a contradiction with the hypothesis.

In conclusion, if f is not a polynomial of degree � 1, then the approximation
order is exactly 1

Œn�q
, which ends the proof of the theorem.

Remark 7. In the case when G D Œ�ˇ;�˛�SŒ˛; ˇ�, with 0 < ˛ < ˇ, the
conformal mapping � and the Faber–Walsh polynomials are calculated in [35].
This would allow to calculate the coefficients in the Faber–Walsh expansion and
therefore the q-Bersnstein–Faber–Walsh polynomials too.

4 Approximation by Szász-Mirakjan–Faber–Walsh
Operators

Everywhere in this section, .�n/n2N is a sequence of real positive numbers with the
property that �n & 0 as fast as we want. Without the loss of generality, we may
suppose that �n � 1

2
, for all n 2 N.

Definition 3. Let D1; : : : ;D� be mutually exterior compact sets (none a single
point) of the complex plane such that the complement of G WD S�

jD1 Dj in the
extended plane is a �-times connected region (open and connected set) and suppose
that f is analytic in G, that is there exists R > 1 such that f is analytic in GR,
i.e. f .z/ D P1

kD0 ak.f /Bk.z/ for all z 2 GR, where Bk.z/ denotes the Faber–Walsh
polynomials attached to G and GR denotes the interior of the closed level curve �R,
all defined as in Sect. 2.
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The Szász–Mirakjan–Faber–Walsh operators attached to G and f will be formally
defined by

Mn.f I�n;GI z/ D
1X

kD0
ak.f / �

kX
jD0

Œ0; �n; : : : ; j�nI ek� � Bj.z/: (12)

We are in a position to state the main result.

Theorem 2. Let D1; : : : ;D� be mutually exterior compact sets (none a single point)
of the complex plane such that the complement of G WD S�

jD1 Dj in the extended
plane is a �-times connected region (open and connected set) and suppose that
f is analytic in G, that is there exists R > 1 such that f is analytic in GR, i.e.
f .z/ D P1

kD0 ak.f /Bk.z/ for all z 2 GR. Also, suppose that there exist M > 0 and

A 2
�
1

R� ;
1
�

�
, with jak.f /j � M Ak

kŠ , for all k D 0; 1; : : : ; (which implies jf .z/j �
C.r/Me�Ar for all z 2 Gr, 1 < r < R). Here �, GR, and Gr are those defined in
Sect. 2.

Let 1 < r < 1
A� be arbitrary fixed. Then, there exist n0 2 N and C.r; f ; �/ > 0

depending on r and f only, such that for all z 2 Gr and n � n0 we have

jMn.f I�n;GI z/ � f .z/j � C.r; f ; �/ � �n:

Proof. Firstly, we prove that Mn.f I�n;GI z/ given by formula (12) is well defined.
Thus, from Lemma 3.2 in [18], we easily get

kX
jD0

Œ0; �n; 2�n; : : : ; j�nI ek� � .k C 1/Š; for all k � 0 and n 2 N;

which for 1 < r < 1=.�A/ and by (4) implies

jMn.f I�n;GI z/j � C.r/
1X

kD0
jak.f /j �.kC1/Š.r�/k � MC.r/

1X
kD0
.kC1/.�Ar/k < 1;

for all z 2 Gr and n 2 N.
Let us denote Tn;k.z/ D Pk

jD0 Œ0; �n; 2�n; : : : ; j�nI ek� � Bj.z/; z 2 G; n 2 N; k �
0, m.n/ D Œ1=�n�. For 1 < r < R and z 2 Gr, by the formula in Definition 3, we
obtain

jMn.f I�n;GI z/ � f .z/j �
1X

kD0
jak.f /j � jTn;k.z/ � Bk.z/j

D
m.n/X
kD0

jak.f /j � jTn;k.z/ � Bk.z/j C
1X

kDm.n/C1
jak.f /j � jTn;k.z/ � Bk.z/j
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�
m.n/X
kD0

jak.f /j � jTn;k.z/ � Bk.z/j C
1X

kDm.n/C1
jak.f /j � jTn;k.z/j C

1X
kDm.n/C1

jak.f /j � jBk.z/j

WD S1 C S2 C S3:

In the case of S1, by using Lemma 3.1 in [14] and the estimate (4) in Sect. 2,
jBj.z/j � C.r/ � .r�/j, z 2 Gr, j � 0, it follows

S1 �
m.n/X
kD0

jak.f /j �
k�1X
jD0

Œ0; �n; 2�n; : : : ; j�nI ek� � jBj.z/j

� C.r/ � �n �
m.n/X
kD0

jak.f /j � .k C 1/Š

2
� .�r/k:

By jak.f /j � M � Ak

kŠ , for all k D 0; 1; : : : ;, where A 2
�
1

R� ;
1

r�

�
, we get

S1 � M � C.r/

2
� �n

nX
kD0
.k C 1/ � .�Ar/k � M � C.r/

2
� �n �

1X
kD0
.k C 1/ � .�Ar/k;

where
P1

kD0.k C 1/ � .�Ar/k < C1.
To estimate S2, firstly from the relationships �Ar < 1, a � 1 � Œa� � a C 1 and

m.n/ % C1 as n ! 1, it is easy to see that there exists n0 depending on r and A,
such that

.m.n/C 2/ � .�Ar/m.n/C1 � .1=�n C 2/ � .�Ar/an=bn � �n; for all n � n0:

Now, by using Lemma 3.2 in [18], for all n � n0 we have

S2 �
1X

kDm.n/C1
jak.f /j � jTn;k.z/j �

1X
kDm.n/C1

jak.f /j �
kX

jD0
Œ0; �n; 2�n; : : : ; j�nI ek� � jBj.z/j

� C.r/ �
1X

kDm.n/C1
jak.f /j � .k C 1/Š � .�r/k

� .m.n/C 2/ � .�Ar/m.n/C1 � M � C.r/
1X

kD0
.k C 1/.�Ar/k � MC.r/�n �

1X
kD0

.k C 1/.�Ar/k:

Finally, to estimate S3, since k
m.n/C1 � 1, we obtain

S3 � C.r/ � M

m.n/C 1
�

1X
kDm.n/C1

k � Ak

kŠ
� .�r/k � � � A � r � C.r/ � M�n �

1X
kDm.n/C1

.�Ar/k�1

.k � 1/Š

� e�Ar � � � A � r � C.r/ � M � �n:
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Collecting all the above estimates for S1; S2, and S3, we immediately get the estimate
in the statement.

Remark 8. Since
P1

kD0.k C 1/Pm.k/.�Ar/k < C1 and
P1

kD0 Pm.k C 1/ � .�Ar/k

kŠ <

C1 for any algebraic polynomial Pm of degree � m satisfying Pm.k/ > 0 for all
k � 0, it is immediate from the proof that Theorem 2 holds under the more general
hypothesis jak.f /j � Pm.k/ � Ak

kŠ , for all k � 0.

Remark 9. In the case when the set G is simply connected compact set, Theorem 2
was proved in [14].

Remark 10. It is worth noting that in fact the condition � � 1 in Theorem 1 can be
dropped and the conditions on A and r in the statement of Theorem 2 can be written
as A 2 .1=R; 1/, 1 < r < 1=A (i.e., independent of the logarithmic capacity �),
simply by suitably normalizing the lemniscatic domain to be K1 D fw W jU.w/j >
1g and choosing ˚ 0.1/ D 1=� > 0. Indeed, in this case, the attached Faber–
Walsh polynomials QBk.z/ and the Faber–Walsh coefficients Qak.f / in the expansion
f .z/ D P1

kD0 Qak.f / � QBk.z/, satisfy (4) and (5) without the appearance of �k in these
estimates (see Sète, Oral communication).

At the end of this chapter, firstly we conjecture that the (classical) truncated Szász–

Mirakjan complex operators Tn.f /.z/ D e�nzsn.f /.z/ WD e�nz
Pn

kD0
.nz/k

kŠ f .k=n/,
attached to the unit disk, may represent a constructive solution to the so-called
weighted approximation problem, obtained in the Szegö domain :

Theorem 3 ([29], Theorems 3.2 and 3.4). Denote by G D fzI jzj < 1; jze1�zj <
1g, the Szegö domain interior to the Szegö curve S D fzI jze1�zj D 1; jzj � 1g
(see [39]). If f is analytic in G and continuous on compact subsets of G n f1g,
then for any compact E � G n f1g, there exists a sequence of polynomials
.Pn.f /.z//n2N, with degree Pn � n, such that denoting Tn.f /.z/ D e�nzPn.f /.z/,
we have limn!1Tn.f /.z/ D f .z/, uniformly on E.

Furthermore, if f is analytic in G and continuous on G with f .1/ D 0, then a
sequence of polynomials .Pn.f /.z//n2N exists, such that limn!1Tn.f /.z/ D f .z/,
uniformly on G.

Above, the rate of convergence is geometric.

In order to motivate our open question, firstly let us make some considerations
on the truncated Szász–Mirakjan operators of real variable introduced in [24],

QSn.f /.x/ D e�nx
nX

kD0

.nx/k

kŠ
f .k=n/; n 2 N; x 2 Œ0; 1�;

attached to f 2 CŒ0; 1� D ff W Œ0; 1� ! RI f is continuous on Œ0; 1�g. Defining
f � W Œ0;C1/ ! R by f �.x/ D f .x/ if x 2 Œ0; 1� and f �.x/ D f .1/ if x � 1, we
obviously can write, for all x 2 Œ0; 1� and n 2 N,
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QSn.f /.x/ D Sn.f
�/.x/ � f .1/


1 �

Pn
kD0.nx/k=kŠ

enx

�

D Sn.f
�/.x/ � f .1/Œe�nx

X
k>n

.nx/k=kŠ�;

where Sn.f �/.x/ D e�nx
P1

kD0
.nx/k

kŠ f �.k=n/ is the classical Szász–Mirakjan operator
attached to f �.

Reasoning exactly as in the proof of Theorem 5 in [24], we easily get that
limn!1 QSn.f /.x/ D f .x/, uniformly on every compact subinterval of x 2 Œ0; 1/.

Now, for all n 2 N, x 2 Œ0; 1�, let us denote Rn.x/ D P1
k>n

.nx/k

kŠ and

Ln.x/ D e�nx

"
nX

kD0

.nx/k

kŠ

#
D Œ1 � e�nxRn.x/� :

By the above formula, we can write

QSn.f /.x/ D Sn.f
�/.x/ � f .1/Œe�nx

X
k>n

.nx/k=kŠ� D Sn.f
�/.x/ � f .1/Œ1 � Ln.x/�;

(13)
for all n 2 N and x 2 Œ0; 1�.

But, according to the book [8, p. 229] (see also the papers [23, 38]), we have

lim
n!1 Ln.x/ D 1; if x 2 Œ0; 1/; lim

n!1 Ln.1/ D 1

2
; lim

n!1 Ln.x/ D 0; if x > 1:

Therefore, we obtain limn!1 QSn.f /.x/ D limn!1 Sn.f �/.x/, for all x 2 Œ0; 1/ and
since f � is obviously of exponential growth, according to the Szász’s result, we have
limn!1 Sn.f �/.x/ D f .x/, uniformly on Œ0; 1�. On the other hand, passing to limit
with n ! 1 in (13), we obtain

lim
n!1

QSn.f /.1/ D f .1/ � f .1/Œ1 � 1=2� D 1

2
f .1/;

where obviously that 1
2
f .1/ D f .1/ only if f .1/ D 0.

From here it also follows that for the partial sums of the Szász–Mirakjan
operators, in order to have uniform convergence on the closed interval Œ0; 1�
(and consequently on the whole closure of Szegö’s set in the complex case), we
necessarily need to have f .1/ D 0. Contrariwise, for f .1/ 6D 0, the partial sums of
the Szász–Mirakjan operators do not converge at x D 1 to f .1/.

In particular, if f .x/ D ej.x/ D xj, with j D 0; 1; : : : ; arbitrary, then we get

lim
n!1

ˇ̌
ˇ̌
ˇe

�nx
nX

kD0

.nx/k

kŠ

�
k

n

	j

� xj

ˇ̌
ˇ̌
ˇ D 0;

uniformly for all compact subintervals in Œ0; 1/.
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Then, it is natural to look for the convergence of the truncated Szász–Mirakjan
complex operators

QSn.f /.z/ D e�nz
nX

kD0

.nz/k

kŠ
f .k=n/; n 2 N;

attached to an analytic function f .z/ in D1 D fzI jzj < 1g, for example, in the open
unit disk jzj < 1=2, i.e., to f .z/ D P1

jD0 cjej.z/, jzj < 1=2. Here we consider
jzj < 1=2, because according to Theorem 3.8 in [29], the weighted approximation
by polynomials is possible, uniformly on compacts subsets in any open disk of
radius 1=2.

Since we immediately can write

jQSn.f /.z/ � f .z/j �
1X

jD0
jcjj �

ˇ̌
ˇ̌
ˇe

�nz
nX

kD0

.nz/k

kŠ
�
�

k

n

	j

� zj

ˇ̌
ˇ̌
ˇ ;

it is natural to consider the following.

Conjecture. If f W D1 ! C is analytic in D1, then we believe that a constructive
solution of the weighted approximation in D1=2 \ G is represented by Pn.f /.z/ DPn

kD0
.nz/k

kŠ f .k=n/, n 2 N, that is for any compact K � D1=2 \ G, uniformly in K we
have limn!1 e�nzPn.f /.z/ D f .z/.

Remark 11. If in the above conjecture f is supposed analytic in only fjzj < 1=2g,

then the conjecture is that limn!1 e�nz
PŒn=2�

kD0
.nz/k

kŠ f .k=n/ D f .z/; uniformly in any
compact set K � fjzj < 1=2g. The choice for this partial sum is motivated by the
fact that similar reasonings with those in the proof of Theorem 5 in [24] leads to the

conclusion that limn!1 e�nx
PŒn=2�

kD0
.nx/k

kŠ f .k=n/ D f .x/; uniformly in any compact
subinterval of Œ0; 1=2/.

For a quantitative estimate in the above conjecture, it is natural to consider the
following generalization of the Szegö’s problem:

Open Problem. Let j D 0; 1; : : : ; be fixed and let us denote sn;j.z/ D Pn
kD0 zk

kŠ ��
k
n

�j
. For each j D 0; 1; : : : ;, find a quantitative (asymptotic) estimate for

ˇ̌
ˇ̌
ˇe

�nz
nX

kD0

.nz/k

kŠ
�
�

k

n

	j

� zj

ˇ̌
ˇ̌
ˇ D je�nzsn;j.nz/ � zjj

and the distribution of the zeros for sn;j.nz/.

Note that in the particular case j D 0, we recapture the classical Szegö’s result in
[39], which says that each accumulation point of all the zeroes of sn;0.z/ lies on the
Szegö’s curve. Also, it is known, for example, the following estimate (see [29]),

je�nzsn;0.nz/ � 1j � 4p
2�njz � 1j ; z 2 G n f1g; n � 1:



Bernstein–Faber–Walsh and Szász–Mirakjan–Faber–Walsh Operators 427

Remark 12. In solving the above open problem, we mention that the extensions of
Eneström–Kakeya Theorem in Govil–Rahman [21] and other results on the location
of the zeroes of polynomials in the Rahman–Schmeisser’s book [30] could be useful.

Acknowledgements I thank the referee for his suggestions.
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Summation Formulas of Euler–Maclaurin
and Abel–Plana: Old and New Results
and Applications

Gradimir V. Milovanović

Abstract Summation formulas of the Euler–Maclaurin and Abel–Plana and their
connections with several kinds of quadrature rules are studied. Besides the history
of these formulas, several of their modifications and generalizations are consid-
ered. Connections between the Euler–Maclaurin formula and basic quadrature
rules of Newton–Cotes type, as well as the composite Gauss–Legendre rule
and its Lobatto modification are presented. Besides the basic Plana summa-
tion formula a few integral modifications (the midpoint summation formula, the
Binet formula, Lindelöf formula) are introduced and analysed. Starting from the
moments of their weight functions and applying the recent MATHEMATICA package
OrthogonalPolynomials, recursive coefficients in the three-term recurrence
relation for the corresponding orthogonal polynomials are constructed, as well as
the parameters (nodes and Christoffel numbers) of the corresponding Gaussian
quadrature formula.
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Gaussian quadrature formula • Orthogonal polynomial • Three-term recurrence
relation
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1 Introduction and Preliminaries

A summation formula was discovered independently by Leonhard Euler [18, 19] and
Colin Maclaurin [35] plays an important role in the broad area of numerical analysis,
analytic number theory, approximation theory, as well as in many applications in

G.V. Milovanović (�)
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other fields. This formula, today known as the Euler–Maclaurin summation formula,

nX
kD0

f .k/ D
Z n

0

f .x/ dx C 1

2
.f .0/C f .n//

C
rX

�D1

B2�
.2�/Š

�
f .2��1/.n/ � f .2��1/.0/

�C Er.f /; (1)

was published first time by Euler in 1732 (without proof) in connection with the
problem of determining the sum of the reciprocal squares,

1C 1

22
C 1

32
C � � � ; (2)

which is known as the Basel problem. The brothers Johann and Jakob Bernoulli,
Leibnitz, Stirling, etc. also dealt intensively by such a kind of problems. In modern
terminology, the sum (2) represents the zeta function of 2, where more generally

�.s/ D 1C 1

2s
C 1

3s
C � � � .s > 1/:

Although at that time the theory of infinite series was not exactly based, it was
observed a very slow convergence of this series, e.g. in order to compute directly
the sum with an accuracy of six decimal places it requires taking into account at
least a million first terms, because

1

n C 1
<

C1X
kDnC1

1

k2
<
1

n
:

Euler discovered the remarkable formula with much faster convergence

�.2/ D log2 2C
C1X
kD1

1

2k�1k2
;

and obtained the value �.2/ D 1:644944 : : : (with seven decimal digits). But the
discovery of a general summation procedure (1) enabled Euler to calculate �.2/ to
20 decimal places. For details see Gautschi [25, 26] and Varadarajan [61].

Using a generalized Newton identity for polynomials (when their degree tends to
infinity), Euler [19] proved the exact result �.2/ D �2=6. Using the same method
he determined �.s/ for even s D 2m up to 12,

�.4/ D �4

90
; �.6/ D �6

945
; �.8/ D �8

9450
; �.10/ D �10

93555
; �.12/ D 691�12

638512875
:



Summation Formulas of Euler–Maclaurin and Abel–Plana 431

Sometime later, using his own partial fraction expansion of the cotangent function,
Euler obtained the general formula

�.2�/ D .�1/��1 22��1B2�
.2�/Š

�2�;

where B2� are the Bernoulli numbers, which appear in the general Euler–Maclaurin
summation formula (1). Detailed information about Euler’s complete works can be
found in The Euler Archive ( http://eulerarchive.maa.org).

We return now to the general Euler–Maclaurin summation formula (1) which
holds for any n; r 2 N and f 2 C2rŒ0; n�. As we mentioned before this formula
was found independently by Maclaurin. While in Euler’s case the formula (1) was
applied for computing slowly converging infinite series, in the second one Maclaurin
used it to calculate integrals. A history of this formula was given by Barnes [5], and
some details can be found in [3, 8, 25, 26, 38, 61].

Bernoulli numbers Bk .B0 D 1, B1 D �1=2, B2 D 1=6, B3 D 0, B4 D �1=30,
: : :) can be expressed as values at zero of the corresponding Bernoulli polynomials,
which are defined by the generating function

text

et � 1 D
C1X
kD0

Bk.x/
tk

kŠ
:

Similarly, Euler polynomials can be introduced by

2ext

et C 1
D

C1X
kD0

Ek.x/
tk

kŠ
:

Bernoulli and Euler polynomials play a similar role in numerical analysis and
approximation theory like orthogonal polynomials. First few Bernoulli polynomi-
als are

B0.x/ D 1; B1.x/ D x � 1

2
; B2.x/ D x2 � x C 1

6
; B3.x/ D x3 � 3x2

2
C x

2
;

B4.x/ D x4 � 2x3 C x2 � 1

30
; B5.x/ D x5 � 5x4

2
C 5x3

3
� x

6
; etc.

Some interesting properties of these polynomials are

B0
n.x/ D nBn�1.x/; Bn.1 � x/ D .�1/nBn.x/;

Z 1

0

Bn.x/ dx D 0 .n 2 N/:

The error term Er.f / in (1) can be expressed in the form (cf. [8])

Er.f / D .�1/r
C1X
kD1

Z n

0

ei2�kt C e�i2�kt

.2�k/2r
f .2r/.x/ dx;

http://eulerarchive.maa.org


432 G.V. Milovanović

or in the form

Er.f / D �
Z n

0

B2r.x � bxc/
.2r/Š

f .2r/.x/ dx; (3)

where bxc denotes the largest integer that is not greater than x. Supposing f 2
C2rC1Œ0; n�, after an integration by parts in (3) and recalling that the odd Bernoulli
numbers are zero, we get (cf. [28, p. 455])

Er.f / D
Z n

0

B2rC1.x � bxc/
.2r C 1/Š

f .2rC1/.x/ dx: (4)

If f 2 C2rC2Œ0; n�, using Darboux’s formula one can obtain (1), with

Er.f / D 1

.2r C 2/Š

Z 1

0

ŒB2rC2 � B2rC2.x/�
�n�1X

kD0
f .2rC2/.k C x/

	
dx (5)

(cf. Whittaker and Watson [65, p. 128]). This expression for Er.f / can be also
derived from (4), writting it in the form

Er.f / D
Z 1

0

B2rC1.x/
.2r C 1/Š

�n�1X
kD0

f .2rC1/.k C x/

	
dx

D
Z 1

0

B0
2rC2.x/

.2r C 2/Š

�n�1X
kD0

f .2rC1/.k C x/

	
dx;

and then by an integration by parts,

Er.f / D
"

B2rC2.x/
.2r C 2/Š

�n�1X
kD0

f .2rC1/.k C x/

	#1

0

�
Z 1

0

B2rC2.x/
.2r C 2/Š

�n�1X
kD0

f .2rC2/.k C x/

	
dx:

Because of B2rC2.1/ D B2rC2.0/ D B2rC2, the last expression can be represented
in the form (5).

Since

.�1/r ŒB2rC2 � B2rC2.x/� � 0; x 2 Œ0; 1�;

and

Z 1

0

ŒB2rC2 � B2rC2.x/� dt D B2rC2;
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according to the Second Mean Value Theorem for Integrals, there exists � 2 .0; 1/

such that

Er.f / D B2rC2
.2r C 2/Š

�n�1X
kD0

f .2rC2/.k C �/

	
D nB2rC2
.2r C 2/Š

f .2rC2/.�/; 0 < � < n:

(6)

The Euler–Maclaurin summation formula can be considered on an arbitrary
interval .a; b/ instead of .0; n/. Namely, taking h D .b � a/=n, t D a C xh, and
f .x/ D f ..t � a/=h/ D '.t/, formula (1) reduces to

h
nX

kD0
'.a C kh/ D

Z b

a
'.t/ dt C h

2
Œ'.a/C '.b/�

C
rX

�D1

B2�h2�

.2�/Š

�
'.2��1/.b/ � '.2��1/.a/

�C Er.'/; (7)

where, according to (6),

Er.'/ D .b � a/
B2rC2h2rC2

.2r C 2/Š
'.2rC2/.�/; a < � < b: (8)

Remark 1. An approach in the estimate of the remainder term of the Euler–
Maclaurin formula was given by Ostrowski [47].

Remark 2. The Euler–Maclaurin summation formula is implemented in MATHE-
MATICA as the function NSum with option Method -> Integrate.

2 Connections Between Euler–Maclaurin Summation
Formula and Some Basic Quadrature Rules
of Newton–Cotes Type

In this section we first show a direct connection between the Euler–Maclaurin
summation formula (1) and the well-known composite trapezoidal rule,

Tnf WD
nX

kD0
00f .k/ D 1

2
f .0/C

n�1X
kD1

f .k/C 1

2
f .n/; (9)

for calculating the integral

Inf WD
Z n

0

f .x/ dx: (10)



434 G.V. Milovanović

This rule for integrals over an arbitrary interval Œa; b� can be presented in the form

h
nX

kD0
00'.a C kh/ D

Z b

a
'.t/ dt C ET.'/; (11)

where, as before, the sign
P00 denotes summation with the first and last terms

halved, h D .b � a/=n, and ET.'/ is the remainder term.

Remark 3. In general, the sequence of the composite trapezoidal sums converges
very slowly with respect to step refinement, because of jET.'/j D O.h2/. However,
the trapezoidal rule is very attractive in numerical integration of analytic and
periodic functions, for which '.t C b � a/ D '.t/. In that case, the sequence of
trapezoidal sums

Tn.'I h/ WD h
nX

kD0
00'.a C kh/ D h

nX
kD1

'.a C kh/ (12)

converges geometrically when applied to analytic functions on periodic intervals or
the real line. A nice survey on this subject, including history of this phenomenon, has
been recently given by Trefethen and Weideman [59] (see also [64]). For example,
when ' is a .b � a/-periodic and analytic function, such that j'.z/j � M in the
half-plane Im z > �c for some c > 0, then for each n � 1, the following estimate

jET.'/j D
ˇ̌
ˇTn.'I h/ �

Z b

a
'.t/ dt

ˇ̌
ˇ � .b � a/M

e2�cn=.b�a/ � 1
holds. A similar result holds for integrals over R.

It is well known that there are certain types of integrals which can be transformed
(by changing the variable of integration) to a form suitable for the trapezoidal
rule. Such transformations are known as Exponential and Double Exponential
Quadrature Rules (cf. [44–46, 57, 58]). However, the use of these transformations
could introduce new singularities in the integrand and the analyticity strip may be
lost. A nice discussion concerning the error theory of the trapezoidal rule, including
several examples, has been recently given by Waldvogel [63].

Remark 4. In 1990 Rahman and Schmeisser [51] gave a specification of spaces
of functions for which the trapezoidal rule converges at a prescribed rate as n !
C1, where a correspondence is established between the speed of convergence and
regularity properties of integrands. Some examples for these spaces were provided
in [64].

In a general case, according to (1), it is clear that

Tnf � Inf D
rX

�D1

B2�
.2�/Š

�
f .2��1/.n/ � f .2��1/.0/

�C ET
r .f /; (13)

where Tnf and Inf are given by (9) and (10), respectively, and the remainder term
ET

r .f / is given by (6) for functions f 2 C2rC2Œ0; n�.



Summation Formulas of Euler–Maclaurin and Abel–Plana 435

Similarly, because of (7), the corresponding formula on the interval Œa; b� is

h
nX

kD0
00'.a C kh/ �

Z b

a
'.t/ dt D

rX
�D1

B2�h2�

.2�/Š

�
'.2��1/.b/ � '.2��1/.a/

�C ET
r .'/;

where ET
r .'/ is the corresponding remainder given by (8). Comparing this with (11)

we see that ET.'/ D ET
0 .'/.

Notice that if '.2rC2/.x/ does not change its sign on .a; b/, then ET
r .'/ has the

same sign as the first neglected term. Otherwise, when '.2rC2/.x/ is not of constant
sign on .a; b/, then it can be proved that (cf. [14, p. 299])

jET
r .'/j � h2rC2 j2B2rC2j

.2r C 2/Š

Z b

a
j'.2rC2/.t/j dt � 2

� h

2�

�2rC2 Z b

a
j'.2rC2/.t/j dt;

i.e., jET
r .'/j D O.h2rC2/. Supposing that

R C1
a j'.2rC2/.x/j dx < C1, this holds

also in the limit case as b ! C1. This limit case enables applications of the
Euler–Maclaurin formula in summation of infinite series, as well as for obtaining
asymptotic formulas for a large b.

A standard application of the Euler–Maclaurin formula is in numerical inte-
gration. Namely, for a small constant h, the trapezoidal sum can be dramatically
improved by subtracting appropriate terms with the values of derivatives at the
endpoints a and b. In such a way, the corresponding approximations of the integral
can be improved to O.h4/, O.h6/, etc.

Remark 5. Rahman and Schmeisser [52] obtained generalizations of the trapezoidal
rule and the Euler–Maclaurin formula and used them for constructing quadrature
formulas for functions of exponential type over infinite intervals using holomorphic
functions of exponential type in the right half-plane, or in a vertical strip, or in the
whole plane. They also determined conditions which equate the existence of the
improper integral to the convergence of its approximating series.

Remark 6. In this connection an interesting question can be asked. Namely, what
happens if the function ' 2 C1.R/ and its derivatives are .b � a/-periodic, i.e.,
'.2��1/.a/ D '.2��1/.b/, � D 1; 2; : : : ? The conclusion that Tn.'I h/, in this case,
must be exactly equal to

R b
a '.t/ dt is wrong, but the correct conclusion is that ET.'/

decreases faster than any finite power of h as n tends to infinity.

Remark 7. Also, the Euler–Maclaurin formula was used in getting an extrapolating
method well-known as Romberg’s integration (cf. [14, pp. 302–308 and 546–523]
and [39, pp. 158–164]).

In the sequel, we consider a quadrature sum with values of the function f at the
points x D k C 1

2
, k D 0; 1; : : : ; n � 1, i.e., the so-called midpoint rule

Mnf WD
n�1X
kD0

f
�

k C 1

2

�
:



436 G.V. Milovanović

Also, for this rule there exists the so-called second Euler–Maclaurin summation
formula

Mnf � Inf D
rX

�D1

.21�2� � 1/B2�
.2�/Š

�
f .2��1/.n/ � f .2��1/.0/

�C EM
r .f /; (14)

for which

EM
r .f / D n

.2�1�2r � 1/B2rC2
.2r C 2/Š

f .2rC2/.�/; 0 < � < n;

when f 2 C2rC2Œ0; n� (cf. [39, p. 157]). As before, Inf is given by (10).
The both formulas, (13) and (14), can be unified as

Qnf � Inf D
rX

�D1

B2�.�/

.2�/Š

�
f .2��1/.n/ � f .2��1/.0/

�C EQ
r .f /;

where � D 0 for Qn � Tn and � D 1=2 for Qn � Mn. It is true, because of the fact
that [50, p. 765] (see also [10])

B�.0/ D B� and B�
�1
2

�
D .21�� � 1/B�:

If we take a combination of Tnf and Mnf as

Qnf D Snf D 1

3
.Tnf C 2Mnf /;

which is, in fact, the well-known classical composite Simpson rule,

Snf WD 1

3

"
1

2
f .0/C

n�1X
kD1

f .k/C 2

n�1X
kD0

f
�

k C 1

2

�
C 1

2
f .n/

#
;

we obtain

Snf � Inf D
rX

�D2

.41�� � 1/B2�
3.2�/Š

�
f .2��1/.n/ � f .2��1/.0/

�C ES
r .f /: (15)

Notice that the summation on the right-hand side in the previous equality starts with
� D 2, because the term for � D 1 vanishes. For f 2 C2rC2Œ0; n� it can be proved
that there exists � 2 .0; n/, such that

ES
r .f / D n

.4�r � 1/B2rC2
3.2r C 2/Š

f .2rC2/.�/:
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For some modification and generalizations of the Euler–Maclaurin formula, see
[2, 7, 20–22, 37, 55, 60]. In 1965 Kalinin [29] derived an analogue of the Euler–
Maclaurin formula for C1 functions, for which there is Taylor series at each positive
integer x D �,

Z b

a
f .x/ dx D

C1X
kD0

� kC1 � .� � 1/kC1

.k C 1/Š
hkC1

nX
�D1

f .k/.a C .� � �/h/;

where h D .b � a/=n, and used it to find some new expansions for the gamma
function, the  function, as well as the Riemann zeta function.

Using Bernoulli and Euler polynomials, Bn.x/ and En.x/, in 1960 Keda [30]
established a quadrature formula similar to the Euler–Maclaurin,

Z 1

0

f .x/ dx D Tn C
n�1X
kD0

Ak
�
f .2kC2/.0/C f .2kC2/.1/

�C Rn;

where

Tn D 1

n

nX
kD0

00f
� k

n

�
; Ak D

2kC2X
�D1

B�E2kC3��
�Š.2k C 3 � �/Šn� .k D 0; 1; : : : ; n � 1/;

and

Rn D f .2nC2/.�/
nC1X
mD1

2B2mE2n�2mC3
.2m/Š.2n � 2m C 3/Šn2m

.0 � � � 1/

for f 2 C2nC2Œ0; 1�, where Bn D Bn.0/ and En D En.0/. The convergence of Euler–
Maclaurin quadrature formulas on a class of smooth functions was considered by
Vaskevič [62].

Some periodic analogues of the Euler–Maclaurin formula with applications to
number theory have been developed by Berndt and Schoenfeld [6]. In the last
section of [6], they showed how the composite Newton–Cotes quadrature formulas
(Simpson’s parabolic and Simpson’s three-eighths rules), as well as various other
quadratures (e.g., Weddle’s composite rule), can be derived from special cases
of their periodic Euler–Maclaurin formula, including explicit formulas for the
remainder term.
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3 Euler–Maclaurin Formula Based on the Composite
Gauss–Legendre Rule and Its Lobatto Modification

In the papers [15, 48, 56], the authors considered generalizations of the Euler–
Maclaurin formula for some particular Newton–Cotes rules, as well as for 2- and
3-point Gauss–Legendre and Lobatto formulas (see also [4, 17, 33, 34]).

Recently, we have done [40] the extensions of Euler–Maclaurin formulas by
replacing the quadrature sum Qn by the composite Gauss–Legendre shifted formula,
as well as by its Lobatto modification. In these cases, several special rules have been
obtained by using the MATHEMATICA package OrthogonalPolynomials (cf.
[9, 43]). Some details on construction of orthogonal polynomials and quadratures of
Gaussian type will be given in Sect. 5.

We denote the space of all algebraic polynomials defined on R (or some its
subset) by P, and by Pm � P the space of polynomials of degree at most m .m 2 N/.

Let w� D wG
� and �� D �G

� , � D 1; : : : ;m, be weights (Christoffel numbers) and
nodes of the Gauss–Legendre quadrature formula on Œ0; 1�,

Z 1

0

f .x/ dx D
mX
�D1

wG
� f .�G

� /C RG
m.f /: (16)

Note that the nodes �� are zeros of the shifted (monic) Legendre polynomial

�m.x/ D
�2m

m

��1
Pm.2x � 1/:

Degree of its algebraic precision is d D 2m � 1, i.e., RG
m.f / D 0 for each f 2

P2m�1. The quadrature sum in (16) we denote by QG
mf , i.e.,

QG
mf D

mX
�D1

wG
� f .�G

� /:

The corresponding composite Gauss–Legendre sum for approximating the inte-
gral Inf , given by (10), can be expressed in the form

G.n/
m f D

n�1X
kD0

QG
mf .k C �/ D

mX
�D1

wG
�

n�1X
kD0

f .k C �G
� /: (17)

In the sequel we use the following expansion of a function f 2 CsŒ0; 1� in
Bernoulli polynomials for any x 2 Œ0; 1� (see Krylov [31, p. 15])

f .x/ D
Z 1

0

f .t/ dt C
s�1X
jD1

Bj.x/

jŠ

�
f .j�1/.1/ � f .j�1/.0/

� � 1

sŠ

Z 1

0

f .s/.t/Ls.x; t/ dt;

(18)
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where Ls.x; t/ D B�
s .x � t/� B�

s .x/ and B�
s .x/ is a function of period one, defined by

B�
s .x/ D Bs.x/; 0 � x < 1; B�

s .x C 1/ D B�
s .x/: (19)

Notice that B�
0 .x/ D 1, B�

1 .x/ is a discontinuous function with a jump of �1 at each
integer, and B�

s .x/, s > 1, is a continuous function.
Suppose now that f 2 C2rŒ0; n�, where r � m. Since the all nodes �� D �G

� ,
� D 1; : : : ;m, of the Gaussian rule (16) belong to .0; 1/, using the expansion (18),
with x D �� and s D 2r C 1, we have

f .��/ D I1f C
2rX

jD1

Bj.��/

jŠ

�
f .j�1/.1/ � f .j�1/.0/

�

� 1

.2r C 1/Š

Z 1

0

f .2rC1/.t/L2rC1.��; t/ dt;

where I1f D R 1
0

f .t/ dt.
Now, if we multiply it by w� D wG

� and then sum in � from 1 to m, we obtain

mX
�D1

w� f .��/ D
� mX
�D1

w�

	
I1f C

2rX
jD1

1

jŠ

� mX
�D1

w�Bj.��/

	 �
f .j�1/.1/ � f .j�1/.0/

�

� 1

.2r C 1/Š

Z 1

0

f .2rC1/.t/
� mX
�D1

w�L2rC1.��; t/
	

dt;

i.e.,

QG
mf D QG

m.1/

Z 1

0

f .t/ dt C
2rX

jD1

QG
m.Bj/

jŠ

�
f .j�1/.1/ � f .j�1/.0/

�C EG
m;r.f /;

where

EG
m;r.f / D � 1

.2r C 1/Š

Z 1

0

f .2rC1/.t/QG
m .L2rC1. �; t// dt:

Since

Z 1

0

Bj.x/ dx D
(
1; j D 0;

0; j � 1;

and

QG
m.Bj/ D

mX
�D1

w�Bj.��/ D
(
1; j D 0;

0; 1 � j � 2m � 1;
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because the Gauss–Legendre formula is exact for all algebraic polynomials of
degree at most 2m � 1, the previous formula becomes

QG
mf �

Z 1

0

f .t/ dt D
2rX

jD2m

QG
m.Bj/

jŠ

�
f .j�1/.1/ � f .j�1/.0/

�C EG
m;r.f /: (20)

Notice that for Gauss–Legendre nodes and the corresponding weights the
following equalities

�� C �m��C1 D 1; w� D wm��C1 > 0; � D 1; : : : ;m;

hold, as well as

w�Bj.��/C wm��C1Bj.�m��C1/ D w�Bj.��/.1C .�1/j/;

which is equal to zero for odd j. Also, if m is odd, then �.mC1/=2 D 1=2 and
Bj.1=2/ D 0 for each odd j. Thus, the quadrature sum

QG
m.Bj/ D

mX
�D1

w�Bj.��/ D 0

for odd j, so that (20) becomes

QG
mf �

Z 1

0

f .t/ dt D
rX

jDm

QG
m.B2j/

.2j/Š

�
f .2j�1/.1/ � f .2j�1/.0/

�C EG
m;r.f /: (21)

Consider now the error of the (shifted) composite Gauss–Legendre formula (17).
It is easy to see that

G.n/
m f � Inf D

n�1X
kD0


QG

mf .k C � / �
Z kC1

k
f .t/ dt

�

D
n�1X
kD0


QG

mf .k C � / �
Z 1

0

f .k C x/ dx

�
:

Then, using (21) we obtain

G.n/
m f � Inf D

n�1X
kD0

8<
:

rX
jDm

QG
m.B2j/

.2j/Š

�
f .2j�1/.k C 1/ � f .2j�1/.k/

�C EG
m;r.f .k C � //

9=
;

D
rX

jDm

QG
m.B2j/

.2j/Š

�
f .2j�1/.n/ � f .2j�1/.0/

�C EG
n;m;r.f /;
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where EG
n;m;r.f / is given by

EG
n;m;r.f / D � 1

.2r C 1/Š

Z 1

0

�n�1X
kD0

f .2rC1/.k C t/

	
QG

m .L2rC1. �; t// dt: (22)

Since L2rC1.x; t/ D B�
2rC1.x � t/ � B�

2rC1.x/ and

B�
2rC1.��/ D B2rC1.��/; B�

2rC1.�� � t/ D � 1

2r C 2

d

dt
B�
2rC2.�� � t/;

we have

QG
m .L2rC1. �; t// D QG

m

�
B�
2rC1. � � t/

� � QG
m

�
B�
2rC1. � /�

D � 1

2r C 2
QG

m

�
d

dt
B�
2rC2. � � t/

	
;

because QG
m .B2rC1. � // D 0. Then for (22) we get

.2r C 2/ŠEG
n;m;r.f / D

Z 1

0

�n�1X
kD0

f .2rC1/.k C t/

	
QG

m

�
d

dt
B�
2rC2. � � t/

	
dt:

By using an integration by parts, it reduces to

.2r C 2/ŠEG
n;m;r.f / D F.t/QG

m

�
B�
2rC2. � � t/

� ˇ̌ˇ
1

0
�
Z 1

0

QG
m

�
B�
2rC2. � � t/

�
F0.t/ dt;

where F.t/ is introduced in the following way

F.t/ D
n�1X
kD0

f .2rC1/.k C t/:

Since B�
2rC2.�� � 1/ D B�

2rC2.��/ D B2rC2.��/, we have

F.t/QG
m

�
B�
2rC2. � � t/

� ˇ̌ˇ
1

0
D �

F.1/ � F.0/
�
QG

m

�
B�
2rC2. � /�

D QG
m .B2rC2. � //

Z 1

0

F0.t/ dt;

so that

.2r C 2/ŠEG
n;m;r.f / D

Z 1

0

�
QG

m .B2rC2. � // � QG
m

�
B�
2rC2. � � t/

��
F0.t/ dt:
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Fig. 1 Graphs of t 7! gG
m;r.t/, r D m (solid line), r D m C1 (dashed line), and r D m C2 (dotted

line), when m D 1, m D 2 (top), and m D 3, m D 4 (bottom)

Since

gG
m;r.t/ WD .�1/r�mQG

m

�
B2rC2. � / � B�

2rC2. � � t/
�
> 0; 0 < t < 1; (23)

there exists an � 2 .0; 1/ such that

.2r C 2/ŠEG
n;m;r.f / D F0.�/

Z 1

0

QG
m

�
B2rC2. � / � B�

2rC2. � � t/
�

dt:

Typical graphs of functions t 7! gG
m;r.t/ for some selected values of r � m � 1 are

presented in Fig. 1.
Because of continuity of f .2rC2/ on Œ0; n� we conclude that there exists also � 2

.0; n/ such that F0.�/ D nf .2rC2/.�/.
Finally, because of

R 1
0

QG
m

�
B�
2rC2. � � t/

�
dt D 0, we obtain that

.2r C 2/ŠEG
n;m;r.f / D nf .2rC2/.�/

Z 1

0

QG
m ŒB2rC2. � /� dt:

In this way, we have just proved the Euler–Maclaurin formula for the com-
posite Gauss–Legendre rule (17) for approximating the integral Inf , given by (10)
(see [40]):
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Theorem 1. For n;m; r 2 N .m � r/ and f 2 C2rŒ0; n� we have

G.n/
m f � Inf D

rX
jDm

QG
m.B2j/

.2j/Š

�
f .2j�1/.n/ � f .2j�1/.0/

�C EG
n;m;r.f /; (24)

where G.n/
m f is given by (17), and QG

mB2j denotes the basic Gauss–Legendre
quadrature sum applied to the Bernoulli polynomial x 7! B2j.x/, i.e.,

QG
m.B2j/ D

mX
�D1

wG
� B2j.�

G
� / D �RG

m.B2j/; (25)

where RG
m.f / is the remainder term in (16).

If f 2 C2rC2Œ0; n�, then there exists � 2 .0; n/, such that the error term in (24)
can be expressed in the form

EG
n;m;r.f / D n

QG
m.B2rC2/
.2r C 2/Š

f .2rC2/.�/: (26)

We consider now special cases of the formula (24) for some typical values of m.
For a given m, by G.m/ we denote the sequence of coefficients which appear in the
sum on the right-hand side in (24), i.e.,

G.m/ D ˚
QG

m.B2j/
�1

jDm D ˚
QG

m.B2m/;Q
G
m.B2mC2/;QG

m.B2mC4/; : : :
�
:

These Gaussian sums we can calculate very easily by using MATHEMATICA

Package OrthogonalPolynomials (cf. [9, 43]). In the sequel we mention
cases when 1 � m � 6.

Case m D 1. Here �G
1 D 1=2 and wG

1 D 1, so that, according to (25),

QG
1 .B2j/ D B2j.1=2/ D .21�2j � 1/B2j;

and (24) reduces to (14). Thus,

G.1/ D



� 1

12
;
7

240
;� 31

1344
;
127

3840
;� 2555

33792
;
1414477

5591040
;�57337
49152

;
118518239

16711680
; : : :

�
:

Case m D 2. Here we have

�G
1 D 1

2

�
1 � 1p

3

	
; �G

2 D 1

2

�
1C 1p

3

	
and wG

1 D wG
2 D 1

2
;

so that QG
2 .B2j/ D 1

2

�
B2j.�

G
1 /C B2j.�

G
2 /
� D B2j.�

G
1 /. In this case, the sequence of

coefficients is

G.2/ D



� 1

180
;
1

189
;� 17

2160
;
97

5346
;� 1291411

21228480
;
16367

58320
;�243615707
142767360

; : : :

�
:
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Case m D 3. In this case

�G
1 D 1

10

�
5 � p

15
�
; �G

2 D 1

2
; �G

3 D 1

10

�
5C p

15
�

and

wG
1 D 5

18
; wG

2 D 4

9
; wG

3 D 5

18
;

so that

QG
3 .B2j/ D 5

9
B2j.�

G
1 /C 4

9
B2j.�

G
2 /

and

G.3/ D



� 1

2800
;

49

72000
;� 8771

5280000
;
4935557

873600000
;� 15066667

576000000
;
3463953717

21760000000
; : : :

�
:

Cases m D 4; 5; 6. The corresponding sequences of coefficients are

G.4/ D



� 1

44100
;

41

565950
;� 3076

11704875
;
93553

75631500
;� 453586781

60000990000
;
6885642443

117354877500
; : : :

�
;

G.5/ D


� 1

698544
;

205

29719872
;� 100297

2880541440
;

76404959

352578272256
;� 839025422533

496513166929920
; : : :

�
;

G.6/ D


� 1

11099088
;

43

70436520
;� 86221

21074606784
;

147502043

4534139665440
;� 1323863797

4200045163776
; : : :

�
:

The Euler–Maclaurin formula based on the composite Lobatto formula can be
considered in a similar way. The corresponding Gauss-Lobatto quadrature formula

Z 1

0

f .x/ dx D
mC1X
�D0

wL
� f .�L

� /C RL
m.f /; (27)

with the endnodes �0 D �L
0 D 0, �mC1 D �L

mC1 D 1, has internal nodes �� D �L
� ,

� D 1; : : : ;m, which are zeros of the shifted (monic) Jacobi polynomial,

�m.x/ D
�2m C 2

m

��1
P.1;1/m .2x � 1/;

orthogonal on the interval .0; 1/ with respect to the weight function x 7! x.1 � x/.
The algebraic degree of precision of this formula is d D 2m C 1, i.e., RL

m.f / D 0 for
each f 2 P2mC1.
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For constructing the Gauss-Lobatto formula

QL
m.f / D

mC1X
�D0

wL
� f .�L

� /; (28)

we use parameters of the corresponding Gaussian formula with respect to the weight
function x 7! x.1 � x/, i.e.,

Z 1

0

g.x/x.1 � x/ dx D
mX
�D1

bwG
� g.b�G

� /CbRG
m.g/:

The nodes and weights of the Gauss-Lobatto quadrature formula (27) are (cf. [36,
pp. 330–331])

�L
0 D 0; �L

� Db�G
� .� D 1; : : : ;m/; �L

mC1 D 1;

and

wL
0 D 1

2
�

mX
�D1

bwG
�

b�G
�

; wL
� D bwG

�

b�G
� .1 �b�G

� /
.� D 1; : : : ;m/; wL

mC1 D 1

2
�

mX
�D1

bwG
�

1 �b�G
�

;

respectively. The corresponding composite rule is

L.n/m f D
n�1X
kD0

QL
mf .k C �/ D

mC1X
�D0

wL
�

n�1X
kD0

f .k C �L
� /;

D .wL
0 C wL

mC1/
n00X

kD0
f .k/C

mX
�D1

wL
�

n�1X
kD0

f .k C �L
� /: (29)

As in the Gauss–Legendre case, there exists a symmetry of nodes and
weights, i.e.,

�L
� C �L

mC1�� D 1; wL
� D wL

mC1�� > 0 � D 0; 1; : : : ;m C 1;

so that the Gauss-Lobatto quadrature sum

QL
m.Bj/ D

mC1X
�D0

wL
�Bj.�

L
� / D 0

for each odd j.
By the similar arguments as before, we can state and prove the following result.
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Theorem 2. For n;m; r 2 N .m � r/ and f 2 C2rŒ0; n� we have

L.n/m f � Inf D
rX

jDmC1

QL
m.B2j/

.2j/Š

�
f .2j�1/.n/ � f .2j�1/.0/

�C EL
n;m;r.f /; (30)

where L.n/m f is given by (29), and QL
mB2j denotes the basic Gauss-Lobatto quadrature

sum (28) applied to the Bernoulli polynomial x 7! B2j.x/, i.e.,

QL
m.B2j/ D

mC1X
�D0

wL
�B2j.�

L
� / D �RL

m.B2j/;

where RL
m.f / is the remainder term in (27).

If f 2 C2rC2Œ0; n�, then there exists � 2 .0; n/, such that the error term in (30)
can be expressed in the form

EL
n;m;r.f / D n

QL
m.B2rC2/
.2r C 2/Š

f .2rC2/.�/:

In the sequel we give the sequence of coefficients L.m/ which appear in the sum
on the right-hand side in (30), i.e.,

L.m/ D ˚
QL

m.B2j/
�1

jDmC1 D ˚
QL

m.B2mC2/;QL
m.B2mC4/;QL

m.B2mC6/; : : :
�
;

obtained by the Package OrthogonalPolynomials, for some values of m.
Case m D 0. This is a case of the standard Euler–Maclaurin formula (1), for

which �L
0 D 0 and �L

1 D 1, with wL
0 D wL

1 D 1=2. The sequence of coefficients is

L.0/ D


1

6
;� 1

30
;
1

42
;� 1

30
;
5

66
;� 691

2730
;
7

6
;�3617

510
;
43867

798
;�174611

330
;
854513

138
; : : :

�
;

which is, in fact, the sequence of Bernoulli numbers fB2jg1
jD1.

Case m D 1. In this case �L
0 D 0, �L

1 D 1=2, and �2 D 1, with the corresponding
weights wL

0 D 1=6, wL
1 D 2=3, and wL

2 D 1=6, which is, in fact, the Simpson formula
(15). The sequence of coefficients is

L.1/ D


1

120
;� 5

672
;
7

640
;� 425

16896
;
235631

2795520
;�3185
8192

;
19752437

8355840
;�958274615

52297728
; : : :

�
:

Case m D 2. Here we have

�L
0 D 0; �L

1 D 1

10
.5 � p

5/; �L
2 D 1

10
.5C p

5/; �L
3 D 1

and wL
0 D wL

3 D 1=12, wL
1 D wL

2 D 5=12, and the sequence of coefficients is

L.2/ D



1

2100
;� 1

1125
;
89

41250
;� 25003

3412500
;
3179

93750
;� 2466467

11953125
;
997365619

623437500
; : : :

�
:
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Case m D 3. Here the nodes and the weight coefficients are

�L
0 D 0; �L

1 D 1

14
.7 � p

31/; �L
2 D 1

2
; �L

3 D 1

14
.7C p

31/; �L
4 D 1

and

wL
0 D 1

20
; wL

1 D 49

180
; wL

2 D 16

45
; wL

3 D 49

180
; wL

4 D 1

20
;

respectively, and the sequence of coefficients is

L.3/ D



1

35280
;� 65

724416
;

38903

119857920
;� 236449

154893312
;
1146165227

122882027520
; : : :

�
:

Cases m D 4; 5. The corresponding sequences of coefficients are

L.4/ D



1

582120
;� 17

2063880
;

173

4167450
;� 43909

170031960
;
160705183

79815002400
;� 76876739

3960744480
; : : :

�
;

L.5/ D



1

9513504
;� 49

68999040
;

5453

1146917376
;� 671463061

17766424811520
;
1291291631

3526568534016
; : : :

�
:

Remark 8. Recently Dubeau [16] has shown that an Euler–Maclaurin like formula
can be associated with any interpolatory quadrature rule.

4 Abel–Plana Summation Formula and Some Modifications

Another important summation formula is the so-called Abel–Plana formula, but it
is not so well known like the Euler–Maclaurin formula. In 1820 Giovanni (Antonio
Amedea) Plana [49] obtained the summation formula

C1X
kD0

f .k/ �
Z C1

0

f .x/ dx D 1

2
f .0/C i

Z C1

0

f .iy/ � f .�iy/

e2�y � 1 dy; (31)

which holds for analytic functions f in ˝ D ˚
z 2 C W Re z � 0

�
which satisfy the

conditions:

1ı lim
jyj!C1

e�j2�yjjf .x ˙ iy/j D 0 uniformly in x on every finite interval,

2ı
Z C1

0

jf .x C iy/ � f .x � iy/je�j2�yj dy exists for every x � 0 and tends to zero

when x ! C1.
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This formula was also proved in 1823 by Niels Henrik Abel [1]. In addition, Abel
also proved an interesting “alternating series version”, under the same conditions,

C1X
kD0
.�1/kf .k/ D 1

2
f .0/C i

Z C1

0

f .iy/ � f .�iy/

2 sinh�y
dy: (32)

Otherwise, this formula can be obtained only from (31). Note that, by subtracting
(31) from the same formula written for the function z 7! 2f .2z/, we get (32).

For the finite sum Sn;mf D
nX

kDm

.�1/kf .k/, (32) the Abel summation formula

becomes

Sn;mf D 1

2

�
.�1/mf .m/C .�1/nf .n C 1/

�

�
Z C1

�1
�
.�1/m m.y/C .�1/n nC1.y/

�
wA.y/ dy; (33)

where the Abel weight on R and the function m.y/ are given by

wA.x/ D x

2 sinh�x
and m.y/ D f .m C iy/ � f .m � iy/

2iy
: (34)

The moments for the Abel weight can be expressed in terms of Bernoulli numbers as

�k D
8
<
:
0; k odd;

�
2kC2 � 1� .�1/

k=2BkC2
k C 2

; k even:
(35)

A general Abel–Plana formula can be obtained by a contour integration in the
complex plane. Let m; n 2 N, m < n, and C."/ be a closed rectangular contour with
vertices at m ˙ ib, n ˙ ib, b > 0 (see Fig. 2), and with semicircular indentations of
radius " round m and n. Let f be an analytic function in the strip ˝m;n D ˚

z 2 C W
m � Re z � n

�
and suppose that for every m � x � n,

lim
jyj!C1

e�j2�yjjf .x ˙ iy/j D 0 uniformly in x;

and that

Z C1

0

jf .x C iy/ � f .x � iy/je�j2�yj dy

exists.
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Fig. 2 Rectangular contour C."/

The integration
Z

C."/

f .z/

e�i2�z � 1 dz;

with " ! 0 and b ! C1, leads to the Plana formula in the following form
(cf. [42])

Tm;nf �
Z n

m
f .x/ dx D

Z C1

�1
�
n.y/ � m.y/

�
wP.y/ dy; (36)

where

m.y/ D f .m C iy/ � f .m � iy/

2iy
and wP.y/ D jyj

ej2�yj � 1 : (37)

Practically, the Plana formula (36) gives the error of the composite trapezoidal
formula (like the Euler–Maclaurin formula). As we can see the formula (36) is
similar to the Euler–Maclaurin formula, with the difference that the sum of terms

B2j

.2j/Š

�
f .2j�1/.n/ � f .2j�1/.m/

�

replaced by an integral. Therefore, in applications this integral must be calculated
by some quadrature rule. It is natural to construct the Gaussian formula with respect
to the Plana weight function x 7! wP.x/ on R (see the next section for such a
construction).

In order to find the moments of this weight function, we note first that if k is odd,
the moments are zero, i.e.,

�k.w
P/ D

Z

R

xkwP.x/ dx D
Z

R

xk jxj
ej2�xj � 1 dx D 0:
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For even k, we have

�k.w
P/ D 2

Z C1

0

xkC1

e2�x � 1 dx D 2

.2�/kC2

Z C1

0

tkC1

et � 1 dt;

which can be exactly expressed in terms of the Riemann zeta function �.s/,

�k.w
P/ D 2.k C 1/Š�.k C 2/

.2�/kC2 D .�1/k=2 BkC2
k C 2

;

because the number k C 2 is even. Thus, in terms of Bernoulli numbers, the
moments are

�k.w
P/ D

8<
:
0; k is odd;

.�1/k=2 BkC2
k C 2

; k is even:
(38)

Remark 9. By the Taylor expansion for m.y/ (and n.y/) on the right-hand side
in (36),

m.y/ D f .m C iy/ � f .m � iy/

2iy
D

C1X
jD1

.�1/j�1y2j�2

.2j � 1/Š f .2j�1/.m/;

and using the moments (38), the Plana formula (36) reduces to the Euler–Maclaurin
formula,

Tm;nf �
Z n

m
f .x/ dx D

C1X
jD1

.�1/j�1
.2j � 1/Š�2j�2.wP/

�
f .2j�1/.n/ � f .2j�1/.m/

�

D
C1X
jD1

B2j

.2j/Š

�
f .2j�1/.n/ � f .2j�1/.m/

�
;

because of �2j�2.wP/ D .�1/j�1B2j=.2j/. Note that Tm;nf is the notation for the
composite trapezoidal sum

Tm;nf WD
nX

kDm

00f .k/ D 1

2
f .m/C

n�1X
kDmC1

f .k/C 1

2
f .n/: (39)

For more details see Rahman and Schmeisser [53, 54], Dahlquist [11–13], as well
as a recent paper by Butzer, Ferreira, Schmeisser, and Stens [8].

A similar summation formula is the so-called midpoint summation formula. It
can be obtained by combining two Plana formulas for the functions z 7! f .z � 1=2/
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and z 7! f ..z C m � 1/=2/. Namely,

Tm;2n�mC2f
� z C m � 1

2

�
� Tm;nC1f

�
z � 1

2

�
D

nX
kDm

f .k/;

i.e.,

nX
kDm

f .k/ �
Z nC1=2

m�1=2
f .x/ dx D

Z C1

�1
�
m�1=2.y/ � nC1=2.y/

�
wM.y/ dy; (40)

where the midpoint weight function is given by

wM.x/ D wP.x/ � wP.2x/ D jxj
ej2�xj C 1

; (41)

and m�1=2 and nC1=2 are defined in (37), taking m WD m � 1=2 and m WD n C 1=2,
respectively. The moments for the midpoint weight function can be expressed also
in terms of Bernoulli numbers as

�k.w
M/ D

Z

R

xk jxj
ej2�xj C 1

dx D
8<
:
0; k is odd;

.�1/k=2.1 � 2�.kC1// BkC2
k C 2

; k is even:
(42)

An interesting weight function and the corresponding summation formula can be
obtained from the Plana formula, if we integrate by parts the right side in (36) (cf.
[13]). Introducing the so-called Binet weight function y 7! wB.y/ and the function
y 7!  m.y/ by

wB.y/ D � 1

2�
log
�
1� e�2�jyj� and  m.y/ D f 0.m C iy/C f 0.m � iy/

2
; (43)

respectively, we see that dwB.y/= dy D �wP.y/=y and

d

dy

n�
n.y/ � m.y/

�
y
o

D 1

2i

d

dy

n�
f .n C iy/ � f .n � iy/

���f .m C iy/ � f .m � iy/
�o

D  n.y/ �  m.y/;

so that

Z C1

�1
�
n.y/ � m.y/

�
wP.y/ dy D

Z C1

�1
�
n.y/ � m.y/

�
.�y/ dwB.y/

D
Z C1

�1
�
 n.y/ �  m.y/

�
wB.y/ dy;
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because wB.y/ D O.e�2�jyj/ as jyj ! C1. Thus, the Binet summation formula
becomes

Tm;nf �
Z n

m
f .x/ dx D

Z C1

�1
�
 n.y/ �  m.y/

�
wB.y/ dy: (44)

Such a formula can be useful when f 0.z/ is easier to compute than f .z/.
The moments for the Binet weight can be obtained from ones for wP. Since

�k.w
P/ D

Z

R

ykwP.y/ dy D
Z

R

yk.�y/ dwB.y/ D .k C 1/�k.w
B/;

according to (38),

�k.w
B/ D

8<
:
0; k is odd;

.�1/k=2 BkC2
.k C 1/.k C 2/

; k is even:
(45)

There are also several other summation formulas. For example, the Lindelöf
formula [32] for alternating series is

C1X
kDm

.�1/kf .k/ D .�1/m
Z C1

�1
f .m � 1=2C iy/

dy

2 cosh�y
; (46)

where the Lindelöf weight function is given by

wL.x/ D 1

2 cosh�y
D 1

e�x C e��x
: (47)

Here, the moments

�k.w
L/ D

Z

R

xk

e�x C e��x
dx

can be expressed in terms of the generalized Riemann zeta function z 7! �.z; a/,
defined by

�.z; a/ D
C1X
�D0
.� C a/�z:

Namely,

�k.w
L/ D

(
0; k odd;

2.4�/�k�1kŠ
�
�
�
k C 1; 1

4

� � � �k C 1; 3
4

��
; k even:

(48)
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5 Construction of Orthogonal Polynomials and Gaussian
Quadratures for Weights of Abel–Plana Type

The weight functions w .2 fwP;wM;wB;wA;wLg/ which appear in the summation
formulas considered in the previous section are even functions on R. In this section
we consider the construction of (monic) orthogonal polynomials �k .� �k.wI � /
and corresponding Gaussian formulas

Z

R

f .x/w.x/ dx D
nX

�D1
A� f .x�/C Rn.wI f /; (49)

with respect to the inner product .p; q/ D R
R

p.x/q.x/w.x/ dx .p; q 2 P/. We note
that Rn.wI f / � 0 for each f 2 P2n�1.

Such orthogonal polynomials f�kgk2N0 and Gaussian quadratures (49) exist
uniquely, because all the moments for these weights �k .� �k.w//, k D 0; 1; : : : ,
exist, are finite, and �0 > 0.

Because of the property .xp; q/ D .p; xq/, these (monic) orthogonal polynomials
�k satisfy the fundamental three–term recurrence relation

�kC1.x/ D x�k.x/ � ˇk�k�1.x/; k D 0; 1; : : : ; (50)

with �0.x/ D 1 and ��1.x/ D 0, where fˇkgk2N0 .D fˇk.w/gk2N0 / is a sequence
of recursion coefficients which depend on the weight w. The coefficient ˇ0 may be
arbitrary, but it is conveniently defined by ˇ0 D �0 D R

R
w.x/ dx. Note that the

coefficients ˛k in (50) are equal to zero, because the weight function w is an even
function! Therefore, the nodes in (49) are symmetrically distributed with respect to
the origin, and the weights for symmetrical nodes are equal. For odd n one node is
at zero.

A characterization of the Gaussian quadrature (49) can be done via an eigenvalue
problem for the symmetric tridiagonal Jacobi matrix (cf. [36, p. 326]),

Jn D Jn.w/ D

2
66666664

˛0
p
ˇ1 Op

ˇ1 ˛1
p
ˇ2p

ˇ2 ˛2
: : :

: : :
: : :

p
ˇn�1

O
p
ˇn�1 ˛n�1

3
77777775
;

constructed with the coefficients from the three-term recurrence relation (50) (in our
case, ˛k D 0, k D 0; 1; : : : ; n � 1).

The nodes x� are the eigenvalues of Jn and the weights A� are given by A� D
ˇ0v

2
�;1, � D 1; : : : ; n, where ˇ0 is the moment �0 D R

R
w.x/ dx, and v�;1 is the first

component of the normalized eigenvector v D Œv�;1 � � � v�;n�T (with vT
�v� D 1)
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corresponding to the eigenvalue x� ,

Jnv� D x�v�; � D 1; : : : ; n:

An efficient procedure for constructing the Gaussian quadrature rules was given
by Golub and Welsch [27], by simplifying the well-known QR algorithm, so that
only the first components of the eigenvectors are computed.

The problems are very sensitive with respect to small perturbations in the data.
Unfortunately, the recursion coefficients are known explicitly only for some

narrow classes of orthogonal polynomials, as e.g. for the classical orthogonal
polynomials (Jacobi, the generalized Laguerre, and Hermite polynomials). How-
ever, for a large class of the so-called strongly non-classical polynomials these
coefficients can be constructed numerically, but procedures are very sensitive with
respect to small perturbations in the data. Basic procedures for generating these
coefficients were developed by Walter Gautschi in the eighties of the last century
(cf. [23, 24, 36, 41]).

However, because of progress in symbolic computations and variable-precision
arithmetic, recursion coefficients can be today directly generated by using the
original Chebyshev method of moments (cf. [36, pp. 159–166]) in symbolic form
or numerically in sufficiently high precision. In this way, instability problems can
be eliminated. Respectively symbolic/variable-precision software for orthogonal
polynomials and Gaussian and similar type quadratures is available. In this regard,
the MATHEMATICA package OrthogonalPolynomials (see [9] and [43]) is
downloadable from the web site http://www.mi.sanu.ac.rs/~gvm/. Also, there is
Gautschi’s software in MATLAB (packages OPQ and SOPQ). Thus, all that is
required is a procedure for the symbolic calculation of moments or their calculation
in variable-precision arithmetic.

In our case we calculate the first 2N moments in a symbolic form (list mom),
using corresponding formulas (for example, (38) in the case of the Plana weight
wP), so that we can construct the Gaussian formula (49) for each n � N. Now,
in order to get the first N recurrence coefficients {al,be} in a symbolic form,
we apply the implemented function aChebyshevAlgorithm from the Package
OrthogonalPolynomials, which performs construction of these coefficients
using Chebyshev algorithm, with the option Algorithm->Symbolic. Thus, it
can be implemented in the MATHEMATICA package OrthogonalPolynomials
in a very simple way as

<<orthogonalPolynomials‘
mom=Table[<expression for moments>,{k,0,199}];
{al,be}=aChebyshevAlgorithm[mom,Algorithm->Symbolic]
pq[n_]:=aGaussianNodesWeights[n,al,be,

WorkingPrecision->65,Precision -> 60]
xA = Table[pq[n],{n,5,40,5}];

http://www.mi.sanu.ac.rs/~{}gvm/


Summation Formulas of Euler–Maclaurin and Abel–Plana 455

where we put N D 100 and the WorkingPrecision->65 in order to obtain
very precisely quadrature parameters (nodes and weights) with Precision->60.
These parameters are calculated for n D 5.5/40, so that xA[[k]][[1]] and
xA[[k]][[2]] give lists of nodes and weights for five-point formula when k=1,
for ten-point formula when k=2, etc. Otherwise, here we can calculate the n-point
Gaussian quadrature formula for each n � N D 100.

All computations were performed in MATHEMATICA, Ver. 10.3.0, on MacBook
Pro (Retina, Mid 2012) OS X 10.11.2. The calculations are very fast. The running
time is evaluated by the function Timing in MATHEMATICA and it includes only
CPU time spent in the MATHEMATICA kernel. Such a way may give different
results on different occasions within a session, because of the use of internal system
caches. In order to generate worst-case timing results independent of previous
computations, we used also the command ClearSystemCache[], and in that
case the running time for the Plana weight function wP has been 4:2ms (calculation
of moments), 0:75 s (calculation of recursive coefficients), and 8 s (calculation
quadrature parameters for n D 5.5/40).

In the sequel we mention results for different weight functions, whose graphs are
presented in Fig. 3.

1. Abel and Lindelöf Weight Functions wA and wL These weight functions are
given by (34) and (47), and their moments by (35) and (48), respectively. It is
interesting that their corresponding coefficients in the three-term recurrence relation
(50) are known explicitly (see [36, p. 159])

ˇA
0 D �A

0 D 1

4
; ˇA

k D k.k C 1/

4
; k D 1; 2; : : : ;

and

ˇL
0 D �L

0 D 1

2
; ˇL

k D k2

4
; k D 1; 2; : : : :

Fig. 3 Graphs of the weight functions: (left) wA (solid line) and wL (dashed line); (right) wP (solid
line), wB (dashed line) and wM (dotted line)
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Thus, for these two weight functions we have recursive coefficients in the explicit
form, so that we go directly to construction quadrature parameters.

2. Plana Weight Function wP This weight function is given by (37), and the
corresponding moments by (38). Using the Package OrthogonalPolynomials
we obtain the sequence of recurrence coefficients fˇP

k gk�0 in the rational form:

ˇP
0 D 1

12
; ˇP

1 D 1

10
; ˇP

2 D 79

210
; ˇP

3 D 1205

1659
; ˇP

4 D 262445

209429
; ˇP

5 D 33461119209

18089284070
;

ˇP
6 D 361969913862291

137627660760070
; ˇP

7 D 85170013927511392430

24523312685049374477
;

ˇP
8 D 1064327215185988443814288995130

236155262756390921151239121153
;

ˇP
9 D 286789982254764757195675003870137955697117

51246435664921031688705695412342990647850
;

ˇP
10 D 15227625889136643989610717434803027240375634452808081047

2212147521291103911193549528920437912200375980011300650
;

ˇP
11 D 587943441754746283972138649821948554273878447469233852697401814148410885

71529318090286333175985287358122471724664434392542372273400541405857921
;

etc.
As we can see, the fractions are becoming more complicated, so that already ˇP

11

has the “form of complexity” f72=71g, i.e., it has 72 decimal digits in the numerator
and 71 digits in the denominator. Further terms of this sequence have the “form of
complexity” f88=87g, f106=05g, f129=128g, f152=151g, : : :, f13451=13448g.

Thus, the last term ˇP
99 has more than 13 thousand digits in its numerator and

denominator. Otherwise, its value, e.g. rounded to 60 decimal digits, is

ˇP
99 D 618:668116294139071216871819412846078447729830182674784697227:

3. Midpoint Weight Function wM This weight function is given by (41), and the
corresponding moments by (42). As in the previous case, we obtain the sequence of
recurrence coefficients fˇM

k gk�0 in the rational form:

ˇM
0 D 1

24
; ˇM

1 D 7

40
; ˇM

2 D 2071

5880
; ˇM

3 D 999245

1217748
; ˇM

4 D 21959166635

18211040276
;

ˇM
5 D 108481778600414331

55169934195679160
; ˇM

6 D 2083852396915648173441543

813782894744588335008520
;

ˇM
7 D 25698543837390957571411809266308135

7116536885169433586426285918882662
;

ˇM
8 D 202221739836050724659312728605015618097349555485

45788344599633183797631374444694817538967629598
;

ˇM
9 D 14077564493254853375144075652878384268409784777236869234539068357

2446087170499983327141705915330961521888001335934900402777402200
;
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etc. In this case, the last term ˇM
99 has slightly complicated the “form of complexity”

f16401=16398g than one in the previous case, precisely. Otherwise, its value
(rounded to 60 decimal digits) is

ˇM
99 D 619:562819405146668677971154899553589896235540274133472854031:

4. Binet Weight Function wB The moments for this weight function are given
in (38), and our Package OrthogonalPolynomials gives the sequence of
recurrence coefficients fˇB

k gk�0 in the rational form:

ˇB
0 D 1

12
; ˇB

1 D 1

30
; ˇB

2 D 53

210
; ˇB

3 D 195

371
; ˇB

4 D 22999

22737
; ˇB

5 D 29944523

19733142
;

ˇB
6 D 109535241009

48264275462
; ˇB

7 D 29404527905795295658

9769214287853155785
;

ˇB
8 D 455377030420113432210116914702

113084128923675014537885725485
;

ˇB
9 D 26370812569397719001931992945645578779849

5271244267917980801966553649147604697542
;

ˇB
10 D 152537496709054809881638897472985990866753853122697839

24274291553105128438297398108902195365373879212227726
;

ˇB
11 D 100043420063777451042472529806266909090824649341814868347109676190691

13346384670164266280033479022693768890138348905413621178450736182873
;

etc. Numerical values of coefficients ˇB
k for k D 12; : : : ; 39, rounded to 60 decimal

digits, are presented in Table 1.
For this case we give also quadrature parameters xB

� and AB
� , � D 1; : : : ; n, for n D

10 (rounded to 30 digits in order to save space). Numbers in parenthesis indicate the
decimal exponents (Table 2).
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Table 1 Numerical values of the coefficients ˇB
k , k D 12; : : : ; 39

k ˇB
k

12 9.04066023436772669953113936026048174933621963537072222675357

13 10.4893036545094822771883713045926295220972379893834049993209

14 12.2971936103862058639894371400919176597365509004516453610177

15 13.9828769539924301882597606512787300859080333154700506431789

16 16.0535514167049354697156163650062601783515764970917711361702

17 17.9766073998702775925694723076715543993147838556500117187847

18 20.3097620274416537438054147204948968937016485345196881526453

19 22.4704716399331324955179415715079221089953862901823520893038

20 25.0658465489459720291634003225063053682385176354570207084270

21 27.4644518250291336091755589826462226732286473857913864921713

22 30.3218212316730471268825993064057869944873787313809977426698

23 32.9585339299729872199940664514120882069601000999724796349878

24 36.0776989312992426451533209008554523367760033115543468301504

25 38.9527066823115557345443904104810462991593233805616588397077

26 42.3334900435769572113818539488560973399147861411953446717663

27 45.4469608500616210144241757375414510828484368311407665782656

28 49.0892031290125977081648833502750872924491998898068036677541

29 52.4412887514153373125698560469961084271478607455930155529787

30 56.3448453453418435384203659474761135421333046623523607025848

31 59.9356839071658582078525834927521121101345464090376940621335

32 64.1004227559203545279066118922379177529092202107679570943670

33 67.9301407880182211863677027451985358165225510069351193013587

34 72.3559405552117019696800529632362179107517585345562462880100

35 76.4246546268296897525850904222875264035700459112308348153069

36 81.1114032372479654848142309856834609745026942246296395824649

37 85.4192212764109726145856387173486827269888223681684704599999

38 90.3668147238641085955135745816833777807870911939721581625005

39 94.9138371000098879530762312919869274587678241868936940165561

Table 2 Gaussian quadrature parameters xB
� and AB

� , � D 1; : : : ; n, for ten-point rule

� xB
�C5 .D �xB

6��/ AB
�C5 .D AB

6��/

1 1:19026134410869931041299717296.�1/ 3:95107541334705577733788440045.�2/
2 5:98589257742219693357956162107.�1/ 2:10956883221363967243739596594.�3/
3 1:25058028819024934653033542222 4:60799503427397559669146065886.�5/
4 2:12020925569172605355904853247 2:63574272352001106479781030329.�7/
5 3:34927819645835833349223106504 1:76367377463777032308587486531.�10/
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25. Gautschi, W.: Leonhard Eulers Umgang mit langsam konvergenten Reihen .Leonhard Euler’s
handling of slowly convergent series/. Elem. Math. 62, 174–183 (2007)

26. Gautschi, W.: Leonhard Euler: his life, the man, and his works. SIAM Rev. 50, 3–33 (2008)
27. Golub, G., Welsch, J. H.: Calculation of Gauss quadrature rules. Math. Comp. 23, 221–230

(1969)
28. Henrici, P.: Applied and Computational Complex Analysis. Special functions, Integral trans-

forms, Asymptotics, Continued Fractions, Pure and Applied Mathematics, vol. 2. Wiley,
New York/London/Sydney (1977)

29. Kalinin, V.M.: On the evaluation of sums, integrals and products. Vestnik Leningrad. Univ.
20(7), 63–77 (Russian) (1965)

30. Keda, N.P.: An analogue of the Euler method of increasing the accuracy of mechanical
quadratures. Dokl. Akad. Nauk BSSR 4, 43–46 (Russian) (1960)

31. Krylov, V.I.: Approximate Calculation of Integrals. Macmillan, New York (1962)
32. Lindelöf, E.: Le Calcul des Résidus. Gauthier-Villars, Paris (1905)
33. Lyness, J.N.: An algorithm for Gauss-Romberg integration. BIT 12, 294–203 (1972)
34. Lyness, J.N.: The Euler-Maclaurin expansion for the Cauchy principal value integral. Numer.

Math. 46(4), 611–622 (1985)
35. Maclaurin, C.: A Treatise of Fluxions, 2 vols. T. W. and T. Ruddimans, Edinburgh (1742)
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Abstract For positive integers n let RnŒf � be the remainders of a quadrature method
applied to a function f . It is of practical importance to know sufficient conditions on
f which guarantee that the remainders are non-negative and converge monotonically
to zero as n ! 1. For most of the familiar quadrature methods such conditions
are known as sign conditions on certain derivatives of f . However, conditions of
this type specify only a small subset of the desired functions. In particular, they
exclude oscillating functions. In the case of the trapezoidal method, we propose a
new approach based on Fourier analysis and the theory of positive definite functions.
It allows us to describe much wider classes of functions for which positivity and
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on quadrature such as generalizations, refinements, and interconnections concern-
ing some classical summation formulae interpreted as quadrature formulae and
characterization of rates of convergence by function spaces. They communicated
their results in 13 publications. Another aim was to find new and less restrictive
conditions which guarantee that the remainders of a quadrature method are non-
negative and converge monotonically to zero. They drafted several versions of two
manuscripts: one for quadrature on a compact interval and one for the whole real
line. The second named author presented the results for R at the Winter Meeting of
the Canadian Mathematical Society in December 1989 in Montreal, the results for a
compact interval at an Oberwolfach meeting in November 1992 and the results for
both types of intervals in a colloquium at the University of Hildesheim in January
1995. He also lectured on this theme at local workshops of his university. Since the
authors became very busy with a book project on polynomials, they postponed the
work for final versions of their manuscripts and somehow they never came back to
this subject.

With great pleasure, the second named author now finalized and united these
manuscripts. Although around 25 years have passed since the beginning of this
theme, he thinks that the attribute “new” in the title is still justified. He is very
delighted commemorating his dear friend with a belated joint paper.

1 Introduction

A sequence of quadrature formulae

Z b

a
f .x/ dx D

mnX
�D0

An;� f .xn;�/C RnŒf � .n 2 N/;

.a � xn;0 < xn;1 < � � � < xn;mn � b/

(1)

will be called a quadrature method. Here RnŒf � denotes the remainder or error and

QnŒf � WD
mnX
�D0

An;� f .xn;�/

is the approximation of the integral. Clearly, when Œ˛; ˇ� is a compact interval
different from Œa; b�, we can easily derive from (1) a quadrature method for
integration over Œ˛; ˇ� by an affine transformation. Without loss of generality, we
may therefore restrict ourselves to integration over Œ0; 1�.

Often a quadrature method is generated from one special quadrature formula
by decomposing the interval Œa; b� into n congruent subintervals, applying the
chosen formula after an appropriate transformation to each of them and summing
up the results. The sequence of quadrature formulae obtained this way is called
a compound method. As an example, we consider the trapezoidal rule on Œ0; 1�,
described by
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Z 1

0

f .x/ dx D 1

2

�
f .0/C f .1/

�C RtrŒf �;

which generates the trapezoidal method

Z 1

0

f .x/ dx D 1

2n

"
f .0/C 2

n�1X
�D1

f
��

n

�
C f .1/

#
C Rtr

n Œf � .n 2 N/: (2)

It is not only of theoretical interest but also of practical importance for error
estimates and stop criteria in computations to know sufficient conditions on f
which guarantee that the quadrature method yields a one-sided approximation of
the integral and that the remainders converge monotonically to zero as n ! 1.
This leads us to the following questions:

Positivity: How to guarantee that RnŒf � � 0 for all n 2 N?
Monotonicity: How to guarantee that 0 � RnC1Œf � � RnŒf � for all n 2 N?

In many cases, an answer to the question of positivity can be obtained by
considering Peano’s representation of the remainder RnŒf �; see, e.g., [4, Sect. II.1].
If the corresponding Peano kernel does not change sign on Œa; b�, then positivity can
be guaranteed by a sign condition on a certain derivative of f .

Finding sufficient conditions for monotonicity is a more difficult problem that
has attracted some renowned mathematicians. Contributions have been obtained for
nearly all of the familiar quadrature methods; see [23] for sequences of Riemann
sums and a discussion of unpublished work of Fejér for the rectangle method,
Stenger [20] for Gaussian methods, Albrecht [2] and Ström [22] for Romberg’s
method, Rivlin [19] for the midpoint method, Newman [17] for compound Newton–
Côtes methods and a communication of unpublished results by Newman and Rivlin
for the trapezoidal method and by Molluzo for Simpson’s method, Brass [5] and
Locher [12] for Gaussian and Newton–Côtes methods, Kütz [11] for interpolatory
methods, Förster [9] for Gregory’s method, and Nikolov [18] for certain compound
methods. In all these cases monotonicity is guaranteed by sign conditions on
successive derivatives.

For the trapezoidal method (2), the known results concerning positivity and
monotonicity are as follows.

Theorem A. Let f 2 C2Œ0; 1� and suppose that f 00.x/ � 0 for x 2 Œ0; 1�: Then
Rtr

n Œf � � 0 for all n 2 N:

Theorem B (Newman and Rivlin). Let f 2 C3Œ0; 1� and suppose that f 00.x/ � 0,
f 000.x/ ¤ 0 for x 2 Œ0; 1�. Then

Rtr
n1 Œf � � Rtr

n2 Œf � � 0 for n2 > n1 .n1; n2 2 N/:
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We believe that the conditions given in the literature describe only a very small
subset of the collection of all functions for which positivity or monotonicity occurs.
Numerical experiments show positivity and monotonicity even for some highly
oscillating functions which violate sign conditions on derivatives drastically. Let
us consider some examples in case of the trapezoidal method.

Example 1. The function �ex would satisfy the hypotheses of Theorem A, but now
we consider

f .x/ WD �ex cos.30�x/

By Rolle’s theorem, the second derivative of f has at least 28 sign changes
on the interval Œ0; 1�: Hence the hypotheses of Theorem A are heavily violated.
Nevertheless the remainders of the trapezoidal method are positive as the first
column of Table 1 shows.

Example 2. Let

f .x/ WD
8<
:

� sin.33�x/

33 sin.�x/
if x 2 .0; 1/;

�1 if x 2 f0; 1g:

By Rolle’s theorem, the second derivative of f has at least 30 and the third at least
29 sign changes on the interval Œ0; 1�: Hence the hypotheses of Theorems A and B
are heavily violated. Nevertheless the remainders of the trapezoidal method are non-
negative and nonincreasing as the second column of Table 1 shows.

Example 3. The second derivative of the Bernoulli polynomial B4.x/ has two sign
changes on Œ0; 1� and the third derivative also changes sign. Hence Theorems A
and B do not apply to f .x/ WD B4.x/: But the remainders of the trapezoidal method
are positive and converge monotonically to zero as the third column of Table 1
shows.

Our aim is to describe wide classes of functions which guarantee positivity or
monotonicity and contain the functions specified in Theorem A or Theorem B,
respectively. For this purpose, the concept of positive definite functions or—in the
language of probability—the characteristic functions of a distribution provides an
efficient approach, at least for the trapezoidal method. In particular, it explains the
behavior of Examples 1–3. However, we still do not get the maximal classes of
functions for which positivity or monotonicity occurs; see Remark 3. They seem
to be of a complicated structure. For an attempt to describe the maximal class that
guarantees positivity for smooth functions, see Proposition 2 below.

The paper is organized as follows. In Sect. 2 we recall some fundamental
properties of positive definite function useful for our consideration. In Sect. 3 we
study positivity and monotonicity for the trapezoidal method on Œ0; 1� and discuss
interconnections with some related quadrature methods. Finally, in Sect. 4, we
establish analogous results for the trapezoidal method on R.
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Table 1 Examples for
remainders of the trapezoidal
method

Example 1 Example 2 Example 3

n Rtr
n Œf � n Rtr

n Œf � n Rtr
n Œf �

1 1.85894749 1 0.96969697 1 0.03333333

2 0.10501640 2 0.48484848 2 0.00208333

3 1.73396904 3 0.30303030 3 0.00041152

4 0.05241149 4 0.24242424 4 0.00013021

5 1.72381220 5 0.18181818 5 0.00005333

6 0.01171155 6 0.12121212 6 0.00002572

7 0.04529855 7 0.12121212 7 0.00001388

8 0.04456332 8 0.12121212 8 0.00000814

9 0.00686319 9 0.06060606 9 0.00000508

10 0.00409871 10 0.06060606 10 0.00000333

11 0.00409238 11 0.06060606 11 0.00000228

12 0.00575906 12 0.06060606 12 0.00000161

13 0.01150753 13 0.06060606 13 0.00000117

14 0.04299383 14 0.06060606 14 0.00000087

15 1.71872476 15 0.06060606 15 0.00000066

16 0.04281955 16 0.06060606 16 0.00000051

17 0.01112852 17 0.00000000 17 0.00000040

18 0.00509632 18 0.00000000 18 0.00000032

2 Positive Definite Functions

Pioneering work on positive definite functions is due to Mathias [15] and Bochner
[6]. We recall some fundamental knowledge extracted from a survey article of
Stewart [21].

Definition 1. A function f W R ! C is said to be positive definite if for every
choice of x1; : : : ; xn 2 R and �1; : : : ; �n 2 C, we have

nX
jD1

nX
kD1

f .xj � xk/�j�k � 0:

Some authors require in addition that f is continuous; see, e.g., [14]. The
following properties, observed already by Mathias [15] are of interest.

Properties.

(i) If f is positive definite, then jf .x/j � f .0/ and f .x/ D f .�x/ for all x 2 R.
(ii) If f and g are positive definite, then fg is positive definite.

(iii) If f1; : : : ; fn are positive definite and c1; : : : ; cn 2 Œ0;1/, then c1f1 C � � � C cnfn
is positive definite.

(iv) If .fn/n2N is a pointwise convergent sequence of positive definite functions,
then f WD limn!1 fn is positive definite.
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Properties (ii)–(iv) show that the positive definite functions form a closed, multi-
plicative cone.

Some examples of positive definite functions are:

eix; cos x; .1C x2/�1; e�jxj; e�x2 :

A celebrated representation theorem for positive definite functions is due to
Bochner [6].

Bochner’s Theorem. A continuous function f W R ! C is positive definite if and
only if there exists a bounded, nondecreasing function V on R such that

f .x/ D
Z 1

�1
ei˛x dV.˛/ .x 2 R/:

The following corollaries are of interest.

Corollary 1. Let f W R ! C be a continuous, p-periodic function. Then f is
positive definite if and only if

1

p

Z p

0

f .x/e�i2�nx=p dx � 0

for all n 2 Z:

Corollary 2. Let f W R ! C be a continuous function belonging to L1.R/ and
suppose that its Fourier transform

Of .v/ WD 1p
2�

Z 1

�1
f .t/e�itv dt

also belongs to L1.R/: Then f is positive definite if and only if Of .v/ � 0 for all
v 2 R:

As usual L1.R/ denotes the set of functions which are Lebesgue integrable
over R. Many sophisticated results on positive functions have been obtained in
the framework of probability where these functions play an important role as
characteristic functions of distributions. More precisely, f is a characteristic function
of a distribution if and only if f is a continuous, positive definite function and
f .0/ D 1.

3 The Trapezoidal Method on a Compact Interval

When we consider a compact interval, it is no loss of generality to restrict ourselves
to Œ0; 1� where the trapezoidal method is given by (2). We shall use a familiar
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terminology only. By CŒ0; 1�, we denote the class of all continuous functions f W
Œ0; 1� ! R and by CkŒ0; 1� the subclass of functions that are k times continuously
differentiable on .0; 1/ with one-sided derivatives at the endpoints 0 and 1. For
x 2 R, we denote by bxc the largest integer not exceeding x.

Since the approximation Qtr
n Œf � of

R 1
0

f .x/dx by the trapezoidal method is a
Riemann sum, it is clear that f 2 CŒ0; 1� implies that Rtr

n Œf � ! 0 as n ! 1: In
the subsequent statements, we shall therefore not mention the convergence to zero
once again explicitly.

3.1 Some Lemmas

We start with a representation of Rtr
n Œf � in terms of Fourier coefficients.

Lemma 1. Let f 2 CŒ0; 1� and define

an WD 2

Z 1

0

f .x/ cos.2�nx/ dx .n 2 N0/: (3)

Then

Rtr
n Œf � D � lim

N!1

bN=ncX
jD1

�
1 � jn

N C 1

	
ajn: (4)

Proof. Define

h.t/ WD 1

2

�
f .t/C f .1 � t/

�
: (5)

Then

Z 1

0

f .t/ dt D
Z 1

0

h.t/ dt D a0
2

and Qtr
n Œf � D Qtr

n Œh� D 1

n

nX
�D1

h
��

n

�
: (6)

Moreover, the 1-periodic continuation Qh of h is an even continuous function on R:

For the trigonometric series associated with Qh, we find

Qh.x/ 	 a0
2

C
1X

jD1
aj cos.2� jx/

with coefficients given by (3). It is known from the theory of Fourier series (see,
e.g., [7, p. 173, Problem 4]) that the Cesàro limit of the right-hand side represents
Qh, i.e.,



470 Q. I. Rahman and G. Schmeisser

Qh.x/ D a0
2

C lim
N!1

NX
jD1

�
1 � j

N C 1

	
aj cos.2� jx/:

From (6) it now follows that

Rtr
n Œf � D � lim

N!1

NX
jD1

�
1 � j

N C 1

	
aj � 1

n

nX
�D1

cos

�
2�

j�

n

	
: (7)

Finally, expressing cos x as .eix C e�ix/=2, we note that

1

n

nX
�D1

cos

�
2�

j�

n

	
D


1 if n divides j;
0 otherwise.

Combining this equation with (7), we arrive at (4). �

Remark 1. From the theory of summability one knows that the right-hand side
of (4) may be replaced by �P1

jD1 ajn if this series converges.

Lemma 2. Let g 2 CŒ0; 1� and suppose that g.x/ � g.1 � x/. Denote by Qg the
1-periodic continuation of g. Then the coefficients

˛n WD 2

Z 1

0

g.x/ cos.2�nx/ dx .n 2 N0/ (8)

are non-negative for n 2 N and the sequence .˛n/n2N is nonincreasing, if and only
if the 2-periodic function x 7! Qg.x/ sin.�x/ has an associated trigonometric series

1X
nD0

bn sin
�
.2n C 1/�x

�
(9)

with bn � 0 for n 2 N.

Proof. Considering the symmetries of Qg.x/ sin.�x/, we readily see that the associ-
ated trigonometric series is of the form (9). Furthermore,

bn D
Z 2

0

Qg.x/ sin.�x/ sin
�
.2n C 1/�x

�
dx

D 1

2

Z 2

0

Qg.x/�cos.2n�x/ � cos
�
.2n C 2/�x

��
dx

D
Z 1

0

Qg.x/ cos.2n�x/ dx �
Z 1

0

Qg.x/ cos
�
.2n C 2/�x

�
dx
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D 1

2

�
˛n � ˛nC1

�
.n 2 N0/:

Hence, for n 2 N, we have bn � 0 if and only if ˛n � ˛nC1: Since by a standard
result ˛n ! 0 as n ! 1 (see, e.g., [7, p. 51, Problem 8]), we conclude that ˛n � 0

for n 2 N. �

The desired properties of the coefficients ˛n can also be described in terms of
positive definite functions. Since the trapezoidal rule is exact for affine functions, an
additive constant c does not change the remainder, that is, Rtr

n Œf � D Rtr
n Œf C c�. For

this reason, the following notion will be convenient.

Definition 2. We say that a function f is essentially positive definite if there exists
a constant c such that f C c is positive definite.

The following lemma has been designed for our needs. For a related result, see
[16, Theorem 2.2].

Lemma 3. Let g 2 C1Œ0; 1� and suppose that g.x/ � g.1 � x/. Denote by Qg the
1-periodic continuation of g. Then the coefficients (8) are non-negative for n 2 N

and the sequence .˛n/n2N is nonincreasing if and only if the function  given by

.x/ WD Qg.x/C 1

2� i

�
e2� ix � 1� Qg 0.x/ (10)

is essentially positive definite.

Proof. Define c WD  C c and Qgc WD Qg C c. Then, by the properties and examples
listed in Sect. 2, the function c is positive definite if and only if

c.x/e
�2� ix D Qgc.x/e

�2� ix C 1

2� i

�
1 � e�2� ix

� Qg 0
c.x/

D 1

2� i

d

dx

�
Qgc.x/

�
1 � e�2� ix

��
(11)

is positive definite. By Corollary 1, the latter holds if and only if

cn WD
Z 1

0

c.x/e
�2� ixe�2� inx dx � 0 .n 2 Z/: (12)

Using (11), we find by integration by parts that

cn D n
Z 1

0

�
g.x/C c

��
1 � e�2� ix

�
e�2� inx dx

D n

2

�
˛jnj � ˛jnC1j

�
for n 2 Z n f0;�1g;
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c0 D 0 and c�1 D 1
2
.˛0 C c � ˛1/: From these relations we conclude that if (12)

holds, then ˛n � ˛nC1 for n 2 N. Since ˛n ! 0 as n ! 1, we also have ˛n � 0

for n 2 N: Conversely, if the coefficients ˛n have these properties, then cn � 0 for
n 2 Zn f�1g and c�1 � 0 if c is chosen appropriately, namely such that c becomes
positive definite. This completes the proof. �

For the subsequent applications of Lemmas 1–3, the following observations will
be useful.

Remark 2. For f 2 CŒ0; 1�, define g and Qg by

g.x/ WD �1
2

�
f .x/C f .1�x/

�
; x 2 Œ0; 1� and Qg.x/ WD g

�
x�bxc�; x 2 R: (13)

Then Qg is the 1-periodic continuation of g. In view of (5) and (6), we have Rtr
n Œg� D

�Rtr
n Œf �: Furthermore, g satisfies g.x/ � g.1 � x/, as required in Lemmas 2 and 3,

and the coefficients an in (3) and ˛n in (8) are related by an D �˛n .n 2 N0/.

3.2 Positivity

The following theorem extends the conclusion of Theorem A to a much wider class
of functions.

Theorem 1. Let f 2 CŒ0; 1� and suppose that Qg defined in (13) is essentially positive
definite. Then the remainders Rtr

n Œf � are non-negative. Moreover,

Rtr
n Œf � � Rtr

2nŒf � � � � � � Rtr
2knŒf � � � � � � 0 .n 2 N/: (14)

Proof. Since Qg is an even, 1-periodic, essentially positive definite function, it
follows from Corollary 1 that the coefficients ˛n given by (8) are non-negative for
n 2 N. Hence in view of Remark 2 and Lemma 1, we have

Rtr
n Œf � D �Rtr

n Œg� D lim
N!1

bN=ncX
jD1

�
1 � jn

N C 1

	
˛jn: (15)

In the sum on the right-hand side, each term is non-negative, and so Rtr
n Œf � � 0.

Finally, if in (15) we replace n by 2n, then each term of the resulting new sum
also appears in the former one. This shows that (14) holds. �

Theorem A is a special case of Theorem 1 as the following proposition shows.

Proposition 1. Let f 2 C2Œ0; 1� and suppose that f 00.x/ � 0 for x 2 Œ0; 1�. Define g
and Qg by (13). Then for every c � R 1

0
f .x/dx the function Qg C c is positive definite.

Proof. By Corollary 1, it suffices to verify that the integrals
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In WD
Z 1

0

�
g.x/C c

�
e�2� inx dx

are non-negative for all n 2 Z. For n D 0 we have

I0 D c �
Z 1

0

f .x/ dx;

which is non-negative by the restriction on c. For n 2 Z n f0g we find by two
integration by parts:

In D � 1

2

Z 1

0

�
f .x/C f .1 � x/

�
e�2� inx dx

D �
Z 1

0

f .x/ cos.2�nx/ dx

D � 1

.2�n/2

Z 1

0

f 00.x/
�
1 � cos.2�nx/

�
dx � 0:

This completes the proof. �

While Theorem A cannot explain why Rtr
n Œf � is non-negative for a function

f .x/ WD �ex cos.2m�x/ with m 2 N, as considered in Example 1 for m D 15,
Theorem 1 does apply to f . Indeed, the function (13) becomes

g.x/ D ex C e1�x

2
� cos.2m�x/ :

As a consequence of Proposition 1, the 1-periodic continuation of the first factor
on the right-hand side is positive definite and so is the cosine. Thus, Qg being the
product of two positive definite functions, it is itself positive definite. Therefore the
conclusion of Theorem 1 is valid for f .

Remark 3. We want to mention that there are functions with non-negative remain-
ders that are not covered by Theorem 1. Indeed, suppose that

1X
nD1

n" j˛nj < 1 (16)

for some " > 0. Then, in view of Remark 2, formula (15) simplifies to

Rtr
n Œf � D � Rtr

n Œg� D
1X

jD1
˛jn .n 2 N/: (17)
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Moreover, the Möbius inversion formula applies; see [13, p. 19, Corollary]. It
yields that

˛n D
1X

jD1
�.j/Rtr

jnŒf � .n 2 N/; (18)

where � W N ! f�1; 0; 1g is the Möbius function defined by

�.j/ WD
8<
:

1 if j D 1;

.�1/n if j D p1 � � � pn with distinct primes p1; : : : ; pn;

0 if j is divisible by a square of a prime.

Formulae (17) and (18) show that there is a one-to-one correspondence between the
sequence of coefficients and the sequence of remainders. However, while by (17)
non-negative coefficients entail non-negative remainders Rtr

n Œf �, the converse is not
true since the Möbius function in (18) may attain negative values. For example, if

f .x/ D cos.4�x/C cos.6�x/ � cos.12�x/;

then ˛2 D ˛3 D �1; ˛6 D 1 and ˛n D 0 for n 2 N n f2; 3; 6g while the remainders
are all non-negative. More precisely, Rtr

6 Œf � D 1 and Rtr
n Œf � D 0 for n ¤ 6:

Under some smoothness on f , we can now give a (rather implicit) necessary and
sufficient condition for the remainders to be non-negative. It shows that a simple
characterization cannot be expected.

Proposition 2. Let f 2 C2Œ0; 1�. Then Rtr
n Œf � � 0 for all n 2 N if and only if

there exists a ı > 0 and a sequence .cn/n2N of non-negative numbers such thatP1
nD1 nıcn < 1 and the coefficients (8) can be represented as

˛n D
1X

jD1
�.j/cjn .n 2 N/:

Proof. Starting with formula (8), we find by two integrations by parts that

˛n D 2

.2�n/2

Z 1

0

g00.x/
�
1 � cos.2�nx/

�
dx .n 2 N/:

Hence

j˛nj � 1

�2n2

Z 1

0

ˇ̌
f 00.x/

ˇ̌
dx .n 2 N/;

and so (16) holds for any " 2 .0; 1/: Thus [13, p. 19, Corollary] is applicable. It
implies that Rtr

n Œf � D cn for all n 2 N: �
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3.3 Monotonicity

Lemmas 2 and 3 allow us to obtain the conclusion of Theorem B for a much wider
class of functions.

Theorem 2. Let f 2 CŒ0; 1� and let Qg be given by (13). If the trigonometric
series (9) associated with Qg.x/ sin.�x/ has coefficients bn � 0 for n 2 N, then

Rtr
n1 Œf � � Rtr

n2 Œf � � 0 for n2 > n1 .n1; n2 2 N/: (19)

Proof. In view of Remark 2, Lemmas 1 and 2 yield

Rtr
n`
Œf � D lim

N!1

bN=n`cX
jD1

�
1 � jn`

N C 1

	
˛jn` .` D 1; 2/;

where .˛n/n2N is a nonincreasing sequence of non-negative numbers. Noting that
bN=n2c � bN=n1c and

0 �
�
1 � jn2

N C 1

	
˛jn2 �

�
1 � jn1

N C 1

	
˛jn1 for n2 > n1;

we obtain (19) immediately. �

For the function f of Example 2, we have

Qg.x/ sin.�x/ D sin.33�x/

33
:

Hence b16 D 1=33 and bn D 0 for n 2 N n f16g, and so Theorem 2 guarantees
that (19) holds.

For f .x/ WD B4.x/ of Example 3, we have g.x/ D �B4.x/ and

Qg.x/ D 3

�4

1X
nD1

cos.2n�x/

n4
I

see [1, formulae (23.1.8) and (23.1.18)]. Hence

Qg.x/ sin.�x/ D 3

2�4

1X
nD1

1

n4
�
sin
�
.2n C 1/�x

� � sin
�
.2n � 1/�x

��

D 3

2�4

"
� sin.�x/C

1X
nD1

�
1

n4
� 1

.n C 1/4

	
sin
�
.2n C 1/�x

�#
:

Again we see that Theorem 2 applies and yields that (19) holds.
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The proof of the following theorem is analogous to that of Theorem 2 with the
role of Lemma 2 taken by Lemma 3.

Theorem 3. Let f 2 C1Œ0; 1� and let Qg be given by (13). If the function , defined
by (10), is essentially positive definite, then

Rtr
n1 Œf � � Rtr

n2 Œf � � 0 for n2 > n1 .n1; n2 2 N/:

The following proposition shows that Theorem B is a special case of Theorems 2
and 3.

Proposition 3. Let f 2 C3Œ0; 1� and suppose that f 00.x/ � 0 and f 000.x/ ¤ 0 for
x 2 Œ0:1�. Then f satisfies the hypotheses of Theorems 2 and 3.

Proof. In view of Lemmas 2 and 3 in conjunction with Remark 2, it suffices to
show that if an is defined by (3), then an � 0 for n 2 N and the sequence .an/n2N is
nondecreasing.

We may assume that f 000.x/ � 0 for x 2 Œ0; 1�; otherwise, the role of f .x/ may be
taken by f .1 � x/ in the following considerations.

Starting with (3) for n 2 N, we find by two integrations by parts that

an D � 1

2�n

Z 1

0

f 0.x/ sin.2�nx/ dx

D 1

.2�n/2

Z 1

0

f 00.x/
�
1 � cos.2�nx/

�
dx:

Performing a further integration by parts, we obtain

an D 1

.2�n/2

"
f 00.x/

�
x � sin.2�nx/

2�n

	ˇ̌
ˇ̌
1

0

�
Z 1

0

f 000.x/
�

x � sin.2�nx/

2�n

	
dx

#

D f 00.1/
.2�n/2

�
Z 1

0

x3f 000.x/

2�nx � sin.2�nx/

.2�nx/3

�
dx : (20)

The assumptions on f show immediately that an � 0 for n 2 N. It remains to
prove that anC1 � an for n 2 N. Obviously, the first term in (20) is nondecreasing.
Hence it suffices to show that for each fixed x 2 .0; 1/ the term in square brackets is
decreasing. Clearly, this is guaranteed if

'.t/ WD t � sin t

t3

is decreasing on .0;1/: Thus it is enough to show that

 .t/ WD t4'0.t/ D 3 sin t � t cos t � 2t < 0
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for t > 0: For this we consider two cases:
If t � � , then

 .t/ � 3 sin t � t.1C cos t/ � � < 3 � � < 0:

For t 2 Œ0; ��, we employ Taylor’s formula. Noting that  .0/ D 0,  0.0/ D 0 and
 00.t/ D t cos t � sin t < 0 for t 2 .0; �/; we find that

 .t/ D t2

2
 00.�/

for some � 2 .0; �/. Hence  .t/ < 0 for t 2 .0; �/ as well. This completes the
proof. �

A relatively simple condition guarantees monotonic convergence of the remain-
ders Rtr

n Œf � for sufficiently large n.

Theorem 4. Let f 2 C3Œ0; 1� and suppose that f 0.0/ ¤ f 0.1/. Then there exists an
n0 2 N such that the sequence .Rtr

n Œf �/n�n0 converges monotonically to zero.

Proof. Since f is continuous, we know that Rtr
n Œf � ! 0 as n ! 1: By Lemma 1 it

is therefore enough to show that for the coefficients (3) the difference an � anC1 has
a fixed sign for all sufficiently large n.

First we note that

an � anC1 D
Z 1

0

f .x/
�
cos.2�nx/ � cos

�
2�.n C 1/x

��
dx

D 2

Z 1

0

f .x/ sin.�x/ sin
�
.2n C 1/�x

�
dx:

Introducing F.x/ WD f .x/ sin.�x/, we find by three integrations by part

an � anC1 D �1
..2n C 1/�/3


F00.1/C F00.0/C

Z 1

0

F000.x/ cos
�
.2n C 1/�x

�
dx

�
:

Since F00.0/ D 2� f 0.0/ and F00.1/ D �2� f 0.1/, we finally obtain

an � anC1 D 1

..2n C 1/�/3


2�
�
f 0.1/ � f 0.0/

�C
Z 1

0

F000.x/ cos
�
.2n C 1/�x

�
dx

�
:

By a standard result, the integral converges to zero as n ! 1. Hence

sgn.an � anC1/ D sgn
�
f 0.1/ � f 0.0/

�

for all sufficiently large n. �
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Theorem 4 applies to Example 1. Unfortunately we do not know the value of n0.
Table 1 shows that n0 � 15.

3.4 Related Quadrature Methods

The essential key to the previous results was Lemma 1. It establishes a repre-
sentation of the remainders Rtr

n Œf � of the trapezoidal method in terms of Fourier
coefficients of f . One cannot expect that a modification of the proof of Lemma 1
will give an extension to an arbitrary quadrature method. However, if the method
has some periodic structure, as in the case of a sequence of compound formulae,
then there is some hope.

The Midpoint Method

For the interval Œ0; 1� it takes the form

Z 1

0

f .x/ dx D 1

n

nX
�D1

f

�
2� � 1
2n

	
C Rmi

n Œf � .n 2 N/:

Obviously this formula is equivalent to applying the nth formula of the trapezoidal
method to the function Qh.x � 1=.2n// with Qh as in the proof of Lemma 1. With this
observation, we arrive at the following result.

Lemma 4. Let f 2 CŒ0; 1� and define an by (3). Then

Rmi
n Œf � D � lim

N!1

bN=ncX
jD1

�
1 � jn

N C 1

	
.�1/jajn: (21)

A comparison of (4) and (21) allows us to establish interconnections between
Rtr

n Œf � and Rmi
n Œf �:

Proposition 4. Under the hypotheses of Theorem 1, there holds

ˇ̌
Rmi

n Œf �
ˇ̌ � Rtr

n Œf � .n 2 N/: (22)

Proof. The hypotheses of Theorem 1 imply that for the coefficients (3) we have
an � 0 for n 2 N. Now a comparison of (4) and (21) show that Rtr

n Œf �˙ Rmi
n Œf � � 0;

which gives (22). �

Proposition 5. Under the hypotheses of Theorem 2 or 3, there hold

� Rtr
n Œf � � Rmi

n Œf � � 0 .n 2 N/ (23)
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and
ˇ̌
Rmi

n Œf � � Rmi
nC1Œf �

ˇ̌ � Rtr
n Œf � � Rtr

nC1Œf � .n 2 N/: (24)

Proof. The hypotheses imply that an � 0 for n 2 N and the sequence .an/n2N is
nondecreasing. Now a comparison of (4) and (21) shows that (23) holds and that

Rtr
nC1Œf �˙ Rmi

nC1Œf � � Rtr
n Œf �˙ Rmi

n Œf �;

which gives (24). �

Inequality (23) implies that

Qtr
n Œf � �

Z 1

0

f .x/ dx � Qmi
n Œf �;

and so the approximations obtained by the trapezoidal and the midpoint method
yield an inclusion of the exact value of the integral.

The study of the behavior of Rmi
n Œf � itself is somewhat complicated for the

following reason. Let m be an integer of the form 2`.2j C 1/ with `; j 2 N. Then
am appears in the representations (21) of Rmi

2jC1Œf � and Rmi
2`Œf � with opposite signs.

Thus if jamj is very large these two remainders will have different signs even if the
coefficients an are of the same sign for all n 2 N. We can avoid this phenomenon if
we restrict ourselves to remainders with odd indices.

For f 2 CŒ0; 1�, define

u.x/ WD


1
2

�
f . 1
2

C x/C f . 1
2

� x/
�

if 0 � x � 1
2
;

1
2

�
f . 3
2

� x/C f .x � 1
2
/
�

if 1
2
< x � 1:

(25)

Then u 2 CŒ0; 1�, and it can be shown that

Rmi
2kC1Œf � D Rtr

2kC1Œu� .k 2 N/:

Theorems 1 and 2 applied to u provide results on positivity, respectively, monotonic-
ity of the sequence .Rmi

2kC1Œf �/k2N:

Simpson’s Method

For the interval Œ0; 1� it takes the form

Z 1

0

f .x/ dx D 1

6n

"
f .0/C 4

nX
�D1

f

�
2� � 1
2n

	
C 2

n�1X
�D1

f
��

n

�
C f .1/

#
C RSi

n Œf �:

We see that

RSi
n Œf � D 1

3
Rtr

n Œf �C
2

3
Rmi

n Œf �:
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Thus, defining

v.x/ WD 1

3
f .x/C 2

3
u.x/

with u given by (25), we obtain RSi
2kC1Œf � D Rtr

2kC1Œv�: Theorems 1 and 2 applied to
v provide results on positivity and monotonicity of the sequence .RSi

2kC1Œf �/k2N:

The Gauss–Chebyshev Method

In general, the ideas of this paper do not apply to Gaussian methods. An exception
is the Gaussian formula with a Chebyshev weight:

Z 1

�1
f .x/p
1 � x2

dx D �

2n

"
f .1/C 2

n�1X
�D1

f
�

cos
��

n

�
C f .1/

#
C RGC

n Œf �:

Introducing '.x/ WD f .cos.�x//, we find that RGC
n Œf � D �Rtr

n Œ'�: Theorems 1–
3 applied to ' provide results on positivity and monotonicity of the sequence
.RGC

n Œf �/n2N:

4 The Trapezoidal Method on the Whole Real Line

It may be introduced as

Z 1

�1
f .x/ dx D �

�

1X
�D�1

f
���
�

�
C Rtr

� Œf � .� > 0/: (26)

Of course we need some assumptions on f for the integral to exist and for the
series to converge. In [8, Definition 2], the authors specified the following class
of functions.

Definition 3. Denote by C the class of functions f W R ! C satisfying the
following conditions:

(i) f is continuous;
(ii) f .x/ ! 0 as x ! ˙1I

(iii)
R 2x

x jf .�/ � f .��/j d� < � for some � > 0 and all x > 0;
(iv) for every (fixed) ! > 0 the sequence of functions

FN.!; x/ WD !

NX
kD�N

k¤0

f
�
!.k C x/

�

converges uniformly for x 2 Œ� 1
2
; 1
2
� to a function F.!; x/ as N ! 1;

(v)
R 1=2

�1=2 jF.!; x/j dx is bounded for ! > 0:
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These conditions may look complicated, but they cover a wide class of functions
and guarantee that (26) is applicable in some sense. Several more familiar classes
of functions are subclasses of C . For a justification of the following statements, see
[8, pp. 327–328].

If f is continuous on R and f .x/ D O.jxj�1 log�2 jxj/ as x ! ˙1, then f 2 C :
If f 2 L1.R/ is uniformly continuous and of bounded variation on R, then f 2 C :
The function

f .x/ WD
8
<
:

sin x

x
if x 2 R n f0g

1 if x D 0

belongs to C : Here the integral in (26) exists as an improper integral but not as a
Lebesgue integral and the series converges but not absolutely.

The function f .x/ D .1 C ix/�1 belongs to C : In this case the integral and the
series in (26) exist as a Cauchy principal values only.

4.1 Some Lemmas

For the following two lemmas, see [8, Lemmas 4.1 and 4.2].

Lemma 5. For f 2 C the Fourier transform Of exists as a Cauchy principal value,
that is,

Of .v/ D lim
T!1

1p
2�

Z T

�T
f .t/e�itv dt;

and Of is bounded on R.

Lemma 6. For f 2 C the quadrature formula (26) is applicable with the integral
and the series existing as a Cauchy principal value and

Rtr
� Œf � D �p

2� lim
ı!0C

1X
nD1

hOf .2n�/C Of .�2n�/
i

e�2n�ı: (27)

Lemma 7. Let f 2 C and � > 0. Then Rtr
n� Œf � ! 0 as n ! 1:

Proof. Let � > 0 and " > 0 be given. Since the integral of f over R exists as a
Cauchy principal value and conditions (ii) and (iv) of Definition 3 are satisfied, we
can find (by a little manipulation) an integer m > 0 such that for a WD m�=� we
have

ˇ̌
ˇ̌
Z 1

a

�
f .x/C f .�x/

�
dx

ˇ̌
ˇ̌ � "

3
(28)
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and simultaneously

ˇ̌
ˇ̌
ˇ
�

�

1X
�Dm


f
���
�

C x
�

C f

�
� .� C 1/�

�
C x

	�ˇ̌ˇ̌
ˇ � "

3
(29)

for all x 2 Œ0; �=��: Here
R1

a and
P1

�Dm have to be understood as limA!1
R A

a and
limM!1

PM
�Dm, respectively.

Now we have

Rtr
n� Œf � D

Z a

�a
f .x/ dx C

Z 1

a

�
f .x/C f .�x/

�
dx

� �

n�

nmX
�D�nmC1

f
���

n�

�

� �

n�

1X
�Dnm


f

�
.� C 1/�

n�

	
C f

�
� ��

n�

��
: (30)

Considering the series as limM!1
PM

�Dnm and recalling (29), we find after a short
reflection that (30) may be rewritten as

� 1

n

nX
jD1

(
�

�

1X
�Dm


f

�
��

�
C j�

n�

	
C f

�
� .� C 1/�

�
C j�

n�

	�)
:

By (29), this expression is of modulus less than "=3. Taking also (28) into account,
we see that

ˇ̌Rtr
n� Œf �

ˇ̌ �
ˇ̌
ˇ̌
ˇ
Z a

�a
f .x/ dx � �

n�

nmX
�D�nmC1

f
���

n�

�ˇ̌ˇ̌
ˇC 2"

3
:

The sum on the right-hand side is an approximation of
R a

�a f .x/dx by a Riemann sum
of step size �=.n�/: Since Œ�a; a� is a compact interval on which f is continuous,
the Riemann sum converges to the integral as n ! 1: Thus

ˇ̌Rtr
n� Œf �

ˇ̌
< " for

sufficiently large n. This completes the proof. �

In the next two lemmas we assume that the Fourier transform of a function g exists as
a Cauchy principal value and give conditions which assure that Og.v/ is non-negative,
respectively, non-negative and nonincreasing for growing jvj.
Lemma 8. Let g be a continuous, positive definite function whose Fourier trans-
form exists as a Cauchy principal value. Then Og.v/ � 0 for v 2 R:
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Proof. The conclusion is known to be true if in addition g 2 L1.R/; see [14,
Theorem 3.2.2]. We shall therefore construct a sequence of positive definite
functions gn 2 L1.R/ whose Fourier transforms converge pointwise to Og:

For this, we consider the functions

hn W x 7�!
8
<
:
1 � jxj

n
if jxj � n

0 if jxj > n
.n 2 N/; (31)

which are positive definite since they may be represented as [7, p. 516]

hn.x/ D n

2�

Z 1

�1

�
sin.nt=2/

nt=2

	2
e�itx dt .n 2 N/:

Hence, by Property (ii) of positive definite function, gn WD hng is a continuous
positive definite function of compact support. As such gn 2 L1.R/, and so in view
of the aforementioned result in [14]

Ogn.v/ D 1p
2�

Z n

�n

�
1 � jtj

n

	
g.t/e�itv dt � 0 (32)

for all n 2 N:

Now consider

lim
T!1

1p
2�

Z T

�T

�
1 � jtj

n

	˛
g.t/e�itv dt

for ˛ � 0. It is the .C; ˛/-limit of the Cauchy principal value of .2�/�1=2
R1

�1 g.t/e�itvdt.
By hypothesis, it exists for ˛ D 0 and gives what we call Og.v/. Hence [10,
Sect. 5.15] the .C; ˛/-limits exist for all ˛ � 0 and are equal to Og.v/. In particular,
limn!1 Ogn.v/ D Og.v/, and so (32) implies that Og.v/ is non-negative. �

The subsequent lemma is related to a result of Khinchine [14, Theorem 4.5.1]
considered in a Fourier transform setting. In the language of probability, the
following function g, if normalized to g.0/ D 1, is the characteristic function of
a unimodal distribution.

Lemma 9. Let 	 be a continuous, positive definite function such that 	.t/ ! 0 as
t ! 1. Define

g.0/ WD 	.0/; g.t/ WD 1

t

Z t

0

	.x/ dx .t 2 R n f0g/: (33)

If the Fourier transform of g exists as a Cauchy principal value, then Og is non-
negative, nondecreasing on .�1; 0/ and nonincreasing on .0;1/:
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Proof. The hypotheses of the lemma imply that g is itself a continuous, positive
definite function; this can be extracted from the proof in [14, pp. 93–94]. Thus, by
Lemma 8, we have Og.v/ � 0 for v 2 R:

The remaining part of the assertion needs more efforts. Since the .C; 0/-limit and
the .C; 1/-limit of the Cauchy principal value of the Fourier transform of g produce
the same value for Og.v/, as we have seen in the previous proof, we conclude that

'n.v/ WD 1p
2�

Z n

�n

jtj
n

g.t/e�itv dt (34)

approaches zero pointwise as n ! 1: The definition of g in (33) implies that g is
continuously differentiable on R n f0g, 	.t/ D g.t/C tg0.t/ for t ¤ 0 and tg0.t/ ! 0

as t ! 0; furthermore, g.t/ ! 0 as t ! ˙1: Thus, writing (34) as

'n.v/ D 1p
2� n

Z n

0

�
tg.t/e�itv C tg.�t/eitv

�
dt;

we may perform integration by parts for v ¤ 0 and obtain

'n.v/ D ip
2� v


g.n/e�inv � g.�n/einv

� 1

n

Z n

0

��
g.t/C tg0.t/

�
e�itv � �

g.�t/ � tg0.�t/
�
eitv
�

dt

�
:

This shows that

j'n.v/j � 1p
2� jvj

�
jg.n/j C jg.�n/j C 1

n

Z n

�n

ˇ̌
g.t/C tg0.t/

ˇ̌
dt

	
: (35)

By hypothesis and Property (i), jg.t/j and jg.t/C tg0.t/j approach zero as t ! ˙1:

Hence given ı > 0; there exists a T > 0 such that jg.t/C tg0.t/j < ı for jtj � T ,
and so for all n � T ,

1

n

Z n

�n

ˇ̌
g.t/C tg0.t/

ˇ̌
dt � 1

n

Z T

�T

ˇ̌
g.t/C tg0.t/

ˇ̌
dt C 2.n � T/

n
ı:

This implies that

lim
n!1

1

n

Z n

�n

ˇ̌
g.t/C tg0.t/

ˇ̌
dt D 0:

Therefore we can conclude from (35) that, given v� > 0 and " > 0, there exists an
n0 2 N such that

j'n.v/j < " for n � n0; jvj � v�: (36)
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In the next step, we turn to Ogn as given by (32) and note that it is continuously
differentiable with

Og 0
n.v/ D � ip

2�

Z n

�n

�
1 � jtj

n

	
tg.t/e�itv dt:

The integrand is also continuously differentiable, and so we may perform an
integration by parts to obtain

v Og 0
n.v/ D � 1p

2�

Z n

�n

��
1 � jtj

n

	 �
g.t/C tg0.t/

� � jtj
n

g.t/

	
e�itv dt

D � 1p
2�

Z 1

�1
hn.t/

�
g.t/C tg0.t/

�
e�itv dt C 'n.v/;

with hn given by (31). The last integral is the Fourier transform of a continuous
positive definite function of compact support. By [14, Theorem 3.2.2], it follows that

1p
2�

Z 1

�1
hn.t/

�
g.t/C tg0.t/

�
e�itv dt � 0 .v 2 R/:

Consequently, taking into account (36), we see that, given v� > 0 and " > 0; there
exists an n0 2 N such that

v Og 0
n.v/ < " for n � n0; jvj � v�: (37)

We are now ready for showing that Og is nonincreasing on .0;1/. Assume to the
contrary that there exist points 0 < v1 < v2 at which Og.v1/ < Og.v2/: Set

� WD Og.v2/ � Og.v1/; v� WD v1; " WD �

2

v1

v2 � v1
and let n0 be such that (37) holds. As we know from the proof of Lemma 8, Ogn.v/ !
Og.v/ as n ! 1; and so there exists an n1 2 N such that

Ogn.v2/ > Og.v2/ � �

4
; Ogn.v1/ < Og.v1/C �

4
for n � n1: (38)

Thus, if n � maxfn0; n1g; we obtain from (38) and the mean value theorem that

0 <
�

2
< Ogn.v2/ � Ogn.v1/ D Og 0

n. Qv/ .v2 � v1/;

where Qv 2 Œv1; v2�: This implies

Qv Og 0
n. Qv/ >

�

2

Qv
v2 � v1 � �

2

v1

v2 � v1 D ";

contradicting (37). Hence Og is nonincreasing on .0;1/:
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The proof is completed by an analogous consideration on .�1; 0/ or by
replacing g by g and noting that Og.v/ D Og.�v/: �

For the subsequent applications of Lemmas 8 and 9, the following observations
will be useful, which correspond to Remark 2.

Remark 4. For real-valued f 2 C , define g by

g.x/ WD � 1

2

�
f .x/C f .�x/

�
; x 2 R: (39)

Then Rtr
� Œf � D �Rtr

� Œg�: In terms of g, formula (27)
takes the form

Rtr
� Œf � D 2

p
2� lim

ı!0C

1X
nD1

Og.2n�/e�2n�ı: (40)

4.2 Positivity

The following theorem corresponds to Theorem 1. With Remark 4 in mind, it is
easily proved by employing Lemmas 5–8.

Theorem 5. Let f 2 C be real-valued and suppose that g, defined in (39), is
positive definite. Then the remainders Rtr

� Œf � are non-negative. Moreover,

Rtr
� Œf � � Rtr

2� Œf � � � � � � Rtr
2k�
Œf � � � � � � 0 (41)

for each � 2 .0;1/ and Rtr
2k�
Œf � ! 0 as k ! 1.

A simple sufficient condition for g to be positive definite is due to Pólya [14,
Theorem 4.3.1]. In our setting it may be stated as follows.

Proposition 6. Let f 2 C be real-valued and suppose that g, defined in (39), is
convex on .0;1/. Then g is positive definite.

Examples. Proposition 6 applies to �e�jxj but it does not apply to f .x/ WD
�e�jxj cos x. However, Theorem 5 applies to f since g D �f and g is positive
definite as it is a product of two positive definite functions.

4.3 Monotonicity

The following theorem corresponds to Theorem 3.
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Theorem 6. Let f 2 C be real-valued and continuously differentiable on R n f0g
with finite one-sided derivatives at 0. Suppose that tf 0.t/ ! 0 as t ! ˙1: Define
	 W R ! R by

	.0/ WD g.0/; 	.t/ WD g.t/C tg0.t/ .t 2 R n f0g/

with g given by (39). If 	 is positive definite, then

Rtr
�1
Œf � � Rtr

�2
Œf � � 0 for �2 > �1 > 0 .�1; �2 2 R/ (42)

and Rtr
� Œf � ! 0 as � ! 1:

Proof. Noting that g may be represented as in (33), we find in view of Lemma 5
that the hypotheses of Lemma 9 are satisfied. The conclusion of this lemma, used
in connection with Lemma 6 and formula (40), easily shows that (42) holds. The
convergence to 0 follows from (42) and the convergence to 0 of the sequence
.Rtr

n� Œf �/n2N known from Lemma 7. �

A simple sufficient condition for f to satisfy the hypotheses of Theorem 6 can be
obtained with the help of a result of Askey [3, Theorem 1].

Proposition 7. Let f 2 C be real-valued and continuously differentiable on Rnf0g
with finite one-sided derivatives at 0. Suppose that f .0/ < 0 and f 0.x/ � f 0.�x/ is
convex for x > 0. Then f satisfies the hypotheses of Theorem 6.

Examples. Let f .x/ WD �e�jxj: Then Theorem 6 and Proposition 7 are applicable
and yield that (42) holds. The proposition is a little bit more convenient.

Next let

f .0/ WD �1; f .x/ WD � sin x

x
e�jxj .x 2 R n f0g/:

Here Proposition 7 certainly fails since f oscillates an infinite number of times. But
Theorem 6 applies. We find that

	.t/ WD e�jtj�cos t � sin jtj�:

By expressing 	 with the help of Euler’s formulae as a sum of exponential functions,
we can calculate its Fourier transform and obtain

O	.v/ D 1p
2�

4v2

4C v4
:

This is a continuous, non-negative function that belongs to L1.R/: Therefore the
Fourier inversion formula applies and shows in view of Bochner’s theorem that 	 is
positive definite. Hence (42) holds.
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4.4 Interconnections with the Midpoint Method

On R, the midpoint method may be introduced as

Z 1

�1
f .x/ dx D �

�

1X
�D�1

f

�
.2� C 1/�

2�

	
C Rmi

� Œf � .� > 0/:

Since the integral is invariant under a translation of the argument of f , we see that
the midpoint method is obtained by applying the trapezoidal method to the function
f .� C �=.2�//. Its Fourier transform is Of .v/eiv�=.2�/: Therefore (27) yields

Rmi
� Œf � D �p

2� lim
ı!0C

1X
nD1
.�1/n

hOf .2n�/C Of .�2n�/
i

e�2n�ı

D 2
p
2� lim

ı!0C

1X
nD1
.�1/n Og.2n�/ e�2n�ı

with g given by (39).
Analogously to Propositions 4 and 5, the following statements are easily verified.

Proposition 8. Under the hypotheses of Theorem 5, there holds

ˇ̌Rmi
� Œf �

ˇ̌ � Rtr
� Œf � .� > 0/:

Proposition 9. Under the hypotheses of Theorem 6, there hold

� Rtr
� Œf � � Rmi

� Œf � � 0 .� > 0/ (43)

and

ˇ̌Rmi
�1
Œf � � Rmi

�2
Œf �
ˇ̌ � Rtr

�1
Œf � � Rtr

�2
Œf � .0 < �1 < �2/:

Inequalities (43) imply that

Qtr
� Œf � �

Z 1

�1
f .x/ dx � Qmi

� Œf �;

where the quantities on the left-hand side and the right-hand side denote the
approximations obtained by the trapezoidal and the midpoint method, respectively.
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23. Szegő, G., Turán, P.: On the monotone convergence of certain Riemann sums. Publ. Math.

Debr. 8, 326–335 (1961)



A Unified and General Framework for
Enriching Finite Element Approximations

Allal Guessab and Yassine Zaim

Abstract In this chapter our goal is to develop a unified and general framework
for enriching finite element approximations via the use of additional enrichment
functions. A crucial point in such an approach is to determine conditions on
enrichment functions which guarantee that they generate a well-defined finite
element. We start by giving under some conditions an abstract general theorem
characterizing the existence of any enriched finite element approximation. After
proving four key lemmas, we then establish under a unisolvence condition a
more practical characterization result. We show that this proposed method easily
allows us to establish a new class of enriched non-conforming finite elements
in any dimension. This new family is inspired by the Han rectangular element
and the nonconforming rotated element of Rannacher and Turek. They are all
obtained as applications of a new family of multivariate trapezoidal, midpoint, and
Simpson type cubature formulas, which employ integrals over facets. In addition, we
provide analogously a general class of perturbed trapezoidal and midpoint cubature
formulas, and use them to build a new enriched nonconforming finite element of
Wilson-type.
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1 Introduction and Motivation

Let us start by recalling some conventions and definitions. A finite element is a
triplet .K; ˙org

K ;F
org
K /, where

1. K is a polytope in R
d (e.g., a polygon in R

2 or a polyhedron in R
3);

2. F
org
K is a finite-dimensional space of real-valued functions defined over the set

K, we let n denote the dimension of F org
K ;

3. ˙org
K D ˚

Lorg
i ; i D 1; : : : ; n

�
a unisolvent, linearly independent set of linear

functionals on F
org
K :

This means that for each vector a WD .a1; : : : ; an/ 2 R
n, there exists one and only

one element in F
org
K such that ai is the image of the i-th functional Lorg

i ; i D 1; : : : ; n.
Functionals Lorg

i are known as degrees of freedom of the finite element, while the
basis functions are the functions fj 2 F

org
K ; j D 1; : : : ; n; such that

Lorg
i .fj/ D ıij; i D 1; : : : ; n ; (1)

where ıij stands for the Kronecker delta symbol. In engineering literature basis
functions are called shape functions. It can easily be verified that the basis functions
fi; i D 1; : : : ; n spans the finite element space F

org
K , that is

F
org
K D span ffi; i D 1; : : : ; ng : (2)

Also note that the triplet .K; ˙org
K ;F

org
K / is a finite element if and only if there exists

a basis
˚
qorg

i ; i D 1; : : : ; n
�

for F org
K such that the n�n matrix with entries Lorg

j .qorg
i /

is nonsingular. Recall that in the context of standard local finite element the space
F

org
K usually consists of polynomial functions. However, it already observed that the

approximations used of classical finite element method are not effective for treating
problems with singular or oscillatory solutions. In order to overcome this issue,
various approaches have been proposed in literature. A natural way to improve its
effectiveness is to enrich the approximation space F org

K by adding more appropriate
additional functions (not necessary polynomials), we refer, e.g., to [8, 9, 15, 16].
Therefore, here we would like to enrich the space F

org
K with a given set of new

linearly independent functions eenr
1 ; : : : ; e

enr
nenr belonging to a subset of C.K/; as

follows:

F enr
K WD F

org
K ˚ ˚

eenr
1 ; : : : ; e

enr
nenr

�
: (3)

Here C.K/ denotes the space of continuous real-valued functions on K: We assume
throughout that the dimension of the enriched approximation space F enr

K is n C nenr:

In this chapter these latter are referred to as “enrichment functions”, since their
incorporation in the space F

org
K can provide better approximation than standard

polynomial basis functions, used in the classical finite element. The enrichment
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functions that appear in (3) are usually chosen through the partition-of-unity
concept, see, e.g., [1–3, 5–7, 13, 19, 21]. In general, the choice of these functions
depends on the geometry, the boundary conditions, and the equation being solved.

Let us assume that we are given a set of enrichment functions

˚
eenr
1 ; : : : ; e

enr
nenr

�
; (4)

and a set of distinct degrees of freedom

˙ enr
K WD fLi; i D 1; : : : ; n C nenrg ; (5)

such that the original approximation space F
org
K is ˙ enr

K -unisolvent, then one of the
main challenges in such enriched approximation method is:

How to suitably choose them, in such a way that the enriched triplet
.K; ˙ enr

K ;F enr
K / also generates a well-defined finite element?

Note that in our consideration the enriched degrees of freedom ˙ enr
K could not

include the original ones˙org
K . Our main focus here is the development of a concept

for local enrichment of any conforming or nonconforming finite element. This
chapter is a continuation of the recent work initiated in an earlier paper [2], where
such enriched finite element approximations were considered for the first time (for
standard linear elements).

Hence, it is the purpose of this chapter to answer the above question. As we
will see below, the results obtained by this method provide a systematic way of
an enrichment strategy of any given original space F

org
K . The organization of the

chapter is as follows: Sect. 2 establishes an abstract general theorem given necessary
and sufficient conditions to guarantee that the enriched triplet .K; ˙ enr

K ;F enr
K / is

a well-defined finite element. Furthermore, after proving some key properties, we
then give under a unisolvence condition a more practical characterization result.
For the purpose of illustration, in Sect. 3, we apply our proposed method, in a
practical situation, to obtain new enriched nonconforming finite elements in any
dimension. This new family is inspired by the Han rectangular element [17] and
the nonconforming rotated element of Rannacher and Turek [23]. Our significant
results, derived in Theorems 3, 5 and 7, show that the approximation errors of a
new family of multivariate trapezoidal, midpoint, and Simpson cubature formulas
play a central role in the existence of our new elements. These latter natural
generalize the one-dimensional midpoint, trapezoidal, and Simpson’s rules, and
employ integrals over facets. In addition, we provide analogously a general class
of perturbed trapezoidal and midpoint cubature formulas, and use them to build a
new enriched nonconforming finite element of Wilson-type, see, e.g., [12] and [25].
Finally, in Sect. 4 we summarize our main results and state some open problems.
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Finding suitable enrichment functions is crucial for the success of the enriched
finite-element approximation, see, e.g., [18, Sect. 2.3]. All our new practical ele-
ments use enrichment functions which are based on a single univariate function that
depends on additional free parameters. Hence, the proposed general class may offer
more appropriate and adapted ones to solve particular problems.

2 Existence and Characterization of Enriched Finite
Element Approximations

We start by establishing an abstract general theorem given necessary and sufficient
conditions to ensure that the enriched triplet .K; ˙ enr

K ;F enr
K / is actually a well-

defined finite element. Here, F enr
K is the enriched approximation space (3) and ˙ enr

K
is the set of enriched degrees of freedom (5). Our results extend those of Achchab
et al. [2] obtained in the case when the original space F

org
K is the space of affine

functions. In particular, many of our proofs in this section are adapted from [2].
However, let us mention that we do not use here the concept of center of gravity
with respect to a functional. This notion played an important role in this earlier
paper.

Theorem 1. Given a linearly independent set of vectors

n
ci WD .ci;1; : : : ; ci;nCnenr/> 2 R

nCnenr
; i D 1; : : : ; nenr

o
: (6)

Define the set of distinct linear functionals on F enr
K

� enr
K WD

8<
:Li WD

nCnenrX
jD1

cijLj; i D 1; : : : ; nenr

9=
; ; (7)

and assume that for each i; Li vanishes on F org
K : Let F enr

K , ˙ enr
K be, respectively,

defined as in (3) and (5), such that F org
K is ˙ enr

K -unisolvent. Then, the following
statements are logically equivalent:

(i) .K; ˙ enr
K ;F enr

K / is a finite element,
(ii) .K; � enr

K ;E enr
K / is a finite element,

with

E enr
K D span

˚
eenr
1 ; : : : ; e

enr
nenr

�
:

Proof. Recall first that in our consideration we have tacitly assumed:

dim.F enr
K / D card.˙ enr

K / D n C nenr;
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dim.E enr
K / D card.� enr

K / D nenr;

where the cardinality of a set A, written as card.A/, is the number of elements in
A: In order to prove the sufficient condition, let us assume that we have a function
f 2 F enr

K such that

Lj.f / D 0 .j D 1; : : : ; n C nenr/: (8)

Since each f 2 F enr
K may be decomposed into the standard part p 2 F

org
K and into

an enriched part e 2 E enr
K ; as:

f D p C e;

and the Li’s belong to span.˙ enr
K /; it follows from (8) that for each i D 1 : : : ; nenr

we have

0 D Li.f /

D Li.p/C Li.e/

D Li.e/:

To obtain the last inequality, we have used the fact that functional Li vanishes on
F

org
K : Therefore, since .K; � enr

K ;E enr
K / is a finite element, we have that e D 0: Hence

f D p is a function in F
org
K . But then the unisolvence of F org

K with respect to ˙ enr
K

implies that f D 0. Hence we have shown that F enr
K is ˙ enr

K unisolvent, and so
.K; ˙ enr

K ;F enr
K / is a finite element.

In order to establish the necessary condition, let us assume the contrary, that
is, the triplet .K; � enr

K ;E enr
K / is not a finite element. This means that there exists a

function e 2 E enr
K ; such that e is not identically zero on K and

Li.e/ D 0; i D 1; : : : ; nenr:

Since e D Pnenr

iD1 �ieenr
i , where �1; : : : ; �nenr 2 R; then the above equations can be

represented in the matrix form as:

0
B@

L1.eenr
1 / : : : L1.eenr

nenr/
:::

:::

Lnenr.eenr
1 / : : : Lnenr.eenr

nenr/

1
CA

0
B@
�1
:::

�nenr

1
CA D

0
B@
0
:::

0

1
CA ; (9)

in which the matrix on the left-hand side has zero determinant. This consequently
implies that there exist numbers �1; : : : ; �nenr 2 R, not all zero, for which
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L WD
nenrX
iD1

�iLi

vanishes at all enrichment functions eenr
1 ; : : : ; e

enr
nenr : Since L is linear then it vanishes

on E enr
K . Now, using the fact that for each i;Li vanishes also on F

org
K ;we can deduce

that L vanishes on the whole space F enr
K : Expressing Li in terms of L1; : : : ;LnCnenr

and interchanging the order of summation, we then have for all f 2 F enr
K

L .f / D
nenrX
iD1

�i

nCnenrX
jD1

ci;jLj.f /

D
nCnenrX

jD1

 
nenrX
iD1

ci;j�i

!
Lj.f /

D 0:

Now, since .K; ˙ enr
K ;F enr

K / is a finite element then the linear independence of
L1; : : : ;LnCnenr implies that

nenrX
iD1

ci;j�i D 0; .j D 1; : : : ; n C nenr/; (10)

or equivalently:

nenrX
iD1

�ici D 0: (11)

But, taking into account that ci; i D 1; : : : ; nenr; are assumed linearly independent
vectors in R

nCnenr
, then the coefficients �1; : : : ; �nenr must all be zero. This is a

contradiction to our assumption. This completes the proof of the characterization
Theorem. ut

It is noteworthy that this proof is clearly not constructive, since it gives no
indication of a way to choose the needed vectors ci: Hence, the numerical success
of the above Theorem 1 will depend on the answers to the following two questions:

1. Under what conditions on ˙ enr
K does the required vectors of the form

given in (6) exist?
2. How to find explicit expressions of such vectors?

Before answering these questions, we first need to introduce some additional
notation and terminology. Since we have assumed that F org

K has dimension n; then
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it has a basis
˚
qorg

i ; i D 1; : : : ; n
�
;

whose elements belong to F
org
K : Define the set of vectors

wi WD .Li.q
org
1 /; : : : ;Li.q

org
n //> 2 R

n; .i D 1; : : : ; n C nenr/; (12)

where Li; i D 1; : : : ; n C nenr, is any linear functional from ˙ enr
K : Let us denote by

A the matrix defined by

A WD
�

w1; : : : ;wnCnenr
�

2 R
n	.nCnenr/; (13)

whose columns are the vectors defined in (12). This matrix will play an important
role in determining the required vectors ci in the characterization Theorem 1.
Throughout the chapter, the scalar product of two vectors x and y is denoted by
hx; yi with appropriate size.

In order to state and prove a more practical characterization result, we need
to establish under certain conditions four key lemmas on the enriched degrees of
freedom ˙ enr

K .
The following important but simple step helps us to characterize all linear

functionals

L 2 span fLi; i D 1; : : : ; n C nenrg ;
which vanish on the original space F org

K : This result is extremely useful, since it will
be used to find explicitly the required vectors ci in the characterization Theorem 1.

Lemma 1. Given a vector c D .c1; : : : ; cnCnenr/> 2 R
nCnenr

; and define the
functional L by

L WD
nCnenrX

iD1
ciLi: (14)

Then the following statements are equivalent:

(i) L vanishes on F org
K :

(ii) The vector c belongs to ker.A/, where A is the n � .n C nenr/ matrix defined
by (13) and

ker.A/ WD
n
v 2 R

nCnenr
; Av D 0

o
:

Proof. We begin by showing that (i) implies (ii). Assume that L .q/ D 0 for all
q 2 F

org
K : For each v 2 R

n, let us define the function q W Rd ! R by

q.x/ WD hv;�.x/i; (15)
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with � W R
d ! R

n having as component functions qorg
k , k D 1; : : : ; n: It is not

difficult to observe that for every v 2 R
n; q belongs to F

org
K : Since, functional L is

linear, then it follows that

L .q/ D hv;L .�/i

D
*

v;
nCnenrX

iD1
ciLi.�/

+

D
*

v;
nCnenrX

iD1
ciwi

+

D hv;Aci : (16)

Hence we get for each v 2 R
n

hv;Aci D 0:

According to the fact that the above equality holds for all v 2 R
n; we conclude that

Ac D 0: Hence, c must belong to the kernel of A. This verifies (ii).
We show that (ii) implies (i). Let us assume now that the vector c belongs to

ker.A/: But, if q belongs to F
org
K ; then by (16), L .q/ may be represented as

L .q/ D hv;Aci ;

with some vector v 2 R
n: As the vector c belongs to ker.A/; this implies that L

vanishes on F
org
K and completes the proof. ut

The second Lemma characterizes the linear independence of a given set of linear
functionals:

Li 2 span
˚
Lj; j D 1; : : : ; n C nenr

�
; .i D 1; : : : ; nenr/:

Lemma 2. Given nenr vectors

ci D .ci1; : : : ; ci.nCnenr//
> 2 R

nCnenr
; .i D 1; : : : ; nenr/

and define the nenr functionals

Li WD
nCnenrX

jD1
cijLj .i D 1; : : : ; nenr/: (17)

Assume that L1; : : : ;LnCnenr are linearly independent on some subspace of C.K/.
Then the following statements are equivalent:
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(i) The ci’s are linearly independent.
(ii) The Li’s are linearly independent.

Proof. Let the vectors ci; i D 1; : : : ; nenr be linearly independent and let us assume
that

Pnenr

iD1 �iLi D 0 for some real numbers �1; : : : ; �nenr . Expressing Li in terms of
L1; : : : ;LnCnenr and interchanging the order of summation, we then have

nenrX
iD1

�i

nCnenrX
jD1

ci;jLj D
nCnenrX

jD1

 
nenrX
iD1

ci;j�i

!
Lj D 0 :

Since L1; : : : ;LnCnenr are assumed to be linear independent, then it follows

nenrX
iD1

ci;j�i D 0; .j D 1; : : : ; n C nenr/: (18)

Equivalently we therefore have:

nenrX
iD1

�ici D 0: (19)

But the ci’s are linearly independent in R
nCnenr

, then the �i’s must all be zero. This
shows that the Li’s must be linearly independent. This verifies that (i) implies (ii).

Now, let the functionals Li; i D 1; : : : ; nenr be linearly independent and let us
assume that

Pnenr

iD1 �ici D 0 for some real numbers �1; : : : ; �nenr . This obviously
implies that

nenrX
iD1

�ici;j D 0 .j D 1; : : : ; n C nenr/:

Thus multiplying by Lj and summing over j and interchanging the order of
summation, we then have

nCnenrX
jD1

 
nenrX
iD1

ci;j�i

!
Lj D

nenrX
iD1

�i

nCnenrX
jD1

ci;jLj

D
nenrX
iD1

�iLi

D 0:

Hence, the linear independence of the Li’s implies that the �i’s must all be zero.
This verifies that (ii) implies (i) and completes the proof of the Lemma. ut
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Remark 1. We note in passing that from the above proof, it is clear that (ii) implies
(i) continue to hold without the assumption that the enriched degrees of freedom
L1; : : : ;LnCnenr are assumed to be linearly independent.

Lemma 1 tells us that we should seek the required vectors ci in the characteriza-
tion Theorem 1, among those belonging to the kernel of the matrix A.

For the third step, we prove the following Lemma, which will be the key to the
characterization of the required F

org
K �unisolvence property needed in Theorem 1.

Lemma 3. The following statements are equivalent:

(i) The set of linear functionals ˙ enr
K is F org

K -unisolvent.
(ii) The vectors wi; i D 1; : : : ; n C nenr; satisfy

span
n
w1; : : : ;wnCnenr

o
D R

n: (20)

Proof. Let us denote U WD span
˚
w1; : : : ;wnCnenr�

and assume the contrary that
dimU < n then the orthogonal complement of U in R

n has a positive dimension.
This implies the existence of a non-zero vector v 2 R

n such that hv;wji D 0; j D
1; : : : ; n C nenr. Let us now define the function f W Rd ! R by

f .x/ WD hv;�.x/i; (21)

with � W Rd ! R
n the vector valued function having as component functions qorg

i ,
i D 1; : : : ; n: It is readily verified that function f defined as above satisfies the
following three properties:

(a) it belongs to F
org
K I

(b) it is different from zero;
(c) it satisfies for j D 1; : : : ; n C nenr, Lj.f / D hv;wji D 0:

Now a simple inspection shows that these hold together if and only if F org
K is not

˙ enr
K -unisolvent. A contradiction, which completes the proof. ut
The key step is the following Lemma, which shows under the F

org
K unisolvence

with respect to ˙ enr
K , the existence of a linearly independent set of nenr vectors

belonging to ker.A/, where A is the matrix defined in (13).

Lemma 4. Assume that ˙ enr
K is F org

K -unisolvent. Then there exists a set of vectors

ci D .ci;1; : : : ; ci;nCnenr/> 2 R
nCnenr

.i D 1; : : : ; nenr/; (22)

such that:

(i) they are linearly independent;
(ii) they belong to ker.A/; where A is the matrix defined in (13).

Proof. Lemma 3 immediately tells us that the rank of the matrix A is n. Hence,
since its rows are of length n C nenr; then they span an n-dimensional subspace
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U of RnCnenr
. Thus the orthogonal complement of U with respect to R

nCnenr
is of

dimension nenr. We conclude that there exists a set of linearly independent vectors
ci; i D 1; : : : ; nenr; such that each vector ci is orthogonal to all row vectors of A: This
shows that statements (i) and (ii) hold. ut

We now come to our practical characterization Theorem.

Theorem 2. Assume that ˙ enr
K is F org

K -unisolvent. Let ci; i D 1; : : : ; nenr be the
vectors (22) for which statements (i) and (ii) of Lemma 4 hold. Define the vectors

ei WD .L1.e
enr
i /; : : : ;LnCnenr.eenr

i //> 2 R
nCnenr

; .i D 1; : : : ; nenr/: (23)

Then the triplet .K; ˙ enr
K ;F enr

K / constitutes a finite element if and only if

det

0
B@

˝
c1; e1

˛
: : :

˝
c1; enenr ˛

:::
:::˝

cnenr
; e1
˛
: : :

˝
cnenr

; enenr ˛

1
CA ¤ 0 : (24)

Proof. Since the ci’s are linearly independent and belonging to ker.A/, then by
Lemmas 1 the Li’s vanish on F

org
K : Note that here Li.eenr

j / can be expressed
simply as

Li.e
enr
j / D ˝

ci; ej
˛
: (25)

Hence, Theorem 1 applies and gives the desired result. ut
At this stage, we still have the following problem: If the vectors ci given by (22)

have been determined in such a way that statements (i) and (ii) of Lemma 4
are satisfied, the question now is whether we can choose them in order that the
determinant defined in (24) is not zero. We may also note in passing that the value
of the latter does not depend on the choice of the vectors ci. From a practical point
of view, as we shall do later, we will choose those that generate a sparse matrix.

The construction and the choice of such vectors will be explained carefully
below in the context of the enrichment of the Han rectangular element [17], the
nonconforming rotated element of Rannacher and Turek [23], and the Wilson type
nonconforming element, see, e.g., [12] and [25].

3 Applications: Enrichment of Nonconforming Finite
Elements

For illustration purposes we discuss in detail how the proposed method can be
applied to enrich three well-known nonconforming elements in any dimension:
the Han rectangular element, the rotated parallelogram element of Rannacher and
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Turek, and the Wilson type nonconforming element. As we will see, a key point
in the derivation of these elements is a new family of multivariate trapezoidal and
Simpson type cubature formulas. The principal results of this section are given in
Theorems 3–6 below, where our approach is applied to a general class of enrichment
functions.

3.1 A New Enriched Nonconforming Finite Element
of Han-Type

The formulation of the rectangular element proposed by Han in [17] is obtained by
introducing the following local space

QH WD
�

1; x; y; x2 � 5

3
x4; y2 � 5

3
y4

�

and the QH-unisolvent set of linearly independent linear forms read

Ltr
i .f / D 1

jlij
Z

li

f d�; i D 1; : : : ; 4;

Ltr
5 .f / D 1

jKj
Z

K
f .x/ dx;

with li; i D 1; : : : ; 4; the four edges of the rectangle K: In our context, this element
can be seen as an enriched element. Here, the set of affine functions is the original
space enriched by adding two enrichment functions x2 � 5

3
x4; y2 � 5

3
y4:

To precisely define our new elements, we first introduce some additional
notation. The original space F

org
K and the triplet .K; ˙ enr

K ;F enr
K / of these elements

are defined by:

• K is the hyper-rectangle in R
d defined by

K WD fx; ˇi1 � xi � ˇi2; i D 1; : : : ; dg ;

•

F
org
K D P1 WD span f1; x1; : : : ; xdg : (26)

•

F enr
K WD F

org
K ˚ ˚

eenr
1 ; : : : ; eenr

d

�
: (27)

•

˙enr
K WD ˚

Ltr
i ; i D 1; : : : ; 2d C 1

�
; (28)
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where

Ltr
i .f / D 1

jFij
Z

Fi

f d�; i D 1; : : : ; 2d;

Ltr
2dC1.f / D 1

jKj
Z

K
f .x/ dx:

Here F1; : : : ; F2d are 2d facets of K. We choose the special enumeration of all facets
as follows: for each j D 1; : : : ; d; Fj and FjCd are subsets of the hyperplanes xj D ˇj1

and xj D ˇj2, respectively.
We now introduce a new family of a multivariate version of the well-known

trapezoidal rule, which is useful in subsequent manipulation. For each i D 1; : : : ; d;

we want to call the integration formula

Ltr
2dC1.f / D 1

2

�
Ltr

i .f / C Ltr
iCd.f /

� C T tr
i .f / (29)

the trapezoidal cubature formula, since for the one-dimensional case, d D 1; it
coincides with the trapezoidal rule.

One property of the trapezoidal cubature formula (29), which is fundamental to
our work is the following simple but key observation:

Lemma 5. For each i D 1; : : : ; d; the approximation error T tr
i of the trapezoidal

cubature formula vanishes for all affine functions.

Proof. Indeed, it is obvious that T tr
i necessarily vanishes for constant functions.

Moreover, the following basic properties of Ltr
i ; i D 1; : : : ; 2d C 1 can be shown

to hold

Ltr
i .xj/ D ˇj1 C ˇj2 C �

ˇj1 � ˇj2
�

ıij

2
; i; j D 1; : : : ; d;

Ltr
iCd.xj/ D ˇj1 C ˇj2 C �

ˇj2 � ˇj1
�

ıij

2
; i; j D 1; : : : ; d;

Ltr
2dC1.xj/ D ˇj1 C ˇj2

2
; i; j D 1; : : : ; d:

Hence, we can deduce that

Ltr
2dC1.xj/ D Ltr

i .xj/ C Ltr
iCd.xj/

2
i; j D 1; : : : ; d: (30)

This shows that the approximation error T tr
i vanishes on P1. ut
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For later use we need the following result:

Lemma 6. Let p be an affine function. Then, the following statements are
equivalent:

(i) Ltr
j .p/ D 0; for j D 1; : : : ; 2d;

(ii) p D 0:

Proof. To prove (i) implies (ii), assume that p is an affine function such that Ltr
j .p/ D

0; for j D 1; : : : ; 2d: By Lemma 5, we can deduce that Ltr
2dC1.p/ D 0: Denote by

�j the outer normal unit vector on Fj and note that @p=@�j and krpk are constants.
Then, as can easily be verified, by Green’s formula, we get

krpk2 jKj D
Z

K
krpk2dx

D �
Z

K
p�p dx C

2dX
jD1

Z

Fj

p
@p

@�j
d�

D
2dX

jD1

@p

@�j

Z

Fj

p d�

D
2dX

jD1

@p

@�j

ˇ̌
Fj

ˇ̌
Ltr

j .p/

D 0:

Consequently,

krpk2 D 0;

and so p is a constant. But then Ltr
2dC1.p/ D 0 implies that p is identically zero.

Since the converse implication is easy to verify, the proof is complete. ut
Now we can give the basic result on which our enrichment approach is based.

Indeed, with notation of this section, the following result shows that for each i D
1; : : : ; d; the functional Li figuring in (25) can be taken as the approximation error
of the trapezoidal cubature formula T tr

i :

Theorem 3. The triplet .K; ˙ enr
K ;F enr

K / constitutes a finite element if and only if

det

0
B@

T tr
1 .e

enr
1 / : : : T tr

1 .e
enr
d /

:::
:::

T tr
d .e

enr
1 / : : : T tr

d .e
enr
d /

1
CA ¤ 0 : (31)
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Proof. First we suppose that K is the hypercube K0 WD Œ�1; 1�d: The crucial point
in application of Theorem 2 is now to determine the explicit expressions for the
vectors ci given by (22), when the degrees of freedom are defined by (28). The first
step of this proof is to find the matrix A defined in (13). In the present situation,
taking into account that

�Ltr
j .xi/ D Ltr

jCd.xi/ D ıij; .j D 1; : : : ; d; i D 1; : : : d/;

Ltr
2dC1.xi/ D 0; .i D 1; : : : d/;

we get that the matrix A has the simple form:

A D


12dC1
A1 A2 0d

�
2 R

.dC1/	.2dC1/; (32)

where 12dC1 is a .2d C 1/-dimensional vector, whose all components are equal to 1,
A2 D �A1 D Id	d is the d � d identity matrix, 0d 2 R

d is the zero vector. Thanks
to Lemma 6, we know that ˙ enr

K is F org
K �unisolvent then Lemma 4 applies. It tells

us that there is a linearly independent set of d vectors

ci D .ci;1; : : : ; ci;2dC1/> 2 R
2dC1 .i D 1; : : : ; d/;

belonging to ker.A/: Hence for each i; i D 1; : : : ; d, ci must be the solution of the
following linear system:

Aci D 0; (33)

where A is the matrix given by (32). Then, the above system is equivalent to:

2dC1X
jD1

ci;j D 0; (34)

�ci;j C ci;jCd D 0; .j D 1; : : : ; d/: (35)

Because there are more unknowns than linear equations, then this system has an
infinite number of solutions. Let C denote the matrix in which the ith row is the
transpose of the vector ci. Now in order that the row vectors of C satisfy the criterion
for linear independence, we may choose C, for instance, the matrix

C D �� 1
2
Id	d � 1

2
Id	d 1d

� 2 R
d	.2dC1/; (36)

where 1d is a d-dimensional vector, whose all components are equal to 1: Here, our
conditions (34) and (35) are obviously satisfied. Moreover, the submatrix constituted
by the first d columns of the matrix in (36) is � 1

2
times the identity matrix. Hence

its determinant is different from zero, which ensures the linear independence of the
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row vectors. This shows that Theorem 2 applies, and consequently the Li WD T tr
i ’s

form a set of admissible functionals.
The case of general K is reduced to K0 by a coordinate transformation in the

calculation of the integrals. ut
We give here a direct proof of Theorem 3, using only Lemmas 1 and 5. Indeed,

for each i D 1; : : : ; d; the approximation error of the trapezoidal cubature formula
T tr

i enjoys the following properties:

(i) T tr
i 2 span

n
Ltr

j ; j D 1; : : : ; 2d C 1
o
:

(ii) By Lemma 5, we also know that T tr
i vanishes on F

org
K WD P1:

Then Lemma 1 implies the existence of a system of vectors ci 2 ker.A/; i D
1; : : : ; d, which are associated with the approximation errors T tr

i . Moreover, a simple
inspection shows that these vectors are exactly the same as those defined by the
matrix C in (36). Finally, as we have seen before, the row vectors of C are linear
independent, then the Li WD T tr

i ’s form a set of admissible functionals.
Having determined the admissible linear functionals Li; i D 1; : : : ; d; the rest of

this section is devoted to seek necessary and sufficient conditions on the enrichment
functions eenr

i ; i D 1; : : : d; under which the determinant defined in (31) is nonzero.
Our objective here is to obtain a more general set of enrichment functions than

those commonly used in the particular case of Han’s polynomial functions, see
[17, 20, 22]. The main advantage of the new elements is that they have a great
freedom in selecting enrichment functions eenr

i . More precisely, we show that these
functions can be generated from just one single function e 2 C0Œ�1; 1� that depends
on additional free parameters. It will turn out that the remainder T tr.e/ of the
trapezoidal rule

Z 1

�1
e.t/ dt D e.�1/C e.1/C T tr.e/

will play an important role in the existence of our new elements. Indeed we can
show the following elegant characterization:

Theorem 4. Let K � R
d be a nondegenerate hyper-rectangle and consider the

degrees of freedom Ltr
1 ; : : : ;L

tr
2dC1; given by (28). Let T tr

1 ; : : : ;T
tr
d be given by (29).

Assume that FK D .F1K ; : : : ;FdK/
> is a diagonal affine transformation such that

FK. OK/ D K; where OK the hypercube OK WD Œ�1; 1�d: For a function e 2 C0Œ�1; 1�
define

eenr
i W x 7�!

dX
jD1

˛ije
�
FjK.Ox/

�C ci .i D 1; : : : ; d/; (37)

where ˛ij and ci are some given real numbers, such that
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ˇ̌
ˇ̌
ˇ̌
ˇ

˛11 � � � ˛d1
:::
: : :

:::

˛1d � � � ˛dd

ˇ̌
ˇ̌
ˇ̌
ˇ

¤ 0: (38)

Then, the following statements are equivalent:

(i) The determinant

� WD det

0
B@

T tr
1 .e

enr
1 / : : : T tr

1 .e
enr
d /

:::
:::

T tr
d .e

enr
1 / : : : T tr

d .e
enr
d /

1
CA ¤ 0 : (39)

(ii) The remainder T tr.e/ of the trapezoidal rule is different from zero.

Proof. To simplify the discussion, let us first assume that K is the hypercube OK WD
Œ�1; 1�d: Then, in this case the functions (37) simplify to

eenr
i W x 7�!

dX
jD1

˛ije
�
xj
�C ci; .i D 1; : : : ; d/:

Then a simple calculation shows that for each i D 1; : : : ; d, we have

Ltr
j .e

enr
i / D ci C ˛ije.�1/C 1

2

Z 1

�1
e.t/ dt

X
1�k�d

k¤j

˛ik; j D 1; : : : ; d;

Ltr
jCd.e

enr
i / D ci C ˛ije.1/C 1

2

Z 1

�1
e.t/ dt

X
1�k�d

k¤j

˛ik; j D 1; : : : ; d;

Ltr
2dC1.eenr

i / D ci C 1

2

Z 1

�1
e.t/ dt

X
1�k�d

˛ik:

Therefore, substituting these values in the general expressions of T tr
j .e

enr
i / gives,

after simplification, a simple relation between the errors of the multivariate trape-
zoidal cubatures T tr

j .e
enr
i / and those, which is produced by the classical trapezoidal

rule T tr.e/:

T tr
j .e

enr
i / D 1

2
˛ij

�Z 1

�1
e.t/ dt � e.�1/ � e.1/

	

D 1

2
˛ijT

tr.e/ :
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Thus, we obviously can deduce

� D .T tr.e/ /d

2d
det

0
B@
˛11 : : : ˛d1
:::
: : :

:::

˛1d : : : ˛dd

1
CA : (40)

Hence the desired conclusion holds for K D OK. Now, the case of general K is
reduced to the case of OK by using the affine transformation FK in the calculation of
the functionals (28). This completes the proof of Theorem 4. ut

To avoid unnecessary complication, we have stated Theorem 4 for enrichment
functions of the form (37), however the latter can be extended as follows:

Remark 2. An inspection of the proof of Theorem 4 shows that if the single-
functions ei are taken such that T tr.ei/ ¤ 0; then the above result can be extended
to enrichment functions that have the more general forms

eenr
i W x 7�!

dX
jD1

˛ijei
�
FjK.Ox/

�C ci .i D 1; : : : ; d/: (41)

For d D 2 or d D 3; let K be a d-dimensional rectangle. Han Nonconforming
d-rectangular finite element is useful in practice. It has been extended in many
directions with several possible choice of the enriched approximation space F enr

K :

The first choice was proposed by Han in [17] with

F enr
K D

(
f1; x; yg ˚ fe.x/; e.y/g for d D 2;

f1; x; y; zg ˚ fe.x/; e.y/; e.z/g for d D 3;

where e.t/ D t2 � 5
3
t4; with t 2 Œ�1; 1� : Recently, [20] and [22] extended these

elements to the case e.t/ D t2; with t 2 Œ�1; 1� : All these elements can simply be
deduced from our general Theorem 4 by choosing the matrix with entries ˛ij the
identity matrix and ci D 0 in enrichment functions (37), and by checking that the
remainders T tr.e/ of the trapezoidal rule for all these functions e are different from
zero. Hence, in particular, this methodology allowed us to recover the well-known
nonconforming Han element [17].

3.2 A New Enriched Nonconforming Finite Element
of Rannacher–Turek-Type

Throughout this subsection we assume that: d � 2: The second choice to illustrate
our proposed method is to enrich the well-known nonconforming rotated bilinear
finite element proposed by Rannacher and Turek in [23], where the corresponding
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local finite element space is obtained by rotating the mixed term of the bilinear
element, and assuming as local degree of freedom either the average of the function
over the edge or its value at the mid side node. In order to extend the latter, here
the original space F

org
K and the enriched triplet .K; ˙ enr

K ;F enr
K / of this element are

chosen as follows:

• K is the hyper-rectangle in R
d defined by

K WD fx; ˇi1 � xi � ˇi2; i D 1; : : : ; dg ;
•

F
org
K D P1 WD span f1; x1; : : : ; xdg : (42)

•

F enr
K WD F

org
K ˚ ˚

eenr
1 ; : : : ; e

enr
d�1
�
: (43)

•

˙ enr
K WD ˚

Ltr
i ; i D 1; : : : ; 2d

�
; (44)

where

Ltr
i .f / D 1

jFij
Z

Fi

f d�; i D 1; : : : ; 2d; (45)

with F1; : : : ;F2d are 2d facets of K. We continue to use the special enumeration of
all facets as in the case of the enriched Han element.

Now we present another multivariate version of trapezoid rule. We define the
function L .f / as follows:

L .f / WD 1

2d

dX
jD1

�
Ltr

j .f /C Ltr
jCd.f /

�
; (46)

and therefore introduce, for each i D 1; : : : ; d �1; the trapezoidal cubature formula,
which is supposed to approximate:

L .f / D 1

2

�
Ltr

i .f /C Ltr
iCd.f /

�C Gtr
i .f /: (47)

We make the following remarks:

(a) For each i D 1; : : : ; d � 1; the approximation error of the trapezoidal cubature
formula Gtr

i vanishes for all affine functions.

(b) For each i D 1; : : : ; d � 1; Gtr
i 2 span

n
Ltr

j ; j D 1; : : : ; 2d
o
:
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(c) In view of property (a), Lemma 1 implies the existence of a system of vectors
ci 2 ker.A/; i D 1; : : : ; d � 1, which are associated with the approximation
errors Gtr

i . Moreover, as can be easily verified, these vectors are the row vectors
of the matrix C 2 R

.d�1/	2d where

C D

0
BBB@

˛ ˇ : : : ˇ ˇ ˛ ˇ : : : ˇ ˇ

ˇ ˛ : : : ˇ ˇ ˇ ˛ : : : ˇ ˇ
:::
:::
: : :

:::
:::
:::
:::
: : :

:::
:::

ˇ ˇ : : : ˛ ˇ ˇ ˇ : : : ˛ ˇ

1
CCCA ; (48)

in which

˛ D 1

2d
� 1

2
;

ˇ D 1

2d
:

Let D be the square submatrix formed by the first d � 1 columns of the matrix
C. It is easy to see that the determinant of D is equal to 1

.�2d/d�1 det.E/; where
E is the .d � 1/ � .d � 1/ matrix

E D

0
BBB@

d � 1 �1 : : : �1
�1 d � 1 : : : �1
:::

:::
: : :

:::

�1 �1 : : : d � 1

1
CCCA : (49)

Since E is strictly diagonally dominant, then its determinant is different from
zero. Hence, the rows of C are linearly independent, consequently, the Li WD
Gtr

i ’s form a set of admissible functionals.

Finally, since Theorem 2 applies, there follows:

Theorem 5. The triplet .K; ˙ enr
K ;F enr

K / constitutes a finite element if and only if

det

0
B@

Gtr
1 .e

enr
1 / : : : Gtr

1 .e
enr
d�1/

:::
:::

Gtr
d�1.eenr

1 / : : : Gtr
d�1.eenr

d�1/

1
CA ¤ 0 : (50)

Remark 3. Note that thanks to Lemma 6, the unisolvence condition required in our
general Theorem 2 obviously holds.

Proceeding in an identical manner as in the case of the enriched Han element, we
have the following result:
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Theorem 6. Let K � R
d be a nondegenerate hyper-rectangle and consider the

degrees of freedom Ltr
1 ; : : : ;L

tr
2d; given by (45). Let Gtr

1 ; : : : ;G
tr
d�1 be given by (47).

Assume that FK D .F1K ; : : : ;FdK/
> is a diagonal affine transformation such that

FK. OK/ D K; where OK the hypercube OK WD Œ�1; 1�d: For a function e 2 C0Œ�1; 1�
define

eenr
i W x 7�!

dX
jD1

˛ije
�
FjK.Ox/

�C ci .i D 1; : : : ; d � 1/; (51)

where ˛ij and ci are some given real numbers, such that

�˛ WD

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

˛12 � ˛11 � � � ˛.d�1/2 � ˛.d�1/1
˛13 � ˛11 � � � ˛.d�1/3 � ˛.d�1/1

:::
: : :

:::

˛1d � ˛11 � � � ˛.d�1/d � ˛.d�1/1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

¤ 0: (52)

Then, the following statements are equivalent:

(i) The determinant

det

0
B@

Gtr
1 .e

enr
1 / : : : Gtr

1 .e
enr
d�1/

:::
:::

Gtr
d�1.eenr

1 / : : : Gtr
d�1.eenr

d�1/

1
CA ¤ 0 : (53)

(ii) The remainder T tr.e/ of the trapezoidal rule is different from zero.

When d D 2 or d D 3; we recover the well-known nonconforming rectangular
(or cubic) element of Rannacher and Turek, with

F enr
K D

(
f1; x; yg ˚ fe.x/ � e.y/g for d D 2;

f1; x; y; zg ˚ fe.x/ � e.y/; e.x/ � e.z/g for d D 3;

and where e.t/ D t2; t 2 Œ�1; 1� : Other variants were proposed in [10, 11, 14] by
setting

e.t/ D
(

t2 � 5
3
t4 for d D 2;

t2 � 25
6

t4 C 7
2
t6 for d D 3:

The reader can easily verify that all these elements are covered by our general
Theorem 6. Moreover, in these two examples the entries ˛ij are given by:

(a) The case d D 2; ˛11 D 1 and ˛12 D �1; therefore ˛12 � ˛11 D �2 ¤ 0:

Hence (52) is satisfied.
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(b) The case d D 3; .˛11; ˛12; ˛13/ D .1;�1; 0/ and .˛21; ˛22; ˛23/ D .1; 0;�1/:
Since

�˛ WD
ˇ̌
ˇ̌˛12 � ˛11 ˛22 � ˛21
˛13 � ˛11 ˛23 � ˛21

ˇ̌
ˇ̌ D 3; (54)

this determinant is non-zero, then condition (52) is satisfied.

3.3 A New Enriched Nonconforming Finite Element
of Wilson-Type

For the third example, we obtain new enriched nonconforming finite elements of
Wilson type in any dimension. The proofs are very similar to those in Sect. 3.1,
we do not give the full details here. In the previous two examples, the original
approximation spaces F

org
K were taken to be P1: Here, this latter and the triplet

.K; ˙ enr
K ;F enr

K / of these elements are chosen to be:

• K is the hyper-rectangle in R
d defined by

K WD fx; ˇi1 � xi � ˇi2; i D 1; : : : ; dg ;

•

F
org
K WD P1 ˚ ˚

x21; : : : ; x
2
d

�
: (55)

•

F enr
K WD F

org
K ˚ ˚

eenr
1 ; : : : ; e

enr
2d

�
: (56)

•

˙ enr
K WD ˚

LWil
i ; i D 1; : : : ; 4d C 1

�
; (57)

where

LWil
i .f / WD 1

jFij
Z

Fi

f d�; i D 1; : : : ; 2d;

LWil
2dC1.f / WD 1

jKj
Z

K
f .x/ dx;

LWil
2dC1Ci.f / WD 1

jSij
Z

Si

f d�; i D 1; : : : ; d;
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LWil
3dC1Ci.f / WD 1

2jKj
Z

K

@2f .x/

@x2i
dx; i D 1; : : : ; d:

Here Si is defined by

Si WD



x D .x1; : : : ; xd/ 2 K W xi D ˇi;1 C ˇi;2

2

�
:

We start with the following remark.

Remark 4. The midpoint rule in one dimension is

1

b � a

Z b

a
f .t/dt D f

�
a C b

2

	
C Mmid.f /: (58)

For each i D 1; : : : ; d; a natural multivariate extension of this rule is

LWil
2dC1.f / D 1

jSij
Z

Si

f d� C Mmid
i .f /:

The trapezoidal rule in one dimension is

1

b � a

Z b

a
f .t/dt D f .a/C f .b/

2
C T tr.f /: (59)

For each i D 1; : : : ; d; as mentioned before, a natural multivariate extension of this
rule is

LWil
2dC1.f / D 1

2

�
LWil

i .f /C LWil
iCd.f /

�C TWil
i .f /:

Let us also observe the following surprising result. We know that the trapezoidal and
midpoint rules are each only exact for linear functions. However, it can be easily
verified that, for each i, the approximation errors TWil

i and Mmid
i vanish on the space

P1 ˚ ˚
x2j ; j D 1; : : : ; d; j ¤ i

�
: (60)

Moreover, if, for each i, we define Atr
i and Amid

i by

Atr
i .f / D 1

2

�
LWil

i .f /C LWil
iCd.f /

�
;

Amid
i .f / D 1

jSij
Z

Si

f d�;
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then, the following identities hold:

Atr
i .x

2
i / D ˇ2i1 C ˇ2i2

2
; (61)

Amid
i .x2i / D .ˇi1 C ˇi2/

2

4
; (62)

LWil
2dC1.x2i / D 1

3
Atr

i .x
2
i /C 2

3
Amid

i .x2i /; (63)

LWil
2dC1.x2i / � Amid

i .x2i / D .ˇi2 � ˇi1/
2

12
: (64)

We now introduce a new family of cubature formulas of the Simpson type. First,
for each i D 1; : : : ; d; we define the integration formula.

LWil
2dC1.f / D 1

3
Atr

i .f /C 2

3
Amid

i .f /C SSim
i .f / (65)

D 1

3

�
1

2

�
LWil

i .f /C LWil
iCd.f /

�	C 2

3

�
1

jSij
Z

Si

f d�

	
C SSim

i .f /:

Recall that Simpson’s rule can be expressed on the interval Œa; b� as:

1

b � a

Z b

a
f .t/dt D 1

3

�
f .a/C f .b/

2

	
C 2

3
f

�
a C b

2

	
C SSim.f /: (66)

Hence, the cubature formula (65) appears as a natural extension to higher dimen-
sions of the classical Simpson’s rule.

For the Simpson cubature formula (65), the following result holds.

Lemma 7. For each i D 1; : : : ; d; the approximation error of the Simpson cubature
formula SSim

i vanishes for all functions belonging to F org
K .

Proof. Remark 4 tells us that, for each i D 1; : : : ; d; the trapezoidal and midpoint
cubature formulas vanish on the space

P1 ˚ ˚
x2j ; j D 1; : : : ; d; j ¤ i

�
: (67)

Then, since SSim
i is a convex combination of these two cubature formulas, it

consequently vanishes on the same space. Hence, SSim
i vanishes identically for any

f 2 F
org
K provided that

SSim
i .x2i / D 0:

This required equality now follows from identity (63). ut
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For each i D 1; : : : ; d; let us also introduce another class of cubature formulas via

LWil
2dC1.f / D 1

jSij
Z

Si

f d� C .ˇi2 � ˇi1/
2

24

 
1

jKj
Z

K

@2f .x/

@x2i
dx

!
C SSim

iCd.f /; (68)

Atkinson [4] defined the corrected or perturbed midpoint rule on the interval Œa; b� by

1

b � a

Z b

a
f .t/dt D f

�
a C b

2

	
C b � a

24

�
f 0.b/ � f 0.a/

�C Sper.f /; (69)

and so the cubature formula (68) is a natural extension of the perturbed midpoint
rule in higher dimensions.

It also holds that the cubature formula (68) satisfies the following exactness
condition.

Lemma 8. For each i D 1; : : : ; d; the approximation error of the perturbed
midpoint cubature formula SSim

iCd vanishes for all functions belonging to F org
K .

Proof. The proof simply follows from Remark 4. Indeed, since for any f 2 P1 ˚n
x2j ; j D 1; : : : ; d; j ¤ i

o
; we have

Z

K

@2f .x/

@x2i
dx D 0;

then to establish Lemma 8, by Remark 4, (60), it suffices to show that

SSim
iCd.x

2
i / D 0:

But the above equality is a simple consequence of identities (64) and (68). ut
Next we need the following result.

Lemma 9. Let p belong to F org
K . Then, the following statements are equivalent:

(i) LWil
j .p/ D 0; for j D 1; : : : ; 4d C 1;

(ii) p D 0:

Proof. To prove (i) implies (ii), assume that p 2 F
org
K such that LWil

j .p/ D 0; for
j D 1; : : : ; 4d C 1: Then p can be decomposed as

p D p1 C
dX

iD1
cix

2
i ;

where p1 2 P1 and the ci; .i D 1; : : : ; d/; are some real coefficients. Now
observe that
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LWil
2dC1Ci.p/ WD 1

2jKj
Z

K

@2p.x/

@x2i
dx

D ci;

so that the ci; .i D 1; : : : ; d/; are equal to zero. Hence, p D p1 2 P1: Since
LWil

j .p/ D 0; for j D 1; : : : ; 2d C 1; then by Lemma 6, we can deduce that p
is identically zero. The converse implication is easy to verify, then the proof is
complete. ut
With the help of the cubature formulas (65) and (68), we now present a practical
characterization result, that can be used to show that the triplet .K; ˙ enr

K ;F enr
K /

generates a finite element.

Theorem 7. The triplet .K; ˙ enr
K ;F enr

K / constitutes a finite element if and only if

det

0
B@

Ssim
1 .eenr

1 / : : : Ssim
1 .eenr

2d /
:::

:::

Ssim
2d .e

enr
1 / : : : Ssim

2d .e
enr
2d /

1
CA ¤ 0 : (70)

Proof. Observe first that the needed unisolvence property of ˙ enr
K with respect to

F
org
K is guaranteed by Lemma 9. Furthermore, here for each i D 1; : : : ; 2d; the

approximation error of the Simpson cubature formula SSim
i enjoys the following

properties:

(i) SSim
i 2 span

n
LWil

j ; j D 1; : : : ; 4d C 1
o
:

(ii) By Lemmas 7 and 8, we also know that SSim
i vanishes on F

org
K :

Consequently, by Lemma 1, there exists a system of vectors ci 2 ker.A/; i D
1; : : : ; 2d, which are the coefficients in the expressions of the approximation errors
SSim

i ; i D 1; : : : ; 2d. In the present situation, a simple verification shows that the
matrix C has the following block diagonal structure:

C D
� 1

6
Id	d � 1

6
Id	d 1d � 2

3
Id	d 0d	d

0d	d 0d	d 1d �Id	d Ad	d

�
2 R

2d	.4dC1/; (71)

where Ad	d is the diagonal matrix

Ad	d D diag

�
� .ˇ12 � ˇ11/2

12
; : : : ;� .ˇd2 � ˇd1/

2

12

	
:

Taking the determinant of the sub-block matrix

X D
� 2

3
Id	d 0d	d

�Id	d Ad	d

�
(72)
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yields the result

det X D
�
2

3

	d dY
iD1

.ˇi2 � ˇi1/
2

12
;

where we have exploited the fact that the determinant of a block lower triangular
matrix is the product of the determinants of its diagonal blocks, see [24]. In view of
the fact that X has a non-vanishing determinant, we have shown that the rows of the
matrix C are linearly independent. Hence, the Li WD SSim

i ’s form a set of admissible
functionals. ut
Remark 5. For the construction of the matrix C; defined by (36), rather than the
perturbed midpoint cubature formula (68) we could have taken the following new
cubature formula:

LWil
2dC1.f / D LWil

i .f /C LWil
iCd.f /

2
� .ˇi2 � ˇi1/

2

12

 
1

jKj
Z

K

@2f .x/

@x2i
dx

!
C SSim

iCd.f /;

(73)
which is a natural generalization in higher dimensions of the perturbed trapezoidal
rule, see Atkinson [4],

1

b � a

Z b

a
f .t/dt D f .a/C f .b/

2
� b � a

12

�
f 0.b/ � f 0.a/

�C Sper.f /: (74)

In this case, its corresponding sub-block matrix X is simply a 2d-by-2d diagonal
matrix. We also may take any convex combination of the two cubature formulas (68)
and (73).

Remark 6. As in Theorems 4 and 6, we finally observe that the reader can easily
reformulate all our results of Theorem 7 for the case where the enrichment functions
are based on single univariate functions.

4 Conclusion and Future Work

In this chapter we developed a general method for enriching any finite element
approximations via the use of additional enrichment functions. Our significant
results, derived in Theorems 3, 5 and 7, show that the approximation errors of a
new family of multivariate versions of the trapezoidal, midpoint, and Simpson rules
and their perturbations play a central role in the existence of our new elements.
These latter natural generalize these rules in any dimension, and employ integrals
over facets.

From a practical point of view, possibly the principal result of this chapter is that
this methodology easily allowed us to recover the well-known nonconforming as
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the Han rectangular element and the nonconforming rotated element of Rannacher
and Turek in any dimension. We note that we have only focused here in describing
different practical properties of approximations with appropriate enrichment func-
tions.

From a theoretical point of view, there remain open questions. The following
items have not been treated in the present chapter:

(a) What are the associated local basis functions of the enriched elements?
(b) It will also be interesting to study the error estimates for such approximations.

This kind of questions and numerical tests of our new enriched finite elements will
be considered in a coming paper.

Note: This chapter is dedicated to the memory of Professor Q.I. Rahman. A.
Guessab had the great privilege to work with Q.I. Rahman, when he visited him
in Montreal five times. Q.I. Rahman has been a visiting professor at the University
of Pau, 1996. After this visit, they became very close family friends. They wrote
the following paper together: Quadrature formulas and polynomial inequalities,
Journal of Approximation Theory, Volume 90, Issue 2, 1997, 255–282. In this paper
they established several inequalities for polynomials and trigonometric polynomials.
They are all obtained as applications of certain new quadrature formulas. The topic
we have chosen to write in memory of Professor Q.I. Rahman is how a new class of
enriched nonconforming finite elements could be deduced from some new cubature
formulas?

Acknowledgements Allal Guessab and Yassine Zaim would like to thank the Volubilis Hubert
Curien Program (Grant No. MA/13/286) for financial support.

References

1. Achchab, B., Agouzal, A., Bouihat, K.: A simple nonconforming quadrilateral finite element.
C. R. Acad. Sci. Paris Ser. I 352, 529–533 (2014)

2. Achchab, B., Bouihat, K., Guessab, A., Schmeisser, G.: A general approach to the construction
of nonconforming finite elements on convex polytope. Appl. Math. Comput. 268, 916–923
(2015)

3. Achchab, B., Guessab, A., Zaim, Y.: A new class of nonconforming finite elements for the
enrichment of Q1 element on convex polytope. Appl. Math. Comput. 271, 657–668 (2015)

4. Atkinson, K.E.: An Introduction to Numerical Analysis, 2nd edn. Addison-Wesley, Reading,
MA (1975)

5. BabuLska, I., Banerjee, U., Osborn, J.E.: Survey of meshless and generalized finite element
methods: a unified approach. Acta Numer. 12(1), 1–125 (2003)

6. BabuLska, I., Banerjee, U., Osborn, J.: Generalized finite element methods: main ideas, results
and perspective. Int. J. Comput. Methods 1(1), 67–103 (2004)

7. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P.: Meshless methods: an
overview and recent developments. Comput. Meth. Appl. Mech. Eng. 139(1–4), 3–47 (1996)

8. Benzley, S.E.: Representation of singularities with isoparametric finite elements. Int. J. Numer.
Methods Eng. 8, 537–545 (1974)



Enriching Finite Element Approximations 519

9. Byskov, E.: The calculation of stress intensity factors using the finite element method with
cracked elements. Int. J. Fract. Mech. 6, 159–167 (1970)

10. Cai, Z., Douglas, J. Jr., Ye, X.: A stable nonconforming quadrilateral finite element method for
the stationary Stokes and Navier-Stokes equations. Calcolo 36, 215–232 (1999)

11. Cai, Z., Douglas, J. Jr., Santos, J.E., Sheen, D., Ye, X.: Nonconforming quadrilateral finite
elements: a correction. Calcolo 37, 253–254 (2000)

12. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam
(1980)

13. De, S., Bathe, K.J.: The method of finite spheres. Comput. Mech. 25(4), 329–345 (2000)
14. Douglas, J. Jr., Santos, J.E., Sheen, D., Ye, X.: Non conforming Galerkin methods based on

quadrilateral elements for second order elliptic problems. RAIRO Math. Model. Anal. Numer.
33, 747–770 (1999)

15. Fix, G., Gulati, S., Wakoff, G.I.: On the use of singular functions with finite element
approximations. J. Comput. Phys. 13, 209–228 (1973)

16. Fries, T.P., Belytschko, T.: The intrinsic XFEM: a method for arbitrary discontinuities without
additional unknowns. Int. J. Numer. Methods Eng. 68(13), 1358–385 (2006)

17. Han, H.: Nonconforming elements in the mixed finite element method. J. Comput. Math. 2(3),
223–233 (1984)

18. Khoei, A.R.: Extended Finite Element Method, Theory and Applications. Wiley, New York
(2015)

19. Li, S., Liu, W.K.: Meshfree Particle Methods. Springer, Berlin (2004)
20. Lin, Q., Tobiska, L., Zhou, A.: Superconvergence and extrapolation of nonconforming low

order finite elements applied to the Poisson equation. IMA J. Numer. Anal. 25, 160–181 (2005)
21. Liu, G.: Meshfree Methods: Moving Beyond the Finite Element Method. CRC, Boca Raton,

FL (2002)
22. Mao, S.P., Chen, S.C., Shi, D.: Convergence and superconvergence of a nonconforming finite

element on anisotropic meshes. Int. J. Numer. Anal. Model. 4, 16–38 (2007)
23. Rannacher, R., Turek, S.: Simple nonconforming quadrilateral Stokes element. Numer. Meth-

ods Partial Differ. Equ. 8(2), 97–111 (1992)
24. Silvester, J.R.: Determinants of block matrices. Math. Gaz. 84, 460–467 (2000)
25. Zienkiewicz, O.C.: The Finite Element Method, 3rd edn. McGraw-Hill, New York (1977)


	Foreword
	Preface
	Contents
	Qazi Ibadur Rahman, 1934–2013
	Professor Q. I. Rahman Memorial Volume A Few Photographs
	On the L2 Markov Inequality with Laguerre Weight
	1 Introduction and Statement of the Results
	2 Preliminaries
	2.1 A Relation Between cn(α) and an Orthogonal Polynomial
	2.2 Bounds for the Largest Zero of a Polynomial Having Only Positive Roots

	3 The Lowest Degree Coefficients of the Polynomial Qn,α
	4 Proof of Theorem 1
	5 Concluding Remarks
	References

	Markov-Type Inequalities for Products of MüntzPolynomials Revisited
	1 Introduction and Notation
	2 New Results
	3 Lemmas for Theorem 2.1
	4 Lemmas for Theorem 2.7
	5 Proofs
	References

	On Bernstein-Type Inequalities for the Polar Derivativeof a Polynomial
	1 Introduction
	2 Bounds on the Uniform Norm of Polar Derivative of a Polynomial
	2.1 Inequalities for Polynomials with no Restriction on Their Zeros
	2.2 Inequalities for Polynomials Having no Zeros in a Circle
	2.3 Inequalities for Polynomials Having all Their Zeros in a Circle

	3 Bounds on the Integral Mean Values of Polar Derivative of a Polynomial
	3.1 Inequalities for Polynomials with no Restriction on Their Zeros
	3.2 Inequalities for Polynomials Having no Zeros in a Circle
	3.3 Inequalities for Polynomials Having all Their Zeros in a Circle

	References

	On Two Inequalities for Polynomials in the Unit Disk
	1 Introduction
	2 Background Material
	3 Theorem 1.1 Implies Theorem 1.2
	4 Cases of Equality
	References

	Inequalities for Integral Norms of Polynomials via Multipliers
	1 The Schur-Szegő Composition and Polynomial Inequalities
	2 Polynomial Inequalities in Bergman Spaces
	3 Proofs
	References

	Some Rational Inequalities Inspired by Rahman's Research
	1 General Introduction
	2 Bernstein-Type Inequalities for Rational Functions with Prescribed Poles
	3 Comparison Inequalities
	4 Comparison Inequality for Rational Functions
	5 An Inequality of De Bruijn
	6 An Integral Formula
	7 Proofs of Theorems 5–7 and 10 in Sect.2
	8 Proof of Theorem 16 in Sect.4
	9 Proof of Theorem 18 in Sect.5
	References

	On an Asymptotic Equality for Reproducing Kernels and Sums of Squares of Orthonormal Polynomials
	1 Introduction
	2 Weights on [ -1,1] 
	3 Even Weights on ( -∞,∞) 
	4 The Non-Even, Not Necessarily Unbounded Case
	References

	Two Walsh-Type Theorems for the Solutions of Multi-Affine Symmetric Polynomials
	1 Introduction
	2 Solutions of the Polarization of a Complex Polynomial
	3 Loci and Extended Loci of Complex Polynomials
	3.1 Examples of Loci

	4 Argument Coincidence Theorem
	References

	Vector Inequalities for a Projection in Hilbert Spaces and Applications
	1 Introduction
	2 Vector Inequalities for a Projection
	3 Inequalities for Norm and Numerical Radius
	References

	A Half-Discrete Hardy-Hilbert-Type Inequality with a Best Possible Constant Factor Related to the Hurwitz Zeta Function
	1 Introduction
	2 An Example and Some Lemmas
	3 Equivalent Inequalities and Operator Expressions
	4 Some Equivalent Reverses
	5 Some Particular Inequalities
	References

	Quantum Integral Inequalities for Generalized Convex Functions
	1 Introduction
	2 Basic Results from Quantum Calculus
	3 Generalized Convexity
	4 Quantum Estimates 
	References

	Quantum Integral Inequalities for Generalized Preinvex Functions
	1 Introduction
	2 φ-Convex Functions and Preinvex Functions
	3 Quantum Calculus
	4 Quantum Integral Inequalities Via φ-Convex and Preinvex Functions
	5 Quantum Inequalities for Generalized Preinvex Functions
	References

	On the Bohr Inequality
	1 Harald August Bohr (1887–1951)
	2 The Classical Bohr Inequality
	2.1 Bohr Phenomenon for the Space of Subordinate Mappings
	2.2 Bohr Radius for Alternating Series and Symmetric Mappings
	2.3 Bohr Phenomenon for Harmonic Mappings
	2.4 Bohr Inequality in Hyperbolic Metric
	2.5 Bohr Radius for Concave-Wedge Domain
	2.6 Bohr Radius for a Special Subordination Class
	2.7 Bohr's Theorem for Starlike Logharmonic Mappings

	3 Dirichlet Series and n-Dimensional Bohr Radius
	3.1 Bohr and the Dirichlet Series
	3.2 The n-Dimensional Bohr Radius
	3.3 Bohr Radius in the Study of Banach Spaces
	3.4 Concluding Remarks on Multidimensional Bohr Radius

	References

	Bernstein-Type Polynomials on Several Intervals
	1 Introduction
	2 The General Case
	3 The Case of T-Polynomials
	References

	Best Approximation by Logarithmically Concave Classes of Functions
	References

	Local Approximation Using Hermite Functions
	1 Introduction
	2 Basic Notation and Definitions
	3 Weighted Approximation
	4 Localized Kernels
	5 Summability Operators
	6 Quadrature Formula
	7 Wavelet-Like Representation
	References

	Approximating the Riemann Zeta and Related Functions
	1 Introduction and Summary
	2 Function Related Riemann Zeta
	3 Fourier Series Approximation of G
	4 Asymptotic Approximations
	5 Examples
	References

	Overconvergence of Rational Approximantsof Meromorphic Functions
	1 Introduction: Polynomial Approximation
	2 Rational Approximation, Overconvergence in m1-Measure
	3 Rational Approximation: Overconvergence in Capacity
	4 Multipoint Padé Approximation
	References

	Approximation by Bernstein–Faber–Walsh and Szász–Mirakjan–Faber–Walsh Operators in Multiply Connected Compact Sets of C
	1 Introduction
	2 Definitions and Preliminaries
	3 Approximation by q-Bernstein–Faber–Walsh Polynomials
	4 Approximation by Szász-Mirakjan–Faber–Walsh Operators
	References

	Summation Formulas of Euler–Maclaurin and Abel–Plana: Old and New Results and Applications
	1 Introduction and Preliminaries
	2 Connections Between Euler–Maclaurin Summation Formula and Some Basic Quadrature Rules of Newton–Cotes Type
	3 Euler–Maclaurin Formula Based on the Composite Gauss–Legendre Rule and Its Lobatto Modification
	4 Abel–Plana Summation Formula and Some Modifications
	5 Construction of Orthogonal Polynomials and Gaussian Quadratures for Weights of Abel–Plana Type
	References

	A New Approach to Positivity and Monotonicity for the Trapezoidal Method and Related Quadrature Methods
	Preliminary Comments
	1 Introduction
	2 Positive Definite Functions
	3 The Trapezoidal Method on a Compact Interval
	3.1 Some Lemmas
	3.2 Positivity
	3.3 Monotonicity
	3.4 Related Quadrature Methods
	The Midpoint Method
	Simpson's Method
	The Gauss–Chebyshev Method


	4 The Trapezoidal Method on the Whole Real Line
	4.1 Some Lemmas
	4.2 Positivity
	4.3 Monotonicity
	4.4 Interconnections with the Midpoint Method

	References

	A Unified and General Framework for Enriching Finite Element Approximations
	1 Introduction and Motivation
	2 Existence and Characterization of Enriched Finite Element Approximations
	3 Applications: Enrichment of Nonconforming Finite Elements
	3.1 A New Enriched Nonconforming Finite Element of Han-Type
	3.2 A New Enriched Nonconforming Finite Element of Rannacher–Turek-Type
	3.3 A New Enriched Nonconforming Finite Element of Wilson-Type

	4 Conclusion and Future Work
	References


