Skip to main content

Systems Biology Through the Concept of Emergence

  • Chapter
  • First Online:
Philosophy of Systems Biology

Part of the book series: History, Philosophy and Theory of the Life Sciences ((HPTL,volume 20))

Teaser

“I think that philosophy (and a specific philosophical paradigm) is exactly what differentiates systems biology from closely related sciences such as molecular biology and computational biology. Indeed, some people think that systems biology is just a kind of molecular biology - let us say a quantified (computationally based) version of molecular biology – or, on the contrary, that systems biology is just a version of computational biology. I think that a certain philosophical paradigm is what makes systems biology different from these closely related sciences. I believe that systems biology represents a shift in the way we conceptualize systems rather than an extension of previous approaches.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alberghina, L., & Westerhoff, H. V. (Eds.). (2005). Systems biology: Definitions and perspectives. New York: Springer.

    Google Scholar 

  • Allen, G. F., Toth, R., James, J., & Ganley, I. G. (2013). Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Report, 14, 1127–1135.

    Article  Google Scholar 

  • Boogerd, F. C., Bruggeman, F., Hofmeyr, J. H. S., & Westerhoff, H. V. (Eds.). (2007). Systems biology. Philosophical foundations. Amsterdam: Elsevier.

    Google Scholar 

  • Ciapaite, J., Van Eikenhorst, G., Bakker, S. J. L., Diamant, M., Heine, R. J., Wagner, M. J., … Krab, K. (2005). Modular kinetic analysis of the adenine nucleotide translocator-mediated effects of palmitoyl-CoA on the oxidative phosphorylation in isolated rat liver mitochondria. Diabetes, 54, 944–951.

    Google Scholar 

  • Einstein, A. (1961). Relativity. New York: Crown Publishers.

    Google Scholar 

  • Fell, D. A., & Wagner, A. (2000). The small world of metabolism. Nature Biotechnology, 18, 1121–1122.

    Article  Google Scholar 

  • Glansdorff, P., Nicolis, G., & Prigogine, I. (1974). The thermodynamic stability theory of non-equilibrium States. Proceedings of the National Academy of Sciences of the Unites States of America, 71, 197–199.

    Article  Google Scholar 

  • Kolodkin, A. N., & Westerhoff, H. V. (2011). Parsimony for systems biology: Shaving Occam’s razor away. European Communications in Mathematical and Theoretical Biology, 14, 149–152.

    Google Scholar 

  • Kolodkin, A., Boogerd, F. C., Plant, N., Bruggeman, F. J., Goncharuk, V., Lunshof, J., … Westerhoff, H. V. (2011). Emergence of the silicon human and network targeting drugs. European Journal of Pharmaceutical Sciences, 46, 190–197.

    Google Scholar 

  • Kolodkin, A., Simeonidis, E., Balling, R., & Westerhoff, H. (2012). Understanding complexity in neurodegenerative diseases: In silico reconstruction of emergence. Frontiers in Physiology, 3, 291.

    Article  Google Scholar 

  • Kolodkin, A., Simeonidis, E., & Westerhoff, H. V. (2013). Computing life: Add logos to biology and bios to physics. Progress in Biophysics and Molecular Biology, 111, 69–74.

    Google Scholar 

  • Lehrach, H., Subrak, R., Boyle, P., Pasterk, M., Zatloukal, K., Müller, H., … Westerhoff, H. V. (2011). ITFoM – The IT future of medicine. Procedia Computer Science, 7, 26–29.

    Google Scholar 

  • Mitchell, P. (1961). Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature, 191, 144–148.

    Article  Google Scholar 

  • Noble, D. (2006). The music of life. Biology beyond genes. Oxford: Oxford University Press.

    Google Scholar 

  • Prigogine, I., & Nicolis, G. (1989). Exploring complexity: An introduction. New York: WH Freeman.

    Google Scholar 

  • Schommers, W., & Espagnat, B. d. (1989). Quantum theory and pictures of reality foundations, interpretations, and new aspects. Berlin: Springer.

    Book  Google Scholar 

  • Snoep, J. L., & Olivier, B. G. (2002). Java Web Simulation (JWS); A web based database of kinetic models. Molecular Biology Reports, 29, 259–263.

    Article  Google Scholar 

  • Stephan, A. (2006). The dual role of ‘emergence’ in the philosophy of mind and in cognitive science. Synthese, 151, 485–498.

    Article  Google Scholar 

  • Sun, Y. H., Chen, S. P., Wang, Y. P., Hu, W., & Zhu, Z. Y. (2005). Cytoplasmic impact on cross-genus cloned fish derived from transgenic common carp (Cyprinus carpio) nuclei and goldfish (Carassius auratus) enucleated eggs. Biology of Reproduction, 72, 510–515.

    Article  Google Scholar 

  • Thorburn, W. M. (1918). The myth of Occam’s razor. Mind, 27, 345–353.

    Article  Google Scholar 

  • Tian, Q., Price, N. D., & Hood, L. (2012). Systems cancer medicine: Towards realization of predictive, preventive, personalized and participatory (P4) medicine. Journal of Internal Medicine, 271, 111–121.

    Article  Google Scholar 

  • Westerhoff, H. V., & Van Dam, K. (1987). Thermodynamics and control of biological free energy transduction. Amsterdam: Elsevier.

    Google Scholar 

  • Westerhoff, H. V., Kolodkin, A., Conradie, R., Wilkinson, S. J., Bruggeman, F. J., Krab, K., … Snoep, J. L. (2009a). Systems biology towards life in silico: Mathematics of the control of living cells. Journal of Mathematical Biology, 58, 7–34.

    Google Scholar 

  • Westerhoff, H. V., Winder, C., Messiha, H., Simeonidis, E., Adamczyk, M., Verma, M., … Dunn, W. (2009b). Systems biology: The elements and principles of life. FEBS Letters, 583, 3882–3890.

    Google Scholar 

  • Westerhoff, H. V., Brooks, A. N., Simeonidis, E., Garcia-Contreras, R., He, F., Boogerd, F. C., … Kolodkin, A. (2014). Macromolecular networks and intelligence in microorganisms. Frontiers of Microbiology, 5, 379.

    Google Scholar 

Suggested Readings by Alexey Kolodkin

  • Kolodkin, A. N., & Westerhoff, H. V. (2011). Parsimony for systems biology: Shaving Occam’s razor away. European Communications in Mathematical and Theoretical Biology, 14, 149–152.

    Google Scholar 

  • Kolodkin, A., Boogerd, F. C., Plant, N., Bruggeman, F. J., Goncharuk, V., Lunshof, J., … Westerhoff, H. V. (2011). Emergence of the silicon human and network targeting drugs. European Journal of Pharmaceutical Sciences, 46, 190–197.

    Google Scholar 

  • Kolodkin, A., Simeonidis, E., & Westerhoff, H. V. (2013). Computing life: Add logos to biology and bios to physics. Progress in Biophysics and Molecular Biology, 111, 69–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Kolodkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kolodkin, A. (2017). Systems Biology Through the Concept of Emergence. In: Green, S. (eds) Philosophy of Systems Biology. History, Philosophy and Theory of the Life Sciences, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-47000-9_17

Download citation

Publish with us

Policies and ethics