Keywords

2000 Mathematics Subject Classification:

1 Introduction

If \(p> 1, \frac{1} {p} + \frac{1} {q} = 1,f(x),g(y) \geq 0,f \in L^{p}(\mathbf{R}_{ +}),g \in L^{q}(\mathbf{R}_{ +}),\)

$$\displaystyle{\vert \vert f\vert \vert _{p} = (\int _{0}^{\infty }f^{p}(x)dx)^{\frac{1} {p} }> 0,}$$

 | | g | |  q  > 0, then we have the following Hardy-Hilbert’s integral inequality (cf. [3]):

$$\displaystyle{ \int _{0}^{\infty }\int _{ 0}^{\infty }\frac{f(x)g(y)} {x + y} dxdy <\frac{\pi } {\sin (\pi /p)}\vert \vert f\vert \vert _{p}\vert \vert g\vert \vert _{q}, }$$
(1)

where the constant factor \(\frac{\pi }{\sin (\pi /p)}\) is the best possible. Assuming that

$$\displaystyle\begin{array}{rcl} & a_{m},b_{n} \geq 0,a =\{ a_{m}\}_{m=1}^{\infty }\in l^{p},\ b =\{ b_{n}\}_{n=1}^{\infty }\in l^{q},& {}\\ & \vert \vert a\vert \vert _{p} = (\sum _{m=1}^{\infty }a_{m}^{p})^{\frac{1} {p} }> 0,\ \vert \vert b\vert \vert _{q}> 0, & {}\\ \end{array}$$

we have the following Hardy-Hilbert’s inequality with the same best constant \(\frac{\pi }{\sin (\pi /p)}\) (cf. [3]):

$$\displaystyle{ \sum _{m=1}^{\infty }\sum _{ n=1}^{\infty } \frac{a_{m}b_{n}} {m + n} <\frac{\pi } {\sin (\pi /p)}\vert \vert a\vert \vert _{p}\vert \vert b\vert \vert _{q}. }$$
(2)

Inequalities (1) and (2) are important in Analysis and its applications (cf. [3, 11, 19, 20, 22]).

If μ i , v j  > 0(i, j ∈ N ={1, 2, ⋯}), 

$$\displaystyle{ U_{m}:=\sum _{ i=1}^{m}\mu _{ i},V _{n}:=\sum _{ j=1}^{n}\nu _{ j}(m,n \in \mathbf{N}), }$$
(3)

then we have the following inequality (cf. [3], Theorem 321):

$$\displaystyle{ \sum _{m=1}^{\infty }\sum _{ n=1}^{\infty }\frac{\mu _{m}^{1/q}\nu _{ n}^{1/p}a_{ m}b_{n}} {U_{m} + V _{n}} <\frac{\pi } {\sin (\pi /p)}\vert \vert a\vert \vert _{p}\vert \vert b\vert \vert _{q}. }$$
(4)

Replacing μ m 1∕q a m and v n 1∕p b n by a m and b n in (4), respectively, we obtain the following equivalent form of (4):

$$\displaystyle{ \sum _{m=1}^{\infty }\sum _{ n=1}^{\infty } \frac{a_{m}b_{n}} {U_{m} + V _{n}} <\frac{\pi } {\sin ( \frac{\pi }{p})}\left (\sum _{m=1}^{\infty } \frac{a_{m}^{p}} {\mu _{m}^{p-1}}\right )^{\frac{1} {p} }\left (\sum _{n=1}^{\infty } \frac{b_{n}^{q}} {\nu _{n}^{q-1}}\right )^{\frac{1} {q} }. }$$
(5)

For μ i  = v j  = 1(i, j ∈ N), both (4) and (5) reduce to (2). We call (4) and (5) as Hardy-Hilbert-type inequalities.

Note.

The authors did not prove that (4) is valid with the best possible constant factor in [3].

In 1998, by introducing an independent parameter λ ∈ (0, 1], Yang [17] gave an extension of (1) with the kernel 1∕(x + y)λ for p = q = 2. Optimizing the method used in [17], Yang [20] provided some extensions of (1) and (2) as follows:

If λ 1, λ 2 ∈ R, λ 1 +λ 2 = λ, k λ (x, y) is a non-negative homogeneous function of degree −λ, with

$$\displaystyle{k(\lambda _{1}) =\int _{ 0}^{\infty }k_{\lambda }(t,1)t^{\lambda _{1}-1}dt \in \mathbf{R}_{ +},}$$

\(\phi (x) = x^{p(1-\lambda _{1})-1},\psi (x) = x^{q(1-\lambda _{2})-1},f(x),g(y) \geq 0,\)

$$\displaystyle{f \in L_{p,\phi }(\mathbf{R}_{+}) = \left \{f;\vert \vert f\vert \vert _{p,\phi }:=\{\int _{ 0}^{\infty }\phi (x)\vert f(x)\vert ^{p}dx\}^{\frac{1} {p} } <\infty \right \},}$$

g ∈ L q, ψ (R +), | | f | |  p, ϕ , | | g | |  q, ψ  > 0, then we have

$$\displaystyle{ \int _{0}^{\infty }\int _{ 0}^{\infty }k_{\lambda }(x,y)f(x)g(y)dxdy <k(\lambda _{ 1})\vert \vert f\vert \vert _{p,\phi }\vert \vert g\vert \vert _{q,\psi }, }$$
(6)

where the constant factor k(λ 1) is the best possible.

Moreover, if k λ (x, y) remains finite and \(k_{\lambda }(x,y)x^{\lambda _{1}-1}(k_{\lambda }(x,y)y^{\lambda _{2}-1})\) is decreasing with respect to x > 0 (y > 0), then for a m,  b n  ≥ 0, 

$$\displaystyle{a \in l_{p,\phi } = \left \{a;\vert \vert a\vert \vert _{p,\phi }:= (\sum _{n=1}^{\infty }\phi (n)\vert a_{ n}\vert ^{p})^{\frac{1} {p} } <\infty \right \},}$$

b = { b n } n = 1  ∈ l q, ψ , | | a | |  p, ϕ , | | b | |  q, ψ  > 0, we have

$$\displaystyle{ \sum _{m=1}^{\infty }\sum _{ n=1}^{\infty }k_{\lambda }(m,n)a_{ m}b_{n} <k(\lambda _{1})\vert \vert a\vert \vert _{p,\phi }\vert \vert b\vert \vert _{q,\psi }, }$$
(7)

where the constant factor k(λ 1) is still the best possible.

Clearly, for

$$\displaystyle{\lambda = 1,k_{1}(x,y) = \frac{1} {x + y},\ \lambda _{1} = \frac{1} {q},\ \lambda _{2} = \frac{1} {p},}$$

inequality (6) reduces to (1), while (7) reduces to (2). For

$$\displaystyle{0 <\lambda _{1},\lambda _{2} \leq 1,\ \lambda _{1} +\lambda _{2} =\lambda,}$$

we set

$$\displaystyle{k_{\lambda }(x,y) = \frac{1} {(x + y)^{\lambda }}\ ((x,y) \in \mathbf{R}_{+}^{2}).}$$

Then by (7), we have

$$\displaystyle{ \sum _{m=1}^{\infty }\sum _{ n=1}^{\infty } \frac{a_{m}b_{n}} {(m + n)^{\lambda }} <B(\lambda _{1},\lambda _{2})\vert \vert a\vert \vert _{p,\phi }\vert \vert b\vert \vert _{q,\psi }, }$$
(8)

where the constant B(λ 1, λ 2) is the best possible, and

$$\displaystyle{B\left (u,v\right ) =\int _{ 0}^{\infty } \frac{1} {(1 + t)^{u+v}}t^{u-1}dt^{}(u,v> 0)}$$

is the beta function.

In 2015, subject to further conditions, Yang [26] proved an extension of (8) and (5) as follows:

$$\displaystyle\begin{array}{rcl} & & \sum _{m=1}^{\infty }\sum _{ n=1}^{\infty } \frac{a_{m}b_{n}} {(U_{m} + V _{n})^{\lambda }}{}\end{array}$$
(9)
$$\displaystyle\begin{array}{rcl} & <& B(\lambda _{1},\lambda _{2})\left (\sum _{m=1}^{\infty }\frac{U_{m}^{p(1-\lambda _{1})-1}a_{ m}^{p}} {\mu _{m}^{p-1}} \right )^{\frac{1} {p} }\left (\sum _{n=1}^{\infty }\frac{V _{n}^{q(1-\lambda _{2})-1}b_{n}^{q}} {\nu _{n}^{q-1}} \right )^{\frac{1} {q} },{}\end{array}$$
(10)

where the constant B(λ 1, λ 2) is still the best possible.

Further results including some multidimensional Hilbert-type inequalities can be found in [18, 21, 2325, 27, 33].

On the topic of half-discrete Hilbert-type inequalities with non-homogeneous kernels, Hardy et al. provided a few results in Theorem 351 of [3]. But, they did not prove that the constant factors are the best possible. However, Yang [18] presented a result with the kernel 1∕(1 + nx)λ by introducing a variable and proved that the constant factor is the best possible. In 2011, Yang [21] gave the following half-discrete Hardy-Hilbert’s inequality with the best possible constant factor \(B\left (\lambda _{1},\lambda _{2}\right )\):

$$\displaystyle{ \int _{0}^{\infty }f\left (x\right )\left [\sum _{ n=1}^{\infty } \frac{a_{n}} {\left (x + n\right )^{\lambda }}\right ]dx <B\left (\lambda _{1},\lambda _{2}\right )\vert \vert f\vert \vert _{p,\phi }\vert \vert a\vert \vert _{q,\psi }, }$$
(11)

where λ 1 > 0, 0 < λ 2 ≤ 1, λ 1 +λ 2 = λ. Zhong et al. [36, 37, 3941] investigated several half-discrete Hilbert-type inequalities with particular kernels.

Using methods of weight functions and techniques of discrete and integral Hilbert-type inequalities with some additional conditions on the kernel, a half-discrete Hilbert-type inequality with a general homogeneous kernel of degree −λ ∈ R and a best constant factor \(k\left (\lambda _{1}\right )\) is obtained as follows:

$$\displaystyle{ \int _{0}^{\infty }f(x)\sum _{ n=1}^{\infty }k_{\lambda }(x,n)a_{ n}dx <k(\lambda _{1})\vert \vert f\vert \vert _{p,\phi }\vert \vert a\vert \vert _{q,\psi }, }$$
(12)

which is an extension of (11) (cf. Yang and Chen [28]). Additionally, a half-discrete Hilbert-type inequality with a general non-homogeneous kernel and a best constant factor is given by Yang [24]. The reader is referred to the three books of Yang [23, 25] and Yang and Debnath [29], where half-discrete Hilbert-type inequalities and their operator expressions are extensively treated. The interested reader will find a vast literature on both old and new results on half-discrete Hardy-Hilbert-type inequality with emphasis to the study of best constants in references [142].

In this chapter, using methods of weight functions, techniques of real analysis as well as the Hermite-Hadamard inequality, a half-discrete Hardy-Hilbert-type inequality with multi-parameters and a best possible constant factor related to the Hurwitz zeta function and the Riemann zeta function is studied, which is an extension of (12) for λ = 0 in a particular kernel. Equivalent forms, normed operator expressions, their reverses and some particular cases are also considered.

2 An Example and Some Lemmas

In the following, we assume that μ i , ν j  > 0 (i, j ∈ N), U m and V n are defined by (3),

$$\displaystyle{\tilde{V }_{n}:= V _{n} -\tilde{\nu }_{n}(\tilde{\nu }_{n} \in [0, \frac{\nu _{n}} {2}])(n \in \mathbf{N}),}$$

μ(t) is a positive continuous function in R + = (0, ),

$$\displaystyle{U(x):=\int _{ 0}^{x}\mu (t)dt <\infty ^{}(x \in [0,\infty )),}$$

\(\nu (t):=\nu _{n},t \in (n -\frac{1} {2},n + \frac{1} {2}](n \in \mathbf{N}),\) and

$$\displaystyle{V (y):=\int _{ \frac{1} {2} }^{y}\nu (t)dt^{}(y \in [\frac{1} {2},\infty )),}$$

\(p\neq 0,1,\ \frac{1} {p} + \frac{1} {q} = 1,\delta \in \{-1,1\},\ f(x),a_{n} \geq 0(x \in \mathbf{R}_{+},n \in \mathbf{N}),\)

$$\displaystyle{\vert \vert f\vert \vert _{p,\varPhi _{\delta }} = (\int _{0}^{\infty }\varPhi _{ \delta }(x)f^{p}(x)dx)^{\frac{1} {p} },}$$

\(\vert \vert a\vert \vert _{q,\tilde{\varPsi }} = (\sum _{n=1}^{\infty }\tilde{\varPsi }(n)b_{n}^{q})^{\frac{1} {q} },\) where,

$$\displaystyle{\varPhi _{\delta }(x):= \frac{U^{p(1-\delta \sigma )-1}(x)} {\mu ^{p-1}(x)},\tilde{\varPsi }(n):= \frac{\tilde{V }_{n}^{q(1-\sigma )-1}} {\nu _{n}^{q-1}} (x \in \mathbf{R}_{+},n \in \mathbf{N}).}$$

Example 1.

For 0 < γ < σ, 0 ≤ α ≤ ρ (ρ > 0), 

$$\displaystyle{\mbox{csc } h(u):= \frac{2} {e^{u} - e^{-u}}\ (u> 0)}$$

is the hyperbolic cosecant function (cf. [34]). We set

$$\displaystyle{h(t) = \frac{\mbox{csc } h(\rho t^{\gamma })} {e^{\alpha t^{\gamma }}} \ (t \in \mathbf{R}_{+}).}$$
  1. (i)

    Setting u = ρ t γ, we find

    $$\displaystyle\begin{array}{rcl} k(\sigma )&:=& \int _{0}^{\infty }\frac{\mbox{csc } h(\rho t^{\gamma })} {e^{\alpha t^{\gamma }}} t^{\sigma -1}dt {}\\ & =& \frac{1} {\gamma \rho ^{\sigma /\gamma }}\int _{0}^{\infty }\frac{\mbox{csc } h(u)} {e^{\frac{\alpha }{\rho }u }} u^{\frac{\sigma }{\gamma }-1 }du {}\\ & =& \frac{2} {\gamma \rho ^{\sigma /\gamma }}\int _{0}^{\infty }\frac{e^{-\frac{\alpha }{\rho }u}u^{\frac{\sigma }{\gamma }-1}} {e^{u} - e^{-u}}du {}\\ & =& \frac{2} {\gamma \rho ^{\sigma /\gamma }}\int _{0}^{\infty }\frac{e^{-(\frac{\alpha }{\rho }+1)u}u^{\frac{\sigma }{\gamma }-1}} {1 - e^{-2u}} du {}\\ & =& \frac{2} {\gamma \rho ^{\sigma /\gamma }}\int _{0}^{\infty }\sum _{ k=0}^{\infty }e^{-(2k+\frac{\alpha }{\rho }+1)u}u^{\frac{\sigma }{\gamma }-1}du. {}\\ \end{array}$$

    By the Lebesgue term by term integration theorem (cf. [34]), setting \(v = \left (2k + \frac{\alpha }{\rho } + 1\right )u\), we have

    $$\displaystyle\begin{array}{rcl} k(\sigma )& =& \int _{0}^{\infty }\frac{\mbox{csc } h(\rho t^{\gamma })} {e^{\alpha t^{\gamma }}} t^{\sigma -1}dt \\ & =& \frac{2} {\gamma \rho ^{\sigma /\gamma }}\sum _{k=0}^{\infty }\int _{ 0}^{\infty }e^{-(2k+\frac{\alpha }{\rho }+1)u}u^{\frac{\sigma }{\gamma }-1}du \\ & =& \frac{2} {\gamma \rho ^{\sigma /\gamma }}\sum _{k=0}^{\infty } \frac{1} {(2k + \frac{\alpha }{\rho } + 1)^{\sigma /\gamma }}\int _{0}^{\infty }e^{-v}v^{\frac{\sigma }{\gamma }-1}dv \\ & =& \frac{2\varGamma (\frac{\sigma }{\gamma })} {\gamma (2\rho )^{\sigma /\gamma }}\sum _{k=0}^{\infty } \frac{1} {(k + \frac{\alpha +\rho } {2\rho } )^{\sigma /\gamma }} \\ & =& \frac{2\varGamma (\frac{\sigma }{\gamma })} {\gamma (2\rho )^{\sigma /\gamma }}\zeta (\frac{\sigma } {\gamma }, \frac{\alpha +\rho } {2\rho } ) \in \mathbf{R}_{+}, {}\end{array}$$
    (13)

    where

    $$\displaystyle{\zeta (s,a):=\sum _{ k=0}^{\infty } \frac{1} {(k + a)^{s}}\ (s> 1;0 <a \leq 1)}$$

    is the Hurwitz zeta function, ζ(s) = ζ(s, 1) is the Riemann zeta function, and

    $$\displaystyle{\varGamma (y):=\int _{ 0}^{\infty }e^{-v}v^{y-1}dv^{}\ (y> 0)}$$

    is the Gamma function (cf. [16]).

    In particular, (1) for α = ρ > 0, we have \(h(t) = \frac{\mbox{csc } h(\rho t^{\gamma })} {e^{\rho t^{\gamma }}}\) and \(k(\sigma ) = \frac{2\varGamma (\frac{\sigma }{\gamma })\zeta (\frac{\sigma }{\gamma })} {\gamma (2\rho )^{\sigma /\gamma }}.\) In this case, for \(\gamma = \frac{\sigma } {2},\) we have \(h(t) = \frac{\mbox{csc } h(\rho \sqrt{t^{\sigma }})} {e^{\rho \sqrt{t^{\sigma }}}}\) and \(k(\sigma ) = \frac{\pi ^{2}} {6\sigma \rho ^{2}};\) (2) for α = 0, we have h(t) = csch(ρ t γ) and \(\frac{2\varGamma (\frac{\sigma }{\gamma })} {\gamma (2\rho )^{\sigma /\gamma }}\zeta (\frac{\sigma }{\gamma }, \frac{1} {2}).\) In this case, for \(\gamma = \frac{\sigma } {2},\) we find \(h(t) =\mbox{csc } h(\rho \sqrt{t^{\sigma }})\) and \(k(\sigma ) = \frac{\pi ^{2}} {2\sigma \rho ^{2}}.\)

  2. (ii)

    We obtain for \(u> 0, \frac{1} {e^{u}-e^{-u}}> 0,\)

    $$\displaystyle\begin{array}{rcl} \frac{d} {du}( \frac{1} {e^{u} - e^{-u}})& =& - \frac{e^{u} + e^{-u}} {(e^{u} - e^{-u})^{2}} <0, {}\\ \frac{d^{2}} {du^{2}}( \frac{1} {e^{u} - e^{-u}})& =& \frac{2(e^{u} + e^{-u})^{2} - (e^{u} - e^{-u})^{2}} {(e^{u} - e^{-u})^{3}}> 0. {}\\ \end{array}$$

    If g(u) > 0,  g (u) < 0,  g ′ ′(u) > 0, then for 0 < γ ≤ 1, 

    $$\displaystyle\begin{array}{rcl} g(\rho t^{\gamma })&>& 0, \frac{d} {dt}g(\rho t^{\gamma }) =\rho \gamma t^{\gamma -1}g^{{\prime}}(\rho t^{\gamma }) <0, {}\\ \frac{d^{2}} {dt^{2}}g(\rho t^{\gamma })& =& \rho \gamma (\gamma -1)t^{\gamma -2}g^{{\prime}}(\rho t^{\gamma }) +\rho ^{2}\gamma ^{2}t^{2\gamma -2}g^{{\prime\prime}}(\rho t^{\gamma })> 0; {}\\ \end{array}$$

    for \(y \in (n -\frac{1} {2},n + \frac{1} {2}),g(V (y))> 0,\)

    $$\displaystyle\begin{array}{rcl} \frac{d} {dy}g(V (y))& =& g^{{\prime}}(V (y))\nu _{ n} <0, {}\\ \frac{d^{2}} {dy^{2}}g(V (y))& =& g^{{\prime\prime}}(V (y))\nu _{ n}^{2}> 0(n \in \mathbf{N}). {}\\ \end{array}$$

    If g i (u) > 0, g i (u) < 0, g i ′ ′(u) > 0(i = 1, 2), then

    $$\displaystyle\begin{array}{rcl} g_{1}(u)g_{2}(u)&>& 0, {}\\ (g_{1}(u)g_{2}(u))^{{\prime}}& =& g_{ 1}^{{\prime}}(u)g_{ 2}(u) + g_{1}(u)g_{2}^{{\prime}}(u) <0, {}\\ (g_{1}(u)g_{2}(u))^{{\prime\prime}}& =& g_{ 1}^{{\prime\prime}}(u)g_{ 2}(u) + 2g_{1}^{{\prime}}(u)g_{ 2}^{{\prime}}(u) + g_{ 1}(u)g_{2}^{{\prime\prime}}(u)> 0(u> 0). {}\\ \end{array}$$
  3. (iii)

    Therefore, for 0 < γ < σ ≤ 1, 0 ≤ α ≤ ρ(ρ > 0), we have k(σ) ∈ R +, with h(t) > 0, h (t) < 0, h ′ ′(t) > 0, and then for \(c> 0,y \in (n -\frac{1} {2},n + \frac{1} {2})(n \in \mathbf{N}),\) it follows that

    $$\displaystyle\begin{array}{rcl} & & h(cV (y))V ^{\sigma -1}(y)> 0, {}\\ & & \frac{d} {dy}h(cV (y))V ^{\sigma -1}(y) <0, {}\\ & & \frac{d^{2}} {dy^{2}}h(cV (y))V ^{\sigma -1}(y)> 0. {}\\ \end{array}$$

Lemma 1.

If g(t)(> 0) is decreasing in R + and strictly decreasing in [n 0 ,∞) where n 0 N , satisfying ∫ 0 g(t)dt ∈ R + , then we have

$$\displaystyle{ \int _{1}^{\infty }g(t)dt <\sum _{ n=1}^{\infty }g(n) <\int _{ 0}^{\infty }g(t)dt. }$$
(14)

Proof.

Since we have

$$\displaystyle\begin{array}{rcl} \int _{n}^{n+1}g(t)dt& \leq & g(n) \leq \int _{ n-1}^{n}g(t)dt(n = 1,\cdots \,,n_{ 0}), {}\\ \int _{n_{0}+1}^{n_{0}+2}g(t)dt& <& g(n_{ 0} + 1) <\int _{ n_{0}}^{n_{0}+1}g(t)dt, {}\\ \end{array}$$

then it follows that

$$\displaystyle{0 <\int _{ 1}^{n_{0}+2}g(t)dt <\sum _{ n=1}^{n_{0}+1}g(n) <\sum _{ n=1}^{n_{0}+1}\int _{ n-1}^{n}g(t)dt =\int _{ 0}^{n_{0}+1}g(t)dt <\infty.}$$

Similarly, we still have

$$\displaystyle{0 <\int _{ n_{0}+2}^{\infty }g(t)dt \leq \sum _{ n=n_{0}+2}^{\infty }g(n) \leq \int _{ n_{0}+1}^{\infty }g(t)dt <\infty.}$$

Hence, (14) follows and therefore the lemma is proved.

Lemma 2.

If 0 ≤α ≤ρ(ρ > 0),0 < γ < σ ≤ 1, define the following weight coefficients:

$$\displaystyle\begin{array}{rcl} \omega _{\delta }(\sigma,x)&:& =\sum _{ n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \frac{U^{\delta \sigma }(x)\nu _{n}} {\tilde{V }_{n}^{1-\sigma }},x \in \mathbf{R}_{+},{}\end{array}$$
(15)
$$\displaystyle\begin{array}{rcl} \varpi _{\delta }(\sigma,n)&:& =\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \frac{\tilde{V }_{n}^{\sigma }\mu (x)} {U^{1-\delta \sigma }(x)}dx,n \in \mathbf{N}.{}\end{array}$$
(16)

Then, we have the following inequalities:

$$\displaystyle\begin{array}{rcl} \omega _{\delta }(\sigma,x)& <& k(\sigma )(x \in \mathbf{R}_{+}),{}\end{array}$$
(17)
$$\displaystyle\begin{array}{rcl} \varpi _{\delta }(\sigma,n)& \leq & k(\sigma )(n \in \mathbf{N}),{}\end{array}$$
(18)

where k(σ) is given by ( 13 ).

Proof.

Since we find

$$\displaystyle\begin{array}{rcl} \tilde{V }_{n}& =& V _{n} -\tilde{\nu }_{n} \geq V _{n} -\frac{\nu _{n}} {2} {}\\ & =& \int _{\frac{1} {2} }^{n+\frac{1} {2} }\nu (t)dt -\int _{n}^{n+\frac{1} {2} }\nu (t)dt =\int _{ \frac{1} {2} }^{n}\nu (t)dt = V (n), {}\\ \end{array}$$

and for \(t \in (n -\frac{1} {2},n + \frac{1} {2}],V ^{{\prime}}(t) =\nu _{ n},\) hence by Example 1(iii) and Hermite-Hadamard’s inequality (cf. [8]), we have

$$\displaystyle\begin{array}{rcl} & & \frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \frac{\nu _{n}} {\tilde{V }_{n}^{1-\sigma }} {}\\ & \leq & \frac{\mbox{csc } h(\rho (U^{\delta }(x)V (n))^{\gamma })} {e^{\alpha (U^{\delta }(x)V (n))^{\gamma }}} \frac{\nu _{n}} {V ^{1-\sigma }(n)} {}\\ & <& \int _{n-\frac{1} {2} }^{n+\frac{1} {2} } \frac{\mbox{csc } h(\rho (U^{\delta }(x)V (t))^{\gamma })} {e^{\alpha (U^{\delta }(x)V (t))^{\gamma }}} \frac{V ^{{\prime}}(t)} {V ^{1-\sigma }(t)}dt, {}\\ \end{array}$$
$$\displaystyle\begin{array}{rcl} \omega _{\delta }(\sigma,x)& <& \sum _{n=1}^{\infty }\int _{ n-\frac{1} {2} }^{n+\frac{1} {2} } \frac{\mbox{csc } h(\rho (U^{\delta }(x)V (t))^{\gamma })} {e^{\alpha (U^{\delta }(x)V (t))^{\gamma }}} \frac{U^{\delta \sigma }(x)V ^{{\prime}}(t)} {V ^{1-\sigma }(t)} dt {}\\ & =& \int _{\frac{1} {2} }^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)V (t))^{\gamma })} {e^{\alpha (U^{\delta }(x)V (t))^{\gamma }}} \frac{U^{\delta \sigma }(x)V ^{{\prime}}(t)} {V ^{1-\sigma }(t)} dt. {}\\ \end{array}$$

Setting u = U δ(x)V (t), by (13), we find

$$\displaystyle\begin{array}{rcl} \omega _{\delta }(\sigma,x)& <& \int _{0}^{U^{\delta }(x)V (\infty )}\frac{\mbox{csc } h(\rho u^{\gamma })} {e^{\alpha u^{\gamma }}} \frac{U^{\delta \sigma }(x)U^{-\delta }(x)} {(uU^{-\delta }(x))^{1-\sigma }}du {}\\ & \leq & \int _{0}^{\infty }\frac{\mbox{csc } h(\rho u^{\gamma })} {e^{\alpha u^{\gamma }}} u^{\sigma -1}du = k(\sigma ). {}\\ \end{array}$$

Hence, (17) follows.

Setting \(u =\tilde{ V }_{n}U^{\delta }(x)\) in (16), we find \(du =\delta \tilde{ V }_{n}U^{\delta -1}(x)\mu (x)dx\) and

$$\displaystyle\begin{array}{rcl} \varpi _{\delta }(\sigma,n)& =& \frac{1} {\delta } \int _{\tilde{V }_{n}U^{\delta }(0)}^{\tilde{V }_{n}U^{\delta }(\infty )}\frac{\mbox{csc } h(\rho u^{\gamma })} {e^{\alpha u^{\gamma }}} \frac{\tilde{V }_{n}^{\sigma }\tilde{V }_{n}^{-1}(\tilde{V }_{n}^{-1}u)^{\frac{1} {\delta } -1}} {(\tilde{V }_{n}^{-1}u)^{\frac{1} {\delta } -\sigma }} du {}\\ & =& \frac{1} {\delta } \int _{\tilde{V }_{n}U^{\delta }(0)}^{\tilde{V }_{n}U^{\delta }(\infty )}\frac{\mbox{csc } h(\rho u^{\gamma })} {e^{\alpha u^{\gamma }}} u^{\sigma -1}du. {}\\ \end{array}$$

If δ = 1, then

$$\displaystyle\begin{array}{rcl} \varpi _{1}(\sigma,n)& =& \int _{0}^{\tilde{V }_{n}U(\infty )}\frac{\mbox{csc } h(\rho u^{\gamma })} {e^{\alpha u^{\gamma }}} u^{\sigma -1}du {}\\ & \leq & \int _{0}^{\infty }\frac{\mbox{csc } h(\rho u^{\gamma })} {e^{\alpha u^{\gamma }}} u^{\sigma -1}du. {}\\ \end{array}$$

If δ = −1, then

$$\displaystyle\begin{array}{rcl} \varpi _{-1}(\sigma,n)& =& -\int _{\infty }^{\tilde{V }_{n}U^{-1}(\infty ) }\frac{\mbox{csc } h(\rho u^{\gamma })} {e^{\alpha u^{\gamma }}} u^{\sigma -1}du {}\\ & \leq & \int _{0}^{\infty }\frac{\mbox{csc } h(\rho u^{\gamma })} {e^{\alpha u^{\gamma }}} u^{\sigma -1}du. {}\\ \end{array}$$

Then by (13), we have (18). The lemma is proved.

Remark 1.

We do not need the constraint σ ≤ 1 to obtain (18). If U() = , then we have

$$\displaystyle{ \varpi _{\delta }(\sigma,n) = k(\sigma )(n \in \mathbf{N}). }$$
(19)

For example, if we set \(\mu (t) = \frac{1} {(1+t)^{\beta }}(t> 0;0 \leq \beta \leq 1),\) then for x ≥ 0, we find

$$\displaystyle\begin{array}{rcl} U(x)& =& \int _{0}^{x} \frac{1} {(1 + t)^{\beta }}dt {}\\ & =& \left \{\begin{array}{c} \frac{(1+x)^{1-\beta }-1} {1-\beta },0 \leq \beta <1 \\ \ln (1 + x),\beta = 1 \end{array} \right. <\infty,{}\\ \end{array}$$

and

$$\displaystyle{U(\infty ) =\int _{ 0}^{\infty } \frac{1} {(1 + t)^{\beta }}dt = \infty.}$$

Lemma 3.

If 0 ≤α ≤ρ (ρ > 0), 0 < γ < σ ≤ 1, there exists n 0 N , such that ν n ≥ν n+1 (n ∈ { n 0 ,n 0 + 1,⋯ }), and V (∞) = ∞, then

  1. (i)

    for x ∈ R + , we have

    $$\displaystyle{ k(\sigma )(1 -\theta _{\delta }(\sigma,x)) <\omega _{\delta }(\sigma,x), }$$
    (20)

    where, θ δ (σ,x) = O((U(x)) δ(σ−γ) ) ∈ (0,1);

  2. (ii)

    for any b > 0, we have

    $$\displaystyle{ \sum _{n=1}^{\infty } \frac{\nu _{n}} {\tilde{V }_{n}^{1+b}} = \frac{1} {b}\left ( \frac{1} {V _{n_{0}}^{b}} + bO(1)\right ). }$$
    (21)

Proof.

Since v n  ≥ v n+1(n ≥ n 0), and

$$\displaystyle{\tilde{V }_{n} = V _{n} -\tilde{\nu }_{n} \leq V _{n} =\int _{ \frac{1} {2} }^{n+\frac{1} {2} }\nu (t)dt = V (n + \frac{1} {2}),}$$

by Example 1(iii), we have

$$\displaystyle\begin{array}{rcl} \omega _{\delta }(\sigma,x)& =& \sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \frac{U^{\delta \sigma }(x)\nu _{n}} {\tilde{V }_{n}^{1-\sigma }} {}\\ &\geq & \sum _{n=n_{0}}^{\infty }\int _{ n+\frac{1} {2} }^{n+\frac{3} {2} } \frac{\mbox{csc } h(\rho (U^{\delta }(x)V (n + \frac{1} {2}))^{\gamma })} {e^{\alpha (U^{\delta }(x)V (n+\frac{1} {2} ))^{\gamma } }} \frac{U^{\delta \sigma }(x)\nu _{n+1}dt} {(V (n + \frac{1} {2}))^{1-\sigma }} {}\\ &>& \sum _{n=n_{0}}^{\infty }\int _{ n+\frac{1} {2} }^{n+\frac{3} {2} } \frac{\mbox{csc } h(\rho (U^{\delta }(x)V (t))^{\gamma })} {e^{\alpha (U^{\delta }(x)V (t))^{\gamma }}} \frac{U^{\delta \sigma }(x)V ^{{\prime}}(t)} {(V (t))^{1-\sigma }} dt {}\\ & =& \int _{n_{0}+\frac{1} {2} }^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)V (t))^{\gamma })} {e^{\alpha (U^{\delta }(x)V (t))^{\gamma }}} \frac{U^{\delta \sigma }(x)V ^{{\prime}}(t)} {(V (t))^{1-\sigma }} dt. {}\\ \end{array}$$

Setting u = U δ(x)V (t), in view of V () = , by (13), we find

$$\displaystyle\begin{array}{rcl} \omega _{\delta }(\sigma,x)&>& \int _{U^{\delta }(x)V _{n_{ 0}}}^{\infty }\frac{\mbox{csc } h(\rho u^{\gamma })} {e^{\alpha u^{\gamma }}} u^{\sigma -1}du {}\\ & =& k(\sigma ) -\int _{0}^{U^{\delta }(x)V _{n_{0}} } \frac{\mbox{csc } h(\rho u^{\gamma })} {e^{\alpha u^{\gamma }}} u^{\sigma -1}du {}\\ & =& k(\sigma )(1 -\theta _{\delta }(\sigma,x)), {}\\ \theta _{\delta }(\sigma,x)&: & = \frac{1} {k(\sigma )}\int _{0}^{U^{\delta }(x)V _{n_{0}} } \frac{\mbox{csc } h(\rho u^{\gamma })} {e^{\alpha u^{\gamma }}} u^{\sigma -1}du \in (0,1). {}\\ \end{array}$$

Since \(F(u) = \frac{u^{\gamma }\mbox{csc } h(\rho u^{\gamma })} {e^{\alpha u^{\gamma }}}\) is continuous in (0, ), satisfying

$$\displaystyle{F(u) \rightarrow \frac{1} {\rho } (u \rightarrow 0^{+}),F(u) \rightarrow 0(u \rightarrow \infty ),}$$

there exists a constant L > 0, such that F(u) ≤ L, namely,

$$\displaystyle{\frac{\mbox{csc } h(\rho u^{\gamma })} {e^{\alpha u^{\gamma }}} \leq Lu^{-\gamma }(u \in (0,\infty )).}$$

Hence we find

$$\displaystyle\begin{array}{rcl} 0& <& \theta _{\delta }(\sigma,x) \leq \frac{L} {k(\sigma )}\int _{0}^{U^{\delta }(x)V _{n_{0}} }u^{\sigma -\gamma -1}du {}\\ & =& \frac{L(U^{\delta }(x)V _{n_{0}})^{\sigma -\gamma }} {k(\sigma )(\sigma -\gamma )}, {}\\ \end{array}$$

and then (20) follows.

For b > 0, we find

$$\displaystyle\begin{array}{rcl} \sum _{n=1}^{\infty } \frac{\nu _{n}} {\tilde{V }_{n}^{1+b}}& \leq & \sum _{n=1}^{n_{0} } \frac{\nu _{n}} {\tilde{V }_{n}^{1+b}} +\sum _{ n=n_{0}+1}^{\infty } \frac{\nu _{n}} {V ^{1+b}(n)} {}\\ & <& \sum _{n=1}^{n_{0} } \frac{\nu _{n}} {\tilde{V }_{n}^{1+b}} +\sum _{ n=n_{0}+1}^{\infty }\int _{ n-\frac{1} {2} }^{n+\frac{1} {2} } \frac{V ^{{\prime}}(x)} {V ^{1+b}(x)}dx {}\\ & =& \sum _{n=1}^{n_{0} } \frac{\nu _{n}} {\tilde{V }_{n}^{1+b}} +\int _{ n_{0}+\frac{1} {2} }^{\infty } \frac{dV (x)} {V ^{1+b}(x)} {}\\ & =& \sum _{n=1}^{n_{0} } \frac{\nu _{n}} {\tilde{V }_{n}^{1+b}} + \frac{1} {bV ^{b}(n_{0} + \frac{1} {2})} {}\\ & =& \frac{1} {b}\left ( \frac{1} {V _{n_{0}}^{b}} + b\sum _{n=1}^{n_{0} } \frac{\nu _{n}} {\tilde{V }_{n}^{1+b}}\right ), {}\\ \end{array}$$
$$\displaystyle\begin{array}{rcl} \sum _{n=1}^{\infty } \frac{\nu _{n}} {\tilde{V }_{n}^{1+b}}& \geq & \sum _{n=n_{0}}^{\infty }\int _{ n+\frac{1} {2} }^{n+\frac{3} {2} } \frac{\nu _{n+1}} {V ^{1+b}(n + \frac{1} {2})}dx {}\\ &>& \sum _{n=n_{0}}^{\infty }\int _{ n+\frac{1} {2} }^{n+\frac{3} {2} } \frac{V ^{{\prime}}(x)} {V ^{1+b}(x)}dx =\int _{ n_{0}+\frac{1} {2} }^{\infty } \frac{dV (x)} {V ^{1+b}(x)} {}\\ & =& \frac{1} {bV ^{b}(n_{0} + \frac{1} {2})} = \frac{1} {bV _{n_{0}}^{b}}. {}\\ \end{array}$$

Hence we have (21). The lemma is proved.

Note.

For example, \(\nu _{n} = \frac{1} {(n-\tau )^{\beta }}(n \in \mathbf{N};0 \leq \beta \leq 1,0 \leq \tau <1)\) satisfies the conditions of Lemma 3 (for n 0 ≥ 1).

3 Equivalent Inequalities and Operator Expressions

Theorem 1.

If 0 ≤α ≤ρ(ρ > 0),0 < γ < σ ≤ 1,k(σ) is given by ( 13 ), then for \(p> 1,\ 0 <\vert \vert f\vert \vert _{p,\varPhi _{\delta }},\vert \vert a\vert \vert _{q,\tilde{\varPsi }} <\infty,\) we have the following equivalent inequalities:

$$\displaystyle\begin{array}{rcl} I&:& =\sum _{ n=1}^{\infty }\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} a_{n}f(x)dx <k(\sigma )\vert \vert f\vert \vert _{p,\varPhi _{\delta }}\vert \vert a\vert \vert _{q,\tilde{\varPsi }},{}\end{array}$$
(22)
$$\displaystyle\begin{array}{rcl} J_{1}&: & =\sum _{ n=1}^{\infty } \frac{\nu _{n}} {\tilde{V }_{n}^{1-p\sigma }}\left [\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} f(x)dx\right ]^{p} \\ & <& k(\sigma )\vert \vert f\vert \vert _{p,\varPhi _{\delta }}, {}\end{array}$$
(23)
$$\displaystyle\begin{array}{rcl} J_{2}&: & = \left \{\int _{0}^{\infty } \frac{\mu (x)} {U^{1-q\delta \sigma }(x)}\left [\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} a_{n}\right ]^{q}dx\right \}^{\frac{1} {q} } \\ & <& k(\sigma )\vert \vert a\vert \vert _{q,\tilde{\varPsi }}. {}\end{array}$$
(24)

Proof.

By Hölder’s inequality with weight (cf. [8]), we have

$$\displaystyle\begin{array}{rcl} & & \left [\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} f(x)dx\right ]^{p} \\ & =& \left [\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \left (\frac{U^{\frac{1-\delta \sigma } {q} }(x)f(x)} {\tilde{V }_{n}^{\frac{1-\sigma } {p} }\mu ^{\frac{1} {q} }(x)} \right )\left (\frac{\tilde{V }_{n}^{\frac{1-\sigma } {p} }\mu ^{\frac{1} {q} }(x)} {U^{\frac{1-\delta \sigma } {q} }(x)} \right )dx\right ]^{p} \\ & \leq & \int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \left (\frac{U^{\frac{p(1-\delta \sigma )} {q} }(x)f^{p}(x)} {\tilde{V }_{n}^{1-\sigma }\mu ^{\frac{p} {q} }(x)} \right )dx \\ & & \times \left [\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \frac{\tilde{V }_{n}^{(1-\sigma )(p-1)}\mu (x)} {U^{1-\delta \sigma }(x)} dx\right ]^{p-1} \\ & =& \frac{(\varpi _{\delta }(\sigma,n))^{p-1}} {\tilde{V }_{n}^{p\sigma -1}\nu _{n}} \int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \frac{U^{(1-\delta \sigma )(p-1)}(x)\nu _{n}} {\tilde{V }_{n}^{1-\sigma }\mu ^{p-1}(x)} f^{p}(x)dx.{}\end{array}$$
(25)

In view of (18) and the Lebesgue term by term integration theorem (cf. [9]), we find

$$\displaystyle\begin{array}{rcl} J_{1}& \leq & (k(\sigma ))^{\frac{1} {q} }\left [\sum _{n=1}^{\infty }\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \frac{U^{(1-\delta \sigma )(p-1)}(x)\nu _{n}} {\tilde{V }_{n}^{1-\sigma }\mu ^{p-1}(x)} f^{p}(x)dx\right ]^{\frac{1} {p} } \\ & =& (k(\sigma ))^{\frac{1} {q} }\left [\int _{0}^{\infty }\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \frac{U^{(1-\delta \sigma )(p-1)}(x)\nu _{n}} {\tilde{V }_{n}^{1-\sigma }\mu ^{p-1}(x)} f^{p}(x)dx\right ]^{\frac{1} {p} } \\ & =& (k(\sigma ))^{\frac{1} {q} }\left [\int _{0}^{\infty }\omega _{\delta }(\sigma,x)\frac{U^{p(1-\delta \sigma )-1}(x)} {\mu ^{p-1}(x)} f^{p}(x)dx\right ]^{\frac{1} {p} }. {}\end{array}$$
(26)

Then by (17), we have (23).

By Hölder’s inequality (cf. [8]), we have

$$\displaystyle\begin{array}{rcl} I& =& \sum _{n=1}^{\infty }\left [ \frac{\nu _{n}^{\frac{1} {p} }} {\tilde{V }_{n}^{\frac{1} {p}-\sigma }}\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} f(x)dx\right ]\left (\frac{\tilde{V }_{n}^{\frac{1} {p}-\sigma }a_{n}} {\nu _{n}^{\frac{1} {p} }} \right ) \\ & \leq & J_{1}\vert \vert a\vert \vert _{q,\tilde{\varPsi }}. {}\end{array}$$
(27)

Then by (23), we have (22).

On the other hand, assuming that (22) is valid, we set

$$\displaystyle{a_{n}:= \frac{\nu _{n}} {\tilde{V }_{n}^{1-p\sigma }}\left [\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} f(x)dx\right ]^{p-1},n \in \mathbf{N}.}$$

Then, we find \(J_{1}^{p} = \vert \vert a\vert \vert _{q,\tilde{\varPsi }}^{q}.\)

If J 1 = 0, then (23) is trivially valid.

If J 1 = , then (23) keeps impossible.

Suppose that 0 < J 1 < . By (22), it follows that

$$\displaystyle\begin{array}{rcl} \vert \vert a\vert \vert _{q,\tilde{\varPsi }}^{q}& =& J_{ 1}^{p} = I <k(\sigma )\vert \vert f\vert \vert _{ p,\varPhi _{\delta }}\vert \vert a\vert \vert _{q,\tilde{\varPsi }}, {}\\ \vert \vert a\vert \vert _{q,\tilde{\varPsi }}^{q-1}& =& J_{ 1} <k(\sigma )\vert \vert f\vert \vert _{p,\varPhi _{\delta }}, {}\\ \end{array}$$

and then (23) follows, which is equivalent to (22).

By Hölder’s inequality with weight (cf. [8]), we obtain

$$\displaystyle\begin{array}{rcl} & & \left [\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} a_{n}\right ]^{q} \\ & =& \left [\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \left (\frac{U^{\frac{1-\delta \sigma } {q} }(x)\nu _{n}^{\frac{1} {p} }} {\tilde{V }_{n}^{\frac{1-\sigma } {p} }} \right )\left ( \frac{\tilde{V }_{n}^{\frac{1-\sigma } {p} }a_{n}} {U^{\frac{1-\delta \sigma } {q} }(x)\nu _{n}^{\frac{1} {p} }}\right )\right ]^{q} \\ & \leq & \left [\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \frac{U^{(1-\delta \sigma )(p-1)}(x)\nu _{n}} {\tilde{V }_{n}^{1-\sigma }} \right ]^{q-1} \\ & & \times \sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \frac{\tilde{V }_{n}^{\frac{q(1-\sigma )} {p} }} {U^{1-\delta \sigma }(x)\nu _{n}^{q-1}}a_{n}^{q} \\ & =& \frac{(\omega _{\delta }(\sigma,x))^{q-1}} {U^{q\delta \sigma -1}(x)\mu (x)}\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \frac{\tilde{V }_{n}^{(1-\sigma )(q-1)}\mu (x)} {U^{1-\delta \sigma }(x)\nu _{n}^{q-1}} a_{n}^{q}.{}\end{array}$$
(28)

Then by (17) and Lebesgue term by term integration theorem (cf. [9]), it follows that

$$\displaystyle\begin{array}{rcl} J_{2}& <& (k(\sigma ))^{\frac{1} {p} }\left \{\int _{0}^{\infty }\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \frac{\tilde{V }_{n}^{(1-\sigma )(q-1)}\mu (x)} {U^{1-\delta \sigma }(x)\nu _{n}^{q-1}} a_{n}^{q}dx\right \}^{\frac{1} {q} } \\ & =& (k(\sigma ))^{\frac{1} {p} }\left \{\sum _{n=1}^{\infty }\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \frac{\tilde{V }_{n}^{(1-\sigma )(q-1)}\mu (x)} {U^{1-\delta \sigma }(x)\nu _{n}^{q-1}} a_{n}^{q}dx\right \}^{\frac{1} {q} } \\ & =& (k(\sigma ))^{\frac{1} {p} }\left \{\sum _{n=1}^{\infty }\varpi _{\delta }(\sigma,n)\frac{\tilde{V }_{n}^{q(1-\sigma )-1}} {\nu _{n}^{q-1}} a_{n}^{q}\right \}^{\frac{1} {q} }. {}\end{array}$$
(29)

Then by (18), we have (24).

By Hölder’s inequality (cf. [8]), we have

$$\displaystyle\begin{array}{rcl} I& =& \int _{0}^{\infty }\left (\frac{U^{\frac{1} {q}-\delta \sigma }(x)} {\mu ^{\frac{1} {q} }(x)} f(x)\right )\left [ \frac{\mu ^{\frac{1} {q} }(x)} {U^{\frac{1} {q}-\delta \sigma }(x)}\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} a_{n}\right ]dx \\ & \leq & \vert \vert f\vert \vert _{p,\varPhi _{\delta }}J_{2}. {}\end{array}$$
(30)

Then by (24), we have (22).

On the other hand, assuming that (24) is valid, we set

$$\displaystyle{f(x):= \frac{\mu (x)} {U^{1-q\delta \sigma }(x)}\left [\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} a_{n}\right ]^{q-1},\ x \in \mathbf{R}_{ +}.}$$

Then we find \(J_{2}^{q} = \vert \vert f\vert \vert _{p,\varPhi _{\delta }}^{p}.\)

If J 2 = 0, then (24) is trivially valid.

If J 2 = , then (24) keeps impossible.

Suppose that 0 < J 2 < . By (22), it follows that

$$\displaystyle\begin{array}{rcl} \vert \vert f\vert \vert _{p,\varPhi _{\delta }}^{p}& =& J_{ 2}^{q} = I <k(\sigma )\vert \vert f\vert \vert _{ p,\varPhi _{\delta }}\vert \vert a\vert \vert _{q,\tilde{\varPsi }}, {}\\ \vert \vert f\vert \vert _{p,\varPhi _{\delta }}^{p-1}& =& J_{ 2} <k(\sigma )\vert \vert a\vert \vert _{q,\tilde{\varPsi }}, {}\\ \end{array}$$

and then (24) follows, which is equivalent to (22).

Therefore, (22), (23) and (24) are equivalent. The theorem is proved.

Theorem 2.

With the assumptions of Theorem 1 , if there exists n 0 N , such that v n ≥ v n+1 (n ∈ { n 0 ,n 0 + 1,⋯ }), and U(∞) = V (∞) = ∞, then the constant factor k(σ) in ( 22 ), ( 23 ) and ( 24 ) is the best possible.

Proof.

For ɛ ∈ (0, q(σγ)), we set \(\tilde{\sigma }=\sigma -\frac{\varepsilon }{q}(\in (\gamma,1)),\) and \(\tilde{f }= \tilde{f } (x),x \in \mathbf{R}_{+},\tilde{a} =\{\tilde{ a}_{n}\}_{n=1}^{\infty },\)

$$\displaystyle\begin{array}{rcl} \tilde{f }(x)& =& \left \{\begin{array}{c} U^{\delta (\tilde{\sigma }+\varepsilon )-1}(x)\mu (x),0 <x^{\delta } \leq 1 \\ 0,x^{\delta }> 0 \end{array} \right.,{}\end{array}$$
(31)
$$\displaystyle\begin{array}{rcl} \tilde{a}_{n}& =& \tilde{V }_{n}^{\tilde{\sigma }-1}\nu _{ n} =\tilde{ V }_{n}^{\sigma -\frac{\varepsilon }{q}-1}\nu _{ n},n \in \mathbf{N}.{}\end{array}$$
(32)

Then for δ = ±1, since U() = , we find

$$\displaystyle{ \int _{\{x>0;0<x^{\delta }\leq 1\}} \frac{\mu (x)} {U^{1-\delta \varepsilon }(x)}dx = \frac{1} {\varepsilon } U^{\delta \varepsilon }(1). }$$
(33)

By (21), (33) and (20), we obtain

$$\displaystyle\begin{array}{rcl} \vert \vert \tilde{f } \vert \vert _{p,\varPhi _{\delta }}\vert \vert \tilde{a}\vert \vert _{q,\tilde{\varPsi }}& =& \left (\int _{\{x>0;0<x^{\delta }\leq 1\}} \frac{\mu (x)dx} {U^{1-\delta \varepsilon }(x)}\right )^{\frac{1} {p} }\left (\sum _{n=1}^{\infty } \frac{\nu _{n}} {\tilde{V }_{n}^{1+\varepsilon }}\right )^{\frac{1} {q} } \\ & =& \frac{1} {\varepsilon } U^{ \frac{\delta \varepsilon }{ p} }(1)\left ( \frac{1} {V _{n_{0}}^{\varepsilon }} +\varepsilon \tilde{ O}(1)\right )^{\frac{1} {q} }, {}\end{array}$$
(34)
$$\displaystyle\begin{array}{rcl} \tilde{I}&: & =\int _{ 0}^{\infty }\sum _{ n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \tilde{a}_{n}\tilde{f } (x)dx {}\\ & =& \int _{\{x>0;0<x^{\delta }\leq 1\}}\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \frac{\tilde{V }_{n}^{\tilde{\sigma }-1}\nu _{n}\mu (x)} {U^{1-\delta (\tilde{\sigma }+\varepsilon )}(x)}dx {}\\ & =& \int _{\{x>0;0<x^{\delta }\leq 1\}}\omega _{\delta }(\tilde{\sigma },x) \frac{\mu (x)} {U^{1-\delta \varepsilon }(x)}dx {}\\ & \geq & k(\tilde{\sigma })\int _{\{x>0;0<x^{\delta }\leq 1\}}(1 -\theta _{\delta }(\tilde{\sigma },x)) \frac{\mu (x)} {U^{1-\delta \varepsilon }(x)}dx {}\\ & =& k(\tilde{\sigma })\int _{\{x>0;0<x^{\delta }\leq 1\}}(1 - O((U(x))^{\delta (\sigma -\frac{\varepsilon }{q}-\gamma )})) \frac{\mu (x)} {U^{1-\delta \varepsilon }(x)}dx {}\\ & =& k(\tilde{\sigma })\left [\int _{\{x>0;0<x^{\delta }\leq 1\}} \frac{\mu (x)} {U^{1-\delta \varepsilon }(x)}dx\right. {}\\ & & \left.-\int _{\{x>0;0<x^{\delta }\leq 1\}}O( \frac{\mu (x)} {U^{1-\delta (\sigma -\gamma + \frac{\varepsilon }{p})}(x)})dx\right ] {}\\ & =& \frac{1} {\varepsilon } k(\sigma -\frac{\varepsilon } {q})(U^{\delta \varepsilon }(1) -\varepsilon O(1)). {}\\ \end{array}$$

If there exists a positive constant K ≤ k(σ), such that (22) is valid when replacing k(σ) to K, then in particular, by Lebesgue term by term integration theorem, we have \(\varepsilon \tilde{I} <\varepsilon K\vert \vert \tilde{f } \vert \vert _{p,\varPhi _{\delta }}\vert \vert \tilde{a}\vert \vert _{q,\tilde{\varPsi }},\) namely,

$$\displaystyle{k(\sigma -\frac{\varepsilon } {q})(U^{\delta \varepsilon }(1) -\varepsilon O(1)) <K \cdot U^{ \frac{\delta \varepsilon }{ p} }(1)\left ( \frac{1} {V _{n_{0}}^{\varepsilon }} +\varepsilon \tilde{ O}(1)\right )^{\frac{1} {q} }.}$$

It follows that k(σ) ≤ K(ɛ → 0+). Hence, K = k(σ) is the best possible constant factor of (22).

The constant factor k(σ) in (23) (respectively, (24)) is still the best possible. Otherwise, we would reach a contradiction by (27) (respectively, (30)) that the constant factor in (22) is not the best possible. The theorem is proved.

For p > 1, we find

$$\displaystyle{\tilde{\varPsi }^{1-p}(n) = \frac{\nu _{n}} {\tilde{V }_{n}^{1-p\sigma }}(n \in \mathbf{N}),\varPhi _{\delta }^{1-q}(x) = \frac{\mu (x)} {U^{1-q\delta \sigma }(x)}(x \in \mathbf{R}_{+}),}$$

and define the following real normed spaces:

$$\displaystyle\begin{array}{rcl} L_{p,\varPhi _{\delta }}(\mathbf{R}_{+})& =& \{f;f = f(x),x \in \mathbf{R}_{+},\vert \vert f\vert \vert _{p,\varPhi _{\delta }} <\infty \}, {}\\ l_{q,\tilde{\varPsi }}& =& \{a;a =\{ a_{n}\}_{n=1}^{\infty },\vert \vert a\vert \vert _{ q,\tilde{\varPsi }} <\infty \}, {}\\ L_{q,\varPhi _{\delta }^{1-q}}(\mathbf{R}_{+})& =& \{h;h = h(x),x \in \mathbf{R}_{+},\vert \vert h\vert \vert _{q,\varPhi _{\delta }^{1-q}} <\infty \}, {}\\ l_{p,\tilde{\varPsi }^{1-p}}& =& \{c;c =\{ c_{n}\}_{n=1}^{\infty },\vert \vert c\vert \vert _{ p,\tilde{\varPsi }^{1-p}} <\infty \}. {}\\ \end{array}$$

Assuming that \(f \in L_{p,\varPhi _{\delta }}(\mathbf{R}_{+}),\) setting

$$\displaystyle{c =\{ c_{n}\}_{n=1}^{\infty },c_{ n}:=\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} f(x)dx,n \in \mathbf{N},}$$

we can rewrite (23) as follows:

$$\displaystyle{\vert \vert c\vert \vert _{p,\tilde{\varPsi }^{1-p}} <k(\sigma )\vert \vert f\vert \vert _{p,\varPhi _{\delta }} <\infty,}$$

namely, \(c \in l_{p,\tilde{\varPsi }^{1-p}}.\)

Definition 1.

Define a half-discrete Hardy-Hilbert-type operator

$$\displaystyle{T_{1}: L_{p,\varPhi _{\delta }}(\mathbf{R}_{+}) \rightarrow l_{p,\tilde{\varPsi }^{1-p}}}$$

as follows:

For any \(f \in L_{p,\varPhi _{\delta }}(\mathbf{R}_{+}),\) there exists a unique representation \(T_{1}f = c \in l_{p,\tilde{\varPsi }^{1-p}}.\) Define the formal inner product of T 1 f and \(a =\{ a_{n}\}_{n=1}^{\infty }\in l_{q,\tilde{\varPsi }}\) as follows:

$$\displaystyle{ (T_{1}f,a):=\sum _{ n=1}^{\infty }\left [\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} f(x)dx\right ]a_{n}. }$$
(35)

Then we can rewrite (22) and (23) as:

$$\displaystyle\begin{array}{rcl} (T_{1}f,a)& <& k(\sigma )\vert \vert f\vert \vert _{p,\varPhi _{\delta }}\vert \vert a\vert \vert _{q,\tilde{\varPsi }},{}\end{array}$$
(36)
$$\displaystyle\begin{array}{rcl} \vert \vert T_{1}f\vert \vert _{p,\tilde{\varPsi }^{1-p}}& <& k(\sigma )\vert \vert f\vert \vert _{p,\varPhi _{\delta }}.{}\end{array}$$
(37)

Define the norm of operator T 1 as follows:

$$\displaystyle{\vert \vert T_{1}\vert \vert:=\sup _{f(\neq \theta )\in L_{p,\varPhi _{ \delta }}(\mathbf{R}_{+})}\frac{\vert \vert T_{1}f\vert \vert _{p,\tilde{\varPsi }^{1-p}}} {\vert \vert f\vert \vert _{p,\varPhi _{\delta }}}.}$$

Then by (37), it is evident that | | T 1 | | ≤ k(σ). Since by Theorem 2, the constant factor in (37) is the best possible, we have

$$\displaystyle{ \vert \vert T_{1}\vert \vert = k(\sigma ) = \frac{2\varGamma (\frac{\sigma }{\gamma })} {\gamma (2\rho )^{\sigma /\gamma }}\zeta (\frac{\sigma } {\gamma }, \frac{\alpha +\rho } {2\rho } ). }$$
(38)

Assuming that \(a =\{ a_{n}\}_{n=1}^{\infty }\in l_{q,\tilde{\varPsi }},\) setting

$$\displaystyle{h(x):=\sum _{ n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} a_{n},x \in \mathbf{R}_{+},}$$

we can rewrite (24) as follows:

$$\displaystyle{\vert \vert h\vert \vert _{q,\varPhi _{\delta }^{1-q}} <k(\sigma )\vert \vert a\vert \vert _{q,\tilde{\varPsi }} <\infty,}$$

namely, \(h \in L_{q,\varPhi _{\delta }^{1-q}}(\mathbf{R}_{+}).\)

Definition 2.

Define a half-discrete Hardy-Hilbert-type operator

$$\displaystyle{T_{2}: l_{q,\tilde{\varPsi }} \rightarrow L_{q,\varPhi _{\delta }^{1-q}}(\mathbf{R}_{+})}$$

as follows:

For any \(a =\{ a_{n}\}_{n=1}^{\infty }\in l_{q,\tilde{\varPsi }},\) there exists a unique representation \(T_{2}a = h \in L_{q,\varPhi _{\delta }^{1-q}}(\mathbf{R}_{+}).\) Define the formal inner product of T 2 a and \(f \in L_{p,\varPhi _{\delta }}(\mathbf{R}_{+})\) by:

$$\displaystyle{ (T_{2}a,f):=\int _{ 0}^{\infty }\left [\sum _{ n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} a_{n}\right ]f(x)dx. }$$
(39)

Then we can rewrite (22) and (24) as follows:

$$\displaystyle\begin{array}{rcl} (T_{2}a,f)& <& k(\sigma )\vert \vert f\vert \vert _{p,\varPhi _{\delta }}\vert \vert a\vert \vert _{q,\tilde{\varPsi }},{}\end{array}$$
(40)
$$\displaystyle\begin{array}{rcl} \vert \vert T_{2}a\vert \vert _{q,\varPhi _{\delta }^{1-q}}& <& k(\sigma )\vert \vert a\vert \vert _{q,\tilde{\varPsi }}.{}\end{array}$$
(41)

Define the norm of operator T 2 by:

$$\displaystyle{\vert \vert T_{2}\vert \vert:=\sup _{a(\neq \theta )\in l_{q,\tilde{\varPsi }}}\frac{\vert \vert T_{2}a\vert \vert _{q,\varPhi _{\delta }^{1-q}}} {\vert \vert a\vert \vert _{q,\tilde{\varPsi }}}.}$$

Then by (41), we find | | T 2 | | ≤ k(σ). Since by Theorem 2, the constant factor in (41) is the best possible, we have

$$\displaystyle{ \vert \vert T_{2}\vert \vert = k(\sigma ) = \frac{2\varGamma (\frac{\sigma }{\gamma })} {\gamma (2\rho )^{\sigma /\gamma }}\zeta (\frac{\sigma } {\gamma }, \frac{\alpha +\rho } {2\rho } ) = \vert \vert T_{1}\vert \vert. }$$
(42)

4 Some Equivalent Reverses

In the following, we also set

$$\displaystyle{\tilde{\varPhi }_{\delta }(x):= (1 -\theta _{\delta }(\sigma,x))\frac{U^{p(1-\delta \sigma )-1}(x)} {\mu ^{p-1}(x)} (x \in \mathbf{R}_{+}).}$$

For 0 < p < 1 or p < 0, we still use the formal symbols \(\vert \vert f\vert \vert _{p,\varPhi _{\delta }}\), \(\vert \vert f\vert \vert _{p,\tilde{\varPhi }_{\delta }}\) and \(\vert \vert a\vert \vert _{q,\tilde{\varPsi }}.\)

Theorem 3.

If 0 ≤α ≤ρ(ρ > 0),0 < γ < σ ≤ 1,k(σ) is given by ( 13 ), there exists n 0 N , such that v n ≥ v n+1 (n ∈ { n 0 ,n 0 + 1,⋯ }), and U(∞) = V (∞) = ∞, then for \(p <0,\ 0 <\vert \vert f\vert \vert _{p,\varPhi _{\delta }},\vert \vert a\vert \vert _{q,\tilde{\varPsi }} <\infty,\) we have the following equivalent inequalities with the best possible constant factor k(σ):

$$\displaystyle\begin{array}{rcl} I& =& \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} a_{n}f(x)dx> k(\sigma )\vert \vert f\vert \vert _{p,\varPhi _{\delta }}\vert \vert a\vert \vert _{q,\tilde{\varPsi }},{}\end{array}$$
(43)
$$\displaystyle\begin{array}{rcl} J_{1}& =& \sum _{n=1}^{\infty } \frac{\nu _{n}} {\tilde{V }_{n}^{1-p\sigma }}\left [\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} f(x)dx\right ]^{p}> k(\sigma )\vert \vert f\vert \vert _{ p,\varPhi _{\delta }},{}\end{array}$$
(44)
$$\displaystyle\begin{array}{rcl} J_{2}& =& \left \{\int _{0}^{\infty } \frac{\mu (x)} {U^{1-q\delta \sigma }(x)}\left [\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} a_{n}\right ]^{q}dx\right \}^{\frac{1} {q} } \\ &>& k(\sigma )\vert \vert a\vert \vert _{q,\tilde{\varPsi }}. {}\end{array}$$
(45)

Proof.

By the reverse Hölder’s inequality with weight (cf. [8]), since p < 0, similarly to the way we obtained (25) and (26), we have

$$\displaystyle\begin{array}{rcl} & & \left [\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} f(x)dx\right ]^{p} {}\\ & \leq & \frac{\tilde{V }_{n}^{1-p\sigma }} {(\varpi _{\delta }(\sigma,n))^{1-p}\nu _{n}}\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \frac{U^{(1-\delta \sigma )(p-1)}(x)\nu _{n}} {\tilde{V }_{n}^{1-\sigma }\mu ^{p-1}(x)} f^{p}(x)dx, {}\\ \end{array}$$

and then by (19) and Lebesgue term by term integration theorem, it follows that

$$\displaystyle\begin{array}{rcl} J_{1}& \geq & (k(\sigma ))^{\frac{1} {q} }\left [\sum _{n=1}^{\infty }\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \frac{U^{(1-\delta \sigma )(p-1)}(x)\nu _{n}} {\tilde{V }_{n}^{1-\sigma }\mu ^{p-1}(x)} f^{p}(x)dx\right ]^{\frac{1} {p} } {}\\ & =& (k(\sigma ))^{\frac{1} {q} }\left [\int _{0}^{\infty }\omega _{\delta }(\sigma,x)\frac{U^{p(1-\delta \sigma )-1}(x)} {\mu ^{p-1}(x)} f^{p}(x)dx\right ]^{\frac{1} {p} }. {}\\ \end{array}$$

Then by (17), we have (44).

By the reverse Hölder’s inequality (cf. [8]), we have

$$\displaystyle\begin{array}{rcl} I& =& \sum _{n=1}^{\infty }\left [ \frac{\nu _{n}^{\frac{1} {p} }} {\tilde{V }_{n}^{\frac{1} {p}-\sigma }}\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} f(x)dx\right ]\left (\frac{\tilde{V }_{n}^{\frac{1} {p}-\sigma }a_{n}} {\nu _{n}^{\frac{1} {p} }} \right ) \\ & \geq & J_{1}\vert \vert a\vert \vert _{q,\tilde{\varPsi }}. {}\end{array}$$
(46)

Then by (44), we have (43).

On the other hand, assuming that (43) is valid, we set a n as in Theorem 1. Then we find \(J_{1}^{p} = \vert \vert a\vert \vert _{q,\tilde{\varPsi }}^{q}.\)

If J 1 = , then (44) is trivially valid.

If J 1 = 0, then (44) is impossible.

Suppose that 0 < J 1 < . By (43), it follows that

$$\displaystyle\begin{array}{rcl} \vert \vert a\vert \vert _{q,\tilde{\varPsi }}^{q}& =& J_{ 1}^{p} = I> k(\sigma )\vert \vert f\vert \vert _{ p,\varPhi _{\delta }}\vert \vert a\vert \vert _{q,\tilde{\varPsi }}, {}\\ \vert \vert a\vert \vert _{q,\tilde{\varPsi }}^{q-1}& =& J_{ 1}> k(\sigma )\vert \vert f\vert \vert _{p,\varPhi _{\delta }}, {}\\ \end{array}$$

and then (44) follows, which is equivalent to (43).

By the reverse of Hölder’s inequality with weight (cf. [8]), since 0 < q < 1, similarly to the way we obtained (28) and (29), we have

$$\displaystyle\begin{array}{rcl} & & \left [\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} a_{n}\right ]^{q} {}\\ & \geq & \frac{(\omega _{\delta }(\sigma,x))^{q-1}} {U^{q\delta \sigma -1}(x)\mu (x)}\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \frac{\tilde{V }_{n}^{(1-\sigma )(q-1)}\mu (x)} {U^{1-\delta \sigma }(x)\nu _{n}^{q-1}} a_{n}^{q}, {}\\ \end{array}$$

and then by (17) and Lebesgue term by term integration theorem, it follows that

$$\displaystyle\begin{array}{rcl} J_{2}&>& (k(\sigma ))^{\frac{1} {p} }\left [\int _{0}^{\infty }\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \frac{\tilde{V }_{n}^{(1-\sigma )(q-1)}\mu (x)} {U^{1-\delta \sigma }(x)\nu _{n}^{q-1}} a_{n}^{q}dx\right ]^{\frac{1} {q} } {}\\ & =& (k(\sigma ))^{\frac{1} {p} }\left [\sum _{n=1}^{\infty }\varpi _{\delta }(\sigma,n)\frac{\tilde{V }_{n}^{q(1-\sigma )-1}} {\nu _{n}^{q-1}} a_{n}^{q}\right ]^{\frac{1} {q} }. {}\\ \end{array}$$

Then by (19), we obtain (45).

By the reverse Hölder’s inequality (cf. [8]), we get

$$\displaystyle\begin{array}{rcl} I& =& \int _{0}^{\infty }\left (\frac{U^{\frac{1} {q}-\delta \sigma }(x)} {\mu ^{\frac{1} {q} }(x)} f(x)\right )\left [ \frac{\mu ^{\frac{1} {q} }(x)} {U^{\frac{1} {q}-\delta \sigma }(x)}\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} a_{n}\right ]dx \\ & \geq & \vert \vert f\vert \vert _{p,\varPhi _{\delta }}J_{2}. {}\end{array}$$
(47)

Then by (45), we derive (43).

On the other hand, assuming that (45) is valid, we set f(x) as in Theorem 1. Then we find \(J_{2}^{q} = \vert \vert f\vert \vert _{p,\varPhi _{\delta }}^{p}.\)

If J 2 = , then (45) is trivially valid.

If J 2 = 0, then (45) keeps impossible.

Suppose that 0 < J 2 < . By (43), it follows that

$$\displaystyle\begin{array}{rcl} \vert \vert f\vert \vert _{p,\varPhi _{\delta }}^{p}& =& J_{ 2}^{q} = I> k(\sigma )\vert \vert f\vert \vert _{ p,\varPhi _{\delta }}\vert \vert a\vert \vert _{q,\tilde{\varPsi }}, {}\\ \vert \vert f\vert \vert _{p,\varPhi _{\delta }}^{p-1}& =& J_{ 2}> k(\sigma )\vert \vert a\vert \vert _{q,\tilde{\varPsi }}, {}\\ \end{array}$$

and then (45) follows, which is equivalent to (43).

Therefore, inequalities (43), (44) and (45) are equivalent.

For ɛ ∈ (0, q(σγ)), we set \(\tilde{\sigma }=\sigma -\frac{\varepsilon }{q}(\in (\gamma,1)),\) and \(\tilde{f }= \tilde{f } (x),x \in \mathbf{R}_{+}\), \(\tilde{a} =\{\tilde{ a}_{n}\}_{n=1}^{\infty },\)

$$\displaystyle\begin{array}{rcl} \tilde{f }(x)& =& \left \{\begin{array}{c} U^{\delta (\tilde{\sigma }+\varepsilon )-1}(x)\mu (x),0 <x^{\delta } \leq 1 \\ 0,x^{\delta }> 0 \end{array} \right., {}\\ \tilde{a}_{n}& =& \tilde{V }_{n}^{\tilde{\sigma }-1}\nu _{ n} =\tilde{ V }_{n}^{\sigma -\frac{\varepsilon }{q}-1}\nu _{ n},n \in \mathbf{N}. {}\\ \end{array}$$

By (21), (33) and (17), we obtain

$$\displaystyle{ \vert \vert \tilde{f } \vert \vert _{p,\varPhi _{\delta }}\vert \vert \tilde{a}\vert \vert _{q,\tilde{\varPsi }} = \frac{1} {\varepsilon } U^{ \frac{\delta \varepsilon }{ p} }(1)\left ( \frac{1} {V _{n_{0}}^{\varepsilon }} +\varepsilon \tilde{ O}(1)\right )^{\frac{1} {q} }, }$$
(48)
$$\displaystyle\begin{array}{rcl} \tilde{I}& =& \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \tilde{a}_{n}\tilde{f } (x)dx {}\\ & =& \int _{\{x>0;0<x^{\delta }\leq 1\}}\omega _{\delta }(\tilde{\sigma },x) \frac{\mu (x)} {U^{1-\delta \varepsilon }(x)}dx {}\\ & \leq & k(\tilde{\sigma })\int _{\{x>0;0<x^{\delta }\leq 1\}} \frac{\mu (x)} {U^{1-\delta \varepsilon }(x)}dx = \frac{1} {\varepsilon } k(\sigma -\frac{\varepsilon } {q})U^{\delta \varepsilon }(1). {}\\ \end{array}$$

If there exists a positive constant K ≥ k(σ), such that (43) is valid when replacing k(σ) by K, then in particular, we have \(\varepsilon \tilde{I}>\varepsilon K\vert \vert \tilde{f } \vert \vert _{p,\varPhi _{\delta }}\vert \vert \tilde{a}\vert \vert _{q,\tilde{\varPsi }},\) namely,

$$\displaystyle{k(\sigma -\frac{\varepsilon } {q})U^{\delta \varepsilon }(1)> K \cdot U^{ \frac{\delta \varepsilon }{ p} }(1)\left ( \frac{1} {V _{n_{0}}^{\varepsilon }} +\varepsilon \tilde{ O}(1)\right )^{\frac{1} {q} }.}$$

It follows that k(σ) ≥ K(ɛ → 0+). Hence, K = k(σ) is the best possible constant factor of (43).

The constant factor k(σ) in (44) (respectively, (45)) is still the best possible. Otherwise, we would reach a contradiction by (46) (respectively, (47)) that the constant factor in (43) is not the best possible. The theorem is proved.

Theorem 4.

With the assumptions of Theorem 3 , if

$$\displaystyle{0 <p <1,\ 0 <\vert \vert f\vert \vert _{p,\varPhi _{\delta }},\ \vert \vert a\vert \vert _{q,\tilde{\varPsi }} <\infty,}$$

then we have the following equivalent inequalities with the best possible constant factor k(σ):

$$\displaystyle\begin{array}{rcl} I& =& \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} a_{n}f(x)dx> k(\sigma )\vert \vert f\vert \vert _{p,\tilde{\varPhi }_{\delta }}\vert \vert a\vert \vert _{q,\tilde{\varPsi }},{}\end{array}$$
(49)
$$\displaystyle\begin{array}{rcl} J_{1}& =& \sum _{n=1}^{\infty } \frac{\nu _{n}} {\tilde{V }_{n}^{1-p\sigma }}\left [\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} f(x)dx\right ]^{p}> k(\sigma )\vert \vert f\vert \vert _{ p,\tilde{\varPhi }_{\delta }},{}\end{array}$$
(50)
$$\displaystyle\begin{array}{rcl} J&: & = \left \{\int _{0}^{\infty }\frac{(1 -\theta _{\delta }(\sigma,x))^{1-q}\mu (x)} {U^{1-q\delta \sigma }(x)} \left [\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} a_{n}\right ]^{q}dx\right \}^{\frac{1} {q} } \\ &>& k(\sigma )\vert \vert a\vert \vert _{q,\tilde{\varPsi }}. {}\end{array}$$
(51)

Proof.

By the reverse Hölder’s inequality with weight (cf. [8]), since 0 < p < 1, similarly to the way we obtained (25) and (26), we have

$$\displaystyle\begin{array}{rcl} & & \left [\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} f(x)dx\right ]^{p} {}\\ & \geq & \frac{(\varpi _{\delta }(\sigma,n))^{p-1}} {\tilde{V }_{n}^{p\sigma -1}\nu _{n}} \int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \frac{U^{(1-\delta \sigma )(p-1)}(x)\nu _{n}} {\tilde{V }_{n}^{1-\sigma }\mu ^{p-1}(x)} f^{p}(x)dx, {}\\ \end{array}$$

and then in view of (19) and Lebesgue term by term integration theorem, we find

$$\displaystyle\begin{array}{rcl} J_{1}& \geq & (k(\sigma ))^{\frac{1} {q} }\left [\sum _{n=1}^{\infty }\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \frac{U^{(1-\delta \sigma )(p-1)}(x)\nu _{n}} {\tilde{V }_{n}^{1-\sigma }\mu ^{p-1}(x)} f^{p}(x)dx\right ]^{\frac{1} {p} } {}\\ & =& (k(\sigma ))^{\frac{1} {q} }\left [\int _{0}^{\infty }\omega _{\delta }(\sigma,x)\frac{U^{p(1-\delta \sigma )-1}(x)} {\mu ^{p-1}(x)} f^{p}(x)dx\right ]^{\frac{1} {p} }. {}\\ \end{array}$$

Then by (20), we have (50).

By the reverse Hölder’s inequality (cf. [8]), we have

$$\displaystyle\begin{array}{rcl} I& =& \sum _{n=1}^{\infty }\left [ \frac{\nu _{n}^{\frac{1} {p} }} {\tilde{V }_{n}^{\frac{1} {p}-\sigma }}\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} f(x)dx\right ]\left (\frac{\tilde{V }_{n}^{\frac{1} {p}-\sigma }a_{n}} {\nu _{n}^{\frac{1} {p} }} \right ) \\ & \geq & J_{1}\vert \vert a\vert \vert _{q,\tilde{\varPsi }}. {}\end{array}$$
(52)

Then by (50), we have (49).

On the other hand, assuming that (49) is valid, we set a n as in Theorem 1. Then we find \(J_{1}^{p} = \vert \vert a\vert \vert _{q,\tilde{\varPsi }}^{q}.\)

If J 1 = , then (50) is trivially valid.

If J 1 = 0, then (50) remains impossible.

Suppose that 0 < J 1 < . By (49), it follows that

$$\displaystyle\begin{array}{rcl} \vert \vert a\vert \vert _{q,\tilde{\varPsi }}^{q}& =& J_{ 1}^{p} = I> k(\sigma )\vert \vert f\vert \vert _{ p,\tilde{\varPhi }_{\delta }}\vert \vert a\vert \vert _{q,\tilde{\varPsi }}, {}\\ \vert \vert a\vert \vert _{q,\tilde{\varPsi }}^{q-1}& =& J_{ 1}> k(\sigma )\vert \vert f\vert \vert _{p,\tilde{\varPhi }_{\delta }}, {}\\ \end{array}$$

and then (50) follows, which is equivalent to (49).

By the reverse Hölder’s inequality with weight (cf. [8]), since q < 0, we have

$$\displaystyle\begin{array}{rcl} & & \left [\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} a_{n}\right ]^{q} {}\\ & \leq & \frac{(\omega _{\delta }(\sigma,x))^{q-1}} {U^{q\delta \sigma -1}(x)\mu (x)}\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \frac{\tilde{V }_{n}^{(1-\sigma )(q-1)}\mu (x)} {U^{1-\delta \sigma }(x)\nu _{n}^{q-1}} a_{n}^{q}, {}\\ \end{array}$$

and then by (20) and Lebesgue term by term integration theorem, it follows that

$$\displaystyle\begin{array}{rcl} J&>& (k(\sigma ))^{\frac{1} {p} }\left [\int _{0}^{\infty }\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \frac{\tilde{V }_{n}^{(1-\sigma )(q-1)}\mu (x)} {U^{1-\delta \sigma }(x)\nu _{n}^{q-1}} a_{n}^{q}dx\right ]^{\frac{1} {q} } {}\\ & =& (k(\sigma ))^{\frac{1} {p} }\left [\sum _{n=1}^{\infty }\varpi _{\delta }(\sigma,n)\frac{\tilde{V }_{n}^{q(1-\sigma )-1}} {\nu _{n}^{q-1}} a_{n}^{q}\right ]^{\frac{1} {q} }. {}\\ \end{array}$$

Then by (19), we have (51).

By the reverse Hölder’s inequality (cf. [8]), we have

$$\displaystyle\begin{array}{rcl} I& =& \int _{0}^{\infty }\left [(1 -\theta _{\delta }(\sigma,x))^{\frac{1} {p} }\frac{U^{\frac{1} {q}-\delta \sigma }(x)} {\mu ^{\frac{1} {q} }(x)} f(x)\right ] \\ & & \times \left [\frac{(1 -\theta _{\delta }(\sigma,x))^{\frac{-1} {p} }\mu ^{\frac{1} {q} }(x)} {U^{\frac{1} {q}-\delta \sigma }(x)} \sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} a_{n}\right ]dx \\ & \geq & \vert \vert f\vert \vert _{p,\tilde{\varPhi }_{\delta }}J. {}\end{array}$$
(53)

Then by (51), we have (49).

On the other hand, assuming that (49) is valid, we set f(x) as in Theorem 1. Then we find \(J^{q} = \vert \vert f\vert \vert _{p,\tilde{\varPhi }_{\delta }}^{p}.\)

If J = , then (51) is trivially valid.

If J = 0, then (51) remains impossible.

Suppose that 0 < J < . By (49), it follows that

$$\displaystyle\begin{array}{rcl} \vert \vert f\vert \vert _{p,\tilde{\varPhi }_{\delta }}^{p}& =& J^{q} = I> k(\sigma )\vert \vert f\vert \vert _{ p,\tilde{\varPhi }_{\delta }}\vert \vert a\vert \vert _{q,\tilde{\varPsi }}, {}\\ \vert \vert f\vert \vert _{p,\tilde{\varPhi }_{\delta }}^{p-1}& =& J> k(\sigma )\vert \vert a\vert \vert _{ q,\tilde{\varPsi }}, {}\\ \end{array}$$

and then (51) follows, which is equivalent to (49).

Therefore, inequalities (49), (50) and (51) are equivalent.

For ɛ ∈ (0, p(σγ)), we set \(\tilde{\sigma }=\sigma + \frac{\varepsilon }{p}(>\gamma ),\) and \(\tilde{f }= \tilde{f } (x),x \in \mathbf{R}_{+},\tilde{a} =\{\tilde{ a}_{n}\}_{n=1}^{\infty },\)

$$\displaystyle\begin{array}{rcl} \tilde{f }(x)& =& \left \{\begin{array}{c} U^{\delta \tilde{\sigma }-1}(x)\mu (x),0 <x^{\delta } \leq 1 \\ 0,x^{\delta }> 0 \end{array} \right., {}\\ \tilde{a}_{n}& =& \tilde{V }_{n}^{\tilde{\sigma }-\varepsilon -1}\nu _{ n} =\tilde{ V }_{n}^{\sigma -\frac{\varepsilon }{q}-1}\nu _{ n},n \in \mathbf{N}. {}\\ \end{array}$$

By (20), (21) and (33), we obtain

$$\displaystyle\begin{array}{rcl} & & \vert \vert \tilde{f } \vert \vert _{p,\tilde{\varPhi }_{\delta }}\vert \vert \tilde{a}\vert \vert _{q,\tilde{\varPsi }} {}\\ & =& \left [\int _{\{x>0;0<x^{\delta }\leq 1\}}(1 - O((U(x))^{\delta (\sigma -\gamma )})) \frac{\mu (x)dx} {U^{1-\delta \varepsilon }(x)}\right ]^{\frac{1} {p} }\left (\sum _{n=1}^{\infty } \frac{\nu _{n}} {\tilde{V }_{n}^{1+\varepsilon }}\right )^{\frac{1} {q} } {}\\ & =& \frac{1} {\varepsilon } \left (U^{\delta \varepsilon }(1) -\varepsilon O(1)\right )^{\frac{1} {p} }\left ( \frac{1} {V _{n_{0}}^{\varepsilon }} +\varepsilon \tilde{ O}(1)\right )^{\frac{1} {q} }, {}\\ \end{array}$$
$$\displaystyle\begin{array}{rcl} \tilde{I}& =& \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \tilde{a}_{n}\tilde{f } (x)dx {}\\ & =& \sum _{n=1}^{\infty }\left [\int _{\{ x>0;0<x^{\delta }\leq 1\}}\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \frac{\tilde{V }_{n}^{\tilde{\sigma }}\mu (x)} {U^{1-\delta \tilde{\sigma }}(x)}dx\right ] \frac{\nu _{n}} {\tilde{V }_{n}^{1+\varepsilon }} {}\\ & \leq & \sum _{n=1}^{\infty }\left [\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} \frac{\tilde{V }_{n}^{\tilde{\sigma }}\mu (x)} {U^{1-\delta \tilde{\sigma }}(x)}dx\right ] \frac{\nu _{n}} {\tilde{V }_{n}^{1+\varepsilon }} {}\\ & =& \sum _{n=1}^{\infty }\varpi _{ \delta }(\tilde{\sigma },n) \frac{\nu _{n}} {\tilde{V }_{n}^{1+\varepsilon }} = k(\tilde{\sigma })\sum _{n=1}^{\infty } \frac{\nu _{n}} {\tilde{V }_{n}^{1+\varepsilon }} {}\\ & =& \frac{1} {\varepsilon } k(\sigma + \frac{\varepsilon } {p})\left ( \frac{1} {V _{n_{0}}^{\varepsilon }} +\varepsilon \tilde{ O}(1)\right ). {}\\ \end{array}$$

If there exists a positive constant K ≥ k(σ), such that (43) is valid when replacing k(σ) by K, then in particular, we have \(\varepsilon \tilde{I}>\varepsilon K\vert \vert \tilde{f } \vert \vert _{p,\tilde{\varPhi }_{\delta }}\vert \vert \tilde{a}\vert \vert _{q,\tilde{\varPsi }},\) namely,

$$\displaystyle\begin{array}{rcl} & & k(\sigma + \frac{\varepsilon } {p})\left ( \frac{1} {V _{n_{0}}^{\varepsilon }} +\varepsilon \tilde{ O}(1)\right ) {}\\ &>& K\left (U^{\delta \varepsilon }(1) -\varepsilon O(1)\right )^{\frac{1} {p} }\left ( \frac{1} {V _{n_{0}}^{\varepsilon }} +\varepsilon \tilde{ O}(1)\right )^{\frac{1} {q} }. {}\\ \end{array}$$

It follows that k(σ) ≥ K(ɛ → 0+). Hence, K = k(σ) is the best possible constant factor of (49).

The constant factor k(σ) in (50) (respectively, (51)) is still the best possible. Otherwise, we would reach a contradiction by (52) (respectively, (53)) that the constant factor in (49) is not the best possible. The theorem is proved.

5 Some Particular Inequalities

For \(\tilde{\nu }_{n} = 0,\tilde{V }_{n} = V _{n},\) we set

$$\displaystyle{\varPsi (n):= \frac{V _{n}^{q(1-\sigma )-1}} {\nu _{n}^{q-1}} \ (n \in \mathbf{N}).}$$

In view of Theorems 24, we have

Corollary 1.

If 0 ≤α ≤ρ(ρ > 0),0 < γ < σ ≤ 1,k(σ) is given by (13), there exists n 0 N , such that v n ≥ v n+1 (n ∈ { n 0 ,n 0 + 1,⋯ }), and U(∞) = V (∞) = ∞, then

  1. (i)

    for \(p> 1,\ 0 <\vert \vert f\vert \vert _{p,\varPhi _{\delta }},\vert \vert a\vert \vert _{q,\varPsi } <\infty,\) we have the following equivalent inequalities:

    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)V _{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)V _{n})^{\gamma }}} a_{n}f(x)dx <k(\sigma )\vert \vert f\vert \vert _{p,\varPhi _{\delta }}\vert \vert a\vert \vert _{q,\varPsi }, {}\end{array}$$
    (54)
    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty } \frac{\nu _{n}} {V _{n}^{1-p\sigma }}\left [\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)V _{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)V _{n})^{\gamma }}} f(x)dx\right ]^{p} <k(\sigma )\vert \vert f\vert \vert _{ p,\varPhi _{\delta }}, {}\end{array}$$
    (55)
    $$\displaystyle{ \left \{\int _{0}^{\infty } \frac{\mu (x)} {U^{1-q\delta \sigma }(x)}\left [\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)V _{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)V _{n})^{\gamma }}} a_{n}\right ]^{q}dx\right \}^{\frac{1} {q} } <k(\sigma )\vert \vert a\vert \vert _{q,\varPsi }; }$$
    (56)
  2. (ii)

    for \(p <0,\ 0 <\vert \vert f\vert \vert _{p,\varPhi _{\delta }},\vert \vert a\vert \vert _{q,\varPsi } <\infty,\) we have the following equivalent inequalities:

    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)V _{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)V _{n})^{\gamma }}} a_{n}f(x)dx> k(\sigma )\vert \vert f\vert \vert _{p,\varPhi _{\delta }}\vert \vert a\vert \vert _{q,\varPsi }, {}\end{array}$$
    (57)
    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty } \frac{\nu _{n}} {V _{n}^{1-p\sigma }}\left [\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)V _{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)V _{n})^{\gamma }}} f(x)dx\right ]^{p}> k(\sigma )\vert \vert f\vert \vert _{ p,\varPhi _{\delta }}, {}\end{array}$$
    (58)
    $$\displaystyle{ \left \{\int _{0}^{\infty } \frac{\mu (x)} {U^{1-q\delta \sigma }(x)}\left [\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)V _{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)V _{n})^{\gamma }}} a_{n}\right ]^{q}dx\right \}^{\frac{1} {q} }> k(\sigma )\vert \vert a\vert \vert _{q,\varPsi }; }$$
    (59)
  3. (iii)

    for \(0 <p <1,\ 0 <\vert \vert f\vert \vert _{p,\varPhi _{\delta }},\vert \vert a\vert \vert _{q,\varPsi } <\infty,\) we have the following equivalent inequalities:

    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)V _{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)V _{n})^{\gamma }}} a_{n}f(x)dx> k(\sigma )\vert \vert f\vert \vert _{p,\tilde{\varPhi }_{\delta }}\vert \vert a\vert \vert _{q,\varPsi }, {}\end{array}$$
    (60)
    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty } \frac{\nu _{n}} {V _{n}^{1-p\sigma }}\left [\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)V _{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)V _{n})^{\gamma }}} f(x)dx\right ]^{p}> k(\sigma )\vert \vert f\vert \vert _{ p,\tilde{\varPhi }_{\delta }}, {}\end{array}$$
    (61)
    $$\displaystyle\begin{array}{rcl} & & \left \{\int _{0}^{\infty }\frac{(1 -\theta _{\delta }(\sigma,x))^{1-q}\mu (x)} {U^{1-q\delta \sigma }(x)} \left [\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)V _{ n})^{\gamma })} {e^{\alpha (U^{\delta }(x)V _{n})^{\gamma }}} a_{n}\right ]^{q}dx\right \}^{\frac{1} {q} } \\ &>& k(\sigma )\vert \vert a\vert \vert _{q,\varPsi }. {}\end{array}$$
    (62)

The above inequalities have the best possible constant factor k(σ). 

In particular, for δ = 1, we have the following inequalities with the non-homogeneous kernel:

Corollary 2.

If 0 ≤α ≤ρ(ρ > 0),0 < γ < σ ≤ 1,k(σ) is given by ( 13 ), there exists n 0 N , such that v n ≥ v n+1 (n ∈ { n 0 ,n 0 + 1,⋯ }), and U(∞) = V (∞) = ∞, then

  1. (i)

    for \(p> 1,\ 0 <\vert \vert f\vert \vert _{p,\varPhi _{1}},\vert \vert a\vert \vert _{q,\varPsi } <\infty,\) we have the following equivalent inequalities:

    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho (U(x)V _{n})^{\gamma })} {e^{\alpha (U(x)V _{n})^{\gamma }}} a_{n}f(x)dx <k(\sigma )\vert \vert f\vert \vert _{p,\varPhi _{1}}\vert \vert a\vert \vert _{q,\varPsi }, {}\end{array}$$
    (63)
    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty } \frac{\nu _{n}} {V _{n}^{1-p\sigma }}\left [\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U(x)V _{n})^{\gamma })} {e^{\alpha (U(x)V _{n})^{\gamma }}} f(x)dx\right ]^{p} <k(\sigma )\vert \vert f\vert \vert _{ p,\varPhi _{1}}, {}\end{array}$$
    (64)
    $$\displaystyle{ \left \{\int _{0}^{\infty } \frac{\mu (x)} {U^{1-q\sigma }(x)}\left [\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U(x)V _{n})^{\gamma })} {e^{\alpha (U(x)V _{n})^{\gamma }}} a_{n}\right ]^{q}dx\right \}^{\frac{1} {q} } <k(\sigma )\vert \vert a\vert \vert _{q,\varPsi }; }$$
    (65)
  2. (ii)

    for \(p <0,\ 0 <\vert \vert f\vert \vert _{p,\varPhi _{1}},\vert \vert a\vert \vert _{q,\varPsi } <\infty,\) we have the following equivalent inequalities:

    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho (U(x)V _{n})^{\gamma })} {e^{\alpha (U(x)V _{n})^{\gamma }}} a_{n}f(x)dx> k(\sigma )\vert \vert f\vert \vert _{p,\varPhi _{1}}\vert \vert a\vert \vert _{q,\varPsi }, {}\end{array}$$
    (66)
    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty } \frac{\nu _{n}} {V _{n}^{1-p\sigma }}\left [\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U(x)V _{n})^{\gamma })} {e^{\alpha (U(x)V _{n})^{\gamma }}} f(x)dx\right ]^{p}> k(\sigma )\vert \vert f\vert \vert _{ p,\varPhi _{1}}, {}\end{array}$$
    (67)
    $$\displaystyle{ \left \{\int _{0}^{\infty } \frac{\mu (x)} {U^{1-q\sigma }(x)}\left [\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U(x)V _{n})^{\gamma })} {e^{\alpha (U(x)V _{n})^{\gamma }}} a_{n}\right ]^{q}dx\right \}^{\frac{1} {q} }> k(\sigma )\vert \vert a\vert \vert _{q,\varPsi }; }$$
    (68)
  3. (iii)

    for \(0 <p <1,\ 0 <\vert \vert f\vert \vert _{p,\varPhi _{1}},\vert \vert a\vert \vert _{q,\varPsi } <\infty,\) we have the following equivalent inequalities:

    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho (U(x)V _{n})^{\gamma })} {e^{\alpha (U(x)V _{n})^{\gamma }}} a_{n}f(x)dx> k(\sigma )\vert \vert f\vert \vert _{p,\tilde{\varPhi }_{1}}\vert \vert a\vert \vert _{q,\varPsi }, {}\end{array}$$
    (69)
    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty } \frac{\nu _{n}} {V _{n}^{1-p\sigma }}\left [\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U(x)V _{n})^{\gamma })} {e^{\alpha (U(x)V _{n})^{\gamma }}} f(x)dx\right ]^{p}> k(\sigma )\vert \vert f\vert \vert _{ p,\tilde{\varPhi }_{1}}, {}\end{array}$$
    (70)
    $$\displaystyle\begin{array}{rcl} & & \left \{\int _{0}^{\infty }\frac{(1 -\theta _{1}(\sigma,x))^{1-q}\mu (x)} {U^{1-q\sigma }(x)} \left [\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U(x)V _{n})^{\gamma })} {e^{\alpha (U(x)V _{n})^{\gamma }}} a_{n}\right ]^{q}dx\right \}^{\frac{1} {q} } \\ &>& k(\sigma )\vert \vert a\vert \vert _{q,\varPsi }. {}\end{array}$$
    (71)

The above inequalities involve the best possible constant factor k(σ). 

For δ = −1, we have the following inequalities with the homogeneous kernel of degree 0:

Corollary 3.

If 0 ≤α ≤ρ(ρ > 0),0 < γ < σ ≤ 1,k(σ) is given by ( 13 ), there exists n 0 N , such that v n ≥ v n+1 (n ∈ { n 0 ,n 0 + 1,⋯ }), and U(∞) = V (∞) = ∞, then

  1. (i)

    for \(p> 1,\ 0 <\vert \vert f\vert \vert _{p,\varPhi _{-1}},\vert \vert a\vert \vert _{q,\varPsi } <\infty,\) we have the following equivalent inequalities:

    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho ( \frac{V _{n}} {U(x)})^{\gamma })} {e^{\alpha ( \frac{V_{n}} {U(x)} )^{\gamma } }} a_{n}f(x)dx <k(\sigma )\vert \vert f\vert \vert _{p,\varPhi _{-1}}\vert \vert a\vert \vert _{q,\varPsi }, {}\end{array}$$
    (72)
    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty } \frac{\nu _{n}} {V _{n}^{1-p\sigma }}\left [\int _{0}^{\infty }\frac{\mbox{csc } h(\rho ( \frac{V _{n}} {U(x)})^{\gamma })} {e^{\alpha ( \frac{V_{n}} {U(x)} )^{\gamma } }} f(x)dx\right ]^{p} <k(\sigma )\vert \vert f\vert \vert _{ p,\varPhi _{-1}}, {}\end{array}$$
    (73)
    $$\displaystyle{ \left \{\int _{0}^{\infty } \frac{\mu (x)} {U^{1+q\sigma }(x)}\left [\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho ( \frac{V _{n}} {U(x)})^{\gamma })} {e^{\alpha ( \frac{V_{n}} {U(x)} )^{\gamma } }} a_{n}\right ]^{q}dx\right \}^{\frac{1} {q} } <k(\sigma )\vert \vert a\vert \vert _{q,\varPsi }; }$$
    (74)
  2. (ii)

    for \(p <0,\ 0 <\vert \vert f\vert \vert _{p,\varPhi _{-1}},\vert \vert a\vert \vert _{q,\varPsi } <\infty,\) we have the following equivalent inequalities:

    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho ( \frac{V _{n}} {U(x)})^{\gamma })} {e^{\alpha ( \frac{V_{n}} {U(x)} )^{\gamma } }} a_{n}f(x)dx> k(\sigma )\vert \vert f\vert \vert _{p,\varPhi _{-1}}\vert \vert a\vert \vert _{q,\varPsi }, {}\end{array}$$
    (75)
    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty } \frac{\nu _{n}} {V _{n}^{1-p\sigma }}\left [\int _{0}^{\infty }\frac{\mbox{csc } h(\rho ( \frac{V _{n}} {U(x)})^{\gamma })} {e^{\alpha ( \frac{V_{n}} {U(x)} )^{\gamma } }} f(x)dx\right ]^{p}> k(\sigma )\vert \vert f\vert \vert _{ p,\varPhi _{-1}}, {}\end{array}$$
    (76)
    $$\displaystyle{ \left \{\int _{0}^{\infty } \frac{\mu (x)} {U^{1+q\sigma }(x)}\left [\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho ( \frac{V _{n}} {U(x)})^{\gamma })} {e^{\alpha ( \frac{V_{n}} {U(x)} )^{\gamma } }} a_{n}\right ]^{q}dx\right \}^{\frac{1} {q} }> k(\sigma )\vert \vert a\vert \vert _{q,\varPsi }; }$$
    (77)
  3. (iii)

    for \(0 <p <1,\ 0 <\vert \vert f\vert \vert _{p,\varPhi _{-1}},\vert \vert a\vert \vert _{q,\varPsi } <\infty,\) we have the following equivalent inequalities:

    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho ( \frac{V _{n}} {U(x)})^{\gamma })} {e^{\alpha ( \frac{V_{n}} {U(x)} )^{\gamma } }} a_{n}f(x)dx> k(\sigma )\vert \vert f\vert \vert _{p,\tilde{\varPhi }_{-1}}\vert \vert a\vert \vert _{q,\varPsi }, {}\end{array}$$
    (78)
    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty } \frac{\nu _{n}} {V _{n}^{1-p\sigma }}\left [\int _{0}^{\infty }\frac{\mbox{csc } h(\rho ( \frac{V _{n}} {U(x)})^{\gamma })} {e^{\alpha ( \frac{V_{n}} {U(x)} )^{\gamma } }} f(x)dx\right ]^{p}> k(\sigma )\vert \vert f\vert \vert _{ p,\tilde{\varPhi }_{-1}}, {}\end{array}$$
    (79)
    $$\displaystyle\begin{array}{rcl} & & \left \{\int _{0}^{\infty }\frac{(1 -\theta _{-1}(\sigma,x))^{1-q}\mu (x)} {U^{1+q\sigma }(x)} \left [\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho ( \frac{V _{n}} {U(x)})^{\gamma })} {e^{\alpha ( \frac{V_{n}} {U(x)} )^{\gamma } }} a_{n}\right ]^{q}dx\right \}^{\frac{1} {q} } \\ &>& k(\sigma )\vert \vert a\vert \vert _{q,\varPsi }. {}\end{array}$$
    (80)

The above inequalities involve the best possible constant factor k(σ). 

For α = ρ in Theorems 24, we have

Corollary 4.

If ρ > 0,0 < γ < σ ≤ 1,

$$\displaystyle{ K(\sigma ):= \frac{2\varGamma (\frac{\sigma }{\gamma })\zeta (\frac{\sigma }{\gamma })} {\gamma (2\rho )^{\sigma /\gamma }}, }$$
(81)

there exists n 0 N , such that v n ≥ v n+1 (n ∈ { n 0 ,n 0 + 1,⋯ }), and U(∞) = V (∞) = ∞, then

  1. (i)

    for \(p> 1,\ 0 <\vert \vert f\vert \vert _{p,\varPhi _{\delta }},\vert \vert a\vert \vert _{q,\tilde{\varPsi }} <\infty,\) we have the following equivalent inequalities with the best possible constant factor K(σ):

    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\rho (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} a_{n}f(x)dx <K(\sigma )\vert \vert f\vert \vert _{p,\varPhi _{\delta }}\vert \vert a\vert \vert _{q,\tilde{\varPsi }}, {}\end{array}$$
    (82)
    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty } \frac{\nu _{n}} {\tilde{V }_{n}^{1-p\sigma }}\left [\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\rho (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} f(x)dx\right ]^{p} <K(\sigma )\vert \vert f\vert \vert _{ p,\varPhi _{\delta }}, {}\end{array}$$
    (83)
    $$\displaystyle{ \left \{\int _{0}^{\infty } \frac{\mu (x)} {U^{1-q\delta \sigma }(x)}\left [\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\rho (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} a_{n}\right ]^{q}dx\right \}^{\frac{1} {q} } <K(\sigma )\vert \vert a\vert \vert _{q,\tilde{\varPsi }}. }$$
    (84)
  2. (ii)

    for \(p <0,0 <\vert \vert f\vert \vert _{p,\varPhi _{\delta }},\vert \vert a\vert \vert _{q,\tilde{\varPsi }} <\infty,\) we have the following equivalent inequalities with the best possible constant factor K(σ):

    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\rho (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} a_{n}f(x)dx> K(\sigma )\vert \vert f\vert \vert _{p,\varPhi _{\delta }}\vert \vert a\vert \vert _{q,\tilde{\varPsi }}, {}\end{array}$$
    (85)
    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty } \frac{\nu _{n}} {\tilde{V }_{n}^{1-p\sigma }}\left [\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\rho (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} f(x)dx\right ]^{p}> K(\sigma )\vert \vert f\vert \vert _{ p,\varPhi _{\delta }}, {}\end{array}$$
    (86)
    $$\displaystyle{ \left \{\int _{0}^{\infty } \frac{\mu (x)} {U^{1-q\delta \sigma }(x)}\left [\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\rho (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} a_{n}\right ]^{q}dx\right \}^{\frac{1} {q} }> K(\sigma )\vert \vert a\vert \vert _{q,\tilde{\varPsi }}; }$$
    (87)
  3. (iii)

    for \(0 <p <1,0 <\vert \vert f\vert \vert _{p,\varPhi _{\delta }},\vert \vert a\vert \vert _{q,\tilde{\varPsi }} <\infty,\) we have the following equivalent inequalities with the best possible constant factor K(σ):

    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\rho (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} a_{n}f(x)dx> K(\sigma )\vert \vert f\vert \vert _{p,\tilde{\varPhi }_{\delta }}\vert \vert a\vert \vert _{q,\tilde{\varPsi }}, {}\end{array}$$
    (88)
    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty } \frac{\nu _{n}} {\tilde{V }_{n}^{1-p\sigma }}\left [\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\rho (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} f(x)dx\right ]^{p}> K(\sigma )\vert \vert f\vert \vert _{ p,\tilde{\varPhi }_{\delta }}, {}\end{array}$$
    (89)
    $$\displaystyle\begin{array}{rcl} & & \left \{\int _{0}^{\infty }\frac{(1 -\theta _{\delta }(\sigma,x))^{1-q}\mu (x)} {U^{1-q\delta \sigma }(x)} \left [\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\gamma })} {e^{\rho (U^{\delta }(x)\tilde{V }_{n})^{\gamma }}} a_{n}\right ]^{q}dx\right \}^{\frac{1} {q} } \\ &>& K(\sigma )\vert \vert a\vert \vert _{q,\tilde{\varPsi }}. {}\end{array}$$
    (90)

In particular, for \(\gamma = \frac{\sigma } {2},\theta _{\delta }(\sigma,x) = O((U(x))^{ \frac{\delta \sigma }{ 2} }),\)

  1. (i)

    for p > 1, we have the following equivalent inequalities with the best possible constant factor \(\frac{\pi ^{2}} {6\sigma \rho ^{2}}\):

    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\sigma /2})} {e^{\rho (U^{\delta }(x)\tilde{V }_{n})^{\sigma /2} }} a_{n}f(x)dx <\frac{\pi ^{2}} {6\sigma \rho ^{2}}\vert \vert f\vert \vert _{p,\varPhi _{\delta }}\vert \vert a\vert \vert _{q,\tilde{\varPsi }}, {}\end{array}$$
    (91)
    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty } \frac{\nu _{n}} {\tilde{V }_{n}^{1-p\sigma }}\left [\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\sigma /2})} {e^{\rho (U^{\delta }(x)\tilde{V }_{n})^{\sigma /2} }} f(x)dx\right ]^{p} <\frac{\pi ^{2}} {6\sigma \rho ^{2}}\vert \vert f\vert \vert _{p,\varPhi _{\delta }}, {}\end{array}$$
    (92)
    $$\displaystyle{ \left \{\int _{0}^{\infty } \frac{\mu (x)} {U^{1-q\delta \sigma }(x)}\left [\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\sigma /2})} {e^{\rho (U^{\delta }(x)\tilde{V }_{n})^{\sigma /2} }} a_{n}\right ]^{q}dx\right \}^{\frac{1} {q} } <\frac{\pi ^{2}} {6\sigma \rho ^{2}}\vert \vert a\vert \vert _{q,\tilde{\varPsi }}; }$$
    (93)
  2. (ii)

    for p < 0, we have the following equivalent inequalities with the best possible constant factor \(\frac{\pi ^{2}} {6\sigma \rho ^{2}}\):

    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\sigma /2})} {e^{\rho (U^{\delta }(x)\tilde{V }_{n})^{\sigma /2} }} a_{n}f(x)dx> \frac{\pi ^{2}} {6\sigma \rho ^{2}}\vert \vert f\vert \vert _{p,\varPhi _{\delta }}\vert \vert a\vert \vert _{q,\tilde{\varPsi }}, {}\end{array}$$
    (94)
    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty } \frac{\nu _{n}} {\tilde{V }_{n}^{1-p\sigma }}\left [\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\sigma /2})} {e^{\rho (U^{\delta }(x)\tilde{V }_{n})^{\sigma /2} }} f(x)dx\right ]^{p}> \frac{\pi ^{2}} {6\sigma \rho ^{2}}\vert \vert f\vert \vert _{p,\varPhi _{\delta }}, {}\end{array}$$
    (95)
    $$\displaystyle{ \left \{\int _{0}^{\infty } \frac{\mu (x)} {U^{1-q\delta \sigma }(x)}\left [\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\sigma /2})} {e^{\rho (U^{\delta }(x)\tilde{V }_{n})^{\sigma /2} }} a_{n}\right ]^{q}dx\right \}^{\frac{1} {q} }> \frac{\pi ^{2}} {6\sigma \rho ^{2}}\vert \vert a\vert \vert _{q,\tilde{\varPsi }}; }$$
    (96)
  3. (iii)

    for 0 < p < 1, we have the following equivalent inequalities with the best possible constant factor \(\frac{\pi ^{2}} {6\sigma \rho ^{2}}\):

    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\sigma /2})} {e^{\rho (U^{\delta }(x)\tilde{V }_{n})^{\sigma /2} }} a_{n}f(x)dx> \frac{\pi ^{2}} {6\sigma \rho ^{2}}\vert \vert f\vert \vert _{p,\tilde{\varPhi }_{\delta }}\vert \vert a\vert \vert _{q,\tilde{\varPsi }}, {}\end{array}$$
    (97)
    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty } \frac{\nu _{n}} {\tilde{V }_{n}^{1-p\sigma }}\left [\int _{0}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\sigma /2})} {e^{\rho (U^{\delta }(x)\tilde{V }_{n})^{\sigma /2} }} f(x)dx\right ]^{p}> \frac{\pi ^{2}} {6\sigma \rho ^{2}}\vert \vert f\vert \vert _{p,\tilde{\varPhi }_{\delta }}, {}\end{array}$$
    (98)
    $$\displaystyle\begin{array}{rcl} & & \left \{\int _{0}^{\infty }\frac{(1 -\theta _{\delta }(\sigma,x))^{1-q}\mu (x)} {U^{1-q\delta \sigma }(x)} \left [\sum _{n=1}^{\infty }\frac{\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{\sigma /2})} {e^{\rho (U^{\delta }(x)\tilde{V }_{n})^{\sigma /2} }} a_{n}\right ]^{q}dx\right \}^{\frac{1} {q} } \\ &>& \frac{\pi ^{2}} {6\sigma \rho ^{2}}\vert \vert a\vert \vert _{q,\tilde{\varPsi }}. {}\end{array}$$
    (99)

For \(\alpha = 0,\gamma = \frac{\sigma } {2},\theta _{\delta }(\sigma,x) = O((U(x))^{ \frac{\delta \sigma }{ 2} })\) in Theorems 24, we have

Corollary 5.

If ρ > 0,0 < σ ≤ 1, there exists n 0 N , such that v n ≥ v n+1 (n ∈ { n 0 ,n 0 + 1,⋯ }), and U(∞) = V (∞) = ∞, then

  1. (i)

    for \(p> 1,\ 0 <\vert \vert f\vert \vert _{p,\varPhi _{\delta }},\vert \vert a\vert \vert _{q,\tilde{\varPsi }} <\infty,\) we have the following equivalent inequalities with the best possible constant factor \(\frac{\pi ^{2}} {2\sigma \rho ^{2}}\) :

    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{ \frac{\sigma }{ 2} })a_{n}f(x)dx <\frac{\pi ^{2}} {2\sigma \rho ^{2}}\vert \vert f\vert \vert _{p,\varPhi _{\delta }}\vert \vert a\vert \vert _{q,\tilde{\varPsi }}, {}\end{array}$$
    (100)
    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty } \frac{\nu _{n}} {\tilde{V }_{n}^{1-p\sigma }}\left [\int _{0}^{\infty }\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{ \frac{\sigma }{ 2} })f(x)dx\right ]^{p} <\frac{\pi ^{2}} {2\sigma \rho ^{2}}\vert \vert f\vert \vert _{p,\varPhi _{\delta }}, {}\end{array}$$
    (101)
    $$\displaystyle{ \left \{\int _{0}^{\infty } \frac{\mu (x)} {U^{1-q\delta \sigma }(x)}\left [\sum _{n=1}^{\infty }\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{ \frac{\sigma }{ 2} })a_{n}\right ]^{q}dx\right \}^{\frac{1} {q} } <\frac{\pi ^{2}} {2\sigma \rho ^{2}}\vert \vert a\vert \vert _{q,\tilde{\varPsi }}; }$$
    (102)
  2. (ii)

    for \(p <0,0 <\vert \vert f\vert \vert _{p,\varPhi _{\delta }},\vert \vert a\vert \vert _{q,\tilde{\varPsi }} <\infty,\) we have the following equivalent inequalities with the best possible constant factor \(\frac{\pi ^{2}} {2\sigma \rho ^{2}}\) :

    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{ \frac{\sigma }{ 2} })a_{n}f(x)dx> \frac{\pi ^{2}} {2\sigma \rho ^{2}}\vert \vert f\vert \vert _{p,\varPhi _{\delta }}\vert \vert a\vert \vert _{q,\tilde{\varPsi }}, {}\end{array}$$
    (103)
    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty } \frac{\nu _{n}} {\tilde{V }_{n}^{1-p\sigma }}\left [\int _{0}^{\infty }\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{ \frac{\sigma }{ 2} })f(x)dx\right ]^{p}> \frac{\pi ^{2}} {2\sigma \rho ^{2}}\vert \vert f\vert \vert _{p,\varPhi _{\delta }}, {}\end{array}$$
    (104)
    $$\displaystyle{ \left \{\int _{0}^{\infty } \frac{\mu (x)} {U^{1-q\delta \sigma }(x)}\left [\sum _{n=1}^{\infty }\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{ \frac{\sigma }{ 2} })a_{n}\right ]^{q}dx\right \}^{\frac{1} {q} }> \frac{\pi ^{2}} {2\sigma \rho ^{2}}\vert \vert a\vert \vert _{q,\tilde{\varPsi }}; }$$
    (105)
  3. (iii)

    for \(0 <p <1,0 <\vert \vert f\vert \vert _{p,\varPhi _{\delta }},\vert \vert a\vert \vert _{q,\tilde{\varPsi }} <\infty,\) we have the following equivalent inequalities with the best possible constant factor \(\frac{\pi ^{2}} {2\sigma \rho ^{2}}\) :

    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{ \frac{\sigma }{ 2} })a_{n}f(x)dx> \frac{\pi ^{2}} {2\sigma \rho ^{2}}\vert \vert f\vert \vert _{p,\tilde{\varPhi }_{\delta }}\vert \vert a\vert \vert _{q,\tilde{\varPsi }}, {}\end{array}$$
    (106)
    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty } \frac{\nu _{n}} {\tilde{V }_{n}^{1-p\sigma }}\left [\int _{0}^{\infty }\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{ \frac{\sigma }{ 2} })f(x)dx\right ]^{p}> \frac{\pi ^{2}} {2\sigma \rho ^{2}}\vert \vert f\vert \vert _{p,\tilde{\varPhi }_{\delta }}, {}\end{array}$$
    (107)
    $$\displaystyle\begin{array}{rcl} & & \left \{\int _{0}^{\infty }\frac{(1 -\theta _{\delta }(\sigma,x))^{1-q}\mu (x)} {U^{1-q\delta \sigma }(x)} \left [\sum _{n=1}^{\infty }\mbox{csc } h(\rho (U^{\delta }(x)\tilde{V }_{ n})^{ \frac{\sigma }{ 2} })a_{n}\right ]^{q}dx\right \}^{\frac{1} {q} } \\ &>& \frac{\pi ^{2}} {2\sigma \rho ^{2}}\vert \vert a\vert \vert _{q,\tilde{\varPsi }}. {}\end{array}$$
    (108)

Remark 2.

  1. (i)

    For μ(x) = ν n  = 1 in (54), we have the following inequality with the best possible constant factor k(σ): 

    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho (x^{\delta }n)^{\gamma })} {e^{\alpha (x^{\delta }n)^{\gamma }}} a_{n}f(x)dx {}\end{array}$$
    (109)
    $$\displaystyle\begin{array}{rcl} & <& k(\sigma )\left [\int _{0}^{\infty }x^{p(1-\delta \sigma )-1}f^{p}(x)dx\right ]^{\frac{1} {p} }\left [\sum _{n=1}^{\infty }n^{q(1-\sigma )-1}a_{n}^{q}\right ]^{\frac{1} {q} }. {}\end{array}$$
    (110)

In particular, for δ = 1, we have the following inequality with the non-homogeneous kernel:

$$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho (xn)^{\gamma })} {e^{\alpha (xn)^{\gamma }}} a_{n}f(x)dx{}\end{array}$$
(111)
$$\displaystyle\begin{array}{rcl} & <& k(\sigma )\left [\int _{0}^{\infty }x^{p(1-\sigma )-1}f^{p}(x)dx\right ]^{\frac{1} {p} }\left [\sum _{n=1}^{\infty }n^{q(1-\sigma )-1}a_{n}^{q}\right ]^{\frac{1} {q} };{}\end{array}$$
(112)

for δ = −1, we have the following inequality with the homogeneous kernel:

$$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho (\frac{n} {x})^{\gamma })} {e^{\alpha (\frac{n} {x} )^{\gamma } }} a_{n}f(x)dx{}\end{array}$$
(113)
$$\displaystyle\begin{array}{rcl} & <& k(\sigma )\left [\int _{0}^{\infty }x^{p(1+\sigma )-1}f^{p}(x)dx\right ]^{\frac{1} {p} }\left [\sum _{n=1}^{\infty }n^{q(1-\sigma )-1}a_{n}^{q}\right ]^{\frac{1} {q} }.{}\end{array}$$
(114)
  1. (ii)

    For \(\mu (x) =\nu _{n} = 1,\ \tilde{\nu }_{n} =\tau \in (0, \frac{1} {2}]\) in (22), we have the following more accurate inequality than (82) with the best possible constant factor k(σ): 

    $$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho [x^{\delta }(n-\tau )]^{\gamma })} {e^{\alpha (x^{\delta }(n-\tau )]^{\gamma })^{\gamma }}} a_{n}f(x)dx {}\end{array}$$
    (115)
    $$\displaystyle\begin{array}{rcl} & <& k(\sigma )\left [\int _{0}^{\infty }x^{p(1-\delta \sigma )-1}f^{p}(x)dx\right ]^{\frac{1} {p} }\left [\sum _{n=1}^{\infty }(n-\tau )^{q(1-\sigma )-1}a_{n}^{q}\right ]^{\frac{1} {q} }. {}\end{array}$$
    (116)

In particular, for δ = 1, we have the following inequality with the non-homogeneous kernel:

$$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\frac{\mbox{csc } h([x(n-\tau )]^{\gamma })} {e^{\alpha \{[x(n-\tau )]\}^{\gamma }}} a_{n}f(x)dx{}\end{array}$$
(117)
$$\displaystyle\begin{array}{rcl} & <& k(\sigma )\left [\int _{0}^{\infty }x^{p(1-\sigma )-1}f^{p}(x)dx\right ]^{\frac{1} {p} }\left [\sum _{n=1}^{\infty }(n-\tau )^{q(1-\sigma )-1}a_{n}^{q}\right ]^{\frac{1} {q} };{}\end{array}$$
(118)

for δ = −1, we have the following inequality with the homogeneous kernel:

$$\displaystyle\begin{array}{rcl} & & \sum _{n=1}^{\infty }\int _{ 0}^{\infty }\frac{\mbox{csc } h(\rho (\frac{n-\tau } {x} )^{\gamma })} {e^{\alpha (\frac{n-\tau } {x} )^{\gamma } }} a_{n}f(x)dx{}\end{array}$$
(119)
$$\displaystyle\begin{array}{rcl} & <& k(\sigma )\left [\int _{0}^{\infty }x^{p(1+\sigma )-1}f^{p}(x)dx\right ]^{\frac{1} {p} }\left [\sum _{n=1}^{\infty }(n-\tau )^{q(1-\sigma )-1}a_{n}^{q}\right ]^{\frac{1} {q} }.{}\end{array}$$
(120)

We can still obtain a large number of other inequalities by using some special parameters in the above theorems and corollaries.